forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path025-image_processing_in_openCV_intro1-preprocessing.py
92 lines (65 loc) · 2.57 KB
/
025-image_processing_in_openCV_intro1-preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://www.youtube.com/watch?v=yj40XoUqo70
######### Using openCV #########
#to install open CV : pip install opencv-python
#to import the package you need to use import cv2
#openCV is a library of programming functions mainly aimed at computer vision.
#Very good for images and videos, especially real time videos.
#It is used extensively for facial recognition, object recognition, motion tracking,
#optical character recognition, segmentation, and even for artificial neural netwroks.
#Useful preprocessing steps for image processing, for example segmentation.
#1. SPlit & Merge channels
#2. Scaling / resizing
#3. Denoising / smoothing
#4. Edge detection
#5. Enhancing images. using histogram equalization
###################################
#Pixel values, split and merge channels,
import cv2
grey_img = cv2.imread("images/RGBY.jpg", 0)
img = cv2.imread("images/RGBY.jpg", 1) #Color is BGR not RGB
print(img.shape) #(586, 415, 3)
print("Top left", img[0,0]) #Top left pixel
print("Top right", img[0, 400]) # Top right
print("Bottom Left", img[580, 0]) # Bottom left
print("Bottom right", img[580, 400]) # Bottom right
#cv2.imshow("color pic", img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
#Split and merging channels
#Show individual color channels in the image
blue = img[:, :, 0] #Show only blue pic. (BGR so B=0)
green = img[:, :, 1] #Show only green pixels
red = img[:, :, 2] #red only
"""
cv2.imshow("red pic", red)
cv2.waitKey(0)
cv2.destroyAllWindows()
"""
#Or split all channels at once
b,g,r = cv2.split(img)
cv2.imshow("green pic", g)
cv2.waitKey(0)
cv2.destroyAllWindows()
#to merge each image into bgr
img_merged = cv2.merge((b,g,r))
cv2.imshow("merged pic", img_merged)
cv2.waitKey(0)
cv2.destroyAllWindows()
######################
#Basic image operations
# Scaling,
#https://docs.opencv.org/3.3.1/da/d6e/tutorial_py_geometric_transformations.html
import cv2
img = cv2.imread("images/monkey.jpg", 1) #Color is BGR not RGB
#use cv2.resize. Can specify size or scaling factor.
#Inter_cubic or Inter_linear for zooming.
#Use INTER_AREA for shrinking
#Following xample zooms by 2 times.
resized = cv2.resize(img, None, fx=2, fy=2, interpolation = cv2.INTER_CUBIC)
cv2.imshow("original pic", img)
cv2.imshow("resized pic", resized)
cv2.waitKey(0)
cv2.destroyAllWindows()