diff --git a/Project.toml b/Project.toml index b7c3436..831b47c 100644 --- a/Project.toml +++ b/Project.toml @@ -4,7 +4,7 @@ keywords = ["clustering", "JuMP", "optimization"] license = "MIT" desc = "julia implementation of using different clustering methods for finding representative periods for the optimization of energy systems" author = ["Holger Teichgraeber"] -version = "0.4.1" +version = "0.4.2" [deps] CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" diff --git a/README.md b/README.md index 801ef23..37ba08d 100644 --- a/README.md +++ b/README.md @@ -4,6 +4,7 @@ [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://holgerteichgraeber.github.io/ClustForOpt.jl/dev) [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE) [![Build Status](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl.svg?token=HRFemjSxM1NBCsbHGNDG&branch=master)](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl) +[![codecov](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl) [ClustForOpt](https://github.com/holgerteichgraeber/ClustForOpt.jl) is a [julia](https://www.juliaopt.com) implementation of unsupervised machine learning methods for finding representative periods for energy systems optimization problems. @@ -55,7 +56,7 @@ If you find ClustForOpt useful in your work, we kindly request that you cite the ## Quick Start Guide -This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder. +This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder, specifically [workflow_introduction.jl](https://github.com/holgerteichgraeber/ClustForOpt.jl/blob/master/examples/workflow_introduction.jl). Generally, the workflow consists of three steps: - load data diff --git a/docs/src/index.md b/docs/src/index.md index 8848609..3c38e73 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -3,6 +3,7 @@ [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://holgerteichgraeber.github.io/ClustForOpt.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://holgerteichgraeber.github.io/ClustForOpt.jl/dev) [![Build Status](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl.svg?token=HRFemjSxM1NBCsbHGNDG&branch=master)](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl) +[![codecov](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl) [ClustForOpt](https://github.com/holgerteichgraeber/ClustForOpt.jl) is a [julia](https://www.juliaopt.com) implementation of unsupervised machine learning methods for finding representative periods for energy systems optimization problems. By reducing the number of time steps used in the optimization model, using representative periods leads to significant reductions in computational complexity. diff --git a/docs/src/quickstart.md b/docs/src/quickstart.md index 0fea69c..edeb83a 100644 --- a/docs/src/quickstart.md +++ b/docs/src/quickstart.md @@ -1,7 +1,7 @@ Quick Start Guide ================= -This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder. +This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder, specifically [workflow_introduction.jl](https://github.com/holgerteichgraeber/ClustForOpt.jl/blob/master/examples/workflow_introduction.jl). Generally, the workflow consists of three steps: - load data diff --git a/test/reference_generation/run_clust.jl b/test/reference_generation/run_clust.jl index 91d8309..815b03e 100644 --- a/test/reference_generation/run_clust.jl +++ b/test/reference_generation/run_clust.jl @@ -6,8 +6,8 @@ using Random reference_results = Dict{String,Any}() Random.seed!(1111) -for data in ["CEP_GER1","CEP_GER18"] - ts_input_data = load_timeseries_data(Symbol(data)) +for data in [:CEP_GER1,:CEP_GER18] + ts_input_data = load_timeseries_data(data) #mr: method, representation, n_init mr = [["kmeans","centroid",1000], ["kmeans","medoid",1000], @@ -47,8 +47,8 @@ for data in ["CEP_GER1","CEP_GER18"] end end -data = "CEP_GER1" -ts_input_data = load_timeseries_data(Symbol(data)) +data = :CEP_GER1 +ts_input_data = load_timeseries_data(data) method = "kmedoids_exact" repr = "medoid" using Cbc diff --git a/test/run_clust.jl b/test/run_clust.jl index 8238352..7a89667 100644 --- a/test/run_clust.jl +++ b/test/run_clust.jl @@ -11,8 +11,8 @@ using Random @load normpath(joinpath(dirname(@__FILE__),"reference_generation","run_clust.jld2")) reference_results Random.seed!(1111) -@testset "run_clust $data" for data in ["CEP_GER1","CEP_GER18"] begin - ts_input_data = load_timeseries_data(Symbol(data)) +@testset "run_clust $data" for data in [:CEP_GER1,:CEP_GER18] begin + ts_input_data = load_timeseries_data(data) #mr: method, representation, n_init mr = [["kmeans","centroid",1000], ["kmeans","medoid",1000], @@ -58,8 +58,8 @@ Random.seed!(1111) end # Use the same data for all subsequent tests -data = "CEP_GER1" -ts_input_data = load_timeseries_data(Symbol(data)) +data = :CEP_GER1 +ts_input_data = load_timeseries_data(data) using Cbc optimizer = Cbc.Optimizer