forked from facebookresearch/EGG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Terminal Saved Output4.txt
5403 lines (5229 loc) · 346 KB
/
Terminal Saved Output4.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Last login: Wed Oct 30 19:51:59 on ttys002
➜ EGG git:(master) ✗ sh start_signal_game.sh
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 98, in <module>
import context
ModuleNotFoundError: No module named 'context'
➜ EGG git:(master) ✗ sh start_signal_game.sh
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 144, in <module>
train_loader = OneHotLoader(n_features=opts.n_features, batch_size=opts.batch_size,
AttributeError: 'Namespace' object has no attribute 'n_features'
➜ EGG git:(master) ✗ sh start_signal_game.sh
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 147, in <module>
test_loader = OneHotLoader(n_features=opts.n_features, batch_size=opts.batch_size,
AttributeError: 'Namespace' object has no attribute 'n_features'
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
batch: <class 'list'>
batch: dim2
wrapper: tensor([[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.]])
game size: 2
shape of tensor torch.Size([8])
Tensor: tensor([1., 0., 0., 0., 0., 0., 0., 0.])
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 162, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 138, in train_epoch
optimized_loss, rest = self.game(*batch)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 113, in forward
message, sender_log_prob, sender_entropy = self.sender(sender_input)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 42, in forward
logits = self.agent(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 31, in forward
emb = self.return_embeddings(x)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 65, in return_embeddings
h_i = self.lin1(h)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 87, in forward
return F.linear(input, self.weight, self.bias)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/functional.py", line 1371, in linear
output = input.matmul(weight.t())
RuntimeError: size mismatch, m1: [1 x 8], m2: [4096 x 50] at ../aten/src/TH/generic/THTensorMath.cpp:752
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
batch: <class 'list'>
batch: dim2
wrapper: tensor([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 162, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 138, in train_epoch
optimized_loss, rest = self.game(*batch)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 113, in forward
message, sender_log_prob, sender_entropy = self.sender(sender_input)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 42, in forward
logits = self.agent(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 35, in forward
h = self.conv2(emb)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 343, in forward
return self.conv2d_forward(input, self.weight)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 340, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: Expected 4-dimensional input for 4-dimensional weight 20 1 2, but got 3-dimensional input of size [50, 1, 2] instead
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
batch: <class 'list'>
batch: dim2
wrapper: tensor([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 162, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 138, in train_epoch
optimized_loss, rest = self.game(*batch)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 113, in forward
message, sender_log_prob, sender_entropy = self.sender(sender_input)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 42, in forward
logits = self.agent(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 35, in forward
h = self.conv2(emb)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 343, in forward
return self.conv2d_forward(input, self.weight)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 340, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: Expected 4-dimensional input for 4-dimensional weight 20 1 2, but got 3-dimensional input of size [50, 1, 2] instead
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
batch: <class 'list'>
batch: dim2
wrapper: tensor([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 162, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 138, in train_epoch
optimized_loss, rest = self.game(*batch)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 113, in forward
message, sender_log_prob, sender_entropy = self.sender(sender_input)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 42, in forward
logits = self.agent(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 35, in forward
h = self.conv2(emb)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 343, in forward
return self.conv2d_forward(input, self.weight)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 340, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: Expected 4-dimensional input for 4-dimensional weight 20 1 2, but got 3-dimensional input of size [50, 1, 2] instead
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
batch: <class 'list'>
batch: dim2
wrapper: tensor([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 162, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 138, in train_epoch
optimized_loss, rest = self.game(*batch)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 113, in forward
message, sender_log_prob, sender_entropy = self.sender(sender_input)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 42, in forward
logits = self.agent(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 35, in forward
h = self.conv2(emb)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 343, in forward
return self.conv2d_forward(input, self.weight)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 340, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: Expected 4-dimensional input for 4-dimensional weight 20 1 2, but got 3-dimensional input of size [50, 1, 2] instead
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
batch: <class 'list'>
batch: dim2
wrapper: tensor([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
game size: 2
shape of tensor torch.Size([4096])
Tensor: tensor([0., 0., 0., ..., 0., 0., 0.])
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 167, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 138, in train_epoch
optimized_loss, rest = self.game(*batch)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 113, in forward
message, sender_log_prob, sender_entropy = self.sender(sender_input)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/reinforce_wrappers.py", line 42, in forward
logits = self.agent(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/archs.py", line 35, in forward
h = self.conv2(emb)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 343, in forward
return self.conv2d_forward(input, self.weight)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 340, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: Expected 4-dimensional input for 4-dimensional weight 20 1 2, but got 3-dimensional input of size [50, 1, 2] instead
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/train.py", line 167, in <module>
trainer.train(n_epochs=opts.n_epochs) # default is 10
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 158, in train
train_loss, train_rest = self.train_epoch()
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/core/trainers.py", line 132, in train_epoch
for batch in self.train_data:
File "/Users/pengfeihe/Documents/Programming Language/Python/Github/EGG/egg/zoo/signal_game/sgdata.py", line 75, in __iter__
seed = seed.flatten()
AttributeError: 'int' object has no attribute 'flatten'
➜ EGG git:(master) ✗ sh start_signal_game.sh
----------------train
train data: <class 'egg.zoo.signal_game.sgdata.OneHotLoader'>
[ 33 9 26 121 126 197 179 3 194 0 49 37 50 123 184 195 146 114
4 162 47 169 15 75 167 178 74 102 193 24 14 83 11 113 48 191
19 25 61 103 10 76 28 60 174 139 185 20 91 42 35 65 131 107
22 64 106 101 58 63 176 108 54 157 70 84 81 144 73 188 116 6
80 2 142 145 8 124 56 128 132 100 99 79 153 85 140 82 122 68
180 175 148 135 52 186 168 78 7 136 156 181 31 51 21 59 57 86
190 98 130 17 143 118 55 67 90 183 13 34 163 161 198 89 112 141
110 160 129 150 44 62 125 154 192 94 158 45 137 155 46 196 96 164
189 97 120 23 92 30 177 117 32 187 159 172 36 18 87 39 88 66
165 171 38 147 152 95 182 72 104 40 170 127 77 115 134 29 12 149
133 109 1 119 111 138 71 5 16 43 27 69 53 166 151 173 93 41
105]
[112 127 92 123 147 68 113 21 141 102 76 155 153 166 97 152 138 67
20 1 27 10 8 182 158 75 54 181 64 81 74 91 114 88 89 34
108 143 125 17 183 142 66 18 163 115 14 55 87 177 70 42 150 165
195 101 164 131 161 193 59 176 197 6 146 186 170 45 121 40 47 49
169 160 3 157 82 179 185 119 109 156 16 56 72 28 65 148 175 94
134 13 174 110 79 26 19 57 24 137 96 188 29 129 162 192 90 126
149 83 9 139 194 140 73 145 154 133 168 23 172 118 32 84 15 187
62 98 50 60 93 53 63 191 44 178 31 52 43 77 0 105 37 12
159 184 5 124 22 196 180 48 132 136 99 4 39 103 71 95 78 58
120 85 38 111 198 135 80 33 35 128 86 11 151 7 25 130 61 100
144 36 104 171 189 173 51 106 46 30 107 167 190 122 116 2 41 69
117]
[ 0 70 145 30 111 196 178 81 167 75 34 89 80 193 24 76 64 156
166 3 101 132 92 138 50 154 104 4 42 84 184 147 100 51 119 133
83 160 74 54 175 181 88 173 162 159 187 18 194 121 90 172 107 116
142 32 189 23 143 94 128 164 168 66 13 106 7 163 183 37 182 57
9 44 61 148 21 12 41 103 82 136 20 126 28 52 58 191 62 68
171 146 31 149 137 174 49 169 15 91 2 16 19 186 60 158 131 48
98 8 69 53 139 5 190 26 59 72 67 127 56 153 150 71 125 155
95 85 141 157 14 55 197 108 29 118 120 43 195 77 192 65 177 1
188 6 25 135 185 38 11 93 47 198 134 79 17 27 105 102 180 140
161 165 115 113 110 99 87 109 130 45 170 86 123 151 129 63 176 22
144 117 124 10 73 179 112 97 122 114 33 36 39 46 78 40 152 35
96]
[155 178 152 189 137 157 162 119 96 38 59 34 16 9 17 0 39 45
180 21 60 79 153 114 104 63 94 184 115 97 82 29 65 83 133 25
8 142 52 145 164 129 108 121 81 149 109 107 51 156 28 15 103 179
43 111 20 174 61 131 27 146 13 148 140 197 74 122 72 110 185 18
37 192 116 1 175 170 14 10 182 11 44 176 171 105 91 134 186 128
87 172 100 159 194 117 24 88 154 12 90 198 139 56 50 168 22 58
158 95 31 35 123 102 78 49 136 147 4 127 67 190 32 196 98 124
77 120 118 57 195 47 177 89 66 130 132 46 73 187 75 30 7 163
68 64 3 165 160 106 167 161 126 188 62 138 76 70 23 71 169 193
33 113 6 26 112 183 41 19 191 92 54 85 42 55 143 151 150 181
99 80 144 53 5 135 48 2 141 84 173 69 93 40 101 36 86 166
125]
[ 74 76 148 5 60 98 193 17 58 122 53 77 94 160 188 110 75 162
8 35 1 142 99 125 119 109 171 89 41 46 85 101 84 178 149 152
195 12 159 25 139 196 82 191 183 65 11 150 128 161 192 86 170 70
177 63 181 175 16 56 176 118 102 32 141 182 166 124 67 68 36 130
72 187 129 27 106 165 83 116 189 172 96 3 48 92 194 9 112 31
145 43 71 81 147 87 42 108 61 104 50 88 93 33 26 7 57 127
103 146 39 169 137 132 51 190 15 100 59 151 66 198 78 117 13 163
156 64 44 20 185 105 168 38 10 154 2 138 113 155 49 133 34 167
107 180 174 95 6 131 37 14 30 186 115 19 121 0 158 29 143 91
52 164 111 55 153 184 120 4 22 73 24 134 47 79 123 140 135 45
126 69 197 179 97 18 28 173 90 62 80 157 144 21 23 40 114 54
136]
[175 6 44 127 162 14 18 77 73 147 186 13 16 131 78 197 142 115
132 80 70 56 129 1 3 159 76 165 105 58 64 130 194 29 36 180
45 151 62 28 50 124 171 163 91 38 166 65 177 158 125 60 187 176
59 196 168 145 23 134 61 87 141 11 164 143 109 183 17 68 51 95
178 81 174 161 114 46 27 133 122 108 8 66 47 104 167 35 191 10
71 5 149 53 39 74 31 119 153 157 86 154 128 148 111 54 0 172
83 139 42 30 40 107 138 182 49 198 146 120 121 140 155 79 48 156
184 193 7 37 160 118 52 34 15 99 9 57 192 185 21 69 67 136
88 102 188 41 150 2 25 137 113 96 55 116 117 94 106 98 89 75
110 12 93 189 101 100 26 112 173 97 126 195 123 135 20 24 181 90
19 85 179 63 92 169 22 190 82 33 84 170 43 4 103 32 152 144
72]
[ 13 102 103 154 14 42 109 171 48 68 153 181 118 185 1 124 11 56
55 28 17 161 23 183 27 157 197 86 148 67 138 12 50 178 92 20
82 98 0 188 122 85 107 61 52 156 2 108 167 99 173 24 166 146
126 112 71 38 106 105 97 142 194 46 33 87 18 34 5 170 84 198
120 64 63 196 104 95 158 141 191 129 160 53 10 135 162 174 175 9
177 70 116 4 62 150 19 72 96 172 139 80 58 3 182 76 168 119
69 79 193 16 115 89 60 155 110 54 121 45 169 123 132 151 22 41
51 83 187 8 91 43 74 113 44 111 66 125 30 176 47 93 7 25
15 163 81 40 73 29 100 32 131 137 35 179 101 78 133 184 94 77
147 186 190 31 164 26 117 57 140 127 165 49 192 136 75 159 128 143
6 88 144 39 195 130 152 189 59 90 134 180 21 36 145 149 37 114
65]
[181 189 140 36 184 62 38 6 131 185 173 7 59 133 135 176 94 90
84 21 22 32 193 63 99 190 19 56 17 85 158 102 162 132 12 5
79 4 88 9 175 91 97 117 108 197 86 103 179 172 164 150 119 120
191 155 50 118 96 166 8 42 165 137 13 112 1 33 82 116 24 171
114 198 169 178 100 45 192 177 72 147 54 28 71 75 69 57 49 26
129 107 142 61 145 183 11 111 73 18 157 144 148 110 41 194 138 126
67 70 81 168 149 160 29 136 83 163 35 31 170 180 14 161 15 196
51 48 98 76 93 101 141 188 27 37 34 127 104 151 66 152 195 153
121 43 53 23 25 109 87 78 92 10 95 156 52 115 124 64 174 58
146 130 47 0 186 16 139 30 89 74 77 113 105 123 46 2 60 159
143 128 167 65 134 20 40 3 80 187 106 122 39 68 154 44 182 55
125]
[ 70 28 191 109 73 58 166 173 93 154 134 180 127 37 77 184 17 165
149 156 146 100 29 116 121 41 7 45 72 197 94 46 91 140 172 16
135 164 52 152 119 142 2 83 36 185 78 5 159 174 26 124 139 20
89 161 160 103 188 64 32 96 144 162 22 63 42 131 88 113 132 38
183 66 129 108 15 151 44 23 107 137 148 74 71 82 112 43 102 143
193 35 3 105 122 90 6 25 27 92 12 31 101 24 167 190 147 141
126 84 168 110 189 59 114 69 145 75 150 123 181 18 62 195 87 51
171 130 56 158 169 179 14 175 104 55 194 155 86 106 65 111 76 54
99 8 50 95 9 49 196 1 176 30 19 47 117 39 177 128 98 153
182 157 85 13 34 133 11 4 120 0 187 21 60 192 115 61 67 170
33 57 79 68 80 48 81 178 163 40 118 198 10 125 97 138 53 186
136]
[164 93 111 185 34 170 128 88 82 107 138 176 6 85 195 76 86 114
95 190 2 17 153 44 65 8 146 87 103 119 39 150 50 109 101 7
167 32 141 135 89 19 31 183 60 1 148 45 22 21 26 104 139 132
142 56 77 29 78 181 194 143 162 120 115 63 102 144 116 106 30 161
46 90 67 42 74 11 124 97 134 145 98 171 14 159 130 84 157 18
175 168 51 57 166 110 131 154 155 197 35 186 137 37 75 38 68 92
94 5 64 188 58 198 136 125 151 36 184 59 43 69 182 100 173 169
99 172 108 4 9 23 24 55 121 62 61 133 113 13 149 28 177 0
189 129 96 163 192 83 52 140 47 54 187 66 20 81 10 27 105 179
49 33 193 80 79 147 118 126 152 70 40 16 3 117 72 160 156 180
15 71 48 41 12 127 165 196 112 91 178 53 191 158 122 123 25 174
73]
[ 89 143 84 48 81 192 150 99 88 167 170 86 140 34 41 109 77 168
105 115 139 123 128 61 94 65 165 112 37 2 17 104 159 1 51 149
71 9 172 46 60 157 10 90 98 53 21 195 161 180 85 82 162 118
138 163 45 181 28 73 177 182 42 40 38 83 116 173 145 179 154 164
196 152 96 4 155 0 169 78 114 32 135 117 13 134 14 55 142 15
62 189 121 95 72 70 185 27 20 131 101 108 5 58 137 19 35 107
69 79 176 136 93 26 11 174 25 91 198 132 151 102 44 8 129 30
76 50 178 106 144 184 120 153 80 160 171 130 188 190 125 158 186 64
49 52 67 12 119 197 133 63 191 183 147 68 36 87 92 29 18 100
66 22 124 103 39 126 187 113 193 175 23 6 47 122 3 75 7 97
56 141 166 54 111 33 24 16 194 59 110 43 148 57 31 74 146 127
156]
[ 3 145 144 85 77 168 112 142 69 46 187 173 99 65 44 16 60 152
12 93 197 113 139 185 56 190 156 110 45 2 7 62 172 178 124 54
104 26 25 194 180 66 177 106 135 102 101 32 114 73 128 4 33 29
183 151 118 160 51 105 34 89 111 196 189 79 98 129 84 80 21 131
57 97 140 108 72 149 182 107 10 154 100 6 49 40 94 82 92 8
30 90 179 42 181 23 159 188 109 161 198 74 184 165 35 157 116 67
71 136 0 43 15 64 31 27 146 115 125 148 50 96 155 186 68 95
170 158 70 134 147 28 24 91 138 76 59 119 121 133 17 127 47 132
41 122 19 169 162 1 22 191 13 5 87 37 150 63 52 58 193 126
195 75 163 166 143 18 137 81 120 39 123 164 48 88 103 167 83 192
14 130 153 61 86 20 175 171 9 11 36 174 53 78 117 176 38 55
141]
[132 79 31 95 56 81 183 169 48 87 61 55 54 69 161 185 53 122
140 154 181 24 47 167 109 94 197 96 175 143 6 188 193 107 195 145
179 174 117 49 64 3 37 16 110 92 130 123 51 165 77 70 9 171
40 78 71 159 10 38 105 149 158 83 98 156 60 133 36 80 191 125
196 91 50 138 129 198 43 2 153 13 139 164 160 30 134 103 66 73
131 14 147 112 178 52 127 28 12 190 137 168 42 7 39 26 150 11
46 162 116 136 59 115 108 111 29 0 141 19 128 63 90 180 101 34
67 18 113 17 88 184 102 163 15 192 142 187 57 8 74 119 182 27
189 44 41 118 157 4 126 106 82 99 146 25 58 84 89 155 194 151
121 1 114 5 144 45 68 176 135 177 65 120 152 172 76 85 35 170
124 97 166 104 72 186 32 62 100 75 86 21 33 23 148 20 173 22
93]
[ 84 133 7 173 195 35 106 97 57 90 18 4 94 135 5 85 125 98
112 156 181 9 129 76 54 124 89 121 1 175 11 33 39 155 66 161
13 150 193 12 74 19 134 26 188 152 185 64 45 70 0 32 79 63
187 83 110 91 182 142 118 130 16 167 93 80 55 172 68 14 162 78
41 139 138 117 165 128 72 197 163 164 56 102 141 109 44 21 87 113
37 10 96 67 169 42 27 29 3 22 58 153 40 100 170 52 20 65
43 24 34 116 147 140 198 171 120 144 95 114 111 149 23 61 105 131
86 108 137 189 104 143 119 51 48 53 178 81 186 180 154 88 174 183
190 159 49 38 151 62 73 59 136 71 69 179 194 99 8 191 168 196
158 60 146 31 132 25 75 6 184 192 30 123 92 82 17 127 36 28
103 101 176 47 15 50 46 107 160 126 115 2 166 145 177 77 157 148
122]
[120 19 100 78 16 131 189 5 146 11 188 164 138 117 178 151 53 49
56 190 87 122 8 15 169 153 71 50 145 168 158 123 97 95 118 99
198 88 60 196 124 159 195 162 90 92 142 85 116 186 156 9 79 31
165 149 134 119 34 18 143 39 26 139 62 103 98 121 44 32 180 42
69 12 109 193 57 48 41 154 21 22 58 192 64 63 176 115 185 172
94 96 29 86 112 182 181 61 24 171 77 167 89 126 73 36 93 74
47 7 28 140 104 35 83 6 33 51 150 141 174 102 68 91 38 163
155 0 55 4 81 66 45 197 177 166 75 1 82 135 14 46 127 111
152 113 23 25 101 157 17 54 179 2 76 144 106 108 10 3 65 147
173 84 67 105 187 133 184 132 194 191 137 59 70 30 129 175 37 130
80 160 52 110 125 72 183 43 40 27 20 148 170 136 114 107 161 13
128]
[133 33 109 176 129 170 142 138 5 114 40 10 195 162 116 13 97 111
125 164 52 49 131 197 48 119 95 80 137 174 122 130 156 173 189 143
67 19 108 153 177 79 8 155 171 104 118 184 98 4 18 102 53 136
179 106 194 188 152 96 23 41 7 32 196 151 44 181 21 117 128 107
1 144 113 69 115 175 59 16 94 127 76 15 149 29 20 110 31 121
135 72 90 38 100 17 57 77 163 159 0 140 88 101 3 22 65 84
34 75 9 169 158 141 160 154 37 178 165 2 50 134 93 81 86 63
82 26 103 182 42 78 27 89 148 161 66 45 47 105 190 64 126 186
183 25 124 74 54 56 185 146 172 157 58 85 150 60 70 39 132 14
180 193 35 92 192 30 62 198 43 6 123 71 112 61 51 28 12 46
55 36 167 91 73 11 99 168 187 68 191 120 24 147 166 145 139 83
87]
[ 47 1 97 85 120 151 68 2 69 44 194 31 27 6 103 106 186 53
118 138 124 139 56 144 7 143 60 18 150 87 189 0 77 98 174 198
169 32 172 41 102 35 99 54 9 93 147 45 24 181 190 193 107 148
38 26 11 170 92 195 81 110 3 13 59 188 197 34 64 155 149 25
22 51 33 133 161 117 152 116 168 111 10 115 37 129 14 88 21 146
153 105 23 82 52 158 131 119 17 191 145 29 43 16 121 95 90 42
166 183 160 86 182 171 20 167 127 179 65 67 75 157 135 30 19 76
184 159 55 39 134 66 162 80 165 130 96 173 91 89 61 114 62 163
178 5 122 36 49 63 123 50 187 101 46 100 156 108 70 40 28 125
8 15 132 113 74 196 141 142 83 177 128 175 48 57 104 72 140 94
136 84 126 71 137 164 176 73 185 154 109 192 78 4 112 58 180 12
79]
[183 62 120 170 184 191 188 193 174 97 45 153 64 164 123 47 107 37
185 157 81 98 161 0 35 105 141 108 52 162 63 114 181 10 197 55
102 17 7 38 14 65 86 115 177 138 68 109 126 143 142 75 187 117
56 180 69 149 43 48 57 20 39 29 106 80 192 140 76 172 60 173
100 160 155 111 152 46 78 88 190 49 83 179 3 169 122 171 59 168
12 133 22 125 91 186 118 77 96 2 93 130 104 25 26 4 23 51
79 132 182 41 5 21 1 127 136 15 129 99 24 36 6 110 28 128
66 42 139 34 44 50 87 53 72 27 8 131 67 150 31 148 13 121
195 58 40 113 16 151 178 147 73 166 112 189 175 116 119 95 135 18
70 33 30 156 137 89 85 158 163 176 154 61 32 194 82 159 11 103
146 74 167 71 19 165 94 101 92 196 54 145 84 90 9 198 134 144
124]
[179 87 139 75 96 71 62 1 0 64 24 2 149 21 126 11 156 145
164 172 115 56 47 176 198 91 8 150 128 143 188 70 104 43 192 65
41 191 166 123 23 162 59 54 85 49 187 86 141 111 38 72 130 97
36 39 40 153 138 29 13 134 6 136 113 99 122 26 114 171 32 9
109 177 15 105 180 146 42 82 84 186 133 147 83 110 154 181 101 174
157 161 131 18 175 77 63 184 57 88 190 193 44 55 140 169 20 94
152 148 173 151 76 92 34 137 118 52 73 160 10 4 158 194 103 120
196 106 28 135 14 108 53 19 117 142 67 51 89 68 90 195 45 129
3 116 66 167 81 185 31 30 95 165 183 78 22 155 144 16 17 178
46 102 170 159 12 5 112 50 37 168 60 121 27 69 182 125 79 98
7 35 197 93 74 127 107 33 80 25 132 58 100 48 61 124 119 189
163]
[166 96 85 48 160 10 68 30 149 131 32 4 54 67 51 112 33 87
144 80 119 163 86 70 170 1 111 71 94 174 184 63 125 11 38 142
100 2 105 180 58 21 42 136 175 29 193 99 90 5 183 179 168 55
159 19 53 82 186 89 18 0 188 194 164 50 14 26 9 148 65 124
8 191 197 177 44 126 56 46 167 128 150 3 77 23 34 31 145 146
81 104 64 13 138 22 59 171 97 151 169 41 102 60 114 83 24 20
137 161 123 115 155 7 109 127 35 40 107 182 178 152 78 181 147 69
103 140 129 101 132 187 176 52 121 92 75 117 27 196 12 93 116 98
198 157 66 6 162 154 84 139 133 76 113 72 108 122 156 153 165 130
158 45 36 47 118 37 43 15 79 172 49 106 61 91 190 17 141 74
73 16 195 143 39 62 57 134 189 185 173 28 135 88 192 110 95 120
25]
[ 67 20 146 83 0 143 75 154 168 171 184 128 108 113 4 193 122 79
159 173 157 131 42 119 130 124 61 136 101 170 125 162 121 141 76 140
120 2 71 49 175 18 106 153 59 89 164 70 138 95 142 69 194 174
192 48 195 87 102 135 107 132 77 198 51 52 22 111 19 186 36 185
114 12 84 45 197 103 149 98 112 156 34 191 179 6 187 74 40 181
158 23 92 46 126 152 104 183 166 16 85 32 33 163 37 9 177 167
139 105 66 144 11 137 91 116 15 147 99 160 94 148 5 44 53 90
189 41 109 13 155 133 127 117 172 24 31 1 8 68 30 60 3 145
56 54 123 100 28 190 93 110 72 115 129 17 64 57 50 65 58 165
151 82 73 176 196 86 25 81 43 21 7 29 10 180 96 78 118 55
169 39 63 150 161 182 134 188 26 35 47 97 88 14 80 38 62 27
178]
[ 12 88 76 163 134 176 98 59 188 71 145 60 157 6 52 94 83 51
23 65 116 121 104 54 84 169 31 44 8 181 68 107 113 19 112 137
154 96 139 192 102 41 180 111 74 66 34 165 82 4 13 61 75 133
63 159 32 55 167 161 9 135 189 91 30 93 101 81 85 129 67 147
14 36 2 79 193 190 3 108 90 141 178 191 80 158 5 28 143 179
69 78 187 184 35 164 95 196 124 10 151 148 126 136 39 144 140 87
37 7 57 123 138 186 171 70 100 49 18 162 58 114 62 160 195 127
11 197 106 174 56 99 119 194 97 175 26 47 105 182 183 168 125 92
122 109 149 156 177 27 15 45 131 22 72 38 53 25 16 132 198 155
152 166 146 46 172 173 17 120 64 1 142 118 86 42 150 153 50 128
185 103 33 40 0 170 130 77 29 24 117 43 73 89 20 115 21 48
110]
[170 26 94 99 108 129 137 33 21 142 66 58 76 43 51 60 93 22
122 87 193 5 35 46 0 90 104 74 198 100 106 101 158 52 45 13
16 118 3 157 78 24 73 111 70 139 81 154 116 47 103 133 68 175
82 92 18 194 15 113 148 89 42 109 53 56 125 107 141 165 59 38
159 179 196 86 161 168 40 185 146 162 126 138 39 4 188 61 2 63
20 49 195 121 14 19 84 186 184 132 143 95 75 183 124 67 172 7
80 187 182 135 197 192 147 169 88 65 128 27 57 123 178 97 37 164
102 127 11 23 112 130 160 31 114 69 48 17 98 8 9 85 163 176
136 181 131 151 134 28 50 119 189 29 117 12 190 91 152 41 64 191
150 174 25 79 173 62 83 71 34 6 149 180 36 145 110 72 156 144
44 171 153 96 1 55 30 120 115 155 10 54 167 140 77 105 166 32
177]
[142 163 87 194 188 79 72 67 3 160 133 156 6 107 173 124 138 178
140 34 64 166 130 94 157 91 169 112 77 145 175 118 149 187 16 60
93 154 30 89 73 137 56 68 44 51 52 180 35 63 26 95 17 141
66 11 165 126 172 31 90 1 70 122 37 49 114 123 48 189 153 54
14 113 131 109 139 129 116 19 119 62 174 12 144 41 98 5 33 43
21 117 171 120 8 190 143 106 61 15 36 81 82 170 193 127 183 22
4 102 128 168 97 57 159 88 147 158 39 86 53 151 20 84 185 83
103 176 197 181 161 78 111 23 155 104 177 7 69 46 96 150 18 92
58 0 108 191 115 134 162 45 167 74 196 42 32 40 135 80 125 101
59 29 65 192 71 186 132 164 2 27 179 50 25 76 146 182 184 121
110 24 99 38 198 28 105 47 10 195 148 100 136 75 9 152 55 13
85]
[ 1 33 65 48 129 137 14 120 13 36 2 156 82 140 195 101 78 59
139 158 19 27 145 15 108 152 123 122 92 130 49 197 131 99 138 21
190 175 24 173 192 54 181 154 69 45 89 153 3 66 25 30 187 23
55 126 151 90 34 8 116 107 125 58 117 184 174 62 128 0 38 124
186 52 165 134 20 95 29 144 135 42 104 196 88 105 163 87 35 91
183 110 77 121 10 4 115 166 132 171 22 148 63 146 112 83 56 176
162 193 149 70 96 86 71 172 111 93 67 75 76 168 147 11 18 169
81 127 179 50 68 118 73 26 170 7 53 85 150 182 180 74 98 43
46 12 9 113 114 157 185 47 109 178 141 31 17 142 94 79 160 32
37 100 44 189 6 133 103 57 97 164 143 198 188 41 177 106 16 51
84 194 159 72 167 39 80 61 60 28 5 64 40 119 102 155 136 191
161]
[ 55 6 40 103 133 21 195 197 153 186 98 97 64 79 125 188 130 94
22 19 58 75 47 33 14 190 170 177 34 63 9 23 25 182 80 191
61 148 193 124 100 62 116 73 59 178 88 20 144 160 48 51 187 181
152 76 131 143 57 26 179 164 70 174 86 162 198 184 8 32 44 145
154 85 126 77 56 120 71 150 141 169 196 183 147 84 74 38 28 167
81 52 39 134 176 68 132 92 11 159 165 31 168 17 142 139 185 37
166 192 30 146 111 82 194 54 106 112 122 60 35 65 108 163 7 0
135 93 173 128 138 36 49 53 12 109 43 45 87 67 110 104 2 89
172 41 140 95 90 69 114 4 78 83 72 15 171 136 66 18 42 129
96 113 3 115 16 117 155 5 99 1 127 161 149 10 13 158 151 118
102 46 123 29 157 180 24 27 107 91 121 50 101 156 175 105 189 137
119]
[ 27 60 107 66 110 187 143 171 42 70 122 53 103 48 75 59 124 131
169 159 84 96 31 193 83 23 30 9 109 52 155 195 114 130 62 95
0 63 14 92 179 6 28 151 148 45 15 158 165 81 90 164 147 194
2 196 100 198 172 156 13 181 135 49 4 116 91 144 80 8 87 152
129 18 1 67 189 68 166 97 10 128 175 32 161 163 43 120 162 26
112 16 65 146 173 119 177 188 57 76 182 117 36 40 3 46 64 74
86 178 145 174 69 127 154 138 111 77 184 61 50 191 167 24 132 22
29 34 72 102 125 141 157 106 37 93 7 19 192 88 12 44 99 197
121 108 55 35 56 58 51 153 33 11 183 85 133 5 39 176 113 140
25 126 137 54 180 149 105 123 98 168 78 170 160 82 139 190 185 21
38 115 73 17 104 134 41 20 47 118 150 136 101 94 142 89 79 186
71]
[ 3 114 179 172 43 22 51 35 62 140 116 122 77 182 169 107 155 156
108 18 115 141 185 160 59 167 83 177 36 196 50 152 82 46 95 180
24 73 187 9 72 131 0 40 37 54 137 74 161 67 86 25 166 27
119 84 12 183 138 154 188 111 171 106 151 163 58 33 174 88 2 148
96 173 85 157 75 19 93 142 90 49 136 34 78 194 127 65 145 164
48 134 168 47 175 129 146 41 76 191 42 165 190 60 128 64 120 26
23 68 103 130 21 109 15 87 38 70 198 104 135 162 92 4 97 178
52 153 139 20 98 149 53 45 133 44 193 121 14 91 57 197 63 110
113 79 132 69 66 144 71 150 192 170 39 102 123 16 10 89 8 184
117 81 159 55 105 29 125 17 5 99 28 186 124 11 112 176 181 30
1 158 80 61 31 32 195 94 6 56 13 101 126 147 7 100 118 189
143]
[153 140 40 17 69 73 145 63 143 126 86 144 182 41 164 107 46 179
115 114 191 101 97 105 15 133 21 178 154 23 147 139 128 34 166 35
49 77 110 31 112 20 121 27 171 30 37 48 36 129 79 38 176 51
168 183 100 118 170 131 169 156 22 65 184 192 71 56 175 137 53 122
157 24 2 0 188 84 4 50 80 172 1 54 190 28 6 83 173 193
180 87 8 14 132 197 91 3 66 148 82 39 103 134 52 99 162 13
16 96 113 135 196 111 89 123 68 12 47 106 76 11 104 9 61 59
58 94 185 120 43 102 78 167 62 64 45 150 141 181 109 136 127 72
18 194 67 130 186 57 42 108 5 74 159 70 60 189 55 138 95 33
85 125 19 165 174 93 187 26 10 75 177 25 146 29 158 198 117 32
92 116 152 160 163 195 149 142 90 161 7 124 98 119 88 81 151 44
155]
[156 131 45 16 115 0 132 119 75 39 10 155 34 28 162 196 188 108
4 191 61 120 50 90 30 2 12 80 6 134 20 159 143 112 127 176
116 93 52 86 92 48 99 3 8 23 15 9 96 169 21 38 59 144
71 18 118 62 29 81 106 88 53 109 136 74 56 73 148 87 35 7
137 180 64 160 105 83 24 129 68 95 22 31 111 102 54 193 5 13
97 77 195 126 78 123 141 114 65 40 103 177 139 32 14 67 60 147
98 101 151 153 72 100 110 167 192 117 198 122 171 179 63 149 36 130
184 152 51 91 82 11 46 175 69 157 190 142 181 158 49 178 41 107
25 128 70 146 183 19 17 43 154 133 164 186 140 163 185 33 165 84
161 37 150 187 27 166 66 145 47 94 76 124 113 58 125 85 182 121
189 89 138 174 44 26 173 1 194 42 168 79 135 104 55 172 57 170
197]
[ 92 75 114 113 117 14 142 7 158 72 103 135 161 66 193 74 6 55
86 179 174 2 53 125 143 77 190 49 51 45 70 78 100 88 107 180
46 69 151 162 29 41 37 128 132 163 90 58 176 31 71 76 60 22
52 30 154 121 13 94 126 165 140 4 23 54 150 19 68 84 104 189
1 39 48 166 130 164 98 124 82 145 42 91 67 16 65 136 57 116
168 21 181 195 175 61 149 188 34 192 141 10 139 148 197 106 102 8
47 44 185 17 64 56 38 198 93 127 25 170 137 177 24 97 43 5
80 81 184 144 28 0 159 15 119 112 122 27 156 33 73 169 109 101
196 111 85 147 167 173 108 35 18 110 20 153 146 129 9 96 83 123
120 152 40 160 118 50 87 187 134 186 11 155 105 26 182 131 115 191
36 133 79 138 62 95 172 183 32 99 178 157 59 63 12 194 89 3
171]
[161 101 60 159 94 56 52 175 46 39 173 78 139 107 3 41 84 151
13 70 11 140 105 124 133 68 185 153 152 72 37 58 198 102 23 45
76 32 129 177 145 178 144 122 194 33 90 156 88 149 83 120 42 40
96 162 64 135 104 10 169 126 71 34 157 125 85 137 15 113 112 6
4 62 16 5 66 174 51 31 43 57 21 134 35 95 195 100 77 197
49 93 193 183 110 53 142 109 74 29 166 116 14 186 59 36 0 97
165 130 191 182 27 86 7 98 63 190 17 187 136 127 81 19 123 103
121 180 196 55 115 119 176 155 1 22 128 18 44 87 65 12 30 164
25 158 192 114 24 61 184 106 172 75 117 20 118 108 92 163 82 147
131 188 189 91 79 80 111 2 170 181 141 150 47 28 138 132 167 154
146 67 69 73 48 171 148 89 179 9 26 8 168 143 54 160 38 50
99]
[162 142 106 157 121 166 193 154 50 41 13 141 182 172 82 110 123 27
175 128 73 183 165 24 98 51 36 177 92 43 150 109 184 114 3 45
20 88 46 104 84 57 95 117 91 181 37 167 22 0 151 160 15 101
163 54 115 147 120 148 156 127 61 191 70 44 107 79 4 49 119 93
196 173 169 125 35 83 12 189 30 81 90 197 187 139 96 11 174 18
63 28 75 144 1 140 23 26 94 122 64 146 58 116 99 133 143 8
47 185 31 198 112 48 113 80 72 52 178 16 19 105 5 78 2 195
190 7 152 14 103 130 186 21 56 194 66 65 126 129 6 176 85 131
33 71 192 164 59 158 76 74 180 161 155 124 171 138 145 62 69 137
118 153 55 149 86 134 9 39 40 60 136 68 179 188 170 168 135 17
10 42 32 132 87 89 97 100 38 53 29 111 159 34 102 67 25 108
77]
[ 12 132 189 148 115 54 9 85 142 103 88 185 79 161 42 53 106 17
160 32 81 124 171 156 154 58 23 47 174 4 5 69 144 40 71 31
89 0 3 15 178 122 8 33 175 121 108 150 30 146 55 183 25 145
104 1 86 91 75 149 36 97 35 84 151 138 14 180 152 129 28 123
105 179 72 198 162 100 196 60 166 147 133 190 49 99 21 141 90 186
93 197 188 24 41 76 165 19 94 167 92 111 110 87 176 74 109 184
96 101 10 158 187 80 83 20 163 38 64 82 168 26 39 65 182 194
61 139 48 116 11 27 125 18 52 177 173 136 117 98 181 113 51 140
127 78 157 56 128 164 59 191 7 192 135 6 73 130 137 193 112 13
46 66 68 29 37 134 153 77 16 107 70 63 126 159 143 50 34 62
95 131 57 172 102 169 170 119 155 118 195 67 120 44 114 2 22 43
45]
[ 15 4 14 49 69 115 143 181 158 160 58 151 94 139 80 122 52 111
27 137 88 37 55 190 146 134 110 25 39 194 188 56 102 6 38 11
96 90 166 85 106 93 117 197 16 173 32 125 101 193 168 31 159 42
8 73 29 84 35 172 59 130 152 144 78 174 79 13 18 163 10 185
36 148 62 48 47 7 198 186 76 5 133 161 40 103 43 149 46 126
60 157 91 20 74 22 187 121 165 138 21 77 132 153 189 98 107 155
182 41 170 180 164 119 75 167 23 0 175 68 140 171 83 67 70 129
184 128 50 169 99 135 65 179 192 81 124 147 109 17 162 136 66 53
196 127 64 142 154 26 150 114 176 2 95 112 24 3 30 12 44 100
195 104 28 177 9 34 131 71 183 45 113 33 87 141 51 105 72 116
156 108 57 82 123 89 1 97 178 54 63 118 191 92 61 86 120 145
19]
[ 96 54 33 184 150 32 148 40 155 149 95 167 21 11 71 92 55 165
169 31 142 173 75 56 58 109 28 7 68 115 29 120 164 130 133 44
13 110 74 158 145 112 186 19 170 126 8 90 177 81 30 69 34 60
27 52 195 153 192 183 49 134 194 50 42 111 80 131 88 12 79 41
36 37 185 116 51 178 123 85 3 0 139 127 154 66 180 18 105 9
70 190 48 25 188 6 76 1 132 136 14 93 104 114 128 46 97 57
160 152 175 38 189 43 141 16 83 161 47 89 98 113 198 122 119 53
156 107 144 191 143 197 159 168 171 146 45 157 103 87 140 82 187 196
35 91 151 39 174 172 86 77 137 94 138 135 108 106 26 78 166 163
22 125 129 61 101 193 65 15 67 147 62 17 102 72 10 59 118 162
5 2 176 124 117 121 4 182 24 84 99 73 20 181 63 100 179 64
23]
[ 11 54 13 72 83 60 50 182 129 74 156 65 55 23 165 36 20 87
192 172 157 25 120 2 193 133 137 32 134 108 51 19 42 47 46 82
53 190 146 115 117 127 176 174 110 68 57 29 103 181 145 64 96 58
196 130 80 52 18 191 28 70 169 112 166 186 9 99 93 3 92 152
14 195 167 33 188 7 179 31 153 78 160 1 73 10 44 77 149 56
66 148 158 178 4 168 48 139 140 95 101 106 159 26 16 41 85 128
43 69 154 189 184 141 71 45 155 84 8 109 40 161 171 94 76 91
17 37 121 126 105 124 90 89 144 119 38 114 34 150 6 12 97 164
175 163 30 67 107 116 135 62 180 49 81 39 63 170 187 5 131 102
15 132 118 147 59 194 177 113 27 143 197 35 22 162 75 111 61 122
21 183 136 98 123 185 88 104 0 151 24 173 198 100 125 79 138 142
86]
[166 65 87 8 57 74 126 26 113 5 30 20 164 181 171 9 147 140
45 76 185 18 141 123 32 95 90 81 69 119 85 183 136 48 17 115
94 98 170 125 2 139 52 92 159 103 22 160 88 46 39 132 11 89
37 162 82 168 175 150 40 25 36 42 186 104 75 54 60 96 145 143
177 128 127 135 16 78 19 110 192 187 62 174 97 21 122 102 84 114
198 172 149 154 27 53 176 77 120 47 195 121 83 3 105 29 189 59
178 182 55 118 101 188 156 73 28 63 163 1 151 180 111 117 158 4
107 49 133 6 23 41 142 197 131 24 130 190 34 148 14 79 179 173
80 12 35 169 56 191 66 129 137 184 153 64 13 155 43 144 7 106
146 15 134 50 67 138 61 109 38 100 108 58 194 70 152 91 165 44
99 112 0 167 157 68 124 86 71 93 10 161 51 72 31 196 193 116
33]
[ 83 101 130 170 162 43 44 60 2 21 160 109 168 150 105 114 131 27
175 30 167 81 61 132 23 127 180 111 172 94 191 6 78 141 147 159
153 124 113 112 77 157 196 42 14 118 35 185 137 154 0 146 195 40
53 143 98 52 16 90 145 5 46 148 76 108 59 8 100 3 188 133
135 122 38 117 47 125 134 176 142 155 165 110 88 84 197 151 152 87
149 164 62 57 102 69 138 189 190 49 11 139 48 26 198 173 116 72
179 156 66 20 12 183 65 63 17 96 187 99 103 1 18 4 54 121
71 104 126 178 34 13 163 79 67 192 161 115 119 31 174 32 169 41
91 19 144 9 136 107 29 128 177 73 184 166 75 64 7 186 58 140
193 10 55 36 82 80 181 28 85 24 106 45 50 68 86 97 182 51
39 33 171 22 194 129 92 120 93 70 15 123 158 37 56 74 95 89
25]
[ 86 174 113 34 74 198 8 35 2 193 68 42 155 83 135 60 20 41
140 55 133 138 85 30 1 127 15 125 128 157 49 84 10 122 191 39
167 24 5 109 118 176 104 116 173 80 158 154 25 142 44 183 123 160
137 115 26 23 188 88 94 91 124 139 69 37 179 99 43 195 156 101
89 194 13 119 19 97 136 107 63 95 48 108 117 90 62 182 134 100
130 33 146 129 79 40 21 120 98 17 141 75 46 92 159 6 0 180
184 76 16 77 164 56 169 50 106 47 32 12 45 170 153 185 93 161
110 64 112 65 96 163 177 70 73 187 57 22 9 171 105 82 149 54
196 14 4 131 78 162 111 58 102 18 29 66 114 181 197 103 148 67
61 87 53 145 36 28 31 152 151 3 72 38 27 168 121 186 81 150
11 172 166 59 143 178 132 51 7 192 175 147 126 189 165 144 52 190
71]
[ 32 7 65 127 178 56 19 20 104 137 158 189 43 18 180 22 192 35
102 5 160 91 190 17 196 142 131 185 115 58 70 111 38 122 94 166
92 139 42 135 61 174 188 80 86 136 76 14 72 62 78 16 96 97
179 176 26 67 126 0 34 168 31 149 184 116 85 54 69 129 88 128
60 133 79 108 112 100 123 52 124 9 134 87 169 49 99 75 82 163
45 109 151 101 64 21 103 143 164 194 39 98 48 11 89 171 145 130
121 155 154 113 118 55 162 156 161 51 23 53 183 3 120 93 153 95
173 186 106 148 107 15 74 165 47 84 117 197 59 8 13 24 10 27
50 114 132 12 175 177 125 144 71 73 119 1 191 44 150 182 187 81
63 46 37 33 4 90 25 29 2 140 105 66 157 181 28 152 159 57
77 172 41 195 110 141 170 167 198 83 146 68 40 6 36 30 193 138
147]
[112 58 108 54 134 79 84 143 110 40 193 76 128 172 31 39 83 60
94 189 34 11 57 141 147 176 59 164 38 104 16 99 140 7 167 26
109 32 183 170 78 50 142 25 107 191 158 186 179 156 115 46 63 166
3 21 1 91 198 55 81 120 188 49 161 42 14 77 71 19 157 43
87 95 181 106 82 146 6 88 27 150 68 36 13 151 149 65 145 153
139 144 97 192 52 98 177 178 133 111 37 173 74 22 56 53 162 185
130 23 47 90 92 96 15 196 75 171 126 159 117 187 73 45 119 175
66 180 62 61 0 33 93 30 35 197 24 125 114 8 5 129 18 155
131 86 137 4 20 12 123 127 17 72 168 28 44 148 190 160 195 89
124 102 103 122 41 152 105 48 67 80 101 184 51 29 2 165 100 69
169 163 85 121 132 182 116 135 136 118 9 174 10 70 138 154 194 113
64]
[ 11 76 48 21 4 41 198 87 94 3 33 64 170 54 53 144 109 192
71 34 55 30 177 137 72 191 121 8 14 127 133 80 176 196 164 15
153 134 68 189 165 185 37 182 50 85 13 42 115 167 100 195 173 90
132 162 19 60 97 152 81 22 197 184 12 104 47 92 178 27 46 17
159 102 78 28 101 96 117 187 69 18 123 120 75 126 125 65 107 63
39 59 2 149 67 82 183 31 181 44 51 70 193 141 145 157 180 98
130 32 49 194 118 142 10 29 84 105 73 38 143 150 0 129 146 155
148 179 154 158 175 174 110 190 163 23 86 6 188 79 106 103 114 135
91 95 122 113 119 35 168 83 166 56 171 77 89 16 131 140 169 128
45 139 172 62 58 116 93 161 57 5 108 147 52 9 111 25 40 124
24 7 61 156 160 20 74 99 138 112 43 88 36 1 136 26 66 186
151]
[184 166 36 89 27 146 20 19 18 128 122 108 123 5 14 52 162 149
189 40 164 48 178 95 102 140 147 182 15 88 67 80 2 188 150 86
196 17 65 161 100 16 181 156 141 84 163 32 77 78 159 105 25 96
197 63 22 167 107 148 58 158 37 87 44 103 111 130 170 135 85 50
120 132 10 90 29 187 97 1 139 176 64 71 49 137 74 39 12 177
114 41 143 186 33 152 24 193 109 198 68 160 118 54 180 121 129 8
45 55 47 51 113 145 110 43 165 34 185 99 61 138 157 133 115 190
92 28 75 62 106 70 3 7 73 168 117 4 153 38 35 183 60 30
173 57 172 69 94 21 79 191 11 76 59 0 93 91 13 53 194 134
42 144 112 131 82 31 9 46 151 127 155 26 174 116 195 192 171 126
154 6 175 169 142 81 136 179 124 119 56 104 125 101 72 83 66 98
23]
[ 9 50 125 52 69 163 26 148 6 108 153 184 109 93 150 102 8 131
185 22 99 24 81 155 73 164 44 55 171 77 61 111 49 158 101 46
143 152 117 118 119 169 154 13 89 20 78 72 60 71 90 51 95 178
32 190 64 146 147 103 4 198 57 193 176 43 134 188 30 139 54 53
29 115 48 180 121 104 28 98 142 3 162 122 195 42 21 110 97 138
23 149 182 160 128 124 38 2 62 141 12 135 168 133 36 11 34 86
194 166 120 156 10 5 126 0 174 17 130 112 16 129 161 56 170 67
187 173 94 39 186 79 41 18 37 136 63 106 33 84 165 189 66 114
1 15 82 14 96 31 105 137 58 172 70 19 91 88 145 25 181 116
140 183 196 192 45 191 80 159 167 7 132 40 74 107 100 151 87 59
27 75 144 35 123 76 157 179 127 68 177 92 175 83 113 65 47 85
197]
[193 131 105 137 41 150 146 27 161 25 145 113 124 96 4 198 154 65
68 107 43 112 34 128 152 116 60 102 184 19 171 180 103 74 64 33
134 94 24 108 15 8 90 35 92 53 70 147 81 28 22 29 121 3
114 101 95 40 140 163 115 80 26 178 126 129 11 63 165 173 72 16
14 5 30 182 10 197 17 51 185 31 189 142 46 181 89 191 66 6
170 177 196 85 149 56 37 188 120 38 55 49 44 138 117 13 57 62
157 76 79 133 135 9 162 190 136 195 32 155 132 45 110 169 148 179
158 52 141 42 21 12 109 125 75 36 77 144 186 98 99 159 111 39
176 0 86 71 97 168 156 166 59 23 69 83 54 151 118 48 119 187
123 174 164 50 84 2 58 130 88 122 175 78 93 106 61 73 192 1
160 7 104 100 183 18 127 82 91 139 167 194 87 47 20 153 143 67
172]
[ 75 130 8 40 183 22 153 182 107 50 144 117 136 162 0 26 134 124
65 167 164 116 119 194 10 187 158 29 74 72 165 21 73 14 166 1
91 36 16 80 82 20 98 181 18 138 102 6 140 179 115 53 42 118
55 31 154 193 67 120 24 161 15 25 64 56 77 173 68 184 191 11
99 101 17 142 121 159 106 19 90 83 180 198 196 28 93 84 113 33
38 175 185 49 5 123 97 137 23 94 13 171 57 66 104 146 46 86
9 111 89 47 163 186 32 85 131 177 127 88 109 34 150 12 51 149
148 197 69 39 35 45 174 108 125 70 169 110 156 61 44 4 176 157
132 92 60 190 178 170 71 96 63 54 168 100 128 151 105 152 37 43
95 30 195 122 135 160 126 133 52 155 112 145 189 79 7 62 58 129
27 81 87 48 59 103 188 41 141 76 139 192 143 3 2 114 172 78
147]
[173 98 125 161 119 163 69 5 92 29 74 83 181 108 136 34 195 120
148 127 147 186 17 139 180 94 49 105 9 93 43 164 45 7 158 150
33 30 155 64 15 28 31 3 60 44 82 188 112 114 13 16 175 118
145 21 80 72 12 50 24 51 187 174 26 106 18 85 166 77 109 124
160 154 101 19 65 116 35 113 151 190 142 191 81 176 86 66 8 185
39 11 84 156 111 183 4 27 198 197 172 6 91 68 146 48 20 88
167 135 122 87 138 40 129 196 102 182 57 52 96 58 53 37 67 59
137 169 99 170 14 22 75 141 10 0 171 123 162 159 70 110 103 177
149 157 41 54 73 71 63 128 56 2 134 38 79 100 47 189 42 46
55 178 1 194 117 165 179 107 62 133 76 152 78 153 192 193 90 25
131 23 132 143 89 121 104 184 97 144 140 36 61 32 95 126 168 115
130]
[143 82 111 144 54 18 39 55 61 164 34 107 124 184 14 16 180 57
128 191 52 127 103 27 80 135 175 138 93 15 0 177 90 25 130 73
41 193 77 158 190 31 59 174 51 161 26 105 76 129 21 117 78 74
197 13 71 119 5 19 114 75 122 148 159 42 189 87 83 22 198 133
170 94 166 11 7 48 152 176 137 89 12 69 134 181 53 140 95 154
63 149 121 97 30 91 28 32 79 116 98 65 131 165 167 132 147 110
3 195 47 72 162 192 182 102 4 120 43 109 146 136 84 113 157 188
45 194 115 62 20 150 86 88 141 108 6 183 100 155 23 123 106 33
153 92 145 10 38 44 96 126 2 160 156 49 178 172 185 125 70 1
104 196 112 56 17 9 169 29 186 35 85 142 67 68 163 50 118 36
173 101 168 64 46 171 60 187 66 24 139 151 37 179 40 99 8 81
58]
[153 180 4 31 5 148 109 26 40 79 100 98 183 172 50 55 161 154
78 123 155 18 92 65 136 27 24 22 168 104 179 97 89 21 112 17
23 181 58 170 64 190 16 93 150 149 122 169 119 80 75 54 19 73
135 94 141 105 195 166 182 39 41 48 167 133 175 111 162 25 60 84
20 82 88 128 12 72 56 33 0 146 145 51 163 99 118 36 30 71
144 117 35 69 87 37 6 173 188 138 189 34 127 139 125 85 176 62
115 116 53 74 130 52 126 165 11 10 124 9 196 103 134 81 113 91
137 90 193 191 159 70 68 95 57 108 132 44 177 171 174 101 8 110
102 28 164 76 120 178 29 43 7 59 47 38 96 63 140 197 61 107
151 66 83 2 67 157 152 192 187 185 106 86 1 142 42 13 114 186
121 15 49 147 194 45 32 160 156 77 3 129 131 14 143 198 184 46
158]
[ 2 96 55 135 113 89 158 91 126 130 178 3 33 56 29 125 171 51
57 140 117 189 50 160 168 161 23 123 163 101 16 95 75 181 83 186
92 6 12 68 145 47 70 106 99 176 62 148 142 191 193 179 136 10
172 34 7 73 69 22 174 38 162 116 156 42 107 110 37 192 93 196
45 133 17 20 122 100 77 53 31 88 72 150 115 52 40 183 65 25
180 49 103 198 104 108 80 61 147 86 82 98 194 35 64 120 32 105
26 152 15 195 30 109 153 182 5 143 167 128 137 144 134 36 184 1
41 165 18 175 27 139 90 48 164 8 13 111 21 159 71 60 187 190