diff --git a/examples/DecomposeOnceByRandomEndomorphism.g b/examples/DecomposeOnceByRandomEndomorphism.g
index add2fb7..12ce041 100644
--- a/examples/DecomposeOnceByRandomEndomorphism.g
+++ b/examples/DecomposeOnceByRandomEndomorphism.g
@@ -1,300 +1,300 @@
-#! @BeginChunk DecomposeOnce
-
-LoadPackage( "CatReps" );
-
-#! @BeginExample
-c3c3 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] );
-#! A finite concrete category
-GF3 := HomalgRingOfIntegers( 3 );
-#! GF(3)
-kq := Algebroid( GF3, c3c3 );
-#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
-SetIsLinearClosureOfACategory( kq, true );
-CatReps := Hom( kq, GF3 );
-#! The category of functors: Algebroid generated by the right quiver
-#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)
-d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];;
-e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];;
-f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];;
-nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] );
-#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
-DecomposeOnceByRandomEndomorphism( nine );
-#! fail
-#! @EndExample
-
-#! The above shows that our representation nine is
-#! indecomposable (with a high probability).
-#! We use the tensor product to generate another representation
-#! fortyone, that is hopefully decomposable, and
-#! inspect the two resulting embeddings iota and
-#! kappa.
-
-#! @BeginExample
-fortyone := TensorProductOnObjects( nine, nine );
-#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16>
-result := DecomposeOnceByRandomEndomorphism( fortyone );
-#! [ <(1)->3x25, (2)->1x16>, <(1)->22x25, (2)->15x16> ]
-iota := result[1];
-#! <(1)->3x25, (2)->1x16>
-kappa := result[2];
-#! <(1)->22x25, (2)->15x16>
-Display( fortyone );
-#! An object in The category of functors: Algebroid generated by the
-#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
-#! over GF(3) defined by the following data:
-#!
-#!
-#! Image of <(1)>:
-#! A vector space object over GF(3) of dimension 25
-#!
-#! Image of <(2)>:
-#! A vector space object over GF(3) of dimension 16
-#!
-#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
-#! 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . .
-#! . 1 1 . . . 1 1 . . . . . . . . . . . . . . . . .
-#! . . 1 . . . . 1 . . . . . . . . . . . . . . . . .
-#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . .
-#! . . . . 1 . . . . 1 . . . . . . . . . . . . . . .
-#! . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . .
-#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . .
-#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . .
-#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . .
-#! . . . . . . . . . 1 . . . . 1 . . . . . . . . . .
-#! . . . . . . . . . . 1 1 . . . . . . . . . . . . .
-#! . . . . . . . . . . . 1 1 . . . . . . . . . . . .
-#! . . . . . . . . . . . . 1 . . . . . . . . . . . .
-#! . . . . . . . . . . . . . 1 1 . . . . . . . . . .
-#! . . . . . . . . . . . . . . 1 . . . . . . . . . .
-#! . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . .
-#! . . . . . . . . . . . . . . . . 1 1 . . . 1 1 . .
-#! . . . . . . . . . . . . . . . . . 1 . . . . 1 . .
-#! . . . . . . . . . . . . . . . . . . 1 1 . . . 1 1
-#! . . . . . . . . . . . . . . . . . . . 1 . . . . 1
-#! . . . . . . . . . . . . . . . . . . . . 1 1 . . .
-#! . . . . . . . . . . . . . . . . . . . . . 1 1 . .
-#! . . . . . . . . . . . . . . . . . . . . . . 1 . .
-#! . . . . . . . . . . . . . . . . . . . . . . . 1 1
-#! . . . . . . . . . . . . . . . . . . . . . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
-#! . . . . . 1 . . . . . . . . . .
-#! . . . . . . 1 . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . 1 . 1 . . . . . . . .
-#! . . . . . . 1 . . . . . . . . .
-#! . . . . . . . . . 1 . . . . . .
-#! . . . . . . . . . . 1 . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . 1 . 1 . . . .
-#! . . . . . . . . . . 1 . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . 1 . . . . . . . 1 . .
-#! . . . . . . 1 . . . . . . . 1 .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . 1 . 1 . . . . . 1 . 1
-#! . . . . . . 1 . . . . . . . 1 .
-#! . . . . . . . . . 1 . . . . . .
-#! . . . . . . . . . . 1 . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . 1 . 1 . . . .
-#! . . . . . . . . . . 1 . . . . .
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
-#! 1 1 . . 1 1 . . . . . . . . . .
-#! . 1 1 . . 1 1 . . . . . . . . .
-#! . . 1 . . . 1 . . . . . . . . .
-#! . . . 1 . . . 1 . . . . . . . .
-#! . . . . 1 1 . . 1 1 . . . . . .
-#! . . . . . 1 1 . . 1 1 . . . . .
-#! . . . . . . 1 . . . 1 . . . . .
-#! . . . . . . . 1 . . . 1 . . . .
-#! . . . . . . . . 1 1 . . . . . .
-#! . . . . . . . . . 1 1 . . . . .
-#! . . . . . . . . . . 1 . . . . .
-#! . . . . . . . . . . . 1 . . . .
-#! . . . . . . . . . . . . 1 1 . .
-#! . . . . . . . . . . . . . 1 1 .
-#! . . . . . . . . . . . . . . 1 .
-#! . . . . . . . . . . . . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-S := DirectSum( [ Source( iota ), Source( kappa ) ] );
-#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16>
-Display( S );
-#! An object in The category of functors: Algebroid generated by the
-#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
-#! over GF(3) defined by the following data:
-#!
-#!
-#! Image of <(1)>:
-#! A vector space object over GF(3) of dimension 25
-#!
-#! Image of <(2)>:
-#! A vector space object over GF(3) of dimension 16
-#!
-#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
-#! . 2 . . . . . . . . . . . . . . . . . . . . . . .
-#! 1 2 2 . . . . . . . . . . . . . . . . . . . . . .
-#! . . 1 . . . . . . . . . . . . . . . . . . . . . .
-#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . .
-#! . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . .
-#! . . . . . 1 . . . . 1 . . . . . . . . . . . . . .
-#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . .
-#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . .
-#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . .
-#! . . . . . . . . . 1 1 . . . 1 1 . . . . . . . . .
-#! . . . . . . . . . . 1 . . . . 1 . . . . . . . . .
-#! . . . . . . . . . . . 1 1 . . . 1 1 . . . . . . .
-#! . . . . . . . . . . . . 1 . . . . 1 . . . . . . .
-#! . . . . . . . . . . . . . 1 1 . . . . . . . . . .
-#! . . . . . . . . . . . . . . 1 1 . . . . . . . . .
-#! . . . . . . . . . . . . . . . 1 . . . . . . . . .
-#! . . . . . . . . . . . . . . . . 1 1 . . . . . . .
-#! . . . . . . . . . . . . . . . . . 1 . . . . . . .
-#! . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . .
-#! . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 .
-#! . . . . . . . . . . . . . . . . . . . . 1 . . 1 .
-#! . . . . . . . . . . . . . . . . . . . . . 1 1 . .
-#! . . . . . . . . . . . . . . . . . . . . . . 1 1 .
-#! . . . . . . . . . . . . . . . . . . . . . . . 1 .
-#! . . . . . . . . . . . . . . . . . . . . . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
-#! 2 . . . . . . . . . . . . . . .
-#! 1 . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . 1 . . . . . . . . .
-#! . . . . . . . 1 . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . 1 . 1 . . . . . . .
-#! . . . . . . . 1 . . . . . . . .
-#! . . . . . . . . . . 1 . . . . .
-#! . . . . . . . . . . . 1 . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . 1 . 1 . . .
-#! . . . . . . . . . . . 1 . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . 1 . . . . . . . 1 .
-#! . . . . . . . 1 . . . . . . . 1
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . . . . 1 . . . . .
-#! . . . . . . . . . . . 1 . . . .
-#! . . . . . . . . . . . . . . . .
-#! . . . . . . . 2 . . 1 . 1 . . 2
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
-#! 1 . . . . . . . . . . . . . . .
-#! . 1 1 . . 1 1 . . . . . . . . .
-#! . . 1 1 . . 1 1 . . . . . . . .
-#! . . . 1 . . . 1 . . . . . . . .
-#! . . . . 1 . . . 1 . . . . . . .
-#! . . . . . 1 1 . . 1 1 . . . . .
-#! . . . . . . 1 1 . . 1 1 . . . .
-#! . . . . . . . 1 . . . 1 . . . .
-#! . . . . . . . . 1 . . . 1 . . .
-#! . . . . . . . . . 1 1 . . . . .
-#! . . . . . . . . . . 1 1 . . . .
-#! . . . . . . . . . . . 1 . . . .
-#! . . . . . . . . . . . . 1 . . .
-#! . . . . . . . . . . . . . 1 1 .
-#! . . . . . . . . . . . . . . 1 1
-#! . . . . . . . . . . . . . . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#! @EndExample
-
-#! Comparing the matrices of fortyone with those of
-#! S, we see
-#! that after decomposing once, we have separated one small
-#! matrix on the diagonal: A $3\times 3$-matrix from S(kq.a),
-#! a $3 \times 1$-matrix from S(kq.b) and a $1\times 1$-matrix
-#! from S(kq.c). This matches with the source of the
-#! embedding iota.
-
-#! @BeginExample
-Display( iota );
-#! A morphism in The category of functors: Algebroid generated by the
-#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
-#! over GF(3) defined by the following data:
-#!
-#!
-#! Image of <(1)>:
-#! 2 2 . 1 1 . . . . . . . . . . 1 2 1 2 1 . . . . .
-#! 1 2 1 2 1 1 2 1 2 1 . . . . . 2 . . 1 . 2 . . 1 .
-#! . . 2 . . . 1 2 . 2 2 . . 1 . . . 1 . . . 2 . . 1
-#!
-#! A split monomorphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of <(2)>:
-#! . . . . . . . . . . . . . . . 1
-#!
-#! A split monomorphism in Category of matrices over GF(3)
-Display( Source( iota) );
-#! An object in The category of functors: Algebroid generated by the
-#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
-#! over GF(3) defined by the following data:
-#!
-#! Image of <(1)>:
-#! A vector space object over GF(3) of dimension 3
-#!
-#! Image of <(2)>:
-#! A vector space object over GF(3) of dimension 1
-#!
-#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
-#! . 2 .
-#! 1 2 2
-#! . . 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
-#! 2
-#! 1
-#! .
-#!
-#! A morphism in Category of matrices over GF(3)
-#!
-#!
-#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
-#! 1
-#!
-#! A morphism in Category of matrices over GF(3)
-#! @EndExample
-
-#! We can then look at the other embedding of the direct sum
-#! decomposition, kappa. The iteration of
-#! WeakDirectSumDecomposition will continue then
-#! with Source( kappa ). Each time the random
-#! endomorphism will decompose the representation,
-#! lowering the dimensions of each object at most by $3$.
-
-#! @Example
-Source( kappa );
-#! <(1)->22, (2)->15; (a)->22x22, (b)->22x15, (c)->15x15>
-result2 := DecomposeOnceByRandomEndomorphism( Source( kappa ) );
-#! [ <(1)->3x22, (2)->3x15>, <(1)->19x22, (2)->12x15> ]
-#! @EndExample
-#! @EndChunk
+#! @BeginChunk DecomposeOnce
+
+LoadPackage( "CatReps" );
+
+#! @BeginExample
+c3c3 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] );
+#! A finite concrete category
+GF3 := HomalgRingOfIntegers( 3 );
+#! GF(3)
+kq := Algebroid( GF3, c3c3 );
+#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
+SetIsLinearClosureOfACategory( kq, true );
+CatReps := Hom( kq, GF3 );
+#! The category of functors: Algebroid generated by the right quiver
+#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)
+d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];;
+e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];;
+f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];;
+nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] );
+#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
+DecomposeOnceByRandomEndomorphism( nine );
+#! fail
+#! @EndExample
+
+#! The above shows that our representation nine is
+#! indecomposable (with a high probability).
+#! We use the tensor product to generate another representation
+#! fortyone, that is hopefully decomposable, and
+#! inspect the two resulting embeddings iota and
+#! kappa.
+
+#! @BeginExample
+fortyone := TensorProductOnObjects( nine, nine );
+#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16>
+result := DecomposeOnceByRandomEndomorphism( fortyone );
+#! [ <(1)->3x25, (2)->1x16>, <(1)->22x25, (2)->15x16> ]
+iota := result[1];
+#! <(1)->3x25, (2)->1x16>
+kappa := result[2];
+#! <(1)->22x25, (2)->15x16>
+Display( fortyone );
+#! An object in The category of functors: Algebroid generated by the
+#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
+#! over GF(3) defined by the following data:
+#!
+#!
+#! Image of <(1)>:
+#! A vector space object over GF(3) of dimension 25
+#!
+#! Image of <(2)>:
+#! A vector space object over GF(3) of dimension 16
+#!
+#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
+#! 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . .
+#! . 1 1 . . . 1 1 . . . . . . . . . . . . . . . . .
+#! . . 1 . . . . 1 . . . . . . . . . . . . . . . . .
+#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . .
+#! . . . . 1 . . . . 1 . . . . . . . . . . . . . . .
+#! . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . .
+#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . .
+#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . .
+#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . .
+#! . . . . . . . . . 1 . . . . 1 . . . . . . . . . .
+#! . . . . . . . . . . 1 1 . . . . . . . . . . . . .
+#! . . . . . . . . . . . 1 1 . . . . . . . . . . . .
+#! . . . . . . . . . . . . 1 . . . . . . . . . . . .
+#! . . . . . . . . . . . . . 1 1 . . . . . . . . . .
+#! . . . . . . . . . . . . . . 1 . . . . . . . . . .
+#! . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . .
+#! . . . . . . . . . . . . . . . . 1 1 . . . 1 1 . .
+#! . . . . . . . . . . . . . . . . . 1 . . . . 1 . .
+#! . . . . . . . . . . . . . . . . . . 1 1 . . . 1 1
+#! . . . . . . . . . . . . . . . . . . . 1 . . . . 1
+#! . . . . . . . . . . . . . . . . . . . . 1 1 . . .
+#! . . . . . . . . . . . . . . . . . . . . . 1 1 . .
+#! . . . . . . . . . . . . . . . . . . . . . . 1 . .
+#! . . . . . . . . . . . . . . . . . . . . . . . 1 1
+#! . . . . . . . . . . . . . . . . . . . . . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
+#! . . . . . 1 . . . . . . . . . .
+#! . . . . . . 1 . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . 1 . 1 . . . . . . . .
+#! . . . . . . 1 . . . . . . . . .
+#! . . . . . . . . . 1 . . . . . .
+#! . . . . . . . . . . 1 . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . 1 . 1 . . . .
+#! . . . . . . . . . . 1 . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . 1 . . . . . . . 1 . .
+#! . . . . . . 1 . . . . . . . 1 .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . 1 . 1 . . . . . 1 . 1
+#! . . . . . . 1 . . . . . . . 1 .
+#! . . . . . . . . . 1 . . . . . .
+#! . . . . . . . . . . 1 . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . 1 . 1 . . . .
+#! . . . . . . . . . . 1 . . . . .
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
+#! 1 1 . . 1 1 . . . . . . . . . .
+#! . 1 1 . . 1 1 . . . . . . . . .
+#! . . 1 . . . 1 . . . . . . . . .
+#! . . . 1 . . . 1 . . . . . . . .
+#! . . . . 1 1 . . 1 1 . . . . . .
+#! . . . . . 1 1 . . 1 1 . . . . .
+#! . . . . . . 1 . . . 1 . . . . .
+#! . . . . . . . 1 . . . 1 . . . .
+#! . . . . . . . . 1 1 . . . . . .
+#! . . . . . . . . . 1 1 . . . . .
+#! . . . . . . . . . . 1 . . . . .
+#! . . . . . . . . . . . 1 . . . .
+#! . . . . . . . . . . . . 1 1 . .
+#! . . . . . . . . . . . . . 1 1 .
+#! . . . . . . . . . . . . . . 1 .
+#! . . . . . . . . . . . . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+S := DirectSum( [ Source( iota ), Source( kappa ) ] );
+#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16>
+Display( S );
+#! An object in The category of functors: Algebroid generated by the
+#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
+#! over GF(3) defined by the following data:
+#!
+#!
+#! Image of <(1)>:
+#! A vector space object over GF(3) of dimension 25
+#!
+#! Image of <(2)>:
+#! A vector space object over GF(3) of dimension 16
+#!
+#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
+#! . 2 . . . . . . . . . . . . . . . . . . . . . . .
+#! 1 2 2 . . . . . . . . . . . . . . . . . . . . . .
+#! . . 1 . . . . . . . . . . . . . . . . . . . . . .
+#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . .
+#! . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . .
+#! . . . . . 1 . . . . 1 . . . . . . . . . . . . . .
+#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . .
+#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . .
+#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . .
+#! . . . . . . . . . 1 1 . . . 1 1 . . . . . . . . .
+#! . . . . . . . . . . 1 . . . . 1 . . . . . . . . .
+#! . . . . . . . . . . . 1 1 . . . 1 1 . . . . . . .
+#! . . . . . . . . . . . . 1 . . . . 1 . . . . . . .
+#! . . . . . . . . . . . . . 1 1 . . . . . . . . . .
+#! . . . . . . . . . . . . . . 1 1 . . . . . . . . .
+#! . . . . . . . . . . . . . . . 1 . . . . . . . . .
+#! . . . . . . . . . . . . . . . . 1 1 . . . . . . .
+#! . . . . . . . . . . . . . . . . . 1 . . . . . . .
+#! . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . .
+#! . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 .
+#! . . . . . . . . . . . . . . . . . . . . 1 . . 1 .
+#! . . . . . . . . . . . . . . . . . . . . . 1 1 . .
+#! . . . . . . . . . . . . . . . . . . . . . . 1 1 .
+#! . . . . . . . . . . . . . . . . . . . . . . . 1 .
+#! . . . . . . . . . . . . . . . . . . . . . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
+#! 2 . . . . . . . . . . . . . . .
+#! 1 . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . 1 . . . . . . . . .
+#! . . . . . . . 1 . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . 1 . 1 . . . . . . .
+#! . . . . . . . 1 . . . . . . . .
+#! . . . . . . . . . . 1 . . . . .
+#! . . . . . . . . . . . 1 . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . 1 . 1 . . .
+#! . . . . . . . . . . . 1 . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . 1 . . . . . . . 1 .
+#! . . . . . . . 1 . . . . . . . 1
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . . . . 1 . . . . .
+#! . . . . . . . . . . . 1 . . . .
+#! . . . . . . . . . . . . . . . .
+#! . . . . . . . 2 . . 1 . 1 . . 2
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
+#! 1 . . . . . . . . . . . . . . .
+#! . 1 1 . . 1 1 . . . . . . . . .
+#! . . 1 1 . . 1 1 . . . . . . . .
+#! . . . 1 . . . 1 . . . . . . . .
+#! . . . . 1 . . . 1 . . . . . . .
+#! . . . . . 1 1 . . 1 1 . . . . .
+#! . . . . . . 1 1 . . 1 1 . . . .
+#! . . . . . . . 1 . . . 1 . . . .
+#! . . . . . . . . 1 . . . 1 . . .
+#! . . . . . . . . . 1 1 . . . . .
+#! . . . . . . . . . . 1 1 . . . .
+#! . . . . . . . . . . . 1 . . . .
+#! . . . . . . . . . . . . 1 . . .
+#! . . . . . . . . . . . . . 1 1 .
+#! . . . . . . . . . . . . . . 1 1
+#! . . . . . . . . . . . . . . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#! @EndExample
+
+#! Comparing the matrices of fortyone with those of
+#! S, we see
+#! that after decomposing once, we have separated one small
+#! matrix on the diagonal: A $3\times 3$-matrix from S(kq.a),
+#! a $3 \times 1$-matrix from S(kq.b) and a $1\times 1$-matrix
+#! from S(kq.c). This matches with the source of the
+#! embedding iota.
+
+#! @BeginExample
+Display( iota );
+#! A morphism in The category of functors: Algebroid generated by the
+#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
+#! over GF(3) defined by the following data:
+#!
+#!
+#! Image of <(1)>:
+#! 2 2 . 1 1 . . . . . . . . . . 1 2 1 2 1 . . . . .
+#! 1 2 1 2 1 1 2 1 2 1 . . . . . 2 . . 1 . 2 . . 1 .
+#! . . 2 . . . 1 2 . 2 2 . . 1 . . . 1 . . . 2 . . 1
+#!
+#! A split monomorphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of <(2)>:
+#! . . . . . . . . . . . . . . . 1
+#!
+#! A split monomorphism in Category of matrices over GF(3)
+Display( Source( iota) );
+#! An object in The category of functors: Algebroid generated by the
+#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
+#! over GF(3) defined by the following data:
+#!
+#! Image of <(1)>:
+#! A vector space object over GF(3) of dimension 3
+#!
+#! Image of <(2)>:
+#! A vector space object over GF(3) of dimension 1
+#!
+#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
+#! . 2 .
+#! 1 2 2
+#! . . 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
+#! 2
+#! 1
+#! .
+#!
+#! A morphism in Category of matrices over GF(3)
+#!
+#!
+#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
+#! 1
+#!
+#! A morphism in Category of matrices over GF(3)
+#! @EndExample
+
+#! We can then look at the other embedding of the direct sum
+#! decomposition, kappa. The iteration of
+#! WeakDirectSumDecomposition will continue then
+#! with Source( kappa ). Each time the random
+#! endomorphism will decompose the representation,
+#! lowering the dimensions of each object at most by $3$.
+
+#! @Example
+Source( kappa );
+#! <(1)->22, (2)->15; (a)->22x22, (b)->22x15, (c)->15x15>
+result2 := DecomposeOnceByRandomEndomorphism( Source( kappa ) );
+#! [ <(1)->3x22, (2)->3x15>, <(1)->19x22, (2)->12x15> ]
+#! @EndExample
+#! @EndChunk