-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
367 lines (273 loc) · 15 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from collections import OrderedDict
import copy
import torch
import torch.nn as nn
from torch.nn import functional as F
from clip_sp import clip
from clip_sp.simple_tokenizer import SimpleTokenizer as _Tokenizer
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
_tokenizer = _Tokenizer()
def load_clip_to_cpu(cfg):
backbone_name = cfg.model_backbone
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
design_details = {"trainer": 'MaPLe',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0,
"maple_length": cfg.n_ctx}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts, compound_prompts_deeper_text):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
# Pass as the list, as nn.sequential cannot process multiple arguments in the forward pass
combined = [x, compound_prompts_deeper_text, 0] # third argument is the counter which denotes depth of prompt
outputs = self.transformer(combined)
x = outputs[0] # extract the x back from here
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class MultiModalAdaptivePromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
n_ctx = cfg.n_ctx
ctx_init = cfg.ctx_init
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
vis_dim = clip_model.visual.output_dim
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.input_shape[0]
# Default is 1, which is compound shallow prompting
assert cfg.prompt_depth >= 1, "For MaPLe, PROMPT_DEPTH should be >= 1"
self.compound_prompts_depth = cfg.prompt_depth # max=12, but will create 11 such shared prompts
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init and (n_ctx) <= 4:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = n_ctx
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print('Design: SketchCLIP')
print(f'Initial context: "{prompt_prefix}"')
print(f"Number of context words (tokens): {n_ctx}")
# These below, related to the shallow prompts
# Linear layer so that the tokens will project to 512 and will be initialized from 768
# self.proj = nn.Linear(ctx_dim, 768)
# self.proj.half()
self.ctx = nn.Parameter(ctx_vectors)
self.ctx_visual = torch.randn(n_ctx, 768, dtype=dtype).cuda()
nn.init.normal_(self.ctx_visual, std=0.02)
self.meta_net = nn.Sequential(OrderedDict([
("linear1", nn.Linear(vis_dim, vis_dim // 16)),
("relu", nn.ReLU(inplace=True)),
("linear2", nn.Linear(vis_dim // 16, ctx_dim))
]))
self.set_classifier = nn.Sequential(OrderedDict([
("linear1", nn.Linear(vis_dim, vis_dim // 16)),
("relu", nn.ReLU(inplace=True)),
("linear2", nn.Linear(vis_dim // 16, 3)),
]))
if cfg.precision == "fp16":
ctx_bias=torch.randn(3,ctx_dim).to(torch.float16).cuda()
nn.init.normal_(ctx_bias, std=0.02)
self.code_vectors=nn.Parameter(ctx_bias)
self.code_vectors.requires_grad_(True)
self.meta_net.half()
self.set_classifier.half()
self.code_vectors.half()
else:
ctx_bias=torch.randn(3,ctx_dim).cuda()
nn.init.normal_(ctx_bias, std=0.02)
self.code_vectors=nn.Parameter(ctx_bias)
self.code_vectors.requires_grad_(True)
# These below parameters related to the shared prompts
# Define the compound prompts for the deeper layers
# Minimum can be 1, which defaults to shallow MaPLe
# compound prompts
self.visual_prompts = nn.ParameterList([nn.Parameter(torch.randn(n_ctx, 768))
for _ in range(self.compound_prompts_depth - 1)])
self.compound_prompts_text = nn.ParameterList([nn.Parameter(torch.empty(n_ctx, 512))
for _ in range(self.compound_prompts_depth - 1)])
for single_para in self.visual_prompts:
nn.init.normal_(single_para, std=0.02)
for single_para in self.compound_prompts_text:
nn.init.normal_(single_para, std=0.02)
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
def construct_prompts(self, ctx, prefix, suffix, label=None):
# dim0 is either batch_size (during training) or n_cls (during testing)
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
],
dim=1,
)
return prompts
def visual_prompt_generator(self):
visual_deep_prompts = []
return self.ctx_visual, self.visual_prompts
def forward(self,im_features):
prefix = self.token_prefix
suffix = self.token_suffix
ctx = self.ctx # (n_ctx, ctx_dim)
code_vectors=self.code_vectors
bias = self.meta_net(im_features) # (batch, ctx_dim)
selection = self.set_classifier(im_features)
bias_set = F.softmax(selection,dim=1)@code_vectors
bias_set = bias_set.unsqueeze(1)
bias = bias.unsqueeze(1) # (batch, 1, ctx_dim)
ctx = ctx.unsqueeze(0) # (1, n_ctx, ctx_dim)
ctx_shifted = ctx + bias + bias_set # (batch, n_ctx, ctx_dim)
# print("{:.3f} {:.3f} {:.3f}".format(torch.norm(ctx),torch.norm(bias),torch.norm(bias_set)), end = " ")
# Use instance-conditioned context tokens for all classes
prompts = []
for ctx_shifted_i in ctx_shifted:
ctx_i = ctx_shifted_i.unsqueeze(0).expand(self.n_cls, -1, -1)
pts_i = self.construct_prompts(ctx_i, prefix, suffix) # (n_cls, n_tkn, ctx_dim)
prompts.append(pts_i)
prompts = torch.stack(prompts)
return prompts, self.compound_prompts_text, selection
def softmax_cross_entropy_with_softtarget(input, target, reduction='mean'):
"""
:param input: (batch, *)
:param target: (batch, *) same shape as input, each item must be a valid distribution: target[i, :].sum() == 1.
"""
logprobs = torch.nn.functional.log_softmax(input.view(input.shape[0], -1), dim=1)
batchloss = - torch.sum(target.view(target.shape[0], -1) * logprobs, dim=1)
if reduction == 'none':
return batchloss
elif reduction == 'mean':
return torch.mean(batchloss)
elif reduction == 'sum':
return torch.sum(batchloss)
else:
raise NotImplementedError('Unsupported reduction mode.')
class CustomCLIP_MAPLE_Adaptive(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = MultiModalAdaptivePromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
encoder_hidden_dim = 512
decoder_hidden_dim = 512
self.decoder = nn.GRU(5 + encoder_hidden_dim, decoder_hidden_dim, batch_first=True)
self.linear_output = nn.Linear(decoder_hidden_dim, 5)
def forward(self, image, label=None, label_set=None, training=True, i1=0, i2 =0, i3=0, points2=0, points3=0, seq_len2 =0, seq_len3 =0, is_singular = False,lamda = 0, to_mix = True, logits_only=False):
tokenized_prompts = self.tokenized_prompts
logit_scale = self.logit_scale.exp()
visual_ctx, deep_compound_prompts_vision = self.prompt_learner.visual_prompt_generator()
image_features = self.image_encoder(image.type(self.dtype), visual_ctx, deep_compound_prompts_vision)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
prompts, deep_compound_prompts_text, selection= self.prompt_learner(image_features)
logits = []
for pts_i, imf_i in zip(prompts, image_features):
text_features = self.text_encoder(pts_i, tokenized_prompts, deep_compound_prompts_text)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
l_i = logit_scale * imf_i @ text_features.t()
logits.append(l_i)
logits = torch.stack(logits)
if logits_only:
return logits
loss_set = F.cross_entropy(selection, label_set.long())
if training and not is_singular:
device="cuda"
i2_features = self.image_encoder(i2.type(self.dtype), visual_ctx, deep_compound_prompts_vision)
i2_features = i2_features / i2_features.norm(dim=-1, keepdim=True)
i3_features = self.image_encoder(i3.type(self.dtype), visual_ctx, deep_compound_prompts_vision)
i3_features = i3_features / i3_features.norm(dim=-1, keepdim=True)
i_features=torch.concat([i2_features,i3_features]).type(self.dtype)
i_features=i_features / i_features.norm(dim=-1, keepdim=True)
points_= torch.concat([points2,points3]).type(self.dtype)
target_coord = points_
seq_len = torch.concat([seq_len2,seq_len3])
decoder_input = torch.cat((i_features.unsqueeze(1).repeat(1, seq_len.max(), 1), target_coord[:,:-1, :]), dim=-1)
decoder_input = pack_padded_sequence(decoder_input, seq_len.cpu().int(), batch_first=True, enforce_sorted=False)
output_hiddens, _ = self.decoder(decoder_input.float())
output_hiddens, _ = pad_packed_sequence(output_hiddens, batch_first=True)
output = self.linear_output(output_hiddens)
output_XY, pen_bits = output.split([2, 3], dim=-1)
output_XY = torch.clamp(output_XY,min=0.0,max = 1.0)
# pen_bits_onehot = F.one_hot(pen_bits.argmax(-1), num_classes=3).float()
mask = torch.ones(output.shape[:2]).to(device)
target_cross_entropy = target_coord[:, 1:, 2:].argmax(axis=-1)
for i_num, seq in enumerate(seq_len):
mask[i_num, seq:] = 0.
target_cross_entropy[i_num, seq:] = 10
loss_coor = F.mse_loss(output_XY.double(), target_coord[:, 1:, :2].double(), reduction='none') * mask.unsqueeze(-1)
loss_pen = F.cross_entropy(pen_bits.view(-1, pen_bits.shape[-1]).double(), target_cross_entropy.view(-1), ignore_index=10)
loss_coor = loss_coor.sum() / mask.sum()
loss = loss_coor + loss_pen
if to_mix==True:
### Mixup implementation:
l1 = torch.zeros(len(i1),3).cuda()
l2 = torch.zeros(len(i2),3).cuda()
l3 = torch.zeros(len(i3),3).cuda()
l1[:,0]=1
l2[:,1]=1
l3[:,2]=1
i1_features = self.image_encoder(i1.type(self.dtype), visual_ctx, deep_compound_prompts_vision)
i1_features = i1_features / i1_features.norm(dim=-1, keepdim=True)
mix_repr = i1_features*lamda[0].unsqueeze(-1).repeat(1,512)+i2_features*(lamda[1].unsqueeze(-1).repeat(1,512))+i3_features*(lamda[2].unsqueeze(-1).repeat(1,512))
mix_labels = l1*lamda[0].unsqueeze(-1).repeat(1,3)+l2*(lamda[1].unsqueeze(-1).repeat(1,3))+l3*(lamda[2].unsqueeze(-1).repeat(1,3))
output_labels =self.prompt_learner.set_classifier(mix_repr)
loss_set_v2 = softmax_cross_entropy_with_softtarget(output_labels, mix_labels)
loss_set = (loss_set+loss_set_v2)
if is_singular:
loss = 0
if training:
return F.cross_entropy(logits, label), loss_set, loss
else:
return logits, F.cross_entropy(logits, label), loss_set
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])