forked from AICoE/prometheus-anomaly-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
63 lines (53 loc) · 2.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""doctsring for packages."""
import datetime
import logging
import pandas
from fbprophet import Prophet
from prometheus_api_client import Metric
# Set up logging
_LOGGER = logging.getLogger(__name__)
class MetricPredictor:
"""docstring for Predictor."""
model_name = "prophet"
model_description = "Forecasted value from Prophet model"
model = None
predicted_df = None
metric = None
def __init__(self, metric, rolling_data_window_size="10d"):
"""Initialize the Metric object."""
self.metric = Metric(metric, rolling_data_window_size)
def train(self, metric_data=None, prediction_duration=15):
"""Train the Prophet model and store the predictions in predicted_df."""
prediction_freq = "1MIN"
# convert incoming metric to Metric Object
if metric_data:
# because the rolling_data_window_size is set, this df should not bloat
self.metric += Metric(metric_data)
# Don't really need to store the model, as prophet models are not retrainable
# But storing it as an example for other models that can be retrained
self.model = Prophet(
daily_seasonality=True, weekly_seasonality=True, yearly_seasonality=True
)
_LOGGER.info(
"training data range: %s - %s", self.metric.start_time, self.metric.end_time
)
# _LOGGER.info("training data end time: %s", self.metric.end_time)
_LOGGER.debug("begin training")
self.model.fit(self.metric.metric_values)
future = self.model.make_future_dataframe(
periods=int(prediction_duration),
freq=prediction_freq,
include_history=False,
)
forecast = self.model.predict(future)
forecast["timestamp"] = forecast["ds"]
forecast = forecast[["timestamp", "yhat", "yhat_lower", "yhat_upper"]]
forecast = forecast.set_index("timestamp")
self.predicted_df = forecast
_LOGGER.debug(forecast)
def predict_value(self, prediction_datetime):
"""Return the predicted value of the metric for the prediction_datetime."""
nearest_index = self.predicted_df.index.get_loc(
prediction_datetime, method="nearest"
)
return self.predicted_df.iloc[[nearest_index]]