From 6c37eb0c856310074d6816687ba49c6bea8205be Mon Sep 17 00:00:00 2001 From: Mohamed Barakat Date: Sat, 22 Oct 2022 18:47:21 +0200 Subject: [PATCH] comply with https://github.com/homalg-project/FunctorCategories/pull/216 comply with FunctorCategories v2022.10-24 --- PackageInfo.g | 4 ++-- examples/CategoryOfRepresentations.g | 2 +- examples/notebooks/CategoryOfRepresentations.ipynb | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/PackageInfo.g b/PackageInfo.g index 6730a7d..e9cfc12 100644 --- a/PackageInfo.g +++ b/PackageInfo.g @@ -10,7 +10,7 @@ SetPackageInfo( rec( PackageName := "CatReps", Subtitle := "Representations and cohomology of finite categories", -Version := "2022.10-02", +Version := "2022.10-03", Date := ~.Version{[ 1 .. 10 ]}, Date := Concatenation( "01/", ~.Version{[ 6, 7 ]}, "/", ~.Version{[ 1 .. 4 ]} ), @@ -109,7 +109,7 @@ Dependencies := rec( [ "MatricesForHomalg", ">= 2020.02.02" ], [ "Toposes", ">= 2022.05-07" ], [ "Algebroids", ">= 2022.05-05" ], - [ "FunctorCategories", ">= 2022.10-03" ], + [ "FunctorCategories", ">= 2022.10-24" ], ], SuggestedOtherPackages := [ ], ExternalConditions := [ ], diff --git a/examples/CategoryOfRepresentations.g b/examples/CategoryOfRepresentations.g index 504f6aa..7b6cb39 100644 --- a/examples/CategoryOfRepresentations.g +++ b/examples/CategoryOfRepresentations.g @@ -492,7 +492,7 @@ Display( s1 ); Aop := OppositeAlgebroid( A ); #! Algebroid( GF(3), FreeCategory( #! RightQuiver( "q_op(2)[a:1->1,b:2->1,c:2->2]" ) ) ) / relations -Yop := YonedaEmbedding( Aop ); +Yop := YonedaEmbeddingInFunctorCategory( Aop ); #! Yoneda embedding functor Display( Yop ); #! Yoneda embedding functor: diff --git a/examples/notebooks/CategoryOfRepresentations.ipynb b/examples/notebooks/CategoryOfRepresentations.ipynb index e31ab05..eb4f581 100644 --- a/examples/notebooks/CategoryOfRepresentations.ipynb +++ b/examples/notebooks/CategoryOfRepresentations.ipynb @@ -2023,7 +2023,7 @@ } ], "source": [ - "Yop = YonedaEmbedding( Aop )" + "Yop = YonedaEmbeddingInFunctorCategory( Aop )" ] }, {