-
Notifications
You must be signed in to change notification settings - Fork 0
/
mashup_best_param_Classification.py
349 lines (295 loc) · 12.6 KB
/
mashup_best_param_Classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import torch
from Data_mashup_X_train_01234 import mashup_X_train_01234_data
from Data_mashup_X_test_01234 import mashup_X_test_01234_data
from Data_mashup_Y_train_01234 import mashup_Y_train_01234_data
from Data_mashup_Y_test_01234 import mashup_Y_test_01234_data
from sklearn.metrics import f1_score
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import label_binarize
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import torch.optim
import pandas as pd
# 单独训练
# x = LDA_mashup_20_cate_data
# x = torch.FloatTensor(x)
# x = LDA_mashup_20_cate_data_filter
# x = torch.FloatTensor(x)
# 联合训练
# x0 = LDA_mashup_20_cate_data
# x1 = Doc2mashup_20_cate_data
# x2 = TFIDF_mashup_20_cate_data
# x3 = Node2_mashup_invoke1_20_cate_data
# x4 = Node2_mashup_tags1_20_cate_data
#
# x0 = torch.FloatTensor(x0)
# x1 = torch.FloatTensor(x1)
# x2 = torch.FloatTensor(x2)
# x3 = torch.FloatTensor(x3)
# x4 = torch.FloatTensor(x4)
#
# x = torch.cat((x0, x1, x2, x3, x4), 1)
# 按维数0拼接(竖着拼); 按维数1拼接(横着拼)
x_train = mashup_X_train_01234_data
x_test = mashup_X_test_01234_data
y_train = mashup_Y_train_01234_data
y_test = mashup_Y_test_01234_data
input_dim = len(x_train[0])
x_train = torch.FloatTensor(x_train)
y_train = torch.LongTensor(y_train)
x_test = torch.FloatTensor(x_test)
y_test = torch.LongTensor(y_test)
x_train = Variable(x_train)
y_train = Variable(y_train)
x_test = Variable(x_test)
y_test = Variable(y_test)
# x = Variable(x)
# y = Variable(y)
def roc_drawing(out,labels):
num_classes = 20
scores = torch.softmax(out, dim=1).detach().numpy() # out = model(data)
binary_label = label_binarize(labels, classes=list(range(num_classes))) # num_classes=10
fpr = {}
tpr = {}
roc_auc = {}
for i in range(num_classes):
fpr[i], tpr[i], _ = roc_curve(binary_label[:, i], scores[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(binary_label.ravel(), scores.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(num_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(num_classes):
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= num_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# 画图
# plt.figure(figsize=(8, 8))
# plt.plot(fpr["micro"], tpr["micro"],
# label='micro-average ROC curve (area = {0:0.2f})'.format(roc_auc["micro"]),
# color='deeppink', linestyle=':', linewidth=4)
#
# plt.plot(fpr["macro"], tpr["macro"],
# label='macro-average ROC curve (area = {0:0.2f})'.format(roc_auc["macro"]),
# color='navy', linestyle=':', linewidth=4)
#
# for i in range(20):
# plt.plot(fpr[i], tpr[i], lw=2,
# label='ROC curve of class {0} (area = {1:0.2f})'.format(i, roc_auc[i]))
#
# plt.plot([0, 1], [0, 1], 'k--', lw=2)
# plt.xlim([0.0, 1.0])
# plt.ylim([0.0, 1.05])
# plt.grid()
# plt.xlabel('False Positive Rate')
# plt.ylabel('True Positive Rate')
# plt.title('Multi-class ROC')
# plt.legend(loc="lower right")
# plt.savefig('Multi-class ROC.jpg', bbox_inches='tight')
# plt.show()
return roc_auc["micro"],roc_auc["macro"]
class Net(nn.Module):
def __init__(self,n_feature,n_hidden,n_hidden1,n_hidden2,n_hidden3,hidden_layer,n_out):
super(Net,self).__init__()
self.hidden = nn.Linear(n_feature,n_hidden)
self.hidden1 = nn.Linear(n_hidden,n_hidden1)
self.hidden2 = nn.Linear(n_hidden1,n_hidden2)
self.hidden3 = nn.Linear(n_hidden2,n_hidden3)
# self.hidden4 = nn.Linear(n_hidden3,n_hidden4)
if hidden_layer == 1:
self.out = nn.Linear(n_hidden,n_out)
if hidden_layer == 2:
self.out = nn.Linear(n_hidden1,n_out)
if hidden_layer == 3:
self.out = nn.Linear(n_hidden2,n_out)
if hidden_layer == 4:
self.out = nn.Linear(n_hidden3,n_out)
# if hidden_layer == 5:
# self.out = nn.Linear(n_hidden4,n_out)
def forward(self, x, hidden_layer):
# relu的效果比sigmoid要好
if hidden_layer == 1:
x = F.relu(self.hidden(x))
if hidden_layer == 2:
x = F.relu(self.hidden(x))
x = F.relu(self.hidden1(x))
if hidden_layer == 3:
x = F.relu(self.hidden(x))
x = F.relu(self.hidden1(x))
x = F.relu(self.hidden2(x))
if hidden_layer == 4:
x = F.relu(self.hidden(x))
x = F.relu(self.hidden1(x))
x = F.relu(self.hidden2(x))
x = F.relu(self.hidden3(x))
# if hidden_layer == 5:
# x = F.relu(self.hidden(x))
# x = F.relu(self.hidden1(x))
# x = F.relu(self.hidden2(x))
# x = F.relu(self.hidden3(x))
# x = F.relu(self.hidden4(x))
x = self.out(x)
out = F.log_softmax(x,dim=1)
return out
#
# net1 = torch.nn.Sequential(
# torch.nn.Linear(input_dim,128),
# torch.nn.ReLU(),
#
# )
# 寻找最优参数
# hidden_layers = [1,2,3,4]
# lr_list = [0.01,0.02,0.03,0.04,0.05]
# epoch_list = [2500,5000,7500,10000,12500]
# 第二轮参数对比
# hidden_layers = [2] # 由于第一轮参数调整对比以后,隐藏层等于2的时候分类效果最好,所以只需控制在2层隐藏层即可
# lr_list = [0.05,0.1,0.15,0.2,0.3] # 由于第一轮参数调整对比以后,分类效果随着学习率一直上升,所以需继续提高学习率
# epoch_list = [10000,12500,15000,20000] # 由于第一轮参数调整对比以后,分类效果在epoch为12500以后达到最佳,所以需继续提升epoch次数
# 第三轮参数对比,由于最佳参数组合为[2,0.1,12500],然而我们缺少hidden_layers的其余参数对比结果,故需再进行对比试验
hidden_layers = [1,2,3,4]
lr_list = [0.1]
epoch_list = [12500]
parameter_list = []
for i in range(4):
for j in range(1):
for k in range(1):
parameter_list.append([hidden_layers[i],lr_list[j],epoch_list[k]])
loss_result = []
mi_f1_result = []
ma_f1_result = []
mi_auc_result = []
ma_auc_result = []
min_loss = 10
for i in range(len(parameter_list)):
# n_feature表示输入特征向量的维度,n_hidden表示隐藏层的单元数,n_out表示输出的类别数
net = Net(n_feature=input_dim,n_hidden=256,n_hidden1=128,n_hidden2=64,n_hidden3=32,hidden_layer=parameter_list[i][0],n_out=20)
optimizer = torch.optim.SGD(net.parameters(),lr=parameter_list[i][1])
epochs = parameter_list[i][2]
for j in range(epochs):
predict_train = net(x_train,hidden_layer=parameter_list[i][0])
loss = F.nll_loss(predict_train,y_train) # 输出层 用了log_softmax 则需要用这个误差函数
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.set_printoptions(profile="full")
if j % 2500 == 0:
print('第'+str(j)+'次epoch遍历')
# if i == epochs-1:
# torch.save(net,'net.pkl')
#
# net1 = torch.load('net.pkl')
# 进行测试
predict_test = net(x_test,hidden_layer=parameter_list[i][0])
loss = F.nll_loss(predict_test,y_test)
_, pred = torch.max(predict_test, 1)
# torch.max(input, dim) 函数
# output = torch.max(input, dim)
# 输入
# input是softmax函数输出的一个tensor
# dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值
# 输出
# 函数会返回两个tensor,第一个tensor是每行的最大值,softmax的输出中最大的是1,所以第一个tensor是全1的tensor;第二个tensor是每行最大值的索引。
ma_f1 = f1_score(y_test.detach().numpy(), pred.detach().numpy(), average='macro')
mi_f1 = f1_score(y_test.detach().numpy(), pred.detach().numpy(), average='micro')
# 将tensor转化为数组时,待转换类型的PyTorch Tensor变量带有梯度,直接将其转换为numpy数据将破坏计算图,因此numpy拒绝进行数据转换,实际上这是对开发者的一种提醒。如果自己在转换数据时不需要保留梯度信息,可以在变量转换之前添加detach()调用。假设原来的写法是:
# aaa.cpu().numpy()
# 那么现在改为
# aaa.cpu().detach().numpy()即可。
roc_auc_micro,roc_auc_macro = roc_drawing(predict_test,y_test.detach().numpy())
# 注意,这里传入的是tensor向量predict,不是数组向量pred。原因是因为源码要求传入的是tensor
loss_result.append(loss.item())
mi_f1_result.append(mi_f1.item())
ma_f1_result.append(ma_f1.item())
mi_auc_result.append(roc_auc_micro)
ma_auc_result.append(roc_auc_macro)
if min_loss >= loss:
min_loss = loss
print('第'+str(i)+'次遍历')
print(str(parameter_list[0])+'min_loss:'+str(min_loss.item()))
# for i in range(1):
# print(str(i)+"loss:"+str(loss.item()))
# print(str(i)+"ma_f1:"+str(ma_f1.item()))
# print(str(i)+"mi_f1:"+str(mi_f1.item()))
# roc_auc_micro,roc_auc_macro = roc_drawing(predict_test,y_test.detach().numpy())
# # 注意,这里传入的是tensor向量predict,不是数组向量pred。原因是因为源码要求传入的是tensor
# print(roc_auc_micro,'\n',roc_auc_macro)
fin_data = zip(parameter_list,loss_result,mi_f1_result,ma_f1_result,mi_auc_result,ma_auc_result)
mashup_result_data = pd.DataFrame(list(fin_data),columns=['parameter_list','loss_result','mi_f1_result','ma_f1_result',
'mi_auc_result','ma_auc_result'])
# 第一次参数对比结果保存
# mashup_result_data.to_csv('./Fin_result_data/mashup_param_result_data.csv',encoding='utf-8', index=0)
# 第二次参数对比结果保存
# mashup_result_data.to_csv('./Fin_result_data/mashup_param_result1_data.csv',encoding='utf-8', index=0)
# 第三次实验最终参数对比结果保存
mashup_result_data.to_csv('./Fin_result_data/mashup_param_result2_data.csv',encoding='utf-8', index=0)
print('loss_min:',min(loss_result))
a = loss_result.index(min(loss_result))
print('loss_min_index:',a)
print('parameter_list:',parameter_list[a])
print('mi_f1_max:',max(mi_f1_result))
a = mi_f1_result.index(max(mi_f1_result))
print('mi_f1_max_index:',a)
print('parameter_list:',parameter_list[a])
print('ma_f1_max:',max(ma_f1_result))
a = ma_f1_result.index(max(ma_f1_result))
print('ma_f1_max_index:',a)
print('parameter_list:',parameter_list[a])
print('mi_auc_max:',max(mi_auc_result))
a = mi_auc_result.index(max(mi_auc_result))
print('mi_auc_max_index:',a)
print('parameter_list:',parameter_list[a])
print('ma_auc_max:',max(ma_auc_result))
a = ma_auc_result.index(max(ma_auc_result))
print('ma_auc_max_index:',a)
print('parameter_list:',parameter_list[a])
# 第一次参数对比结果,即 hidden_layers = [1,2,3,4],lr_list = [0.01,0.02,0.03,0.04,0.05],epoch_list = [2500,5000,7500,10000,12500]
# 一共有4*5*5=100种参数组合,最佳参数组合如下
# 训练集最小损失组合[1, 0.01, 2500]min_loss:0.931137204170227
# loss_min: 0.931137204170227
# loss_min_index: 49
# parameter_list: [2, 0.05, 12500]
# mi_f1_max: 0.6938083121289228
# mi_f1_max_index: 49
# parameter_list: [2, 0.05, 12500]
# ma_f1_max: 0.6425298623173743
# ma_f1_max_index: 49
# parameter_list: [2, 0.05, 12500]
# mi_auc_max: 0.976426253841282
# mi_auc_max_index: 49
# parameter_list: [2, 0.05, 12500]
# ma_auc_max: 0.9672874345120763
# ma_auc_max_index: 49
# parameter_list: [2, 0.05, 12500]
# 第二次参数对比结果,即hidden_layers = [2],lr_list = [0.05,0.1,0.15,0.2,0.3],epoch_list = [10000,12500,15000,20000]
# 一共有1*5*4=20种参数组合,最佳参数组合如下
# 训练集最小损失组合[2, 0.05, 10000]min_loss:0.9255914688110352
# loss_min: 0.9255914688110352
# loss_min_index: 2
# parameter_list: [2, 0.05, 15000]
#
# mi_f1_max: 0.7048346055979644
# mi_f1_max_index: 3
# parameter_list: [2, 0.05, 20000]
#
# ma_f1_max: 0.6675313023277794
# ma_f1_max_index: 3
# parameter_list: [2, 0.05, 20000]
#
# mi_auc_max: 0.9769021580166188
# mi_auc_max_index: 2
# parameter_list: [2, 0.05, 15000]
#
# ma_auc_max: 0.9678423649756169
# ma_auc_max_index: 2
# parameter_list: [2, 0.05, 15000]
# 综合分析,考虑复杂度等问题可得,mashup最佳参数组合为[2,0.1,12500]