forked from CGuangyan-BIT/PointGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
173 lines (143 loc) · 7.08 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import os
from torch.utils.data import Dataset
import torch
from pointnet_util import farthest_point_sample, pc_normalize
import json
class ModelNetDataLoader(Dataset):
def __init__(self, root, npoint=1024, split='train', uniform=False, normal_channel=True, cache_size=15000):
self.root = root
self.npoints = npoint
self.uniform = uniform
self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt')
self.cat = [line.rstrip() for line in open(self.catfile)]
self.classes = dict(zip(self.cat, range(len(self.cat))))
self.normal_channel = normal_channel
shape_ids = {}
shape_ids['train'] = [line.rstrip() for line in open(
os.path.join(self.root, 'modelnet40_train.txt'))]
shape_ids['test'] = [line.rstrip() for line in open(
os.path.join(self.root, 'modelnet40_test.txt'))]
assert (split == 'train' or split == 'test')
shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]]
# list of (shape_name, shape_txt_file_path) tuple
self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i
in range(len(shape_ids[split]))]
print('The size of %s data is %d' % (split, len(self.datapath)))
self.cache_size = cache_size # how many data points to cache in memory
self.cache = {} # from index to (point_set, cls) tuple
def __len__(self):
return len(self.datapath)
def _get_item(self, index):
if index in self.cache:
point_set, cls = self.cache[index]
else:
fn = self.datapath[index]
cls = self.classes[self.datapath[index][0]]
cls = np.array([cls]).astype(np.int32)
point_set = np.loadtxt(fn[1], delimiter=',').astype(np.float32)
if self.uniform:
point_set = farthest_point_sample(point_set, self.npoints)
else:
point_set = point_set[0:self.npoints, :]
point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])
if not self.normal_channel:
point_set = point_set[:, 0:3]
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, cls)
return point_set, cls
def __getitem__(self, index):
return self._get_item(index)
class PartNormalDataset(Dataset):
def __init__(self, root='/data/cgy/ShapenetPart/shapenetcore_partanno_segmentation_benchmark_v0_normal', npoints=2500, split='train', class_choice=None, normal_channel=False):
self.npoints = npoints
self.root = root
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
self.cat = {}
self.normal_channel = normal_channel
with open(self.catfile, 'r') as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
self.cat = {k: v for k, v in self.cat.items()}
self.classes_original = dict(zip(self.cat, range(len(self.cat))))
if not class_choice is None:
self.cat = {k: v for k, v in self.cat.items() if k in class_choice}
# print(self.cat)
self.meta = {}
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
for item in self.cat:
# print('category', item)
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item])
fns = sorted(os.listdir(dir_point))
# print(fns[0][0:-4])
if split == 'trainval':
fns = [fn for fn in fns if (
(fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split == 'train':
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split == 'val':
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split == 'test':
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print('Unknown split: %s. Exiting..' % (split))
exit(-1)
# print(os.path.basename(fns))
for fn in fns:
token = (os.path.splitext(os.path.basename(fn))[0])
self.meta[item].append(os.path.join(dir_point, token + '.txt'))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn))
self.classes = {}
for i in self.cat.keys():
self.classes[i] = self.classes_original[i]
# Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
# for cat in sorted(self.seg_classes.keys()):
# print(cat, self.seg_classes[cat])
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 20000
def __getitem__(self, index):
if index in self.cache:
point_set, cls, seg = self.cache[index]
else:
fn = self.datapath[index]
cat = self.datapath[index][0]
cls = self.classes[cat]
cls = np.array([cls]).astype(np.int32)
data = np.loadtxt(fn[1]).astype(np.float32)
if not self.normal_channel:
point_set = data[:, 0:3]
else:
point_set = data[:, 0:6]
seg = data[:, -1].astype(np.int32)
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, cls, seg)
point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])
choice = np.random.choice(len(seg), self.npoints, replace=True)
# resample
point_set = point_set[choice, :]
seg = seg[choice]
return point_set, cls, seg
def __len__(self):
return len(self.datapath)
if __name__ == '__main__':
data = ModelNetDataLoader('modelnet40_normal_resampled/',
split='train', uniform=False, normal_channel=True)
DataLoader = torch.utils.data.DataLoader(data, batch_size=12, shuffle=True)
for point, label in DataLoader:
print(point.shape)
print(label.shape)