forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_eventtiminganalysis.m
400 lines (345 loc) · 16.7 KB
/
ft_eventtiminganalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
function [dataout] = ft_eventtiminganalysis(cfg, data)
% FT_EVENTTIMINGANALYSIS computes a model of single trial event- related activity,
% by estimating per trial the latency (and amplitude) of event-related signal
% components.
%
% Use as
% [dataout] = ft_eventtiminganalysis(cfg, data)
% where data is single-channel raw data as obtained by FT_PREPROCESSING
% and cfg is a configuration structure according to
%
% cfg.method = method for estimating event-related activity
% 'aseo', analysis of single-trial ERP and ongoing
% activity (according to Xu et al, 2009)
% 'gbve', graph-based variability estimation
% (according to Gramfort et al, IEEE TBME 2009)
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.output = 'model', or 'residual', which returns the modelled data,
% or the residuals.
%
% Method specific options are specified in the appropriate substructure.
%
% For the ASEO method, the following options can be specified:
% cfg.aseo.noiseEstimate = 'non-parametric' or 'parametric', estimate noise
% using parametric or non-parametric (default) method
% cfg.aseo.tapsmofrq = value, smoothing parameter of noise for
% nonparametric estimation (default = 5)
% cfg.aseo.jitter = value, time jitter in initial timewindow
% estimate (in seconds). default 0.050 seconds
% cfg.aseo.numiteration = value, number of iteration (default = 1)
% cfg.aseo.initlatency = Nx2 matrix, initial set of latencies in seconds of event-
% related components, give as [comp1start, comp1end;
% comp2start, comp2end] (default not
% specified). For multiple channels it should
% be a cell-array, one matrix per channel
% Alternatively, rather than specifying a (set of latencies), one can also
% specify:
%
% cfg.aseo.initcomp = vector, initial estimate of the waveform
% components. For multiple channels it should
% be a cell-array, one matrix per channel.
%
% For the GBVE method, the following options can be specified:
% cfg.gbve.sigma = vector, range of sigma values to explore in
% cross-validation loop (default: 0.01:0.01:0.2)
% cfg.gbve.distance = scalar, distance metric to use as
% evaluation criterion, see plugin code for
% more informatoin
% cfg.gbve.alpha = vector, range of alpha values to explor in
% cross-validation loop (default: [0 0.001 0.01 0.1])
% cfg.gbve.exponent = scalar, see plugin code for information
% cfg.gbve.use_maximum = boolean, (default: 1) consider the positive going peak
% cfg.gbve.show_pca = boolean, see plugin code (default 0)
% cfg.gbve.show_trial_number = boolean, see plugin code (default 0)
% cfg.gbve.verbose = boolean (default: 1)
% cfg.gbve.disp_log = boolean, see plugin code (default 0)
% cfg.gbve.latency = vector [min max], latency range in s
% (default: [-inf inf])
% cfg.gbve.xwin = scalar smoothing parameter for moving
% average smoothing (default: 1), see
% eeglab's movav function for more
% information.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_SINGLETRIALANALYSIS_ASEO
% Copyright (C) 2018-2019, Jan-Mathijs Schoffelen DCCN
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
% do not continue function execution in case the outputfile is present and the user indicated to keep it
return
end
% ensure that the input data is valid for this function
data = ft_checkdata(data, 'datatype', {'raw+comp', 'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'required', {'method'});
% set the defaults
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1); % all trials as default
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.output = ft_getopt(cfg, 'output', 'model');
% ensure that the options are valid
cfg = ft_checkopt(cfg, 'method', 'char', {'aseo' 'gbve'});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select trials of interest
tmpcfg = keepfields(cfg, {'trials' 'channel' 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
% some error checks
if isfield(data, 'trial') && numel(data.trial)==0, ft_error('no trials were selected'); end
if numel(data.label)==0, ft_error('no channels were selected'); end
switch cfg.method
case 'aseo'
% define general variables that are used locally
fsample = data.fsample; % Sampling Frequency in Hz
nchan = numel(data.label);
nsample = numel(data.time{1}); %FIXME ASSUMING FIXED TIME AXIS ACROSS ALL TRIALS
% setting a bunch of options, to be passed on to the lower level function
if ~isfield(cfg, 'aseo'), cfg.aseo = []; end
cfg.aseo.thresholdAmpH = ft_getopt(cfg.aseo, 'thresholdAmpH', 0.5);
cfg.aseo.thresholdAmpL = ft_getopt(cfg.aseo, 'thresholdAmpL', 0.1);
cfg.aseo.thresholdCorr = ft_getopt(cfg.aseo, 'thresholdCorr', 0.2);
cfg.aseo.maxOrderAR = ft_getopt(cfg.aseo, 'maxOrderAR', 5);
cfg.aseo.noiseEstimate = ft_getopt(cfg.aseo, 'noiseEstimate', 'nonparametric');
cfg.aseo.numiteration = ft_getopt(cfg.aseo, 'numiteration', 1);
cfg.aseo.tapsmofrq = ft_getopt(cfg.aseo, 'tapsmofrq', 5);
cfg.aseo.fsample = fsample;
cfg.aseo.nsample = nsample;
cfg.aseo.pad = ft_getopt(cfg.aseo, 'pad', (2.*nsample)/fsample);
% deal with the different ways with which the initial waveforms can be defined
initlatency = ft_getopt(cfg.aseo, 'initlatency', {});
initcomp = ft_getopt(cfg.aseo, 'initcomp', {});
jitter = ft_getopt(cfg.aseo, 'jitter', 0.050); % half temporal width of shift in s
if isempty(initlatency) && isempty(initcomp)
ft_error('for the ASEO method you should supply either an initial estimate of the waveform component, or a set of latencies');
elseif ~isempty(initlatency)
% this takes precedence, and should contain per channel the begin and
% end points of the subwindows in time, based on which the initial
% subcomponents are estimated
% ensure it to be a cell-array if the input is a matrix
if ~iscell(initlatency)
initlatency = repmat({initlatency},[1 nchan]);
end
make_init = true;
elseif ~isempty(initcomp)
% ensure it to be a cell-array if the input is a matrix
if ~iscell(initcomp)
initcomp = repmat({initcomp}, [1 nchan]);
end
make_init = false;
end
if make_init
assert(numel(initlatency)==nchan);
for k = 1:nchan
% preprocessing data
tmp = cellrowselect(data.trial,k);
chandat = cat(1,tmp{:});
chandat = ft_preproc_baselinecorrect(chandat, nearest(data.time{1}, -inf), nearest(data.time{1}, 0));
avgdat = nanmean(chandat, 1);
% set the initial ERP waveforms according to the preset parameters
ncomp = size(initlatency{k},1);
initcomp{k} = zeros(nsample, ncomp);
for m = 1:ncomp
begsmp = nearest(data.time{1},initlatency{k}(m, 1));
endsmp = nearest(data.time{1},initlatency{k}(m, 2));
if begsmp<1, begsmp = 1; end
if endsmp>nsample, endsmp = nsample; end
tmp = avgdat(begsmp:endsmp)';
initcomp{k}(begsmp:endsmp, m) = tmp;
end
initcomp{k} = initcomp{k} - repmat(mean(initcomp{k}),nsample,1);
end
else
assert(numel(initcomp)==nchan);
end
if ~iscell(jitter)
jitter = repmat({jitter}, [1 nchan]);
end
for k = 1:numel(jitter)
if ~isempty(jitter{k})
if size(jitter{k},1)~=size(initcomp{k},2), jitter{k} = repmat(jitter{k}(1,:),[size(initcomp{k},2) 1]); end
end
end
% initialize the output data
dataout = removefields(data, 'cfg');
for k = 1:numel(data.trial)
dataout.trial{k}(:) = nan;
end
% initialize the struct that will contain the output parameters
params = struct([]);
% do the actual computations
for k = 1:nchan
% preprocessing data
tmp = cellrowselect(data.trial,k);
chandat = cat(1,tmp{:});
% baseline correction
chandat = ft_preproc_baselinecorrect(chandat, nearest(data.time{1}, -inf), nearest(data.time{1}, 0));
% do zero-padding and FFT to the signal and initial waveforms
npad = cfg.aseo.pad*fsample; % length of data + zero-padding number
nfft = 2.^(ceil(log2(npad)))*2;
initcomp_fft = fft(initcomp{k}, nfft); % Fourier transform of the initial waveform
chandat_fft = fft(chandat', nfft); % Fourier transform of the signal
cfg.aseo.jitter = jitter{k};
output = ft_singletrialanalysis_aseo(cfg, chandat_fft, initcomp_fft);
params(k).latency = output(end).lat_est./fsample;
params(k).amplitude = output(end).amp_est;
params(k).components = output(end).erp_est;
params(k).rejectflag = output(end).rejectflag;
params(k).noise = output(end).noise;
for m = 1:numel(data.trial)
if output(end).rejectflag(m)==0
switch cfg.output
case 'model'
dataout.trial{m}(k,:) = data.trial{m}(k,:)-output(end).residual(:,m)';
case 'residual'
dataout.trial{m}(k,:) = output(end).residual(:,m)';
end
end
end
end
case 'gbve'
ft_hastoolbox('lagextraction', 1);
ft_hastoolbox('eeglab', 1); % because the low-level code might use a specific moving average function from EEGLAB
ft_hastoolbox('cellfunction', 1);
if ~isfield(cfg, 'gbve'), cfg.gbve = []; end
cfg.gbve.NORMALIZE_DATA = ft_getopt(cfg.gbve, 'NORMALIZE_DATA', true);
cfg.gbve.CENTER_DATA = ft_getopt(cfg.gbve, 'CENTER_DATA', false);
cfg.gbve.USE_ADAPTIVE_SIGMA = ft_getopt(cfg.gbve, 'USE_ADAPTIVE_SIGMA', false);
cfg.gbve.sigma = ft_getopt(cfg.gbve, 'sigma', 0.01:0.01:0.2);
cfg.gbve.distance = ft_getopt(cfg.gbve, 'distance', 'corr2');
cfg.gbve.alpha = ft_getopt(cfg.gbve, 'alpha', [0 0.001 0.01 0.1]);
cfg.gbve.exponent = ft_getopt(cfg.gbve, 'exponent', 1);
cfg.gbve.use_maximum = ft_getopt(cfg.gbve, 'use_maximum', 1); % consider the positive going peak
cfg.gbve.show_pca = ft_getopt(cfg.gbve, 'show_pca', false);
cfg.gbve.show_trial_number = ft_getopt(cfg.gbve, 'show_trial_number', false);
cfg.gbve.verbose = ft_getopt(cfg.gbve, 'verbose', true);
cfg.gbve.disp_log = ft_getopt(cfg.gbve, 'disp_log', false);
cfg.gbve.latency = ft_getopt(cfg.gbve, 'latency', [-inf inf]);
cfg.gbve.xwin = ft_getopt(cfg.gbve, 'xwin', 1); % default is a bit of smoothing
cfg.gbve.nfold = ft_getopt(cfg.gbve, 'nfold', 5);
nchan = numel(data.label);
ntrl = numel(data.trial);
tmin = nearest(data.time{1}, cfg.gbve.latency(1));
tmax = nearest(data.time{1}, cfg.gbve.latency(2));
% initialize the struct that will contain the output parameters
dataout = removefields(data, 'cfg');
params = struct([]);
for k = 1:nchan
% preprocessing data
options = cfg.gbve;
fprintf('--- Processing channel %d\n',k);
tmp = cellrowselect(data.trial,k);
chandat = cat(1,tmp{:});
points = chandat(:,tmin:tmax);
% perform a loop across alpha values, cross validation
alphas = options.alpha;
if length(alphas) > 1 % Use Cross validation error if multiple alphas are specified
best_CVerr = -Inf;
K = cfg.gbve.nfold;
disp(['--- Running K Cross Validation (K = ',num2str(K),')']);
block_idx = fix(linspace(1, ntrl, K+1)); % K cross validation
for jj=1:length(alphas)
options.alpha = alphas(jj);
CVerr = 0;
for kk = 1:K
bidx = block_idx(kk):block_idx(kk+1);
idx = 1:ntrl;
idx(bidx) = [];
data_k = chandat(idx,:);
points_k = points(idx,:);
[order,lags] = extractlag(points_k,options);
data_reordered = data_k(order,:);
lags = lags + tmin;
[data_aligned, dum] = perform_realign(data_reordered, data.time{1}, lags);
data_aligned(~isfinite(data_aligned)) = nan;
ep_evoked = nanmean(data_aligned);
ep_evoked = ep_evoked ./ norm(ep_evoked);
data_k = chandat(bidx,:);
data_norm = sqrt(sum(data_k.^2,2));
data_k = diag(1./data_norm)*data_k;
data_k(data_norm==0,:) = 0;
for pp=1:length(bidx)
c = xcorr(ep_evoked,data_k(pp,:));
CVerr = CVerr + max(c(:));
end
end
CVerr = CVerr/ntrl;
if CVerr > best_CVerr
best_CVerr = CVerr;
best_alpha = alphas(jj);
end
end
options.alpha = best_alpha;
end
if options.use_maximum
[order, lags] = extractlag( points, options );
else
[order, lags] = extractlag( -points, options );
end
disp(['---------- Using alpha = ',num2str(options.alpha)]);
data_reordered = chandat(order,:);
lags = lags + tmin;
[data_aligned] = perform_realign(data_reordered, data.time{1}, lags );
data_aligned(~isfinite(data_aligned)) = nan;
[dum, order_inv] = sort(order);
lags_no_order = lags(order_inv);
data_aligned = data_aligned(order_inv,:);
params(k).latency = data.time{1}(lags_no_order)';
switch cfg.output
case 'model'
tmp = mat2cell(data_aligned, ones(1,size(data_aligned,1)), size(data_aligned,2))';
dataout.trial = cellrowassign(dataout.trial, tmp, k);
case 'residual'
% to be done
error('not yet implemented');
end
end
otherwise
ft_error('unsupported method');
end % switch method
dataout.params = params;
dataout.cfg = cfg;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance dataout
ft_postamble history dataout
ft_postamble savevar dataout