forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path030-keypoints_homography_for_registration in opencv.py
81 lines (58 loc) · 3.06 KB
/
030-keypoints_homography_for_registration in opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://www.youtube.com/watch?v=cA8K8dl-E6k
# Brute-Force Matching with ORB Descriptors
import numpy as np
import cv2
from matplotlib import pyplot as plt
im1 = cv2.imread('images/monkey_distorted.jpg') # Image that needs to be registered.
im2 = cv2.imread('images/monkey.jpg') # trainImage
img1 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# Initiate ORB detector
orb = cv2.ORB_create(50) #Registration works with at least 50 points
# find the keypoints and descriptors with orb
kp1, des1 = orb.detectAndCompute(img1, None) #kp1 --> list of keypoints
kp2, des2 = orb.detectAndCompute(img2, None)
#Brute-Force matcher takes the descriptor of one feature in first set and is
#matched with all other features in second set using some distance calculation.
# create Matcher object
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
# Match descriptors.
matches = matcher.match(des1, des2, None) #Creates a list of all matches, just like keypoints
# Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance)
#Like we used cv2.drawKeypoints() to draw keypoints,
#cv2.drawMatches() helps us to draw the matches.
#https://docs.opencv.org/3.0-beta/modules/features2d/doc/drawing_function_of_keypoints_and_matches.html
# Draw first 10 matches.
img3 = cv2.drawMatches(im1,kp1, im2, kp2, matches[:10], None)
cv2.imshow("Matches image", img3)
cv2.waitKey(0)
#Now let us use these key points to register two images.
#Can be used for distortion correction or alignment
#For this task we will use homography.
# https://docs.opencv.org/3.4.1/d9/dab/tutorial_homography.html
# Extract location of good matches.
# For this we will use RANSAC.
#RANSAC is abbreviation of RANdom SAmple Consensus,
#in summary it can be considered as outlier rejection method for keypoints.
#http://eric-yuan.me/ransac/
#RANSAC needs all key points indexed, first set indexed to queryIdx
#Second set to #trainIdx.
points1 = np.zeros((len(matches), 2), dtype=np.float32) #Prints empty array of size equal to (matches, 2)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = kp1[match.queryIdx].pt #gives index of the descriptor in the list of query descriptors
points2[i, :] = kp2[match.trainIdx].pt #gives index of the descriptor in the list of train descriptors
#Now we have all good keypoints so we are ready for homography.
# Find homography
#https://en.wikipedia.org/wiki/Homography_(computer_vision)
h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)
# Use homography
height, width, channels = im2.shape
im1Reg = cv2.warpPerspective(im1, h, (width, height)) #Applies a perspective transformation to an image.
print("Estimated homography : \n", h)
cv2.imshow("Registered image", im1Reg)
cv2.waitKey()