forked from Plachtaa/VITS-fast-fine-tuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
434 lines (361 loc) · 14.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
import glob
import sys
import argparse
import logging
import json
import subprocess
import numpy as np
from scipy.io.wavfile import read
import torch
import regex as re
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
zh_pattern = re.compile(r'[\u4e00-\u9fa5]')
en_pattern = re.compile(r'[a-zA-Z]')
jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]')
kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]')
num_pattern=re.compile(r'[0-9]')
comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])" #向前匹配但固定长度
tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'}
def tag_cjke(text):
'''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况'''
sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text) #分句,排除小数点
sentences.append("")
sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])]
# print(sentences)
prev_lang=None
tagged_text = ""
for s in sentences:
#全为符号跳过
nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip()
if len(nu)==0:
continue
s = re.sub(r'[()()《》「」【】‘“”’]+', '', s)
jp=re.findall(jp_pattern, s)
#本句含日语字符判断为日语
if len(jp)>0:
prev_lang,tagged_jke=tag_jke(s,prev_lang)
tagged_text +=tagged_jke
else:
prev_lang,tagged_cke=tag_cke(s,prev_lang)
tagged_text +=tagged_cke
return tagged_text
def tag_jke(text,prev_sentence=None):
'''为英日韩加tag'''
# 初始化标记变量
tagged_text = ""
prev_lang = None
tagged=0
# 遍历文本
for char in text:
# 判断当前字符属于哪种语言
if jp_pattern.match(char):
lang = "JP"
elif zh_pattern.match(char):
lang = "JP"
elif kr_pattern.match(char):
lang = "KR"
elif en_pattern.match(char):
lang = "EN"
# elif num_pattern.match(char):
# lang = prev_sentence
else:
lang = None
tagged_text += char
continue
# 如果当前语言与上一个语言不同,就添加标记
if lang != prev_lang:
tagged=1
if prev_lang==None: # 开头
tagged_text =tags[lang]+tagged_text
else:
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
# 重置标记变量
prev_lang = lang
# 添加当前字符到标记文本中
tagged_text += char
# 在最后一个语言的结尾添加对应的标记
if prev_lang:
tagged_text += tags[prev_lang]
if not tagged:
prev_lang=prev_sentence
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
return prev_lang,tagged_text
def tag_cke(text,prev_sentence=None):
'''为中英韩加tag'''
# 初始化标记变量
tagged_text = ""
prev_lang = None
# 是否全略过未标签
tagged=0
# 遍历文本
for char in text:
# 判断当前字符属于哪种语言
if zh_pattern.match(char):
lang = "ZH"
elif kr_pattern.match(char):
lang = "KR"
elif en_pattern.match(char):
lang = "EN"
# elif num_pattern.match(char):
# lang = prev_sentence
else:
# 略过
lang = None
tagged_text += char
continue
# 如果当前语言与上一个语言不同,添加标记
if lang != prev_lang:
tagged=1
if prev_lang==None: # 开头
tagged_text =tags[lang]+tagged_text
else:
tagged_text =tagged_text+tags[prev_lang]+tags[lang]
# 重置标记变量
prev_lang = lang
# 添加当前字符到标记文本中
tagged_text += char
# 在最后一个语言的结尾添加对应的标记
if prev_lang:
tagged_text += tags[prev_lang]
# 未标签则继承上一句标签
if tagged==0:
prev_lang=prev_sentence
tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
return prev_lang,tagged_text
def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if optimizer is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
if k == 'emb_g.weight':
if drop_speaker_emb:
new_state_dict[k] = v
continue
v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k]
new_state_dict[k] = v
else:
new_state_dict[k] = saved_state_dict[k]
except:
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
logger.info("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict() if optimizer is not None else None,
'learning_rate': learning_rate}, checkpoint_path)
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def extract_digits(f):
digits = "".join(filter(str.isdigit, f))
return int(digits) if digits else -1
def latest_checkpoint_path(dir_path, regex="G_[0-9]*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: extract_digits(f))
x = f_list[-1]
print(f"latest_checkpoint_path:{x}")
return x
def oldest_checkpoint_path(dir_path, regex="G_[0-9]*.pth", preserved=4):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: extract_digits(f))
if len(f_list) > preserved:
x = f_list[0]
print(f"oldest_checkpoint_path:{x}")
return x
return ""
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_hparams(init=True):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, default="pretrained_models",
help='Model name')
parser.add_argument('-n', '--max_epochs', type=int, default=50,
help='finetune epochs')
parser.add_argument('--cont', type=str2bool, default=False, help='whether to continue training on the latest checkpoint')
parser.add_argument('--drop_speaker_embed', type=str2bool, default=False, help='whether to drop existing characters')
parser.add_argument('--train_with_pretrained_model', type=str2bool, default=True,
help='whether to train with pretrained model')
parser.add_argument('--preserved', type=int, default=4,
help='Number of preserved models')
args = parser.parse_args()
model_dir = os.path.join("./", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json")
if init:
with open(config_path, "r") as f:
data = f.read()
with open(config_save_path, "w") as f:
f.write(data)
else:
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
hparams.max_epochs = args.max_epochs
hparams.cont = args.cont
hparams.drop_speaker_embed = args.drop_speaker_embed
hparams.train_with_pretrained_model = args.train_with_pretrained_model
hparams.preserved = args.preserved
return hparams
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
with open(config_path, "r", encoding="utf-8") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()