diff --git a/PackageInfo.g b/PackageInfo.g index 3d723f0..0f98804 100644 --- a/PackageInfo.g +++ b/PackageInfo.g @@ -11,7 +11,7 @@ SetPackageInfo( rec( PackageName := "CatReps", Subtitle := "Representations and cohomology of finite categories", Version := Maximum( [ - "2020.04.24", ## Mohamed's version + "2020.05.13", ## Mohamed's version ## this line prevents merge conflicts "2020.01.01", ## Tibor's version ## this line prevents merge conflicts @@ -112,7 +112,7 @@ Dependencies := rec( [ "MatricesForHomalg", ">= 2020.02.02" ], [ "Toposes", ">= 2020.04.27" ], [ "Algebroids", ">= 2020.04.24" ], - [ "FunctorCategories", ">= 2020.04.21" ], + [ "FunctorCategories", ">= 2020.05.13" ], ], SuggestedOtherPackages := [ ], ExternalConditions := [ ], diff --git a/examples/CategoryOfRepresentations.g b/examples/CategoryOfRepresentations.g index cace767..b4d6bff 100644 --- a/examples/CategoryOfRepresentations.g +++ b/examples/CategoryOfRepresentations.g @@ -511,8 +511,22 @@ Display( s1 ); #! (an empty 0 x 0 matrix) #! #! A zero, isomorphism in Category of matrices over GF(3) -proj1 := YonedaProjective( CatReps, kq.1 ); +kqop := AlgebroidOverOppositeAlgebra( kq ); +#! Algebroid generated by the right quiver q_op(2)[a:1->1,b:2->1,c:2->2] +Y := YonedaEmbedding( kqop ); +#! Yoneda embedding functor +Display( Y ); +#! Yoneda embedding functor: +#! +#! Algebroid generated by the right quiver q_op(2)[a:1->1,b:2->1,c:2->2] +#! | +#! V +#! The category of functors: Algebroid generated by the right quiver +#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3) +proj1 := Y( kqop.1 ); #! <(1)->3, (2)->3; (a)->3x3, (b)->3x3, (c)->3x3> +IsProjective( proj1 ); +#! true Display( proj1 ); #! An object in The category of functors: Algebroid generated by the #! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices @@ -597,8 +611,12 @@ SumOfImagesOfAllMorphisms( five, const ); #! <(1)->0, (2)->1; (a)->0x0, (b)->0x1, (c)->1x1> SumOfImagesOfAllMorphisms( six, const ); #! <(1)->0, (2)->1; (a)->0x0, (b)->0x1, (c)->1x1> -proj2 := YonedaProjective( CatReps, kq.2 ); +Y( kqop.a ); +#! <(1)->3x3, (2)->3x3> +proj2 := Y( kqop.2 ); #! <(1)->0, (2)->3; (a)->0x0, (b)->0x3, (c)->3x3> +IsProjective( proj2 ); +#! true Display( proj2 ); #! An object in The category of functors: Algebroid generated by the #! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices