diff --git a/PackageInfo.g b/PackageInfo.g
index c0ccc8c..9ec29d4 100644
--- a/PackageInfo.g
+++ b/PackageInfo.g
@@ -11,7 +11,7 @@ SetPackageInfo( rec(
PackageName := "CatReps",
Subtitle := "Representations and cohomology of finite categories",
Version := Maximum( [
- "2020.04.06", ## Mohamed's version
+ "2020.04.07", ## Mohamed's version
## this line prevents merge conflicts
"2020.01.01", ## Tibor's version
## this line prevents merge conflicts
@@ -111,7 +111,7 @@ Dependencies := rec(
[ "SubcategoriesForCAP", ">= 2020.02.02" ],
[ "MatricesForHomalg", ">= 2020.02.02" ],
[ "Toposes", ">= 2020.02.19" ],
- [ "FunctorCategories", ">= 2020.04.04" ],
+ [ "FunctorCategories", ">= 2020.04.07" ],
],
SuggestedOtherPackages := [ ],
ExternalConditions := [ ],
diff --git a/examples/CategoryOfRepresentations.g b/examples/CategoryOfRepresentations.g
index 8507265..bfce9ed 100644
--- a/examples/CategoryOfRepresentations.g
+++ b/examples/CategoryOfRepresentations.g
@@ -133,15 +133,24 @@ Display( const );
#! 1
#!
#! An identity morphism in Category of matrices over GF(3)
-V1 := VectorSpaceObject( 5, GF3 );
-#!
-V2 := VectorSpaceObject( 4, GF3 );
-#!
-d := One(GF3) * [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];;
-d := HomalgMatrix( d, 5, 5, GF3 );;
-d := VectorSpaceMorphism( V1, d, V1 );
-#!
-Display( d );
+d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];;
+e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];;
+f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];;
+nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] );
+#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
+Display( nine );
+#! An object in The category of functors: Bialgebroid generated by the
+#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
+#! over GF(3) defined by the following data:
+#!
+#!
+#! Image of <(1)>:
+#! A vector space object over GF(3) of dimension 5
+#!
+#! Image of <(2)>:
+#! A vector space object over GF(3) of dimension 4
+#!
+#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
#! 1 1 . . .
#! . 1 1 . .
#! . . 1 . .
@@ -149,11 +158,9 @@ Display( d );
#! . . . . 1
#!
#! A morphism in Category of matrices over GF(3)
-e := One(GF3) * [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];;
-e := HomalgMatrix( e, 5, 4, GF3 );;
-e := VectorSpaceMorphism( V1, e, V2 );
-#!
-Display( e );
+#!
+#!
+#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
#! . 1 . .
#! . . 1 .
#! . . . .
@@ -161,19 +168,15 @@ Display( e );
#! . . 1 .
#!
#! A morphism in Category of matrices over GF(3)
-f := One(GF3) * [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];;
-f := HomalgMatrix( f, 4, 4, GF3 );;
-f := VectorSpaceMorphism( V2, f, V2 );
-#!
-Display( f );
+#!
+#!
+#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
#! 1 1 . .
#! . 1 1 .
#! . . 1 .
#! . . . 1
#!
#! A morphism in Category of matrices over GF(3)
-nine := AsObjectInHomCategory( kq, [ V1, V2 ], [ d, e, f ] );
-#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
nine(kq.1);
#!
nine(kq.2);
@@ -503,7 +506,7 @@ Display( emb );
#! Image of <(1)>:
#! . . 1
#!
-#! A split monomorphism in Category of matrices over GF(3)
+#! A split monomorphism in Category of matrices over GF(3)
#!
#!
#! Image of <(2)>: