diff --git a/PackageInfo.g b/PackageInfo.g
index 6bc42a0..0e5c9e6 100644
--- a/PackageInfo.g
+++ b/PackageInfo.g
@@ -10,7 +10,7 @@ SetPackageInfo( rec(
PackageName := "CatReps",
Subtitle := "Representations and cohomology of finite categories",
-Version := "2022.01-01",
+Version := "2022.01-02",
Date := ~.Version{[ 1 .. 10 ]},
Date := Concatenation( "01/", ~.Version{[ 6, 7 ]}, "/", ~.Version{[ 1 .. 4 ]} ),
@@ -108,7 +108,7 @@ Dependencies := rec(
[ "SubcategoriesForCAP", ">= 2020.06-01" ],
[ "MatricesForHomalg", ">= 2020.02.02" ],
[ "Toposes", ">= 2021.11-18" ],
- [ "Algebroids", ">= 2021.08-02" ],
+ [ "Algebroids", ">= 2022.01-02" ],
[ "FunctorCategories", ">= 2022.01-02" ],
],
SuggestedOtherPackages := [ ],
diff --git a/examples/Algebroid.g b/examples/Algebroid.g
index 020530c..9905080 100644
--- a/examples/Algebroid.g
+++ b/examples/Algebroid.g
@@ -6,8 +6,8 @@ LoadPackage( "CatReps" );
#! not starting with $1$, to demonstrate that
#! ConcreteCategoryForCAP( [ [,,,5,6,4], [,,,7,8,9], [,,,,,,8,9,7] ] )
#! and ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ) yield
-#! isomorphic categories, in particular, their underlying quivers are isomorphic,
-#! inducing isomorphic algebroids and isomorphic categories of representations.
+#! even identical categories, in particular, their underlying quivers are identical,
+#! inducing identical algebroids, and identical categories of representations.
#! @Example
ccat1 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] );
@@ -18,15 +18,15 @@ Q := HomalgFieldOfRationals( );
#! Q
A1 := Q[ccat1];
#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
-UnderlyingCategory( A1 );
-#! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations
-UnderlyingCategory( UnderlyingCategory( A1 ) ) = ccat1;
-#! true
A2 := Q[ccat2];
#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
+IsIdenticalObj( A1, A2 );
+#! true
+UnderlyingCategory( A1 );
+#! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations
UnderlyingCategory( A2 );
#! Category generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] with relations
-UnderlyingCategory( UnderlyingCategory( A2 ) ) = ccat2;
+IsIdenticalObj( UnderlyingCategory( A1 ), UnderlyingCategory( A2 ) );
#! true
CatReps1 := FunctorCategory( A1, Q );
#! FunctorCategory( Algebroid generated by the right quiver
@@ -34,4 +34,6 @@ CatReps1 := FunctorCategory( A1, Q );
CatReps2 := FunctorCategory( A2, Q );
#! FunctorCategory( Algebroid generated by the right quiver
#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over Q )
+IsIdenticalObj( CatReps1, CatReps2 );
+#! true
#! @EndExample
diff --git a/gap/CatRepsWithCAP.gi b/gap/CatRepsWithCAP.gi
index c93be2d..c450570 100644
--- a/gap/CatRepsWithCAP.gi
+++ b/gap/CatRepsWithCAP.gi
@@ -239,8 +239,6 @@ InstallMethod( AsFpCategory,
fpC := Category( q, relations );
- SetUnderlyingCategory( fpC, C );
-
return fpC;
end );