From 4ad619f8d0164d681262de91e882607559bc8636 Mon Sep 17 00:00:00 2001 From: Mohamed Barakat Date: Sat, 17 Oct 2020 17:56:01 +0200 Subject: [PATCH] recode ibmpc..lat1 examples/DecomposeOnceByRandomEndomorphism.g --- examples/DecomposeOnceByRandomEndomorphism.g | 600 +++++++++---------- 1 file changed, 300 insertions(+), 300 deletions(-) diff --git a/examples/DecomposeOnceByRandomEndomorphism.g b/examples/DecomposeOnceByRandomEndomorphism.g index add2fb7..12ce041 100644 --- a/examples/DecomposeOnceByRandomEndomorphism.g +++ b/examples/DecomposeOnceByRandomEndomorphism.g @@ -1,300 +1,300 @@ -#! @BeginChunk DecomposeOnce - -LoadPackage( "CatReps" ); - -#! @BeginExample -c3c3 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ); -#! A finite concrete category -GF3 := HomalgRingOfIntegers( 3 ); -#! GF(3) -kq := Algebroid( GF3, c3c3 ); -#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] -SetIsLinearClosureOfACategory( kq, true ); -CatReps := Hom( kq, GF3 ); -#! The category of functors: Algebroid generated by the right quiver -#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3) -d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];; -e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];; -f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];; -nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] ); -#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4> -DecomposeOnceByRandomEndomorphism( nine ); -#! fail -#! @EndExample - -#! The above shows that our representation nine is -#! indecomposable (with a high probability). -#! We use the tensor product to generate another representation -#! fortyone, that is hopefully decomposable, and -#! inspect the two resulting embeddings iota and -#! kappa. - -#! @BeginExample -fortyone := TensorProductOnObjects( nine, nine ); -#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16> -result := DecomposeOnceByRandomEndomorphism( fortyone ); -#! [ <(1)->3x25, (2)->1x16>, <(1)->22x25, (2)->15x16> ] -iota := result[1]; -#! <(1)->3x25, (2)->1x16> -kappa := result[2]; -#! <(1)->22x25, (2)->15x16> -Display( fortyone ); -#! An object in The category of functors: Algebroid generated by the -#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices -#! over GF(3) defined by the following data: -#! -#! -#! Image of <(1)>: -#! A vector space object over GF(3) of dimension 25 -#! -#! Image of <(2)>: -#! A vector space object over GF(3) of dimension 16 -#! -#! Image of (1)-[{ Z(3)^0*(a) }]->(1): -#! 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . . -#! . 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . -#! . . 1 . . . . 1 . . . . . . . . . . . . . . . . . -#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . . -#! . . . . 1 . . . . 1 . . . . . . . . . . . . . . . -#! . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . -#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . -#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . . -#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . . -#! . . . . . . . . . 1 . . . . 1 . . . . . . . . . . -#! . . . . . . . . . . 1 1 . . . . . . . . . . . . . -#! . . . . . . . . . . . 1 1 . . . . . . . . . . . . -#! . . . . . . . . . . . . 1 . . . . . . . . . . . . -#! . . . . . . . . . . . . . 1 1 . . . . . . . . . . -#! . . . . . . . . . . . . . . 1 . . . . . . . . . . -#! . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . . -#! . . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . -#! . . . . . . . . . . . . . . . . . 1 . . . . 1 . . -#! . . . . . . . . . . . . . . . . . . 1 1 . . . 1 1 -#! . . . . . . . . . . . . . . . . . . . 1 . . . . 1 -#! . . . . . . . . . . . . . . . . . . . . 1 1 . . . -#! . . . . . . . . . . . . . . . . . . . . . 1 1 . . -#! . . . . . . . . . . . . . . . . . . . . . . 1 . . -#! . . . . . . . . . . . . . . . . . . . . . . . 1 1 -#! . . . . . . . . . . . . . . . . . . . . . . . . 1 -#! -#! A morphism in Category of matrices over GF(3) -#! -#! -#! Image of (1)-[{ Z(3)^0*(b) }]->(2): -#! . . . . . 1 . . . . . . . . . . -#! . . . . . . 1 . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . 1 . 1 . . . . . . . . -#! . . . . . . 1 . . . . . . . . . -#! . . . . . . . . . 1 . . . . . . -#! . . . . . . . . . . 1 . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . 1 . 1 . . . . -#! . . . . . . . . . . 1 . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . 1 . . . . . . . 1 . . -#! . . . . . . 1 . . . . . . . 1 . -#! . . . . . . . . . . . . . . . . -#! . . . . . 1 . 1 . . . . . 1 . 1 -#! . . . . . . 1 . . . . . . . 1 . -#! . . . . . . . . . 1 . . . . . . -#! . . . . . . . . . . 1 . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . 1 . 1 . . . . -#! . . . . . . . . . . 1 . . . . . -#! -#! A morphism in Category of matrices over GF(3) -#! -#! -#! Image of (2)-[{ Z(3)^0*(c) }]->(2): -#! 1 1 . . 1 1 . . . . . . . . . . -#! . 1 1 . . 1 1 . . . . . . . . . -#! . . 1 . . . 1 . . . . . . . . . -#! . . . 1 . . . 1 . . . . . . . . -#! . . . . 1 1 . . 1 1 . . . . . . -#! . . . . . 1 1 . . 1 1 . . . . . -#! . . . . . . 1 . . . 1 . . . . . -#! . . . . . . . 1 . . . 1 . . . . -#! . . . . . . . . 1 1 . . . . . . -#! . . . . . . . . . 1 1 . . . . . -#! . . . . . . . . . . 1 . . . . . -#! . . . . . . . . . . . 1 . . . . -#! . . . . . . . . . . . . 1 1 . . -#! . . . . . . . . . . . . . 1 1 . -#! . . . . . . . . . . . . . . 1 . -#! . . . . . . . . . . . . . . . 1 -#! -#! A morphism in Category of matrices over GF(3) -S := DirectSum( [ Source( iota ), Source( kappa ) ] ); -#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16> -Display( S ); -#! An object in The category of functors: Algebroid generated by the -#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices -#! over GF(3) defined by the following data: -#! -#! -#! Image of <(1)>: -#! A vector space object over GF(3) of dimension 25 -#! -#! Image of <(2)>: -#! A vector space object over GF(3) of dimension 16 -#! -#! Image of (1)-[{ Z(3)^0*(a) }]->(1): -#! . 2 . . . . . . . . . . . . . . . . . . . . . . . -#! 1 2 2 . . . . . . . . . . . . . . . . . . . . . . -#! . . 1 . . . . . . . . . . . . . . . . . . . . . . -#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . . -#! . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . -#! . . . . . 1 . . . . 1 . . . . . . . . . . . . . . -#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . -#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . . -#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . . -#! . . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . -#! . . . . . . . . . . 1 . . . . 1 . . . . . . . . . -#! . . . . . . . . . . . 1 1 . . . 1 1 . . . . . . . -#! . . . . . . . . . . . . 1 . . . . 1 . . . . . . . -#! . . . . . . . . . . . . . 1 1 . . . . . . . . . . -#! . . . . . . . . . . . . . . 1 1 . . . . . . . . . -#! . . . . . . . . . . . . . . . 1 . . . . . . . . . -#! . . . . . . . . . . . . . . . . 1 1 . . . . . . . -#! . . . . . . . . . . . . . . . . . 1 . . . . . . . -#! . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . -#! . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . -#! . . . . . . . . . . . . . . . . . . . . 1 . . 1 . -#! . . . . . . . . . . . . . . . . . . . . . 1 1 . . -#! . . . . . . . . . . . . . . . . . . . . . . 1 1 . -#! . . . . . . . . . . . . . . . . . . . . . . . 1 . -#! . . . . . . . . . . . . . . . . . . . . . . . . 1 -#! -#! A morphism in Category of matrices over GF(3) -#! -#! -#! Image of (1)-[{ Z(3)^0*(b) }]->(2): -#! 2 . . . . . . . . . . . . . . . -#! 1 . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . 1 . . . . . . . . . -#! . . . . . . . 1 . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . 1 . 1 . . . . . . . -#! . . . . . . . 1 . . . . . . . . -#! . . . . . . . . . . 1 . . . . . -#! . . . . . . . . . . . 1 . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . 1 . 1 . . . -#! . . . . . . . . . . . 1 . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . 1 . . . . . . . 1 . -#! . . . . . . . 1 . . . . . . . 1 -#! . . . . . . . . . . . . . . . . -#! . . . . . . . . . . 1 . . . . . -#! . . . . . . . . . . . 1 . . . . -#! . . . . . . . . . . . . . . . . -#! . . . . . . . 2 . . 1 . 1 . . 2 -#! -#! A morphism in Category of matrices over GF(3) -#! -#! -#! Image of (2)-[{ Z(3)^0*(c) }]->(2): -#! 1 . . . . . . . . . . . . . . . -#! . 1 1 . . 1 1 . . . . . . . . . -#! . . 1 1 . . 1 1 . . . . . . . . -#! . . . 1 . . . 1 . . . . . . . . -#! . . . . 1 . . . 1 . . . . . . . -#! . . . . . 1 1 . . 1 1 . . . . . -#! . . . . . . 1 1 . . 1 1 . . . . -#! . . . . . . . 1 . . . 1 . . . . -#! . . . . . . . . 1 . . . 1 . . . -#! . . . . . . . . . 1 1 . . . . . -#! . . . . . . . . . . 1 1 . . . . -#! . . . . . . . . . . . 1 . . . . -#! . . . . . . . . . . . . 1 . . . -#! . . . . . . . . . . . . . 1 1 . -#! . . . . . . . . . . . . . . 1 1 -#! . . . . . . . . . . . . . . . 1 -#! -#! A morphism in Category of matrices over GF(3) -#! @EndExample - -#! Comparing the matrices of fortyone with those of -#! S, we see -#! that after decomposing once, we have separated one small -#! matrix on the diagonal: A $3\times 3$-matrix from S(kq.a), -#! a $3 \times 1$-matrix from S(kq.b) and a $1\times 1$-matrix -#! from S(kq.c). This matches with the source of the -#! embedding iota. - -#! @BeginExample -Display( iota ); -#! A morphism in The category of functors: Algebroid generated by the -#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices -#! over GF(3) defined by the following data: -#! -#! -#! Image of <(1)>: -#! 2 2 . 1 1 . . . . . . . . . . 1 2 1 2 1 . . . . . -#! 1 2 1 2 1 1 2 1 2 1 . . . . . 2 . . 1 . 2 . . 1 . -#! . . 2 . . . 1 2 . 2 2 . . 1 . . . 1 . . . 2 . . 1 -#! -#! A split monomorphism in Category of matrices over GF(3) -#! -#! -#! Image of <(2)>: -#! . . . . . . . . . . . . . . . 1 -#! -#! A split monomorphism in Category of matrices over GF(3) -Display( Source( iota) ); -#! An object in The category of functors: Algebroid generated by the -#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices -#! over GF(3) defined by the following data: -#! -#! Image of <(1)>: -#! A vector space object over GF(3) of dimension 3 -#! -#! Image of <(2)>: -#! A vector space object over GF(3) of dimension 1 -#! -#! Image of (1)-[{ Z(3)^0*(a) }]->(1): -#! . 2 . -#! 1 2 2 -#! . . 1 -#! -#! A morphism in Category of matrices over GF(3) -#! -#! -#! Image of (1)-[{ Z(3)^0*(b) }]->(2): -#! 2 -#! 1 -#! . -#! -#! A morphism in Category of matrices over GF(3) -#! -#! -#! Image of (2)-[{ Z(3)^0*(c) }]->(2): -#! 1 -#! -#! A morphism in Category of matrices over GF(3) -#! @EndExample - -#! We can then look at the other embedding of the direct sum -#! decomposition, kappa. The iteration of -#! WeakDirectSumDecomposition will continue then -#! with Source( kappa ). Each time the random -#! endomorphism will decompose the representation, -#! lowering the dimensions of each object at most by $3$. - -#! @Example -Source( kappa ); -#! <(1)->22, (2)->15; (a)->22x22, (b)->22x15, (c)->15x15> -result2 := DecomposeOnceByRandomEndomorphism( Source( kappa ) ); -#! [ <(1)->3x22, (2)->3x15>, <(1)->19x22, (2)->12x15> ] -#! @EndExample -#! @EndChunk +#! @BeginChunk DecomposeOnce + +LoadPackage( "CatReps" ); + +#! @BeginExample +c3c3 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ); +#! A finite concrete category +GF3 := HomalgRingOfIntegers( 3 ); +#! GF(3) +kq := Algebroid( GF3, c3c3 ); +#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] +SetIsLinearClosureOfACategory( kq, true ); +CatReps := Hom( kq, GF3 ); +#! The category of functors: Algebroid generated by the right quiver +#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3) +d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];; +e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];; +f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];; +nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] ); +#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4> +DecomposeOnceByRandomEndomorphism( nine ); +#! fail +#! @EndExample + +#! The above shows that our representation nine is +#! indecomposable (with a high probability). +#! We use the tensor product to generate another representation +#! fortyone, that is hopefully decomposable, and +#! inspect the two resulting embeddings iota and +#! kappa. + +#! @BeginExample +fortyone := TensorProductOnObjects( nine, nine ); +#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16> +result := DecomposeOnceByRandomEndomorphism( fortyone ); +#! [ <(1)->3x25, (2)->1x16>, <(1)->22x25, (2)->15x16> ] +iota := result[1]; +#! <(1)->3x25, (2)->1x16> +kappa := result[2]; +#! <(1)->22x25, (2)->15x16> +Display( fortyone ); +#! An object in The category of functors: Algebroid generated by the +#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices +#! over GF(3) defined by the following data: +#! +#! +#! Image of <(1)>: +#! A vector space object over GF(3) of dimension 25 +#! +#! Image of <(2)>: +#! A vector space object over GF(3) of dimension 16 +#! +#! Image of (1)-[{ Z(3)^0*(a) }]->(1): +#! 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . . +#! . 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . +#! . . 1 . . . . 1 . . . . . . . . . . . . . . . . . +#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . . +#! . . . . 1 . . . . 1 . . . . . . . . . . . . . . . +#! . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . +#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . +#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . . +#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . . +#! . . . . . . . . . 1 . . . . 1 . . . . . . . . . . +#! . . . . . . . . . . 1 1 . . . . . . . . . . . . . +#! . . . . . . . . . . . 1 1 . . . . . . . . . . . . +#! . . . . . . . . . . . . 1 . . . . . . . . . . . . +#! . . . . . . . . . . . . . 1 1 . . . . . . . . . . +#! . . . . . . . . . . . . . . 1 . . . . . . . . . . +#! . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . . +#! . . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . +#! . . . . . . . . . . . . . . . . . 1 . . . . 1 . . +#! . . . . . . . . . . . . . . . . . . 1 1 . . . 1 1 +#! . . . . . . . . . . . . . . . . . . . 1 . . . . 1 +#! . . . . . . . . . . . . . . . . . . . . 1 1 . . . +#! . . . . . . . . . . . . . . . . . . . . . 1 1 . . +#! . . . . . . . . . . . . . . . . . . . . . . 1 . . +#! . . . . . . . . . . . . . . . . . . . . . . . 1 1 +#! . . . . . . . . . . . . . . . . . . . . . . . . 1 +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (1)-[{ Z(3)^0*(b) }]->(2): +#! . . . . . 1 . . . . . . . . . . +#! . . . . . . 1 . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . 1 . 1 . . . . . . . . +#! . . . . . . 1 . . . . . . . . . +#! . . . . . . . . . 1 . . . . . . +#! . . . . . . . . . . 1 . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . 1 . 1 . . . . +#! . . . . . . . . . . 1 . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . 1 . . . . . . . 1 . . +#! . . . . . . 1 . . . . . . . 1 . +#! . . . . . . . . . . . . . . . . +#! . . . . . 1 . 1 . . . . . 1 . 1 +#! . . . . . . 1 . . . . . . . 1 . +#! . . . . . . . . . 1 . . . . . . +#! . . . . . . . . . . 1 . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . 1 . 1 . . . . +#! . . . . . . . . . . 1 . . . . . +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (2)-[{ Z(3)^0*(c) }]->(2): +#! 1 1 . . 1 1 . . . . . . . . . . +#! . 1 1 . . 1 1 . . . . . . . . . +#! . . 1 . . . 1 . . . . . . . . . +#! . . . 1 . . . 1 . . . . . . . . +#! . . . . 1 1 . . 1 1 . . . . . . +#! . . . . . 1 1 . . 1 1 . . . . . +#! . . . . . . 1 . . . 1 . . . . . +#! . . . . . . . 1 . . . 1 . . . . +#! . . . . . . . . 1 1 . . . . . . +#! . . . . . . . . . 1 1 . . . . . +#! . . . . . . . . . . 1 . . . . . +#! . . . . . . . . . . . 1 . . . . +#! . . . . . . . . . . . . 1 1 . . +#! . . . . . . . . . . . . . 1 1 . +#! . . . . . . . . . . . . . . 1 . +#! . . . . . . . . . . . . . . . 1 +#! +#! A morphism in Category of matrices over GF(3) +S := DirectSum( [ Source( iota ), Source( kappa ) ] ); +#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16> +Display( S ); +#! An object in The category of functors: Algebroid generated by the +#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices +#! over GF(3) defined by the following data: +#! +#! +#! Image of <(1)>: +#! A vector space object over GF(3) of dimension 25 +#! +#! Image of <(2)>: +#! A vector space object over GF(3) of dimension 16 +#! +#! Image of (1)-[{ Z(3)^0*(a) }]->(1): +#! . 2 . . . . . . . . . . . . . . . . . . . . . . . +#! 1 2 2 . . . . . . . . . . . . . . . . . . . . . . +#! . . 1 . . . . . . . . . . . . . . . . . . . . . . +#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . . +#! . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . +#! . . . . . 1 . . . . 1 . . . . . . . . . . . . . . +#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . +#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . . +#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . . +#! . . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . +#! . . . . . . . . . . 1 . . . . 1 . . . . . . . . . +#! . . . . . . . . . . . 1 1 . . . 1 1 . . . . . . . +#! . . . . . . . . . . . . 1 . . . . 1 . . . . . . . +#! . . . . . . . . . . . . . 1 1 . . . . . . . . . . +#! . . . . . . . . . . . . . . 1 1 . . . . . . . . . +#! . . . . . . . . . . . . . . . 1 . . . . . . . . . +#! . . . . . . . . . . . . . . . . 1 1 . . . . . . . +#! . . . . . . . . . . . . . . . . . 1 . . . . . . . +#! . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . +#! . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . +#! . . . . . . . . . . . . . . . . . . . . 1 . . 1 . +#! . . . . . . . . . . . . . . . . . . . . . 1 1 . . +#! . . . . . . . . . . . . . . . . . . . . . . 1 1 . +#! . . . . . . . . . . . . . . . . . . . . . . . 1 . +#! . . . . . . . . . . . . . . . . . . . . . . . . 1 +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (1)-[{ Z(3)^0*(b) }]->(2): +#! 2 . . . . . . . . . . . . . . . +#! 1 . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . 1 . . . . . . . . . +#! . . . . . . . 1 . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . 1 . 1 . . . . . . . +#! . . . . . . . 1 . . . . . . . . +#! . . . . . . . . . . 1 . . . . . +#! . . . . . . . . . . . 1 . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . 1 . 1 . . . +#! . . . . . . . . . . . 1 . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . 1 . . . . . . . 1 . +#! . . . . . . . 1 . . . . . . . 1 +#! . . . . . . . . . . . . . . . . +#! . . . . . . . . . . 1 . . . . . +#! . . . . . . . . . . . 1 . . . . +#! . . . . . . . . . . . . . . . . +#! . . . . . . . 2 . . 1 . 1 . . 2 +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (2)-[{ Z(3)^0*(c) }]->(2): +#! 1 . . . . . . . . . . . . . . . +#! . 1 1 . . 1 1 . . . . . . . . . +#! . . 1 1 . . 1 1 . . . . . . . . +#! . . . 1 . . . 1 . . . . . . . . +#! . . . . 1 . . . 1 . . . . . . . +#! . . . . . 1 1 . . 1 1 . . . . . +#! . . . . . . 1 1 . . 1 1 . . . . +#! . . . . . . . 1 . . . 1 . . . . +#! . . . . . . . . 1 . . . 1 . . . +#! . . . . . . . . . 1 1 . . . . . +#! . . . . . . . . . . 1 1 . . . . +#! . . . . . . . . . . . 1 . . . . +#! . . . . . . . . . . . . 1 . . . +#! . . . . . . . . . . . . . 1 1 . +#! . . . . . . . . . . . . . . 1 1 +#! . . . . . . . . . . . . . . . 1 +#! +#! A morphism in Category of matrices over GF(3) +#! @EndExample + +#! Comparing the matrices of fortyone with those of +#! S, we see +#! that after decomposing once, we have separated one small +#! matrix on the diagonal: A $3\times 3$-matrix from S(kq.a), +#! a $3 \times 1$-matrix from S(kq.b) and a $1\times 1$-matrix +#! from S(kq.c). This matches with the source of the +#! embedding iota. + +#! @BeginExample +Display( iota ); +#! A morphism in The category of functors: Algebroid generated by the +#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices +#! over GF(3) defined by the following data: +#! +#! +#! Image of <(1)>: +#! 2 2 . 1 1 . . . . . . . . . . 1 2 1 2 1 . . . . . +#! 1 2 1 2 1 1 2 1 2 1 . . . . . 2 . . 1 . 2 . . 1 . +#! . . 2 . . . 1 2 . 2 2 . . 1 . . . 1 . . . 2 . . 1 +#! +#! A split monomorphism in Category of matrices over GF(3) +#! +#! +#! Image of <(2)>: +#! . . . . . . . . . . . . . . . 1 +#! +#! A split monomorphism in Category of matrices over GF(3) +Display( Source( iota) ); +#! An object in The category of functors: Algebroid generated by the +#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices +#! over GF(3) defined by the following data: +#! +#! Image of <(1)>: +#! A vector space object over GF(3) of dimension 3 +#! +#! Image of <(2)>: +#! A vector space object over GF(3) of dimension 1 +#! +#! Image of (1)-[{ Z(3)^0*(a) }]->(1): +#! . 2 . +#! 1 2 2 +#! . . 1 +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (1)-[{ Z(3)^0*(b) }]->(2): +#! 2 +#! 1 +#! . +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (2)-[{ Z(3)^0*(c) }]->(2): +#! 1 +#! +#! A morphism in Category of matrices over GF(3) +#! @EndExample + +#! We can then look at the other embedding of the direct sum +#! decomposition, kappa. The iteration of +#! WeakDirectSumDecomposition will continue then +#! with Source( kappa ). Each time the random +#! endomorphism will decompose the representation, +#! lowering the dimensions of each object at most by $3$. + +#! @Example +Source( kappa ); +#! <(1)->22, (2)->15; (a)->22x22, (b)->22x15, (c)->15x15> +result2 := DecomposeOnceByRandomEndomorphism( Source( kappa ) ); +#! [ <(1)->3x22, (2)->3x15>, <(1)->19x22, (2)->12x15> ] +#! @EndExample +#! @EndChunk