forked from simongog/sdsl-lite
-
Notifications
You must be signed in to change notification settings - Fork 1
/
sorted_stack_support.hpp
172 lines (150 loc) · 5.23 KB
/
sorted_stack_support.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* sdsl - succinct data structures library
Copyright (C) 2009 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file sorted_stack_support.hpp
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_SORTED_STACK_SUPPORT
#define INCLUDED_SDSL_SORTED_STACK_SUPPORT
#include "int_vector.hpp"
namespace sdsl
{
//! A stack which contains strictly increasing numbers in the range from \f$0\f$ to \f$n\f$.
/*!
* \par Reference
* Johannes Fischer:
* Optimal Succinctness for Range Minimum Queries
* LATIN 2010
*
* \par Space complexity
* \f$n\f$ bits
*/
class sorted_stack_support
{
public:
typedef int_vector<64>::size_type size_type;
private:
size_type m_n; // Size of the supported vector.
size_type m_cnt; // Counter for the indices on the stack.
size_type m_top; // Topmost index of the stack.
int_vector<64> m_stack; // Memory for the stack.
inline size_type block_nr(size_type x) {
return x/63;
}; // TODO: maybe we can speed this up with bit hacks
inline size_type block_pos(size_type x) {
return x%63;
}; // TODO: maybe we can speed this up with bit hacks
public:
//! Constructor
/*! \param n Maximum that can be pushed onto the stack
*/
sorted_stack_support(size_type n);
sorted_stack_support(const sorted_stack_support&) = default;
sorted_stack_support(sorted_stack_support&&) = default;
sorted_stack_support& operator=(const sorted_stack_support&) = default;
sorted_stack_support& operator=(sorted_stack_support&&) = default;
/*! Returns if the stack is empty.
*/
bool empty() const {
return 0==m_cnt;
};
/*! Returns the topmost index on the stack.
* \pre empty()==false
*/
size_type top() const;
/*! Pop the topmost index of the stack.
*/
void pop();
/*! Push the index x of vector vec onto the stack.
* \par x Index of the value in vec which should be pushed onto the stack.
* \pre top() < x and x <= n
*/
void push(size_type x);
/*! Returns the number of element is the stack.
*/
size_type size()const {
return m_cnt;
};
size_type
serialize(std::ostream& out, structure_tree_node* v=nullptr,
std::string name="")const;
void load(std::istream& in);
};
inline sorted_stack_support::sorted_stack_support(size_type n):m_n(n), m_cnt(0), m_top(0), m_stack()
{
m_stack = int_vector<64>(block_nr(m_n+1)+1, 0);
m_stack[0] = 1;
}
inline sorted_stack_support::size_type sorted_stack_support::top()const
{
assert(empty() == false);
return m_top-1;
}
inline void sorted_stack_support::push(size_type x)
{
assert((empty() or top() < x) and x <= m_n);
x += 1;
++m_cnt; //< increment counter
size_type bn = block_nr(x);
m_stack[bn] ^= (1ULL << block_pos(x));
if (bn > 0 and m_stack[bn-1] == 0) {
m_stack[bn-1] = 0x8000000000000000ULL | m_top;
}
m_top = x;
}
inline void sorted_stack_support::pop()
{
if (!empty()) {
--m_cnt; //< decrement counter
size_type bn = block_nr(m_top);
uint64_t w = m_stack[ bn ];
assert((w>>63) == 0); // highest bit is not set, as the block contains no pointer
w ^= (1ULL << block_pos(m_top));
m_stack[ bn ] = w;
if (w>0) {
m_top = bn*63 + bits::hi(w);
} else { // w==0 and cnt>0
assert(bn > 0);
w = m_stack[ bn-1 ];
if ((w>>63) == 0) { // highest bit is not set => the block contains no pointer
assert(w>0);
m_top = (bn-1)*63 + bits::hi(w);
} else { // block contains pointers
m_stack[bn-1] = 0;
m_top = w&0x7FFFFFFFFFFFFFFFULL;
}
}
}
}
inline sorted_stack_support::size_type
sorted_stack_support::serialize(std::ostream& out, structure_tree_node* v,
std::string name)const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_n, out);
written_bytes += write_member(m_top, out);
written_bytes += write_member(m_cnt, out);
written_bytes += m_stack.serialize(out);
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
inline void sorted_stack_support::load(std::istream& in)
{
read_member(m_n, in);
read_member(m_top, in);
read_member(m_cnt, in);
m_stack.load(in);
}
}// end namespace sdsl
#endif // end file