forked from tbepler/protein-sequence-embedding-iclr2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lm_pfam.py
271 lines (202 loc) · 8.68 KB
/
train_lm_pfam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function,division
import sys
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data
from torch.nn.utils.rnn import pack_padded_sequence
import src.fasta as fasta
from src.alphabets import Uniprot21
import src.models.sequence
parser = argparse.ArgumentParser('Train sequence model')
parser.add_argument('-b', '--minibatch-size', type=int, default=32, help='minibatch size (default: 32)')
parser.add_argument('-n', '--num-epochs', type=int, default=10, help='number of epochs (default: 10)')
parser.add_argument('--hidden-dim', type=int, default=512, help='hidden dimension of RNN (default: 512)')
parser.add_argument('--num-layers', type=int, default=2, help='number of RNN layers (default: 2)')
parser.add_argument('--dropout', type=float, default=0, help='dropout (default: 0)')
parser.add_argument('--untied', action='store_true', help='use biRNN with untied weights')
parser.add_argument('--l2', type=float, default=0, help='l2 regularizer (default: 0)')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate (default: 0.001)')
parser.add_argument('--clip', type=float, default=1, help='gradient clipping max norm (default: 1)')
parser.add_argument('-d', '--device', type=int, default=-2, help='device to use, -1: cpu, 0+: gpu (default: gpu if available, else cpu)')
parser.add_argument('-o', '--output', help='where to write training curve (default: stdout)')
parser.add_argument('--save-prefix', help='path prefix for saving models (default: no saving)')
pfam_train = 'data/pfam/Pfam-A.train.fasta'
pfam_test = 'data/pfam/Pfam-A.test.fasta'
def preprocess_sequence(s, alphabet):
x = alphabet.encode(s)
# pad with start/stop token
z = np.zeros(len(x)+2, dtype=x.dtype)
z[1:-1] = x + 1
return z
def load_pfam(path, alph):
# load path sequences and families
with open(path, 'rb') as f:
group = []
sequences = []
for name,sequence in fasta.parse_stream(f):
x = preprocess_sequence(sequence.upper(), alph)
sequences.append(x)
family = name.split(b';')[-2]
group.append(family)
group = np.array(group)
sequences = np.array(sequences)
return group, sequences
def main():
args = parser.parse_args()
alph = Uniprot21()
ntokens = len(alph)
## load the training sequences
train_group, X_train = load_pfam(pfam_train, alph)
print('# loaded', len(X_train), 'sequences from', pfam_train, file=sys.stderr)
## load the testing sequences
test_group, X_test = load_pfam(pfam_test, alph)
print('# loaded', len(X_test), 'sequences from', pfam_test, file=sys.stderr)
## initialize the model
nin = ntokens + 1
nout = ntokens
embedding_dim = 21
hidden_dim = args.hidden_dim
num_layers = args.num_layers
mask_idx = ntokens
dropout = args.dropout
tied = not args.untied
model = src.models.sequence.BiLM(nin, nout, embedding_dim, hidden_dim, num_layers
, mask_idx=mask_idx, dropout=dropout, tied=tied)
print('# initialized model', file=sys.stderr)
device = args.device
use_cuda = torch.cuda.is_available() and (device == -2 or device >= 0)
if device >= 0:
torch.cuda.set_device(device)
if use_cuda:
model = model.cuda()
## form the data iterators and optimizer
lr = args.lr
l2 = args.l2
solver = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2)
def collate(xs):
B = len(xs)
N = max(len(x) for x in xs)
lengths = np.array([len(x) for x in xs], dtype=int)
order = np.argsort(lengths)[::-1]
lengths = lengths[order]
X = torch.LongTensor(B, N).zero_() + mask_idx
for i in range(B):
x = xs[order[i]]
n = len(x)
X[i,:n] = torch.from_numpy(x)
return X, lengths
mb = args.minibatch_size
train_iterator = torch.utils.data.DataLoader(X_train, batch_size=mb, shuffle=True
, collate_fn=collate)
test_iterator = torch.utils.data.DataLoader(X_test, batch_size=mb
, collate_fn=collate)
## fit the model!
print('# training model', file=sys.stderr)
output = sys.stdout
if args.output is not None:
output = open(args.output, 'w')
num_epochs = args.num_epochs
clip = args.clip
save_prefix = args.save_prefix
digits = int(np.floor(np.log10(num_epochs))) + 1
print('epoch\tsplit\tlog_p\tperplexity\taccuracy', file=output)
output.flush()
for epoch in range(num_epochs):
# train epoch
model.train()
it = 0
n = 0
accuracy = 0
loss_accum = 0
for X,lengths in train_iterator:
if use_cuda:
X = X.cuda()
X = Variable(X)
logp = model(X)
mask = (X != mask_idx)
index = X*mask.long()
loss = -logp.gather(2, index.unsqueeze(2)).squeeze(2)
loss = torch.mean(loss.masked_select(mask))
loss.backward()
# clip the gradient
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
solver.step()
solver.zero_grad()
_,y_hat = torch.max(logp, 2)
correct = torch.sum((y_hat == X).masked_select(mask))
#correct = torch.sum((y_hat == X)[mask.nonzero()].float())
b = mask.long().sum().item()
n += b
delta = b*(loss.item() - loss_accum)
loss_accum += delta/n
delta = correct.item() - b*accuracy
accuracy += delta/n
b = X.size(0)
it += b
if (it - b)//100 < it//100:
print('# [{}/{}] training {:.1%} loss={:.5f}, acc={:.5f}'.format(epoch+1
, num_epochs
, it/len(X_train)
, loss_accum
, accuracy
)
, end='\r', file=sys.stderr)
print(' '*80, end='\r', file=sys.stderr)
perplex = np.exp(loss_accum)
string = str(epoch+1).zfill(digits) + '\t' + 'train' + '\t' + str(loss_accum) \
+ '\t' + str(perplex) + '\t' + str(accuracy)
print(string, file=output)
output.flush()
# test epoch
model.eval()
it = 0
n = 0
accuracy = 0
loss_accum = 0
with torch.no_grad():
for X,lengths in test_iterator:
if use_cuda:
X = X.cuda()
X = Variable(X)
logp = model(X)
mask = (X != mask_idx)
index = X*mask.long()
loss = -logp.gather(2, index.unsqueeze(2)).squeeze(2)
loss = torch.mean(loss.masked_select(mask))
_,y_hat = torch.max(logp, 2)
correct = torch.sum((y_hat == X).masked_select(mask))
b = mask.long().sum().item()
n += b
delta = b*(loss.item() - loss_accum)
loss_accum += delta/n
delta = correct.item() - b*accuracy
accuracy += delta/n
b = X.size(0)
it += b
if (it - b)//100 < it//100:
print('# [{}/{}] test {:.1%} loss={:.5f}, acc={:.5f}'.format(epoch+1
, num_epochs
, it/len(X_test)
, loss_accum
, accuracy
)
, end='\r', file=sys.stderr)
print(' '*80, end='\r', file=sys.stderr)
perplex = np.exp(loss_accum)
string = str(epoch+1).zfill(digits) + '\t' + 'test' + '\t' + str(loss_accum) \
+ '\t' + str(perplex) + '\t' + str(accuracy)
print(string, file=output)
output.flush()
## save the model
if save_prefix is not None:
save_path = save_prefix + '_epoch' + str(epoch+1).zfill(digits) + '.sav'
model = model.cpu()
torch.save(model, save_path)
if use_cuda:
model = model.cuda()
if __name__ == '__main__':
main()