forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path124-evaluate_sharpness_of_image.py
48 lines (32 loc) · 1.48 KB
/
124-evaluate_sharpness_of_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://youtu.be/VHIM2FKGLzc
"""
@author: Sreenivas Bhattiprolu
Sharpness Estimation for Document and Scene Images
by Jayant Kumar , Francine Chen , David Doermann
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=33CD0038A0D2D24AE2C4F1A30B6EF1A4?doi=10.1.1.359.7002&rep=rep1&type=pdf
https://github.com/umang-singhal/pydom
pip install git+https://github.com/umang-singhal/pydom.git
#Use difference of differences in grayscale values
of a median-filtered image as an indicator of edge sharpness
"""
from dom import DOM
import cv2
#img = cv2.imread("images/image_quality_estimation/02_2sigma_blurred.tif", 1)
img1 = cv2.imread("images/image_quality_estimation/02.tif", 1)
img2 = cv2.imread("images/image_quality_estimation/02_2sigma_blurred.tif", 1)
img3 = cv2.imread("images/image_quality_estimation/02_3sigma_blurred.tif", 1)
img4 = cv2.imread("images/image_quality_estimation/02_5sigma_blurred.tif", 1)
# initialize DOM
iqa = DOM()
#Calculate scores
score1 = iqa.get_sharpness(img1)
score2 = iqa.get_sharpness(img2)
score3 = iqa.get_sharpness(img3)
score4 = iqa.get_sharpness(img4)
print("Sharpness for reference image:", score1)
print("Sharpness for 2 sigma blurred image:", score2)
print("Sharpness for 3 sigma blurred image:", score3)
print("Sharpness for 5 sigma blurred image:", score4)