forked from baidu-research/NCRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet.py
222 lines (166 loc) · 6.49 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn
import math
from wsi.model.layers import CRF
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1, num_nodes=1,
use_crf=True):
"""Constructs a ResNet model.
Args:
num_classes: int, since we are doing binary classification
(tumor vs normal), num_classes is set to 1 and sigmoid instead
of softmax is used later
num_nodes: int, number of nodes/patches within the fully CRF
use_crf: bool, use the CRF component or not
"""
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.crf = CRF(num_nodes) if use_crf else None
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
"""
Args:
x: 5D tensor with shape of
[batch_size, grid_size, 3, crop_size, crop_size],
where grid_size is the number of patches within a grid (e.g. 9 for
a 3x3 grid); crop_size is 224 by default for ResNet input;
Returns:
logits, 2D tensor with shape of [batch_size, grid_size], the logit
of each patch within the grid being tumor
"""
batch_size, grid_size, _, crop_size = x.shape[0:4]
# flatten grid_size dimension and combine it into batch dimension
x = x.view(-1, 3, crop_size, crop_size)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
# feats means features, i.e. patch embeddings from ResNet
feats = x.view(x.size(0), -1)
logits = self.fc(feats)
# restore grid_size dimension for CRF
feats = feats.view((batch_size, grid_size, -1))
logits = logits.view((batch_size, grid_size, -1))
if self.crf:
logits = self.crf(feats, logits)
logits = torch.squeeze(logits)
return logits
def resnet18(**kwargs):
"""Constructs a ResNet-18 model.
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
return model
def resnet34(**kwargs):
"""Constructs a ResNet-34 model.
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
return model
def resnet50(**kwargs):
"""Constructs a ResNet-50 model.
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
return model
def resnet101(**kwargs):
"""Constructs a ResNet-101 model.
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
return model
def resnet152(**kwargs):
"""Constructs a ResNet-152 model.
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
return model