diff --git a/PackageInfo.g b/PackageInfo.g index 220343d..89e218f 100644 --- a/PackageInfo.g +++ b/PackageInfo.g @@ -10,7 +10,7 @@ SetPackageInfo( rec( PackageName := "CatReps", Subtitle := "Representations and cohomology of finite categories", -Version := "2021.11-03", +Version := "2021.11-04", Date := ~.Version{[ 1 .. 10 ]}, Date := Concatenation( "01/", ~.Version{[ 6, 7 ]}, "/", ~.Version{[ 1 .. 4 ]} ), @@ -109,7 +109,7 @@ Dependencies := rec( [ "MatricesForHomalg", ">= 2020.02.02" ], [ "Toposes", ">= 2021.11-18" ], [ "Algebroids", ">= 2021.08-02" ], - [ "FunctorCategories", ">= 2021.11-06" ], + [ "FunctorCategories", ">= 2021.11-08" ], ], SuggestedOtherPackages := [ ], ExternalConditions := [ ], diff --git a/README.md b/README.md index 52003cb..f39182a 100644 --- a/README.md +++ b/README.md @@ -42,7 +42,7 @@ true Finally, using the constructor `Hom` from the package [`FunctorCategories`](https://github.com/homalg-project/FunctorCategories) one can construct the category of finite dimensional k-linear representations of the finite concrete category: ```gap -gap> CatReps := Hom( A, Q ); +gap> CatReps := FunctorCategory( A, Q ); The category of functors: Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over Q ``` diff --git a/examples/Algebroid.g b/examples/Algebroid.g index df25191..b6bb3be 100644 --- a/examples/Algebroid.g +++ b/examples/Algebroid.g @@ -28,10 +28,10 @@ UnderlyingCategory( A2 ); #! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations UnderlyingCategory( UnderlyingCategory( A2 ) ) = ccat2; #! true -CatReps1 := Hom( A1, Q ); +CatReps1 := FunctorCategory( A1, Q ); #! The category of functors: Algebroid generated by the right quiver #! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over Q -CatReps2 := Hom( A2, Q ); +CatReps2 := FunctorCategory( A2, Q ); #! The category of functors: Algebroid generated by the right quiver #! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over Q #! @EndExample diff --git a/examples/AssociatorUnitor.g b/examples/AssociatorUnitor.g index d1cdda2..357d246 100644 --- a/examples/AssociatorUnitor.g +++ b/examples/AssociatorUnitor.g @@ -11,7 +11,7 @@ AddBialgebroidStructure( kq, counit, comult ); counit := Counit( kq ); comult := Comultiplication( kq ); kmat := MatrixCategory( GF3 ); -CatReps := Hom( kq, kmat ); +CatReps := FunctorCategory( kq, kmat ); zero := ZeroObject( CatReps ); unit := TensorUnit( CatReps ); V1 := VectorSpaceObject( 5, GF3 ); diff --git a/examples/CategoryOfRepresentations.g b/examples/CategoryOfRepresentations.g index 0785831..3f7075f 100644 --- a/examples/CategoryOfRepresentations.g +++ b/examples/CategoryOfRepresentations.g @@ -27,7 +27,7 @@ A := GF3[c3c3]; #! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] IsLinearClosureOfACategory( A ); #! true -CatReps := Hom( A, GF3 ); +CatReps := FunctorCategory( A, GF3 ); #! The category of functors: Algebroid generated by the right quiver #! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3) InfoOfInstalledOperationsOfCategory( CatReps ); diff --git a/examples/DecomposeOnceByRandomEndomorphism.g b/examples/DecomposeOnceByRandomEndomorphism.g index e300614..4d09219 100644 --- a/examples/DecomposeOnceByRandomEndomorphism.g +++ b/examples/DecomposeOnceByRandomEndomorphism.g @@ -13,7 +13,7 @@ A := GF3[c3c3]; #! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] IsLinearClosureOfACategory( A ); #! true -CatReps := Hom( A, GF3 ); +CatReps := FunctorCategory( A, GF3 ); #! The category of functors: Algebroid generated by the right quiver #! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3) d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];; diff --git a/examples/RepresentingC4C4.g b/examples/RepresentingC4C4.g index f5e52a7..2078a6e 100644 --- a/examples/RepresentingC4C4.g +++ b/examples/RepresentingC4C4.g @@ -36,7 +36,7 @@ SetIsLinearClosureOfACategory( A, true ); #! less trivial. #! @Example -CatReps := Hom( A, GF3 ); +CatReps := FunctorCategory( A, GF3 ); #! The category of functors: Algebroid generated by the #! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> #! Category of matrices over GF(3)