forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path086--auto_denoise_mnist.py
87 lines (56 loc) · 2.6 KB
/
086--auto_denoise_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://www.youtube.com/watch?v=Sm54KXD-L1k
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from tensorflow.keras.models import Sequential
import numpy as np
import matplotlib.pyplot as plt
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
#adding some noise
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
#Displaying images with noise
plt.figure(figsize=(20, 2))
for i in range(1,10):
ax = plt.subplot(1, 10, i)
plt.imshow(x_test_noisy[i].reshape(28, 28), cmap="binary")
plt.show()
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2), padding='same'))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), padding='same'))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), padding='same'))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(1, (3, 3), activation='relu', padding='same'))
model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()
model.fit(x_train_noisy, x_train, epochs=10, batch_size=256, shuffle=True,
validation_data=(x_test_noisy, x_test))
model.evaluate(x_test_noisy, x_test)
model.save('denoising_autoencoder.model')
no_noise_img = model.predict(x_test_noisy)
plt.figure(figsize=(40, 4))
for i in range(10):
# display original
ax = plt.subplot(3, 20, i + 1)
plt.imshow(x_test_noisy[i].reshape(28, 28), cmap="binary")
# display reconstructed (after noise removed) image
ax = plt.subplot(3, 20, 40 +i+ 1)
plt.imshow(no_noise_img[i].reshape(28, 28), cmap="binary")
plt.show()