forked from gnebehay/VOTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cvseq.py
122 lines (90 loc) · 3.38 KB
/
cvseq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import json
import numpy as np
import os
import cv2
def load_sequences(top_dir = None):
if top_dir is None:
#Load root dir entry from file
seq_file = os.path.join(os.path.expanduser("~"), '.cv', 'dataset')
with open(seq_file) as f:
seq_json = json.load(f)
top_dir = seq_json['root_dir']
print('Listing sequences in directory ' + top_dir)
if os.path.exists(os.path.join(top_dir,'datasets')):
datasets = True
else:
datasets = False
sequences = {}
if datasets == True:
#Top level directories are dataset names
dirs = [d for d in os.listdir(top_dir) if os.path.isdir(os.path.join(top_dir, d))]
else:
dirs = ['.']
for dataset in dirs:
dataset_dir = os.path.join(top_dir, dataset)
seq_dirs = [d for d in os.listdir(dataset_dir) if os.path.isdir(os.path.join(top_dir, dataset, d))]
for seq_name in seq_dirs:
directory = os.path.join(dataset_dir, seq_name)
seq = Sequence()
seq.dataset = dataset
seq.directory = directory
seq.name = seq_name
if datasets == True:
seq.identifier = dataset + '.' + seq_name
else:
seq.identifier = seq_name
sequences[seq.identifier] = seq
#Find groundtruth file
gt_file = os.path.join(directory, 'groundtruth.txt')
if os.path.exists(gt_file):
#Read groundtruth
seq.gt = np.genfromtxt(gt_file, delimiter=',')
else:
seq.gt = None
print('Warning: sequence ' + seq.identifier + " doesn't have a groundtruth file.")
seq.load()
return sequences
def load_selection(selection_file):
with open(selection_file) as f:
selected_sequences = [l.strip() for l in f.readlines()]
seqs = [seq for seq in load_sequences().values() if seq.identifier in selected_sequences]
return seqs
class Sequence:
def __init__(self):
self.dataset = None
self.gt = None
self.im_list = None
self.name = None
self.num_frames = None
self.directory = None
self.identifier = None
def load(self):
if self.im_list is not None:
return
print('Loading sequence ' + self.identifier)
first_file = os.path.join(self.directory, '00000001.jpg')
#Test for file extension
if os.path.exists(first_file):
file_ext = '.jpg'
else:
file_ext = '.png'
first_file = os.path.join(self.directory, '00000001.png')
im = cv2.imread(first_file)
self.shape = im.shape
#Create list of images
im_list = []
MAX_IM = 10000000
for i in xrange(1,MAX_IM):
im_file = '{0:08d}{1}'.format(i,file_ext)
im_path = os.path.join(self.directory, im_file)
if os.path.exists(im_path):
im_list.append(im_path)
else:
break
self.im_list = im_list
#Compute number of frames
self.num_frames = len(im_list)
if self.gt is not None:
gt_len = self.gt.shape[0]
if gt_len != self.num_frames:
raise Exception('Number of entries in groundtruth file differs from number of frames in sequence ' + self.identifier + '.')