diff --git a/PackageInfo.g b/PackageInfo.g index 6bc42a0..0e5c9e6 100644 --- a/PackageInfo.g +++ b/PackageInfo.g @@ -10,7 +10,7 @@ SetPackageInfo( rec( PackageName := "CatReps", Subtitle := "Representations and cohomology of finite categories", -Version := "2022.01-01", +Version := "2022.01-02", Date := ~.Version{[ 1 .. 10 ]}, Date := Concatenation( "01/", ~.Version{[ 6, 7 ]}, "/", ~.Version{[ 1 .. 4 ]} ), @@ -108,7 +108,7 @@ Dependencies := rec( [ "SubcategoriesForCAP", ">= 2020.06-01" ], [ "MatricesForHomalg", ">= 2020.02.02" ], [ "Toposes", ">= 2021.11-18" ], - [ "Algebroids", ">= 2021.08-02" ], + [ "Algebroids", ">= 2022.01-02" ], [ "FunctorCategories", ">= 2022.01-02" ], ], SuggestedOtherPackages := [ ], diff --git a/examples/Algebroid.g b/examples/Algebroid.g index 020530c..9905080 100644 --- a/examples/Algebroid.g +++ b/examples/Algebroid.g @@ -6,8 +6,8 @@ LoadPackage( "CatReps" ); #! not starting with $1$, to demonstrate that #! ConcreteCategoryForCAP( [ [,,,5,6,4], [,,,7,8,9], [,,,,,,8,9,7] ] ) #! and ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ) yield -#! isomorphic categories, in particular, their underlying quivers are isomorphic, -#! inducing isomorphic algebroids and isomorphic categories of representations. +#! even identical categories, in particular, their underlying quivers are identical, +#! inducing identical algebroids, and identical categories of representations. #! @Example ccat1 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ); @@ -18,15 +18,15 @@ Q := HomalgFieldOfRationals( ); #! Q A1 := Q[ccat1]; #! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] -UnderlyingCategory( A1 ); -#! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations -UnderlyingCategory( UnderlyingCategory( A1 ) ) = ccat1; -#! true A2 := Q[ccat2]; #! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] +IsIdenticalObj( A1, A2 ); +#! true +UnderlyingCategory( A1 ); +#! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations UnderlyingCategory( A2 ); #! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations -UnderlyingCategory( UnderlyingCategory( A2 ) ) = ccat2; +IsIdenticalObj( UnderlyingCategory( A1 ), UnderlyingCategory( A2 ) ); #! true CatReps1 := FunctorCategory( A1, Q ); #! FunctorCategory( Algebroid generated by the right quiver @@ -34,4 +34,6 @@ CatReps1 := FunctorCategory( A1, Q ); CatReps2 := FunctorCategory( A2, Q ); #! FunctorCategory( Algebroid generated by the right quiver #! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over Q ) +IsIdenticalObj( CatReps1, CatReps2 ); +#! true #! @EndExample diff --git a/gap/CatRepsWithCAP.gi b/gap/CatRepsWithCAP.gi index c93be2d..c450570 100644 --- a/gap/CatRepsWithCAP.gi +++ b/gap/CatRepsWithCAP.gi @@ -239,8 +239,6 @@ InstallMethod( AsFpCategory, fpC := Category( q, relations ); - SetUnderlyingCategory( fpC, C ); - return fpC; end );