forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_detect_movement.m
222 lines (191 loc) · 9.33 KB
/
ft_detect_movement.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
function [cfg, movement] = ft_detect_movement(cfg, data)
% FT_SACCADE_DETECTION performs detection of movements such as saccades and
% microsaccades, but also joystick movements, from time series data over multiple
% trials. Different methods for detecting movements are implemented, which are
% described in detail below:
%
% VELOCITY2D - detects micro/saccades using a two-dimensional (2D) velocity according
% to "Engbert R, Kliegl R (2003) Vision Res 43:1035-1045". The vertical and the
% horizontal eyetracker time series (for one eye) are transformed into velocities and
% microsaccades are indentified as "outlier" eye movements that exceed a given
% threshold for velocity and duration. This method has the additional options
% cfg.velocity2D.kernel = vector 1 x nsamples, kernel to compute velocity (default = [1 1 0 -1 -1].*(data.fsample/6);
% cfg.velocity2D.demean = 'no' or 'yes', whether to apply centering correction (default = 'yes')
% cfg.velocity2D.mindur = minimum microsaccade durantion in samples (default = 3);
% cfg.velocity2D.velthres = threshold for velocity outlier detection (default = 6);
%
% CLUSTERING - detects movements according to "Otero-Millan et al., (2014) J Vis 14".
%
% Use as
% [cfg, movement] = ft_detect_movement(cfg, data)
% where the input data should be organised in a structure as obtained from the
% FT_PREPROCESSING function.
%
% The configuration can contain the following options
% cfg.method = string representing the method for movement detection
% 'velocity2D' detects microsaccades using the 2D velocity
% 'clustering' use unsupervised clustering method to detect microsaccades
% cfg.channel = Nx1 cell-array with selection of channels, see FT_CHANNELSELECTION for details, (default = 'all')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
%
% The output argument "movement" is a Nx3 matrix. The first and second columns
% specify the begining and end samples of a movement period (saccade, joystick, ...),
% and the third column contains the peak velocity/acceleration movement. The thrid
% column allows to convert movements into spike data representation, making it
% compatible with the spike toolbox functions.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_DATABROWSER, FT_DATATYPE_SPIKE
% Copyright (C) 2014, Diego Lozano-Soldevilla
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% FIXME the help mentioned the
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% ensure that the input data is valid for this function, this will also do
% backward-compatibility conversions of old data that for example was
% read from an old *.mat file
data = ft_checkdata(data, 'datatype', {'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.method = ft_getopt(cfg, 'method', 'velocity2D');
cfg.feedback = ft_getopt(cfg, 'feedback', 'yes');
if isfield(data, 'fsample')
fsample = getsubfield(data, 'fsample');
else
fsample = 1./(mean(diff(data.time{1})));
end
% set the defaults for the various microsaccade detection methods
switch cfg.method
case 'velocity2D'
% Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of
% covert attention. Vision Res 43:1035-1045.
kernel = [1 1 0 -1 -1].*(fsample/6); % this is equivalent to Engbert et al (2003) Vis Res, eqn. (1)
if ~isfield(cfg.velocity2D, 'kernel'), cfg.velocity2D.kernel = kernel; end
if ~isfield(cfg.velocity2D, 'demean'), cfg.velocity2D.demean = 'yes'; end
if ~isfield(cfg.velocity2D, 'mindur'), cfg.velocity2D.mindur = 3; end % minimum microsaccade duration in samples
if ~isfield(cfg.velocity2D, 'velthres'), cfg.velocity2D.velthres = 6; end
case 'clustering'
ft_error('not implemented yet');
% Otero-Millan J, Castro JLA, Macknik SL, Martinez-Conde S (2014)
% Unsupervised clustering method to detect microsaccades. J Vis 14.
otherwise
ft_error('unsupported option for cfg.method');
end % switch method
% select channels and trials of interest, by default this will select all channels and trials
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
data = ft_selectdata(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
% determine the size of the data
ntrial = length(data.trial);
nchan = length(data.label); % number of channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
movement = [];
ft_progress('init', cfg.feedback, 'processing trials');
% do all the computations
for i=1:ntrial
ft_progress(i/ntrial, 'finding microsaccades trial %d of %d\n', i, ntrial);
dat = data.trial{i};
nsample = size(dat,2);
switch cfg.method
case 'velocity2D'
% demean horizontal and vertical time courses
if strcmp(cfg.velocity2D.demean, 'yes')
dat = ft_preproc_polyremoval(dat, 0, 1, nsample);
end
%% eye velocity computation
% deal with padding
n = size(cfg.velocity2D.kernel,2);
pad = ceil(n/2);
dat = ft_preproc_padding(dat, 'localmean', pad);
% convolution. See Engbert et al (2003) Vis Res, eqn. (1)
if n<100
% heuristic: for large kernel the convolution is faster when done along
% the columns, weighing against the costs of doing the transposition.
% the threshold of 100 is a bit ad hoc.
vel = convn(dat, cfg.velocity2D.kernel, 'same');
else
vel = convn(dat.', cfg.velocity2D.kernel.', 'same').';
end
% cut the eges
vel = ft_preproc_padding(vel, 'remove', pad);
%% microsaccade detection
% compute velocity thresholds as in Engbert et al (2003) Vis Res, eqn. (2)
medianstd = sqrt( median(vel.^2,2) - (median(vel,2)).^2 );
% Engbert et al (2003) Vis Res, eqn. (3)
radius = cfg.velocity2D.velthres*medianstd;
% compute test criterion: ellipse equation
test = sum((vel./radius(:,ones(1,nsample))).^2,1);
sacsmp = find(test>1); % microsaccade's indexing
%% determine microsaccades per trial
% first find eye movements of n-consecutive time points
j = find(diff(sacsmp)==1);
j1 = [j; j+1];
com = intersect(j,j+1);
cut = ~ismember(j1,com);
sacidx = reshape(j1(cut),2,[]);
for k=1:size(sacidx,2)
duration = sacidx(1,k):sacidx(2,k);
if size(duration,2) >= cfg.velocity2D.mindur
% finding peak velocity by Pitagoras
begtrl = sacsmp(duration(1,1));
endtrl = sacsmp(duration(1,end));
[peakvel, smptrl] = max(sqrt(sum(vel(:,begtrl:endtrl).^2,1)));
veltrl = sacsmp(duration(1,smptrl)); % peak velocity microsaccade sample -> important for spike conversion
trlsmp = data.sampleinfo(i,1):data.sampleinfo(i,2);
begsample = trlsmp(1, begtrl); % begining microsaccade sample
endsample = trlsmp(1, endtrl); % end microsaccade sample
velsample = trlsmp(1, veltrl); % velocity peak microsaccade sample
movement(end+1,:) = [begsample endsample velsample];
end
end
case 'clustering'
ft_error('not implemented yet');
% Otero-Millan J, Castro JLA, Macknik SL, Martinez-Conde S (2014)
% Unsupervised clustering method to detect microsaccades. J Vis 14.
otherwise
ft_error('unsupported option for cfg.method');
end % switch method
end % for each trial
ft_progress('close');
% do the general cleanup and bookkeeping at the end of the function
ft_postamble provenance
ft_postamble debug
ft_postamble previous data