-
Notifications
You must be signed in to change notification settings - Fork 0
/
classification_utils.py
105 lines (87 loc) · 3.99 KB
/
classification_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
File name: classification_utils.py
Author: Benjamin Planche
Date created: 21.03.2019
Date last modified: 17:44 21.03.2019
Python Version: "3.6"
Copyright = "Copyright (C) 2018-2019 of Packt"
Credits = ["Eliot Andres, Benjamin Planche"] # people who reported bug fixes, made suggestions, etc. but did not actually write the code
License = "MIT"
Version = "1.0.0"
Maintainer = "non"
Status = "Prototype" # "Prototype", "Development", or "Production"
"""
#==============================================================================
# Imported Modules
#==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.preprocessing.image import img_to_array, load_img
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#==============================================================================
# Function Definitions
#==============================================================================
def load_image(image_path, size):
"""
Load an image as a Numpy array.
:param image_path: Path of the image
:param size: Target size
:return Image array, normalized between 0 and 1
"""
image = img_to_array(load_img(image_path, target_size=size)) / 255.
return image
def process_predictions(class_probabilities, class_readable_labels, k=5):
"""
Process a batch of predictions from our estimator.
:param class_probabilities: Prediction results returned by the Keras classifier for a batch of data
:param class_readable_labels: List of readable-class labels, for display
:param k: Number of top predictions to consider
:return Readable labels and probabilities for the predicted classes
"""
topk_labels, topk_probabilities = [], []
for i in range(len(class_probabilities)):
# Getting the top-k predictions:
topk_classes = sorted(np.argpartition(class_probabilities[i], -k)[-k:])
# Getting the corresponding labels and probabilities:
topk_labels.append([class_readable_labels[predicted] for predicted in topk_classes])
topk_probabilities.append(class_probabilities[i][topk_classes])
return topk_labels, topk_probabilities
def display_predictions(images, topk_labels, topk_probabilities):
"""
Plot a batch of predictions.
:param images: Batch of input images
:param topk_labels: String labels of predicted classes
:param topk_probabilities: Probabilities for each class
"""
num_images = len(images)
num_images_sqrt = np.sqrt(num_images)
plot_cols = plot_rows = int(np.ceil(num_images_sqrt))
figure = plt.figure(figsize=(13, 10))
grid_spec = gridspec.GridSpec(plot_cols, plot_rows)
for i in range(num_images):
img, pred_labels, pred_proba = images[i], topk_labels[i], topk_probabilities[i]
# Shortening the labels to better fit in the plot:
pred_labels = [label.split(',')[0][:20] for label in pred_labels]
grid_spec_i = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=grid_spec[i],
hspace=0.1)
# Drawing the input image:
ax_img = figure.add_subplot(grid_spec_i[:2])
ax_img.axis('off')
ax_img.imshow(img)
ax_img.autoscale(tight=True)
# Plotting a bar chart for the predictions:
ax_pred = figure.add_subplot(grid_spec_i[2])
ax_pred.spines['top'].set_visible(False)
ax_pred.spines['right'].set_visible(False)
ax_pred.spines['bottom'].set_visible(False)
ax_pred.spines['left'].set_visible(False)
y_pos = np.arange(len(pred_labels))
ax_pred.barh(y_pos, pred_proba, align='center')
ax_pred.set_yticks(y_pos)
ax_pred.set_yticklabels(pred_labels)
ax_pred.invert_yaxis()
plt.tight_layout()
plt.show()