-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy patheval_post_ade.py
216 lines (167 loc) · 7.36 KB
/
eval_post_ade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
from PIL import Image
import progressbar
from util.compute_boundary_acc import compute_boundary_acc_multi_class
from util.file_buffer import FileBuffer
from dataset.make_bb_trans import get_bb_position, scale_bb_by
from argparse import ArgumentParser
import glob
import os
import re
from pathlib import Path
from shutil import copyfile
def color_map(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
cmap = cmap/255 if normalized else cmap
return cmap
parser = ArgumentParser()
parser.add_argument('--mask_dir', help='Directory with all the _mask.png outputs',
default=os.path.join('./output/ade_output'))
parser.add_argument('--gt_dir', help='Directory with original size GT images (in P mode)',
default=os.path.join('./data/ADE/annotations'))
parser.add_argument('--seg_dir', help='Directory with original size input segmentation images (in L mode)',
default=os.path.join('./data/ADE/inputs'))
parser.add_argument('--split_dir', help='Directory with the processed split dataset',
default=os.path.join('./data/ADE/split_ss'))
# Optional
parser.add_argument('--im_dir', help='Directory with original size input images (in RGB mode)',
default=os.path.join('.', './data/ADE/images'))
parser.add_argument('--output', help='Output of temp results',
default=None)
args = parser.parse_args()
def get_iu(seg, gt):
intersection = np.count_nonzero(seg & gt)
union = np.count_nonzero(seg | gt)
return intersection, union
total_old_correct_pixels = 0
total_new_correct_pixels = 0
total_num_pixels = 0
total_seg_mba = 0
total_mask_mba = 0
total_num_images = 0
small_objects = 0
num_classes = 150
new_class_i = [0] * num_classes
new_class_u = [0] * num_classes
old_class_i = [0] * num_classes
old_class_u = [0] * num_classes
edge_class_pixel = [0] * num_classes
old_gd_class_pixel = [0] * num_classes
new_gd_class_pixel = [0] * num_classes
all_gts = os.listdir(args.seg_dir)
mask_path = Path(args.mask_dir)
if args.output is not None:
os.makedirs(args.output, exist_ok=True)
file_buffer = FileBuffer(os.path.join(args.output, 'results_post.txt'))
for gt_name in progressbar.progressbar(all_gts):
gt = np.array(Image.open(os.path.join(args.gt_dir, gt_name)
).convert('P'))
seg = np.array(Image.open(os.path.join(args.seg_dir, gt_name)
).convert('L'))
# We pick the highest confidence class label for overlapping region
mask = seg.copy()
confidence = np.zeros_like(gt) + 0.5
keep = False
for mask_name in mask_path.glob(gt_name[:-4] + '*mask*'):
class_mask_prob = np.array(Image.open(mask_name).convert('L')).astype('float') / 255
class_string = re.search(r'\d+.\d+', mask_name.name[::-1]).group()[::-1]
this_class = int(class_string.split('.')[0])
class_seg = np.array(
Image.open(
os.path.join(args.split_dir, mask_name.name.replace('mask', 'seg'))
).convert('L')
).astype('float') / 255
try:
rmin, rmax, cmin, cmax = get_bb_position(class_seg)
rmin, rmax, cmin, cmax = scale_bb_by(rmin, rmax, cmin, cmax, seg.shape[0], seg.shape[1], 0.25, 0.25)
except:
# Sometimes we cannot get a proper bounding box
rmin = cmin = 0
rmax, cmax = seg.shape
if (cmax==cmin) or (rmax==rmin):
print(gt_name, this_class)
continue
class_mask_prob = np.array(Image.fromarray(class_mask_prob).resize((cmax-cmin, rmax-rmin), Image.BILINEAR))
background_classes = [1,2,3,4,6,7,10,12,14,17,22,26,27,29,30,47,49,52,53,55,60,61,62,69,80,85,92,95,97,102,106,110,114,129,141]
if this_class in background_classes:
class_mask_prob = class_mask_prob * 0.51
# Record the current higher confidence level for each pixel
mask[rmin:rmax, cmin:cmax] = np.where(class_mask_prob>confidence[rmin:rmax, cmin:cmax],
this_class, mask[rmin:rmax, cmin:cmax])
confidence[rmin:rmax, cmin:cmax] = np.maximum(confidence[rmin:rmax, cmin:cmax], class_mask_prob)
total_classes = np.union1d(np.unique(gt), np.unique(seg))
seg[gt==0] = 0
mask[gt==0] = 0
total_classes = total_classes[1:] # Remove background class
# Shift background class to -1
total_classes -= 1
for c in total_classes:
gt_class = (gt == (c+1))
seg_class = (seg == (c+1))
mask_class = (mask == (c+1))
old_i, old_u = get_iu(gt_class, seg_class)
new_i, new_u = get_iu(gt_class, mask_class)
total_old_correct_pixels += old_i
total_new_correct_pixels += new_i
total_num_pixels += gt_class.sum()
new_class_i[c] += new_i
new_class_u[c] += new_u
old_class_i[c] += old_i
old_class_u[c] += old_u
seg_acc, mask_acc = compute_boundary_acc_multi_class(gt, seg, mask)
total_seg_mba += seg_acc
total_mask_mba += mask_acc
total_num_images += 1
if args.output is not None and keep:
gt = Image.fromarray(gt,mode='P')
seg = Image.fromarray(seg,mode='P')
mask = Image.fromarray(mask,mode='P')
gt.putpalette(color_map())
seg.putpalette(color_map())
mask.putpalette(color_map())
gt.save(os.path.join(args.output, gt_name.replace('.png', '_gt.png')))
seg.save(os.path.join(args.output, gt_name.replace('.png', '_seg.png')))
mask.save(os.path.join(args.output, gt_name.replace('.png', '_mask.png')))
if args.im_dir is not None:
copyfile(os.path.join(args.im_dir, gt_name.replace('.png','.jpg')),
os.path.join(args.output, gt_name.replace('.png','.jpg')))
file_buffer.write('New pixel accuracy: ', total_new_correct_pixels / total_num_pixels)
file_buffer.write('Old pixel accuracy: ', total_old_correct_pixels / total_num_pixels)
file_buffer.write('Number of small objects: ', small_objects)
file_buffer.write('Now giving class information')
new_class_iou = [0] * num_classes
old_class_iou = [0] * num_classes
new_class_boundary = [0] * num_classes
old_class_boundary = [0] * num_classes
print('\nNew IOUs: ')
for i in range(num_classes):
new_class_iou[i] = new_class_i[i] / (new_class_u[i] + 1e-6)
print('%.3f' % (new_class_iou[i]), end=' ')
print('\nOld IOUs: ')
for i in range(num_classes):
old_class_iou[i] = old_class_i[i] / (old_class_u[i] + 1e-6)
print('%.3f' % (old_class_iou[i]), end=' ')
file_buffer.write()
file_buffer.write('Average over classes')
old_miou = np.array(old_class_iou).mean()
new_miou = np.array(new_class_iou).mean()
old_mba = total_seg_mba/total_num_images
new_mba = total_mask_mba/total_num_images
file_buffer.write('Old mIoU : ', old_miou)
file_buffer.write('New mIoU : ', new_miou)
file_buffer.write('mIoU Delta : ', new_miou - old_miou)
file_buffer.write('Old mBA : ', old_mba)
file_buffer.write('New mBA : ', new_mba)
file_buffer.write('mBA Delta : ', new_mba - old_mba)