forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_badsegment.m
242 lines (219 loc) · 10.3 KB
/
ft_badsegment.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
function [cfg, artifact] = ft_badsegment(cfg, data)
% FT_BADSEGMENT tries to identify bad segments or trials in a MEG or EEG dataset.
% Different methods are implemented to identify bad channels, these are largely
% shared with those implemented in FT_REJECTVISUAL with the summary method.
%
% VAR, STD, MIN, MAX, MAXABS, RANGE, KURTOSIS, ZVALUE - compute the specified metric
% for each channel in each trial and check whether it exceeds the threshold.
%
% NEIGHBEXPVAR - identifies channels that cannot be explained very well by a linear
% combination of their neighbours. A general linear model is used to compute the
% explained variance. A value close to 1 means that a channel is similar to its
% neighbours, a value close to 0 indicates a "bad" channel.
%
% NEIGHBCORR - identifies channels that have low correlation with each of their
% neighbours. The rationale is that "bad" channel have inherent noise that is
% uncorrelated with other sensors.
%
% NEIGHBSTDRATIO - identifies channels that have a standard deviation which is very
% different from that of each of their neighbours. This computes the difference in
% the standard deviation of each channel to each of its neighbours, relative to that
% of the neighbours.
%
% Use as
% [cfg, artifact] = ft_badchannel(cfg, data)
% where the input data corresponds to the output from FT_PREPROCESSING.
%
% The configuration should contain
% cfg.metric = string, describes the metric that should be computed in summary mode for each channel in each trial, can be
% 'var' variance within each channel (default)
% 'std' standard deviation within each channel
% 'min' minimum value in each channel
% 'max' maximum value in each channel
% 'maxabs' maximum absolute value in each channel
% 'range' range from min to max in each channel
% 'kurtosis' kurtosis, i.e. measure of peakedness of the amplitude distribution
% 'zvalue' mean and std computed over all time and trials, per channel
% cfg.threshold = scalar, the optimal value depends on the methods and on the data characteristics
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS for details
% cfg.nbdetect = 'any', 'most', 'all', 'median', see below (default = 'median')
% cfg.feedback = 'yes' or 'no', whether to show an image of the neighbour values (default = 'no')
%
% The following options allow you to make a pre-selection
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
%
% The 'neighcorrel' and 'neighstdratio' methods implement the bad channel detection
% (more or less) according to the paper "Adding dynamics to the Human Connectome
% Project with MEG", Larson-Prior et al. https://doi.org/10.1016/j.neuroimage.2013.05.056.
%
% Most methods compute a scalar value for each channel that can simply be
% thresholded. The NEIGHBCORR and NEIGHBSTDRATIO compute a vector with a value for
% each of the neighbour of a channel. The cfg.nbdetect option allows you to specify
% whether you want to flag the channel as bad in case 'all' of its neighbours exceed
% the threshold, if 'most' exceed the threshold, or if 'any' of them exceeds the
% threshold. Note that when you specify 'any', then all channels neighbouring a bad
% channel will also be marked as bad, since they all have at least one bad neighbour.
% You can also specify 'median', in which case the threshold is applied to the median
% value over neighbours.
%
% See also FT_BADCHANNEL, FT_REJECTVISUAL, FT_REJECTARTIFACT
% Undocumented options
% cfg.thresholdside = above or below
% Copyright (C) 2021, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'required', 'metric');
% ensure that the preproc specific options are located in the cfg.preproc substructure
cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'});
% set the defaults
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all', true);
cfg.neighbours = ft_getopt(cfg, 'neighbours');
cfg.nbdetect = ft_getopt(cfg, 'nbdetect', 'median');
cfg.feedback = ft_getopt(cfg, 'feedback', 'no');
cfg.thresholdside = ft_getopt(cfg, 'thresholdside', []); % the default depends on cfg.metric, see below
if isempty(cfg.thresholdside)
if ismember(cfg.metric, {'var', 'std', 'max', 'maxabs', 'range', 'kurtosis', '1/var', 'zvalue', 'maxzvalue', 'neighbstdratio'})
% large positive values indicate an artifact, so check for values ABOVE the threshold
cfg.thresholdside = 'above';
elseif ismember(cfg.metric, {'min', 'neighbexpvar', 'neighbcorr'})
% very negative values or small positive values indicate an artifact, so check for values BELOW the threshold
cfg.thresholdside = 'below';
else
% there are also a few where one could look at either side, these require the user to make a choice
ft_error('you must specify cfg.thresholdside');
end
end
% select trials and channels of interest
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'latency', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
ntrl = length(data.trial);
nchan = length(data.label);
badsegment = false(1, ntrl);
if contains(cfg.metric, 'zvalue')
% cellmean and cellstd (see FT_DENOISE_PCA) would work instead of for-loops, but they are too memory-intensive
runsum = zeros(nchan, 1);
runss = zeros(nchan, 1);
runnum = 0;
for chan=1:ntrl
dat = preproc(data.trial{chan}, data.label, data.time{chan}, cfg.preproc);
runsum = runsum + nansum(dat, 2);
runss = runss + nansum(dat.^2, 2);
runnum = runnum + sum(isfinite(dat), 2);
end
mval = runsum./runnum;
sd = sqrt(runss./runnum - (runsum./runnum).^2);
else
mval = [];
sd = [];
end
if contains(cfg.metric, 'neighb')
cfg = ft_checkconfig(cfg, 'required', 'neighbours');
% creates a NxN Boolean matrix that describes whether channels are connected as neighbours
connectivity = channelconnectivity(cfg, data);
else
connectivity = [];
end
for trl=1:ntrl
% compute the artifact value for each channel in this trial
level = artifact_level(data.trial{trl}, cfg.metric, mval, sd, connectivity);
if isvector(level)
% find channels with a value that exceeds the threshold
switch cfg.thresholdside
case 'below'
badsegment(trl) = any(level<cfg.threshold);
case 'above'
badsegment(trl) = any(level>cfg.threshold);
end
else
% identify channels with one of their neighbours values that exceeds the threshold
for chan=1:nchan
nblevel = level(chan,:); % select this channel from the matrix
nblevel = nblevel(~isnan(nblevel)); % only select its actual neighbours
switch cfg.nbdetect
case 'all'
switch cfg.thresholdside
case 'below'
badsegment(trl) = badsegment(trl) | all(nblevel<cfg.threshold);
case 'above'
badsegment(trl) = badsegment(trl) | all(nblevel>cfg.threshold);
end % switch
case 'most'
switch cfg.thresholdside
case 'below'
badsegment(trl) = badsegment(trl) | most(nblevel<cfg.threshold);
case 'above'
badsegment(trl) = badsegment(trl) | most(nblevel>cfg.threshold);
end % switch
case 'any'
switch cfg.thresholdside
case 'below'
badsegment(trl) = badsegment(trl) | any(nblevel<cfg.threshold);
case 'above'
badsegment(trl) = badsegment(trl) | any(nblevel>cfg.threshold);
end % switch
case 'median'
switch cfg.thresholdside
case 'below'
badsegment(trl) = badsegment(trl) | nanmedian(nblevel,2)<cfg.threshold;
case 'above'
badsegment(trl) = badsegment(trl) | nanmedian(nblevel,2)>cfg.threshold;
end % switch
otherwise
ft_error('incorrect specification of cfg.nbdetect');
end
end % for each channel
end % if isvector
end % for each trial
ft_info('identified %d out of %d trials as bad\n', sum(badsegment), length(badsegment));
% keep track of bad segments
% this format is consistent with that of other artifact detection functions
artifact = data.sampleinfo(badsegment,:);
cfg.artfctdef.badsegment.artifact = artifact;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance
ft_postamble hastoolbox
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tf = most(x)
tf = sum(x(:)==true)>(numel(x)/2);