diff --git a/examples/ConvertToMapOfFinSets.g b/examples/ConvertToMapOfFinSets.g
index abdb0cd..4d9be49 100644
--- a/examples/ConvertToMapOfFinSets.g
+++ b/examples/ConvertToMapOfFinSets.g
@@ -28,12 +28,12 @@ Display( g );
#! @EndExample
#! We can also create finite concrete categories with objects
-#! not starting from 1, to demonstrate that
-#! ConcreteCategoryForCAP( [ [,,,5,6,4], [,,,7,8,9], [,,,,,,8,9,7] ] )
-#! and ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ) yield
-#! equivalent categories, i.e. their underlying quivers are
-#! the same and they give the same algebroid and category
-#! of representations.
+#! not starting with $1$, to demonstrate that
+#! ConcreteCategoryForCAP( [ [,,,5,6,4], [,,,7,8,9], [,,,,,,8,9,7] ] )
+#! and ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ) yield
+#! isomorphic categories, in particular, their underlying quivers are
+#! isomorphic (here even equal), inducing isomorphic algebroids and
+#! isomorphic categories of representations.
#! @Example
ccat := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] );
@@ -57,6 +57,3 @@ CatReps2 := Hom( A2, GF3 );
CatReps1 = CatReps2;
#! true
#! @EndExample
-
-
-
diff --git a/examples/RelationsOfEndomorphisms.g b/examples/RelationsOfEndomorphisms.g
index 3d35c09..5ce8991 100644
--- a/examples/RelationsOfEndomorphisms.g
+++ b/examples/RelationsOfEndomorphisms.g
@@ -1,31 +1,30 @@
-#! @BeginChunk Endomorphisms
-
-LoadPackage( "CatReps" );
-
-#!
-#! Two examples to test if RelationsOfEndomorphisms also works
-#! on endomorphisms that aren't bijective.
-#! The first example is a constant endomorphism, so applying
-#! it twice should be the same as once.
-
-#! @Example
-GF3 := HomalgRingOfIntegers(3);
-#! GF(3)
-ccat := ConcreteCategoryForCAP( [ [1,1,1], [4,5,6], [,,,5,6,4] ] );
-#! A finite concrete category
-relEndo := RelationsOfEndomorphisms( GF3, ccat );
-#! [ Z(3)^0*(a*a) + Z(3)*(a), Z(3)^0*(c*c*c) + Z(3)*(2) ]
-#! @EndExample
-
-#! The next example is the permutation by the companion matrix to $a^8-a^3$, so
-#! neither $a^5-a^0$, $a^6-a^1$ nor $a^7-a^2$ are zero:
-
-#! @Example
-GF3 := HomalgRingOfIntegers(3);
-#! GF(3)
-ccat := ConcreteCategoryForCAP( [ [2,3,4,5,6,7,8,4] ] );
-#! A finite concrete category
-relEndo := RelationsOfEndomorphisms( GF3, ccat );
-#! [ Z(3)^0*(a*a*a*a*a*a*a*a) + Z(3)*(a*a*a) ]
-#! @EndExample
-#! @EndChunk
\ No newline at end of file
+#! @BeginChunk Endomorphisms
+
+LoadPackage( "CatReps" );
+
+#! The two examples below test RelationsOfEndomorphisms
+#! on endomorphisms that are not bijective.
+
+#! The first generating morphism of the first example is constant, and hence an idempotent.
+
+#! @Example
+GF3 := HomalgRingOfIntegers(3);
+#! GF(3)
+ccat := ConcreteCategoryForCAP( [ [1,1,1], [4,5,6], [,,,5,6,4] ] );
+#! A finite concrete category
+relEndo := RelationsOfEndomorphisms( GF3, ccat );
+#! [ Z(3)^0*(a*a) + Z(3)*(a), Z(3)^0*(c*c*c) + Z(3)*(2) ]
+#! @EndExample
+
+#! The next example is a single permutation defined by the companion matrix of $a^8-a^3$, hence
+#! neither $a^5-a^0$, $a^6-a^1$, nor $a^7-a^2$ are zero:
+
+#! @Example
+GF3 := HomalgRingOfIntegers(3);
+#! GF(3)
+ccat := ConcreteCategoryForCAP( [ [2,3,4,5,6,7,8,4] ] );
+#! A finite concrete category
+relEndo := RelationsOfEndomorphisms( GF3, ccat );
+#! [ Z(3)^0*(a*a*a*a*a*a*a*a) + Z(3)*(a*a*a) ]
+#! @EndExample
+#! @EndChunk
diff --git a/examples/RepresentingC4C4.g b/examples/RepresentingC4C4.g
index 8224a71..8d8610d 100644
--- a/examples/RepresentingC4C4.g
+++ b/examples/RepresentingC4C4.g
@@ -1,241 +1,220 @@
-#! @BeginChunk RepresentingC4C4
-
-LoadPackage( "CatReps" );
-
-#! In order to understand the workings and choices in the first example,
-#! I made a similar example to compare the results.
-
-#! @Example
-c4c4 := ConcreteCategoryForCAP( [ [2,3,4,1], [5,6,7,8],
- [,,,,6,7,8,5] ] );
-#! A finite concrete category
-HOMALG_MATRICES.PreferDenseMatrices := true;
-#! true
-GF3 := HomalgRingOfIntegers( 3 );
-#! GF(3)
-kq := Algebroid( GF3, c4c4 );
-#! Algebroid generated by the right quiver
-#! q(2)[a:1->1,b:1->2,c:2->2]
-UnderlyingQuiverAlgebra( kq );
-#! (GF(3) * q) /
-#! [ Z(3)^0*(a*a*a*a) + Z(3)*(1),
-#! Z(3)^0*(c*c*c*c) + Z(3)*(2),
-#! Z(3)*(b*c) + Z(3)^0*(a*b) ]
-SetIsLinearClosureOfACategory( kq, true );
-#! @EndExample
-
-#! We are now looking to represent our concrete category
-#! $c4c4$, i.e. we want to find matrices a, b, c that
-#! satisfy the relations of the Algebroid.
-#! Since the endomorphisms are permutations on a set of
-#! 4 elements it makes sense to choose permutation matrices.
-#! But if we choose 4x4 permutation matrices for both
-#! endomorphisms, the only possible matrix for b would
-#! be the 4x4 identity matrix, which isn't very interesting.
-#! Instead we can see the permutations on 4 elements in
-#! $S_4$ as elements of $Stab_{5,6}$ subset $S_6$ or of
-#! $Stab_{5}$ subset $S_5$. As permutation matrices, they
-#! are block diagonal matrices with the smaller permutation
-#! matrix on 4 elements complemented with a 2x2 or 1x1
-#! identity matrix on the diagonal.
-#! This gives us two different
-#! dimensions for our target matrix category, $6$ and $5$
-#! respectively, and makes the choice of the matrix for b
-#! less trivial.
-
-#! @Example
-CatReps := Hom( kq, GF3 );
-#! The category of functors: Algebroid generated by the
-#! right quiver q(2)[a:1->1,b:1->2,c:2->2] ->
-#! Category of matrices over GF(3)
-#aMat := HomalgMatrix( [
-aMat :=[
- [ 0,0,0,1,0,0 ],
- [ 1,0,0,0,0,0 ],
- [ 0,1,0,0,0,0 ],
- [ 0,0,1,0,0,0 ],
- [ 0,0,0,0,1,0 ],
- [ 0,0,0,0,0,1 ]
-];;
-# ], 6, 6, GF3 );
-#
-#cMat := HomalgMatrix( [
-cMat := [
- [ 0,0,0,1,0 ],
- [ 1,0,0,0,0 ],
- [ 0,1,0,0,0 ],
- [ 0,0,1,0,0 ],
- [ 0,0,0,0,1 ]
-];;
-# ], 5, 5, GF3 );
-#
-Display( aMat^4 );
-#! [ [ 1, 0, 0, 0, 0, 0 ],
-#! [ 0, 1, 0, 0, 0, 0 ],
-#! [ 0, 0, 1, 0, 0, 0 ],
-#! [ 0, 0, 0, 1, 0, 0 ],
-#! [ 0, 0, 0, 0, 1, 0 ],
-#! [ 0, 0, 0, 0, 0, 1 ] ]
-Display( cMat^4 );
-#! [ [ 1, 0, 0, 0, 0 ],
-#! [ 0, 1, 0, 0, 0 ],
-#! [ 0, 0, 1, 0, 0 ],
-#! [ 0, 0, 0, 1, 0 ],
-#! [ 0, 0, 0, 0, 1 ] ]
-#! @EndExample
-
-#! I calculated by hand the matrix multiplications
-#! $a*b = b*c$ and what they imply for the entries in b
-#! given the matrices a and c above. The result is that
-#! from the 30 variables $b_{11},...,b_{65}$ only
-#! nine free variables remain, which can be set to
-#! any element in our field:
-#!
-
-#! @Example
-b11 := 0;; b12 := 1;; b13 := 0;; b21 := 1;;
-b15 := 0;; b51 := 1;; b55 := 0;; b61 := 1;; b65 := 1;;
-
-#bMat := HomalgMatrix( [
-bMat := [
- [b11,b12,b13,b21,b15],
- [b21,b11,b12,b13,b15],
- [b13,b21,b11,b12,b15],
- [b12,b13,b21,b11,b15],
- [b51,b51,b51,b51,b55],
- [b61,b61,b61,b61,b65]
-];;
-#], 6,5, GF3 );
-#
-Display( bMat );
-#! [ [ 0, 1, 0, 1, 0 ],
-#! [ 1, 0, 1, 0, 0 ],
-#! [ 0, 1, 0, 1, 0 ],
-#! [ 1, 0, 1, 0, 0 ],
-#! [ 1, 1, 1, 1, 0 ],
-#! [ 1, 1, 1, 1, 1 ] ]
-Display( aMat*bMat );
-#! [ [ 1, 0, 1, 0, 0 ],
-#! [ 0, 1, 0, 1, 0 ],
-#! [ 1, 0, 1, 0, 0 ],
-#! [ 0, 1, 0, 1, 0 ],
-#! [ 1, 1, 1, 1, 0 ],
-#! [ 1, 1, 1, 1, 1 ] ]
-Display( bMat*cMat );
-#! [ [ 1, 0, 1, 0, 0 ],
-#! [ 0, 1, 0, 1, 0 ],
-#! [ 1, 0, 1, 0, 0 ],
-#! [ 0, 1, 0, 1, 0 ],
-#! [ 1, 1, 1, 1, 0 ],
-#! [ 1, 1, 1, 1, 1 ] ]
-aMat*bMat = bMat*cMat;
-#! true
-#! @EndExample
-
-#! So the three relations in our algebroid should be satisfied
-#! by these matrices, therefore they should make a
-#! well-defined representation of C4C4. (Defining the matrices
-#! as HomalgMatrices instead of GAP matrices yields in an error
-#! in RecordOfCatRep which is used in WeakDirectSumDecomposition,
-#! so for now they are defined as GAP matrices).
-
-#! @Example
-eleven := AsObjectInHomCategory( kq, [ 6, 5 ], [ aMat, bMat, cMat ] );
-#! <(1)->6, (2)->5; (a)->6x6, (b)->6x5, (c)->5x5>
-IsWellDefined( eleven );
-#! true
-Display( eleven );
-#! An object in The category of functors: Algebroid
-#! generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
-#! -> Category of matrices over GF(3) defined by the following data:
-#!
-#!
-#! Image of <(1)>:
-#! A vector space object over GF(3) of dimension 6
-#!
-#! Image of <(2)>:
-#! A vector space object over GF(3) of dimension 5
-#!
-#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
-#! . . . 1 . .
-#! 1 . . . . .
-#! . 1 . . . .
-#! . . 1 . . .
-#! . . . . 1 .
-#! . . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
-#! . 1 . 1 .
-#! 1 . 1 . .
-#! . 1 . 1 .
-#! 1 . 1 . .
-#! 1 1 1 1 .
-#! 1 1 1 1 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
-#! . . . 1 .
-#! 1 . . . .
-#! . 1 . . .
-#! . . 1 . .
-#! . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-gammas := WeakDirectSumDecomposition( eleven );
-#! [ <(1)->1x6, (2)->0x5>, <(1)->1x6, (2)->1x5>, <(1)->1x6, (2)->1x5>,
-#! <(1)->2x6, (2)->0x5>, <(1)->0x6, (2)->2x5>, <(1)->1x6, (2)->1x5> ]
-#! @EndExample
-
-#! As opposed to nine in the first example, eleven itself
-#! can already be decomposed.
-
-#! @Example
-Display( Source( UniversalMorphismFromDirectSum( gammas ) ) );
-#! An object in The category of functors: Algebroid
-#! generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
-#! -> Category of matrices over GF(3) defined by the following data:
-#!
-#!
-#! Image of <(1)>:
-#! A vector space object over GF(3) of dimension 6
-#!
-#! Image of <(2)>:
-#! A vector space object over GF(3) of dimension 5
-#!
-#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
-#! 1 . . . . .
-#! . 1 . . . .
-#! . . 2 . . .
-#! . . . . 2 .
-#! . . . 1 . .
-#! . . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
-#! . . . . .
-#! 1 . . . .
-#! . 1 . . .
-#! . . . . .
-#! . . . . .
-#! . . . . 2
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
-#! 1 . . . .
-#! . 2 . . .
-#! . . 2 2 .
-#! . . 2 1 .
-#! . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#! @EndExample
-#! @EndChunk
+#! @BeginChunk RepresentingC4C4
+
+LoadPackage( "CatReps" );
+
+#! In order to understand the choices in the above example,
+#! we made a similar example to compare the results.
+
+#! @Example
+c4c4 := ConcreteCategoryForCAP( [ [2,3,4,1], [5,6,7,8], [,,,,6,7,8,5] ] );
+#! A finite concrete category
+HOMALG_MATRICES.PreferDenseMatrices := true;
+#! true
+GF3 := HomalgRingOfIntegers( 3 );
+#! GF(3)
+kq := Algebroid( GF3, c4c4 );
+#! Algebroid generated by the right quiver
+#! q(2)[a:1->1,b:1->2,c:2->2]
+UnderlyingQuiverAlgebra( kq );
+#! (GF(3) * q) /
+#! [ Z(3)^0*(a*a*a*a) + Z(3)*(1),
+#! Z(3)^0*(c*c*c*c) + Z(3)*(2),
+#! Z(3)*(b*c) + Z(3)^0*(a*b) ]
+SetIsLinearClosureOfACategory( kq, true );
+#! @EndExample
+
+#! In order to find representations of our concrete category
+#! $C4C4$ we need to find matrices $a, b, c$ that
+#! satisfy the relations of the algebroid.
+#! Here we choose permutation matrices corresponding to the two permutations
+#! $a, c$.
+#! We view the permutations on $4$ points in
+#! $\mathrm{S}_4$ as elements of $\mathrm{Stab}_{\mathrm{S}_6}(5,6)$ or of
+#! $\mathrm{Stab}_{\mathrm{S}_5}(5)$. As permutation matrices, they
+#! are block diagonal matrices with the smaller permutation
+#! matrix on $4$ elements complemented with a $2 \times 2$ or $1 \times 1$
+#! identity matrix on the diagonal.
+#! This gives us two different
+#! dimensions for our target matrix category, $6$ and $5$
+#! respectively, and makes the choice of the matrix for b
+#! less trivial.
+
+#! @Example
+CatReps := Hom( kq, GF3 );
+#! The category of functors: Algebroid generated by the
+#! right quiver q(2)[a:1->1,b:1->2,c:2->2] ->
+#! Category of matrices over GF(3)
+amat := HomalgMatrix( One( GF3 ) *
+[ [ 0,0,0,1,0,0 ],
+ [ 1,0,0,0,0,0 ],
+ [ 0,1,0,0,0,0 ],
+ [ 0,0,1,0,0,0 ],
+ [ 0,0,0,0,1,0 ],
+ [ 0,0,0,0,0,1 ] ], 6, 6, GF3 );
+#!
+cmat := HomalgMatrix( One(GF3) *
+[ [ 0,0,0,1,0 ],
+ [ 1,0,0,0,0 ],
+ [ 0,1,0,0,0 ],
+ [ 0,0,1,0,0 ],
+ [ 0,0,0,0,1 ] ], 5, 5, GF3 );
+#!
+Display( amat^4 );
+#! 1 . . . . .
+#! . 1 . . . .
+#! . . 1 . . .
+#! . . . 1 . .
+#! . . . . 1 .
+#! . . . . . 1
+Display( cmat^4 );
+#! 1 . . . .
+#! . 1 . . .
+#! . . 1 . .
+#! . . . 1 .
+#! . . . . 1
+#! @EndExample
+
+#! Given the matrices $a$ and $c$ above one can now solve the homogenous linear system
+#! $a*b = b*c$ in the $30$ unknowns $b_{11},...,b_{65}$.
+#! The following $9$ variables are free variables:
+
+#! @Example
+b11 := 0;; b12 := 1;; b13 := 0;; b21 := 1;;
+b15 := 0;; b51 := 1;; b55 := 0;; b61 := 1;; b65 := 1;;
+bmat := HomalgMatrix( One( GF3 ) *
+[ [b11,b12,b13,b21,b15],
+ [b21,b11,b12,b13,b15],
+ [b13,b21,b11,b12,b15],
+ [b12,b13,b21,b11,b15],
+ [b51,b51,b51,b51,b55],
+ [b61,b61,b61,b61,b65] ], 6, 5, GF3 );
+#!
+Display( bmat );
+#! . 1 . 1 .
+#! 1 . 1 . .
+#! . 1 . 1 .
+#! 1 . 1 . .
+#! 1 1 1 1 .
+#! 1 1 1 1 1
+Display( amat * bmat );
+#! 1 . 1 . .
+#! . 1 . 1 .
+#! 1 . 1 . .
+#! . 1 . 1 .
+#! 1 1 1 1 .
+#! 1 1 1 1 1
+Display( bmat * cmat );
+#! 1 . 1 . .
+#! . 1 . 1 .
+#! 1 . 1 . .
+#! . 1 . 1 .
+#! 1 1 1 1 .
+#! 1 1 1 1 1
+amat * bmat = bmat * cmat;
+#! true
+#! @EndExample
+
+#! So the three relations in our algebroid should be satisfied
+#! by these matrices, therefore they should provide a
+#! well-defined representation of C4C4.
+
+#! @Example
+eleven := AsObjectInHomCategory( kq, [ 6, 5 ], [ amat, bmat, cmat ] );
+#! <(1)->6, (2)->5; (a)->6x6, (b)->6x5, (c)->5x5>
+IsWellDefined( eleven );
+#! true
+Display( eleven );
+#! An object in The category of functors: Algebroid
+#! generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
+#! -> Category of matrices over GF(3) defined by the following data:
+#!
+#!
+#! Image of <(1)>:
+#! A vector space object over GF(3) of dimension 6
+#!
+#! Image of <(2)>:
+#! A vector space object over GF(3) of dimension 5
+#!
+#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
+#! . . . 1 . .
+#! 1 . . . . .
+#! . 1 . . . .
+#! . . 1 . . .
+#! . . . . 1 .
+#! . . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
+#! . 1 . 1 .
+#! 1 . 1 . .
+#! . 1 . 1 .
+#! 1 . 1 . .
+#! 1 1 1 1 .
+#! 1 1 1 1 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
+#! . . . 1 .
+#! 1 . . . .
+#! . 1 . . .
+#! . . 1 . .
+#! . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+gammas := WeakDirectSumDecomposition( eleven );
+#! [ <(1)->1x6, (2)->0x5>, <(1)->1x6, (2)->1x5>, <(1)->1x6, (2)->1x5>,
+#! <(1)->2x6, (2)->0x5>, <(1)->0x6, (2)->2x5>, <(1)->1x6, (2)->1x5> ]
+#! @EndExample
+
+#! As opposed to nine in the previous example, eleven itself
+#! can already be decomposed.
+
+#! @Example
+Display( Source( UniversalMorphismFromDirectSum( gammas ) ) );
+#! An object in The category of functors: Algebroid
+#! generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
+#! -> Category of matrices over GF(3) defined by the following data:
+#!
+#!
+#! Image of <(1)>:
+#! A vector space object over GF(3) of dimension 6
+#!
+#! Image of <(2)>:
+#! A vector space object over GF(3) of dimension 5
+#!
+#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
+#! 1 . . . . .
+#! . 1 . . . .
+#! . . 2 . . .
+#! . . . . 2 .
+#! . . . 1 . .
+#! . . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
+#! . . . . .
+#! 1 . . . .
+#! . 1 . . .
+#! . . . . .
+#! . . . . .
+#! . . . . 2
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
+#! 1 . . . .
+#! . 2 . . .
+#! . . 2 2 .
+#! . . 2 1 .
+#! . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#! @EndExample
+#! @EndChunk
diff --git a/examples/NaturalTransformation.g b/examples/rest/NaturalTransformation.g
similarity index 94%
rename from examples/NaturalTransformation.g
rename to examples/rest/NaturalTransformation.g
index b1704bf..e719fb7 100644
--- a/examples/NaturalTransformation.g
+++ b/examples/rest/NaturalTransformation.g
@@ -1,51 +1,51 @@
-Read("CategoryOfRepresentations.g");
-
-e11 := 1;; e12 := 1;; e13 := 0;; e42 := 1;; e43 := 1;;
-
-eMat := [
-[e11, e12, e13],
-[0, e11, e12],
-[0, 0, e11],
-[0, e42, e43],
-[0, 0, e42]
-];
-#! [ [ 1, 1, 0 ], [ 0, 1, 1 ], [ 0, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 1 ] ]
-
-f11 := 1;; f12 := 0;; f13 := 1;; f33 := 0;; f43 := 1;;
-fMat := [
-[f11, f12, f13],
-[0, f11, f13],
-[0, 0, f33],
-[0, 0, f43]
-];
-#! [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ]
-
-e12 := 1;; e13 := 0;; e42 := 1;; e43 := 1;;
-f12 := 0;; f13 := -e12;; f43 := e12-e42;;
-
-eMat := [
-[0, e12, e13],
-[0, 0, e12],
-[0, 0, 0],
-[0, e42, e43],
-[0, 0, e42]
-];
-
-fMat := [
-[0, f12, -e12],
-[0, 0, -e12],
-[0, 0, 0],
-[0, 0, e12-e42]
-];
-
-eta := [
-VectorSpaceMorphism(
-nine(kq.1), HomalgMatrix(eMat, GF3), six(kq.1) ),
-VectorSpaceMorphism(
-nine(kq.2), HomalgMatrix(fMat, GF3), six(kq.2) ) ];
-ninetosix := AsMorphismInHomCategory( nine, eta, six );
-
-IsObject( nine );
-#! true
-IsMorphism( ninetosix );
-# Error
\ No newline at end of file
+Read("CategoryOfRepresentations.g");
+
+e11 := 1;; e12 := 1;; e13 := 0;; e42 := 1;; e43 := 1;;
+
+eMat := [
+[e11, e12, e13],
+[0, e11, e12],
+[0, 0, e11],
+[0, e42, e43],
+[0, 0, e42]
+];
+#! [ [ 1, 1, 0 ], [ 0, 1, 1 ], [ 0, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 1 ] ]
+
+f11 := 1;; f12 := 0;; f13 := 1;; f33 := 0;; f43 := 1;;
+fMat := [
+[f11, f12, f13],
+[0, f11, f13],
+[0, 0, f33],
+[0, 0, f43]
+];
+#! [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ]
+
+e12 := 1;; e13 := 0;; e42 := 1;; e43 := 1;;
+f12 := 0;; f13 := -e12;; f43 := e12-e42;;
+
+eMat := [
+[0, e12, e13],
+[0, 0, e12],
+[0, 0, 0],
+[0, e42, e43],
+[0, 0, e42]
+];
+
+fMat := [
+[0, f12, -e12],
+[0, 0, -e12],
+[0, 0, 0],
+[0, 0, e12-e42]
+];
+
+eta := [
+VectorSpaceMorphism(
+nine(kq.1), HomalgMatrix(eMat, GF3), six(kq.1) ),
+VectorSpaceMorphism(
+nine(kq.2), HomalgMatrix(fMat, GF3), six(kq.2) ) ];
+ninetosix := AsMorphismInHomCategory( nine, eta, six );
+
+IsObject( nine );
+#! true
+IsMorphism( ninetosix );
+# Error