From 4abf365a8d98e44168687c8158663000cca53644 Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 14:19:17 +0200 Subject: [PATCH 01/10] Refactor Geneformer fine-tuning to instatiate the a standalone model with configs --- examples/fine_tune_models/fine_tune_geneformer.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/examples/fine_tune_models/fine_tune_geneformer.py b/examples/fine_tune_models/fine_tune_geneformer.py index 33ba8b7b..bbaf1275 100644 --- a/examples/fine_tune_models/fine_tune_geneformer.py +++ b/examples/fine_tune_models/fine_tune_geneformer.py @@ -1,4 +1,4 @@ -from helical import GeneformerConfig, Geneformer, GeneformerFineTuningModel +from helical import GeneformerConfig, GeneformerFineTuningModel from helical.utils import get_anndata_from_hf_dataset from datasets import load_dataset import hydra @@ -6,18 +6,19 @@ @hydra.main(version_base=None, config_path="../run_models/configs", config_name="geneformer_config") def run_fine_tuning(cfg: DictConfig): - geneformer_config = GeneformerConfig(**cfg) - geneformer = Geneformer(configurer = geneformer_config) hf_dataset = load_dataset("helical-ai/yolksac_human",split="train[:5%]", trust_remote_code=True, download_mode="reuse_cache_if_exists") ann_data = get_anndata_from_hf_dataset(hf_dataset) cell_types = list(ann_data.obs["LVL1"][:10]) + label_set = set(cell_types) + + geneformer_config = GeneformerConfig(**cfg) + geneformer_fine_tune = GeneformerFineTuningModel(geneformer_config=geneformer_config, fine_tuning_head="classification", output_size=len(label_set)) - dataset = geneformer.process_data(ann_data[:10]) + dataset = geneformer_fine_tune.process_data(ann_data[:10]) dataset = dataset.add_column('cell_types', cell_types) - label_set = set(dataset["cell_types"]) class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))])) def classes_to_ids(example): @@ -26,7 +27,6 @@ def classes_to_ids(example): dataset = dataset.map(classes_to_ids, num_proc=1) - geneformer_fine_tune = GeneformerFineTuningModel(geneformer_model=geneformer, fine_tuning_head="classification", output_size=len(label_set)) geneformer_fine_tune.train(train_dataset=dataset) if __name__ == "__main__": From 74499ac2d05295afa049e9c8a860ced2e8840538 Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 14:24:47 +0200 Subject: [PATCH 02/10] Refactor Geneformer fine-tuning to instatiate the a standalone model with configs --- .../test_geneformer/test_geneformer_model.py | 8 +++-- docs/model_cards/geneformer.md | 21 ++++++----- ...Cell-Type-Classification-Fine-Tuning.ipynb | 29 ++++----------- .../models/geneformer/fine_tuning_model.py | 35 ++++++++++--------- 4 files changed, 42 insertions(+), 51 deletions(-) diff --git a/ci/tests/test_geneformer/test_geneformer_model.py b/ci/tests/test_geneformer/test_geneformer_model.py index fd6a2e9b..07d6eba2 100644 --- a/ci/tests/test_geneformer/test_geneformer_model.py +++ b/ci/tests/test_geneformer/test_geneformer_model.py @@ -177,10 +177,12 @@ def test_cls_eos_tokens_presence(self, geneformer, mock_data): def test_model_input_size(self, geneformer): assert geneformer.config["input_size"] == geneformer.configurer.model_map[geneformer.config["model_name"]]['input_size'] - def test_fine_tune_classifier_returns_correct_shape(self, geneformer, mock_data, fine_tune_mock_data): - tokenized_dataset = geneformer.process_data(mock_data, gene_names='gene_symbols') + def test_fine_tune_classifier_returns_correct_shape(self, mock_data, fine_tune_mock_data): + device = "cuda" if torch.cuda.is_available() else "cpu" + fine_tuned_model = GeneformerFineTuningModel(GeneformerConfig(device=device), fine_tuning_head="classification", output_size=1) + tokenized_dataset = fine_tuned_model.process_data(mock_data, gene_names='gene_symbols') tokenized_dataset = tokenized_dataset.add_column('labels', fine_tune_mock_data) - fine_tuned_model = GeneformerFineTuningModel(geneformer, fine_tuning_head="classification", output_size=1) + fine_tuned_model.train(train_dataset=tokenized_dataset, label='labels') assert fine_tuned_model is not None outputs = fine_tuned_model.get_outputs(tokenized_dataset) diff --git a/docs/model_cards/geneformer.md b/docs/model_cards/geneformer.md index 80ebcbb8..128f3c1c 100644 --- a/docs/model_cards/geneformer.md +++ b/docs/model_cards/geneformer.md @@ -167,7 +167,7 @@ Key improvements in v2.0: **Example Usage:** ```python -from helical.models.geneformer.model import Geneformer,GeneformerConfig +from helical import Geneformer, GeneformerConfig import anndata as ad # Example configuration @@ -197,13 +197,9 @@ print("Cancer-tuned model embeddings shape:", cancer_embeddings.shape) ## How To Fine-Tune ```python -from helical.models.geneformer.geneformer_config import Geneformer,GeneformerConfig -from helical.models.geneformer.fine_tuning_model import GeneformerFineTuningModel +from helical import GeneformerConfig, GeneformerFineTuningModel -# Create the Geneformer model with relevant configs -model_config = GeneformerConfig(model_name="gf-12L-95M-i4096", batch_size=10) -geneformer = Geneformer(configurer = model_config) - +# Prepare the data ann_data = ad.read_h5ad("dataset.h5ad") # Process the data for training @@ -223,10 +219,17 @@ for i in range(len(cell_types)): dataset = dataset.add_column('cell_types', cell_types) # Create the fine-tuning model -geneformer_fine_tune = GeneformerFineTuningModel(geneformer_model=geneformer, fine_tuning_head="classification", label="cell_types", output_size=len(label_set)) +model_config = GeneformerConfig(model_name="gf-12L-95M-i4096", batch_size=10) +geneformer_fine_tune = GeneformerFineTuningModel(geneformer_config=model_config, fine_tuning_head="classification", label="cell_types", output_size=len(label_set)) # Fine-tune -geneformer_fine_tune.train(train_dataset=dataset["train"]) +geneformer_fine_tune.train(train_dataset=dataset) + +# Get outputs of the fine-tuned model +outputs = geneformer_fine_tune.get_outputs(dataset) + +# Get the embeddings of the fine-tuned model +embeddings = geneformer_fine_tune.get_embeddings(dataset) ``` diff --git a/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb b/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb index 1f119afc..7dfbe0b8 100644 --- a/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb +++ b/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb @@ -130,7 +130,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Load the desired pretrained Geneformer model and desired configs" + "- Choose the desired configs\n", + "- Define the Geneformer Fine-Tuning Model from the Helical package which appends a fine-tuning head automatically from the list of available heads\n", + "- Define the task type, which in this case is classification\n", + "- Defined the output size, which is the number of unique labels for classification" ] }, { @@ -140,7 +143,7 @@ "outputs": [], "source": [ "geneformer_config = GeneformerConfig(device=device, batch_size=10, model_name=\"gf-6L-30M-i2048\")\n", - "geneformer = Geneformer(configurer = geneformer_config)" + "geneformer_fine_tune = GeneformerFineTuningModel(geneformer_config=geneformer_config, fine_tuning_head=\"classification\", output_size=len(label_set))" ] }, { @@ -156,8 +159,8 @@ "metadata": {}, "outputs": [], "source": [ - "geneformer_train_dataset = geneformer.process_data(train_dataset)\n", - "geneformer_test_dataset = geneformer.process_data(test_dataset)" + "geneformer_train_dataset = geneformer_fine_tune.process_data(train_dataset)\n", + "geneformer_test_dataset = geneformer_fine_tune.process_data(test_dataset)" ] }, { @@ -177,24 +180,6 @@ "geneformer_test_dataset = geneformer_test_dataset.add_column(\"LVL1\", cell_types_test)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define the Geneformer Fine-Tuning Model from the Helical package which appends a fine-tuning head automatically from the list of available heads\n", - "- Define the task type, which in this case is classification\n", - "- Defined the output size, which is the number of unique labels for classification" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "geneformer_fine_tune = GeneformerFineTuningModel(geneformer_model=geneformer, fine_tuning_head=\"classification\", output_size=len(label_set))" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/helical/models/geneformer/fine_tuning_model.py b/helical/models/geneformer/fine_tuning_model.py index e972ffe7..b37b12b9 100644 --- a/helical/models/geneformer/fine_tuning_model.py +++ b/helical/models/geneformer/fine_tuning_model.py @@ -1,6 +1,6 @@ from typing import Literal, Optional from helical.models.base_models import HelicalBaseFineTuningHead, HelicalBaseFineTuningModel -from helical.models.geneformer import Geneformer +from helical.models.geneformer import Geneformer, GeneformerConfig import torch from torch import optim from torch.nn.modules import loss @@ -13,14 +13,14 @@ logger = logging.getLogger(__name__) -class GeneformerFineTuningModel(HelicalBaseFineTuningModel): +class GeneformerFineTuningModel(HelicalBaseFineTuningModel, Geneformer): """GeneformerFineTuningModel Fine-tuning model for the Geneformer model. Parameters ---------- - geneformer_model : Geneformer - The initialised Geneformer model to fine-tune. + geneformer_config : GeneformerConfig + The Geneformer configs to fine-tune, the same as instantiating the standard Geneformer model. fine_tuning_head : Literal["classification", "regression"] | HelicalBaseFineTuningHead The fine-tuning head that is appended to the model. This can either be a string (options available: "classification", "regression") specifying the task or a custom fine-tuning head inheriting from HelicalBaseFineTuningHead. output_size : Optional[int] @@ -35,18 +35,19 @@ class GeneformerFineTuningModel(HelicalBaseFineTuningModel): get_outputs(dataset: Dataset, silent = False) Get outputs from the fine-tuned model on the given processed dataset. """ - def __init__(self, - geneformer_model: Geneformer, + def __init__(self, + geneformer_config: GeneformerConfig, fine_tuning_head: Literal["classification", "regression"] | HelicalBaseFineTuningHead, output_size: Optional[int]=None): - super().__init__(fine_tuning_head, output_size) - self.config = geneformer_model.config - self.emb_mode = geneformer_model.emb_mode - self.pad_token_id = geneformer_model.pad_token_id - self.device = geneformer_model.device - self.gene_token_dict = geneformer_model.gene_token_dict - self.geneformer_model = geneformer_model.model + HelicalBaseFineTuningModel.__init__(self, fine_tuning_head, output_size) + Geneformer.__init__(self, geneformer_config) + + # self.config = geneformer_model.config + # self.emb_mode = geneformer_model.emb_mode + # self.pad_token_id = geneformer_model.pad_token_id + # self.device = geneformer_model.device + # self.gene_token_dict = geneformer_model.gene_token_dict self.fine_tuning_head.set_dim_size(self.config["embsize"]) def _forward(self, input_ids: torch.Tensor, attention_mask_minibatch: torch.Tensor) -> torch.Tensor: @@ -65,7 +66,7 @@ def _forward(self, input_ids: torch.Tensor, attention_mask_minibatch: torch.Tens torch.Tensor The output tensor of the fine-tuning model. """ - outputs = self.geneformer_model(input_ids=input_ids, attention_mask=attention_mask_minibatch) + outputs = self.model(input_ids=input_ids, attention_mask=attention_mask_minibatch) final_layer = outputs.hidden_states[-1] cls_seq = final_layer[:, 0, :] final = self.fine_tuning_head(cls_seq) @@ -111,7 +112,7 @@ def train( """ - model_input_size = get_model_input_size(self.geneformer_model) + model_input_size = get_model_input_size(self.model) cls_present = any("" in key for key in self.gene_token_dict.keys()) eos_present = any("" in key for key in self.gene_token_dict.keys()) @@ -150,7 +151,7 @@ def train( if freeze_layers > 0: logger.info(f"Freezing the first {freeze_layers} encoder layers of the Geneformer model during fine-tuning.") - frozen_layers = self.geneformer_model.bert.encoder.layer[:freeze_layers] + frozen_layers = self.model.bert.encoder.layer[:freeze_layers] for module in frozen_layers: for param in module.parameters(): @@ -239,7 +240,7 @@ def get_outputs( np.array The predicted labels in the form of a numpy array """ - model_input_size = get_model_input_size(self.geneformer_model) + model_input_size = get_model_input_size(self.model) self.to(self.device) dataset_length = len(dataset) From 73857ea4a42f67a984988bccb779e21fc1133159 Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 14:34:28 +0200 Subject: [PATCH 03/10] Refactor HyenaDNA fine-tuning to be standalone --- .../test_hyena_dna_fine_tuning.py | 17 +++++++------ examples/notebooks/HyenaDNA-Fine-Tuning.ipynb | 24 ++++--------------- .../models/geneformer/fine_tuning_model.py | 7 +----- helical/models/hyena_dna/fine_tuning_model.py | 22 ++++++++--------- 4 files changed, 24 insertions(+), 46 deletions(-) diff --git a/ci/tests/test_hyena_dna/test_hyena_dna_fine_tuning.py b/ci/tests/test_hyena_dna/test_hyena_dna_fine_tuning.py index d3d7f909..e76b9f5f 100644 --- a/ci/tests/test_hyena_dna/test_hyena_dna_fine_tuning.py +++ b/ci/tests/test_hyena_dna/test_hyena_dna_fine_tuning.py @@ -1,24 +1,23 @@ import pytest import torch -from helical import HyenaDNA, HyenaDNAConfig, HyenaDNAFineTuningModel +from helical import HyenaDNAConfig, HyenaDNAFineTuningModel class TestHyenaDNAFineTuning: @pytest.fixture(params=["hyenadna-tiny-1k-seqlen", "hyenadna-tiny-1k-seqlen-d256"]) - def hyenaDNA(self, request): + def hyenaDNAFineTune(self, request): self.device = "cuda" if torch.cuda.is_available() else "cpu" config = HyenaDNAConfig(model_name=request.param, batch_size=1, device=self.device) - return HyenaDNA(config) + return HyenaDNAFineTuningModel(hyena_config=config, fine_tuning_head="classification", output_size=1) @pytest.fixture - def mock_data(self, hyenaDNA): + def mock_data(self, hyenaDNAFineTune): input_sequences = ["AAAA", "CCCC", "TTTT", "ACGT", "ACGN", "BHIK", "ANNT"] labels = [0, 0, 0, 0, 0, 0, 0] - tokenized_sequences = hyenaDNA.process_data(input_sequences) + tokenized_sequences = hyenaDNAFineTune.process_data(input_sequences) return tokenized_sequences, labels - def test_output_dimensionality_of_fine_tuned_model(self, hyenaDNA, mock_data): + def test_output_dimensionality_of_fine_tuned_model(self, hyenaDNAFineTune, mock_data): input_sequences, labels = mock_data - hyena_dna_fine_tune = HyenaDNAFineTuningModel(hyena_model=hyenaDNA, fine_tuning_head="classification", output_size=1) - hyena_dna_fine_tune.train(train_input_data=input_sequences, train_labels=labels, validation_input_data=input_sequences, validation_labels=labels) - outputs = hyena_dna_fine_tune.get_outputs(input_sequences) + hyenaDNAFineTune.train(train_input_data=input_sequences, train_labels=labels, validation_input_data=input_sequences, validation_labels=labels) + outputs = hyenaDNAFineTune.get_outputs(input_sequences) assert outputs.shape == (len(input_sequences), 1) \ No newline at end of file diff --git a/examples/notebooks/HyenaDNA-Fine-Tuning.ipynb b/examples/notebooks/HyenaDNA-Fine-Tuning.ipynb index e219d227..19415e2e 100644 --- a/examples/notebooks/HyenaDNA-Fine-Tuning.ipynb +++ b/examples/notebooks/HyenaDNA-Fine-Tuning.ipynb @@ -151,7 +151,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Define our HyenaDNA model and configs" + "### Define our HyenaDNA fine-tuning model and configs" ] }, { @@ -161,7 +161,7 @@ "outputs": [], "source": [ "hyena_config = HyenaDNAConfig(model_name=\"hyenadna-tiny-1k-seqlen-d256\", batch_size=10, device=device)\n", - "hyena = HyenaDNA(configurer=hyena_config)" + "hyena_fine_tune = HyenaDNAFineTuningModel(hyena_config, fine_tuning_head=\"classification\", output_size=len(np.unique(dataset_train[\"label\"])))" ] }, { @@ -186,24 +186,8 @@ } ], "source": [ - "train_dataset = hyena.process_data(dataset_train[\"sequence\"])\n", - "test_dataset = hyena.process_data(dataset_test[\"sequence\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define our fine-tuning model and task type" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "hyena_fine_tune = HyenaDNAFineTuningModel(hyena, fine_tuning_head=\"classification\", output_size=len(np.unique(dataset_train[\"label\"])))" + "train_dataset = hyena_fine_tune.process_data(dataset_train[\"sequence\"])\n", + "test_dataset = hyena_fine_tune.process_data(dataset_test[\"sequence\"])" ] }, { diff --git a/helical/models/geneformer/fine_tuning_model.py b/helical/models/geneformer/fine_tuning_model.py index b37b12b9..720cf4e0 100644 --- a/helical/models/geneformer/fine_tuning_model.py +++ b/helical/models/geneformer/fine_tuning_model.py @@ -42,12 +42,7 @@ def __init__(self, HelicalBaseFineTuningModel.__init__(self, fine_tuning_head, output_size) Geneformer.__init__(self, geneformer_config) - - # self.config = geneformer_model.config - # self.emb_mode = geneformer_model.emb_mode - # self.pad_token_id = geneformer_model.pad_token_id - # self.device = geneformer_model.device - # self.gene_token_dict = geneformer_model.gene_token_dict + self.fine_tuning_head.set_dim_size(self.config["embsize"]) def _forward(self, input_ids: torch.Tensor, attention_mask_minibatch: torch.Tensor) -> torch.Tensor: diff --git a/helical/models/hyena_dna/fine_tuning_model.py b/helical/models/hyena_dna/fine_tuning_model.py index 2090f8b6..902877da 100644 --- a/helical/models/hyena_dna/fine_tuning_model.py +++ b/helical/models/hyena_dna/fine_tuning_model.py @@ -1,6 +1,6 @@ from typing import Literal, Optional from helical.models.base_models import HelicalBaseFineTuningHead, HelicalBaseFineTuningModel -from helical.models.hyena_dna import HyenaDNA +from helical.models.hyena_dna import HyenaDNA, HyenaDNAConfig from torch import optim import torch from torch.nn.modules import loss @@ -13,15 +13,15 @@ logger = logging.getLogger(__name__) -class HyenaDNAFineTuningModel(HelicalBaseFineTuningModel): +class HyenaDNAFineTuningModel(HelicalBaseFineTuningModel, HyenaDNA): """HyenaDNA fine-tuning model. This class represents the HyenaDNA fine-tuning model, which is a long-range genomic foundation model pretrained on context lengths of up to 1 million tokens at single nucleotide resolution. Parameters ---------- - hyena_model : HelicalDNAModel - The HyenaDNA model to be fine-tuned. + hyena_config : HyenaDNAConfig + The HyenaDNA configs for fine-tuning model, the same configs that would be used to instantiate the standard HyenaDNA model. fine_tuning_head : Literal["classification", "regression"]|HelicalBaseFineTuningHead The fine-tuning head that is appended to the model. This can either be a string (options available: "classification", "regression") specifying the task or a custom fine-tuning head inheriting from HelicalBaseFineTuningHead. output_size : Optional[int], default = None @@ -36,16 +36,16 @@ class HyenaDNAFineTuningModel(HelicalBaseFineTuningModel): """ def __init__( self, - hyena_model: HyenaDNA, + hyena_config: HyenaDNAConfig, fine_tuning_head: Literal["classification"]|HelicalBaseFineTuningHead, output_size: Optional[int]=None): - super().__init__(fine_tuning_head, output_size) - self.config = hyena_model.config - self.hyena_model = hyena_model.model + HelicalBaseFineTuningModel.__init__(self, fine_tuning_head, output_size) + HyenaDNA.__init__(self, hyena_config) + self.fine_tuning_head.set_dim_size(self.config["d_model"]) def _forward(self, x): - x = self.hyena_model(x) + x = self.model(x) x = torch.mean(x, dim=1) x = self.fine_tuning_head(x) return x @@ -94,7 +94,7 @@ def train( validation_data_loader = DataLoader(validation_input_data, batch_size=self.config["batch_size"]) self.to(self.config["device"]) - self.hyena_model.train() + self.model.train() self.fine_tuning_head.train() optimizer = optimizer(self.parameters(), **optimizer_params) @@ -156,7 +156,7 @@ def get_outputs( data_loader = DataLoader(input_data, batch_size=self.config["batch_size"]) self.to(self.config["device"]) - self.hyena_model.eval() + self.model.eval() self.fine_tuning_head.eval() batch_loop = tqdm(data_loader) From 47a15d2fefa7c7b0a608ccb2df6ce41c1b3d1e3e Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 14:44:11 +0200 Subject: [PATCH 04/10] Update docs --- docs/model_cards/geneformer.md | 6 +++--- docs/model_cards/hyenadna.md | 27 ++++++++++++++++++++++++++- 2 files changed, 29 insertions(+), 4 deletions(-) diff --git a/docs/model_cards/geneformer.md b/docs/model_cards/geneformer.md index 128f3c1c..5415c03e 100644 --- a/docs/model_cards/geneformer.md +++ b/docs/model_cards/geneformer.md @@ -202,9 +202,6 @@ from helical import GeneformerConfig, GeneformerFineTuningModel # Prepare the data ann_data = ad.read_h5ad("dataset.h5ad") -# Process the data for training -dataset = geneformer.process_data(ann_data) - # Get the desired label class cell_types = list(ann_data.obs.cell_type) @@ -222,6 +219,9 @@ dataset = dataset.add_column('cell_types', cell_types) model_config = GeneformerConfig(model_name="gf-12L-95M-i4096", batch_size=10) geneformer_fine_tune = GeneformerFineTuningModel(geneformer_config=model_config, fine_tuning_head="classification", label="cell_types", output_size=len(label_set)) +# Process the data for training +dataset = geneformer_fine_tune.process_data(ann_data) + # Fine-tune geneformer_fine_tune.train(train_dataset=dataset) diff --git a/docs/model_cards/hyenadna.md b/docs/model_cards/hyenadna.md index 94ce50ce..58b42df5 100644 --- a/docs/model_cards/hyenadna.md +++ b/docs/model_cards/hyenadna.md @@ -97,7 +97,7 @@ **Example Usage:** ```python -from helical.models.hyena_dna.model import HyenaDNA, HyenaDNAConfig +from helical import HyenaDNA, HyenaDNAConfig hyena_config = HyenaDNAConfig(model_name = "hyenadna-tiny-1k-seqlen-d256") model = HyenaDNA(configurer = hyena_config) @@ -108,6 +108,31 @@ embeddings = model.get_embeddings(tokenized_sequence) print(embeddings.shape) ``` +## How to Fine-Tune +```python +from datasets import load_dataset +from helical import HyenaDNAConfig, HyenaDNAFineTuningModel +import torch + +device = "cuda" if torch.cuda.is_available() else "cpu" + +# Load a Hugging Face dataset and task type +ds = load_dataset("dataset", "task") + +# Define the desired configs +config = HyenaDNAConfig(device=device, batch_size=10) + +# Define the fine-tuning model with the configs we instantiated above +hyena_fine_tune = HyenaDNAFineTuningModel(config, "classification", number_unique_outputs) + +# Prepare the sequences for input to the model +input_dataset = hyena_fine_tune.process_data(ds["train"]["sequence"]) + +# train the fine-tuning model on some downstream task +hyena_fine_tune.train(input_dataset, ds["train"]["label"]) + +``` + ## Citation @article{nguyen2023hyenadna, From 044f10fe6a6f36ade8b0777c16f5bc5c79861321 Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 14:58:46 +0200 Subject: [PATCH 05/10] Refactor scGPT fine-tuning to be standalone --- ci/tests/test_scgpt/test_scgpt_model.py | 6 ++-- docs/model_cards/scgpt.md | 25 ++++++++--------- examples/fine_tune_models/fine_tune_scgpt.py | 13 ++++----- ...Cell-Type-Classification-Fine-Tuning.ipynb | 28 ++++--------------- helical/models/scgpt/fine_tuning_model.py | 26 ++++++++--------- 5 files changed, 39 insertions(+), 59 deletions(-) diff --git a/ci/tests/test_scgpt/test_scgpt_model.py b/ci/tests/test_scgpt/test_scgpt_model.py index edb04399..c9ba15dc 100644 --- a/ci/tests/test_scgpt/test_scgpt_model.py +++ b/ci/tests/test_scgpt/test_scgpt_model.py @@ -1,4 +1,4 @@ -from helical.models.scgpt.model import scGPT +from helical.models.scgpt.model import scGPT, scGPTConfig from helical.models.scgpt.fine_tuning_model import scGPTFineTuningModel from anndata import AnnData from helical.models.scgpt.tokenizer import GeneVocab @@ -110,9 +110,9 @@ def test_ensure_data_validity__no_error(self, data): assert "total_counts" in data.obs def test_fine_tune_classification_returns_correct_shape(self): - tokenized_dataset = self.scgpt.process_data(self.data) labels = list([0]) - fine_tuned_model = scGPTFineTuningModel(self.scgpt, fine_tuning_head="classification", output_size=1) + fine_tuned_model = scGPTFineTuningModel(scGPTConfig(), fine_tuning_head="classification", output_size=1) + tokenized_dataset = fine_tuned_model.process_data(self.data) fine_tuned_model.train(train_input_data=tokenized_dataset, train_labels=labels) assert fine_tuned_model is not None outputs = fine_tuned_model.get_outputs(tokenized_dataset) diff --git a/docs/model_cards/scgpt.md b/docs/model_cards/scgpt.md index 2057226f..4378b0fd 100644 --- a/docs/model_cards/scgpt.md +++ b/docs/model_cards/scgpt.md @@ -107,31 +107,30 @@ print(embeddings.shape) ## How To Fine-Tune ```python -from helical.models.scgpt.fine_tuning_model import scGPTFineTuningModel -from helical.models.scgpt.model import scGPT,scGPTConfig +from helical import scGPTFineTuningModel, scGPTConfig -# Create the Geneformer model with relevant configs -scgpt_config=scGPTConfig(batch_size=10) -scgpt = scGPT(configurer=scgpt_config) - +# Load the desired dataset adata = ad.read_h5ad("dataset.h5ad") -# Process the data for training -data = scgpt.process_data(adata) - # Get the desired label class cell_types = list(ann_data.obs.cell_type) -# Create a dictionary mapping the classes to unique integers for training +# Get unique labels label_set = set(cell_types) + +# Create the fine-tuning model with the relevant configs +scgpt_config=scGPTConfig(batch_size=10) +scgpt_fine_tune = scGPTFineTuningModel(scGPT_config=scgpt_config, fine_tuning_head="classification", output_size=len(label_set)) + +# Process the data for training +data = scgpt_fine_tune.process_data(adata) + +# Create a dictionary mapping the classes to unique integers for training class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))])) for i in range(len(cell_types)): cell_types[i] = class_id_dict[cell_types[i]] -# Create the fine-tuning model -scgpt_fine_tune = scGPTFineTuningModel(scGPT_model=scgpt, fine_tuning_head="classification", output_size=len(label_set)) - # Fine-tune scgpt_fine_tune.train(train_input_data=dataset, train_labels=cell_types) ``` diff --git a/examples/fine_tune_models/fine_tune_scgpt.py b/examples/fine_tune_models/fine_tune_scgpt.py index ddc1ce33..b7791b7e 100644 --- a/examples/fine_tune_models/fine_tune_scgpt.py +++ b/examples/fine_tune_models/fine_tune_scgpt.py @@ -7,21 +7,20 @@ @hydra.main(version_base=None, config_path="../run_models/configs", config_name="scgpt_config") def run_fine_tuning(cfg: DictConfig): - scgpt_config=scGPTConfig(**cfg) - scgpt = scGPT(configurer=scgpt_config) - hf_dataset = load_dataset("helical-ai/yolksac_human",split="train[:5%]", trust_remote_code=True, download_mode="reuse_cache_if_exists") ann_data = get_anndata_from_hf_dataset(hf_dataset) - dataset = scgpt.process_data(ann_data[:10]) - cell_types = ann_data.obs["LVL1"][:10].tolist() - label_set = set(cell_types) + + scgpt_config=scGPTConfig(**cfg) + scgpt_fine_tune = scGPTFineTuningModel(scGPT_config=scgpt_config, fine_tuning_head="classification", output_size=len(label_set)) + + dataset = scgpt_fine_tune.process_data(ann_data[:10]) + class_id_dict = {label: i for i, label in enumerate(label_set)} cell_types = [class_id_dict[cell] for cell in cell_types] - scgpt_fine_tune = scGPTFineTuningModel(scGPT_model=scgpt, fine_tuning_head="classification", output_size=len(label_set)) scgpt_fine_tune.train(train_input_data=dataset, train_labels=cell_types) if __name__ == "__main__": diff --git a/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb b/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb index 7dfbe0b8..ef6d3989 100644 --- a/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb +++ b/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb @@ -21,7 +21,7 @@ "outputs": [], "source": [ "from helical.utils import get_anndata_from_hf_dataset\n", - "from helical import Geneformer, GeneformerConfig, GeneformerFineTuningModel, scGPT, scGPTConfig, scGPTFineTuningModel, UCE, UCEConfig, UCEFineTuningModel\n", + "from helical import GeneformerConfig, GeneformerFineTuningModel, scGPTConfig, scGPTFineTuningModel\n", "import torch\n", "import numpy as np\n", "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report\n", @@ -307,7 +307,7 @@ "metadata": {}, "source": [ "Now the same procedure with scGPT\n", - "- Loading the model and setting desired configs" + "- Loading the fine-tuning model and setting desired configs" ] }, { @@ -316,8 +316,8 @@ "metadata": {}, "outputs": [], "source": [ - "scgpt_config=scGPTConfig(batch_size=20, device=device)\n", - "scgpt = scGPT(configurer=scgpt_config)" + "scgpt_config=scGPTConfig(batch_size=10, device=device)\n", + "scgpt_fine_tune = scGPTFineTuningModel(scGPT_config=scgpt_config, fine_tuning_head=\"classification\", output_size=len(label_set))" ] }, { @@ -334,24 +334,8 @@ "metadata": {}, "outputs": [], "source": [ - "dataset = scgpt.process_data(train_dataset, gene_names = \"gene_name\")\n", - "validation_dataset = scgpt.process_data(test_dataset, gene_names = \"gene_name\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define the scGPT fine-tuning model with the desired head and number of classes" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "scgpt_fine_tune = scGPTFineTuningModel(scGPT_model=scgpt, fine_tuning_head=\"classification\", output_size=len(label_set))" + "dataset = scgpt_fine_tune.process_data(train_dataset, gene_names = \"gene_name\")\n", + "validation_dataset = scgpt_fine_tune.process_data(test_dataset, gene_names = \"gene_name\")" ] }, { diff --git a/helical/models/scgpt/fine_tuning_model.py b/helical/models/scgpt/fine_tuning_model.py index 769bf6ef..22081501 100644 --- a/helical/models/scgpt/fine_tuning_model.py +++ b/helical/models/scgpt/fine_tuning_model.py @@ -8,20 +8,20 @@ from tqdm import tqdm from transformers import get_scheduler from helical.models.base_models import HelicalBaseFineTuningHead -from helical.models.scgpt import scGPT +from helical.models.scgpt import scGPT, scGPTConfig from helical.models.base_models import HelicalBaseFineTuningModel import logging import numpy as np logger = logging.getLogger(__name__) -class scGPTFineTuningModel(HelicalBaseFineTuningModel): +class scGPTFineTuningModel(HelicalBaseFineTuningModel, scGPT): """Fine-tuning model for the scGPT model. Parameters ---------- - scgpt_model : scGPT - The initialised scGPT model to fine-tune. + scgpt_config : scGPTConfig + The scGPT configs for fine-tuning model, the same configs that would be used to instantiate the standard scGPT model. fine_tuning_head : Literal["classification", "regression"] | HelicalBaseFineTuningHead The fine-tuning head that is appended to the model. This can either be a string (options available: "classification", "regression") specifying the task or a custom fine-tuning head inheriting from HelicalBaseFineTuningHead. output_size : Optional[int] @@ -38,14 +38,12 @@ class scGPTFineTuningModel(HelicalBaseFineTuningModel): """ def __init__(self, - scGPT_model: scGPT, + scGPT_config: scGPTConfig, fine_tuning_head: Literal["classification"] | HelicalBaseFineTuningHead, output_size: Optional[int]=None): + HelicalBaseFineTuningModel.__init__(self, fine_tuning_head, output_size) + scGPT.__init__(self, scGPT_config) - super().__init__(fine_tuning_head, output_size) - self.config = scGPT_model.config - self.vocab = scGPT_model.vocab - self.scgpt_model = scGPT_model.model self.fine_tuning_head.set_dim_size(self.config["embsize"]) def _forward(self, @@ -75,7 +73,7 @@ def _forward(self, torch.Tensor The output tensor of the fine-tuning model. """ - embeddings = self.scgpt_model._encode( + embeddings = self.model._encode( input_gene_ids, data_dict["expr"].to(device), src_key_padding_mask=src_key_padding_mask, @@ -125,7 +123,7 @@ def train( e.g. lr_scheduler_params = { 'name': 'linear', 'num_warmup_steps': 0, 'num_training_steps': 5 } """ - device = next(self.scgpt_model.parameters()).device + device = next(self.model.parameters()).device try: use_batch_labels = train_input_data.batch_ids is not None @@ -163,7 +161,7 @@ def train( ) self.to(device) - self.scgpt_model.train() + self.model.train() self.fine_tuning_head.train() optimizer = optimizer(self.parameters(), **optimizer_params) @@ -232,9 +230,9 @@ def get_outputs( np.ndarray The outputs of the fine-tuned model. """ - device = next(self.scgpt_model.parameters()).device + device = next(self.model.parameters()).device self.to(device) - self.scgpt_model.eval() + self.model.eval() self.fine_tuning_head.eval() try: use_batch_labels = dataset.batch_ids is not None From ab53dbe58373abc2d1dfe0241e227033636dac15 Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 15:05:28 +0200 Subject: [PATCH 06/10] Refactor UCE fine-tuning to be standalone --- docs/model_cards/uce.md | 20 ++++++------- helical/models/uce/fine_tuning_model.py | 38 ++++++++++++------------- 2 files changed, 28 insertions(+), 30 deletions(-) diff --git a/docs/model_cards/uce.md b/docs/model_cards/uce.md index 4d6f0e6f..3fd07d26 100644 --- a/docs/model_cards/uce.md +++ b/docs/model_cards/uce.md @@ -107,31 +107,31 @@ print(embeddings.shape) ## How To Fine-Tune ```python -from helical.models.uce.model import UCE, UCEConfig -from helical.models.uce.fine_tuning_model import UCEFineTuningModel +from helical import UCEConfig, UCEFineTuningModel import anndata as ad -configurer=UCEConfig(batch_size=10) -uce = UCE(configurer=configurer) - +# Load the data ann_data = ad.read_h5ad("dataset.h5ad") +# Get unique output labels +label_set = set(cell_types) + +# Create the fine-tuning model with the desired configs +configurer=UCEConfig(batch_size=10) +uce_fine_tune = UCEFineTuningModel(uce_config=configurer, fine_tuning_head="classification", output_size=len(label_set)) + # Process the data for training -dataset = uce.process_data(ann_data) +dataset = uce_fine_tune.process_data(ann_data) # Get the desired label class cell_types = list(ann_data.obs.cell_type) # Create a dictionary mapping the classes to unique integers for training -label_set = set(cell_types) class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))])) for i in range(len(cell_types)): cell_types[i] = class_id_dict[cell_types[i]] -# Create the fine-tuning model -uce_fine_tune = UCEFineTuningModel(uce_model=uce, fine_tuning_head="classification", output_size=len(label_set)) - # Fine-tune uce_fine_tune.train(train_input_data=dataset, train_labels=cell_types) diff --git a/helical/models/uce/fine_tuning_model.py b/helical/models/uce/fine_tuning_model.py index 1c687955..ab126743 100644 --- a/helical/models/uce/fine_tuning_model.py +++ b/helical/models/uce/fine_tuning_model.py @@ -6,7 +6,7 @@ from torch.utils.data import DataLoader from helical.models.base_models import HelicalBaseFineTuningHead from helical.models.base_models import HelicalBaseFineTuningModel -from helical.models.uce import UCE +from helical.models.uce import UCE, UCEConfig from typing import Literal, Optional from tqdm import tqdm from transformers import get_scheduler @@ -14,14 +14,14 @@ logger = logging.getLogger(__name__) -class UCEFineTuningModel(HelicalBaseFineTuningModel): +class UCEFineTuningModel(HelicalBaseFineTuningModel, UCE): """ Fine-tuning model for the UCE model. Parameters ---------- - uce_model : UCE - The initialised UCE model to fine-tune. + uce_config : UCE + The UCE configs for fine-tuning model, the same configs that would be used to instantiate the standard UCE model. fine_tuning_head : Literal["classification", "regression"] | HelicalBaseFineTuningHead The fine-tuning head that is appended to the model. This can either be a string (options available: "classification", "regression") specifying the task or a custom fine-tuning head inheriting from HelicalBaseFineTuningHead. output_size : Optional[int] @@ -38,15 +38,13 @@ class UCEFineTuningModel(HelicalBaseFineTuningModel): """ def __init__(self, - uce_model: UCE, + uce_config: UCEConfig, fine_tuning_head: Literal["classification"] | HelicalBaseFineTuningHead, output_size: Optional[int]=None): - super().__init__(fine_tuning_head, output_size) - self.config = uce_model.config - self.uce_model = uce_model.model - self.device = uce_model.device - self.accelerator = uce_model.accelerator + HelicalBaseFineTuningModel.__init__(self, fine_tuning_head, output_size) + UCE.__init__(self, uce_config) + self.fine_tuning_head.set_dim_size(self.config["embsize"]) def _forward(self, batch_sentences: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: @@ -65,7 +63,7 @@ def _forward(self, batch_sentences: torch.Tensor, mask: torch.Tensor) -> torch.T torch.Tensor The output tensor of the fine-tuning model. """ - _, embeddings = self.uce_model.forward(batch_sentences, mask=mask) + _, embeddings = self.model.forward(batch_sentences, mask=mask) if self.accelerator is not None: self.accelerator.wait_for_everyone() embeddings = self.accelerator.gather_for_metrics((embeddings)) @@ -138,7 +136,7 @@ def train( if validation_input_data is not None: validation_dataloader = self.accelerator.prepare(validation_dataloader) - self.uce_model.train() + self.model.train() self.fine_tuning_head.train() # disable progress bar if not the main process @@ -165,9 +163,9 @@ def train( batch_sentences, mask, idxs = batch[0], batch[1], batch[2] batch_sentences = batch_sentences.permute(1, 0) if self.config["multi_gpu"]: - batch_sentences = self.uce_model.module.pe_embedding(batch_sentences.long()) + batch_sentences = self.model.module.pe_embedding(batch_sentences.long()) else: - batch_sentences = self.uce_model.pe_embedding(batch_sentences.long()) + batch_sentences = self.model.pe_embedding(batch_sentences.long()) batch_sentences = torch.nn.functional.normalize(batch_sentences, dim=2) # normalize token outputs output = self._forward(batch_sentences, mask=mask) labels = torch.tensor(train_labels[batch_count: batch_count + self.config["batch_size"]], device=self.device) @@ -195,9 +193,9 @@ def train( batch_sentences, mask, idxs = validation_data[0], validation_data[1], validation_data[2] batch_sentences = batch_sentences.permute(1, 0) if self.config["multi_gpu"]: - batch_sentences = self.uce_model.module.pe_embedding(batch_sentences.long()) + batch_sentences = self.model.module.pe_embedding(batch_sentences.long()) else: - batch_sentences = self.uce_model.pe_embedding(batch_sentences.long()) + batch_sentences = self.model.pe_embedding(batch_sentences.long()) batch_sentences = torch.nn.functional.normalize(batch_sentences, dim=2) # normalize token outputs output = self._forward(batch_sentences, mask=mask) val_labels = torch.tensor(validation_labels[validation_batch_count: validation_batch_count + self.config["batch_size"]], device=self.device) @@ -206,7 +204,7 @@ def train( count += 1.0 testing_loop.set_postfix({"val_loss": val_loss/count}) logger.info(f"Fine-Tuning Complete. Epochs: {epochs}") - self.uce_model.eval() + self.model.eval() self.fine_tuning_head.eval() def get_outputs( @@ -239,7 +237,7 @@ def get_outputs( if self.accelerator is not None: dataloader = self.accelerator.prepare(dataloader) - self.uce_model.eval() + self.model.eval() self.fine_tuning_head.eval() testing_loop = tqdm(dataloader, desc="Fine-Tuning Validation") @@ -248,9 +246,9 @@ def get_outputs( batch_sentences, mask, idxs = validation_data[0], validation_data[1], validation_data[2] batch_sentences = batch_sentences.permute(1, 0) if self.config["multi_gpu"]: - batch_sentences = self.uce_model.module.pe_embedding(batch_sentences.long()) + batch_sentences = self.model.module.pe_embedding(batch_sentences.long()) else: - batch_sentences = self.uce_model.pe_embedding(batch_sentences.long()) + batch_sentences = self.model.pe_embedding(batch_sentences.long()) batch_sentences = torch.nn.functional.normalize(batch_sentences, dim=2) # normalize token outputs output = self._forward(batch_sentences, mask=mask) outputs.append(output.detach().cpu().numpy()) From 1532b0dce92a5c614bd2812d3d4be152bc0a18c0 Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 15:08:25 +0200 Subject: [PATCH 07/10] Update examples for UCE --- examples/fine_tune_models/fine_tune_UCE.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/examples/fine_tune_models/fine_tune_UCE.py b/examples/fine_tune_models/fine_tune_UCE.py index e54810aa..342f82ee 100644 --- a/examples/fine_tune_models/fine_tune_UCE.py +++ b/examples/fine_tune_models/fine_tune_UCE.py @@ -1,4 +1,4 @@ -from helical import UCEConfig, UCE, UCEFineTuningModel +from helical import UCEConfig, UCEFineTuningModel from helical.utils import get_anndata_from_hf_dataset from datasets import load_dataset from omegaconf import DictConfig @@ -6,21 +6,21 @@ @hydra.main(version_base=None, config_path="../run_models/configs", config_name="uce_config") def run_fine_tuning(cfg: DictConfig): - uce_config=UCEConfig(**cfg) - uce = UCE(configurer=uce_config) - hf_dataset = load_dataset("helical-ai/yolksac_human",split="train[:5%]", trust_remote_code=True, download_mode="reuse_cache_if_exists") ann_data = get_anndata_from_hf_dataset(hf_dataset) - dataset = uce.process_data(ann_data[:10], name="train") - cell_types = ann_data.obs["LVL1"][:10].tolist() label_set = set(cell_types) + + uce_config=UCEConfig(**cfg) + uce_fine_tune = UCEFineTuningModel(uce_config=uce_config, fine_tuning_head="classification", output_size=len(label_set)) + + dataset = uce_fine_tune.process_data(ann_data[:10], name="train") + class_id_dict = {label: i for i, label in enumerate(label_set)} cell_types = [class_id_dict[cell] for cell in cell_types] - uce_fine_tune = UCEFineTuningModel(uce_model=uce, fine_tuning_head="classification", output_size=len(label_set)) uce_fine_tune.train(train_input_data=dataset, train_labels=cell_types) if __name__ == "__main__": From 13b3f70ce48b2bb92ead2d9dc4b50c29f28920bb Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 16:10:28 +0200 Subject: [PATCH 08/10] Update Notebook --- ...Cell-Type-Classification-Fine-Tuning.ipynb | 383 ++++++++++++++++-- helical/models/scgpt/fine_tuning_model.py | 38 +- 2 files changed, 362 insertions(+), 59 deletions(-) diff --git a/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb b/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb index ef6d3989..5860c294 100644 --- a/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb +++ b/examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb @@ -16,9 +16,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-07 15:45:10.224348: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2024-10-07 15:45:10.234055: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "2024-10-07 15:45:10.243812: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "2024-10-07 15:45:10.246731: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "2024-10-07 15:45:10.255238: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", + "2024-10-07 15:45:10.804505: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", + "/home/matthew/helical-dev/helical/helical/models/scgpt/model_dir/multiomic_model.py:19: UserWarning: flash_attn is not installed\n", + " warnings.warn(\"flash_attn is not installed\")\n" + ] + } + ], "source": [ "from helical.utils import get_anndata_from_hf_dataset\n", "from helical import GeneformerConfig, GeneformerFineTuningModel, scGPTConfig, scGPTFineTuningModel\n", @@ -27,6 +43,9 @@ "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report\n", "import matplotlib.pyplot as plt\n", "import logging, warnings\n", + "import umap\n", + "import pandas as pd\n", + "import seaborn as sns\n", "\n", "logging.getLogger().setLevel(logging.ERROR)\n", "\n", @@ -51,9 +70,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "150c3c828d31409794ea60ea3417f957", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Generating train split: 0%| | 0/25344 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reducer = umap.UMAP(min_dist=0.2, n_components=2, n_epochs=None, n_neighbors=4)\n", + "mapper = reducer.fit(embeddings)\n", + "\n", + "plot_df = pd.DataFrame(mapper.embedding_,columns=['px','py'])\n", + "labels = geneformer_test_dataset[\"LVL1\"]\n", + "plot_df['Cell Type'] = labels\n", + "\n", + "\n", + "# Create a matplotlib figure and axes\n", + "fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(14, 5))\n", + "\n", + "#plt.style.use(\"dark_background\")\n", + "\n", + "sns.scatterplot(data = plot_df,x='px',y='py',sizes=(50,200),ax=axs[0],palette=\"pastel\")\n", + "axs[0].set_title('UMAP of Reference Data without labels')\n", + "\n", + "sns.scatterplot(data = plot_df,x='px',y='py',hue='Cell Type',sizes=(50,200),ax=axs[1],palette=\"pastel\")\n", + "axs[1].set_title('UMAP of Reference Data with labels')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Print the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -233,15 +423,15 @@ "text": [ " precision recall f1-score support\n", "\n", - " 0 0.31 0.58 0.40 19\n", - " 1 0.99 1.00 1.00 3001\n", - " 2 0.99 0.97 0.98 938\n", - " 3 1.00 1.00 1.00 2321\n", - " 4 0.88 0.92 0.90 38\n", - " 5 0.60 0.47 0.53 19\n", + " 0 0.55 0.32 0.40 19\n", + " 1 0.62 0.79 0.70 19\n", + " 2 0.99 0.99 0.99 3001\n", + " 3 0.94 0.87 0.90 38\n", + " 4 0.97 0.99 0.98 938\n", + " 5 1.00 1.00 1.00 2321\n", "\n", " accuracy 0.99 6336\n", - " macro avg 0.79 0.82 0.80 6336\n", + " macro avg 0.85 0.83 0.83 6336\n", "weighted avg 0.99 0.99 0.99 6336\n", "\n" ] @@ -251,14 +441,21 @@ "print(classification_report(cell_types_test,outputs.argmax(axis=1)))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the confusion matrix for the test dataset outputs vs true labels" + ] + }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAV1CAYAAACmlabpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xcV3k//s/Zom5JtmVsy71isA3GxriDbXoPNRBIMJBAvj8CSUiFQGgJkEJCQkIoCRBI6BB6LwZjm+LewLh32ZZsS1Yve35/3FlrtNpd7a5k717v+/16zWt25p575syds1erZ577nFJrDQAAAAAA7dMz2QMAAAAAAGBiBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFqqb7IHAAAAAACMXSnlf5McNtnjmIJ+VWt9yWQP4oEmwAsAAAAA7XJYkqMnexBMDQK8AAAAANBCM1Oyd2ZM9jAm3c1Zn3Wpkz2MSSPACwAAAAAttHdm5F/69pvsYUy6P9x4Q67JuskexqSxyBoAAAAAQEsJ8AIAAAAAtJQSDQAAAADQRiUp/WWyRzH5NiXTuASvDF4AAAAAgLYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEALlZL09FlkrZRYZA0AAAAAgPYR4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEAblZLSL3+zWWVt+jIDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpvsgcAAAAAAExASXr6ymSPYvJN80MggxcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiJrAAAAANBCpSSlf5qvMJbmOExnMngBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpSyyBgAAAABtVJKevmm+wliSTPNDIIMXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpfomewAAAAAAwASUktJfJnsUk69M72MggxcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiJrAAAAANBCJUlP3/ReYCxpjsN0JoMXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWsoiawAAAADQRiUpvdN9ibFM+1XWZPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0VN9kDwAAAAAAmICS9PSWyR7F5Jvmh0AGLwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoKVKzzRfYQwZvAAAAAAAbSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgBYqpaT0yt8sZXovNGcGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtFTfZA8AAAAAAJiYnt4y2UNgksngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFFJSo9F1jLND4EMXgAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpi6wBAAAAQAuVJD2903yFsUz7NdZk8AIAAAAAtJUALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALRU32QPAAAAAACYgFJSestkj2Lylel9DGTwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAAWqr0yN+c7swAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmLrAEAAABAG5Wk9JTJHsXkm+aHQAYvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJRF1gAAAACghUqSnt5pvsJYpv0aazJ4AQAAAADaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpvsgcAAAAAAExAKSk9ZbJHMfnK9D4GMngBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpSyyBgAAAAAtVXrkb053ZgAAAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEXWAAAAAKClSk+Z7CEwyWTwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtFTfZA8AAAAAABi/UpKe3jLZw5h0ZZofAhm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FIWWQMAAACAViopPdN8hbEkyfQ+BjJ4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUssgYAAAAAbVSS0iN/c5qvsSaDFwAAAACgrQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKX6JnsAAAAAAMDElJ4y2UNgksngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFGxyFqSZJofAhm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FIWWQMAAACAFiopFllLcxymMxm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwDcr0op+5dSaue2/1i3TVWllLd2xnvmZI9lspRSjiylfLaUclspZWPneFw0ieM5dXAeTdYYGN5U+B0vpTy+8/rfnIzXnw66PuNTp8BYPtAZyysneywAD5TS0zPtb9OdIwAAw+gK4tVSyupSyuJR2u4/lf5zSzuUUnpLKS8spXy8lPLrUso9pZT1pZQ7Sik/KaW8q5RyxGSPc6hSygFJzk7ygiR7JFme5PYkSydzXG3Vde6opZRfjqH9sUP2+dgOHs9RnfPfH+3IfidLKaUnyXs6D98yzPa3Djmeg7d1pZRbSynfLqX8biml/4EdOdvhnUnWJ3l7KWXOZA8GAB4IArwAsG2zM0xggB1iQ5IrO7cNkzyWB0wp5fgkVyT5TJLfTnJIkjlJ7k2ya5KTkvxlkktLKV8opcyYrLEO49VJdkpydZK9a6271lr3qLU+YRLHtDqb51GbHVZKOWEbbV5xP4/hqDTnuz/aQf1N9u/4y5I8MsnXa60/30bb27tuG5PsmeRJST6c5JxSys7350BbbvAzXj3ZA6m13pjko0kWJ/nTSR4OADwgBHgBYGxeUUo5dLIH8WBTa72l1npY53bLZI/ngVBKeWaSM5McmmRZkjckObTWOqPWumuSGUmOTfLuJCuSPDdN8HeqOLJz/+Wp8pnVWn8+OI8meyzb4frO/ctHalBKmZXkRUlqkhsegDFttynwO/7nnfv/2FbDzhcVg7e5SfZLE9xNkkcn+df7aYyt1/UZbyuI/kD5QOf+daWUmZM6EgB4AAjwAsDobkpySZK+NJd9woSVUg5J8j9JZqbJ4D2q1vruWutVg21qrZtqrefVWt+Q5IAkX56c0Y5oMNi8clJH8eDz8TSB298c5bLy5yZZmORH2RwQZgSdkjmHJbkzybfHu3+t9cZa66uS/KDz1AtLKfN22AC539RaL0pyeZorIp4/uaMBgPufAC8AjG4gTYZlkjyvlPKYiXTSqbf6ilLKD0opSzv1HW8ppXxutLq9pZQzO/Ug31pK6S+l/Ekp5bxOvdb7av6WUq7vPD6jlDKn0/6XnfrBt5ZSPtGpnTrY76JSyt91ar+uKaUsKaX8Zyll9xHG0V9KeVYp5UOd17+tq17st0spLy6llAkcl9EWYBuuLuZwt4+N0PdJpZT/KaXcUEpZW0pZXkr5eSnlL7YVpCmlPLWU8t3OcV5ZSrm4lPLnO6AO598kmZ9kbZLn1FpvHq1xrfWuWutvpKlzO3SMe5RS/qGUcnkpZVXndnkp5e9H+Ry3ON6llN1LKf9SSrmuc4xuL6V8upSyVSbs4BxLcmrnqbcM+RxO7bTb5iJ0ZRuLopVSjiul/G/XuFZ1PscflVLeXErZezz9TcbxmoDr0gRu5yd53ghtBsszfHS0jjrngBeXpr7zRaWUO8vmmrJfKqU8dYT9alff+w3zu/bWrrYfG/z9K43fLU3t6GWd58/otBv2d7yUsmsp5ebO818aYTx9pZSzO20uKU0G83j8Xuf+c7XWjePct9u3Ovcz0pRT2Uop5aBSyn+UUq4qzTl1RSnlglLKX5dS5g/T/nmd93VnKVufO0tzXh08blvV4i6lvKGz7azxvJFSylc7+/3jMNv27HrN80bY/8oyzAJmQ88DQ7btXEp5e+d4rCjNvx1LOp/pB0opjx9lvBM+jyf5ZOf+VdtoB9BuJenpLdP+lnH/T+TBpW+yBwAAU12t9RullB8leVyay+ZPH8/+pZQFSb6UzYGxTWlqre6ZJrPo+aWUf6y1/tko3cxKc1n/iWlqQ96bJttvqAVJfprmMvq1nTZ7JnlpkseXUk5M8wXv99Jkh67uPN49ySuTPLaU8uha64oh/Z6ULTNJV3T63y1NjconJXlOKeVFtdaBUd7HeNy+je0PyTB/ypVmUaV/TvK6rqdXJpmbpvTBsUleXkp5cq11q8vcO0Gs7prL9yR5eJK/S/L0NAuMjVsniDiYSfa/tdZfj3XfWusWn3Up5XFp5tTCzlOrOvcP79x+t5TyrFrrT0bp9vAkH0lzHAfrZj4kyW8meWop5bG11ou72t+ZZh7ukqS/85rdWbzrx/p+RlNKeVmaIOPgZ7suzZzft3N7bJrM+o+No8/JOF4T8dE054mXJ/nEkPewX5pzz71JPp/Ra/G+MJsDtTXN7+tgTdlnJ3l2KeU9tdah9UlvT1NzfH6aL7fuHLJ9uKztkuRzaYLSA2m+jNjmOaDWuqyU8pI02bHPLqW8ptb670OavTXNOW9NkhfVWtduq9/7BtUETZ/ceTiuIOhw3XX93DvMa70wTQb2YCmAe9MEgx/Vuf1u53zTvYjej9J8NovSnK8v6eqvP8nJXW1PT3LZkJcd/HfoBxmfHyZ5Rob/d6z7uUeVUhbWWu/pGtdeaUrLjPl1S/NlzNlpfneTzXNkUZp/d45Mk2X9/SH7bdd5vOPHnfuTSik71VrvHcuYAaCNZPACwNj8Zef+tFLKU8a573+lCdqsT/Of1fm11p3TLADzkU6bPy2l/P4ofbwmySPSBH7m11p3SRNcvWRIu7emWQDrSWn+Izz4851pgjt/l+RTaf6DfUKnzuS8NEGq1Wmy0/48W1ud5INJnphkQa11Qa11fprLX/8wTQDpBUn+YJtHY4yG1MPc4pbkr7M56PKNIbu+Lc1xviPNcdu11rpTmsDVaUkuTPLQJF/sBBHuU0p5VjYHdz+XZN/OZzW/09fxSf7fBN/Sadn8t9f/TbCPlFL2yeZg5RVJTq61zqu1zksT/Lwyyc5JvtwJyIzkE0muSnJs1zx4YpLb0rzf93U3rrUe2zn253Se+schn8s52U6lKU3wvjSf7f8kObjWOqvWuqAzvkcn+Yc0n+1Y+5yU4zVBn08THDy1dGXcd5yR5rh8pta6rYWs7k7yj2mChPNqrQs7Y16cZn5vSPInnfl+n87n+4edhzcN87u3VdZnmrIRz06zmNXOnXPTgoyhJEKt9UdJ/rbz8B9LKYP1nQfLKwxePfHHtdYrttXfEA9Pc35Kku2tCzsYKK5pMq3vU0o5OpvLrpyd5BGdc+OcJM9KMz/2SfLV7ozTWuvSJJd2Hg4Nth7X2X/FcNtLs+jiSZ2HPxznexls/8hSyi5Dtp3WuV+R5lx16gjbb6i1XpexeWua4O71SZ6QZEZnjsxMsn+a8+lPh9lvwufxLuen+WKjN5uPFwA8KAnwAsAY1Fp/ms1BuXcNd0ntcEopx2Xz5davrbW+bzA4U2tdUmt9ZZIvdLa/Y5RLkOcl+a1a68dqrWs6+y+rtd41pN3MJE+stX631jrQqef63WwOUL8wzcJBT+i8p9RaN9RaP5vkPZ02Lxrm/f+81vr7tdbvdWf3dkoI/Gua7N9ky2yr+0Up5YlJBjP93toZ++C2/dMEhdYkeVKt9f2Dx6jzPs9Mk4l9c5Kj0wRgur2rc/+jNBmDN3X2XVNrfX+a97dwgkM/vOvnCyfYR5K8sTOGu5M8vtZ6X0ZxrfWsNEGUFWkybd8wXAcdt6eZK+d19t1Ya/1ekld3tp9ShpRCeAAckeZLiVVJXl5rvWZwQ611Va31/Frrn9dahwb1R9Oa49U5N3wmTSD3jMHnO+ebwcejlmfo9PPlWuuf1VrP7g4G11pvq7W+Pc0xSXbM7+u8JK+vtb5n8NxQa11Za71tjPu/LU1gdFaST5dSZpdSdk0TNO1J8sVa6wcnMK7jOvf31lqvncD+KaXsW0r5UDYHWL9aa102pNnfpslovzrNOefSJOmcf7+aJut/Y5KDkgz9Em8wC3ZogHfw8b+nCcY/bkgQ8/g0gc61Sc4d59u6OMldGT6AO/i6793GuMYTVD6xc//GWuv3a62bkvtqjd9Qa/1ArfUvu3fYAefxdNquSfMFTpKcMI4xA0DrCPACwNi9MU15haOSvHiM+/xm5/7mJP85Qps3d+4XpckIHM7lnWDBtnyh1nr1MM93Z9N9aJggRXebg0opc8fwWt2+3rXvHuPcd8xKKYenyaztS/LJWuvbhjQ5I0221rfqCJfLdy7T/VLn4WBmXkopj0iT9Zckf1OHLzXx4SS3THD4u3b9PDQwPyadQN8LOw8/UGtdMrRNber6Dq4gv1Wwvst7Br8sGOKb2Vxu4chhtt+f7uncz8iWx2tCWnq8BrP6X9b1RdJpabIdr9wRmdLZ/Pt6Qillq5ID43R3muz+CekE/H6r08/Dk/xLmmOwV5pSHL87wa4Xd+6XjnWHTl3YwduqJDdkcx3fXyX5/4a0X5jN55B/GC6zutZ6YZIvdh4O/XdjMFD62CGfw2Cm7NeS/CzNFxRHD7P93FrrujG8te7xDKT5AivpCuB2SoAckCZL/eNDtw953fEEeO/p3O85jn3OyATP48MY/PwXj9IGAFpPgBcAxqjW+qtszp57RxnbgluP7tz/cISAYWpTl/GWIe2HGmvd15EuRe6uZ/uLMbRZOHRjKWWnUsqflWahqzs6C+UMLmzVHdi4X7I+OzVsv57m8u9zMnwN0sHLcJ80JFizxS1NqYukyWYeNHjsN2aEmp2dz/DM7Xwr2+OANJmmSVNHeSTf7dzvOsyl/oN+NtyTtVmMarD26tBLuO9v16QJpPUn+VlnIaWjtiMI2brjVWs9N80x2C/J4OJTY1pcrVtpFoR7Wynl3NIsfLax6/d1sNzBnDTlKbbHL2qt21V/udZ6YzYHUn8vTUbmpiQvrbXePcFud+vcj+fLlN27bnO6nv94kkfVWod+uXN0NpeKGcv8esSQfzd+lOZ9LkhyTJJ0ruI4IU292Z9nczC1O9g6kUzabsNlDt9X07eTOX9jksNLKQ/pjOuANF8yjPd1v9a5f3dpFul8Shlm0bkhtuc8PtTg57/bKG0AWq/0lGl/m+4EeAFgfN6a5rLRA7P15bbDeUjnfltZnzcPaT/UWGuODruITN1yBfmRFprpbrNF8LqUcmiaoNDfp6lbuluaS4fvTBMY7g4Ojzf7d5tKKbPTLPK2X5oamL8xQubaYJbW3GwZrBl6GxxjdxBn8Ngv3UZW3M2jbBtNd9b0RAOB3fNjtDnVPcaR5tRoCw4NzoWxfImxw3SyOV+U5jPeL82ihhcmWVFK+W4p5f916vSOVVuP12Ag9+WdYNhz0wQCPz7yLpuVUk5IEyT+6zSX8++S5rx1R5rf1e6s1u39fR1zPeTR1Fq/kM3lapKmxvOPR2o/BoPlbsac4VprLbXWkub/SIvTnOPvSfI7Gb6++HjnV1+6fvdrrcuzuVzLYID1xDSlds7qnLe3CMZ2zoXHd57bItBaSvniCMHQoV/qDe73sK4rLgazc38wpM3pQ7ZfM1i6Zoz+Icln0/xu/F6ajPd7SimXllL+oZTy0GH22Z7z+FCDWfcjlT8CgAcFAV4AGIdOBtfgYkpv6l4053626QF6nZF8NE1m7vVpFlPbtdY6t9b6kNoszNS9ONUO/Qq9c5n6x9PU1Fye5Bm11jtHaD6Y6fl3g8GabdxO3ZFj3YbLu35+1AP4uq3SuST7sDS1qz+U5LI09UafkOT9SX7VvRjXg9Qn0vzOPydNkHF2msvVt1nXtpTSl2YhxYVJLkrytDQLM+5Ua9298/t6fPcu2znWHXJu6tRdfULXUydtZ/mIwS9Uxp2hXBu3dWr/PifN4mp/X0oZWrJgRxiaTXv6kOfPTVNr9+RO9u9JaUqYrM7WWeW7ZPhA6BbZq7XWy7P5S7nuAG7N5sDuSOMaV9Zwp2bub6YpbfT2Tr+r09Tb/tMkl5dS/mTIbjvyPD4YUB+uLBEAPGgI8ALA+L07Tb3IhyQZ+h/ToQaz27ZVtmBw+w7JhtuRSin7ZPNCOS+utX6+br242/1WdzfJO5M8P00g6TdrrVeM0nawxupol+yOZPDYL+qsUj+SvUbZNpofJhks0/GcCfbRPT9Gm1Pd2x7oOTWYzTpaxtyC0Tqota6vtX6x1vrqWuuRaQJUv5/mcut9kvz3GMfShuO1lU4g91tpArvv6Dw91vIMJ6SZ/5vSfBnyzU690m735+/ruHUFpRck+XWarNuTs7k++UTskLIZnQW9PpEmEP6+IUHn8c6vjdm6ZMRgwPSkznlniwBv52qCc9Jkqx7Xtf0ntdYNQ8Z66ggB0P2HGdOZnfvTO1do7J3ksq4vz0bK4B0M/I5LrfXiWutbaq2PT/PlwxOS/DhNMPcfSimP7Gq+PefxoQY//5G+FASABwUBXgAYp05NyHd3Hv5JRq/td17n/rQhq6Dfp5RyWDYHDUeqjzuZ9un6+cIR2jxhhOe3SynlFUkGV1h/Xa3126O1z+ZaxU/o1LIcj8HPqi/JKSOMZ7iV58ek1np7Nl+C/ludoMqYdC22dV02B4geP0LzZPPnsazWet24Brr9Bmum7jNKm+PG02GtdVknm/IvOk89qpQylkXY2nC8RjK42NqMNCUVvjLG/QaP+53D1IwdNNrv6+CXEA9kMbu3pckqXp3kN7L5c35TKeXkCfY5+EXQbjvgSou3pwmYPzzJy7qevyCbj9dY5tfFQ4OySX6SptzNnE67Y9PM2Yu62nRn005kobPhdAdwtwredsowXJ1m4cwnZnPZhDO383VTa91Ya/1+kqenCeaXbDknt+c8PtRgTe1fbmc/ADClCfACwMS8L01dxZ0yepbZpzv3e2Xk1eDf3rlfmtEX6pksy7t+fuTQjaWUnZK8aUe/aOdy6A90Hv5rrfX9Y9jtI2my5BalCRqN1v+M7sBPrfWSbA4C/NUIAflXZPsWkXtTmsWTZif5Yill1GzgUsrOpZQvpJPxWmutST7T2fzqrvqZ3fssTvLqzsNPbcdYJ2pw1fvFpZStArmdRZt+b+jznW0zt9H3mq6fh120sFtLjtdIvpqmful7kvzRMIHBkQz+vu7eWZhwC6WUvZO8bpT9V3TuF47x9bZLKeW0bP4S549rrb+stf5LmgUVe5P8byllIgvBnZMmKNuTkRevHJPOomOD8+jNgwul1VrvSTL4pdOfDVcfupOZ+rzOw63mV611ZTZ/sffXab5g+tGQRTkHg7HPStfCnRN6M5sNBnMPyObFyoZm5w6+xmAW+a/GUiak2zZ+p9dlc4mP7vc74fP4kG0HZPMXsD8a04ABoKUEeAFgAmqta9IsuJYkzxyl3c+zOWvzfaWUPxgMApRS9iilfDhNTdskeXOtde39NOTt8cs0K6onyUdKKccMbugs5nRmJlDncjSllEPSHLf+JN9I8vqx7NcJxAwGI/68lPLxUsoRXf32lVKOKqX8dZrstKOGdPFXnfvTknyyEwxLKWVWKeX3k/xbmkWXJqTW+uskv51kfZLDk1xUSvmLUsrBXWPsLaU8qpTy9iTXpllgq9s7O2PYJcn3Sikndu17UpovCRamyQJ8dx545yS5ofPzf5dSHl0aPaWUU9PMl5H+Bn1RKeXsUsqrSykHDj7ZOSZPzub3c24nk34spvrxGlandumf11r/tNb6v+PY9SdJVqXJivzsYKZ41zE8M02t1ZFc1rmfX0p54QSGPmadLOxPpJkPX6y1fqhr88uT3JZk3yQfHm/fnbIU53cejitjfATvSnPc9k/yyq7n35QmA/fgJN8erA/dme9PS3P+6ktyTZIPjtD3YCB1cJxDA60/T/PF0DGdvrrf24TUWq/K5sXfjksTaB0aBP1B1/bucY7HDaWUd5VSju8O9nbOef+bJnN5IJsD5TviPD5ocNy311p/NYGxA7RCKSWlp8etPJAXH009ArwAMHEfS7NS/ba8Ms1/nGekyfxdXkq5K8mt2ZzV+4+11g+MsP+k6mSSvSZNRtXhSc4rpawqpaxKE8x7aJLf3MEve1I2ZxCekOSWMvzq8EtKKf8yZN93dG41TTD10lLK6lLK0jSLFV2YJitsnwwJdNVa/y/J33Ye/maSmzqf1b1J/iNNoOU/tueN1Vq/lOay6KvTZKi9O8lVpZR1pZRlaYK/F6TJDF+QJutvVdf+N6e5jH15ms/j7FLKylLKyjTBvYelCWj+xiiX6N9vOvPl1WmCXg9Nk524Ms17+GGaANVrRti9pKn3/IEk15RS1nY+t/VpatLuneb35hXjGM+UPl47Wq11eZrFq5LksUmuLKXcm+Yz+FaaOfXyEXZPrfXqJN/vPPxMKWVFKeX6zu2PdvBwP5Lm6oabMuQKh04t2N9J8zv6vFLKsFnf2zCYMfus7RlkZzyXZXOZjL8aDFbWWi/I5i9tTk5ySSlleZr5/vU0pQ1uSvLMTrbucIYGdLd4XGvdmGauDjqr89z26g7YXtCZOyNtH+7xWOyeJkP73CSrSyl3lVLWJLkqzZebNcmfDFNbfcLn8S6Dn/tUyswHgPuFAC8ATFCtdVOSN46h3fI09RlfmSZ77t4k89IsJPOFJKfVWv/s/hvp9qu1fi1NsOjraYJhfWlKSnw0yTGdeor3l50z/Mrwg7ctFuyqjb9O8ogk70+Tgbyp0+7uNEHpf0hyYq317AxRa31TkmekCbKsSDKz08dfpvkc12/vG+q87mFJXpwmi+3qNEGLndJkkv4kTaD5YbXW3xpmMaUfpQlMvqcztp40wdFfJvnHzn5nbe84J6pTK/mUJF9Lc8x70wS53p0mC3HJCLt+JU1Q76NpSj0sT/O53ZsmuP7mJIePNxtvqh+vHa3zZdHT05xvVqb5fb0lzRdMj0xy6Ta6eH6Sf06z4Fl/msWu9ssOLNtQSnlNmgDcQJKXDpeRXWv9Xprf1SR5bynlYeN8mf9O83t1Yudy/e01+OXP3tlc1iO11s+k+fLgg2kydWem+ULsoiRvSXJErXW0GrDnpClXkCRLRlhIsjvou73lGYbrZ6vF0zp1wwfHUjOx+rtPSpP9fFaac8DszvNXp/k9P7bW+t5hXnu7zuOdsg3P7jwcKXMaAB40SlOaDAAA4MGllPKRNBnLb6m1vn1b7XlwKKX8TpoA/w9rradP9ngA7g+llPOTHH3ErgvylWc9drKHM+me9ZUf57Jly5PmqpRjttX+wUYGLwAA8GD19jTZsX9QSpk72YPh/tdZIPPPOw+3eZUNADwY9E32AAAAAO4PtdbrSynvS1OX+DVJ/n6Sh8T97wVpSmZ8rtb608keDMADofRM7wXGEOAFAAAe3P42mxf648GvP80CbB+d7IEAwANFgBcAAHjQqrXekybgxzRQa/2fyR4DADzQ1OAFAAAAAGgpAV4AAAAAgJZSogEmqJRyXZKHJFmb5PrJHQ0AAABMO/snmZXkjlrrAZM8lslRLLKWJJnmh0CAFybuIUnmdG67TPJYAAAAYLp6yGQPACaTAC9M3Nokc2bPmplDD9h3sscC91m+aafJHgIM687bV072EGArvX29kz0EGNamjZsmewiwFedMppqV91yXgU1rk+b/5zBtCfDCxF2fZJdDD9g3P/zkByd7LHCfb9x76mQPAYb1/r//8WQPAbay4CG7TvYQYFjL71g22UOArThnMtWc/eUXZsWyXybKJjLNWWQNAAAAAKClZPACAAAAQCuVlB75m9N9lTUzAAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKX6JnsAAAAAAMDElJ4y2UNgksngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFApSemRv1mm+TpzZgAAAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEXWAAAAAKCtpvsKY8jgBQAAAABoKwFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaKm+yR4AAAAAADARJaWnTPYgpoDpfQxk8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLWWQNAAAAANqoJKVH/uY0X2NNBi8AAAAAQFsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEXWAAAAAKClSs80X2EMGbwAAAAAAG0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAt1TfZAwAAAAAAJqCUlB75myllskcwqcwAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmLrAEAAABAC5UkpWd6LzCWNMdhOpPBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC1lkTUAAAAAaCmLrCGDFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKX6JnsAAAAAAMAElCQ98jdTJnsAk8sMAAAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFJJKdN8hbEk032VNRm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FIWWQMAAACAlio98jenOzMAAAAAAKClBHgBAAAAAFpKgBcAAAAAoKXU4AXGbPW65Etnl5xzeXL7PUlPSRYvSh57ZM0zjkv6J3BG+eQPSj71w7LNdh/8o4Es3nX4bes2JN/8RXLuFSU33dGMc2Z/sueuydEHJ888vmbnncY/Nlpk9crM+uxH03/Wd9Jz2y1Jb0827b1/Npz2tKx7zkuT/hnj7rL34p+n/7yz03vlZem57eaU5XenrFmdutP8bNr/4Gw4+QlZ//QXJjNnDbt/zy03pP/s76fvop+n99pfp9x9Z9Lbl4FFD8nGIx+d9c9+cTYdesT2vnOmsBkb1+a4676Th95+QRauWZaBUnLXnN1zxZ7H5rz9Ts9Az8T/DJu7bkWOv+7bOfiOSzJ/7V3Z2NufpfMW55LFJ+TivU9Oyujn1YWr78gJ1347Byy7IvPWLc/63llZMn/fXLjPKblyj2MmPC6mvv4Na3LU5V/JQTf+NPNX3pGB0pN75u+Zq/c/OZcc9tQM9PZPuO/Za+7J0Zd/KfvdfH52WrU0G3tn5K6F++RXB52aXx78+BHn5elnvy8Pu+bMbfb//pd+NrWnd8LjY2pzzmQqcs4E2kKAFxiTO+5J3vBfJXfc0/yhMbO/ZsNAcvUtJVffUnLmxTV/+/KaebMn1n9f7+j79o5wvcEd9yRv/ljJrcs2/wE0d1bNmnXJNbeWXHNr8o2fJ296Sc0R+09sbExtZcktmff630nvkluSJHXW7GT9+vRdeVn6rrws/d/7Wla956OpOy0YV7+zPvNf6f/pj+57XGfNSfpnpOeeu9Jz0c/Tf9HPM/MLH8+qd384A/scsMW+vZddkJ1e91tbPFfnzE02rE/vzTek9+YbMuPb/5d1L/n9rH356yb4zpnK5q9Zlpf+/B+zcM2yJMn63hnpG9iUxStuyOIVN+SI236WTx77+qztnzvuvvdYfkNedN57M2fDqiTJut6ZmbFxbfa5++rsc/fVOez2C/K5o18zYjDkoDsvzXMu+mBmbFqfJFnbNyuzNqzKgcuuyIHLrsjFe52Yrx/xsm0GPGifnVbekd/4zlsyf+UdSZINfTPTu2lDdl92TXZfdk0Ove7H+fIT35p1M+eNu+/dll2TZ37vHZm97t4kyfq+WenfsCaL7/hlFt/xyxx0w7n5xml/OWowZGPvjKzvnzOxN0erOWcyFTlnAm0iwAts06ZNyTv+pwnu7rJTzR8/r+aog5KBgeTsy2ve9+WSa28rec/nk7f8dp3Qaxy2T/KuV45/33/6QhPc7eut+d2n1px+VDJ7ZrJhY3LBVTX/8bWSZStK/u4zyX++vmbmxL9kZyratDHz3vT/0rvklgzsultW/+XfZeMxJyYDA+n/0bcy5z1vTt/VV2TOO/88q971wXF1vfHoE7Ph0Sdn05HHZNNe+yZzmj/ey/K70//9r2X2h9+T3ttuzty/fm3u/a+vJF0r15aNG1J7erPhhNOy4QnPyMajjktdsHOyaVN6r7ois//j3em79PzM+sT7M7D74qx/2vN36GFhcpWBTXnh+f+WhWuW5d6ZC/LVI1+e6xc9PKkDediS8/O0yz6RPVbclGdd8l/57DHjC/DP3LA6L7zgfZmzYVWWzt0jX3nEK7Jkwf7pGdiYR910Vp7wq8/moKWX54m//Ey+ffhLttp/weqlec5FH8qMTetz08KD8vUjz8hdc3dP/8a1Of667+SUa76WR95yTpbN3SM/PfApO+qQMAWUgU152g/elfkr78iq2Tvneye9NjcvfmRSB3Lw9efmtJ/+R3a767o84Sf/kq8//q/G1feM9avy9B+8M7PX3Zu7FuyV7530uty56OD0bNqQh1/1vZx83sey360X5eRffDQ/Pv5VI/Zz1f4n5gcnvXZ73yot45zJVOScSauUpPT4kinT/BC0pgZvKeXMUkodcttYSrmzlPK9UsoZpZSeIfsMbV9LKetKKTeXUr5USnn6GF97VinlNaWU75ZSbiulrO+87tmllDeUUsaUFlZK6e+M8/OllOtLKStLKWs7fX6vlPLXpZSHjrDvx0Z4P0Nv9wzZb/+ubZtKKQ8bZXyf77R76zDbBvs4tfP4rWMcz9Dbx3bk8S2lnDrC66wqpfy6lPKfpZQjR9qfsfn+Rcn1tzdnyze8qAnuJk0865Qjk9c8qwnMnvfrkouveeDGdcc9yeXXN+N6wWOTpx/XBHeTplzEcQ9L/vi5zdjuWVly+fUP3Nh4YMz49pfSe+2vkySr3vqvTXA3SXp6suG0p2X1H78tSdL/sx+l74Jzx9X3uue/LOuf+9vZdMjD7wvuJkldsHPWP/e3s+Y1b0iS9N5wdXqvuGiLfTfttV/u/djXs/od/5YNj3tKE9xNkt7ebDrsyKz8x49m04HN6X7mJz803rfNFPeIW8/NQ1Y2GeVfPOr3m0BFkpSe/HLPY/PNw1+aJDn4zsuy/7Jfjqvv467/buatW5ENPf35zDGvy5IF+ydJBnr6cv5+p+XHBz8rSfKom8/KLqtu32r/x1795czYtC4rZ87PZ495be6au3uSZEPfrJx1yLNy4d6nJElOvPYbmdXJduPB4bBrfphF99yYJPnmqX/WBCqSpPTk6gNOypnHvzpJsv8tF2Tv2y4ZV99HXf6VzF1zTzb0zsjXTv+r3Lno4CTJQG9/Ljvsqfn5I38zSXL4Vd/NghW37qB3xIOFcyZTkXMm0DatCfB2uSnJ2Z3bRUlmJHl8ko8m+VopZbj8vMu69vl1kl2SPLvT/r2jvVgp5dFJrkzyb0mekGRj53VXJDkxyTuTXFNKeeo2+jkhyVWdcT4vyc5Jrk1yaZL1nffwtiS/LKX81yhd3dH1Xoa7jRbB6EnyjtHGOQ43jvD6d2xjnL/u7mRHHd+O7te5NckBSV6Z5PxSygsm9jZJkh9c2ARRH3FAzWH7br39sUcmu+/cBFJ/cNED97XZXfdu/vngvYbP/j1k780/r1l/Pw+IB9yMb38pSbLhqOOy6fBHbbV9w+lPz6Y9m0kw4ztf2qGvvfFhR933c8+dS7bYVnfbIwN77z/yzv0zsv4JzX8qe2+9MeXe5Tt0bEyuI29p/im+fpeH5padD9pq+xV7Hpu7Zy9Kkhxxy08n1PcVex6b5XMWbbX9vP1Oy7remempAzn81p9tsa1/47octuSCJMkF+5yadcNc1nnOgc0/t7M2rs2ht180rrExtR3Wqdd48x5H5Pbdts4nuGr/k7N83kOSJA+95kdbbR+172ubvq/e/+Tcu9PuW22/9LCnZn3frPTUgTz02h+Pb+A86DlnMhU5ZwJt08YA70dqrSd3bo9OsmuSwWsinprkD4fZ57Vd+xyZ5CFJPtzZ9oeDWalDlVKOTnJmkn3TBE4fXWvdp9b6mFrrQUkOSfK1zhi+Ukp52gj9nJbkh0n2S/LjJI9Lskut9RG11mNrrfsl2SvJHyW5OU2wdyTf7Hovw91GC4RuSvLczvvaLrXWjwz3+km+uY1xvnOwjx11fLvG1P06h3T2PzdJf5IPl1IWbu/7no7Wrk9+2Xx5nWMOHT6IWkpy9CHNzxde/QANLMkeO2/++epbhg8sX3Vzc99Tag7a8wEYFA+ctWvSe3nzH6+Nj3ns8G1KycZjm+yavvPO2aEv33fpeff9PLB4n3HvX2d0Lfw2MLAjhsQU0LdpXfa+uzkRXrPbCIvolZJrFx2eJDlw2eVj7nuXlUuyYO1do/a9oW9Wbtq5OSEfsPSKLbbtfffV6R/YMOr+y+csytK5ew67P+3Vt3Fd9rjzyiTJjYu3/jIsSVLKfdv2ue2iMfe9cPkt2WnV0iTJDXsN3/eG/tm5bffmIrJ9br14zH3z4OecyVTknAm0Uetr8NZaNyZ5ZynlxCRPT/LSJP+4jX1WllJek+TJaYKLL0wTaLxPKWVGkk8nmZvkJ0meWGtdO6Sfq0spz07yqU4f/11KOazWuqyrn12SfCbJzE5/L621bhpmTLcm+ZdSyocyfJB6R/ifJC9LkxU7qUWidtTxHU2t9fpSyhlpMoQXJHlSks/uuHcxPdx8ZzJQm+Dpvg8Zud1+D6lJSu5eWXLv6pqdxlnv/8Y7kte8r2TJ3UlPSXbdKTl8/+Rpj6k5aPHw+yycl5zw8Jpzryj53I+TBXNzXw3ejZuS83+d/MfXmrH/xknJHruMb0xMbb03XpPSCYxuOuCQEdsNbuu5686UFfekzl848RddtzY9dy5J/4++lVkff3+SZOMjHp1NDx1/JZi+i3+eJBnYdbftGxNTyqKVS9KT5suwO+eNcPJKcudOeyVJ5q1bkVnrV2XtjG0vHLRb5xLmpu+9Rul7cQ5eelkWrdryss4t9x9tbIuzaNVt2W2ly0IfLHZefnN6anO+XLbzMJfidNy1sNk2d809mbnu3qybudM2+96lcwlz9/7DWbZw3+x3y4XZefnNI7bZ+7ZL85L/+4PMW7U0A719uXfubrl5zyNz6UOfkuXzR56ztJdzJlORcybQRq0P8Hb5YZoA76FjaVxr3VBKuSBNgPeAYZr8VpoM0I1JzhgafOzqZ6CU8vtJnphkUZLXJHl7V5PXJtktyZ1JXjVccHdIf2uSvHss72EC/ibJC5I8uZRySq31rPvpdcZiRx3fUdVaf92pS7www3/ObEN3GYRd54/crnvbXfdm3AHeFatLVq6pmTsrWb0uuWVZyS3Lku9e0NTX/e0nDJ89/LrfqFm3Prng6pIPfK3kA19L5s6qWbOuCUzvv3vNi08byJMfPb7xMPWVpXfc9/PAoq0vbxtuW1l2x7iDqeWuO7Pg+acMu23DCadl9V+8a1z9JUnv5Rem/+zvJ0nWP+0FVt5+EJm37p77fr531s4jtrt35sL7ft5p3T1jClbstG5zKY97Zy0csd3Kmc3rztq4Nv0b12ZD36wt9l/TPycbe2eMuP/g2LrfC+02d/Vd9/28as7I33Z2b5u7+u4xBSvmrr77vp9XjqHvmRtWp3/Dmmzon71Vm51WL8tA6cn6/jmZsWF1dr3nxux6z4054spv56xjX57LH2oRqwcb50ymIudM2qdsseDz9DW9/0/1YArwTmQ2D4agVg+z7UWd+2/VWkddNqrWencp5X+T/EGSF2fLAORgPx+vtd671c4PrCVJ3pfkL9Jk8Q4fsXhg7KjjO6rOwnudZbeG/ZzZhtXrNv88c7gK18NsW7Nu5HZDLd615uVPrjnusGT3nZO+3mTDxuTS62s+8d2Sq28t+eyPknmza55z0tb7z5udvOHFNf/7g+TL5yS1lqxau/nEvmZ9smJ1smkg6fVv3oNKWdO1mMmsWSM3nLl5W1k9gQVQenozsHNTt6+sujdlfTPB1z/uKVn78teNP2B8z12Z+zd/kjIwkE1775e1L3rl+MfElDVj4+bvKzf2jBwQ2NAVLOjeZ6x9bxhH34PBisH9R9u3e/8ZG8dxMmdK69/QNS97Z47YbkPf5m39G9eMqe8ZXe029o3cd/fr9m9Yu0WwYukuB+ZHux6cG/Y+Jivn7Jra05u+jeuy7y0X5sQLPpEF9y7JqT/7cNbMWpBr9zthTOOiHZwzmYqcM4GhOqVX/yTJcUnmJbkhyeeSvLvWOu7/ZJZS9k3yp2muNN83TUzztjTVBf6p1nrpePt8MAV4T+3c/3q0RoNKKbsleUzn4YXDNOksxZ4fjvH1z0wTgDyslLJLrfWuUsquSQ7rbJ/MbNluf5fk95OcXEp5Wq31G5M0ju0+vmPc7/FJBv81HO5zZpKd+sitn+vvS44+ODliv5q//K/kqltKPvWDkicd02T4drvm1uRvPlly14rkaY9JnnrsQHbfOblnZfLzK5NP/qDk49/tyeXX1/z1S6svNhm3unCXrPjCTzoPasrS2zPzK5/OzM99NP1nfz9rXvemrH/Gb46tszWrMvdN/y89t9+aOmduVr3lX5LZ285CAngwu+RhT9/quY19M3Ptfsfnlt0Pzwu+8edZsPKOnHTef+fafY931QMwrTlnwgOrlPLaJP+SJkX45iQ3JXl4kjcleV4p5eRxxKhSSjkhybeT7JRkQ5Jrk6xPcnCSM5K8tJTyW7XWz41nnK0PdZRS+kopb0gyuADXJ7fRfn4p5XFpFu9amKZ0wgeHtFmQ5kAnyajZpV26l5baa8h9klw3xn625WWllDrK7b2j7VxrvTvJezoP/6aUB/5svwOP72ivsXsp5cVJ/rvz1I9qrT8Zw36vLqWcP5ZbNgfvH9TmdH2xvG7DyO26t80e+cvocZnRn/zOE5vSDGvWl1w8ZLasXpe89RMlS5eXvPBxye8/o2a/3ZNZM5p6u886IXnDi2pKqTn/qpLvCfE/qNTuwOjaUbJ51m3eVudsZzC1lNTd9sjaV/5RVr/xH1I2bsjs974tPdf8atv7rlmdeW94dfquuDh19pysfNeHMnDQtDiNTCvr+zZ/C9U3sH7Edv2bNm/r3mesffdPoO/Bn0fbt3v/9aNkFtEuG/q75uWmkbMM+7syEDf0bX058HDWd7XrGyWDsft1u8ezLetm7ZTzj3xekmT+qjuz6K4d9Sc1U4FzJlORcyYwqJRyTJL3dh6+Osm+tdajkxyY5PwkD0vy4XH0V5J8PE1M7NwkB9daD6u1PiLJnmlimn1J/rMTOxuzNgZ4X1FK+Unndl6SZWnKDSTJd7L5wHf74WAANMnyNNmgj0nyoySn1lrvHNK+u3jOyjGOqzsle7Aa6U4jbL9PKeXfRgjUPmOE17kjydmj3K4dw1j/OU1g+1FpavI+0HbU8d1C9/FLU47ik2nqH388ybPG+Dp7Jjl6jLdxVpltp126Pq1lK0Zu171tl22Xnxqzw/bZ/POSu7fcdubFyT0rm+8onnPS8DV6H3lQcmCzuHHOudy31w8mddHmVf96lt4+YrvubXXXUVYKHKcNj31SBh6yOGVgIDO/8fnRG69ZnXlvfHX6LjkvddacrHznB7PpyGN22FiYOlZ214lce/eI7XbqrjvZtc9o7p25+W+8ndbeM2K7eeua113bN+u+S42795+9YXX6No0csBgc28oxjoupb8s6kSMnmGxZd3Lkeqhb9r253bwx9L2uf86wtSRHc/tum5fYWLBy5PM97eOcyVTknAl0eXOa2Oknaq0fqrXWJKm13pqmhOhAkueWUh4xxv4eniZTN0n+X631vpUXa63Lk7wiTfxrfsZZVrWNAd59kpzUuR2VJp35B0l+N8lTa63D/et7WZrg5znZnDFak1yZ4Us6dNfKnTfGcXWnhQ2Guu4dYXu3a7JlgHZbxZu+WWs9eZTbv25roLXWlUkGVwV6eymld1v77GA76vgONXgMf5YmwJs0x/PcWusoockt3JbkgjHepkVN3713S3pKEzy98Y6R291wRxM83XleHfcCaxN1U+c1F8ytmTPKF9uLO3+j3T7y/xtooU37HpTaqbnRe91VI7Yb3Dawy27jrpe7LQOdIHPPLTeO3GgwuHvxL1Jnzc7Kd30gmx557A4dB1PH0nl7ZKCzwMNoK6rvdm+zOvvKmfPHtFhQsuUq8N2ru2/dd/O6S+duuYL2lvuPNrZbO+2twP1gcfeCvTNQmvPlrnePfL4aXN191eyFY1osKNlyFfju1eGH2rWz7e4Fe4+pX6YH50ymIudM2qaUpPQUtx2cz1VKmZdkcLXCDw3dXmu9Kk08Mhl78mT3NzZbXdFea12XpgxEkoyyCtLW2hjgfVuttXRufbXWRbXWx9da/6vWOjDCPq/tBD9PqrUenCb78sYkr0ryT0Mbd6Lmg0HIg8Y4roO7fr5lyH2S7D/cTrXWf+4O0GZzYPL+9v40k+ahSX7nAXrNJDv0+A7td/A4Hp9kcZqF3PqT/Ecp5XljHNsHa63HjOWWZAzXZLffrBnJwzp/h5x/1fBnzFqTCzvxtUcdPGyTCbvyps0/7z7ki/HBE/iK1cnaUa6eu6eT/72jSkcwRcyanU2HH50k6fvFCGXOa03fL5rqLBsffeLwbSaq1vQsaU5HI5Z+WLM6897wqk5wd05WvuuD2fTIxwzflgeFjb0zc/POzYnwoDsvH75RrTlwabPt2l0PH3Pfd83dPctnNd9YHThC3/0b12Wfu5sT8nWLHr7Ftpt3Pjgbevo7+1827P7z1yzLolW3Dbs/7bWxb2aW7PbQJMm+t140fKNa79t2055Hjbnve+Yvzr1zF3X6Hr4WUt+Gtdnz9l82fS8epvj+Nux+5+Z8jBXzdtyVGEw+50ymIudMoONRSWamSRz8+QhtBv8jevwY+7wyyeBqi1v9B7WUsmea8g+b0iQWjlkbA7zbrdZ6YZro+kCS15ZShvsgzuncnzbGbk/t3P9qsLhyrXVZNgcBHzex0d4/Ot8KvL3z8C2llNGXh93xtvv4jqY2PpPkjZ2n3l9K2YGFA6aX0x/VZPBeet2WAddBP7ksWXJ3E209/ajhSyUMp26j6YaNySe+1/Q7a0bNIw/ccvtBi2unn5Jv/WL4Pm64Pbnihubn7nIPPDisf/JvJEn6LvpZen958Vbb+3/0rfTe1kza9U/6jbF3vGnjNpvM+NYX03NXU+Fn43BB28Hg7mBZBsHdaePSvZoVq/e768osvmfrykkPW3J+dl6zNEly2V5j/VswSSn39f3wJb/IgtVLt2pyzI0/zMxN6zJQenL54uO22Lahb2Z+tUfzpcjRN/0oMzdsfSHKCdd+K0myrndWfr37UWMfG1Perw46NUmy15LLtvjP/6CDbzjnvkt5rzxoHH+2lpJfHdj0fcj1Z2enlVtf7nPkld/KjI1rM1B6cuWBj91y4zb+GJi57t4cc+kXkyT3zlmUO3c5YOxjoxWcM5mKnDOh1Q4b69pKndurR+hnsN7JjbXWkVYkGszCfehYBlZrvTfJOzoPP1pKeX4pZddSyk6llNOSfCNNouK7aq03jKXPQdMywJsktdZfZPOCbO8epsmnO/dPKaWMmmVaStk5yUuG7De0n9+ZggHGjya5Ksl+aYpFP5B21PHdln9Ns8DdQ5L8yTj3pePxRyX7715Ta8m7Pr15sbOBgSa4+29fboKwxxxS88ghn+Ynf1DyzDf35Jlv7tmqRMJl1ydv+mjJDy5Kli7f/PzGTcnF1yR/8Z8lV97c9P2iU2vmDSk/ddLhyS47NX/kfPx7JZ85s8nmTZqM3h9fkvz1f5dsGijp6615xvFjDz7TDuuf/BvZdOChKbVm7ltel74Lzm02DAyk/8xvZc573pwk2fCYx2bj0Sdsse+sj70vC08/LAtPPyw9S27eYlvfpedn3h++NP3f+XLKnVteWNFz8/WZ9aH3ZPY/vSVJsmnxvln/lOdsObC1azL3r36/Ce7OnpOV7/6QsgzTyCWLT8gd8/ZKSc1zL/xA9l/WZOGkDuSwJeflqZd/PEly9aIjcv2uD9ti31Ou+kre+K1X5Y3fetWwwYif7f/ErJw5PzM2rc8LL3hf9lje/N3XM7AxR994Zh571VeSJBfufUrumrv7Vvv/+OBnZ33vzOy0bnlecMG/Z+dVzX9O+zeuy8lXfy1H3/TjJMnZBz0ta/u3c1FCppRfHXRali7cNyU1T/nRP2Tv2y5pNtSBHHT9OTn13A8kSW7Y61G5ec8ty8gde9Fn8pqPPy+v+fjzhg1GXHT4s7Jq9sL0b1yXZ3z/b7PbsuYPhZ5NG3L4ld/KcRd9Kkly+SFPzPL5W17Gfui1P8pTzvz7HHjDuZm9ZvMfA70b1+WAG3+W533zjfcFUc455neSMm3/+/Kg5ZzJVOScCa02J2NfW+noNGsxDWewIPdoSYaD28ZWiDtJrfVdSV6e5J4kn0uyNE0p0h90xv6iWuubx9rfoL7x7vAg87dJfivJ40opj6u1/qhr2yeT/FWa0gAfLaU8qda61TLtpZSeJB9I82EuS/LvQ5q8L8kfJFmU5L9KKb9Va912atgDoNa6sZTylmx+r+NK/95OO+r4jqrWuqGU8u4kH0zyh6WUf+6UiGAcenuTN72k5o0fSe64p+RNHyuZ2V9Ta7J+YxOAPXDPmj99wfgDqBdfW3LxtU0fM/prZvUnq9clGzc1z/WUmuedkjxvmPLis2Ykf/VbNW//n2T5qpL/+X7J/3w/mT2zZu36JrM3SWb21/zxc2sW7zrBA8DU1duXVX/z/sx9/cvSu+SWzPvTl6fOmp0MDKSsb0qabzz44Vn9V/8w7q77Lj0vfZeelySpM2amzp6TsnZNyrrNp6pNBx2WVe/4t2TmlkWg+3/87fRf1LmKZ9OmzH3bH436Wqve9q/ZdMTR4x4jU1Pt6c3njn5NXvKL92ThmmX5rV/8c9b3zkipNf0DzZf/S+bvk6888pXj7ntd/5x89ujX5kXnvTe7rbwtrzj3b7Oud1b6Bjakt25Kkly768PzvYe9cNj9l89ZlP876lV5zkUfzL53X5X/d9abs7ZvdmZsWpeeTqWri/c6MT894MkTfPdMVbWnN984/Q35je+8JfNX3pFnf/dt2dA3M6XW+xaQunOXA/Ldk/9o3H2vnzE3Xz/9jXnm996RXZbfnBd+/c+zvn92ejdtSO9A82fvjXs+Mj859uVb7dtTB3LQjT/LQTf+LEmyoW9WNvb2Z+b6VffNyY09/Tn70Wfk6gNOmuC7ZypzzmQqcs6EVlud8ZXUvG2E5wf/kzdKQcj71tEa82qIpZT+NGUYdkmyMU1S4vo08bFDkryylHJ2rfXmkXvZ2rQO8NZaf1VK+UKacg1/neTxXdvWl1JenORHaVau+0Ep5Q9qrfcFQUspB6ep4fvMNPUxzqi1Lh3yGnd1+vlG53UWl1LenOTHtXb+qsh9xZtflOSBDkF9OslfJnlEkic9UC+6o47vGH0szcqHeyd5XTanwzMOu++cvO8Pav7vJ8m5VyS335P09CQHP6TmsY+oecZxSf84zyj77Z684ikD+dWNJTfc3mTfrlqbzOxP9tmt5vD9kic/umb/PUbu49C9k/e/ruabP6/5xa9LblnaBIhn9Se779xkFD/juJo9dhm5D9ptYI+9c+9/fjmzPvuR9J/13fTcdkvS15eN+x+cDac/Peue89Kkf3xVaDYeenhWveHv03fxz9N35WUpdy1NWXFP0j8jmxbvm02HPDwbHvukbHjsk5tvQIYoA5tLwpf16+4LNo+kbBzpih/aavmcRfnPk96S4677Th56+wVZuGZZBkpPbpu/OJfveWzO2+/0DPRM7M+wJQv2y4dPfluOv/ZbOfjOSzJ/7d1Z3zszS3danEsWn5CL9z5p1Iyda3Y7Mv950l/nhGu/nQOWXZF565Znbd+cLJm/Ty7c57G5co9jJvq2meLunfeQfPqZ/5RHXf7lHHjjzzJ/5R0Z6OnJHQsPylX7n5xLDntqBnrHtZ7Hfe7c9aB86lnvzdGX/V/2v/n8zFu9LBv6Zub2hYfkVwedml8efPqw8/KWPY7ITx/1W9n9ziuzy/JbMnPdvZmxfnXW98/J8p32yM17HJHLD31S7t1p6+xKHjycM5mKnDNpkyJbu9uvOusmba/BzJ7R/jM5uNLPmlHaDPV/SZ6e5JtJfrfWemty39Xr/5rkpUnOLaU8vFPSYUxK3VYRzCmilHJmmjq2b6u1vnWM+wy+udNqrWeO0OaRSS5MUpKcVGs9Z8j2xyT5fJLB6p03p4nu75om4p40Kdkvq7V+bZSxnJwma3Wwn3uTXJ9kVZIFnb4GJ8bn0iwMd3vX/h9L8rIkd6QpqzCa59dal3T22z/NtwFJslOtdeUwY3tmkq90PbXVMR7LsRwyzv+utZ6xjXFu9/EtpZya5IdJUgfTNYd/ndcl+ZdOX/uP55dklD7PT3L0Ix92SH74yQ9ub3eww3zj3lMnewgwrPf//Y8newiwlQUPcXkHU9PyO5ZN9hBgK86ZTDVnf/mFWdGUdrlgBwX1WuO+mMTiRfnh//f8yR7OpDvt/Z/PxbcuTXbQXCil/G6SDye5qtZ66AhtXpLkf5LcVGvddwx9DsbfliY5eOgV5p3s3kuSHJbkDbXW4UrKDmtaZ/AmSa314lLK19Jkib4lyZOHbP95KeXQJL+b5DlJjkhyVJr6GOcm+VqS99da79nG6/ykk5H6ks5rHZPkoCS9Se5OcnaSHyf5ZK11tADuQzq30czaxvahY/tqKeXcJCdss/EOtqOO7xh8OM2Ca7unKZnxru3sDwAAAIAHp8EVFvctpfSPsNDaQUPabstg8cmfD1c+tFNm9IdpAryPHs9gWxPgrbWeOoF9RszoHNLuWdvYvjbJv3VuE1ZrXZ9mYbOPTmDfM5KcMYH9rk+TnbytdiduY/tYj+UZGec4t+f4drKJx/L+1iQZ5UJ/AAAAAEjSXO2/Ps3V9o9Jk5g51GDA9twx9rnTOF5/XMmbinQAAAAAAHR0Snt+u/PwVUO3l1IOSXJ65+Hnx9jtYKbvY0opC4bpsz/JaZ2HV459tAK8AAAAAABDvSNJTfLbpZRXlVJKkpRS9kzyqTRx1S/VWi/u3qmUcn3nNrQ48ueSrEuyKMmnSimLu/bZOclH0pRnqGlq+45Za0o0AAAAAABD9IypqibjVGv9RSnl9Un+KckHk7yplLI0ycPTlG64MsnvDbPrfp37eUP6u7mU8qok/5XkqUluKKVcm2RDkoM7fdYkf1FrvXA8Y5XBCwAAAAAwRK31vUmemOSbSeamCe7ekOSdSR5da106zv4+nmYBtY92+tkvySFJbk/y6SSn1Fr/YbzjlMELAAAAADCMWuv3k3x/HO1HTanulHR4xfaOq5sMXgAAAACAlhLgBQAAAABoKSUaAAAAAKCNSknpkb+ZMr0XmjMDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUssgYAAAAALVV6pvcCY8jgBQAAAABoLQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaKm+yR4AAAAAADBBRf7mdGcGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAA2qiUlJ4y2aOYfGV6HwMZvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgLbqkb853ZkBAAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALdU32QMAAAAAAMavJCmlTPYwJt10PwIyeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClLLIGAAAAAK1Ukh75m9N9mTUzAAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKImsAAAAA0EYlKT3Te4GxJNN9jTUZvAAAAAAAbSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC3VN9kDAAAAAAAmqMjfnO7MAAAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpi6wBAAAAQFv1lMkeAZNMBi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEXWAAAAAKCNSkkp8jdTpvdCc2YAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS/VN9gAAAAAAgAnqKZM9AiaZDF4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEBLlR75m9OdAC9sp6tvLXnGm51MmTre8M3DJnsIMLynfmiyRwBbWX7HsskeAkBrOGcy1WzauGmyhwBTgqgUAAAAAEBLCfACAAAAALSUAC8AAAAAQEupwQsAAAAAbVRKc5vupvkxkMELAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUn2TPQAAAAAAYIJ65G9Od2YAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJRF1gAAAACgrUqZ7BEwyWTwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAA2qiUlB75m9N9oTkzAAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKImsAAAAA0FZF/uZ0ZwYAAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0VN9kDwAAAAAAmKCeMtkjYJLJ4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKQFeAAAAAICWssgaAAAAALRQSUkp8jdLpvdCc2YAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJRF1gAAAACgjUqSnum9wFiSTPM11mTwAgAAAAC0lQAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtFTfZA8AAAAAAJigIn9zujMDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUssgYAAAAAbVXKZI+ASSaDFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKImsAAAAA0EalJD3yN6f7QnNmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEv1TfYAAAAAAIAJKvI3pzszAAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKImsAAAAA0FY9ZbJHwCSTwQsAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZE1AAAAAGilkhT5m8n0XmhOgBcYsxkb1+a4676Th95+QRauWZaBUnLXnN1zxZ7H5rz9Ts9Az8RPKXPXrcjx1307B99xSeavvSsbe/uzdN7iXLL4hFy898lJGf1kvXD1HTnh2m/ngGVXZN665VnfOytL5u+bC/c5JVfuccyEx8XUtqFnRm7c5dAsWbBvbp+/b5Ys2C8rZu+aJDnpqq/mlKu/ut2vsWrGTvnpgU/ONbs9Iitm75K+TRuyaOWtOfKWc/OIm3+yzT8j7p6zW352wJNz3aKHZ+XMBZmxaW32WH5jHnnTWTns9gu2e3xMXc6ZTEXmJVOVuclUZF4CbVFqrZM9BmilUsr5SY6eu+DQPPKUD032cO5389csy0t//o9ZuGZZkmR974z01IH0DWxMkiyZv08+eezrs7Z/7rj73mP5DXnRee/NnA2rkiTrememb2BDeutAkuSaRYfnc0e/ZsQ/oA6689I856IPZsam9UmStX2zMmPjuvSkOb9dvNeJ+foRL9vmH0kPFm/45qsmewgPmBt2OTSfOu5Ph922IwK8S+bvm88c+0dZM2NekuaP/I09/Rno6U2SHHDnZXn++f+e3rpp2P2v2e2IfOmoV2dD38wkycwNa7K+b2Zq5xv2I28+O0+79L+nzXfN73rqg/9cOcg5k6nIvGSqMjeZiszLdrj4rFdl1fJfJ8kFtdZpFdkejEk86sB9cs4//flkD2fSnfj6v8+F196UTMO5kMjgBcagDGzKC8//tyxcsyz3zlyQrx758ly/6OFJHcjDlpyfp132ieyx4qY865L/ymePed24+p65YXVeeMH7MmfDqiydu0e+8ohXZMmC/dMzsDGPuumsPOFXn81BSy/PE3/5mXz78Jdstf+C1UvznIs+lBmb1uemhQfl60eekbvm7p7+jWtz/HXfySnXfC2PvOWcLJu7R3564FN21CFhCpm1flV2X3Fj9lhxY3ZfcWO+f9gLs2rWgu3ud23f7HzumNdmzYx52XXlbXnGxR/JnituyKbSm4v2OSXff9gLc91uR+R7D/vNPPmKT261/z2zd82XjnpVNvTNzN53XZ2nXfqx7LL6jqzvnZmfHfCknH3IM3Pp3idl15VLcvx1397u8TJ1OGcyFZmXTFXmJlOReQm0jSIdU0ApZY9Syt+WUi4opawopawvpdxWSrmolPKfpZTfLqXMK6W8tZRSJ3D7WOd19h9h+5pSyvWllE+WUk4a45gXlFL+opTyk1LKHaWUdaWUJaWU75dS/qCUMmuUfc8Y8voP3cZr/U9X2+vHMLa/6Wr/mrG8H0b3iFvPzUNW3pIk+eJRv9/8cZMkpSe/3PPYfPPwlyZJDr7zsuy/7Jfj6vu467+beetWZENPfz5zzOuyZMH+SZKBnr6cv99p+fHBz0qSPOrms7LLqtu32v+xV385Mzaty8qZ8/PZY16bu+buniTZ0DcrZx3yrFy49ylJkhOv/UZmdb4h58Fjn7uuyh99/4/z4l/8c0678gt5+G2/SO/Ahh3S988PeGJWzVqQvk3r84Lz/jV7rrghSdJbN+WYG8/MKVd9JUly0T6n5K45D9lq/7MOeXY29M3K3LXL8/zz35ddVt+RJJmxaV1OufqrOerGHydJzj3oaVnbN2eHjJmpwTmTqci8ZKoyN5mKzEugbQR4J1kp5eQkv0zyxiRHJVme5KIkdyV5WJJXJvl4Z9uNSc4e5nZHp7s7Rtj+62Fe+ryu7dcn2TPJi5OcVUr5422M+alJrkny7iQnJVmZ5OIk65OcnuR9Sa4spTx6jIfhd0Z5rZ2SPGeM/aSU0pPkt7ueOmOs+zKyI285N0ly/S4PzS07H7TV9iv2PDZ3z16UJDnilp9OqO8r9jw2y+cs2mr7efudlnW9M9NTB3L4rT/bYlv/xnU5bElTw/SCfU7Nuv6tg2TnHPjUJMmsjWtz6O0XjWtsTH2Dl6HdHy7b64QkycNu+8V9l+Z1O+aGH2bGxrWpPb25fPFxW2xb3zsjV+5xdJLkUTedmVkb12y1//HXfjNJsq5/dn69+1E7dvBMKudMpiLzkqnK3GQqMi+BthHgnUSllHlJPp9kYZLvJjms1rpPrfUxtdbDk8xP8tQkn0myodb6kVrryUNvSb7Z6fKbw22vtb5zmJd/Qdf2hyXZO8lX0iw7+PellINHGPPTOu12TfK1JA+ttR7YGfO+SY5Ock6SfZOcWUp51CiH4Lo0QeGXljJicaAXJJmT5Fej9NPt9M5r35tkIMmjSykPH+O+DKNv07rsfffVSZp6osMqJdcuOjxJcuCyy8fc9y4rl2TB2rtG7XtD36zctPMhSZIDll6xxba97746/Z1szZH2Xz5nUZbO3XPY/WEky+buft9ibQfdedmwbWZsWpe977oqSXLdoi1PMzfvfHA29s4Ydf+Fa5Zl15W3Drs/7eWcyVRkXjJVmZtMReYlrVPS1Fue9rfJ/iAmlwDv5Hp6kt3TZMA+p9a6RaZtrXVdrfVbtdYX1Vp/NmwPO0it9c4kL0uyOk1t5ucObVNKWZQmm7gvyWeTPHuYMV+Y5PFJfpJkbpJPl1L6R3jZu9IEifdNctoIbV7Wuf/vMb6VMzr3n07y/SHPMQGLVi65L0vyznmLR2x35057JUnmrVuRWevHdinQbp3Lnpq+9xql7+Z1F626dZT9Rxvb4k77W0dsA9265+Oie28Zsd3gnFo2ZP5tuf/I8263zralo8xf2sU5k6nIvGSqMjeZisxLoI0EeCfXgZ37K2utk14cp9Z6TzaXczhgmCZ/kCZz9+4kv19rZ4nPrftZmyaouinJoWlKP4zk4537lw3dUEo5IMkpSS5MMnwK3Jbtu8s5fKKr75eWUnq3tT/Dm7funvt+vnfWziO2u3fmwvt+3qlrn9HstG55V98LR2y3cmbzurM2rk3/xrVb7b+mf8592ZKjjW3eGMcFK7sWaRttPs9be3eSpszC+t6ZW+0/a/2q+7Isht//nk77hRMfLFOKcyZTkXnJVGVuMhWZl0AbCfBOrhWd+0NKKbtM6kg2Gyzis3qYbS/q3P9vrfXu0TqptV6TzaUjRgvwfiPJ0iTPK6XMHbLtd9Ik2Y81e/eFacZ/fZoM4v9Lkx29Z5InjbEPhpjR9QfFxp6R/4jY0PUHRvc+Y+17wwT6Hvx5tH2795+xcd2YxgXrezevE9m/af2I7bq3re/bvM/g/v0DI+/bvf/6vpmjtqM9nDOZisxLpipzk6nIvATaSIB3cn07TZ3Y+Um+X0p5cacMwqQopTwsyWAF+QuHbNs1yUM7D384xi7P7NyfOFKDWuuGJJ9MU87heV2vV9IEeAe3j8UZnfv/rY1VSb7YeW6rDOHhlFJeXUo5fyy3JIeNcVwAAAAAcL/om+wBTGe11qtLKX+R5O+THJVOILOUcn2S89IESD/bqY97v+kEb49P8k9JetOUafjskGZ7d/18zRi7vrpzP7+UslOt9d4R2n08yevSBGEHyyqcnKaExVdrrXeOvAbbfe/hoM4+SVOeIV0//06SZ5dSFnbKUIxmzzQLxdHRnZXYN0o24kiZjGPtu39gfdb3zB5X34M/y5JkR5uxqSu7ondGZo6QlTFidsUm2RXTlXMmU5F5yVRlbjIVmZe0Uo/8zenODJhktdZ/TBOY/GKSNZ2n90/y/CT/luSGUspf3g8vfV0ppZZSapoSCV9LckiSryQ5vdY69F+Mnbp+XjnG1+iuKzx/pEa11vOTXJ7ktFLKPp2nx7u42mD782qtV3Y9/4MktySZleQ3x9DPbUkuGONtuDIWDzoru2tLrR25Mkd33anuelSjuXdmV53TtfeM2G7euuZ11/bNyoauP3AG95+9YXX6RrmMfnBsK8c4Lpi3tqs+2ijzZmWnLtvMDWsyY9PmIO3g/mtnzM2GnpHWmdxce3feKPOfdnHOZCoyL5mqzE2mIvMSaCMB3img1npOrfV5SRYkOS7J/5fkS0nWJpmd5F2llD/fwS97XpKzk5yb5KbOcxuTXFRrHW7J+O7s23ljfI3umrorRmzV+O809XZ/u5QyO8kLktyV5KvbepGucg7Jltm76SwE97+dh2dsq69a6wdrrceM5ZbkV9vq78Fg6bw9MpAmg3q0VVh3u7eZNitnzs/aGUPLKQ+ve+XY7hVht+67ed2lc7dcKXbL/Ucb262d9iOvNAvduufj0p1GWeG4M6d2HTL/ttx/2yscL7LC8YOGcyZTkXnJVGVuMhWZl0AbCfBOIbXWDbXWn9da/6PW+pwkD0uT2ZokbyqljH6t7/i8oNZ6cq31xFrrvkmekCYz969LKa8fpn33vz4HDbN9OAd37leMUp5h0P8k2ZQmE/c5aTJ+Pz1MJvFwTkuyX5oA9aeH2T5Y9uH4UsqhY+iPLht7Z+bmnZuP8qA7Lx++Ua05cGmz7dpdDx9z33fN3T3LZzXrCx44Qt/9G9dln7uvSpJct+jhW2y7eeeD78uOPPDOy4bdf/6aZVm06rZh94eR7LLq9sxfsyxJcu2i4ef0+t4ZuXmXQ5IkByy9Yotte9999X1ZFdcuOmLY/ZfP2iXLOn90D92f9nLOZCoyL5mqzE2mIvMSaCMB3ims1np9kr/oPNwpyf12dq61fj/J73UevrOUst+Q7UuTDJY+OG2M3Z7auT9nDK9/W5LvJTk0yTs7T3985D22cEbnvi/J7YOlJ7pKUFw2TFvG4dK9TkiS7HfXlVl8z7VbbX/YkvOz85qlSZLL9jp+7B2Xcl/fD1/yiyxYvXSrJsfc+MPM3LQuA6Unly8+bottG/pm5ld7NCWTj77pR5m5YeuqGSdc+60kybreWfn17keNfWxMayXJEbecmyT55Z7H5p7Zu27V5oJ9T8v6vlkpA5ty+K0/22LbjE3r89AlFyRJLtz3cVnbt3V9tZ8e+JSm7cY1OfT2i3bsG2BSOWcyFZmXTFXmJlOReQm0jQDv1Ne9oNn9WiG91vqFJD/pvM7bhmkymB37klLKzqP11Vn07KlD9tuWwXq7+yW5stb6s9Ead15nXpLndh4uS3L7CLfB4km/XUox78fpksUn5I55e6Wk5rkXfiD7L/tls6EO5LAl5+Wplzex+KsXHZHrd33YFvuectVX8sZvvSpv/Narhv0D5mf7PzErZ87PjE3r88IL3pc9lt+QJOkZ2Jijbzwzj73qK0mSC/c+JXfN3X2r/X988LOzvndmdlq3PC+44N+z86rbkzTffJ989ddy9E0/TpKcfdDTsrZ/bJdO0S5r++Zkdf+8+27p/Ipv7J2xxfPre7c8hZ518DPz7qd+KO9+6oeGDeA+5rrvZu7a5dnQNzOfP+a1WTJ/3yTJptKbC/Z9XM469FlJkqNuOiu7rL5jq/1PuerL6d+4NitnLcznj3lN7przkCRN5u9PDn56Ltz3sUmSE6/+RmZtnBYlvacN50ymIvOSqcrcZCoyL2mdUtymuVJrnewxTFullN2SLK2jfAillFcm+c8kA0l272TSDm3zsTSlDf671nrGKH3tn+S6zsMDOhnCQ9s8Kcm305Q7eGit9dqubbulqTu7S5LPJnlxp8bt0D5mJflOklOSXJ3k8O5SC6WUM5J8NMn5tdZHdz0/O81ic/1JPllr/UjXtmekqcd7Q611/67nX57kI2lq/O5Rax1cqG7omHZLU2aiP8mTaq3fHa7deJRSzk9y9NwFh+aRp3xoe7ub8hasXpqX/OI9Wdi5bH1974yUWtM/sCFJsmT+Pvnksa/f6o+IU676Sk655mtJkn9/7DuzfM6irfreY/kNedF5782cDc26fOt6Z6VvYEN666YkybW7PjyfO+Y12TTCYlUH3XlpnnPRBzOjc0n82r7ZmbFpXXo60/PivU7M14942bQ56b/hm6+a7CE8oN7/uHdmxTDzaqgjbj4nz7j0Y/c9PuvgZ+bsQ56ZJPn9M99w39zutmT+vvnMsX+UNTOa0uMzNq7Jxp7+DPT0JUkOuPPyPO+Cf0/fwMZhX/Oa3Y7Il456dTZ0VjCeuWF11vfOTO3pTZIcefPZedql/53pMTOTdz31wX+uHOScyVRkXjJVmZtMReZlO1x81quyavmvk+SCzlo508ZgTOJRB+2Tc/7ljZM9nEl34h++Mxdec1MyDedC0lzSzuR5SZJXllLen+SLtdbbBzd06u3+VpL3dJ760nDB3R2t1vqdUsrPkzwmyV8leWXXtjs7wdn/S/LCJHNKKa+vtV7VNe5HJfm3JCcmWZ3kRWOso5tOcPap22y4pTM6958bKbjbNfZvJnlWmmD4dgd4p5vlcxblP096S4677jt56O0XZOGaZRkoPblt/uJcvuexOW+/0+8Leo3XkgX75cMnvy3HX/utHHznJZm/9u6s752ZpTstziWLT8jFe590X1bmcK7Z7cj850l/nROu/XYOWHZF5q1bnrV9c7Jk/j65cJ/H5so9pt25nR1kjxU35nfPekt+euBTcvVDHpF7Z+2c/k3rsts91+XIW87NI24+OyUjf1F60J2X5RVnvz0/PeDJuX7Rw7Ny5oLM2rg6u6+4KUfd+OMcdvsFD+C74YHknMlUZF4yVZmbTEXmJdAmMngnUSnlD5O8t+upm5IsSTIvyb5JBr8KPD/JU2utd47Qz8eygzJ4O+2eleTLSTYkOaTWesOQ7c9IU05hl85T1yVZmmSPJPt0nrs5yfOHK7MwUgbvaIbL4C2lHJgmQ7gkeWyt9axt9PHcJF9IE3jes9a6YiyvPUp/0yqDl/aYbhm8tMd0yuAFAOD+J4NXBu+g6Z7Bqxbp5Hp/moXI3pnk7DS1bx+V5MA0NWO/luTlSY4fKbh7P/lqkkvSlDPY6ixRa/1akoM6285JMj/JUUlmJflhkj9McuhYauhup99JE9y9Lk3t4G35WpK7ksxJk4EMAAAAAK2mRMMkqrVuSPKjzm17+jkjm0sVjNbu+mTbpR47NYEfuY029yR5V+c2LrXWjyX52Dj3+VqGjL3W+tYkbx1HH+uTbL2SEgAAAAC0lAAvAAAAALRSGbVm8/Tx4F9UcDRmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoI1Kkh75m9N8jTUZvAAAAAAAbSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgLYq03yFMWTwAgAAAAC0lQAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAAWqkkRf5mMr0XmjMDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpvsgcAAAAAAExQKZM9AiaZDF4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEAblSQ98jczzdeZMwMAAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpSyyBgAAAAAtVFNSyzRfYSzNcZjOZPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0VN9kDwAAAAAAmKAif3O6MwMAAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpSyyBgAAAABtZZG1ac8MAAAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFEpqaVM9igm3zQ/BjJ4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpvsgcAAAAAAExQkb853ZkBAAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FIWWQMAAACAtiplskfAJJPBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC1lkTUAAAAAaKWS9MjfTKb3QnNmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEv1TfYAAAAAAIAJKEktZbJHMfmm+SGQwQsAAAAA0FICvAAAAAAALaVEA2ynUpK+fr9KTB1/94z/muwhwLD+5rL/b7KHAFt508PeN9lDAGiN4jJwgClJBi8AAAAAQEtJOwQAAACAtiryN6c7MwAAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiJrAAAAANBKJdUia0nKZA9gUpkBAAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALdU32QMAAAAAACaolMkeAZNMBi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEXWAAAAAKClapG/Od2ZAQAAAAAALSXACwAAAADQUgK8AAAAAADDKKWcVkr5WinlzlLKmlLKr0op7yilzN2OPksp5cWllG+VUm4vpawrpdxaSvl+KeVPx9ufAC8AAAAAwBCllNcm+X6SpydZm+SXSfZP8qYkvyil7DKBPucl+U6STyZ5cpKVSS5OsiHJ45L85Xj7tMgaAAAAALRRSVLKZI9i8t0Ph6CUckyS93YevjrJh2uttZSyOMlXkhyT5MNJnjeOPkuSLyZ5QpJvJfmDWus1XdsXJnnseMcqgxcAAAAAYEtvThM7/USt9UO11poktdZbk7w4yUCS55ZSHjGOPs9I8sQkP0vyzO7gbqfve2qtXxnvQAV4AQAAAAA6OmUUntJ5+KGh22utVyX5QefhC8bR9es7939Ta9048RFuSYkGAAAAAIDNHpVkZpJ1SX4+Qpuz0pRaOH4sHZZSDkpyRJrM3x+WUo5L8vIkB6epw/vTJP9Za1063sEK8AIAAAAADwaHlVLOH0f7D9VaPzjM84d27m+stW4YYd/B8goPHeNrPbpzvyzJa5K8O1tWD352kr8opTy31vrDMfaZRIAXAAAAAFqqJEUF1q446ZwkR49jxz1HeH6Xzv1do+w7uG3ncb7Wzkn+LsnXk/x5kqvTBInfm+T0JF8spRxZa715jP0K8AIAAAAADwqrk/xqHO1vG+H5WZ379aPsu65zP3uMrzWvc9+XJvv3OV3ZwZeWUp7ZeX6PJH+U5E/H2K8ALwAAAADwoPCrWusxO6CftZ37GaO0mdm5XzPOPpPk34aWfqi1ri6l/EeSt6VZ4G3MAV453AAAAAAAm93dud9llDaD2+4epc1wfSbJL0doM/j8AWPsM4kALwAAAABAt1937vctpfSP0OagIW23pbt0xEilHwazfMcVsxXgBQAAAADY7MI0QdiZSR4zQptTOvfnjqPPwXIOB47QZjBoPOYF1hIBXgAAAABopZqkluK2o49rrfcm+Xbn4auGbi+lHJLk9M7Dz4+xz9VJvtp5+LJh+ixJzug8/P44hivACwAAAAAwxDvSxNB/u5Tyqk4ANqWUPZN8Kk1c9Uu11ou7dyqlXN+5PX+YPt+WZGOSU0opby6l9Hb26Uvyd0kemaZMwz+PZ6ACvAAAAAAAXWqtv0jy+s7DDya5oZRyQZLrkhyT5MokvzfMrvt1bvOG6fOKJL+bZFOStye5rZTysyRLkvxZkg1JXlFrvXI8YxXgBQAAAAAYotb63iRPTPLNJHOTPDzJDUnemeTRtdalE+jzv5Mcn+RzSQaSPCpNYPdTSY6ttX5qvH32jXcHAAAAAIDpoNb6/YyjJm6ttYyhzXlJXrg94+omwAsAAAAAbVVcoD/dmQEAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUhZZAwAAAIBWKqkpkz2IKWB6HwMZvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC3VN9kDAAAAAAAmphb5m9OdGQAAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZE1AAAAAGijksQia81xmMbMAAAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpi6wBAAAAQCuV1DLNVxhLMt1XWZPBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FJ9kz0AAAAAAGBiapG/Od2ZAQAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgLYqZbJHwCSTwQsAAAAA0FIyeIExm7FxTY695ts59Lbzs2D10tTSk7vm7p5f7fWYnH/AEzLQM/FTypx1y3Pc1d/MQbdfnJ3W3JWNvTOydKfFuXzvk3LJvqeM+I3k3LXLs/ddV2b35Tdkj3tuyO7Lb8jsDauSJJ864c9z06LDJjwm2mPGxjV5zLXfyaFLzs/C1UszUHpy99zd88vFj8l5+z9+u+fm8dd8KwfdcXHmr7krG3v7s3TeXrl07xNzyT6jz8197vp1dl9xQ/ZY3twG5+Ynj/+z3Liruflgt65nZs7e5fRcvtNRuWfGril1IIvW35EjV1yQ4+76UfqyacJ9/3LeETl/4Ym5ZfZ+WdM7J7M3rcrea27IsXefnUNXXTHsPtfNOTgf2e8Px/wap935jZy+9JsTHiNT04yNa3Pcdd/JQ2+/IAvXLMtAKblrzu65Ys9jc95+p2/X+XLuuhU5/rpv5+A7Lsn8tYPny8W5ZPEJuXjvk7eZXbRw9R054dpv54BlV2TeuuVZ3zsrS+bvmwv3OSVX7nHMhMdFO5ibTEUzNq7NY677Th665IIsXDP4N+ZDcsWej9nueTln3Yocf+23cvCdl3T9jbk4l+514qjzcu665m/MPVbc2PyNueLG+/7G/N/H/Glu3PWhEx4T0F4CvMCYzF+9NC865++zcM3SJMn63hnpHdiQPZdfnz2XX5+H3/zTfPqEP8u6GXPH3ffu91yfF/z0nzJnw8pO3zMzY+Pa7HPXVdnnrqty6G3n5YuPed2wf0AddcMPc9Kvv7J9b45Wm796aX7rp/+wxdzs656bt/w0nzr+T7OufwJzc/n1+c2f/fN9c3Nd78zM2Lgu+9x9Vfa5+6octuT8fP7Rrx12bj7qxjNz8lXm5nR1T9/O+a/9/jD3zNg1SdI/sC4DpS+3zN4vt8zeLxcveHRefsP7Mntgzbj6HUjJFxb/di5ZcGySpNSBzBpYk9W98/KrnR6RX+30iBx/15l5+u1f2Grf3rop8zauGLX/9WVG1vfOSpLsveaGcY2NqW/+mmV56c//MQvXLEsyeL7clMUrbsjiFTfkiNt+lk8e+/qsncD5co/lN+RF5703czpBhnWD/5bffXX2ufvqHHb7Bfnc0a8ZMRhy0J2X5jkXfTAzNq1Pkqzt+//Zu+/wOK8yYeP3UbcsWy5y7yVOcYpLeuJUAiRAlkCSpYcaalh22W8/YGEJu7CNZWEJZRPKAtmPklBDOulOj0tiO06x417kItuyZavP+f6YkT2yikfFSK91/65rrtHMKe+Z8eNXr545c04JJY37mV61kulVK3lhwrncdfJ1fgX1GGVsqj8aWlvFu5/5+mFx2ci46vWMq17P7C3P8Iszux+Xf/nct9q5xszEZeVibp//qQ6uMR9lweo/9uzFSTrmmOCVdEQh1czbnv02w2p3UlNczl1zP8z6UbMhpjhhyyLesOwnjNm7gTcv/QG/OeszXeq7qPEAb3/2vyhtrKGqbBx3zf0wlcOmkZdq4rT1j3LJi79k+o4VXLriF/zp1Pe2aR8J7C0ZwbbyKVQOm8L+4mG8cdlPeueFq98LqWauXnQTw2p3sq+4nDvnfJj1FSelY3PrIi5f/lPG7t3AW5b+gF+f+Zku9V3ceIBrnvs2pY017Bw8jjvnfJjKYVPJSzUxZ8NjXLoyHZuve/EX3H9Ke7EJ1SUj2FY+mcryqdQUl3PF8p/2zgtXv9ZMHv876aPsKRrJkMZq3r7lVmYceIUUgReHzOUP497B1pJJ/HrCdbx34393qe8HRr35YHL3nF0Pc9HOeyltPkBDKOK54edz/+greXrERYxo2Mk5ux9t1XZy7Vr+76q/77T//514Pa8MOYWhjbuZuf+lrr1w9Wsh1cy1i7/DsNoq9hWX88dTPsC6zPnyxMrFXLHiVsbu3ciVy37EbfM/3aW+ixsPcO2Smyht3M/OwWO549QPUlmePl/O3biQ1718GzN2vshlL/2K+2a/u0378gM7uer5WyhqbmDjsBncdcr72TV4DIVNdZy99n4WvHYnp21+kqrBY3l6+ht76y1RP2Fsqj8KqWauWXzTwbi889QPtorLy5f/LH2N+cKPuP30rsflNYtvylxjjuWPp33oYFzO2biQ1730K6Z3EpeQucYcOpnK8inpa8wVP+uNly0pwVyD988ohPBICCFmbk8doe7QEML+rPo3hhDKQwibMo+/eIT2I0IIlZm6f5X1fMzx9q3D+rsx8/wj3Xjdc0MI3wshvBxC2BdCOBBCWBNC+GkI4eIjtG15z25sp+zwMadCCHtDCBtDCA+HEL4eQjizq+NVWydveoLR+zYB8PvTP5lO7gKEPF6ecCb3n/o+AGZsX8bkHe1/NbgjZ752L2X11TTmFfHrsz5D5bBpAKTyClg67VIeP/6tAJy24VGG11S2af/UrLfw35f9B7878waemnUl60ad1M1XqSQ6ZdOTB2Pzd/M/kU7uQjo2x5/JvSenY3PmjuVM2dnF2Fxz38HYvP3Mv6Jy2FQgHZtLpl7Cwll/AcCcjY+1G5tPHvcWvn/p1/nt6Tfw5HFvOTQ2HfOeLz+TbSUTAHjH5h8y48ArAOQROWXfEq6s/BUAr5bN5rXSWTn3uz9/ME+NSP/aPHHfC1yx7beUNh8AoCg2cN6uhziv6iEAHhp1BXV5JV0a996CoawqS8fp3OpnyCN2qb36t1O3PMXoms0A/HbOx9KJCoCQx0vjzuCe2e8BYOaOFUyt6lpy/6x1f6Ksfi+NeYX8av6nqSyfCqTPl4unXMxjM68EYO6mhYzYv61N+wtW/4Gi5npqiody2/wb2DV4DACNBSUsPO5Klk5cAMC5a+6mJDMLU8cOY1P90Smbn2T0vnRc/m7ux9vE5b0nt8Tlcqbs7GJcrr3/4DXmbae3jsslUy5m4XHpuJyz8TFG7G97jfnEzDfzvYv/jd/M/yRPzHwz60ae2M1XqWNFJBBDnjcG9jcpTPD2nbNDCJ39VXcNUJr9RIyxGrg+8/BLIYTZnbT/NjAGeBy4qZ3yFcATndzW5PAaOhVCyA8h3AQsBj4OTAHWAq8AFcD7gIdCCLeHEEo77umIWl7Lk8AqoBm4CPhb4JkQwuMhhJk96H/AO3njkwCsH3kCW0a0fStfGn8We0or0nU3PdmlvmdvSn/W8dKEM6kuHdWmfMm0S2nILyYvpjhp89NtymPwNDaQnbL5CSATm8Pbi80z2TOoJTY7/VytjZM3P5np44x2Y3Px1Eupz8Tm7C3Gpg5ZOuwsAKbtf5XJtevalJ+ydzHDG9JLijxfnvvnkGtKj6cprxCA86sebLfO+VUPAFCXX8pLQ07tyrBZWn42qZBPiCnm7+na/xf1f6dsTv+brhtxPJuHz2hTvnLcGexuOV+28/s2l75XjjuD6sz1QLZFUy7OOl8+06qssKmeEyqXALBk0kXUF7a9JHxy+uUAlDTVMWvb810am/o/Y1P90ZHj8syDcXnKlq5eY2bHZdtrzEVTLukwLsFrTEnt88zQN17O3L+vkzrXHVYXgBjj3cBPgSLgxyGE/MMbhhDeBLwbqAU+GGNMtdP/DTHG8zu5fburL6odtwKfAhqAvwNGxRhPjTHOJZ3g/SCwB7gauCeE0N0lQ7Jfy/wY49RM/58EtgLnAYtCCH602Q0FTfVM2LUKgLWjT2m/UgisHZUum7rjxZz7HlGzlfLMmlYd9d1YUMLGkbO63LeOfQXN9UzYtRqA10Z1HJtrRp0MwLSdXYnNSsprd6X77iQ2N41Ix+Y0Y1MZDaGQDYOmAzCrpv1Z4wE4LrP8weqy3Dfb21M4/ODPo+rbzugBKE0dYHBmnd3Vg3PvOwJLhp0NwPT9rzK8cVfObdX/FTTXM3F3y/ny5PYrhcCaivTcgelVXTxf1u3qtO/GghI2Dj8OgGmHfZti4u7VFKYaO21fXVrBzsHj2m2vZDM21R9lx+WaTq4x1x68xsz93z47Ltd0EpebRrQfl5LUERO8feOXpJOe7wmh7Wr8IYTpwPmkZ762dxXzGWALcCbw2cPalgM3Zx5+Kca4qveGnbsQwvuBd5L+m/HqGOPXY4w1LeUxxoYY4/8AlwF1wAVA5wsDdkGMsSrG+D1gLvAqUA7cHoIfd3bVyJqtB7+mu2PIhA7r7RiaLiurr6akoabDetkq9m4+1L6Tvndmyir2bcmpXw0M2bG5s7PYHNL12ByVWfYBYGfZkfseWbM1p3517NtRPPbgzJrR9R3HRUtZTUE5B/K6/iWW2MlmPjFzebeteHzO/a0tPY5dRelZRM7ePfZU1FQe+l1e1nFcHDpf7qWkIbevm4+qyfpd3un5Mn3civ2tf5e3bt/Z2MZn6nstcCwxNtUftYrLIZ3822fiIn2N2Y247Oz6tcxrTEldY7Krb1QBd5NesuCidsrfR3qCT7srpccY9wAfzTz8Sgjh+KzibwATgKeAb/bOcLsmk0T9UubhT2OMd3ZUN8a4CPi3zMO/DiEM6c2xxBi3cWim9Gzgqt7sfyAoq9tz8OeaQcM7rFdTcqgsu02nfddn9V1y5L6Lm2opbKrLqW8d+4Zkxdm+kmEd1msVm1kx15myuuqsvjuLzfRxS4xNZewrKD/489CmPR3WG9p4qGxfYXmH9bINy5pV21Hydl/+EA4UlGXGMjSnfgEWDzsHgNKmGk7c90LO7ZQM2ee+zs5p+4qHHfx5SI7nyyH12efLYR3WqylOH7ekqa7V+bKlfW1hKU35RUccW67ncSWDsan+KPtvmX3FncRlt64xs/se1knf6TKvMSXlygRv32nZSv267CczM3rfBzQCP++ocSZp+r9ACemlGvJCCK8DPgTU0/HSDH8OZwLTMz9/J4f63yO9bm45cEVvDybG+AywKPPwLb3d/7GuKOuCorGTi9vssqIcL0KOZt869h3V2Gw2NtU99XnFB38uTDV0WK8wHirLbtOZ6QdepSDzdeFHR76+3TqPVrwhq9/cNlmrzRvEyiGnAXDa3ucooDmndkqO7PNTU95R/F3ejb5bfu6sbXb7oqb6nMalZDA21R9lXwd2ltzPjp1irzEl9TETvH3nLmAn8PYQwuCs5xcA04C7Y4w7j9DHp4FK4FzSyxvcknn+yzHGlztsdfSdl7mvBpYcqXKMcTvQsvXouUdpTAsz92d1VimE8NEQwuJcbkDuixtKktRDg5v3c/buRwF4rexEbh//PnYUjaGZPPYUDOf+UVfy7PAF5McmAELm66VHsqz89IOJFZdnkCRJSp5IGPC3ga67m1qph2KMjSGEX5LehOxtpDckg0MzettdnuGwPnaHED4G/B74x8zTzwH/kcMQHm5n+d9sc2OMz+fQT3smZu7Xxhhz++sSVgMnZ7XtbRsy92OOUG8cMO8ojSGRGgoOzQArbO5kNlpWWXabrvTdkDeo1/rWse+oxma+sanuKU4dmsHV6YyxkDXrJ5X7rK/Xbf8j1QXDWV4+n2XlZ7Cs/IxW5ZMOrGVs/SaeG76AQc21OfXZsjzDxNq1jOlk3WAlV/b5qaCzmeU9/V2e6vr5suXnzma8Z7dvKMhtxruSwdhUf5R9HViQ4zVmvdeYkvqYCd6+9VPSCd7rgFtDCKXANcAuoMN1a7PFGP8QQvg58C7Syzp8IMaYy3crV5CeYduR3HYial/LOrpd6aNlVfrcFwzsmpaxHGmN363kMOs44wSg6zvjJExN1pplZbW72TF0Urv1yup2t9um076z1p0qq9vNrsL2L3Ba+q4vGESjFzjKyF5Pb0jdntxis5O1zrLVlBxaE3VI3W6qOozNPQDUGZvKGNJ06Ffr3oJhjK1vf9OdvYXDDrVp7OzXcWv5pLh2y0+YU/0sS8vPpLJkAk2hkPKm3Zy8dyln7H6c3497FwAjG7Yfsb8tJRPZWpL+v+Ps3WNX9rlvSN1udgxp//P07LVNO1sbMtu+4uzz5R6qyjo4X9anz8V1BSWtzpct7Qc1HqCguaHDr0O3jC3X87iSwdhUf5T9t8yQ+t3s6GAO0pBuXWNm972nw2vMIV5jSuoiE7x9KMa4KISwErg4hDARuJB0AvK7McbOPypu7U+kE7xbYowv5tjmhhjjI10acO72Ze7LutCmZZmKvb08lhYtid1O+48x3gzcnEuHmWUajvnZvlVl40gRyCMyat9m1o45td16o/amd4StKS6nrii3f/qdQw/tHDtq32Z2dbBLbcW+dN87O9nFVgNPdmxW7NvMmtGntFtv1L6ux2b2H5gVNZup6iD2WvquKhvXlaHrGDaqvpIQU8SQx/bicczav7LdetuL0zFT1lRNaepAl48za//KDvvePGgyAJNr1x6xn8Xl6dm7Rc11nFK9uMvjUDLsLBt76Hd5zRbWjDrS+XIodUWD261zuJad3iG9O3xH58NR+9Ifduwc3Pp82rr9FraWT+20fcuu9To2GJvqj1rF5b5O4rIm/W+fvsbsRlzu6yQua7zGlNQ1rsHb935K+t/hvRxanuGnHVdPhE2Z+2nhCOtAZJl5WNveNiVzv+0o9X/MaiooZvOI4wCYtmNF+5ViZGqmbN2o2Tn3vWvwWKoHjUz3vX15u3UKm+qZVPVql/vWsa8pv5jNI9Knjuk72o8fYmTazvTnXmsruhKbY6geNCLd9/b2476wqZ6Ju9KxudbYVEZRbGRy7RoAVpWd2G6dCKwanF7GfWZN7y6Zv6V4IjsyyeM51c92WrcxFLKs/HQATt63lOIufbasJGnKL2bT8PT5csaODuYCxMj0zPlyzcguni9LMufLDvoubKpn0u5VAKytOKlV2abhM2nMK8y0b/98O7S2ior9W9ttr2QzNtUfZcfl9J0d//0zbUfLNWbu//at4rKDvtPXmO3HpSR1xARv3/tfIAV8ArgUeCnG+FzfDqnHnsjcl5PDDNcQwmig5a/gJ4/SmBZk7p85Sv0f01ZMSu99N3nny4zb/Vqb8uO3PsfwAzvSdSd2YZ+8EHhxYnr22AlbnmXogbb7Cs5d9xBFzfWkQh4rJ5zdjdHrWLZ8QnpPxylVrzBu95o25SdsXZQVm+fk3nEIrJiQjuUTtz5LeTuxOW/9QxRnYvPF8camDpm7J/2rZm3pcWwsmdKmfMWQuewuGgUcOQnbFQ2hkD+OuxaA2XuXMqqh8880XxxyGnX56ZWG5u85Wr9+1V8sn5A+B07Z9Qrj97Q9X55YuZjhtelz3Yqu/L4N4WDfJ1U+1+75cv6Gh7POl633u20sKOblsenLxXkbH6W4se2M9nPW3AtAfX4Jr46Zk/vYlAjGpvqjg3FZ1X5cnlC5iOG16WvM5eO7eo2Zrn/i1vbjcl4ncSm1K0AMeQP+NtD3WTPB28dijFuAB0hvLpZHDpurJcCzQMtvwU/lUP/jQD7p5RPu6e3BhBDO4VCi+Y7e7n8gWDHxPLYPmUgg8tZF32PyjszXgmOK47c8xxtfSE86f230KWwY1fpT5vNe+T1/98cP8nd//GC7CdxnZ7yRmuJyipobuPqZbzFmzzoA8lJNzFn3MOe/8jsAXph8IbvLxrYdXEwxqH7fwVtJ4/6DRcVNta3K8psbe+HdUH+yfOK5B2PzqiXfY8rOrNjc+hxvXJ6JzVGnsP6wGRDnv/oHPnfXh/jcXR9q9+L62elvOBSbz/0XY6rXAenYnLv+YRa8+nsAnp90Qcex2bDv4K1VbDbWtiozNo8tc6qfZUzdZmLI45cTP8RrpbMASBFYMWQOfxj3TgCOq3mRGQdebdX2oYrL+dKJN/GlE29id+GINn1vLJnCoyNfz/aisTSRD0AT+awafCI/nPrXbBo0jfLGXby58rYjjnPxsPSHGKPrtjC5dl1PXrISYNn4c9heNoFA5G1L/5upVS+lC2KKEyoXcfmL6UvQ1RUns25k69nnC1bdwRfuvZ4v3Ht9u+fLZ6ZeRk3xUIqaG7h2yU2MrV4PpM+X8zY8wgWr0pdfSycuYNfgtvvdPjbzL2jIL2ZIfTXXLPkuw/enP5wobKrn/NV3Mm/jYwA8MeMK6gpz+xq0ksPYVH+0fMK5bB8yIXON+X2m7MyKy62LuHxFeo/010adzPqK1nF5/qo7+Pw9H+Hz93yk/bic9vqD15jXLP52q7icu/4RLnj1D0D6GnPX4FyuMQ99+FDc5DWmNFC5Bm//8G3I/JWWntGbaDHGVAjha8CPgOtCCL+JMba7aVwI4XTgc5mH34ox9uoavCGEMcBPMg+XA7/vzf4HipiXz2/P/DTvePLfGVa7k3c8/R805BcRYqQwlb5o2DZ0MnfOvb7LfTcUlvKbM/+Ka57+TypqtnDdwn+kvqCEguZG8jP7Ba4dNZuHZr+j3fZDa3fxsQf/rt2ytz13U6vHd8/5ICsmnd/lMar/inn5/Ob0G3jn019nWO1O3vnMN9rEZuXQydwx9yNd7ru+sJTbz/g0f/nMNxlVs4UPPP5PbWJzTcVsHjyp/dgsr93Fxx/+v+2WvX3xd1o9vuvUD7Dc2Dxm5JPi3Ztu4ceTP82eopH8ZMoNFKbqiQSa8tKb9Iyr28g1m7u+ItO+gnIeGP0WHhj9FkJMUdJcS31+CamQvowYXbeF92y6mbLmzvc5rSqsYH3pDADmVz/d5XEoeWJePrfP+yTvfu4bDKut4l3PfbOd8+Uk7jjtQ13uu76wlNvm3cA7Fn2LUTVb+eBTX6M+v4SCVNb5cuRJPHDite22ry6t4Hdzrueq529m8u5VfHzhl6grGERRcz15MQXACxPO5elpb+jmq1d/ZmyqP4p5+fx63qd417P/kYnL/2z/GvO0D3e57/rCUm6ffwN/+Vw6Lj/w5FfbxmXFSTxwQvtxWV67i088+vl2y65e8t1Wj+885f0sn3hel8coKXlM8PYDMca7gLv6ehy9Kcb44xDCG4BrgV+HEL4I/HeMsQYghFBEemO4bwIlpJd1+GpvHT+EMDJz7C8B44DdwDUxxthbxxho9pZW8JOLvsIZr93HrK2LKT+wk1ReHpVDxvPShLNYPO11pPK6d0rZNmwqP774nzhr9T3M2PYCQ2p30VhQzJYhE3hx4nksm3w+BL9woPZVl1bw4wtu5Mw19zGrcgnDMrG5dch4Xhp/FoumXtr92Cyfyg8v/EfOfu0eZm5flo7N/HRsLp94LssmGZtq3/DGXXxq7b/w+IhLWTnkNPYUjSQvNjO6dgOn7l3MWbsepYDmLvc7oW4D51c9wLrSGewpHEltfimDmvcztm4LJ+9bytw9T5NP6oj9LBl2DjHkkZ9q5LReXCZC/Vt1aQU/PO/LnLX2fo7ftoRhtVWkQh5bh47nxXFnsGjKJd0+X1aWT+EH53+Fs9fcy8wdyxhat5uG/GJ2DhnPsvHn8MLE8zo9X7426hR+eN4/cM6a+5hWtZKy+mrqCkqpHDqJpZMu4JWx87v7spUAxqb6o+rSCn50/o2ctfY+ZlUuZVjtzoNxuXL8mT2PywVf4Zw1mWvMrLhcPuHcI8alJB0umO/68wkhPAJcCNwQY/zOEaq3tPk18HbgKzHGGzuo837gf4D1McapR+iv5R98BVDdSdWlMcYbstrdCHwZaDpCuw0xxnmZNgXATcBHSa+GUge8CjST3lRtSKbN74D3xhj3H95Z1nvW5vV38FpKgAoObaoGsBD4QIyx7eKxPRBCWAzMKxs2i3kX/7g3u5Z6JJXyvK7+6R9XfKKvhyC18cUTbzpyJUkSALnvoS39eTz/2EfYX/0qwJIY44D6xKUlJ3HqScfzwG1d/2bYseZ1117HspWvwACMBXAG70B28hHKmzp4vgAY2Um7g98JjTE2AR8PIfwQ+AhwMTCD9FrD24A/AD+JMT6Y66A7kP1aakgnex8BFgG3xxidmiRJkiRJko5Nfvgy4Jng/TOKMV7UjTZX51DnJxxaZ/ZIdbv1vz4ze/bGbrZdDCzuZtuLOinzDCZJkiRJkqQBzUVdJEmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJ5SZrkiRJkiRJUiIFovM3gdDXA+hTRoAkSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaHcZE2SJEmSJElKqBgG9gZjcgavJEmSJEmSJCWWCV5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmh3GRNkiRJkiRJSqAIxOD8zdjXA+hjOSV4Qwj/0FsHjDH+Y2/1JUmSJEmSJEkDWa4zeG+k95LhJnglSZIkSZIkqRfkmuB9DGc7S5IkSZIkSVK/klOCN8Z40VEehyRJkiRJkiSpi9xkTZIkSZIkSUqkQCT09SD6gYH9HrjNniRJkiRJkiQlVK/M4A0hVAAXA1OA0hijG6lJkiRJkiRJ0lHWowRvCKEA+DfgE0BRVtE/ZtUZDqwBBgEnxBjX9eSYkiRJkiRJkqS0ni7RcDvwGdLJ3ReBpsMrxBh3Az/P1Lm2h8eTJEmSJEmSJGV0O8EbQngH8BfAduD0GOOpwK4Oqt+eub+4u8eTJEmSJEmSJLXWkyUaPgBE4P/EGJceoe6zmbon9eB4kiRJkiRJkrLE0NMv6CvpehIBczP3vzlSxRjjAaAaGN2D40mSJEmSJEmSsvQkwVsOVMcYa7twrNiD40mSJEmSJEmSsvQkwbsbKA8hlBypYghhHDAU2NaD40mSJEmSJEmSsvQkwbskc5/LxmkfzNw/1YPjSZIkSZIkSZKy9GSTtf8HvBH4pxDCwhhjTXuVQghvBL5EenmGn/bgeJIkSZIkSZJaBIgh9PUo+t4Afwt6kuD9OXA9sAB4OoTw30ARQAjhMmAq8BbgCtIzhf8YY7yvR6OVJEmSJEmSJB3U7QRvjDGGEN4K/A64APivrOJ7s34OwAPAu7t7LEmSJEmSJElSWz1Zg5cY427gEuA6YCHQQDqhG4Bm0mvuvh94Y0dLOEiSJEmSJEmSuqcnSzQAEGNMAbcCt4YQ8oARQD5QFWNs6mn/kiRJkiRJkqT29TjBmy2T7N3Zm31KkiRJkiRJal8c6DuMqXcTvCGEfNIzeAF2xRibe7N/SZIkSZIkSdIhPVqDFyCEMDiE8NkQwnPAAaAyczsQQnguU1bW0+NIkiRJkiRJklrr0QzeEMIc4HfAZGgzH7wQmA/MAz4VQnhbjHFpT44nSZIkSZIkSTqk2wneEMI44AHSSzI0AL8GHgI2Z6pMAC4GrgamAH8KIZwaY9zSoxFLkiRJkiRJkoCezeD9B9LJ3fXA5THGl9up8+MQwleBe0nP8v0S8PEeHFOSJEmSJEmSlNGTBO8VQAQ+0kFyF4AY4yshhI8A9wNv6sHxJEmSJEmSJGVEAjH0eIutxIttVo4dWHoSAWOA2hjjA0eqmKlzABjVg+NJkiRJkiRJkrL0JMG7A2juQv1Upo0kSZIkSZIkqRf0JMH7IFAWQph/pIohhNOBskwbSZIkSZIkSVIv6EmC96vAfuAHIYSRHVUKIYwAbgH2Al/rwfEkSZIkSZIkSVly2mQthDC5nacbgA8DNwMvhRC+DzwMbM6UTwAuBj4GFAIfybSRJEmSJEmS1AsG+gZjyjHBC6zNoc4XM7eO/BKIXTimJEmSJEmSJKkTuSZbe+ujAD9SkCRJkiRJkqRekmuCd9pRHYUkSZIkSZIkqctySvDGGNcf7YFIkiRJkiRJkrrG9XAlSZIkSZKkhIohr6+HoD5mBEiSJEmSJElSQvXKDN4QQhEwB5gIDKaTzdRijD/rjWNKkiRJkiRJ0kDXowRvCKEY+BpwPenE7pFEwASvJEmSJEmSJPWCbid4QwgFwH3AAtIzdrcDo4EUsAWoAEoy1WuAqh6NVJIkSZIkSZLUSk/W4P0QcAHpZO7pMcaxmee3xxgnA2XAxcCTpBPJX4wxTuvJYCVJkiRJkiRJh/RkiYZ3kl5y4e9jjEsOL4wxpoBHQwgXAvcAPw4hvNReXUmSJEmSJEldFYgdb4U1gAzs96AnM3hPztz/+rDn87MfxBibgb8BCoG/7cHxJEmSJEmSJElZepLgHQJUxxgPZD3XQHpphlZijCuAfaTX65UkSZIkSZIk9YKeJHi3c9hsXdIbqZWEEEZnPxlCCEARMKoHx5MkSZIkSZIkZelJgncTUBZCGJb13IrM/RsPq3sRUAxU9+B4kiRJkiRJkqQsPdlk7TngTOBc4O7Mc78DLgP+I4RQCzwPnAb8J+kN2R7qwfEkSZIkSZIkZYmhJ/M3dSzoSQT8nvQWde/Ieu5HpGfxVgC/BF4GfgVMBPYDX+nB8SRJkiRJkiRJWXqS4H0YmAZ8vuWJGGMjcCnwC6CedAIY4HHgohjjyz04niRJkiRJkiQpS7eXaIgxRmB9O8/vAN4dQiggvana3hjj/u4PUZIkSZIkSZLUnp6swdupGGMTsPVo9S9JkiRJkiRJA91RS/BKkiRJkiRJOnoiEA+ukDpwxb4eQB9zmz1JkiRJkiRJSqicZvCGEJp76XgxxuisYUmSJEmSJEnqBbkmW53rLUmSJEmSJEn9TK4J3ouP6igkSZIkSZIkSV2WU4I3xvjo0R6IlFQxQlNjU18PQ5L6vS+eeFNfD0Fq4/P3XN/XQ5Da9S+X39LXQ5DaiHGgb2MkSf2T6+FKkiRJkiRJCRWDK6sOdHl9PQBJkiRJkiRJUveY4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKTdYkSZIkSZKkRArE6CZrMLDfA2fwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISqsebrIUQJgJ/A7wBmAKUxBgLssqHAx8HIvD1GGNTT48pSZIkSZIkCaLzNwe8HiV4QwiXAbcBQzm0XV3MrhNj3B1CeCswH3gRuKMnx5QkSZIkSZIkpXU7xR9CmAT8GigH/ghcDezuoPqPSSeA39Td40mSJEmSJEmSWuvJHO7PAkOA22KMb40x/hZo6KDufZn7M3pwPEmSJEmSJElSlp4keN9AejmGLx2pYoxxLVAPTOvB8SRJkiRJkiRJWXqS4J0M1MYYV+VYvwYY3IPjSZIkSZIkSZKy9GSTtRSQn0vFEEIB6Y3Y9vbgeJIkSZIkSZKyREJfD0F9rCczeNcDxSGEyTnUvQAoBHKd7StJkiRJkiRJOoKeJHgfyNx/rLNKIYRC4Guk1+u9pwfHkyRJkiRJkiRl6UmC95tAA/DZEMKH2qsQQphHOhF8FrAP+F4PjidJkiRJkiRJytLtBG+McT3wYdLr8N4SQtgGDAcIITwZQtgMPAcsAJqA98UYd/Z8yJIkSZIkSZIk6Nkma8QY/18IYTvwXWBmVtHZWT+vBj4WY3yoJ8eSJEmSJEmSdEjETdYg/T4MZD1K8ALEGP8UQjie9EZq5wHjSc/qrQSeAB6OMTb39DiSJEmSJEmSpNZ6nOAFiDFG4NHMTZIkSZIkSZL0Z9CTTdYkSZIkSZIkSX3IBK8kSZIkSZIkJVS3l2gIIXRn07QYY7y0u8eUJEmSJEmS1CK4yRrAAH8PerIG70U51mvZyC7gpnaSJEmSJEmS1Gt6kuD9yhHKy4GzgHOAKuD7QHMPjidJkiRJkiRJytLtBG+M8UgJXgBCCJcAvwVOijFe3d3jSZIkSZIkSZJaO+qbrMUYHwL+CrgqhPDho308SZIkSZIkSRoojnqCN+NXpJdnMMErSZIkSZIkSb2kJ2vw5izGWBdC2A+c+Oc4niRJkiRJkjQQREJfD0F97M8ygzeEMIH0pmtGnCRJkiRJkiT1kqOe4A0hDAK+l3m4/GgfT5IkSZIkSZIGim4v0RBC+IcjVCkBJgFvAEYCEfhud48nSZIkSZIkSWqtJ2vw3kg6aXskAUgBX40x/rwHx5MkSZIkSZIkZelJgvcxOk/wNgG7gReA22KMq3pwLEmSJEmSJEmHidEtrwa6bid4Y4wX9eI4JEmSJEmSJElddNQ3WZMkSZIkSZIkHR3dTvCGEFIhhKYQwszeHJAkSZIkSZIkKTc9WYO3FmiMMa7urcFIkiRJkiRJknLXkwTvJmBibw1EkiRJkiRJUtdE3GRtoOvJGrx3ASUhhAt7azCSJEmSJEmSpNz1JMH7L8AO4PshhHG9NB5JkiRJkiRJUo56skTDicDfA98EVoYQbgWeALYDzR01ijE+1oNjSpIkSZIkSZIyck7whhDeB9TGGG/PPPUIELOqfDJz60zsyjElSZIkSZIkSR3rSrL1J8BW4Pas57q6irOrPkuSJEmSJEm9IOIma9B6BupA1NXZtAcjJsbYk/V7JUmSJEmSJEk9ZJJWkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQXd1kbUwIobkHx4sxxq4eU5IkSZIkSVIbgUjo60H0AwP7PehOsnVgv2OSJEmSJEmS1E90NcG7H/jG0RiIJEmSJEmSJKlruprgrYkxfuWojESSJEmSJEmS1CVusiZJkiRJkiRJCeWGZ5IkSZIkSVJCxeh2WQOdM3glSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEynkN3hijyWBJkiRJkiRJ6kfcZE2SJEmSJElKqBRusjbQOStXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaEK+noAkiRJkiRJkrouApHQ18Poc7GvB9DHnMErSZIkSZIkSQllgleSJEmSJEmSEsolGiTlrKipjrPW3s/x25YwrLaKVAjsKh3DynFnsGjKJaTyun9KGVy/l7PX3sfM7csYWreLpvxCdpaNZ9n4c3hh4vkQOv/KybAD2zlnzX1Mq1pJWX01DfklVA6dzNJJC3hl7Pxuj0vJYGyqPzIu1Z805hWxYcQsKssns23oZCrLp7B30EgAzlv1Rxas/mOPj7G/aAhPT38Dr406lb2DRlDQ3EhFzRZO2fwUp256/IhfHt1dOopnpr2BtRUnUVNcTlFzHWOrN3DaxoWcsG1Jj8en/s1zpvoj41JSUoQYB/oqFVL3hBAWA/MGl8/itAW39PVwjrqhtVW859n/YFhtFQAN+UXkxRQFqSYAKodO4udn/A11hYO73PfY6vW8Y9G3KG3cD0B9fjEFqUbyYwqA1ypmc/u8T3Z4ATVjx3Kuev5mipobAKgrKKGoqZ68zCo8L0w4l7tOvu6IF0lKJmNT/ZFxmRyfv+f6vh7Cn8X6EbP4xVl/225ZbyR4K4dO5ldnfIbaojIgnRRpyisklZcPwLQdK7h68XfJj83ttn9t1Mn8fs5HaSwoBqC4sZaGgmJiSH/h8JRNT3DF8p8OqBUG/+XyY//6soXnTPVHxmUyvLDwevZXvwqwJMY4oDLbLTmJE2afys9/92BfD6fPveuqS3n5xWUwAGMBnMErKQch1cy1i7/DsNoq9hWX88dTPsC6ipMgpjixcjFXrLiVsXs3cuWyH3Hb/E93qe/ixgNcu+QmShv3s3PwWO449YNUlk8lL9XE3I0Led3LtzFj54tc9tKvuG/2u9u0Lz+wk6uev4Wi5gY2DpvBXae8n12Dx1DYVMfZa+9nwWt3ctrmJ6kaPJanp7+xt94S9RPGpvoj41L9VUnDfsbs3cDYvRsYs3cDD55wLftLynvcb13BIG6ffwO1RWWMrNnKm1/4MeP2rqc55PP8pAU8eOK1rB11Mg+c+Je8YeXP27TfM2gkv59zPY0FxUzctZorlv+EEQe205BfzDPTXs8Tx72F5RPPY2RNJWevva/H41X/4jlT/ZFxqaSJ8dhP5qtzA3IN3hDCIyGEmMPt+aw2F3VQZ38I4dUQwg9DCKdk1S8IISzJ1PnhEcZTFEJ4MVP3dzmOrc2tndd34xGOe9HhbbPKbmznGKkQQnXmdX0thDAqx/d7bgjheyGEl0MI+0IIB0IIa0IIPw0hXHyEth2+lg7GtzeEsDGE8HAI4eshhDNzGaM6d+qWpxhdsxmA3875WPriBiDk8dK4M7hn9nsAmLljBVOrXupS32et+xNl9XtpzCvkV/M/TWX5VABSeQUsnnIxj828EoC5mxYyYv+2Nu0vWP0HiprrqSkeym3zb2DX4DEANBaUsPC4K1k6cQEA5665m5LMJ+Q6dhib6o+MS/VHk3at4jMP/jXvfO6bXPzKbzhp63Pkpxp7pe9np13G/pJyCpobuGbRtxm3dz0A+bGZ+RseYcGqOwB4ftICdpWObtN+4XF/QWNBCYPrqrl68U2MOLAdgKLmehas/iNzNjwGwFMzrqCuoLRXxqz+w3Om+iPjUlLSDMgEb5aNwBOd3JZ20C67zhZgGvAhYHEI4RqAGGMT8AGgEfhQCOGyTsbxD8BJwGrgEx2MZUUHx8++HQ17s/p/BtgHzAW+ACwPIRzfUcMQQn4I4SZgMfBxYAqwFngFqADeBzwUQrg9hNCTq/UVmfE9CawCmoGLgL8FngkhPB5CmNmD/ge8UzY/BcC6EcezefiMNuUrx53B7kEVAJy8+elu9b1y3BlUl1a0KV805WLq84vJiylmb3mmVVlhUz0nVKbX5Fsy6SLqC9uG0ZPTLwegpKmOWdue79LY1P8Zm+qPjEv1Ry1f2z0aVkw4B4ATtz538KvM2eavf5iipjpiXj4vjj+rVVlDfhGvjJ0HwNyNj1DSVNum/dlr7gGgvnAQr46Z07uDV5/znKn+yLiUlDQDPcH74xjj+Z3cPtBeo8PqHAccBzwFFAI/CCEMy9R7AfjnTLMfhBDKDu8rhDAH+L9ABD4UY9za3liAGzo4fnado2Fp1jHOiTFOBC4AtgNjgJs7aXsr8CmgAfg7YFSM8dQY41zSCd4PAnuAq4F7QgjdXTLkhqwxzo8xTs30/0lgK3AesCiEcGI3+x/QCprrmbh7NZBeH69dIbCmYjYA06tezLnvETWVlNft6rTvxoISNg4/DoBpO1e2Kpu4ezWFmdlHHbWvLq1g5+Bx7bZXshmb6o+MSw00VYPHHNysbcaOFe3WKWquZ+KuVQCsbZkFl7Fp+Eya8os6bT+stoqRNVvaba9k85yp/si4lJREAz3B2ytijOuA92celgOvzyr+GvAC6dmr/57dLpPQ/B/SayF/N8b42NEea2+IMS4EvpR5eGEIoc137UII7wfeSTpxfXWM8esxxpqsPhpijP8DXAbUkU4a/30vjrEqxvg90rONXyX973J7CMGY76KKmsqDs352lI3vsN6OIRMAKKvfS0lDbl8FGpX52lO67wmd9J0+bsX+LZ2072xs4zP1t3RYR8ljbKo/Mi410GTHYsW+zR3Wa4mnqsNir3X7jmNuVKZsZyexq+TxnKn+yLiUlEQmu3pJjPFV0rNRIb1kQ8vzjaSXamgCPhZCuCir2eeAOaSXLfjcn2GYvSn7uyLTsgsySdSWBPBPY4x3dtRJjHER8G+Zh38dQhjSm4OMMW4jvRQEwGzgqt7sfyAoq99z8Od9JcM7rLeveNjBn4dktenMkPrqrL6HdVivpjh93JKmOgqb6tq0ry0sPTj7p7OxleU4LiWDsan+yLjUQFOTtUlbZ7FcVrcbSC+z0JBf3KZ9ScP+g7PS2m+/J1N/WPcHq37Hc6b6I+NSyROI3oCBvdGcCd5ekklqtlytHsguizEuBf6VdLT9KIRQGkI4iXQStGVphqStfp692M+Bw8rOBKZnfv5ODn19j/S6ueXAFT0fWmsxxmeARZmHb+nt/o91RVkXFE15HV9ENGZdYGS3ybXvxm703fJzZ22z2xc11ec0LiWDsan+yLjUQNOQX3Lw58Lmhg7rZZc1FBxq09K+MNVx2+z2DQXFndZTsnjOVH9kXEpKIhO8vedSYFDm5/Y2Z/snYDnpxOe/Az8CioCbY4wP/1lG2LvenLnfR3pzuGznZe6rgSVH6ijGuB1o2Xr03F4ZXVsLM/dndVpLkiRJkiRJSpDubmp1rPhyCOHLnZT/dYzxW511EEIYA1wCfCPz1KMxxscPrxdjbAghfAB4mvTmXwDrgf/T5VHn7kivr0sys5QnA+/i0Lj/M8Z4+HbHEzP3a2OMuW7ZvBo4Oattb9uQuR/TWaUQwkeB63Ps84QejSghsmfZFHQyu6ajmTm59l2YaqAhb1C79Tqc9VPgrJ+BzNhUf2RcaqApas6ajZZfRHEHs9g6nI3W7Gy0gcxzpvoj41JSEg30BO9GDiX+2tPuThEhhPaSlk3Az4AbOuosxrg4hPDvwBcyT30ke+Oxo+BIr6+cdFK1Mxd28Hp3A/8RY/zndspa1tHtymtrWaJiaBfadEXLWI60xu84YN5RGkMi1WSvLVW3mx1D2s/BZ687lb0eVWf2FWet21e3h6qy9i9wyurT6/bVFZTQmHWB09J+UOMBCpobOlyHqmVsNTmOS8lgbKo/Mi410JTVZa0nWTyM4qbKduvVZNaxLG6spaj5UJK2pX1d0WAa8wo7XIe3Ze3dlrV4dWzwnKn+yLiUlEQDfYmGH8cYz+/kdnsH7Z7I3J4BWq5i64GnYox7j3DMP7X8EGP8U2cVe0Gnr49OktFZ9nLo9S7JPIb00gyPdtBmX+a+rAtjHZx1vKOhJbF7pP63kn6dudwOX3v4mLSzbCypzGLlne3COiqzc3ZN8VDqigZ3WC9b9s6x2TvCtu07s3P24I533u58bFsy9d15+1hibKo/Mi410GTH4s4hnewIn4mnkYfFXuv2R94RvsId4Y8pnjPVHxmXkpJooCd4uyUrSXo2MB54B1AIfD+E8Pa+HV2vW5r1eucDY4F/I71Uw90hhGnttNmUuZ8WQsh1G8OZh7XtbVMy99s6qxRjvDnGOD+XG/DyURprv9KUX8ym4el/nhk7Xmy/UoxM35kuWzNyds597xo8huqSEQBM76DvwqZ6Ju1eBcDaipNalW0aPpPGvMJM+xXtth9aW0XF/q3ttleyGZvqj4xLDTQj9m9jaG0VAGsq2o/nhvwiNo04DoBpO1e2Kpu4ezUFma8Sr6lo/4tl1SUjqMokKQ5vr2TznKn+yLhU4kSIMQz4G7kuEHqMMsHbQzHtVxxaduF7IYQjLQOQWDHG2hjj54A/kl5O4XvtVHsic19ODssdhBBGAydmHj7ZG+Nsx4LM/TNHqf9j2vIJ5wAwZdcrjN+zpk35iZWLGV67E4AVE87OveMQDvZ9UuVzlB/Y2abK/A0PU9xcTyrk8eL41nvkNRYU8/LYdIjN2/goxY1tJ1Wfs+ZeAOrzS3h1zJzcx6ZEMDbVHxmXGkgCcPLmpwB4adwZ7Bk0sk2dJZMvpqGghJBqZvaW1pdiRc0NHF+Z3pN36eQLqSto+3Xlp6e/MV23qZZZ257v3RegPuc5U/2RcSkpaUzw9p5vA2uB0cBn+3gsfw7/B2gG3hhCuOiwsmeBlt+Cn8qhr48D+aSXT7inl8Z3UAjhHA4lmu/o7f4HgmXjz2F72QQCkbct/W+mVr2ULogpTqhcxOUv/gyA1RUns27kia3aLlh1B1+493q+cO/17V7APDP1MmqKh1LU3MC1S25ibPV6APJSTczb8AgXrEr/ky2duIBdg9vukffYzL+gIb+YIfXVXLPkuwzfn56kXdhUz/mr72TexscAeGLGFdQV5vbVKSWHsan+yLhUf1VXUMqBwrKDN0L6T4Gm/KJWzzfkt96UZ+HMt/Cvl9/Cv15+S7sJ3DPX/onBddU0FhTz6/k3UDl0MgDNIZ8lky9k4awrAZizcSEjDmxv037Bqj9Q2FRHTckwfj3/k+wqHQ2kZ/4+PvNNLJ18AQDnrr6bkqYBsULWgOI5U/2RcSkpaQb6Jmu9JsbYGEL4V+Bm4K9CCN+MMVYfqV1SxRhfCSHcBrwT+DLwSFZZKoTwNeBHwHUhhN/EGO9sr58QwunA5zIPv5XDGsZdEkIYA/wk83A58Pve7H+giHn53D7vk7z7uW8wrLaKdz33TRryiwgxHtwMpXLoJO447UNd7ru+sJTb5t3AOxZ9i1E1W/ngU1+jPr+EglQj+bEZgDUjT+KBE69tt311aQW/m3M9Vz1/M5N3r+LjC79EXcEgiprryYspAF6YcC5PT3tDN1+9+jNjU/2Rcan+6sfnfZG9pRVtnn9m+ht4Zvqhf/OTNz3Jm5f/JOd+S5pquWbxTfzqjM+wc8h4fnLeFylqqqUpr5BUXvrPjWk7XuTSl29rt/2w2ire+vwt/H7OR9k0Yha3XPhVihsP0JBfTMzLB+CUTU9w1tr7uvBqlRSeM9UfGZeSksYEb+/6CfAlYCLwaeCf+nQ0R9/XSK8/fFEI4fwY4+MtBTHGH4cQ3gBcC/w6hPBF4L9jjDUAIYQi4F3AN4ES0ss6fLW3BhZCGJk59peAccBu4JoY4wBflaX7qksr+OF5X+astfdz/LYlDKutIhXy2Dp0PC+OO4NFUy45+EdcV1WWT+EH53+Fs9fcy8wdyxhat5uG/GJ2DhnPsvHn8MLE8w7OMmrPa6NO4Yfn/QPnrLmPaVUrKauvpq6glMqhk1g66QJeGTu/uy9bCWBsqj8yLjXQjN27gQ8v/DJPT38jq0efyr6S4RQ21zNqz1pO2fwUp256gtDJ4ngzdqzgg0/8I09PewPrKk6iprickqYDjNm7kTkbHuOEbUv+jK9Gf26eM9UfGZeSkiQMxHxXCOER4EJgI7Chs7oxxvMzbS4CHs481+HGYSGETwP/BewCpsYY9x1WnlM/7fSbc7us1/eVGOON3ekzhHAj6Zm5j8YYL+qkj98CVwEPxBgvO6ysALgJ+CjpJdrqgFdJL+0wE2hZq/h3wHtjjPu78lpCCC3BuwJomS1dAlRwaFM1gIXAB2KMr3X0OrojhLAYmDe4fBanLbilN7uWJEl/Jp+/5/q+HoLUrn+53OtLSTqSFxZez/7qVwGWZDZDHzBachInnHQaP/vtI309nD73vrddxMsrX4ABGAvgDN5JmVtv+gHpDdfGkF5/9l96uf/+5qukE7yvCyGcHWN8uqUgxtgEfDyE8EPgI8DFwAzSaz9vA/4A/CTG+GAPx5C95XIN6WTvI8Ai4PYY47M97F+SJEmSJEnqlwZkgrezGamdtHmE9CzUI9WrBcb2tJ+etMv19XXWZ2a27I059LHkSOOKMS4GFucypnbaXtRJWZffR0mSJEmSJOlY0vGiLpIkSZIkSZKkfs0EryRJkiRJkiQl1IBcokGSJEmSJElKugi4gmX6fRjInMErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFAFfT0ASZIkSZIkSd2T6usBqM85g1eSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFBusiZJkiRJkiQlVIyhr4egPuYMXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQrnJmiRJkiRJkpRIgYibrDHA3wNn8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQlVEFfD0CSJEmSJElS10UgxtDXw+hzsa8H0MecwStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSig3WZMkSZIkSZISKuImawOdM3glSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSe0IIVwcQrgzhLAjhFAbQng5hPBPIYTBvdT/J0IIMXN7pDt9uMmaJEmSJEmSlFCp2NcjOHaFEG4A/gsIwCZgI3AS8EXg7SGE82OMu3rQ/wTgX3o6TmfwSpIkSZIkSVKWEMJ84FuZhx8FJscY5wHTgcXAicAPeniY7wGDgTt70okJXkmSJEmSJElq7Uukc6e3xhhviTFGgBjjFuCdQAp4Wwjh1O50HkK4FrgS+A7phHG3meCVJEmSJEmSpIwQQhnwxszDWw4vjzGuAh7KPLymG/0PB75NetmHL3ZzmAeZ4JUkSZIkSZKkQ+YCxUA98GwHdRZm7s/uRv/fAMYAN8QYa7rRvhU3WZMkSZIkSZISKhL6egjHolmZ+w0xxsYO6ryWuT++Kx2HEC4BPgDcEWP8ffeG15oJXkmSJEmSJEnHghNCCF1Zz/aWGOPN7Tw/InO/q5O2LWXDcz1YCGEQ6SUfaoBP5druSEzwSpIkSZIkSToWlALzulB/XAfPl2TuGzppW5+5H9SF430FmAH8TYxxYxfadcoEryRJkiRJkqRjwQHg5S7U39rB83WZ+6JO2hZn7mtzOVAIYS7w18BS0hus9RoTvJIkSZIkSZKOBS/HGOf3Qj+7M/cjOqnTUra7kzrZfgTkAdfHGJu7O7D2mOCVJEmSJEmSpENezdxPDiEUdrDR2ozD6h7JXKAZuDOENhvjlWXuzw0hVGZ+PiPXZRxM8EqSJEmSJEkJFCPE2CZZOODE2OtdLiW9/m4xcCbwRDt1FmTun+pCv/nAmE7KC7PK83PtNK8LA5AkSZIkSZKkY1qMcR9wX+bh9YeXhxCOAy7JPPx1jn2Gjm6kN18DeDTr+XW5jtcEryRJkiRJkiS19k9ABN4bQrg+ZNZVCCGMA35BOq/6+xjjC9mNQgjrMrer/1wDNcErSZIkSZIkSVlijM8Bf5N5eDOwPoSwBFgLzAdeAT7STtMpmVtZO2VHhQleSZIkSZIkSTpMjPFbwGXAPcBg4CRgPfDPwOkxxp19N7pD3GRNkiRJkiRJSqijsMGYssQYHwQe7EL9Lu96F2O8Ebixq+1aOINXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQbrImSZIkSZIkJVIgRZf39DoGDez3wBm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQlV0NcDkCRJkiRJktQ9MYa+HoL6mDN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJ5SZrkiRJkiRJUgJFIMa+HkXfG+hvgTN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJ5SZrkiRJkiRJUkJFQl8PQX3MGbySJEmSJEmSlFDO4JV6KOQFiksH9fUwpINKykr7eghSu6q3V/X1EKQ2/uXyW/p6CFK7vlP3xb4egtTGp0q+2tdDkCS1wxm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQrkGryRJkiRJkpRQqdjXI1BfcwavJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmh3GRNkiRJkiRJSqIIMYa+HkXfG+AbzTmDV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUG6yJkmSJEmSJCVQBOIA32AMBvwea87glSRJkiRJkqSkMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUqogr4egCRJkiRJkqTuSRH6egjqY87glSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllJusSZIkSZIkSQkVY1+PQH3NGbySJEmSJEmSlFAmeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIRykzVJkiRJkiQpkQIxhr4eRD8wsN8DZ/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJVRBXw9AkiRJkiRJUtdFIBX7ehR9b6C/Bc7glSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllJusSZIkSZIkSUkUIQ70HcZgwO+y5gxeSZIkSZIkSUooE7ySJEmSJEmSlFAmeCVJkiRJkiQpoUzwSpIkSZIkSVJCucmaJEmSJEmSlFCR0NdDUB9zBq8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaHcZE2SJEmSJElKoAikYl+Pou8N9LfAGbySJEmSJEmSlFAmeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCVXQ1wOQJEmSJEmS1D0x9vUI1NecwStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSig3WZMkSZIkSZISyk3W5AxeSZIkSZIkSUooE7ySJEmSJEmSlFAmeCVJkiRJkiQpoUzwSpIkSZIkSVJCucmaJEmSJEmSlFCpGPp6COpjzuCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSqiCvh6ApOQobKzl9FX3cNyW5yjfv4MY8thdNpaXJ53N0hmvJ5XX/VNKaV01Z7x6F9MrlzLkQBVN+UVUDZ3AyskLWD71Qgjt7wo6fesSJu18mdG71zG0topB9XspaG6ktngIO8on88qEs1g5+TxiXn63x6b+r7Cxljkv3sGMDU8ztGY7qZDHnqHjWD31fJadcDmp/MJu9z2odg/zXvw9UzYtZsj+nTTlF7Fr2CRennERL828tMPYvOSJmzjxtUeO2P/33nOb8XmMKmqq46y193P8tiUMq60iFQK7SsewctwZLJpySY/OmYPr93L22vuYuX0ZQ+t20ZRfyM6y8Swbfw4vTDy/w7hsMezAds5Zcx/TqlZSVl9NQ34JlUMns3TSAl4ZO7/b41L/Z1yqv6qjiIcKzuf5vJOoCsPJIzI67mRe83IubH6aApq73ffyvBN4Mv901udN4ACDGEwtU1KbOK/5WWanVnXYbkcYwbK8E1mdN43NeWPZRxl5pCiPe5mRWs+C5meYHLd0e1zq/zxnKgliTN8GuoH+HoQ40N8BqZtCCIuBeWXDj+eMy37W18M56oYc2MlfPvY1yg/sBKAxv4gQIwWpRgC2lU/h9gWfp75ocJf7Hr17LVc/8e8MaqgBoKGghPzmRvJj+kJ+7ehT+P25f9PuBdR1D3yOir2bDz6uLyghL9VMYWZcANuGTeW35/4tB0rKuzy2JCopK+3rIfxZDanZzlvv/zJDa7YD0FhQTEilDsbmjhHT+MNlN1JfXNblvkdVvcZbHvgnBtXvA9rG5vrxc7j74s+1m0BuSfA25RfRUNjxv8lPrr5lwCR4q7dX9fUQ/myG1lbxnmf/g2G16dfckF9EXkxRkGoCoHLoJH5+xt9QV9j1c+bY6vW8Y9G3KG3cD0B9fjEFqUbyYwqA1ypmc/u8T3b4R+eMHcu56vmbKWpuAKCuoISipnrySF8TvjDhXO46+boj/mGp5DEuk+U7dV/s6yH82exiGP9V9CF25Q0HoCg2kCLQFNK/XyemtnBDw48ppa5L/aYI3Fr4dhblzwEgxBSDqKOOYlIh/bv3wqanuLrprjZt14TJfLP4+lbPlcQ6miigKRQc7O8NzY/ypqYHuzSuJPtUyVf7egh/Np4zk+GFhdezv/pVgCUxxgGV2W7JSUydNY9//vGivh5On/vCB09n3atLYADGAjiDV1IOQqqZq578T8oP7KSmZBj3nP5RNow+GWKK4zc/y2VLfsSY6vVc8dz3+d15f9ulvosaD3DVk99gUEMNVUPGc8/pH2Xb8OnkpZo4de3DXLTs/zFt+3IufuF/eXDu+9u0f3X8mSyZMZzNI2exd/AomvKLABhcu5tT1j3COS/9jjF71vHGRTfz2/P/rjfeDvUjIdXMFQ/9C0NrtrN/0HAeOO8GNo0/DWKKmeue4uKnv8+oXWt53eP/xV2X/n2X+i5q2M+bHvpnBtXvY1f5BB4479PsqJhJXnMjJ616gPMX/YQpW57n/Of+h8fOvr7DflZNPZeHzruhpy9VCRJSzVy7+DsMq61iX3E5fzzlA6yrOAliihMrF3PFilsZu3cjVy77EbfN/3SX+i5uPMC1S26itHE/OweP5Y5TP0hl+VTyUk3M3biQ1718GzN2vshlL/2K+2a/u0378gM7uer5WyhqbmDjsBncdcr72TV4DIVNdZy99n4WvHYnp21+kqrBY3l6+ht76y1RP2Bcqr9qJo+bi97DrrzhDI17eW/jbzgh9RopAkvzZvPLwreyKW88Py28ho833tqlvu8seN3B5O5FTU/yxqaHGUwt9RTyeP6Z3FHweh4tOIeKWMVFzU+3HlfIJy82c3LqFU5vfoFZqTUMppYUgY1hPL8tvJw1eVO5t+BiRsQ9nNO8uLfeEvUDnjMlJY1r8KpPhBAeCSHEzO2pI9QdGkLYn1X/xsPKW56/qIP2g0MID2bq7AghzOu1FzJAzN6wkFF7NwJwx1mfTid3AUIer0w8mwfmfhCA6dteYPL2F7vU9+mv3k1ZfTWN+UX89tzPsm34dABSeQU8P+MynjzpbQCcuu5hhu/b2qb9Uye9jeXTLmbX0AkHk7sA+wcN5+kTr+K5WW8GYNr25ZQd2NW1F65+74TXHqZizwYA7rno/6STuwAhj9XTzuORsz8KwNTNS5i4dVmX+p7z4h0Mrt1DY34Rd17y9+yomAlAKr+QFSdczrOn/SUAs1f9ifK9fj1Th5y65SlG16S/WfDbOR9L/0EIEPJ4adwZ3DP7PQDM3LGCqVUvdanvs9b9ibL6vTTmFfKr+Z+msnwqkD5nLp5yMY/NvBKAuZsWMmL/tjbtL1j9B4qa66kpHspt829g1+AxADQWlLDwuCtZOnEBAOeuuZuSzKwiHRuMS/VXz+bPZUveWAA+3PALTki9BkAekfmpFfxl4x0ArMw/nlfypufcbw2lPJx/LgCnNq/k7U13M5haAIpp5NLmJ7ik+QkA7i64lFqKW7WvSFXx9w3f5iONP2du6sWDbfOITImbuaHhfxifSl+b3p9/QXdfvvopz5mSksYEr/qDs0MIszopvwbo1nfOQwjlwP3AJUAlcFGMcUl3+hrIZq9/HIANo05k68jj2pS/PPFs9pSOAuCkDY93re9M/Vcmns3ewaPblC+d8XoaCkrIiylO3PhkV4fO1hEzD/5cVmeC91hzQmaN201jT2bbqOPblK+aej7VZem4Ov61R7vW95p036unns++IWPalC8/4fKDsXn8mse6NnAd007ZnP7cct2I49k8fEab8pXjzmD3oAoATt78dJvyXPpeOe4Mqksr2pQvmnIx9fnF5MUUs7c806qssKmeEyrTvwKXTLqI+naWDnly+uUAlDTVMWvb810am/o341L91TP5cwE4rnkN0+LGNuXzU8sYmUpfwz2bqZuLV/KmH1zi4dKmhe3WeV3m+dowiGV5J7YqG85eRseOlxYqoJkzml8AYGfeSA5QkvPY1P95zpSUNCZ41ddezty/r5M61x1WNychhBHAg8C5wAZgQYyxa9NLRUFTPeOrXgVg7ZjT2q8UAuvGnArAlG3Lc+57+L6tDM2sabU20/5wjQUlbBqZzv9P2b4i575bTKh6BYBIoLqdBLKSq6CpnrE70v++G8Z38AdfCAfLJm19Pue+h1VvZsj+9HrT6ye033dj4SC2jkn/MThpyws5961jW0FzPRN3rwbgtVEnt18pBNZUzAZgelXuv5ZG1FRSnvmgqqO+GwtK2Dg8/UHctJ0rW5VN3L364PrkHbWvLq1g5+Bx7bZXchmX6q8aKGRNmAzASalX260TgBMzG6G9nDez3Trt2R2GHfx5bNzRbp3B1DIkpveAeDk/975bFNJ08OeUf1ofMzxnKolaNlobyLeBzt9C6mu/BBqA94TQdgX4EMJ04HxgMZDzb84QwmjgEWA+8BpwQYxxdW8MeKAZsW/LwcX6dw6d2GG9lrKy+mpKMpulHUnF3k1t2renKlM2Mmsztc4UNtUxsnojFyz/BaevugeAlZPPo7Z4aE7tlQzDqzeRl9mIomr45A7r7RqWLhtcu4fizGZpRzIis+xDdvv2VGXKhldv6rDOxK3LeffvPsVH//cdfOQX7+Edd/w15z/3Y5d1OEZV1FQePGfuKBvfYb0dQyYAUFa/l5KG3L4+Oarm0DlwR9mETvpOH7dif+sYa92+s7GNz9Q3Ro8VxqX6q8owihjSf5KOi22/it6ipWxvGMJ+BnX5OJGON5pKZcq2hLbf1jmSVXnTABga9zKYA11ur/7Jc6akJHKTNfW1KuBu4K3ARcDDh5W/j/QH9z8DclrcKoQwgfTM3eOBlcDrYoxtF29VTsrqdh/8uWbQ8A7rZZcNrt1NXVFZF/se0WG9fZmy4qZaCpvqaCxo+xW4cbtW865HvtLm+VTIY8XkBTw057o2ZUq2wVlrKu8v7Th+sssGH9hNffGQHPrOis0c+i5uPEBhYy2NhW3/6BxyoIpUyKOhsJSixgOM3LOBkXs2cPIr97HwjA/w4vFufnEsKavfc/DnfSUdnzP3FQ87+POQ+j3UFR15B+4h9dVZfQ/rsF5Ncfq4JU11rc6ZLe1rC0tbrVne0diyX4uSzbhUf1UdDv1OHhb3dlgvu6w6DGFwrD1i3yPinoM/bwljOC6ua1NnL2XsD+k43xu6NhFgbZh0cFmHc5sXd5JCVtJ4zpSURCZ41R/8lHSC9zqyEryZGb3vAxqBn5NDgjeEMJV0cnc6sBR4fYxxZ6+PeAApaqo7+HNTfnGH9bIvMLLbdKaw8VC9xk4uUFr13dh+grc5FLC/uByA4sb9FKTSX5lbNu1inp315k4vgJRM2fHTWWw2FhwqK2w68h+EAEVZ9ZoKOov7rL4b61oleHeOmM6jI2eyfuJ8akpHEvPyKWiqZ/LmpZy75FbK91Vy0TM/oLaknDVTzslpXOr/Wp0z8zo+7zR245yZXa+xC323nDNb2nfWNrt9UVN9TuNS/2dcqr+qz9rYrIjGDutll9XT8e/lbLNSayiIjTSFQu4vuIjjGn/Sps59BRce/Lkux34B9lHKT4quJYY8RqV2HlzLV8cGz5mSksgEr/qDu4CdwNtDCJ+MMbZ8v2UBMA34Q4xxZzsrOBxuFnArMBF4Grg8xqyP7nMQQvgocH2O1U/oSt86urYPn8p/v+k76QcxxbD9O5i3+l5OW/MgJ214grtP/zivjZ/Xt4PUgLLsxDe1ea6poJg1U85m85jZXHP331Fes53zFv2UNZPPhiOf4yRJUo7KOMCFzU/zYMECXs6fyU+5mjc0PcKouItqhrCw4CwW5p9FfmyiORQQyG0Bx3qKuKXoPewKwymJdXyw8ZcU03CUX40kSZ0zwas+F2NsDCH8EvgU8DbSSVo4tLnaz3Ls6rukY/ox4E0xxtwWgm1tHGAWMEtD1mzZguaOPwEuaD50YdvQzgzb9jQWHqpX2NxAQ177a6q16rswh75DHnvKxvDQnOuoHjyai5b/nCsWfZ8fX/Z19g8altPY1P9lx09nsVmYNXOhsSC3dfsasuoVNNXTWNR2h+LDj9uYS2xm1JcMYfEpb+eSp77P0P07qNi1lp0jp+fcXv1Xq3NmquM/+Au7cc7MrleY6vic2VHfLT8XdjKu7PYNncxeV7IYl+qvijn0e7SBwg7rZZdltzmStzT9id2hnCX5p7Iofw6L8ue0Kp+a2sDE1FYeLziLQRz5Wz71FPLfRe9lXd5kimM9H2u4lYmxMufxKBk8ZyqJUm4yNuC5yZr6i59m7q8DCCGUAtcAu4A7u9hXBXRj94W0rcCSHG8DYieFmqx1p8pqd3dYL7tsfydr9Xbc964O6w3JlNUXDGp3eYbOPD/9UpryCilqquOETU91qa36t9Zr63YcP63X6s0tNrPrleXQd31habvr73Zm26hZB38ur+l4YxklS032enx1HZ8zh2Sv75fVpjP7MsvQpPve02G9svr0cesKSlqdM1vaD2o80OqDs47GVpPjuNT/GZfqr8rjoc1P93SyBm52WXabI8knxQcab+NjDT9jXvMyxqS2MyLuZkZqHVc33slnGn5IQ0h/lX10rOq0r3Ry932szptGUSa5OyOuz3ksSg7PmZKSyASv+oUY4yLSG6JdHEKYCFwFDAF+EWPM9TtPfwXsAE4CHgwhjOzGOG6OMc7P5Qa83NX+k2jXkPEHdxeu2Lupw3otZTXF5TltsAawc+jENu3bMzJTVjW0451mO9KcX3Rww4NhJtGOKbvLJ5LK7Lw9cveGDuuN2JMu2z9oWE4brAHsGja5Tfv2jMyU7S6f2GEdDSw7y8YePGd2tnP1qH3pXbBriofmtCkLtN5tO3sX7bZ9p4+7c3Dr3bVbt+9sbFsy9TvenVvJYlyqvxobdxBiCoCtYUyH9VrKhsZ9DM5hpu3hZqde5QONt/HFhm/zlfpv8JmGH3Jh89Pkk2JDSMfUtFTHv+9bJ3cb+FjDrcxsZ9M2HRs8Z0pKIhO86k9+Sjom38uh5Rl+2nH1NlYClwJVwCnAAyGE3KbrqUNNBcVsGZmeaTh127L2K8XI1O3LAVg/5pSc+95dNpa9g0Z22ndBUx0Tq15N9z365Jz7blHYWMug+vRMj5yWd1BiNBUUUznqeAAmb3m+/UoxHizbOG5Ozn3vGTqefYMrMn0vbbdOQWMd47a9lO57/Gk5991izI5XD/68t2x0l9urf2rKL2bT8JkAzNjxYvuVYmT6znTZmpGzc+571+AxVJekZ65P76DvwqZ6Ju1eBcDaipNalW0aPpPGvMJM+xXtth9aW0XF/q3ttldyGZfqr4poZHpMJ1Zfyjuu3ToReDlTdkJqda8ef2MYR2VeOnl8ZnP7v+/bztz9GceZ3D2mec6UlEQmeNWf/C+QAj5BOlH7Uozxua50EGNcDrwO2A3MAe4PIZR32khH9OKU8wGYvOMlxu5qe2E9a/OzDNu/HYCVk8/PveMQeDFT/4RNTzN0/442VeaueYCipjpSIY+XJp3bunmq+YiHOGPV3eTHdL2NFSfmPjYlwsszLgJgQuWKVgnTFjPXP3lw+YNXZlzYprxDIfDy9HTfx617giE129tUOeWVew/G5ivTL2hdGDtfBKu4fh/zl/8WgH2lFewYMS33sanfWz7hHACm7HqF8XvWtCk/sXIxw2t3ArBiwtm5dxzCwb5PqnyO8gM721SZv+FhipvrSYU8Xhx/VquyxoJiXh6bXmZ+3sZHKW5su9LQOWvuBaA+v4RXx8zJfWzq94xL9VdnZRKrq/KmsS60/UbM0ryT2ZmXToh1lITtjgYKua3wSgDmNK9gbGwbu4cndz/ecKvJ3QHCc6akpDHBq34jxrgFeACYSDo2c91c7fB+ngdeD1QDpwP3hhBy+1622vXi5AXsGDqJQOTKp7/N5O2ZT5tjilmbnuH1S34EwJoxp7JhdOtPsM9Z+Vs++9v38tnfvrfdBO6iWVdQU1xOYXMDVz35DUbvXgtAXqqJ09Y8wLkrfwPAsqkXs3vIuFZtT9z4JG998j+Zufk5BtVVHyqIKSqqN3DZkh9xzsu/B2DzyFmsG3Nqb7wd6kdennExO4dNJhB546NfZ+LWzEzwmGLGuie56Kn/BmD9hLlsGtf63/+M53/FJ3/2dj75s7e3m8B9fvaV7B80jMKmet784NcYVfUaAHnNjcx+5V7Oev4XALx43GVUD2399bdZax7ljY/8O9PXP8Wg2kOxmd9Uz7QNz/D2e75wMPH85Pz3QfDX8bFk2fhz2F42gUDkbUv/m6lV6ZnexBQnVC7i8hfTv95WV5zMupGtP3hasOoOvnDv9Xzh3uvb/aPvmamXUVM8lKLmBq5dchNjq9PrP+almpi34REuWHUHAEsnLmDX4LZfd35s5l/QkF/MkPpqrlnyXYbvT8dhYVM956++k3kbHwPgiRlXUFeY29dNlQzGpfqrM5uXMj5VSQx5/KjonbySl950NEVgad5sflH4VgBOan6F41OtE213F1zCDSVf5YaSr1IVhrXpe12YyH35F7I1jKKJfACayGdl3nF8s+gjrMubxPC4h2sb/9imbQOF3Fz4XlbnTaM41vPxhp+5LMMA4jlTUtIU9PUApMN8GzJXX+kZvd0SY1wUQngD8CfgbODuEMIbY4z7e2GMA07My+f35/w11y78Z8oP7OSax/+VxvwiiJHCVCMA28qncPcZn+hy3w2Fpfzu3M9y9RP/TsW+zbz34X+gvqCEgubGgzNv140+hUdOfXebtoHIjMqlzKhMz+ZoyC+mKb+IoqZaClJNB+utH3USd551A4TQnZevfizm5XP3JZ/nrfd/maE12/mLP32FxoJiQowHN57YMWIafzr/M13uu6FoMHdd8gXe8sA/MaJ6E9fe9Xc0FA4iv7mR/Ex8bRh3Go+f8YE2bfNiihkbnmHGhmcAaCwooSm/kOKG/eRl1hpsyivkidPfz+pp53Xz1au/inn53D7vk7z7uW8wrLaKdz33TRryiwhZ58zKoZO447QPdbnv+sJSbpt3A+9Y9C1G1Wzlg099jfr8EgpSh86Za0aexAMnXttu++rSCn4353quev5mJu9exccXfom6gkEUNdcfjM0XJpzL09Pe0M1Xr/7KuFR/lU+K6xv/l28XfohdecP5TtEHKYoNRAKNIf1V9ImpLVzXeHuX+64OQ7iz8DLu5DJCTDGIOuooJhXSf26MS1Xy0cb/ZQht/0RYmjebVfktyeY8flz0jk6P9eGGnzM9buzyGNU/ec5U0sTo37oDnQle9SsxxruAu3qpr2dCCJcD9wLnA3eGEK6IMXZ9Zwaxd/AofnrpP3PGqruZuWUR5ft3EPPyqBw6kZcnnc3SGa8nlde9U8r24dP4yev+lTNevZPplc8z5EAVjQXFbB06kZWTF7B86gXtznBcM3YO98/9EBN3vsTo6vWU1u2lpHE/TflFVA0eTeXwabwy8WzWjp3Tw1ev/mxf2Wh++Zb/ZO6Lf2D6hmcYWrOdVF4e24fNYNXU81l2wuWk8gu71feOkTP4xZXfYt6K3zF102LKMrG5bdhxvDzjIl6aeUm7sbl57Mk8PfddjNnxCiOqN1Ncv4+ihgM0FJZSPWQsm8aezIuzXs++IR1vKKNkqy6t4IfnfZmz1t7P8duWMKy2ilTIY+vQ8bw47gwWTbmk2+fMyvIp/OD8r3D2mnuZuWMZQ+t205BfzM4h41k2/hxemHhep7PCXxt1Cj887x84Z819TKtaSVl9NXUFpVQOncTSSRfwytj53X3Z6ueMS/VXI+MePt9wEw8WnM8LeSdRFYaTT4qxqe3Mb17Ghc1PU8CRl+Y63OTUFi5tWshreVOpCsM4wCAGU8v45krmplZwdvMS8km12zZmTQxoDIU00vm1RHMoSC8YrGOG50xJSRLiEdYJlI6GEMIjwIXADTHG7+TY5tfA24GvxBhvzHq+JYgvjjE+0k67C4G7gVLSS0C8JcZY15PxZ/pdDMwrG348Z1zWrdUkpKOipKy0r4cgtat6e1VfD0GSEuM7dV/s6yFIbXyq5Kt9PQSplRcWXs/+6lcBlsQYB1RmuyUnMXXWPP7xB4v7ejh97h8+Mp91ry6BARgL4Bq8GgBijI8CbwFqSW/A9rsQQnHfjkqSJEmSJEnqOZdoUJ+IMV7UjTZXd/D8ERebiTE+RHoGryRJkiRJknTMMMErSZIkSZIkJVAEXH3VZdBdokGSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFBusiZJkiRJkiQlUYTUQN9hDAb8LmvO4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKqIK+HoAkSZIkSZKk7omxr0egvuYMXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQrnJmiRJkiRJkpRQbrImZ/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKTdYkSZIkSZKkBIpAyk3WGOhvgTN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhKqoK8HIEmSJEmSJKl7YuzrEaivOYNXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQbrImSZIkSZIkJVGEVKqvB9EPDPCN5pzBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKDdZkyRJkiRJkhIoAnGAbzAGA36PNWfwSpIkSZIkSVJSmeCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISyk3WJEmSJEmSpIRykzU5g1eSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFAmeCVJkiRJkiQpoQr6egCSJEmSJEmSuicV+3oE6mvO4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJZSbrEmSJEmSJElJFCFGd1ljgL8FzuCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUm6xJkiRJkiRJCRQB91gb8HusOYNXkiRJkiRJkpLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaEK+noAkiRJkiRJkronlerrEaivOYNXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQbrImSZIkSZIkJVSMfT0C9TVn8EqSJEmSJElSQpnglSRJkiRJkqSEcokGqYemjcvj1n8s6ethSAdd+7dVfT0ESZLUQ58q+WpfD0Fq44ffnNnXQ5Baufqtxays7utRSH3PGbySJEmSJEmSlFDO4JUkSZIkSZKSKELKTdZggL8HzuCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSqiCvh6AJEmSJEmSpK6LQIx9PYq+N9DfAmfwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISyk3WJEmSJEmSpISKqYG+xZicwStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSig3WZMkSZIkSZISyj3W5AxeSZIkSZIkSUooE7ySJEmSJEmSlFAmeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQq6OsBSJIkSZIkSeqGCDH29SD6gQH+HjiDV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUG6yJkmSJEmSJCVQBFKpAb7DGAN+jzVn8EqSJEmSJElSUpnglSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEspN1iRJkiRJkqSEigN9hzE5g1eSJEmSJEmSksoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFAmeCVJkiRJkiQpoQr6egCSJEmSJEmSuifGvh6B+pozeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCeUma5IkSZIkSVICxRhJucsacYC/B87glSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllJusSZIkSZIkSQkVU309AvU1Z/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKTdYkSZIkSZKkhIox9vUQ1MecwStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUAV9PQBJkiRJkiRJ3RAhlerrQfQDsa8H0LecwStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSig3WZMkSZIkSZISKAIxDvAdxhjwe6w5g1eSJEmSJEmS2hNCuDiEcGcIYUcIoTaE8HII4Z9CCIO72E9+COGyEMK3QgjPhhD2hBAaQghbQwh/CCG8qbtjNMErSZIkSZIkSYcJIdwAPAi8CagDXgKmAl8EngshjOhCd+8H7gf+CpgPbAOWA6XAlcCdIYSbQwihq+M0wStJkiRJkiRJWUII84FvZR5+FJgcY5wHTAcWAycCP+hKl8Ay4MPAiBjj8THG+cBI4P+QXmnieuBjXR2rCV5JkiRJkiRJau1LpHOnt8YYb4mZxY5jjFuAdwIp4G0hhFNz7O+3wJwY449ijNUtT8YYm2KM/wH8MPPUR7s6UBO8kiRJkiRJUkKlorfeFkIoA96YeXjL4eUxxlXAQ5mH1+TSZ4xxV+x8R7x7MvfH5zrOFiZ4JUmSJEmSJOmQuUAxUA8820GdhZn7s3vpmIMy9we62rCglwYgaQCorYvc+WgdzyxvYPuuFHl5MK4in3PnFHH5+cUUFHR5HXBuv6+WX/+p7oj1/utzQxlbkd/m+YVL6lm9oZm1m5rYVR3ZW5MiFWFoWWD6xAIWzCvirFOLujwuJUtRUx1nrb2f47ctYVhtFakQ2FU6hpXjzmDRlEtI5XX/193g+r2cvfY+Zm5fxtC6XTTlF7KzbDzLxp/DCxPPhyOsfz/swHbOWXMf06pWUlZfTUN+CZVDJ7N00gJeGTu/2+NS/2dcqj8yLtVfGZvqj1L7D7Dnf25j//0Ladq8FfLyKZo6kcFXXEz5u68iFBX22rF23PhN9v3qjwAUjB/D5Ad/0aZO4+ZKNr7uXTn3WXbVGxj9z/+318YoDTCzMvcbYoyNHdR5LXPf5Rm3HXhn5n5hp7XaYYJXUk527GrmK9+vYcfuFADFhdDUBGs2NbNmUy2PL23gSx8to6y0e18MyM+HstKOL67zOuj2B78+QH3DocelJYHmxkjVnkjVnkaeW9HIqbPq+ex1ZZQUdz0Brf5vaG0V73n2PxhWWwVAQ34RBalmxu9dz/i96zl56zP8/Iy/oa5wcJf7Hlu9nncs+haljfsBqM8vpqipjkm7VzNp92pO2LaE2+d9ssM/OmfsWM5Vz99MUXM6SOsKSihp3M/0qpVMr1rJCxPO5a6TrzviH5ZKHuNS/ZFxqf7K2FR/1Li5kq3X/Q1NmysBCINKoKGB+hWvUL/iFWr++ADj/ucb5JcP6fGxap9Zyr7b7jxivZCXR37F8E7rxPoGUvvS8V588gk9HpuUQCeEEBZ3of4tMcab23l+ROZ+VydtW8o6/4+ZgxDCXwBvJr3R2r93tb0JXklH1Nwc+ff/2c+O3SmGDw184h2DOXVWIalU5Olljdxy+37WbW7mOz/fz+c+3L0LnOOnFPDlT3S97SVnFTNtQj7HTy1g5LA8CgsCMUa270px98J67n28nmWvNnHrHw/wkau7/keB+reQaubaxd9hWG0V+4rL+eMpH2BdxUkQU5xYuZgrVtzK2L0buXLZj7ht/qe71Hdx4wGuXXITpY372Tl4LHec+kEqy6eSl2pi7saFvO7l25ix80Uue+lX3Df73W3alx/YyVXP30JRcwMbh83grlPez67BYyhsquPstfez4LU7OW3zk1QNHsvT09/YzgiUVMal+iPjUv2Vsan+KDY1s+0TX6RpcyX5o0Yy6l8/R+m584mpFPvvfZQd//ANGl5azfa/+2fG3fwvPTpWqraOHf/wDSjIp/j4GdSveKXDugXjRjNl4W867W/nV7/N3v/3e0JJMWVvvrRHY5MSqhSY14X64zp4viRz39BBOaSXb4BDSyt0SwjhBOCnmYffijE+2dU+XIO3i0IIj4QQYgjhxsOeLw8hbMqUffEIfYwIIVRm6v5V1vMx69bpb4kQwusOq3/RYeUXHVbectsfQngphPDdEMLMdvq9MVPvkRzei3aPfVid8hDC/w0hPB5C2B5CqM+89gdDCJ8KIZR00vb9mf7XtVP2k3ZeW10IYVsI4YUQwv+EEN7TWf/K3aOLGtiwtRmAv3lfGafOSn8VKS8vcO6cooOJ06UvN7F8VUffXDg63v8XpVx4ejFjK/IpzCwREUJgzMh8PvDWUs6bmx7rY4sbaGo+Ciuvq0+duuUpRtdsBuC3cz6W/oMQIOTx0rgzuGf2ewCYuWMFU6te6lLfZ637E2X1e2nMK+RX8z9NZflUAFJ5BSyecjGPzbwSgLmbFjJi/7Y27S9Y/QeKmuupKR7KbfNvYNfgMQA0FpSw8LgrWTpxAQDnrrmbksysIh0bjEv1R8al+itjU/3Rvt/fR8OrawAY8183UnpueimOkJdH2RUXM+orfw1A7WPPUPvUkh4da9e3fkTThi0M++BfUjhzao/6StU3UHPngwAMvmwB+UPLetSflFAHgCVduG3toJ+WtSQ7W/OxOHNf293BhhAmAfcB5cDdQLfWVTHB20tijNXA9ZmHXwohzO6k+reBMcDjwE0d1HlPCKGzf5/rujC8J7Ju20ivI/IJ4IUQwuu70E+XhBAuJ70eyb8C5wE1wAukP/24hPRrfyWEcHoPDrOdQ69tKVBF+vW9H7gV2BRCeE8P+hfpBC/A7BkFzJraduL/uXMKGT0iHa6PLersw60/v+Mmp8fb0Ag1B0zwHmtO2fwUAOtGHM/m4TPalK8cdwa7B1UAcPLmp7vV98pxZ1BdWtGmfNGUi6nPLyYvppi95ZlWZYVN9ZxQmb7YXzLpIuoLS9u0f3L65QCUNNUxa9vzXRqb+jfjUv2Rcan+ythUf1Tz+/sAKDlrDiVz2/5pP/iKSyiYmJ70t+8P93f7OHXPr2Tv//6OwqkTGfbx93a7nxYH/rSQVPU+AIZc/aYe96fkiKk44G9ZXo4xzu/Crb3lGQB2Z+5HdFCeXba7kzodCiGMBR4EJgOPAG/vZL3fTpng7UUxxrtJT6kuAn4cQmizI1QI4U3Au0ln9z8YY0y109XLwETSSdA2QghDgLcBlcCeHMZ1ftZtOnAKsIL0tPVbQwi9/r31EMIVwB3ASOBO4PgY4/QY45kxxsmkp8s/SSaIQwhzu3moe7Je2zkxxpOAocClwAOZ498aQvh8T1/TQFXfEHllXRMAc05ofxOBEAKnHZ8uW/bqn3cG75G8tDY99pJiKC9zbbRjSUFzPRN3rwbgtVEnt18pBNZUpC/Kp1e9mHPfI2oqKa/b1WnfjQUlbBx+HADTdq5sVTZx92oKU42dtq8urWDn4HHttldyGZfqj4xL9VfGpvqjVG0ddUvTsVa64Mx264QQKD3/DABqn1jUrePEhgZ2fPHrECMVX/ksecU93xh672/uBqBwykQGnXlaj/uTBrhXM/eTQwgd7ag447C6OQshjAYeAo4DngLeEmM88g70HTDB2/s+A2wBzgQ+m10QQigHWj4Z+FKMcVUHffwsc/++DsqvJp2c/X9Ac1cHGGNcCXwg83A0cFlX++hMCKGC9GsoAG4D/iLG2CrYY4xLSSdhHwcGA7/s5D9Ml8QYG2OMDwGvB/4r8/TXQghn90b/A83m7c3EzIdhk8a2+czioElj06eTPfsiNQfa+9yicxu3NfPZr1fz3s/v5n1f2M1n/q2am2/fz9rNTV3u60Bt5LWNTXz/V/t5Zln6wvxNF5QQ3PzimFJRU0ke6eDcUTa+w3o7hkwAoKx+LyUNuX19clTmq6Lpvid00nf6uBX7t3TSvrOxjc/U39JhHSWLcan+yLhUf2Vsqj9qXLMBUum/Z4qOm9ZhvcJMWfPOXTTv2dvl4+z+3q00vraeIW+/vFeSsY0bt1D3zPMADHn75T3uTxJLSX8DvZh0jq89CzL3T3Wl4xDCCOBPwImkl4m4PMZY081xAiZ4e12McQ/w0czDr4QQjs8q/gYwgfQ//Dc76eYeYAfwthBCe4vmtCzP8LN2ynId5yJgX+bhrO7204FPkZ45uxv4WAezlMl8MvF+0knqWcA7e3MQMcZIOsm+AgjA3/dm/wPF7upD/3wjyjtOkI4oP3Q62VXd9aUQ9u2PbN6eoqgw0NQEW3ekeOiZBj7/rX3/v737DpOsqhY2/q6JzDCBHATJWZRoIA9JBRMKKIIKmL2KepV7+S5yFRWzol5zIinBLAqCIEHAiGRQ4iBJMgPDDJN7fX/s00zTdPd093TVqep6f89TT4Wz95lVxaa6zjr7rM1Z5y27nM0fr1nIG46exRuOnsWR//s4x371SS69ciHjx8Fr9lqBg/a1HPNoM2XB408/fnKF/hctfXLiSk8/ntqjz0CmLniix75X6rfdnInl311h8XzGL156srW7/7zxk1k8tv/ZGN2xTRlkXGp9jku1IselWpVjU61o8UOPPP147JrPLu3RbVyPbUseenRI/8aCf9zG4z84i7Grrcwq//XuoQfZhyd/fh5kwrixTDngZSOyT6mTZeaTlNq4sLQk69MiYlOWXnn/s8HuNyKmARcAL6Dkq15alX1dLiZ4GyAzzwF+RFlx76SIGBMR+wBvo6yw119phm6LgTMoM1sP6rkhIjYAdgeuzczrhxtjlKmMjZrOeEh1f3pmDliHJDPvoCS0YYQTvNX+lwDfrp7uGxETB2qvZ5u3YOnjiRP6HzI9t81fMPgE71qrj+GwV0ziy8dM40efXYkffGIlTvv0Shz7jilstO5YMuGXF83nN5cOfKXChPEwfWowfWowpvpmGzMGXj1jBV65x0TGjHH27mgzocdB2OIx/R94LepxUNazz2D3vWgY++5+PFDfnv0nLF4wYDu1D8elWpHjUq3KsalWlHOXTi4Zs0L/k0RihaWHll1znxr8/hcvKaUZFi9h1WOPGpGF0HLJEp6s6gZP3uMljFt9oJKhkobgk0ACb46Id1a5NCJibeBMSl71V5l5Xc9OEfGv6tY7pzcZOBfYgVKede/MHNoZon48e7UkjZT3A/sAO1NmjnaXRPhYZt48iP6nAh+glGk4pcfrb6EkZk9dzvh2BLr/kgy5Vkh/ImJVoHvW8iWD7HYp8ErKZ9UIl1f3E4Ftgb/231TNttv2z865jxtXavpuudE4jv/mk9xxzxJ+duE89n7xRCZP6jtR+8KtJ/DCrcsP7CVLymzgX108j5//fj6//+sCjj58Sp8LxEmSJElSszz+vTNY+M/bmTzjJUzZb8aI7HPe5Vey5MEy83jqgfuPyD7VRpKnyyp2tAZ8Bpl5ZUR8CDiRUnL1uIh4BNiKkmO6BXhHH13Xr+57n8H5ALBrj+e/GKCU5EGZ+cBgYzXb0SCZOSsi3g38CvhE9fKVwBcH2f+aiLgRmBER62fmXdWmt7B0hu+wRMRWwEnV04cpdT962yMihvO/x7o9Ht8xyD63V/fTImJqNQ1+JN3d4/GaAzWMiHfRx9T7fmwx7IjayKQe+dcFC/sfEj23rTBxZGbLThgfHLLfJD713TnMXwA33L6IFz9/2YsPjB0brLf2WN5/2BSmrvgU51+xgK/8aA5fOWY6E8Y7k3e0WDhu6YyKcV0L+203fsnSbT37DHbf47sWsnDMpCHtu/vx+AHi6tl/4TgvLhgtHJdqRY5LtSrHplpRrLh0rHTN73/GeM5fOmt7zIqTB7Xvhbf/i1nf+hExeRKrffSDw46xt9k/OxcoJSUm795fqVBJw5GZX4mIGyglQF9MWcvqLkpZhs8MsXZuzz8Wy8opDanOpAneBsrMsyPiDOBQYBFwZFUyYLBOBb4AvBk4ISJ2pazQd05mPjTYnUTEFT2erg1sQJlGPg84PDP7WqlgNnDDMna9Sx+vTe3xeLCDvOe/P42ltYFHSs84pvbbqlgb2H6E//22tnKv2rrr97PGxGODrNU7VJutv/Rr6qFHh7542yt2m8j5Vyzg0ceTa24eXIJY7WFOz3p882fx8NR1+2zXs1Zfzxp+A3ly4vQe+36cR6f0fVA4ZUGpQjN/3Aos6nFQ2N1/0qKnGLdkYb+1+7pjmzPIuNT6HJdqRY5LtSrHplrRuDV61NZ98BHYfOM+2y1+sEet3jVWHdS+H/nk/8GiRax81OGMmTaVrrm91hpZUqULMp/eFhPGE+P7T90sfuQxnvrDXwCYesDLiLH9L4wtaXgy8yLgoiG07zMpkpnHA8ePTFTPZIK38S6kJHj/nZk3DbHv6cBnqRK8LF1cbajlGXomYucBt1HKJ3w5M/srz3BNZs4YaKf9zPDtmZwdbDGhFXs8Hvryo8vWM6m7rP3fT1nBcDC2AAZ3qraNrbPGWCLKJR/3PLCE7bYc32e7ex4oydeVpgZTJrdOee+ei7898MjQE8RqXY9MWYsugjEkq8/5NzNXf36f7VZ/sqyCPWfiNOZPWLHPNr31XG179Tn38eiUtfvZd1kx+5EVn3nm45n9/8390zcYsP9Aq3OrvTgu1Yocl2pVjk21ovEbrVcW8+jqYuFtdzJ59xf32W7RbXcCMHa1VRi70rRB7XvxvfcD8NiJ3+exE7/ff7v7H+JfO74CgFX/338w/fCD+m075+wLYPESiGDqgfsNKg5Jo0/rZGH0LJl5P2Vlvc0iYi/g9cAs4DdD3E/0uE3OzC0y8z0DJHeXx309Hvd9qvPZNqnuZzegPAMsrX0C8OBADTPzO5m5w2BulILYo97ECcHmVe3a625Z1GebzOT6W8u2F2zWdwJ4uG67e/HTj9dYZehfWQ8+tjSpO2mESkeoNSweO5F7Vy5fHxs/3M/5s0w2eqRsm7nq8wa978dWXJMnViiLU2zUz77HL17Ac2fdBsCdq231jG33rrwJi8aMr/rf2Gf/afMeZbW59/fZX+3LcalW5LhUq3JsqhWNmbQCK2xXxtpTV1zZZ5vM5Kk/lm2TdtmxabH15cmflzXLV3jxtox/ricapE5lgrf1nVbdn0QpX/DjzGzZJVoz8xFKkWmAPQfZbUZ1/6cRD6jYrbqfD1w3UEP1bY8dyyVpN92xmNvuWvys7X+5bhEPVuUTdt9x8CUQchmV4BctTs46r1yaNHECbL3pMy86WLJk2WWif3XR0rpZW23kRQujzQ3r7ATA+o/dwnMen/ms7Vs+cBUrzyuXz924zksGv+OIp/e91QNXMv2pR57VZIe7L2HikgV0xRhues4zZ3YsGjeRm9cq1V62v+cPTFz07JWVd5p5PgALxq7ArWtuO/jY1PIcl2pFjku1KsemWtGUA14GwPy/Xsv86/75rO1zz/8Di+8pyf2pr3npoPe73kVnstE/L+731v3vjnvOmk+/NtDs3flX3cCiO+8BYNpBLq7WqRLo6sqOv3X6OnMmeFvfr4AnWDoLdajlGepwVnV/WESsPFDDiNgY6L6O5KyB2g5HRIwF3l09vaCVk+OtbI8dJ7De2mPJhBNPm8MNt5XZul1dyZ+vW8h3flbKKG+7xTiev+kzZ/D+9HfzeMPRs3jD0bN46LFnlqD+58zFfPI7T3LZVQt49PGlM20XL0luuG0RH/vGk9x+d+lz4L6TWHHSM7+yfnXJfL52xlyu+eci5s5b2n/JkuS2uxbzxVPmcNlVZeGLXbabwLprWY9qtLn+OTvx0JR1CJLXXfNtNni0+gGeXWzxwN/Z76Zyjuz21bbmX6tu+Yy+u932a449/50ce/47+zzo++sG+zJn4jQmLFnI66/+Gms9Uda6HNO1mO3vvpTdb/s1ANesuxuPrfjs9Rsv2+Q1LBw7kakLnuDgq7/BynPLBQTjFy9g19vPYft7LgPgjxvvz/zxg7vcVO3BcalW5LhUq3JsqhVNPeBlTNhsI8jkwQ98jHl/LlX8squLOedfysMf/RIAk3Z7EZN2euYSLo99/RRmbrkXM7fci0X3PdDQOGf/7LcAjJk+jRX33W0ZrSWNZk5na3GZOT8iPg/sBTySmX+pO6ZB+AZwFLAK8O2IeGNmPqv4aUSsAJwMjAVuB84cySAiIoAvAVtRTmp9aiT330nGjg3+68gV+cS35vDwrC5O+M4cJo6HroRF1YTeDdYZy1GHDu2HbSbceNtibryt7GTC+FIS4qn5+fT6AhFwwF4r8Jo9n72AZNcSuOLqhVxxdUnirjARxo+t+vcYcTttO553v37Ul0vuSDlmLD/d/r0cduWXWGneoxx65ZdZOHYCkcn4rnIi4oFpz+XX27xtyPteMH4yP9n+KA75+1dYfc79vPXPn2LB2BUY17WIsdV6mTNX3Yrfb/n6Pvs/MXk1frntO3nttd9hvVm38Z7L/5f54yYxYckCxlRfidetszN/2fBlw3z3alWOS7Uix6ValWNTrSjGjWXNb57A/Yd/iMX3PcD9bz2amLQCdHWRC8qxx4QtN2GNL3ykthi75sxl7u/+AMCUV+9DTHAxaamTmeBtA5n5aeDTdccxWJn5cEQcAfySUjd4ckR8KDNv624TEdsBXwd2Bp4CDsnMhSPx70fEeGBX4Fhgn+rl/5eZfxuJ/XeqNVYZyxc+PI3f/GE+f7thIQ891sW4MfDctcay87YT2G/XiYwbN7Qat+utPZY3vXISt921mLsfWMKTc5On5iUTJsAaa45liw3Hsc9LJrLe2n3PvN3zRROZumLwjzsWc8+DS5g9J5k7P1lhQrDaymPYdP2x7L7DRLbY0K+60eyJyavx/V0+xovvvIDNH7yaleY9SleM4f5pz+GmtV/I39ffi64xwxsDD0xfn+/t+nFeMvN8Nnn4eqbNn8XCsRN5ZOpzuP45O3HdurtA9H8xzB2rP5/v7/JRdpr5OzZ89B9MWfAE88dN5oFpz+Wa5+7OLWvtMNy3rRbnuFQrclyqVTk21YrGr7MW6579fR4/6SfMvfByFt93P4wbx4RNNmDKK/Zi+mGvJSaM7PojQzHnt5eQ80o5OsszSIpl1cDUM0XEpcAewDxKYrI/Z2bmUVWi82TgrszcYBn77v6P8fzM7LuS/7P7PAKsCuyZmZf2eH0GcAmURdYGs6+q3/HAx4A/ZOaMQcb7jH+7x/ZXUkpKrFK9dCfwCLAW8NzqtXuBgzLzr330P4J+PruIOAU4HHgI6E4cjwWmAxsC3dM9HwXen5lnDPRehiMirgK2f/5WW3LeL0a8uoQ0bK8/elbdIUiSJGkU+v6XN1l2I6mJDjpgP/5x0w0AV1eLoXeM7pzEmuttxxHHNWpJo/Zxygk78+Dd10AHjgVwBu/ymFTd+jO1WYG0qsw8p6qx+x7glcDmwLrA45Tk86+A72XmvOX4Z9aobgALKfWKbwWuBn4P/Dwz5/fTV5IkSZIkSWprJniHaFmzWvtofwpwyiDbDu369tJntX5evxQYzv6OB44fZNtl7j8zHwc+U92GGssp9PPZZeYRwBFD3ackSZIkSdLokXh1PpSllzpX/8WGJEmSJEmSJEktzQSvJEmSJEmSJLUpE7ySJEmSJEmS1KZM8EqSJEmSJElSm3KRNUmSJEmSJKkdJWRX3UG0gM5eY80ZvJIkSZIkSZLUrkzwSpIkSZIkSVKbMsErSZIkSZIkSW3KBK8kSZIkSZIktSkXWZMkSZIkSZLaUAJd2eErjNHxa6w5g1eSJEmSJEmS2pUJXkmSJEmSJElqUyZ4JUmSJEmSJKlNmeCVJEmSJEmSpDZlgleSJEmSJEmS2tS4ugOQJEmSJEmSNDyZWXcIqpkzeCVJkiRJkiSpTZnglSRJkiRJkqQ2ZYJXkiRJkiRJktqUCV5JkiRJkiRJalMusiZJkiRJkiS1qa4uF1nrdM7glSRJkiRJkqQ2ZYJXkiRJkiRJktqUCV5JkiRJkiRJalMmeCVJkiRJkiSpTbnImiRJkiRJktSOEtI11qDDPwNn8EqSJEmSJElSmzLBK0mSJEmSJEltygSvJEmSJEmSJLUpE7ySJEmSJEmS1KZM8EqSJEmSJElSmxpXdwCSJEmSJEmShi6B7Mq6w6hdp38CzuCVJEmSJEmSpDZlgleSJEmSJEmS2pQJXkmSJEmSJElqUyZ4JUmSJEmSJKlNuciaJEmSJEmS1JaSruz0Jcag05dZcwavJEmSJEmSJLUpE7ySJEmSJEmS1KZM8EqSJEmSJElSmzLBK0mSJEmSJEltykXWJEmSJEmSpDaVXZ29wJicwStJkiRJkiRJbcsEryRJkiRJkiS1KRO8kiRJkiRJktSmTPBKkiRJkiRJUpsywStJkiRJkiRJbWpc3QFIkiRJkiRJGoaE7Mq6o6hfh38EzuCVJEmSJEmSpDZlgleSJEmSJEmS2pQJXkmSJEmSJElqUyZ4JUmSJEmSJKlNuciaJEmSJEmS1IYScI21jl9jzRm8kiRJkiRJktSuTPBKkiRJkiRJUpsywStJkiRJkiRJbcoEryRJkiRJkiS1KRdZkyRJkiRJktpUuspax3MGryRJkiRJkiS1KRO8kiRJkiRJktSmTPBKkiRJkiRJUpsywStJkiRJkiRJbcpF1iRJkiRJkqR2lJDpImt0+EfgDF5JkiRJkiRJalMmeCVJkiRJkiSpTZnglSRJkiRJkqQ2ZYJXkiRJkiRJktqUCV5JkiRJkiRJalPj6g5AkiRJkiRJ0tAlSVdX1h1G7ZLO/gycwStJkiRJkiRJbcoEryRJkiRJkiS1KRO8kiRJkiRJktSmrMErDd8GALfNvJP9XndIzaFIS828b0ndIUiSJGkUOuiAiXWHID3DzDtu6364QY1hSLUzwSsN3woA8+fP54Z//LPuWCRJkiSpof7xRN0RSP1aoe4A6pTZ2QuMyQSvtDweAtYA5gP/qjeUtrcFMBl4Cri55liknhybakWOS7Uqx6ZakeNSrchxOXI2oCR3H6o5DqlWJnilYcrMDeuOYbSIiKuA7YGbM3OHuuORujk21Yocl2pVjk21IselWpHjUtJIc5E1SZIkSZIkSWpTJnglSZIkSZIkqU1ZokGSJEmSJElqRwnZ5SJrdPhH4AxeSZIkSZIkSWpTJnglSZIkSZIkqU2Z4JUkSZIkSZKkNmWCV5IkSZIkSZLalAleSZIkSZIkSWpT4+oOQJIkSZIkSdLwZFfWHYJq5gxeSZIkSZIkSWpTzuCV1Aq+C6wN3F93IFIvjk21IselWpVjU63IcalW5LiUNKJM8EqqXWZ+p+4YpL44NtWKHJdqVY5NtSLHpVqR41LSSLNEgyRJkiRJkiS1KWfwSpIkSZIkSW0oga50kbVO/wScwStJkiRJkiRJbcoEryRJkiRJkiS1KRO8kiRJkiRJktSmTPBKkjREETElIt5adxySJGn5RMT4umOQJGl5uciaJEmDFBF7A4cDrwUmASfVG5EkSZ0tIrbNzGuH2Xci8AvgFSMalCQ1UybZ1elLjAEdvtCcCV5JLS0iVgTel5mfqzsWdaaI2AQ4AngzsG73y8BjdcUkSZKe9ruI2CMzbx5Kpyq5+xtg78aEJT1TNVt8W2BNYCowG3gQuC4zF9UYmqRRwASvpJYUEVOB9wMfBFYBTPCqaSJiGvAGSmL3Jd0vA4uA84BTgXNqCU4dJyJeC7wKeDHPPij8K/DrzDy7vgjViRyXaiGrA7+PiN0y887BdIiISZS/43sCTzUyOCkiXgR8BNgXmNhHk/kR8TvgU5l5VVODkzRqmOCV1DRV0uylwIaUH9PXZOaferVZEfgw8AFgJUpS7cHmRqpOFBFBGZ+HA68BVqCMv26PAVtk5iM1hKcOFBGbAz8Fntf9Uo/Nq1a3LYEjIuJ64ODMvL25UarTOC7Vgi6hJGoviojdM/PegRpXvzV/C+wGzAVe3fgQ1aki4hjgU5Tvyuin2STKb89XR8QxmfmlZsUnafQwwSupKSLiQOB7wPRer18KvCYz51Szgb4JrEH5AXQv8IWqn9QQEbEFZabum4C1Wfrj+z7gdOA04EZgocldNUtEbAz8mfKdGcDfgcuBu4E5lNmS61MSFNsD2wB/jogXDXYGmzRUjku1qFcBFwI7sTTJ2+fkgOoKsfOrtk8Cr8rMy5oWqTpKRBwGfKZ6eiPwbfr/znw3sBXw+Yi4NzN/3PyIJbUzE7ySGi4itgbOALpXKX6ccnnSJGAG8H8R8RfgW5QDxjuBzwKnWI9KjRIR76EkdnfsfonyY/sXwA+BizNLpf4yuVdqqlMoVzHcCrwlM//WX8OI2Klqvyll4b89Gx+eOtQpOC7VYjLzqYjYD7iYcmLhwoiYkZnPqJUfEdOBC4AXUsqJ7N/7SjJppFQ1nr8CJPBV4OjM7OrV7PHqdl1EfBM4kVKi7v8i4peZubBpAUtqe2PqDkBSR/gAJbn7J2DzzFwFmAK8DHgAOAz4IqW+6dFVm++Z3FWDfYOS3E3g95RF1NbKzCMy86Lu5K7UbBHxQmAX4N/AbgMl0QAy88/A7sD9wO4RseNA7aXhcFyqlWXmbEp90xuBrSkLr03r3h4Rq1ASwC+kJNReanJXDXYQpWTN7zPzQ30kd58hM7sy84PARcBqwIGND1GjSWZ2/K3TmeCV1Ay7U5K3h2bmbQBZXEhJ6I4HVgTenJknZubi+kJVB5pDmTX+r8x0oRW1goMpJx5OyMyHB9Ohuhz5BMpM9IMbGJs6l+NSLS0zZwF7U2aYbw/8NiImR8RqlOTudpR6+vsu6wSFNAL2pnxnfmZZDXv5NOU7c58Rj0jSqGaCV1IzrENJnt3dx7aLqvsHMvOnTYxJ+jRwDzANeAdwWUTcEREfj4hN6w1NHa57puNQ6+91t3empBrBcamWV5182Bv4F6XO7rmURdheADwK7J2ZV9UWoDrJ9sB8Ss3dobi86rf9iEckaVQzwSupGSYDfS52kZkPVQ/val44EmTmccCGlEs6zwTmVc+PA26OiL9GxHurmT9SM20C3FXNRhu0qt7kXZSap9JIc1yqLWTmfZQk732Uq8ieBzwEzMjM6+qMTR1lLeDOzFwylE7VlYx3Uhb+laRBc5E1Sa3CsgxquqrO7kWUVbenAG+gLLy2C6VO346UBS8AxkXEBBe8UBNMp1xiPByPAJuNYCxSN8elWlJE7N7Ppk9S6u0ncDywan9tM/OyxkSnDjYduGOYfZ8ANhrBWCR1ABO8kiQBmTkH+AHwg4jYiJLofTOwftVkVeDBiPgJcFpm/rGWQNUJplBmlA/H/Kq/NNIcl2pVl1KSuAP5xgDbEo+LNfImAkOavdvDEmDCCMaiDtDV5SJjnc4SDZKaZZeIWNLXjfLDut/tEeHsXjVVZs7MzI9m5oaUyzx/BDxFmY3xdkq93tvqjFGjWtQdgNQHx6VaWSzHzWNiSVLb80ylpGbxwFBtKTMvAS6JiBWB1wOHA7vhpXNqrOkDXHY8YL8Rj0RaynGplpOZJmjVqjaNiJOG02/EI5E06pngldQMe9YdgLS8MnMucDJwclXC4c01h6TRbWvKyu9SK3FcStLgrUEp+TUUSZkY4/X2kobEBK+khsvMP9QdgzSSMnMm8PG649CotjxXPXhQqEZxXErS4JxadwCSOosJXkmSpBbi5cZqRY5LtaqI+Ojy7iMzPzESsUjdMvPIumNQ58iEdJE1ssM/AhO8kmoTESsB6wDTgNnAfZn5eJ0xqXNExMzl3EVm5sYjEowkSRqu4xn+DPHuS+FN8EqS2poJXklNFRErA+8F3ghs0cf2m4EzgW9m5mNNDk+dZQOW1jkbjg4/RyxJUku5GfhH3UFIklQHE7ySmiYiXk6pR7Ua/SfVtqTUNj0qIo7IzPOaFZ861j8p4/KmugORJElDNg+YRJk4MBc4DTjDiQKSpE5igldSU1TJ3bOB8cAs4HTgUuB2yo/xFYFNgBnAYcDqwNkR8RqTvGqQM4ADKCcVPgNcA5wCnJmZj9YXljqd9STVihyXamFrAa8H3gLsCuwAfDEizqUke8/NzMU1xqcOZCkwSc0W2elViCU1XERMA+4AVgV+Arx7oFq7VW3e7wAHA48Am2Tm7MZHqk4TEVMoB4WHUw4KARYB51Fm9Z7jQaGaLSK6WM4SIJk5doTCkQDHpdpDRGxI+Zv+FpaWYnqMkoWi1QAALxBJREFUclL3tMy8qr7o1Emq78zlkX5nalki4ipg+5XXfD77HemcqPNO3o9ZD94AcHVm7lB3PM3mDF5JzfAflOTubzLzkGU1zszHI+IQyuV2rwDeA3yusSGqE2XmHOAk4KSI2IClB4WvAV4NPBYRZwI/zMwrawtUneYyrPGs1uO4VMvLzDspi64dHxG7AUcABwFHAe+LiO6yTKdn5r/rilMd4ci6A1BncfKmnMErqeEi4gpgJ2DTzBz05UoRsQlwK/CnzNx1We2lkRIRu7L0oHAaJalxC/D5zDylvsgkSdJQRMQk4HWUE7h7U9aB+H1mvqzWwCRpOfWcwfvyI35bdzi1O/+U/Tt6Bu+YugOQ1BE2A2YOJbkLkJm3AzOr/lLTZOYVmfl2Sl2/w4C7gc2BQ2sNTJIkDUlmzgMuqW7/piR4+1vsV5KktmSJBknNMJ2SqB2OR4F1RzAWaVAiYh3gzZSyDetXLy+qLyJJkjRYPWbuHg7sSZnclMAFwP/VGJo6XESsSLlCbHZmzq07HkmjgwleSc3wKLD2MPuuDcwawVikflUHgwfyzIPBJcDvKDX7flVbcOpY1YHg/sDOlBNe04DZwL3An4DzqnrSUtM4LtWqImIPyt/xA4EplNm6/6D8Hf9RZt5fY3jqQBExFnhjdduZ8n3ZvW025TvzTOAsF/eVNFwmeCU1w43A3hGxbWZeO9hOEbEd5aDxokYFJgFExAyWHgyuSDkYvImlB4MP1BacOlZEjAE+Avwn5UoIeOZlxQm8H5gdEV8GPpWZS5obpTqN41KtqFq34S3AmyhX3QTwCOXv+KmZeVWN4amDRcQ2wFmUknN9lQaZDuwHvBw4LiIOGcrxklQk2dVVdxAtoLPXGDPBK6kZzgb2Ab4WEXtn5sJldYiIicDXKd/Sv2xwfOpAEbEpSw8G12PpweBJwGmZeXWN4anDVbPJfwvsThmbS4B/ArcDcyknIjYBtqQcHH6MciLt5VW9SWnEOS7ViiLij8BLqqeLKL87TwXOdTak6hQRO1BqP0+hfF+eB1zKs78zZ1CSvJsBl0fEnpn59xpCltTGTPBKaobvA/9NuSTpgog4IjP/1V/jiNgQOBnYibK41febEaQ6zi2UEwiLgF8ApwG/daaZWsSpwB7AfOBzwDcz8+HejSJideA/gGOAXSnj+OAmxqnO4rhUK9qJ8vf8ZspMyUeBdYB3RgxuLbXM/GbDolNHqiar/JyS3L0COGKABadPjIiNKcc/uwI/i4jNM3NBc6KVNBpEZmdPYZbUHBGxI+UM9mRgMXB+9fwOYA7lx8/GlLqnLwfGA08BMzyDrUaIiC7KAeGdwGPD2EVm5otHNirp6ZIhF1Pqj790MJcWV9+xF1BmTe6TmZc0MkZ1HselWlWPv+fDlpljRygcCYCIeC/wNeCPlO+/ZSZrq6TwxZQZ6e/PzG80Nkq1u4i4Cth+5TW35mVvObfucGr3u9NewawHbwS4OjN3qDueZnMGr6SmyMy/V4tenEW5FOmV1a237qkWtwNvtGaaGiyAjarbUHmGVI1yBGV8fWiw34HVd+yHKCVGDqecQJNG0hE4LtWaLsO/yWo9r6WMy/cNdiZuZi6IiPcBV1X9TfBKGjQTvJKaJjOvjojnAYcCh1BKNkzt0eRJyiqyZwFnZOai5kepDnJk3QFI/diN8n14+hD7nQ58teovjTTHpVpSZs6oOwapD88D7snM64bSKTOviYh7gK0bE5ZGpYSuLs9zdfqpPhO8kpqqStqeWt2IiGmUJO+TmTm7ztjUWTLz1LpjkPqxFnDzUBcHysxFEXE7sHljwlKHc1xK0uCtDFw7zL4PANuMXCiSOsGYugOQNPpFxEkR8f/62paZszPzPpO7kvS0JcBw60GOBbpGMBapm+NSkgbvCWC1YfZdDfDYSNKQmOCV1AxHAPvXHYQ0WBGxYkSsHREr1h2LOtJ9wKYRMXkonarxulnVXxppjktJGrxbgQ0jYuOhdIqITYANgVsaEpWkUcsErySp40XE2Ih4U0ScGxGzKLMm7gVmR8Ss6vU3RYSljdQMlwArAO8eYr93V/1cyEqN4LiUpME7h7KY75cG2yEiAjiRUkn0nAbFJWmUMsErSepoEbENcCOlLvR+wHTKD/Lu2/Tq9VOBGyNi23oiVQf5bnV/QkTsN5gOEbE/cALlMvjvNSowdTTHpSQN3reAx4BXRcQZETF9oMbV9jOAV1b9vtX4ECWNJs5EkiR1rIjYgTKrbAqlvuR5wKXA7cBcYEVgE2AGJcm7GXB5ROyZmX+vIWR1gMy8NiK+CbwX+E1EnAJ8IzOv6d02IrYD3gccTjkh8e2+2knLy3EpSYOXmbMj4s3A2cAbgJdGxOmU3513AHMovz83BvYEDqMszLYEONz1STQUCWRm3WHUrtM/ARO8kqSOFBETgZ9TflxfARyRmTP7aX5iVUPtZGBX4GcRsXlmLmhOtOpAHwBWBQ4BjgSOjIgngDtZelC4IWWGOZQk2o+Bo5ofqjqI41KSBikzz4uIAyhXga1KOfH1vn6aB2Xm7hGZ+dvmRChpNDHBK6lZNo2Ik4bZNzPzbSMajQRvB9YD/gjsu6xkbWbeERH7AhcDL6n6f6PhUaojZWYXcGhEXAAcB2wErARs10fzmcCnMvPk5kWoTuS4lKShyczfRsQWlBNdbwA276PZLcBZlKsiHmlmfJJGj3Aat6RGi4guyhUTMcSu3X0yM8eOeGDqaBHxe8olcdtn5nVD6LcdcBVwcWbu06j4pG7VoisvAnYB1gWmAk9SFgL8I/C39AedmsxxKUlDFxGr8MzvzPsy89F6o1K7ioirgO1XWmNr9n3Tb+oOp3YX/uhVPP7QjQBXZ+YOdcfTbM7gldQsDwHn1x2E1MPzgHuGktwFyMxrIuIeYOvGhCU9U5Uk+2t1G1D1Q3+lzNy44YGpow1lXEqSisx8jFKKQZJGlAleSc1yW2YeWXcQUg8rA9cOs+8DwDYjF4o0YtYDVqk7CKm3iHhRZv6t7jgkSRqNssuLZjqdCV5JUqd6AlhtmH1XA1zdWJKWISJ2Bj4G7I3HHpI6RETsvrz7yMzLRiIWSZ3BH1mSpE51K7BzRGycmXcMtlNEbEJZJf6PDYtMklpYRKxG+R58Cri9r0Uqq+TGx4AZVPX0mxmjJNXsUpbvey8xXyNpCMbUHYAkSTU5h5J0+NJgO1SLCp1I+dF9ToPikqSWFBGbRsTFwIPAX4DrgQcj4n97tFk/Is4FLqEsZAnwS2DHZscrSTWL5biZq5E0JH5pSJI61bcoi1y8KiLOiIjpAzWutp8BvLLq963GhyhJraGatXsZsAfPTEJMA46PiGMiYidKbfP9gC7gTOD5mXlgZl5TS+CSVIPMHNPfrWpyxUBterSTpEFxyr+kZvg4cHfdQUg9ZebsiHgzcDbwBuClEXE6ZdbZHcAcYAqwMWUW2mGUhdmWAIdnpjV4JXWSDwJrAg8B/wv8FZgMvAo4Gvgv4N3AdOA3wH9l5q21RCpJUifJdJE1gOzsz8AEr6SGy8yP1x2D1JfMPC8iDgBOBVYF3lfd+hKUmbtHZOZvmxOhJLWM/SjlaQ7MzJ41yP8SEXOBEygnwT6bmcfWEaAkSVKnMsErqeFcRVatLDN/GxFbAEdRZvJu3kezW4CzgG9k5iPNjE+dp6pxOlwDlhqRlsPGwH29krvdTqckeGdTrtqRJElSE5ngldQMl+IqsmphmfkocDyljuQqwLrAVOBJSkLj0RrDU+eZsZz9O/v6NDXKVOCmfrZ1l2G6PTMXNCkeSZIkVUyYSGqWqKmvNCSZ+RilFINUF2dAqhUFpQb5s2RmRgTAvKZGJEmSJMAEr6QmcBVYjTYR8Vzg2Mx8T92xaPSxbrkkSZKGoiu76g5BNTPBK0nSIEXEBsBHgDcD4wETvJI6yfOXUSN6oO2ZmXs3IihJkqROZ4JXktTRImIj4HXAhsBTwDXATzJzcY82z6VcNn8Y5W9nANc3P1pJqtV0Bq4RPdB2a0NL6hiDWDB1WSfMPCkmaUhM8EqSOlZEfAD4PM/+e3hcROydmfdHxAeBTwMTKYndvwGfyszfNDVYdYyIOBGYmZlf72PbC4A5mTmzn77/BzzPg0I1gKVDJGnwZixj+7JOmHlSTNKQmOCV1HAR8dHl3UdmfmIkYpG6RcTOwImUpO1TwK3AZGBjYHPgmxFxLfCxqssVwCcz88LmR6sO80HKeHtWghe4Frgc2KOfvtsBOzckKnU0a0NL0pD4nSmpqUzwSmqG41n+s9AmeDXS3ktJ7p4NHJGZTwBExJbAL4FXAfsBs4B3ZOYv6gpU6iXqDkCSJPXPk2KSms0Er6Rm+AVDT/BOBl4KjB1GX2kwdgYWAG/vTu4CZOY/I+LDwG8oC6kdlJmX1BSjJEmSJPUrgezykLnTPwETvJIaLjMPGmzbiBgPvAs4FhhTvfznRsSljrcmpc7po31s6x5z95jclSRJ0nBExCRgX2Cz6qVbgQszc159UUkajUzwSmoJERHAWyj1TtenXIJ8PXBcZp5TZ2watVYA+krukpmPlSHJvU2NSJJaVEQsWc5dZGZ67CGpY0TEPsAPgTV6bXooIg7PzAtqCEvSKDVm2U0kqbEi4iDgJuAkYAPgduDQzNzW5K5q1lV3AJLUImIEbpLUESJiY+BXlCvGApgDzK0erwn8IiI2qS1ASaOOZ9El1SYiXg6cQFn1PSizJT8BnJyZyztTSBqMiRGx3nC3Z+bdDYhJklrRnv28HsDFwA3A+5sXjiS1tP+krClyA/DWzLwKICJeCPwAeB7wQeB9dQUoaXQxwSup6SJiF+DTwK6UA8OHgc8A38zMhXXGpo6zI3BnP9tyENv9O6pGmR4Ruw9nW6MCUmfLzD/0t60qafPEQG0kqcPsBSwB3pCZN3e/mJlXRsQhlFJ0e9UVnEaZdJE1oONXWfPAVFLTRMS2lMTuyyiJ3SeALwFfzsy5NYamzrU8lwx7ubEaaWugrwX+coBtkiSpNawH3NUzudstM/8REf+q2kjSiDDBK6nhImJz4JPA6yi1v58CvgZ8LjMfrzE0dbYN6w5AGsDynEDo8PkLkiTVbjLw7wG234+/RSWNIBO8kprhJkqyYglwGqXu7gMAETF5MDvIzKcaFp06UmbeVXcMUl8y00VwJUmSJA2aCV5JzTCGMqNsLHB4dRsKa51qxEXEScCtmfnZumORJEmSJGm4TJhIahZrnarVHAFcAZjgVUuJiKMy82t1xyFJkpbLLhGxZKAGA2zPzDRfo0FKMq3Q1elVyvzCkNQM1peSpMH7akQcCLw1M2fWHYwkSRoWJ6lIahoTvJIazlqnkjQkDwG7A9dHxHGZ+ZWa45GIiI8uo8l6y2qTmZ8YwZAkqZXtWXcAkjqLCV5JkqTWsiXwNeBQ4Es9ZvPeVm9Y6nDHM/C1j+sBH1vGPkzwSuoImfmHumOQ1FlM8EpqaRGxBrBCZt5ddyyS1AyZOQt4U0ScCXwH2AW4rpod+aW0yJrqcRmdXtxOkiSpRZngldRwEfEY8KfMfGUf204EZmbm1/vp/nNgJ/y+UmNsGhEnDbNvZubbRjQaqYfMPDcitgJOBN4KfA44MCKOzMyb641OnSYzZ9QdgyRJkvpmwkRSM6wETOtn2weBK4D+ErzgAgVqnDWAI4bYJyljMgETvGqozJwNvD0izqLM5n0xcG1E/HvgbrlxUwKUJEnPEhG7L+8+MvOykYhFnaGrq6vuEFQzE7ySpE72EHB+3UFIy5KZv4+Ikyk1TCcAGwzUvClBqaNExBLgiszco+5YJKkNXMry/T1OzNdIGgK/MCRJney2zDyy7iCkgUTEpsBJwM7VS2cAF9YXkTpU4BU1kjRUTwBL6g5C0uhngleSJKkFRUQAHwY+DkwCHgDenZm/rjUwSZI0WPOA04HTMvPGuoORNHqNqTsASZIkPVNEbAn8ibKw2iTgR8BWJnclSWoL+1KuuJlOOVl7XUT8PSKOiojV6g1N0mjkDF5JkqQWEhHHAv8LTAT+DbwrM8+tNypJkjRYmXkRcFFETAEOBg4HdgO2A74YEecBpwLnZOai+iLVaJAJ2eUSDNnhH4EzeCVJklrLCZTk7qnA80zuSpLUnjJzTmaenJkzgI0oZZfuAV4N/Ay4PyK+HhEvqjFMSaOAM3glNcumEXHScLY1KiB1vI8Ddy+rUUSMA7aiJNzuyMzHGh2YOt59wDsz87y6A5F62SUihrtYUGamxx6SOlZm3gV8AvhEROxKmdV7MPAe4D0RcVZmHlZnjJLalz+yJDXLGsAR/Wxbs59tSVmxu8MvtlCDfBHYJiJemJlX9tUgIo4GjgOmVi91RcQvgfdk5qNNilOd53mZObvuIKQ+RN0BSNJokJlXAFdExBnAScD6wOr1RiWpnZngldQMp9YdgNSH11LG5o+BQ3tvjIhjgE/zzITGWOBAYP2I2Ckzu5oRqDrOByOWL4+WmZ8YoViknm4A3l93EJLUziLiucCbq9tmlN+aTwAX1xmXpPZmgldSw2XmkXXHIPVhj+r+lN4bqtWNP1o9vQk4BrgD2JUy83dH4DDghw2PUp3oeIZ/5UL3VQ8meNUIT2TmH+oOQpLaTURMBg4C3gLMoKyHtAQ4HzgN+FVmLqgtQLW5xHkn0OkX/prglSR1qh2BhcAlfWx7PTAJmAe8IjO7a/XeUtWfPInyI90ErxrpZuAfdQchSZKGJyL2oiR1XwesSDkReyPlKrLTM/OBGsOTNIqY4JUkdao1gdszc1Ef22ZU9+f3SO52Ox34GrBt40JTh5tHOcGwBTCXMrPnDBf4kySpPUTEp4A3AetSkroPAz8ATs3Ma2sMTdIoZYJXUu0iYv8BNl+ZmQ83LRh1klWB3snbbjtSrvG5oPeGzFwUEXcDGzYwNnW2tSizyN9CKQuyA/DFiDiXkuw9NzMX1xifJEka2P9QfkveTPnbfR6wGCAithrMDjLTq3gkDZoJXklNERHfA/YGvp2Zn++1+Rz6L5jzE+CNjYxNHWs+sHbvFyNiVWADypi8qp++cygLrkkjLjOfpMzy+UFEbAgcTkn2vhY4AHisWnX7tMzsb4xKkqT6bUFZtPfTQ+yXmK+RNARj6g5A0ugXEZsBb6V853y1n2YLKbMpe97mAq+PiI2bEac6zu3AOn2Mr32r+3nANf30XQvwcnk1XGbemZnHZ+ZGlIUBTwEmAEcBf4uIGyPivyLiOXXGqY7wK+DguoOQpDYSy3EzVyNpSPzSkNQMb6juvzTA6rBXZuaGPW/Ahyg/cJzBq0Y4n/J38OsRMQkgIlYC/psya+K8zFzSu1NErAE8F7iteaFKkJmXZ+bbKCcY3gz8njIz6LPAyXXGpo5wAPCHiNil7kAkqdVl5pjlvdX9HtResis7/tbp/NKQ1Ay7V/c/HWK/M4EFlFlr0kj7P+Bx4KXAAxHxN+BOYBtKgvdL/fR7XXX/h0YHKPUlM+cBl1S3f7N0to/USP8ENqMkeb/SfWJMkiRJ9TPBK6kZngfcnZkPDKVTZs4FZgKDWohAGorMfBB4NWVV46mUhdWmU5K7x2TmX/rp+h/0swCb1EgRMSkiDouIC4C7gE8Bz6GMxa/UGZs6wraUGpJdlBIh10fE7gP2kKQOFRFH1R2DpM5i0W5JzbAycP0A278B3NHPtieADUc8IgnIzCuqGryvADYCZgO/y8w+x2NErEZZ/CqBPzUtUHW0iNiDstDagcAUymzdfwCnAj/KzPtrDE8dIjMXAcdFxM8oJUG2AS6OiG8D/52ZT9UaoCS1lq9GxIHAWzNzZt3BSBr9TPBKaobFwMT+NmbmQGe4VwSeVQdVGinVTPGfDLLtI/S/UKA0YiJiE+AtwJuA9SlJ3UcoSd1TM/OqGsNTB8vMayNiR+B/gOOA9wD7RcQ7MvPieqOTpJbxEKVM3fURcVxmfqXmeCSNciZ4JTXDI8D6ERGZOejq5xExBtig6i9JHSEi/gi8pHq6CDibktg9NzMX1xaYVKkWoDwhIn4BfJ8yXi+MGLAUdGamxx6SOsWWwNeAQ4Ev9ZjN6yK9GnmJi4xBucayg/kjS1Iz/J2yMNXOwB+H0G93Sm3UCxsRlCS1qJ0oP1FvBs4CHgXWAd65jATa0zLzmw2LTlpqJnAVJcHrQn+SVMnMWcCbIuJM4DvALsB1EfFR4EtDmfQiSYNhgldSM5xLqR35yYjYezA/aCJiLPBJSpLjNw2OT5Ja0RbA8cPsa4JXDVUtsPYDSv3yxcDn8YSsJD1DZp4bEVsBJwJvBT4HHBgRR2bmzfVGJ2k0McErqRl+RElS7AH8MCLeVdU97VNErEg5aNwFuBs4vRlBSlKLuIyOv8hMrSoiJlOSue8GxgA3AEdm5tW1BiZJLSozZwNvj4izKLN5XwxcGxH/HrhbbtyUACWNCiZ4JTVcZi6OiDcCFwNvBPaJiNOAy4E7gbmUxdQ2oCSB3wKsBiwEDrXmpKROkpkz6o5B6ktE7A18j7Lw3xLg08AnM3NRrYFJUhvIzN9HxMnAJ4AJlGOffps3JShJo4YJXklNkZl/joj9gR8DawAfrm596V4t/o2Z+acmhShJkvoREd8F3kb5G30dZdbutbUGJUltIiI2BU6irEkCcAaWtdEISaAru+oOo3adflbEBK+kpsnMSyJic+D9wBso9SV7615U6GvV4gSSJKl+bwcWUWbtfsqrayRp2aKsjvph4OPAJOAB4N2Z+etaA5M06pjgldRUVdL248DHI2IVysrwU4Engfsy87E645MkSX26BjgiM28Yaseqtv77MvNzIx+WJLWmiNiSMmv3RZSrH34EvD8zH19Gv68CUzLzbQ0PUtKoYYJXUm2qZK4JXUmSWt+LMnPJUDpExFTKVTsfBFahrB4vSaNeRBwL/C8wEfg38K7MPHeQ3Q+lfGea4JU0aCZ4JdUmIlaizOCdBsymzOB9vM6YJEnSs3UndyNiGvBSYEPgKeCa3vXyqxm7HwY+AKxEmbn2YDPjlaSanVDdnwp8MDOfqDMYSaOfCV5JTRURKwPvBd5IHzV4I+Jm4Ezgm5ZrkCSpdUTEgcD3gOm9Xr8UeE1mzomI1wLfpCyoGsC9wBeqfpLUKe4D3pGZ59cdiKTOYIJXUtNExMspZ7FXoxz09WVLSo3eoyLiiMw8r1nxSZKkvkXE1pRV38dXLz1OufR4EjAD+L+I+AvwLcrf+DuBzwKnZOaiZscrSTV7XmbOrjsIdYoku7LuIFpAZ38GY+oOQFJnqJK7ZwOrUw4Kvw4cBGwLbFrdH1S9/njV7uyI2K/pwUqSpN4+QEnu/gnYPDNXAaYAL6OsCn8Y8EVgEXB01eZ7JncldSKTu5KazRm8khquqtf3Q8qB4U+Ad/dTa/d64BcR8VHgO8DBwKkRsYk/kiRJqtXulOTtoZl5N0BmJnBhRBwNnE45tjgkM39aX5iSJEmdxxm8kprhP4BVgd9k5iHLWkit2n4IcE7V7z2NDlCSJA1oHeBf3cndXi6q7h8wuStJktR8zuCV1AyvpBTE+c/BdsjMjIgPVX1fBXyuQbFJkqRlmww82NeGzHwoIgDuampEktSiqisSh2vyiAUiqWOY4JXUDJsBMzNz5lA6ZebtETGz6i9Jklrb4roDkKQWcTzDX/EplqOvOlFCdnXVHUX9Ovz/GhO8kpphOjCk5G4PjwLrjmAskiRJktRIl9Hx6SZJzWSCV1IzPAqsPcy+awOzRjAWSZI0PLtExJJ+tuWytmemxx6SOkJmzqg7BkmdxUXWJDXDjcC6EbHtUDpFxHaU2bs3NiIoSZI0JLGcN0mSJDWAZ9ElNcPZwD7A1yJi78xcuKwOETER+DplRtAvGxyfJEka2J51ByBJkqS+meCV1AzfB/4b2Bm4ICKOyMx/9dc4IjYETgZ2Au6u+kuSpJpk5h/qjkGSJPUtuyz53OlM8EpquMxcEBEHApcAuwG3RMT51fM7gDnAFGBjygyhlwPjgaeAgwYz41eSJEmSJKkTmeCV1BSZ+feI2AM4C9gEeGV16627Rt/twBsz86omhShJkvoREVcDV2fm2/vY9n7gvsz8eT99Lwd2cpE1SZKkxnCRNUlNk5lXA88DjgQuoMzc7bn4yhzgd9X255nclSSpZWwLbNbPtq8AH1hGfxdZkyRJahDPoktqqsxcBJxa3YiIacBU4MnMnF1nbJIkSZIkSe3GBK+kWlVJXRO7kiRJkiRJw2CCV1JLi4iXAB/LzP3qjkWSJEmSpNaSZHbVHUQLyLoDqJUJXkktKSJ2Az4K7FV3LJIkSZIkSa3KBK+kpomI3YHXAxsCTwHXAN/JzEd7tHkR8FlgD8qCLAmc0/xoJUmSJEmSWp8JXklNEREnsnSF7e7E7euAoyJiBnAbcCJwVLW9C/gZ8KnMvL7Z8UqSJEmSJLUDE7ySGi4i9gc+WD29G7gamAy8CFgT+BZwC/AuSmL3dEpi95amBytJkvqzXkR8dDjbGhWQJEmSTPBKao53VPffBd6XmYsBImJ14DeUcgy7A3cBB2fm32uJUpIkDeS5wMf62bbeANu6r9yRJEkjLBO6uvwzmx3+EZjgldQMO1Jq7n6oO7kLkJkPR8QxwCXVSwdk5nV1BChJkgZ0GSZpJUmSWpIJXknNsDpwS2Y+1ce2q6v7O0zuSpLUmjJzRt0xSJIkqW9j6g5AUkeYADzR14bMfLJ6+GDzwpEkSZIkSRodTPBKahVe9ilJkiRJkjRElmiQ1CzTI2L34W7PzMsaEJMkSZIkSW0tu7rqDkE1M8ErqVm2Zuliar3lILb7fSVJkiRJktSLCRNJzRI19ZUkSZIkSRq1TPBKarjMtN63JEmSJElSA5h0kSRJkiRJkqQ25QxeSU0REWOBDwBvAjarXr4VOB34amYuris2SZIkSZLaVXZl3SGoZiZ4JTVcRARwNrAfz6ynuy2wDbA3sH/zI5MkSZIkSWpvJnglNcNbWJrAPRe4hFIiZkb1+ssi4ojMPKWW6CRJkiRJktqUNXglNcObgASOzcxXZeaJmfnFzHwl8BHKrN7Dao1QkiRJkiSpDZngldQM2wCzgc/3se3z1bZtmhqRJEmSJEnSKGCCV1IzrAzclpldvTdk5hLgNmClZgclSZIkSZLU7qzBK6kZxgLzB9g+v2ojSZIkSZIGK5M+5lJ1nsy6I6iVM3glSZIkSZIkqU05g1dSs6wXER/tbxvAANvJzE80JCpJkiRJkqQ2ZoJXUrM8F/hYP9uiuu9vO4AJXkmSJEmSpF5M8EpqhsuAzi6II0mSJEmS1AAmeCU1XGbOqDsGSZIkSZJGmwSyy/lUnf4JuMiaJEmSJEmSJLUpE7ySJEmSJEmS1KZM8EqSJEmSJElSHyJiz4g4JyIejoh5EXFzRHwyIlZcjn0eGBGXRMSsiJgbEddGxNERMX44+zPBK0mSpBEXEZdGREbE8X1s+1e17YjmR9ZY1fvKiJgxxH4b9Oi7QSvENEL/9inVv31Ks/9tSZKk5RURRwEXAa8A5gP/BDYAjgOujIhVhrHPLwI/A2YAjwK3A1sDXwB+HxETh7pPE7ySJEktJiKO75GU63mbHxH3RsSvI+L1ERF1x9oKquTo8X0lkyVJkka77Orq+FsjRMQOwFeqp+8C1svM7YGNgKuALYHvDXGfrwU+DCwAXpOZm2TmNpQE753A7sCnhxqrCV5JkqTW9mCPWwLrAK8CfgycO5wz/C3gDuAW4IkR2t8GwMeqmyRJkjQS/peSO/1hZn43MxMgM/8NvBHoAl4XES8Ywj67f69+LjN/3f1iZt4MvL16+t6IWH0ogZrglSRJamGZuVb3DViRcnb/wmrzfsAJtQU3TJm5d2ZukZm/rDsWSZIkqbeImAK8vHr63d7bM/M24OLq6cGD3OemwDYD7PNiSrmGicCrhxKvCV5JkqQ2kZldmXkT5Qff7dXL74qIcTWGJUmSJI0221ESrQuAv/XT5vLq/iWD3Gd3u5mZed8I7RMwwStJktR2MnM+8NPq6VRgC3j2Ql0RsXFEfDci7oyIBRHxr577iYgxEXFYRPw2Ih6MiIXV6sAXRMQbB6rxGxFjI+KoiLi6Wvn3sWphtYOWFf9gFlmLiBdHxMkRcXtEPBURsyPiHxFxUkS8rOe+gEt6PO9dt/iUPvY9NSL+X0T8uYp7QUTcExFnRcROy4h95Yj4QkTcUdVEvj8iflrVaGuYiHhJRHwuIi6PiLuqf/vxiPhLRBxTzTIZzH7WioivV2NifkQ8EBGnR8QWg+j7ioj4eUTcV31msyLisoh4T0RMWP53KUmS1DI2q+7vzsxF/bS5o7rffIj7vGOANkPdJwDO9pAkSWpP9/Z4PK2P7TsD3wGmAE8Bz/hhWq34+0vKQg7dngBWA/atbodExMGZubBX34nA2UB3orULWFjta4+I+Nww3xMRMRY4EXh/j5fnAospiewtgdcBK1XbHqa8/5Wr5w/22uUz6vxGxLbAb4B1q5eWUD6fdYE3AK+PiI9k5mf6iG0D4FJg/eqlhcBk4CDg1RExqMvzhunPPR4/Vd1WBl5c3d4SEXtm5kMD7GND4ExgLWAeZUysCRxKqR/32sw8v3eniJgEnEZ5n91mA9OB3arbWyJi/8ycNcz3J0mShmHek3dx7eXvrDuM2s178q7uh1tExFVD6PrdzPxOH6+vUt0/NkDf7m0rD9Cm0fsETPBKkiS1qw16PO7rR+J3gJuA92Xm3wEiYrPqfizwC0pC9lrKAhIXZ+ZTEbEicCDwBUopiM8B/9lr35+hJHez6vu1zJwdEWsAxwPHMPwF1D7N0uTuSZQFKG6t4p4OzKAsagFAZr4wImZQzeKtahX3KSLWBn4HrEF5/58Grs/MRVXs7wP+B/h0RPwzM3/Vo+9Yyqzp9YFZlJWUf5mZiyNiK+DbwKnDfM+D8RvgR8BlmflAFdMkSm24zwDdMbxugH18mfLf5aXA7zMzI+JFwPeB5wM/jojnZea9vfp9l5LcnUn5731O9d97hWpfX6ZcRngS8NqReLOSJGlwuroWMPeJW+sOo5VMBrYfQvu1+3l9hep+YT/boZRvAJg0yH+rEfsETPBKkiS1nYiYBhxWPX0M6OtX/aPAPpk5p/uF7kQpZcbmHsDNwIzMfKJHm7nAaRFxE3Al8B8R8ZnumaER8RzgqKr5CZn5qR59H6rar0SPJOwQ3tdmwNHV089n5jE9t1dxnl3dhuMESnL3jMw8rOeGKvaPRsQsygzi44Ff9WhyILBj9fjgzLyoR99/RMTLgetZOrN4RGXmsxbayMx5wC8j4m+Uy/kOiIj1MvPufnYzCdgpM//ZYx9/i4h9gH9SZpX8D/De7u0RsRvwJuAhyli5p0ff+cCvI+Jqylg6ICK2zcxrl+/dSpKkQbi57gBa0GqUq9f+NYQ+9/fz+vzqfqAyVBOr+3mD/LcasU/ABK8kSVLbqBKnO1Bm1T6nevmrmdnVR/Ov90zu9vK26v5bPZO7PWXmVVWSd2tgT+DH1aaDKL8h5wFf7Gf/xzOMBC9wOGWNiEeBjw2jf7+q2aaHVk8HKiFxGiXBu01ErJmZ3SUfDqnu/9gzudutmv38ecrM6abKzPsi4jrgRZTSHP0leH/aM7nbo/9DEfFt4FhKmYr39tjcPVZO75nc7dX/3oi4BHglZWb3tcN6I5IkadB6n6zWiOsuO7XKAG26tw22RFUj9gmY4JUkSWppEZEDbP4R8Kl+tv2xn/2NZemqvMdHxLED7L/7B+b6PV7rnsX698yc3VenzLw1Iu4D1hlg333Zubq/sJodOpJ2YOllcRcMsH5cT+uztKZv9/u+eID2A21bLhExhpJkPgTYFlidpe+np3X7eK3bsmI/Flg1IjbMzDur13ep7t8WEYf23RUo9XjhmWNFkiSpXXVf+bZeRIzvZ6G1jXu1Hew+NxmgzVD3CZjglSRJanU9Fw1bADwCXEOZUXnJAP36W2xrFZZe+jXYxRsm93i8RnV/3zL63MvQE7zd9XPvGrDV8Dynx+M1B9lnqO+7d+3aERERk4FzKDOpuy2klOfoPthYBRgPrDjArgaKvee2NYDuBG/35zaNvhfz623ysptIkiS1vGsov7cmUq6S6mvyxG7V/Z/72NaXv1T3G0bEOpnZ12+zoe4TMMErSZLU0gZaNGwZlvTz+tgej/fLzPOHuf9GGGi28vLq+b4nNWCGcCN9hJLcnUeZZfsL4J7MfPrziojLgV2BQU1NHoLuz+09mfntEd63JElSS8rMJyPid8CrgHfSK8EbEZsCe1VPfzbIfd4aETdQFrd9J71KkkXEXpTZvQuBXw8l3jFDaSxJkqS29yiwuHo8nMvpu2cGL2t27lBn7wI8UN034jL/B3o8btT7Hs57Hozu+r+fyMyvZObdPZO7lcGcCBhs7D1nfzfyv4kkSVIr+yRlAsKbI+KdUdX4ioi1gTMpedVfZeZ1PTtFxL+q20F97PPj1f0xEfGqHn02B75fPf1mZj48lEBN8EqSJHWQqn7Y36qnrxqobT/+Xt3vGBFT+mpQzWgYqBZsf/5U3e9bLYo2WE8vMhf9F9e9kjIbApbvfe85QJu9Bti2PJ5b3V/T18aI2ICBa7l1Gyj27m2P9ai/C0tnq7xyEPuXJEkaNTLzSuBD1dPvAHdFxNWUUlY7ALcA7+ij6/rV7Vm/lTPz58BXKKUffh0Rt0fEtcBNwIbAFcD/DDVWE7ySJEmd57vV/f4Rsf9ADSOi9yq/P6eUf5gEHN1Pt48OM65Tqn2vytLZDYPRc7G3lfpqkJlzgTOqp8dExHoD7bCP9/3j6n7XiJjRR/tJwH8NItbheKK636af7Z8d5H4OrmaHPENErAa8q3r6416bu8fK1hHxnoF2HhErRsSEQcYiSZLU8jLzK8C+wHmUtQ62oqwX8Wlgx8x8ZBj7/E/g9cAfgNWAzYB/AMcAew2nlJgJXkmSpM7zI+D3lHqtv4yI4yLi6UXIqkTdnhHxDWBmz47VYhDfqJ7+b0T8T0RMrfqtHhFfB97E0qTkoGXm7cAXqqf/HRHfr2YDd8c1LSLeEBG/7NX1VpbOzn37ALN4jwX+Tfkh/eeIeHN37D3iP7Da/5m9+v4cuLr7cdVubNVvS8qP/tWH9IYHr7tO8nER8bqIGFf9uxtGxBmUA4RZg9jPfOD8iNinxyWGL6SMhdWAJ+mVLM7MPwAnV0+/ERFfjoiNurdHxMSIeElEfJ5ysLMGkiRJo0hmXpSZ+2fmqpm5QmZunpkfycw5/bSP6nbKAPv8aWbOyMyVMnNyZr4gMz9fXW03ZCZ4JUmSOkxmLgEOBM4BJlDqi90XEU9ExCxKou9i4D8oMxV6O4aSFBxDmb0wKyIeAx4E3gt8Drh2mOEdx9IE8tuAWyPiyWr/jwNn0avUQGY+Bfywevp5YE5E3FXVPvtij3b3A/tQEsLPAU4DHo+IRyNiDqX27M+AA+j1OzkzFwMHA/cAq1Tt5kbE45QZFzsBhw/zPS/LcZTPdiol0Tyv+ndnAm+kLMJ2/SD285/ACsCFlM/oSUq5jm2ABcAbM/PuPvq9m1ITLoAPAnf0+G/yFGWV5/+izLxu5EJ5kiRJ6oMJXkmSpA6UmbMz81XA/pTL8u+m1AKbDNwHXECp//WsS/qry8b2Az5ASeQupCT/Lgden5n/bzniWpKZ7wN2BU6v4hpf7f8fwA8oyene3gscD9xQPV+PUvtstV77/yfwAkpJgguAR4Bp1f5vB35KWdX49X3ENhPYFjiRUnstKLNifwbsnJlDWu14sDLzLmBHynv/d/XyfEqC/mWZ+ZlB7upOYDtKAv1hSnL/Icps5e0y89x+/v2FmfkOYGdKGY07gLGUunIPAZcCnwBeUM3wliRJUhPFsxfglSRJkiRJkiS1A2fwSpIkSZIkSVKbMsErSZIkSZIkSW3KBK8kSZIkSZIktSkTvJIkSZIkSZLUpkzwSpIkSZIkSVKbMsErSZIkSZIkSW3KBK8kSZIkSZIktSkTvJIkSZIkSZLUpkzwSpIkSZIkSVKbMsErSZIkSZIkSW3KBK8kSZIkSZIktSkTvJIkSZIkSZLUpkzwSpIkSZIkSVKbMsErSZIkSZIkSW3q/wO9M2v5oKnitQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAV1CAYAAACmlabpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wdV3k//s/Zom5ZluXeG7iCccXGBtu00EMJoSUYSCg/AklIQhqEGiAhfAMhIbQEAoEEkhBqwFQbF8C9Gxfci2SrWLZ62fP7Y+56V6vd1e5K9mq87/frdV+3zJlzz507O7p65pnnlFprAAAAAABon67JHgAAAAAAABMjwAsAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FI9kz0AAAAAAGDsSilfSnLoZI9jO/TLWusrJ3sQjzQBXgAAAABol0OTHDPZg2D7IMALAAAAAC00PSV7Z9pkD2PS3Zl1WZs62cOYNAK8AAAAANBCe2daPtaz32QPY9L9/obb8qusnexhTBqTrAEAAAAAtJQALwAAAABASynRAAAAAABtVJLSWyZ7FJNvYzKFS/DK4AUAAAAAaCsBXgAAAACAlhLgBQAAAABoKQFeAAAAAICWMskaAAAAALRQKUlXj0nWSolJ1gAAAAAAaB8BXgAAAACAlhLgBQAAAABoKQFeAAAAAICWMskaAAAAALRRKSm98jebWdamLnsAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS/VM9gAAAAAAgAkoSVdPmexRTL4pvglk8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLmWQNAAAAAFqolKT0TvEZxtJsh6lMBi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEnWAAAAAKCNStLVM8VnGEuSKb4JZPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0VM9kDwAAAAAAmIBSUnrLZI9i8pWpvQ1k8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLmWQNAAAAAFqoJOnqmdoTjCXNdpjKZPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS5lkDQAAAADaqCSle6pPMZYpP8uaDF4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKQFeAAAAAICW6pnsAQAAAAAAE1CSru4y2aOYfFN8E8jgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYyyRoAAAAAtFTpmuIzjCGDFwAAAACgrQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKJGsAAAAA0EKllJRu+ZulTO2J5uwBAAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALdUz2QMAAAAAACamq7tM9hCYZDJ4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKVMsgYAAAAAbVSS0mWStUzxTSCDFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKJGsAAAAA0EIlSVf3FJ9hLFN+jjUZvAAAAAAAbSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC3VM9kDAAAAAAAmoJSU7jLZo5h8ZWpvAxm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FImWQMAAACAlipd8jenOnsAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJRJ1gAAAACgjUpSuspkj2LyTfFNIIMXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWsokawAAAADQQiVJV/cUn2EsU36ONRm8AAAAAABtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALdUz2QMAAAAAACaglJSuMtmjmHxlam8DGbwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUiZZAwAAAICWKl3yN6c6ewAAAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEnWAAAAAKClSleZ7CEwyWTwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtFTPZA8AAAAAABi/UpKu7jLZw5h0ZYpvAhm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FImWQMAAACAViopXVN8hrEkydTeBjJ4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKVMsgYAAAAAbVSS0iV/c4rPsSaDFwAAAACgrQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKV6JnsAAAAAAMDElK4y2UNgksngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYyyRoAAAAAtFExyVqSZIpvAhm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FImWQMAAACAFiopJllLsx2mMhm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwA8rEop+5dSaue2/1iXba9KKe/ujPfsyR7LZCmlHFVK+Wop5Z5SyobO9rh8EsdzWv9+NFljYHjbw994KeWpnff/7mS8/1Qw6Ds+bTsYyyc7Y3ndZI8F4JFSurqm/G2qswUAYBiDgni1lLKqlLLnKG33357+c0s7lFK6SykvLaV8oZRyQynl/lLKulLKvaWU80opHyylHDnZ4xyqlHJAkvOT/EaS3ZMsT7IoyeLJHFdbDTp21FLKdWNof/yQdT6/jcdzdOf49wfbst/JUkrpSvKRztN3DbP83UO2Z/9tbSnl7lLKWaWU3yml9D6yI2crfCDJuiTvLaXMmuzBAMAjQYAXALZsZoYJDLBNrE9yfee2fpLH8ogppTwxybVJvpLkt5IckmRWkgeT7JzkSUn+LMlVpZT/KaVMm6yxDuMNSXZIclOSvWutO9dad6+1Pm0Sx7QqA/tRmx1aSjlpC21e+zCP4eg0x7s/2Eb9Tfbf+KuTPD7Jd2qtF26h7aJBtw1J9kjyjCSfSXJBKWWnh3OgLdf/Ha+a7IHUWm9P8rkkeyb540keDgA8IgR4AWBsXltKecxkD+LRptZ6V6310M7trskezyOhlPK8JGcneUySJUn+PMljaq3Taq07J5mW5PgkH0ryQJIXpQn+bi+O6tx/Y3v5zmqtF/bvR5M9lq1wa+f+NSM1KKXMSPKyJDXJbY/AmLbadvA3/vbO/T9vqWHnREX/bXaS/dIEd5PkuCT/8DCNsfUGfcdbCqI/Uj7ZuX9rKWX6pI4EAB4BArwAMLo7klyZpCfNZZ8wYaWUQ5L8e5LpaTJ4j661fqjWemN/m1rrxlrrxbXWP09yQJJvTM5oR9QfbF4xqaN49PlCmsDtb45yWfmLksxLck4GAsKMoFMy59Ak9yU5a7zr11pvr7W+PsmPOy+9tJQyZ5sNkIdNrfXyJNekuSLiJZM7GgB4+AnwAsDo+tJkWCbJi0spJ0ykk0691deWUn5cSlncqe94Vynlv0ar21tKObtTD/LdpZTeUsoflVIu7tRrfajmbynl1s7zM0spszrtr+vUD767lPLFTu3U/n4XlFL+plP7dXUpZWEp5bOllN1GGEdvKeX5pZRPd97/nkH1Ys8qpby8lFImsF1Gm4BtuLqYw90+P0LfTyql/Hsp5bZSyppSyvJSyoWllD/dUpCmlPKsUsoPOtt5RSnlilLK27dBHc73J5mbZE2SF9Za7xytca11aa3119PUuR06xt1LKR8upVxTSlnZuV1TSvnbUb7HTbZ3KWW3UsrHSim3dLbRolLKf5ZSNsuE7d/HkpzWeeldQ76H0zrttjgJXdnCpGillBNLKV8aNK6Vne/xnFLKO0spe4+nv8nYXhNwS5rA7dwkLx6hTX95hs+N1lHnGPDy0tR3vryUcl8ZqCn79VLKs0ZYrw7qe79h/tbePajt5/v//krjd0pTO3pJ5/UzO+2G/RsvpexcSrmz8/rXRxhPTynl/E6bK0uTwTwev9u5/69a64ZxrjvY9zr309KUU9lMKeWgUso/l1JuLM0x9YFSyqWllL8qpcwdpv2LO5/rvlI2P3aW5rjav902q8VdSvnzzrJzx/NBSinf6qz3d8Ms22PQe148wvrXl2EmMBt6HBiybKdSyns72+OB0vzbsbDznX6ylPLUUcY74eN4ki937l+/hXYA7VaSru4y5W8Z9/9EHl16JnsAALC9q7X+XynlnCRPSXPZ/BnjWb+UsmOSr2cgMLYxTa3VPdJkFr2klPJ3tdY/GaWbGWku6z85TW3IB9Nk+w21Y5Kfp7mMfk2nzR5JXpXkqaWUk9Oc4P1hmuzQVZ3nuyV5XZInl1KOq7U+MKTfJ2XTTNIHOv3vkqZG5TOSvLCU8rJaa98on2M8Fm1h+a4Z5qdcaSZV+vskbx308ooks9OUPjg+yWtKKc+stW52mXsniDW45vL9SQ5P8jdJnpNmgrFx6wQR+zPJvlRrvWGs69ZaN/muSylPSbNPzeu8tLJzf3jn9jullOfXWs8bpdsjkvxrmu3YXzdz1yS/meRZpZQn11qvGNT+vjT74fwkvZ33HJzFu26sn2c0pZRXpwky9n+3a9Ps8/t2bk9Ok1n/+XH0ORnbayI+l+Y48ZokXxzyGfZLc+x5MMl/Z/RavC/NQKC2pvl77a8p+4IkLyilfKTWOrQ+6aI0Ncfnpjm5dd+Q5cNlbZck/5UmKN2X5mTEFo8BtdYlpZRXpsmOfUEp5c211n8a0uzdaY55q5O8rNa6Zkv9PjSoJmj6zM7TcQVBh+tu0OPuYd7rpWkysPtLATyYJhj8hM7tdzrHm8GT6J2T5rtZkOZ4feWg/nqTnDKo7RlJrh7ytv3/Dv044/OTJM/N8P+ODX7tCaWUebXW+weNa680pWXG/L6lORlzfpq/3WRgH1mQ5t+do9JkWf9oyHpbdRzv+Gnn/kmllB1qrQ+OZcwA0EYyeAFgbP6sc396KeXXxrnuv6QJ2qxL85/VubXWndJMAPOvnTZ/XEp54yh9vDnJ49IEfubWWuenCa5eOaTdu9NMgPWMNP8R7n98X5rgzt8k+Y80/8E+qVNnck6aINWqNNlpb8/mViX5VJKnJ9mx1rpjrXVumstffz9NAOk3kvzeFrfGGA2ph7nJLclfZSDo8n9DVn1Pmu18b5rttnOtdYc0gavTk1yW5LFJvtYJIjyklPL8DAR3/yvJvp3vam6nrycmedMEP9LpGfjt9b8T7COllH0yEKy8NskptdY5tdY5aYKf1yfZKck3OgGZkXwxyY1Jjh+0Hzw9yT1pPu/HBzeutR7f2fYXdF76uyHfywXZSqUpTfDxNN/tvyc5uNY6o9a6Y2d8xyX5cJrvdqx9Tsr2mqD/ThMcPK0MyrjvODPNdvlKrXVLE1ktS/J3aYKEc2qt8zpj3jPN/r0+yR919veHdL7f3+88vWOYv73Nsj7TlI14QZrJrHbqHJt2zBhKItRaz0ny152nf1dK6a/v3F9eof/qiT+stV67pf6GODzN8SlJtrYubH+guKbJtH5IKeWYDJRdOT/J4zrHxllJnp9m/9gnybcGZ5zWWhcnuarzdGiw9cTO+g8Mt7w0ky4+qfP0J+P8LP3tH19KmT9k2emd+wfSHKtOG2H5bbXWWzI2704T3L01ydOSTOvsI9OT7J/mePrzYdab8HF8kEvSnNjozsD2AoBHJQFeABiDWuvPMxCU++Bwl9QOp5RyYgYut35LrfXj/cGZWuvCWuvrkvxPZ/n7RrkEeU6SV9RaP19rXd1Zf0mtdemQdtOTPL3W+oNaa1+nnusPMhCgfmmaiYOe1vlMqbWur7V+NclHOm1eNsznv7DW+sZa6w8HZ/d2Sgj8Q5rs32TTbKuHRSnl6Un6M/3e3Rl7/7L90wSFVid5Rq31E/3bqPM5z06TiX1nkmPSBGAG+2Dn/pw0GYN3dNZdXWv9RJrPN2+CQz9i0OPLJthHkvxFZwzLkjy11vpQRnGt9dw0QZQH0mTa/vlwHXQsSrOvXNxZd0Ot9YdJ3tBZfmoZUgrhEXBkmpMSK5O8ptb6q/4FtdaVtdZLaq1vr7UODeqPpjXbq3Ns+EqaQO6Z/a93jjf9z0ctz9Dp5xu11j+ptZ4/OBhca72n1vreNNsk2TZ/r3OSvK3W+pH+Y0OtdUWt9Z4xrv+eNIHRGUn+s5Qys5Syc5qgaVeSr9VaPzWBcZ3YuX+w1nrzBNZPKWXfUsqnMxBg/VatdcmQZn+dJqP9pjTHnKuSpHP8/VaarP8NSQ5KMvQkXn8W7NAAb//zf0oTjH/KkCDmE9MEOtck+dk4P9YVSZZm+ABu//t+dAvjGk9Q+eTO/V/UWn9Ua92YPFRr/LZa6ydrrX82eIVtcBxPp+3qNCdwkuSkcYwZAFpHgBcAxu4v0pRXODrJy8e4zm927u9M8tkR2ryzc78gTUbgcK7pBAu25H9qrTcN8/rgbLpPDxOkGNzmoFLK7DG812DfGbTu7uNcd8xKKUekyaztSfLlWut7hjQ5M0221vfqCJfLdy7T/XrnaX9mXkopj0uT9Zck76/Dl5r4TJK7Jjj8nQc9HhqYH5NOoO+lnaefrLUuHNqmNnV9+2eQ3yxYP8hH+k8WDPHdDJRbOGqY5Q+n+zv307Lp9pqQlm6v/qz+Vw86kXR6mmzH67dFpnQG/l5PKqVsVnJgnJalye6fkE7A7xWdfg5P8rE022CvNKU4fmeCXe/ZuV881hU6dWH7byuT3JaBOr6/TPL/DWk/LwPHkA8Pl1lda70sydc6T4f+u9EfKH3ykO+hP1P220l+keYExTHDLP9ZrXXtGD7a4PH0pTmBlQwK4HZKgByQJkv9C0OXD3nf8QR47+/c7zGOdc7MBI/jw+j//vccpQ0AtJ4ALwCMUa31lxnInntfGduEW8d17n8yQsAwtanLeNeQ9kONte7rSJciD65ne9EY2swburCUskMp5U9KM9HVvZ2Jcvonthoc2HhYsj47NWy/k+by7wsyfA3S/stwnzEkWLPJLU2pi6TJZu7Xv+03ZISanZ3v8Oyt/Chb44A0maZJU0d5JD/o3O88zKX+/X4x3Iu1mYyqv/bq0Eu4H26/ShNI603yi85ESkdvRRCyddur1vqzNNtgvyT9k0+NaXK1wUozIdx7Sik/K83EZxsG/b32lzuYlaY8xda4qNa6VfWXa623ZyCQ+rtpMjI3JnlVrXXZBLvdpXM/npMpuw26zRr0+heSPKHWOvTkzjEZKBUzlv3rcUP+3TgnzefcMcmxSdK5iuOkNPVmL8xAMHVwsHUimbSDDZc5/FBN307m/O1Jjiil7NoZ1wFpTjKM932/3bn/UGkm6fy1Msykc0NszXF8qP7vf5dR2gC0XukqU/421QnwAsD4vDvNZaMHZvPLbYeza+d+S1mfdw5pP9RYa44OO4lM3XQG+ZEmmhncZpPgdSnlMWmCQn+bpm7pLmkuHb4vTWB4cHB4vNm/W1RKmZlmkrf90tTA/PURMtf6s7RmZ9NgzdBb/xgHB3H6t/3iLWTF3TnKstEMzpqeaCBw8P4x2j41eIwj7VOjTTjUvy+M5STGNtPJ5nxZmu94vzSTGl6W5IFSyg9KKW/q1Okdq7Zur/5A7ms6wbAXpQkEfmHkVQaUUk5KEyT+qzSX889Pc9y6N83f6uCs1q39ex1zPeTR1Fr/JwPlapKmxvNPR2o/Bv3lbsac4VprLbXWkub/SHumOcbfn+S3M3x98fHuXz0Z9Ldfa12egXIt/QHWk9OU2jm3c9zeJBjbORY+sfPaJoHWUsrXRgiGDj2p17/eYYOuuOjPzv3xkDZnDFn+q/7SNWP04SRfTfO38btpMt7vL6VcVUr5cCnlscOsszXH8aH6s+5HKn8EAI8KArwAMA6dDK7+yZTeMXjSnIfZxkfofUbyuTSZubemmUxt51rr7FrrrrWZmGnw5FTb9BR65zL1L6Spqbk8yXNrrfeN0Lw/0/Nv+oM1W7idti3HugXXDHr8hEfwfVulc0n2oWlqV386ydVp6o0+Lcknkvxy8GRcj1JfTPM3/8I0QcaZaS5X32Jd21JKT5qJFOcluTzJs9NMzLhDrXW3zt/rEwevspVj3SbHpk7d1acNeulJW1k+ov+EyrgzlGvjnk7t3xemmVztb0spQ0sWbAtDs2nPGPL6z9LU2j2lk/37pDQlTFZl86zy+Rk+ELpJ9mqt9ZoMnJQbHMCtGQjsjjSucWUNd2rm/maa0kbv7fS7Kk297T9Ock0p5Y+GrLYtj+P9AfXhyhIBwKOGAC8AjN+H0tSL3DXJ0P+YDtWf3balsgX9y7dJNty2VErZJwMT5by81vrfdfPJ3R62urtJPpDkJWkCSb9Za712lLb9NVZHu2R3JP3bfkFnlvqR7DXKstH8JEl/mY4XTrCPwfvHaPvU4GWP9D7Vn806WsbcjqN1UGtdV2v9Wq31DbXWo9IEqN6Y5nLrfZL82xjH0obttZlOIPd7aQK77+u8PNbyDCel2f83pjkZ8t1OvdLBHs6/13EbFJTeMckNabJuT8lAffKJ2CZlMzoTen0xTSD840OCzuPdvzZk85IR/QHTJ3WOO5sEeDtXE1yQJlv1xEHLz6u1rh8y1tNGCIDuP8yYzu7cn9G5QmPvJFcPOnk2UgZvf+B3XGqtV9Ra31VrfWqakw9PS/LTNMHcD5dSHj+o+dYcx4fq//5HOikIAI8KArwAME6dmpAf6jz9o4xe2+/izv3pQ2ZBf0gp5dAMBA1Hqo87mfYZ9PiyEdo8bYTXt0op5bVJ+mdYf2ut9azR2megVvHTOrUsx6P/u+pJcuoI4xlu5vkxqbUuysAl6K/oBFXGZNBkW7dkIED01BGaJwPfx5Ja6y3jGujW66+Zus8obU4cT4e11iWdbMo/7bz0hFLKWCZha8P2Gkn/ZGvT0pRU+OYY1+vf7vcNUzO232h/r/0nIR7JYnbvSZNVvCrJr2fge35HKeWUCfbZfyJol21wpcV70wTMD0/y6kGvX5qB7TWW/euKoUHZJOelKXczq9Pu+DT77OWD2gzOpp3IRGfDGRzA3Sx42ynDcFOaiTOfnoGyCWdv5fum1rqh1vqjJM9JE8wv2XSf3Jrj+FD9NbWv28p+AGC7JsALABPz8TR1FXfI6Flm/9m53ysjzwb/3s794ow+Uc9kWT7o8eOHLiyl7JDkHdv6TTuXQ3+y8/Qfaq2fGMNq/5omS25BmqDRaP1PGxz4qbVemYEgwF+OEJB/bbZuErl3pJk8aWaSr5VSRs0GLqXsVEr5n3QyXmutNclXOovfMKh+5uB19kzyhs7T/9iKsU5U/6z3e5ZSNgvkdiZt+t2hr3eWTd9C36sHPR520sLBWrK9RvKtNPVLP5LkD4YJDI6k/+91t87EhJsopeyd5K2jrP9A537eGN9vq5RSTs/ASZw/rLVeV2v9WJoJFbuTfKmUMpGJ4C5IE5TtysiTV45JZ9Kx/v3onf0TpdVa70/Sf9LpT4arD93JTH1x5+lm+1etdUUGTuz9VZoTTOcMmZSzPxj7/AyauHNCH2ZAfzD3gAxMVjY0O7f/PfqzyH85ljIhg23hb3ptBkp8DP68Ez6OD1l2QAZOwJ4zpgEDQEsJ8ALABNRaV6eZcC1JnjdKuwszkLX58VLK7/UHAUopu5dSPpOmpm2SvLPWuuZhGvLWuC7NjOpJ8q+llGP7F3Qmczo7E6hzOZpSyiFptltvkv9L8raxrNcJxPQHI95eSvlCKeXIQf32lFKOLqX8VZrstKOHdPGXnfvTk3y5EwxLKWVGKeWNSf4xzaRLE1JrvSHJbyVZl+SIJJeXUv60lHLwoDF2l1KeUEp5b5Kb00ywNdgHOmOYn+SHpZSTB637pDQnCealyQL8UB55FyS5rfP430opx5VGVynltDT7y0i/QV9WSjm/lPKGUsqB/S92tskzM/B5ftbJpB+L7X17DatTu/TttdY/rrV+aRyrnpdkZZqsyK/2Z4oP2oZnp6m1OpKrO/dzSykvncDQx6yThf3FNPvD12qtnx60+DVJ7kmyb5LPjLfvTlmKSzpPx5UxPoIPptlu+yd53aDX35EmA/fgJGf114fu7O/PTnP86knyqySfGqHv/kBq/ziHBlovTHNi6NhOX4M/24TUWm/MwORvJ6YJtA4Ngv540PLB4xyP20opHyylPHFwsLdzzPtSmszlvgwEyrfFcbxf/7gX1Vp/OYGxA7RCKSWlq8utPJIXH21/BHgBYOI+n2am+i15XZr/OE9Lk/m7vJSyNMndGcjq/bta6ydHWH9SdTLJ3pwmo+qIJBeXUlaWUlamCeY9NslvbuO3fVIGMghPSnJXGX52+IWllI8NWfd9nVtNE0y9qpSyqpSyOM1kRZelyQrbJ0MCXbXW/03y152nv5nkjs539WCSf04TaPnnrflgtdavp7ks+qY0GWofSnJjKWVtKWVJmuDvpWkyw3dMk/W3ctD6d6a5jH15mu/j/FLKilLKijTBvcPSBDR/fZRL9B82nf3lDWmCXo9Nk524Is1n+EmaANWbR1i9pKn3/MkkvyqlrOl8b+vS1KTdO83fzWvHMZ7tentta7XW5Wkmr0qSJye5vpTyYJrv4Htp9qnXjLB6aq03JflR5+lXSikPlFJu7dz+YBsP91/TXN1wR4Zc4dCpBfvbaf5GX1xKGTbrewv6M2afvzWD7Izn6gyUyfjL/mBlrfXSDJy0OSXJlaWU5Wn29++kKW1wR5LndbJ1hzM0oLvJ81rrhjT7ar9zO69trcEB20s7+85Iy4d7Pha7pcnQ/lmSVaWUpaWU1UluTHNysyb5o2Fqq0/4OD5I//e+PWXmA8DDQoAXACao1roxyV+Mod3yNPUZX5cme+7BJHPSTCTzP0lOr7X+ycM30q1Xa/12mmDRd9IEw3rSlJT4XJJjO/UUHy47ZfiZ4ftvm0zYVRt/leRxST6RJgN5Y6fdsjRB6Q8nObnWen6GqLW+I8lz0wRZHkgyvdPHn6X5Htdt7QfqvO+hSV6eJovtpjRBix3SZJKelybQfFit9RXDTKZ0TprA5Ec6Y+tKExy9LsnfddY7d2vHOVGdWsmnJvl2mm3enSbI9aE0WYgLR1j1m2mCep9LU+pheZrv7cE0wfV3JjlivNl42/v22tY6J4uek+Z4syLN3+tdaU4wPT7JVVvo4iVJ/j7NhGe9aSa72i/bsGxDKeXNaQJwfUleNVxGdq31h2n+VpPko6WUw8b5Nv+W5u/q5M7l+lur/+TP3hko65Fa61fSnDz4VJpM3elpTohdnuRdSY6stY5WA/aCNOUKkmThCBNJDg76bm15huH62WzytE7d8P6x1Eys/u4z0mQ/n5vmGDCz8/pNaf7Oj6+1fnSY996q43inbMMLOk9HypwGgEeN0pQmAwAAeHQppfxrmozld9Va37ul9jw6lFJ+O02A/ye11jMmezwAD4dSyiVJjjly5x3zzec/ebKHM+me/82f5uoly5PmqpRjt9T+0UYGLwAA8Gj13jTZsb9XSpk92YPh4deZIPPtnadbvMoGAB4NeiZ7AAAAAA+HWuutpZSPp6lL/OYkfzvJQ+Lh9xtpSmb8V63155M9GIBHQuma2hOMIcALAAA8uv11Bib649GvN80EbJ+b7IEAwCNFgBcAAHjUqrXenybgxxRQa/33yR4DADzS1OAFAAAAAGgpAV4AAAAAgJZSogEmqJRyS5Jdk6xJcuvkjgYAAACmnP2TzEhyb631gEkey+QoJllLkkzxTSDACxO3a5JZndv8SR4LAAAATFW7TvYAYDIJ8MLErUkya9r0mdlzv8MmeyzwkJ6uOtlDgGGtXDPZI4DNPbBs5WQPAYY1feb0yR4CbGbt6rWTPQTYxOoHb0tf39qk+f85TFkCvDBxtyaZv+d+h+X9n714sscCD5k/Z/1kDwGG9Yurp/h1U2yXfvDVCyZ7CDCsA446eLKHAJu55aqbJnsIsIkrzn19Vi6/IVE2kSnOJGsAAAAAAC0lgxcAAAAAWqmkdMnfnOqzrNkDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpnsgcAAAAAAExM6SqTPQQmmQxeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmTrAEAAABAC5WSlC75m2WKzzNnDwAAAAAAaCkBXgAAAACAlhLgBQAAAABoKQFeAAAAAICWMskaAAAAALTVVJ9hDBm8AAAAAABtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALdUz2QMAAAAAACaipHSVyR7EdmBqbwMZvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSJlkDAAAAgDYqSemSvznF51iTwQsAAAAA0FYCvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZI1AAAAAGip0jXFZxhDBi8AAAAAQFsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBL9Uz2AAAAAACACSglpUv+ZkqZ7BFMKnsAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJRJ1gAAAACghUqS0jW1JxhLmu0wlcngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYyyRoAAAAAtJRJ1pDBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FI9kz0AAAAAAGACSpIu+Zspkz2AyWUPAAAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYyyRoAAAAAtFJJKVN8hrEkU32WNRm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FImWQMAAACAlipd8jenOnsAAAAAAEBLCfACAAAAALSUAC8AAAAAQEupwQuM3aoVmfHVz6X33O+n6567ku6ubNx7/6w//dlZ+8JXJb3Txt1l9xUXpvfi89N9/dXpuufOlOXLUlavSt1hbjbuf3DWn/K0rHvOS5PpM4Zdv+uu29J7/o/Sc/mF6b75hpRl9yXdPelbsGs2HHVc1r3g5dn4mCO39pOznasrV6Z+6d+Sn/wgufuupKs72Xe/lGc8K3npK1J6e8ff56UXpf78Z8l11yR335ncvyxZtTqZOzc58KCU056avODFKTM23zfrJRelvum1Y36v8rv/X8rvvmncY2T71rV6ZXY/6/PZ6ZIfZvriO1O7urN2t/2y5IRn5d6nvTK1Z/z7Ze+yRZl32U8y95cXZtbt12XasnuTJOt3XJAVBz4u9z3lJXnwsBNHXL971QPZ4fqLM+vWazP7tmsz67ZrM2354iTJza99f5ac8usT+qy0x7QNa3LiLd/PYxddmnmrl6SvlCydtVuu3eP4XLzfGenrmvh/D2avfSBPvOWsHHzvlZm7Zmk2dPdm8Zw9c+WeJ+WKvU9JShl1/Xmr7s1JN5+VA5Zcmzlrl2dd94wsnLtvLtvn1Fy/+7ETHhft0LNuVQ696KvZ54ZzM3v5PamlOw/O3zu3H3p6bjjmhenrnsAxc82K7HrHFZm/6IbstOjGzF90Q2auXJok+fmz3p5bjvy1UdefsWJpdrnzysxfdEPmL7oxOy26MdPXPJAk+dFv/r/cu+/R4x4T7eKYCbSFAC8wJmXhXZnztt9O98K7kiR1xsxk3br0XH91eq6/Or0//HZWfuRzqTvsOK5+Z3zlX9L783Meel5nzEp6p6Xr/qXpuvzC9F5+Yab/zxey8kOfSd8+B2yybvfVl2aHt75ik9fqrNnJ+nXpvvO2dN95W6ad9b9Z+8o3Zs1r3jrBT872rt5zd+obX5vc0+ybmTEzWb8uue6a1OuuSb73neSfPpMyd3z7Zv3i55PzfzrwwsyZybTeZNnS5JKlqZdclPzHF5OPfTJlv/03Xbm3N5m/8+hvsGZ1smpV8/jwI8Y1NrZ/0xbfnUP/9jWZvrjZLzdOm5mu9esy+9ZrMvvWa7Lzz7+T6//ks9k4e+z75bSl9+Rxf/KMlFofem3jtJlJaqYvvivTF9+VnS/8bu475YW59cx3Nyc6hph36Y9z4L++Y2s/Hi01d/WSvOrCv8u81UuSJOu6p6Wnb2P2fOC27PnAbTnynl/ky8e/LWt6Z4+7792X35aXXfzRzFq/Mkmytnt6pm1Yk32W3ZR9lt2UQxddmv865s0jBkMOuu+qvPDyT2XaxnVJkjU9MzJj/cocuOTaHLjk2lyx18n5zpGv3mLAg3aatXxhnvqVt2XO8oVJkg29M9K1cV12Xnh9dl54ffa79of58W9+JOtn7DCufve+6bw88bt/O+FxHXzFN3PUBV+Y8Pq0m2Mm0CYCvMCWbdyQOe94U7oX3pW+nXfJqj/7m2w49uSkry+953wvsz7yzvTcdG1mfeDtWfnBT42r6w3HnJz1x52SjUcdm4177ZvMmpMkKcuXpfdH387Mz3wk3ffcmdl/9ZY8+C/fTAbNDlo2rE/t6s76k07P+qc9NxuOPjF1x52SjRvTfeO1mfnPH0rPVZdkxhc/kb7d9sy6Z79km24WJl/dsCH1j36vCe4u2CXl3X+dcsJJqX19yY++n/qBdyfXX5f6rj9P+ftPjKvvcsITkyeenBx9TLL3vimzmx/v9f77k7O+k/qPH03uviv17X+Q/MfXNpm5tjzu6JTvnT1q/31v+73kvHOSXXdLnvikcY2N7dzGDTnkH96c6Yvvyrodd8ktv/OBPHDESUlfX+ZffFb2//y7M/v263LgZ/4sN/7BP4+9376+lFqz/LAnZsnJz8sDh5+U9TvtmvT1ZcY9t2Tvr30sO1324+xy3v9m/bxdc9eL3jJsN+t2XJBV+x6WVfsdlpX7HZ5D/ukPts3nZrtW+jbmpZf8Y+atXpIHp++Ybx31mty64PCk9uWwhZfk2Vd/Mbs/cEeef+W/5KvHju+k6PT1q/LSSz+eWetXZvHs3fPNx702C3fcP119G/KEO87N03751Ry0+Jo8/bqv5KwjXrnZ+juuWpwXXv7pTNu4LnfMOyjfOerMLJ29W3o3rMkTb/l+Tv3Vt/P4uy7Iktm75+cHjp5xSfuUvo15ytfekTnLF2bV7J3z82f/WRbtf2xS+7Lv9efkhLM+kvn33pSTvvOB/PTFHxx3/6tnz8+yXQ/O0t0OybLdHpNTv/Gu8YwuK3fYNct2OyRLd3tMVs+ZnxPP+si4x0D7OGbSKiUpXYL5meKboDUB3lLK2UmeMuTljUmWJbkiyb8n+UKttW/QOjWbW5fkviQXJ/lMrfU7Y3jvGUlel+TXkxyZZOcky5PckOTbST5Ra10+hn56k7wyyXOTHJdkQZrvYFmSa5L8NMlXaq3XD7Pu55O8ekvvkWR5rXXeoPX2T3JL52lfkiNrrdeNML7/TvLiJO+ptb57yLL+bXl6rfXsUsq7k4zn11G/f6u1njmk7wlv31LKaUl+MsyiVUnuSrNNP1ZrvWoCY6Vj2llfT/fNNyRJVr77H7LxiCc0C7q6sv70Z2dVX19m//Ufp/cX56Tn0p9lwzEnjbnvtS8ZfreuO+6UdS/6rWTatMz6f+9K9203pfvay7PxyGMearNxr/3y4Oe/k76999905e7ubDz0qKz4u89lhzf9Rrpvvj7Tv/xpAd5Ho+98M7npxiRJ+dD/S3nc0c3jrq7k6b+W9PWlvvNPk/PPTb3w503QdozKy39r+NfnzUt+85XJtGmpH3xvcsuvkquuSB7/hDH3Xe+7N/nZec2T574gpXvzTEvaa8H538isO5v98qY3/31WHnx0s6CrK0tPeFbSV3PQp9+eeVeemx2u/XkePHxs++XGWXNzzbu+mlX7Hb7pgq6urNnroNz0ex/LIX//psy7+rzs9oMv5u7nvT61d/omTZec/DxlGKaox939s+y6osko/9rRb8xdOx3ULChduW6P41Nqza9f+dkcfN/V2X/Jdbl158PG3PeJt/4gc9Y+kPVdvfnKsW/N8lkLkiR9XT25ZL/TM23Dmpx+4//mCXeem4v2f1qWzt5tk/WffNM3Mm3j2qyYPjdfPfYtWds7K0myvmdGzj3k+ZmzdnmecOe5Ofnm/8vl+5w6oWw5tl8HXH1W5i2+OUly3gvenSV7da5qKV25/dDTU2pfTv72X2evm3+R3W67NIv2O2aU3jZ16+FP32IZhtFcc9KrcvWTBn6rzu5kGPPo55gJtE0bJ1m7I8n5ndvlSaYleWqSzyX5dieIOtTVg9a5Icn8JC/otP/oaG9WSjkuyfVJ/jHJ05Js6LzvA0lOTvKBJL8qpTxrC/2clOTGzjhfnGSnJDcnuSpN0PmpSd6T5LpSyr+M0tW9gz7LcLefjbJuV5L3jTbOcbh9hPe/dwvjvGFwJ9tq+3YMfp+7kxyQJnB8SSnlNyb2MUmaAG+SrD/6xIHg7iDrz3hONu6xd9P2+1/fpu+94bCjH3rcdd+mP6rrLrtvHtwdrHda1j3t+UmS7rtvT3lwi+dhaJn6nW80D4494aHg7iae8axkz72atv/3rW375kc+buDxvYvGt+63v5Fs3JiUkvL8F23bcTHpFlzwzSTJA4eeMBDcHWTpic/KmgV7b9J2LDbO2mHz4O5gpWTxqS9MknSvXZWZd9+8eZthyjYwNRx1V/MT8db5jx0IVAxy7R7HZ9nMJshw5F0/n1Df1+5x/EOBisEu3u/0rO2enq7alyPu/sUmy3o3rM2hCy9Nkly6z2kPBSoGu+DA5mfgjA1r8phFl49rbGz/DrjmrCTJon2PHgjuDnLboWdkxY57dNp+f1x916085m3t+rSXYybQNm0M8P5rrfWUzu24NNmef9lZ9qwkvz/MOm8ZtM5RSXZN8pnOst/vZIFuppRyTJKzk+ybJnB6XK11n1rrCbXWg5IckibDdOck3yylPHuEfk5Pk2W6X5qM0qckmV9rfVyt9fha635J9kryB0nuTBPsHcl3B32W4W6jBUI3JnlR53NtlVrrvw73/km+u4VxfqC/j221fQeNafD7HNJZ/2dJepN8ppQyb2s/95S0ZnW6r2l+RGw44cnDtyklG44/NUnSc/EF2/Tte666+KHHfXvuM+7167RBE7/19Y3ckNapa1YnV16eJCknnzJsm1JKclJn2S+27b6Zyy8deLzX2PfNWmvqt/63eXL8iSmdADSPDl1rV2fOjZclSZYfNfx+mVLywFFNWY6512zb/bJvcMZu38Zt2jft1bNxbfZedlOS5Fe7jDDxaCm5eUETXDtwyTVj7nv+ioXZcc3SUfte3zMjd+x0SJLkgMXXbrJs72U3pbdv/ajrL5+1IItn7zHs+rRb9/o1WXBXs7/dfcAJwzcqJfcccHySZPdbLx6+DWxDjplAG7UxwLuJWuuGTtCwv9TCq8awzookb06ThZokLx3appQyLcl/Jpmd5LwkZ9RaLxnSz01pMoG/mqbUwr+VUnYe0s/8JF9JMr3T3xm11p/WWjcO6evuWuvHkjw2ySe39Bkm6N/TVCX5wJYaPty21fYdTa311iRndp7umOQZWz3wKaj79l+ldAKjGw84ZMR2/cu6lt6X8sD9W/ema9ek685bM/1Ln8zMf/6bJMmGxx2XjY89atxd9VxxYZKkb+ddUufO27pxsX255eaBoP1BB4/YrPQvW7I4dfnWZXHXNWtSb78t9XOfSf3Y3zUvPuHYlPFMknbJRcmddzRje8GLt2o8bH9m3HNzSqda1Oq9Rj5mruosm7Z8cbpXbLurC+b+8qIkSV9Pb9bsvv8265d2W7BiYbrSVNu6b86eI7a7b4fmhNOctQ9kxrqVY+p7l84lzE3fI5+wum+H5n0XrLx7lPVHG9uenfZ3j9iG9pm75PZ0dY6ZyxccMGK7+zvLZq5cmmmrH3hExsbU5ZgJDFVKOb2U8u1Syn2llNWllF+WUt5XSplQDZRSyr6llH/o9LOqlLKmlHJLKeVzpZTxBz7Sohq8Y/CTJM9J8pixNK61ri+lXJome3S4XxOvSJMBuiHJmbXWNSP001dKeWOSp6epqfvmJO8d1OQtSXZJU/f39UMDu8P0tzrJh8byGSbg/Ul+I8kzSymn1lrPfZjeZyy21fYdVa31hlLK/UnmZfjvmS0oi+996HHfgt1GbDd4WVly77iDqWXpfdnxJacOu2z9Sadn1Z+Of1KN7msuS+/5P0qSrHv2b5hF9tFm8X0Dj3fZdeR2g5ctvjfZccdxvU1dvDj12acPv/DU01L+6v3j6++bX2se7DgvOW20CzZoo977B/bLdTuNvF+uH7Rs2v33ZvWc8e2Xw5l2353Z5eyvJkmWHv9r6Zs5Z6v75NFhztr7H3r84IydRmz34PR5Dz3eYe39WTNty/9n2WHtwAmKB2fMG7HdiunN+87YsCa9G9Zkfc+MTdZf3TsrG7qnjbh+/9gGfxbab+aKxQ89Xj1n80vVh1s2c8WSrJs592EdF1ObYybtUzaZjHzqenj+v19KeUuSj3Xe4M40pWMPT/KOJC8upZxSa106jv5OSnJWkh2SrE9TvnVdkoPTJCm+qpTyilrrf41nnI+mPWAin6W/YM2qYZa9rHP/vVrrr0brpNa6LMmXOk9fPkI/X6i1PjiBMW5LC5N8vPN4srN4t9X2HVUppStN9nQy/PfMFpTVg85Gz5gxcsPpA8vKqrGdwd5EV3f6dlqQvp0WpE4buMR43VN+Lavf8CfjDxjfvzSz3/9HKX192bj3flnzsteNf0xs31YO3jdnjtxu8H67cgL7ZndXMn/n5jZ90OXvT31Gylv+MGUcAeP64APJT37YPHnWc1N6hysbT5t1rxnYx/qmjbxf9k0b2C+71kxgvxyirFuTgz/xtnSvW531c3bKnS/5w63uk0ePaRsGzqNv6Bo5ILB+ULBg8Dpj7Xv9BPrufzzauoPXn7Zh7ZjGRTv0rlv90OMNvSP/ztw4qPxMzzo/6Xl4OWYC/Uopxyb5aOfpG5LsW2s9JsmBSS5JclgGSsCOpb+S5Atpgrs/S3JwrfXQWuvjkuyR5MtpknE/W0oZVwbIoynAe1rn/obRGvUrpeySpL/Q02XDNDm5c/+TMb7/2Z37QztlGdIpJ3Bo5/XJzJYd7G+SLE9yypZq2j7Mtnr7jtFTk/T/D3u475ntRJ03Pw/8z3l54H/Oy/LvXp7lXzk7a175xvT+7CfZ4XdekGnf/srYO1u9MrPf8aZ0Lbo7ddbsrHzXx5KZZo9lYspO89P1vbPT9b2zU356Ucq3fpC85neT885JfcWLU/93HCdWv/edZG3zQ7u8wORqbCMbN+SgT709s2+7Nn3dPbn59R/aJEMYAACYkHemiZ1+sdb66VprTZoyq2kSEPvSzHX1uFH6GOzwNJm6SfKmWmt/6djUWpcneW2SlUnmJhn+EucRtD7AW0rpKaX8eZL+YOWXt9B+binlKWkm75qXpnTCp4a02TFNND1JRs0uHeSmQY/3GnKfJLeMsZ8teXUppY5y++hoK3eyYT/Sefr+ztmDR9Q23L6jvcdupZSXJ/m3zkvn1FrPG8N6byilXDKWWwaC949qdXBgdM0oZ6bXDiyrs7YymFpK6i67Z83r/iCr/uLDKRvWZ+ZH35OuX/1yy+uuXpU5f/6G9Fx7RerMWVnxwU+n76Ap8VVNPbMH75urR243eL+dvXX7ZiklZbfd0/Wmt6a890PJhg2pf/P+1BuuH9P69ZudydWOfFzKQSPXZ6W9Ns4Y2Me61o28X3atG9gv+2ZsxX7ZtzEHffpPs9NlP26Cu2/42zxw5JMm3h+PSut6BjIje/rWjdiud+PAssHrjLXv3gn03f94tHUHr7+uZ/qo7WiX9YOudOhZP/LvzO71A1mIG6bNGrEdbAuOmUCSlFLmJPm1ztNPD11ea70xyY87T39jjN0OvsRvs3hYrXVtmjIQSTKuyz3bGOB9bSnlvM7t4iRLMlBu4PsZSJ0e7Cf9AdA02atnp8nePSfJabXW+4a032HQ4xVjHNfg6yv7i0LtMMLyh5RS/nGEQO1zR3ife5OcP8rt5jGM9e/TBLafkLHvhNvSttq+mxi8/dKUo/hymvrHX0jy/DG+zx5JjhnjbUr8uqwLBrLAuhYvGrHd4GV1522XObb+yc9I3657pvT1Zfr//ffojVevypy/eEN6rrw4dcasrPjAp7LxqGO32VjYzizYZeDxffeO3G7wsgXbbt8spz8t2X2PpK9voK7uKOovr02uv65Z9/mydx+t1s8b2C+nLRt5v+wdtGzdvAnul30bc+Cn/yzzLzortas7t/zuB7PsOPOJsrkVg+tErlk2YrsdBtedHLTOaB6cPnD14A5r7h+x3Zy1zfuu6ZnxUC3JwevPXL8qPRtHDlj0j23FGMdFO2xaW3fxiO02rdU75jmXYUIcM4GOJ6Qp+bk2yYUjtOm/Wv+JY+zz+iT9WSAnD11YStkjTfmHjUkuHfNI084A7z5JntS5HZ2mIPGPk/xOkmfVWoc7yl2dJvh5QQYi5DXNhh2upMPgWrljnaFkcPpN/9SuD46wfLBfZdMA7ZaK5Hy31nrKKLd/2NJAa60rkvTPWPXeUkr3ltbZxrbV9h2qfxv+Ik2AN2m2589qrWOdbveeNH9EY7lNiQJgG/c9KLVTsL37lhtHbNe/rG/+LuOul7slfZ2gXNddt4/cqD+4e8VFqTNmZsUHP5mNjz9+m46D7cwBBw5MJvCrm0ZsVvuX7bxgXPVyx6R/Arc7R9k3+8fRHwSeNSt5xrO27TjYbqzZ48DU0uyXM+8a+Zg5q7Ns3Y4LsnEiE6z1bcyBn/7T7Hzhd1O7unPz734wS0+wXzG8xXN2T19n4pHRZlTf5cFmdvYV0+eOabKgZNNZ4AfP7r553837Lp696azvm64/2tju7rQfedZ42ueBnfdNX+eYuePikS94nNdZtnr2fBOs8bBzzKRtSklKV3Hb9tenP6Zzf3utdf0IbfpjjI8dS4edubne13n6uVLKS0opO5dSdiilnJ7k/9Jk7n6w1nrbeAbbxgDve2qtpXPrqbUuqLU+tdb6L7XWvhHWeUsn+PmkWuvBabIvb0/y+iT/b2jjTt2L/iDkQWMc18GDHt815D5J9h9upVrr3w8O0GYgMPlw+0SatO/HJvntR+g9k2zT7Tu03/7t+MQke6aZyK03yT+XUl48xrF9qtZ67FhuScZQL+BRYMbMbDzimCRJz0UjlJKuNT0XNRUwNhy32UmorVNruhY2X/mIpR9Wr8qcP399J7g7Kys++KlsfPwJw7flUaPMmJk87ugkSf3Z+cO2qbUmP+8sO3Hb7pu11uTuzuFoC2VJ6po1yVn/1zx56jNTZk2JCwCmpL7pM7PikCckSXa8evj9MrVmbmfZA0dMYL/s25iDPvX27Hzh9waCuydOZll9tncbuqfnzp2an1IH3XfN8I1qzYGLm2U373zEmPteOnu3LJ/RTI9w4Ah9925Ym32WNSc1bllw+CbL7tzp4Kzv6u2sf/Ww689dvSQLVt4z7Pq028beGVm8V7O/7XHLRcM3qjW7d5Yt3P+4R2poTGGOmdB6h4619Gbn9oYR+umf/2npKO/Vv2ynsQ6u1vrBJK9Jcn+S/0qyOE0i44/TXCn+slrrO8faX782Bni3Wq31sjSlCfqSvKWUMlwq9QWd+9PH2O1pnftf1lqXdt5nSQaCgE+Z2GgfHp26Hu/tPH1XKWX0aTi3va3evqOpja8k+YvOS58opeww2jqMbN0zfz1J0nP5L9J93RWbLe8953vpvueOpu0zfn3sHW/csMUm0773tXQtbaqobBguaNsf3O0vyyC4O6WU57ygeXDJhalXX7l5gx+eldzVlDAqz37emPutG7a8b+ZbX0+WNJeMlmO2kC3+kx8kDzbntUyu9ui3+OSmKtAOv7wws3+1+X6500VnZcZ9d27Sdsw6mbvzLzrroQnVBHcZi6v2OilJst/S67Pn/ZtX9Dps4SXZaXVzTLt6r7FeZZiklIf6PnzhRdlx1eaX2R97+08yfePa9JWuXLPniZssW98zPb/cvTmRfMwd52T6+s0vkDrp5u8lSdZ2z8gNux099rHRCrcc8cwkyW63X56d775us+X7XH9OdljeCVYdoQwNjwzHTGi1WRl76c1j0pTqHE5/fZTRil73X4U/c5Q2myil9KYpwzA/yYYkNya5ptPXIUleV0rZe6z99ZuSAd4kqbVelIEJ2T40TJP/7Nz/Will1CzTUspOSV45ZL2h/fz2dhhg/FyaHWm/JCOdsXi4bKvtuyX/kGaCu12T/NE416Vj3TN/PRsPfExKrZn9rrem59KfNQv6+tJ79vcy6yPNyaX1Jzw5G445aZN1Z3z+45l3xqGZd8ah6Vp45ybLeq66JHN+/1Xp/f43Uu7bNHm9685bM+PTH8nM//euJMnGPffNul974aYDW7M6s//yjU1wd+asrPjQp5VlmGqe8/zk4EOSWlP/7A9TL/x5kqT29aX+8KzUD7ynaXfyKSknbPrju+/Tn0jfCUel74SjUu8ecmHAFZel7/WvTv2/b6Uu2nTfrLfflr5//PvUD3bOke29T/LcF4w6zPqNTnmGAw9O6WQd8+i1+EkvyKq9D0mpNQd/4g+zw7XNfpm+vux00VnZ/9/enSS5/6hT8+Dhm+6Xe379n3L8a4/M8a89MtMWD9kvOzV3d77we53g7t9MqCxDz4PLNrn16167apPXu9aOMnkhrXPlnifl3jl7paTmRZd9Mvsv6QTSal8OXXhxnnXNF5IkNy04MrfufNgm65564zfzF997ff7ie68fNhjxi/2fnhXT52baxnV56aUfz+7LmysKu/o25Jjbz86Tb/xmkuSyvU/N0tm7bbb+Tw9+QdZ1T88Oa5fnNy79p+y0sqnr37thbU656ds55o6fJknOP+jZWdO7lRO5st255chn5v4FB6ak5pRvvCu73dYpOVj7ss/1Z+eEs5r5oe8+4IQs2u+YTdY98vzP5+UfPiMv//AZmb18+Ashp61avsmtX8+61Zu83j3cJG+1b9P11wxUmutdu3KTZV0bRp/0inZxzIRWW5Wxl968NE2pzuH0/8MwWkJk/0yG4/nh/L9J3pnksiT71VofU2s9Mk2g+UtJnp7kZ+ONIfaMp/Gj0F8neUWSp5RSnlJrPWfQsi8n+cs0pQE+V0p5Rq11s3/1SyldST6ZJh17SZJ/GtLk40l+L8mCJP9SSnlFrXUMqWEPv1rrhlLKuzLwWcdVwHkrbavtO6pa6/pSyoeSfCrJ75dS/r5TIoLx6O7Jyvd/IrPf9up0L7wrc/74NakzZiZ9fSnrmhNWGw4+PKv+8sPj7rrnqovTc9XFSZI6bXrqzFkpa1anrB3YHTYedGhWvu8fk+mbzk7b+9Oz0nt5p9b5xo2Z/Z4/GPW9Vr7nH7LxyGNGbUO7lJ6e5O8+nvqm1yX33JX6e7/b7Ju1L1nbOZn62MNS3jvcebwtuPzS1Mubw2KdPj2ZOStZvToZtG/mkMemfPhjKTNGnjm53nF7ctklzXif/8IR2/Eo0t2TG9/6jzn0b1+b6YvvyqF/9zvZOG1mSu1LV2cm+JX7HpabXz++/XLOjZdl5wu/+9Dz/b70gez3pQ+M2P72V/zZsAHgJ/z+qcO2H9rfXc9/U+7+9TePa4xsv2pXd/7rmDfnlRd9JPNWL8krLvr7rOuellJrevuasnIL5+6Tbz7+dePue23vrHz1mLfkZRd/NLusuCev/dlfZ233jPT0rU933ZgkuXnnw/PDw1467PrLZy3I/x79+rzw8k9l32U35k3nvjNremZm2sa16epUYLtir5Pz8wOeOcFPz/asdnXnpy96f874ytsyZ/nCnPHVP86G3hlJ7UtPJ2i6dNeDc8Fz/3JC/b/4n4b/t/e4H308x/3o4w89v+rk387VTzpzkzazH7g3z//0K4Zd/8lf3/Tq2Z8/6+255chfG7Yt7eOYCa32y05Zza3Vnwkxf5Q2/ctGnpFxkFLK85I8J01ZhpcPjk/VWpeVUl6b5LgkhyZ5c4ZPSB3WlA7w1lp/WUr5nzTlGv4qyVMHLVtXSnl5knOSnJrkx6WU36u1PhQELaUcnKaG7/PSzHB3Zq118ZD3WNrp5/8677NnKeWdSX5aa+fo3fQ1J03N2Ed6Wtj/TPJnSR6X5BG75mlbbd8x+nyasyN7J3lrBgpaMw59u++dBz/7jcz46r+m99wfpOueu5KenmzY/+CsP+M5WfvCVyW946v0seExR2Tln/9teq64MD3XX52ydHHKA/cnvdOycc99s/GQw7P+yc/I+ic/M+nefC7A0jdQdrusW/tQsHkkZcNIddFps7LnXsmX/yf1S59PfvLDpi5ud09ywEEpz3x28tJXpPT2jq/TQw9Pec8HUi+5OLnumqYUw/LlybTeJmP3sYelnPH05Iynpwyzbw5Wv/W/Sa1Jb28yjjIRtNu6BXvl6vd8Lbuf9bnsdMmPMn3xnaldPVm550FZcuKzc+/TXpnaM779sgyaaqBr44Z0PbBk9PZbOCYy9SyftSCffdK7cuIt389jF12aeauXpK905Z65e+aaPY7Pxfudkb6uif33YOGO++Uzp7wnT7z5ezn4viszd82yrOuensU77Jkr9zwpV+z9pKSMfPHgr3Y5Kp990l/lpJvPygFLrs2ctcuzpmdWFs7dJ5ft8+Rcv/u2+H8a26uVO+6e75752Rx64Vezz43nZvbye5KunizZbf/cftgZueGYF6ave5z/lsNWcsykTcoo+wsTdkPnft9SSu8IE60dNKTtlvRnWlw4XPJhJ0nxJ2kCvOMqPF9qreNpP2lKKWenqWP7nlrru8e4Tv+HO73WevYIbR6fJi26JHlSrfWCIctPSPLfSfbpvHRnmvTtndPUzEiaosqvrrV+e5SxnJIma7W/nweT3JpkZZIdO331p3b/V5qJ4RYNWv/zSV6d5N40ZRVG85Ja68LOevunKVGQJDvUWlcMM7bnJfnmoJc228Zj2ZZDxvlvtdYztzDOrd6+pZTTkvwkSWqtI86ZWEp5a5KPdfravzNz4VYppVyS5Jj9H3NM3v/Zi7e2O9hm5s8RyGb79Iurt/3UtrC1fvDVC7bcCCbBAUcdvOVG8Ai75aqbJnsIsIkrzn19Vi6/IUku3UZZm63RH5N4/J4L8pP/7yWTPZxJd/on/jtX3L042Ub7QqdEwuI0JRpOqbVuNoNyKeUHSZ6W5P1jmRitlPLPSd6Y5P9qrc8Zoc0nkrwpyXdqrc8d63infIi/1npFkv7A4buGWX5hksckeUuaGe2mJTk6TVD2Z2nKDBw0WnC30895acoRvDZNvY1laSL9T0hTfuD8JO9O8pha60sHB3eH2DXJk7ZwG/la4eHH9q3OZ3nEbavtOwafSbIoTfr8721lXwAAAAA8SnUSA8/qPH390OWllEOSnNF5+t9j7LY/0/eEUsqOw/TZm+T0ztPrxz7aFpVoqLWeNoF1xpQqVGsddQrrTm3Yf+zcJqzWui7NxGafm8C6ZyY5cwLr3ZomO3lL7U7ewvKxbsszM85xbs327WQTj+XzrU6y+3j7BwAAAGBKel+S5yb5rVLK+Uk+U2utpZQ9kvxHmsTZr3eSRx9SSrm18/CPa62Dg7//leSDaebp+o9Syu/UWu/urLNTkn9IU56hJvn38Qx0ymfwAgAAAAAMVmu9KMnbOk8/leS2UsqlaUqhHpsmy/Z3h1l1v85tzpD+7kyTDbwhybM6/V1fSrk6TbnSV6UJ7v5prfWy8YxVgBcAAAAAYIha60eTPD3Jd5PMTnJ4ktuSfCDJcbXWxePs7wtpJlD7XKef/ZIckqas6H8mObXW+uHxjrM1JRoAAAAAgCG6TGb8cKq1/ijJj8bRftQvpFPS4bVbO67BZPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS5lkDQAAAADaqJSULvmbKVN7ojl7AAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUSdYAAAAAoKVK19SeYAwZvAAAAAAArSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC3VM9kDAAAAAAAmqMjfnOrsAQAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSJlkDAAAAgDYqJaWrTPYoJl+Z2ttABi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEnWAAAAAKCtuuRvTnX2AAAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJbqmewBAAAAAADjV5KUUiZ7GJNuqm8BGbwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUiZZAwAAAIBWKkmX/M2pPs2aPQAAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiRrAAAAANBGJSldU3uCsSRTfY41GbwAAAAAAG0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAt1TPZAwAAAAAAJqjI35zq7AEAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUiZZAwAAAIC26iqTPQImmQxeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmTrAEAAABAG5WSUuRvpkztiebsAQAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC3VM9kDAAAAAAAmqKtM9giYZDJ4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKVMsgYAAAAALVW65G9OdQK8sJUeeGB9vvvduyd7GPCQj8/9wGQPAYb1/vNfOtlDAAAAeNQR4gcAAAAAaCkBXgAAAACAlhLgBQAAAABoKTV4AQAAAKCNSmluU90U3wYyeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFqqZ7IHAAAAAABMUJf8zanOHgAAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZI1AAAAAGirUiZ7BEwyGbwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUiZZAwAAAIA2KiWlS/7mVJ9ozh4AAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALWWSNQAAAABoqyJ/c6qzBwAAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALRUz2QPAAAAAACYoK4y2SNgksngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYyyRoAAAAAtFBJSSnyN0um9kRz9gAAAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKZOsAQAAAEAblSRdU3uCsSSZ4nOsyeAFAAAAAGgrAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoqZ7JHgAAAAAAMEFF/uZUZw8AAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAljLJGgAAAAC0VSmTPQImmQxeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmTrAEAAABAG5WSdMnfnOoTzdkDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpnsgcAAAAAAExQkb851dkDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKVMsgYAAAAAbdVVJnsETDIZvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSJlkDAAAAgFYqSZG/mUztieYEeIEx61m3Kode9NXsc8O5mb38ntTSnQfn753bDz09NxzzwvR19467z941K7LrHVdk/qIbstOiGzN/0Q2ZuXJpkuTnz3p7bjny10Zdf8aKpdnlziszf9ENmb/oxuy06MZMX/NAkuRHv/n/cu++R497TLTPqg09+frdj80FS/bKojWz01Vq9py5Ik9ecHueu8dN6e3qG1d/i9bMyu9c8twxt3/qrrfkDw65aLPXN9aSc+7bNz+5d7/8auVOWb2xJzv2rs0RcxfneXvcmEPnLhnXuGiXaRvW5MRbvp/HLro081YvSV8pWTprt1y7x/G5eL8z0tc18Z9hs9c+kCfeclYOvvfKzF2zNBu6e7N4zp65cs+TcsXepyRl9B+481bdm5NuPisHLLk2c9Yuz7ruGVk4d99cts+puX73Yyc8LrZ/9ku2V35nsj1yzATaQoAXGJNZyxfmqV95W+YsX5gk2dA7I10b12Xnhddn54XXZ79rf5gf/+ZHsn7GDuPqd++bzssTv/u3Ex7XwVd8M0dd8IUJr0/73btmVv786tNy79o5SZLpXRuyvq8rN62Yn5tWzM/Z9+2Xvz7y7MzpWT/mPrtKzbze1aO2Wd/XnZUbpyVJDpmzdLPlqzf25APXnZzLl+/e9Jm+zOpZn2XrZuSni/fNeYv3zqv3uyov2vv6MY+L9pi7ekledeHfZd7qJoi/rntaevo2Zs8HbsueD9yWI+/5Rb58/Nuypnf2uPveffltednFH82s9SuTJGu7p2fahjXZZ9lN2WfZTTl00aX5r2PePOJ/Og+676q88PJPZdrGdUmSNT0zMmP9yhy45NocuOTaXLHXyfnOka/e4n8saR/7JdsrvzPZHjlmAm0iwAtsUenbmKd87R2Zs3xhVs3eOT9/9p9l0f7HJrUv+15/Tk446yOZf+9NOek7H8hPX/zBcfe/evb8LNv14Czd7ZAs2+0xOfUb7xrP6LJyh12zbLdDsnS3x2T1nPk58ayPjHsMtNPGWvK+607JvWvnZH7v6vzhY36Ro+fdm76anL94n3z8V8fl5pU75SM3nJh3HX7emPvdZfrqfPGEb43a5lM3PyHfvueQTOvakKfscvtmy//xpuNy+fLd05W+vGq/q/Oc3W/KrJ4NWbGhN/9952H5n7sOzedue3z2mvlgTtz57nF/drZfpW9jXnrJP2be6iV5cPqO+dZRr8mtCw5Pal8OW3hJnn31F7P7A3fk+Vf+S7567FvH1ff09avy0ks/nlnrV2bx7N3zzce9Ngt33D9dfRvyhDvOzdN++dUctPiaPP26r+SsI1652fo7rlqcF17+6UzbuC53zDso3znqzCydvVt6N6zJE2/5fk791bfz+LsuyJLZu+fnB46e2Ua72C/ZXvmdyfbIMRNoG0U6xqmUcnYppZZS3j3k9R1LKXd2lr1jC33ML6Us7LT9/UGv10G3UX+9lFKeNqT9aUOWnzZkef9tZSnlulLKP5VSDh6m33d32p09hm0x7HsPabNjKeVPSynnlVLuLaWs7Xz2H5VSfq+UMmOUdc/s9H/rMMs+P8xnW1NKWVRKuaKU8rlSyqtG65+xO+DqszJv8c1JkvNe8O7mR3eSlK7cfujpuegZf5gk2evmX2S32y4dV9+3Hv70fP3/+++c85IP5apTX5c7H3PquNa/5qRX5Ztv/M+c+8L35ZqTfyuL9nM50lTyo3v3z62r5iVJ/vzQC3L0vHuTJF0lOXWXO/Lmgy5Okly8bM9ccf+u2+x91/V15ez79k2SnLzznZtlB9+6csf8dHGz/Ll73JTf2PuXmdWzIUkyp2d9ztz/ypy6oAkK/8utj09f3WZDYzvwuLt/ll1X3JUk+drRb2z+Q5gkpSvX7XF8vnvEq5IkB993dfZfct24+j7x1h9kztoHsr6rN1859q1ZuOP+SZK+rp5cst/p+enBz0+SPOHOczN/5aLN1n/yTd/ItI1rs2L63Hz12Ldk6ezdkiTre2bk3EOen8v2bo7BJ9/8f5nRySri0cF+yfbK70y2R46ZQNsI8G4jtdblSV7fefrOUsoRozT/hyS7JTkvycdHaPOqUkatkv3qcQzv/EG3RUkek+T/S3JFKeUZ4+hnXEopz0ryqyQfSvKkJCuSXJFkXZIz0nz260spx23F29ybgc92WZIlaT7fmUm+mOTOUsqrtqJ/khxwzVlJkkX7Hp0le22+a9926BlZseMenbbfH1fftat7q8a2tevTbj++d/8kyeN2XDRsPdsnL7gju01fsUnbbeGCJXtnxYbpSZJn7HbLZssvXrbHQ49ftNcvh+2j//V71uyQax9YsM3GxuQ76q6fJUlunf/Y3LXTQZstv3aP47NsZvOdH3nXzyfU97V7HJ/lszbfby7e7/Ss7Z6ertqXI+7+xSbLejeszaELm+DIpfuclrW9szZb/4IDn5UkmbFhTR6z6PJxjY3tm/2S7ZXfmWyPHDOBthHg3YZqrf+X5N+STEvyr6WUzX4RlFKek+SVSVYneW2tdbiZf36ZZO80QdDNlFJ2SPKiJAuT3D+GcZ0y6HZgkqOSXJ1kVpIvllLGXzRoC0opz07yzSQ7J/l2ksfWWg+stZ5Qa903yTFJLkiyb5KzSylPmOBbfXfQZzup1np4krlJnprkh533/2Ip5c+39jNNVd3r12TBXdckSe4+4IThG5WSew44Pkmy+60XP1JDY4pbs7E71z2wc5Lk2HkLh21TSnLMTs2yy+7fbZu99w8WHZAk2XPGgzlqx/s2W37v2ubH9uzuddl5+pph+9h75oMpqZ2x7b7Nxsbk6tm4NnsvuylJ8qtdjhy+USm5eUETxDhwyTVj7nv+ioXZcc3SUfte3zMjd+x0SJLkgMXXbrJs72U3pbdv/ajrL5+1IItn7zHs+rSX/ZLtld+ZbI8cM2mdkuY/PlP+NtlfxOQS4N32/iDJ3UlOSPJHgxeUUnZM8qnO03fWWm8coY/+Sv6/PcLyl6QJzn4pycbxDrDWem2S13Se7prk6ePtYzSllAVpPkNPkq8meUGt9YYhY7gsTRD2vCSzk/xnKWX8U+MOo9a6vtb64yTPSPKxzst/XUp54rbof6qZu+T2dHXOQyxfcMCI7e7vLJu5cmmmrX7gERkbU9udq+emr/PP2L6zl4/Ybr9ZzbJl62fmwfXTtvp9F66ZnauWN+Uenj5M9u5gfaP8yqgpqZ3lt63acavHxfZhwYqF6eoE7u+bs+eI7e7bYa8kyZy1D2TGurFdPrlL51LRpu+9Rum7ed8FKzet7bzp+qONbc9Oe7WhHy3sl2yv/M5ke+SYCbSRAO82Vmu9P8kbOk/fU0p57KDFH0myV5KfJfn7Ubr5bpL7kryolDJnmOX95RkmPKVrrfXiJA92nj5mov2M4PfSZM4uS/LGEbKUU2tdk6aUwsbOGF6+LQdRa61pguxXpzmX85fbsv+pYuaKxQ89Xj1n5MvIBy+buWLzS+VhW1u6bqDE9s7TVo/YbvCywetM1A8WHZCaku7Sl6fueuuwbXab3vzIX72xN/eu2fzSuSS5bdXchx4vWTdzq8fF9mHO2vsfevzgjJ1GbPfg9HkPPd5h0Dqj2WHtwImMB2fMG7HdiunN+87YsCa9GwYyyPvXX907Kxu6Rz7Z0T+2OWMcF9s/+yXbK78z2R45ZgJtJMD7MKi1fjvJvyeZkaZUQ1cp5WlJXpdkbUYuzdBvQ5Ivp8lsfcngBaWU/ZM8OcnltdYrJzrGUkrJw5fA/rLO/ZdqrctGa1hr/VWagHayjQO8nf43Jvlk5+nTSynTt/V7PNr1rhsIjm3oHTk4trF3YNP2rFv1sI4JkmTVxoGk/+ldI1/MML17YNnqjVt3ocDGWvKjTi3f43a6JztNG778wrE7DZSM+Mqdhw/b5qt3DLy+ekPPVo2L7ce0Qf8J29A18n+81g/6T9ngdcba9/oJ9N3/eLR1B68/bcPaMY2L7Z/9ku2V35lsjxwzgTbyP8qHz1uTPC3JyWkyR/tLIryr1jr8jDub+rckv5+mTMPnB73+22kCs/+2leM7Lkl/dvANozUcj1LKzkn6s5Z/MsbVzk7y3DTb6uFwbud+epKjk/xipIallDdkYLK8LTl064YFtM2ly3bPknVNRu4zdrt5xHb7z16eJ+18R85fsk++v+jAzOxen+ftcWN2nrY6i9bOzn/feVguWrZnesrGbKjdKVO8XhQAAAATJ8D7MKm1LiulvDHJ15O8t/PyRUn+bozrX1ZKuTrJaaWU/Wqtt3UW/XYGMnwnpJRyeJJ/7Ty9L8kPhmn2lFJKnUD3ew96/KsxrnNT535uKWWHWuuDo7Yev9sHPd7SLEt7pJkAjo710wYuHe9ZP/KZ6e71A2eHN0wb/pJ02JZmda9/6PHavpFnuV67cWDZzEHrTMT3O5Or7Txt1SZZusN568EX5cEN03Ll8t3yjbsfm2/c/dhNlp84/66U1Px86d6Z07Nuq8bF9mNdz0AGWk/fyN9r78aBZYPXGWvfvX3rsq5r+NIeI/Xd/7h3lHENXn9dj4teHi3sl2yv/M5ke+SYSSt1uUB/qhPgfRjVWr9RSvlyklckWZ/kNZ2SAWP1b0k+nOS3kry/lHJKkoOSfLvWeu9YOymlnDfo6R5J9k9TnmN1klfXWoerCP9Akqu20PWThnlth0GPV4xxiIPff24GagNvK4PHscOIrRr3JLl0jP0emmayu0e1TWueLc79ux40bLtNa6jt/LCPC+YPKo+wZN3MHDDCRGuD69vOH6GkwlgsWzc9Fy1rJqx46q63pnsL58Bm9WzI+444J+cu3ifnLt43d6yamw21ZM8ZK3L6rrfl9F1uy59ffVqSZM+Z2/qwx2RZMbge35pluW+HvYdtN7hW3+AafqN5cPrAZHw7rLk/S+YM/5/COWub6khremZk/aD/FPavP3P9qvRsXDdi7b7+sa0Y47jY/tkv2V75ncn2yDETaCMB3offD9IEeO+utV4zznW/lORD6QR4MzC52njLMwwOxK5OcmOa8gl/X2sdqTzDZbXW00brdIQM38FRiuEmiBvO7EGPH45pcQcHdUftv9b6qSSfGkunpZRLMgWyfR/Yed/0la501b7suPiW3HPgicO2m7f4liTJ6tnzs27m3GHbwLa098wH0pW+9KUrt6/cMceNkFF726rmh/BOvauzQ+/EM2V/cu/+2Vi7UlLz9N1uGdM6XSV5yi535Cm73LHZso215NaV85Ikh+1gwphHi8Vzdk9fSrpSs8uKu3PzLkcN226XB5tZsFdMn5s102YP22aowbNt77LiriyZs8cIfTczZi+evens2puuf3fu2XH/UdcfbXZu2sV+yfbK70y2R46ZQBvJ4d6O1VrvSfL9JI8ppZyR5KVJliX51jj7KYNus2qth9Za3zRKcHdr3DXo8fCn4Dd3cOf+gYehPEOS7Dfo8aKHof9HtY29M7J4ryOSJHvcctHwjWrN7p1lC/c/7pEaGlPcjO6NOWxuExi95P7dh21Ta3JZZ9kT5m3dn//3723KMxy1473ZfcZwFz6Mz4VL98zKjdMyrWtDTlmweQCYdtrQPT137tT8s3bQfSOc1601By5ult288xFj7nvp7N2yfMb8JMmBI/Tdu2Ft9ll2Y5LklgWbTvB3504HZ31Xb2f9q4ddf+7qJVmw8p5h16e97Jdsr/zOZHvkmAm0kQDv9u8Lnft/TVO+4Cu11u12Ksxa6+Ik13eenj7G1U7r3F+wzQfUOLVzvybJFQ/Tezyq3XLEM5Mku91+eXa++7rNlu9z/TnZYXnnR8QRz3hEx8bUdsautyZJrlq+a65/cP5my89bsncWrpmzSduJuOaBBblrdZMxNNrkamO1fP30/Outj0+SPGf3mzKnZ+tqA7N9uWqvk5Ik+y29Pnvev/n+ctjCS7LT6uZy46v3euLYOy7lob4PX3hRdly1eLMmx97+k0zfuDZ9pSvX7LlpJtz6nun55e7NhSfH3HFOpq/ffCb6k27+XpJkbfeM3LDb0WMfG9s9+yXbK78z2R45ZgJtI8C7/ft6kuUZyEIdb3mGyfCfnftXllJ2Gq1hKeWgJM8ast42U0rpTvLGztPvb8/B8e3ZLUc+M/cvODAlNad8413Z7bZOmeLal32uPzsnnPWRJMndB5yQRfttWrXiyPM/n5d/+Iy8/MNnZPby4S+hn7Zq+Sa3fj3rVm/yevdwk2/Uvk3XXzOQBN67duUmy7o2mMjq0eapu96a/Wfdn5qSD/7y5Fxx/65Jkr6anLd47/zjTU2mz7E73ZPHz9u0dPmXbz8izzv/pXne+S/NojWjl9Pun1xth561OXnnu0Zt2++ipXvkm3cfkntWz87GWpIkazZ257zFe+dPrjwjC9fMyQGzl+WV+463eg/buyv3PCn3ztkrJTUvuuyT2X9JJ2BR+3LowovzrGuac7c3LTgyt+582CbrnnrjN/MX33t9/uJ7rx/2P32/2P/pWTF9bqZtXJeXXvrx7L68mYO1q29Djrn97Dz5xm8mSS7b+9Qsnb35vKI/PfgFWdc9PTusXZ7fuPSfstPKJrO9d8PanHLTt3PMHT9Nkpx/0LOzpndsl5vSDvZLtld+Z7I9csykdUpxm+LU4N3O1VrXlFL+NskZSRbXWn8+2WMag39K8pYk85N8spTy8lpr39BGpZQZST6XpDvJTUn+Y1sOopRSknwkyeFJapK/3pb9TyW1qzs/fdH7c8ZX3pY5yxfmjK/+cTb0zkhqX3o6P2aX7npwLnjuX06o/xf/0wuHff24H308x/3o4w89v+rk387VTzpzkzazH7g3z//0K4Zd/8lff+cmz3/+rLfnliN/bUJjZPvUXWrecdh5+YurT8u9a+fkHdecluldG1KTrOtr/ok7cPay/PFjJn7oXLWhJ+cv3idJctout6W3a7PD2bDuXjMnn73lCfnMLU9IV/oyq2d9Vm3oTV/n3OoRc+/NXx56QaZ3j2fuTdqgdnXnv455c1550Ucyb/WSvOKiv8+67mkptaa3r8nWXjh3n3zz8a8bd99re2flq8e8JS+7+KPZZcU9ee3P/jpru2ekp299ujvzuN688+H54WEvHXb95bMW5H+Pfn1eePmnsu+yG/Omc9+ZNT0zM23j2nR1/qm+Yq+T8/MDnjnBT8/2yn7J9srvTLZHjplA2wjwtkCt9QNJPjDZ4xirWut9pZQzk/xvmrrBs0opb6u13tjfppTyhCT/mOTkJKuSvKzWuk1Oe5dSepOckuQvkjyt8/Kf1Vov3Bb9T1Urd9w93z3zszn0wq9mnxvPzezl9yRdPVmy2/65/bAzcsMxL0xfd+9kD5MpaLcZq/Lxo7+f/737sfnZkr2yaM3sdJXk4NlL8+Rdbs9z97hpzEHZ4fx08b5Z2wkWP2OMk6slydHzFuW5e9yYax9YkMVrZ2bVxt7M612bQ3ZYmqfscltO2flOJ5ofxZbPWpDPPuldOfGW7+exiy7NvNVL0le6cs/cPXPNHsfn4v3OSF/XxH6GLdxxv3zmlPfkiTd/Lwffd2XmrlmWdd3Ts3iHPXPlniflir2flJSRL9L61S5H5bNP+qucdPNZOWDJtZmzdnnW9MzKwrn75LJ9npzrdz92oh+b7Zz9ku2V35lsjxwzgTYptdbJHkOrlFLOTvKUJKvTBCZH8h+11rd0Ap2fS3JbrXX/LfTd/2UcVWsdvmL65ussTrJzktNrrWcPev20JD9JmknWxtJXZ713J3lXknNqraeNcbybvPeg5c9NU1KivzDmLUkWJ9k9yT6d1+5M8pJa6y+GWf/MjLDtSimfT/LqJPcm6Q8cdyfZMckBSWZ0XluS5K211i+P9lkmopRySZJj5u9+VJ71mu9u6+5hwj4+tzXng5hinnv+8JkoAGzugKMO3nIjeITdctVNkz0E2MQV574+K5ffkCSX1lqnVGS7PybxhIP2yQUf+4vJHs6kO/n3P5DLfnVHMgX3hUQG79aY2bmNZIdHaiDbq1rrtzs1dt+U5LlJHptk7yT3pwk+fz3JZ2qtq7fibXbt3JJkXZp6xTckuTTJD5P8T611mIJaAAAAANB+ArzjtKWs1mHafz7J58fYdtwX69ZaF4zw+tlJJtLfu5O8e4xtt9h/rfX+JB/s3MY7ls9nhG1Xaz0zyZnj7RMAAAAAHk0EeAEAAACglcqoNZunjqk9wYk9AAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKJGsAAAAA0EYlSZf8zSk+x5oMXgAAAACAthLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpk6wBAAAAQFuVKT7DGDJ4AQAAAADaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKVMsgYAAAAArVSSIn8zmdoTzdkDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpnsgcAAAAAAExQKZM9AiaZDF4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKZOsAQAAAEAblSRd8jczxeeZswcAAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS5lkDQAAAABaqKaklik+w1ia7TCVyeAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoqZ7JHgAAAAAAMEFF/uZUZw8AAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAljLJGgAAAAC0lUnWpjx7AAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSUSdYAAAAAoI1KSS1lskcx+ab4NpDBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FI9kz0AAAAAAGCCivzNqc4eAAAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC1lkjUAAAAAaKtSJnsETDIZvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSJlkDAAAAgFYqSZf8zWRqTzRnDwAAAAAAaCkBXgAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGipnskeAAAAAAAwASWppUz2KCbfFN8EMngBAAAAAFpKgBcAAAAAoKWUaICttHb12txy1U2TPQx4yHPz0skeAgzrz7/7+skeAmzmg8/69GQPAYZ169W/muwhAAAtIYMXAAAAAKClZPACAAAAQFsV+ZtTnT0AAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWsokawAAAADQSiXVJGtJymQPYFLZAwAAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFqqZ7IHAAAAAABMUCmTPQImmQxeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmTrAEAAABAS9Uif3OqswcAAAAAALSUAC8AAAAAwDBKKaeXUr5dSrmvlLK6lPLLUsr7Simzt6LPUkp5eSnle6WURaWUtaWUu0spPyql/PF4+xPgBQAAAAAYopTyliQ/SvKcJGuSXJdk/yTvSHJRKWX+BPqck+T7Sb6c5JlJViS5Isn6JE9J8mfj7VOAFwAAAABgkFLKsUk+2nn6hiT71lqPSXJgkkuSHJbkM+PssyT5WpKnJflekoNrrQfVWk+ote6XZEGS1453rCZZAwAAAIA2KklKmexRTL6HZxO8M01y7BdqrZ/uf7HWencp5eVJfpnkRaWUx9Varxxjn2cmeXqSXyR5Xq11w+CFtdb7k3xzvAOVwQsAAAAA0NEpo/BrnaefHrq81npjkh93nv7GOLp+W+f+/UODu1tDBi8AAAAAwIAnJJmeZG2SC0doc26aUgtPHEuHpZSDkhyZpC/JT0opJyZ5TZKD09Th/XmSz9ZaF493sAK8AAAAAMCjwaGllEvG0f7TtdZPDfP6Yzr3t9da14+w7q86948d43sd17lfkuTNST6UTYtLvCDJn5ZSXlRr/ckY+0wiwAsAAAAAPDrMSnLMONrvMcLr8zv3S0dZt3/ZTuN8r52S/E2S7yR5e5Kb0gSJP5rkjCRfK6UcVWu9c4z9CvACAAAAQDuVpJhia1Ai7Ko0k5+N1T0jvD6jc79ulHXXdu5njvG95nTue9Jk/75wUHbwVaWU53Ve3z3JHyT54zH2K8ALAAAAADwq/LLWeuw26GdN537aKG2md+5Xj7PPJPnHoaUfaq2rSin/nOQ9aSZ4G3OAV4gfAAAAAGDAss79/FHa9C9bNkqb4fpMkutGaNP/+gFj7DOJAC8AAAAAwGA3dO73LaX0jtDmoCFtt2Rw6YiRSj/0Z/mOK2YrwAsAAAAAMOCyNEHY6UlOGKHNqZ37n42jz/5yDgeO0KY/aDzmCdYSAV4AAAAAgIfUWh9Mclbn6euHLi+lHJLkjM7T/x5jn6uSfKvz9NXD9FmSnNl5+qNxDFeAFwAAAADaqCappbg9PJv3fZ1N/FullNd3ArAppeyR5D/SxFW/Xmu9YvBKpZRbO7eXDNPne5JsSHJqKeWdpZTuzjo9Sf4myePTlGn4+/EMVIAXAAAAAGCQWutFSd7WefqpJLeVUi5NckuSY5Ncn+R3h1l1v85tzjB9Xpvkd5JsTPLeJPeUUn6RZGGSP0myPslra63Xj2esArwAAAAAAEPUWj+a5OlJvptkdpLDk9yW5ANJjqu1Lp5An/+W5IlJ/itJX5InpAns/keS42ut/zHePnvGuwIAAAAAwFRQa/1RxlETt9ZaxtDm4iQv3ZpxDSaDFwAAAACgpWTwAgAAAEBbFfmbU509AAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKJGsAAAAA0EolNWWyB7EdmNrbQAYvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS/VM9gAAAAAAgImpRf7mVGcPAAAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYyyRoAAAAAtFFJYpK1ZjtMYfYAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmTrAEAAABAK5XUMsVnGEsy1WdZk8ELAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUj2TPQAAAAAAYGJqkb851dkDAAAAAABaSoAXAAAAgP+fvfsOk/MqD/7/PdubtCqr3otlyZZcJBe5yA0MGEIx2AZCh2AgxCQhJG+SFxJIAskvCYE3lAABgiGh2MSAcQcXbFzVbEuWbclWtaSVtCtppZW2z/n9MbPSrHZ2Nbsrsftov5/rmmvKKc+Z0a1nZu85c46khDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKTdYkSZIkSZKkpAphsEegQeYMXkmSJEmSJElKKGfwSspbSXszF266j9N3rWJUUz2pENhbMYF1k85nxYyrSBX0/5RS2XKApZvuZe7uZxnZvJf2wmLqqibz7OSLeGbqpcf9RnLU4d1ctPFeZtWvo6qlgdbCMmpHTmf1tGW8OHFJv8elZDA2NRS1FJby1KzXsH7iYvaXj6UgRkYf2sWCncs5b8sDFMaOfve9YfzZPD3tUmqrZ9JUXEl56yEmNWzi3K0PM6duba9tUwTWTb6QtVOWsmvkdFqLSqlobWTq3g2ct+UBpuzf2O9xaejzfKmhqqS9mQs23cfptasY1VRHKhSwr3I86yZdMODYrGg5wNKN9zB3z7OMbDoam2umXJxfbB7azdJN9zKr7rmjsVk9naenXWZsnuI8Z0pKihBjHOwxSIkUQlgJLK6snsfZy7412MM56UY21fPup/6VUU31ALQWllAQUxSl2gGoHTmNH57/SZqLK/vc98SGLbxjxZepaDsEpJMiRak2CmMKgJdrzuTWxR/v8QPUnD1ruPbpb1LS0QpAc1EZJe0tFJA+vz0z5WLuXPg+f7ZyijI2k+Ov7r5xsIfwO9NQNoYfXvgpGipqAChubyEVCugoLAZgQsNW3vnUv1HWfrhP/aYI3HnWB3huytL0AzFFWVsTLUVlxIJCAJZsvp+rn/9JzvathaXctvhjbK45A4CQ6qC0vZmW4nJiKCDEFFe8eBsXbrqvP087kf7xmlP/PbyT58tkCcPouY5squddT/5LL7E5nR9d0P/YfPvyL1PR1gh0xmb7kS/ZNtacya1L/qjn2Ny9hrc8/Y2s2CynpL05KzYv4a5Fwyc2h1P+wHNmMjzzyI0calgPsCrGOKwy2505ibMXzOOBn3xnsIcz6K56+4d45vnhGQvgDF5JeQipDm5Y+VVGNdVzsLSaXy76QDo5EFMsqF3J69f+gIkHtvGmZ7/DLUs+0ae+S9sOc8Oqr1DRdoi6yoncftYHqa2eSUGqnXO3PcKrX7iFOXXPcfXzP+HeM9/VrX314TquffpblHS0sm3UHO5c9H72Vk6guL2ZpZvuY9nLd3D29seor5zIE7Nfd6JeEg0RxqaGolQo4KdL/oiGihqqmvfze8/+FzPrnycSeGHiEu5e9B52VU/nl2d/iOtXfqVPfT887y1Hkrvnbf41l7x0J+Vth2gtLGH1tMv5zelvZeXMVzH68B7O2/JAt/Z3L3wPm2vOIMQUl63/OYu3PEhpRwvNRRU8Pud1PDn7dTw4/zrGHNrFabufOSGvh4YGz5caqkKqg+tXfuVIbN5x1ge7xOY1a77PxANbeeMz3+HW8/oem9ev/AoVbY3UVU7kl2d/6EhsnrPtEV79/E+Y3Wts7uEtmSTattFzuWvR+9hbOTETm/dy6Ut3cPb2R6mvmsiTxuYpxXOmpKRxDd4hIIQwMYTw+RDCqhDCgRBCawhhZwjh6RDCt0MI7wkhVIUQPhtCiP24fC9znJk9lDeFEDaHEH4YQrgkzzFXhxD+TwjhtyGE3SGElhBCbQjh/hDCH4UQynpp+/5jjn/6cY7131l1N+cxtn/Iqv/xfJ6PenfWjscZ37gdgNvO+eiRmV+EAp6fdD53n/luAObuWcvM+uf71PeFm39FVcsB2gqK+cmST1BbPROAVEERK2dcycNz3wTAua88wphDu7q1v+ylX1DS0UJj6UhuWXITeysnANBWVMYjp72J1VOXAXDxxrsoy3xDrlOHsamhaM2Ui9gzcioA167+xpHYC0QW1K7gdWv/G4CXxy9i89j5efd7uLiK5TNfDcBptat59fO3UJ6JnZKOVi7c/CsuyMy8feS0N9JS1PWteHfVFJ6ffAEASzY/wEUb76G0owWAsvbDXPnibSzYsRyAB+ZfR+TUn/UznHi+1FC1aPtjjD+Yjs2fnfuxbrF5z8LO2FzDjLo+xuam+6hqaaCtoIRbzusam6tmXMkjp6Vj85xtDzPmUG239pdtuD0Tm9XcuuQm9lZOBDpj882snnYZABe/bGyeajxnKkkigRgKvAzzz64meAdZCOFS4Hngr4FzgAbgaWAvsAD4EPD9TNlW4NEcl92Z7nb3UL4+x6FXZJVvBiYB7wQeCSH86XHGfA3wMvBPwCVAI/AM0ApcBXwFeDGEcF6eL8N7eznWCODaPPshhFAAvCfroffn21Y9W7T9cQA2jzmd7aPndCtfN+l89pWnf4a8cPsT/ep73aTzj/yUOduKGVfSUlhKQUxx5o4nu5QVt7cwv3YVAKumXUFLcUW39o/NvgaAsvZm5u16uk9j09BnbGooWjPlIgCm17+Qcz3bBTuXU314DwBrJy/Nu98tY+cfWeLhwk335qzT+XhLcSXrx5/TpWzj+IXd6vXUfl/lBLaNnpv32DT0eb7UUHX82LzgSGwu2vF4n/pe2CU2x3UrXzHjql5j8/QjsXl5zth8/EhsNnGasXlK8ZwpKWlM8A6iEEIV8FNgFPArYH6McVqM8YIY45nASOAa4CdAW4zxuzHGS4+9AHdnurw7V3mM8Qs5Dn99VvkCYCpwOxCAfw4h5PyrLoTw+ky9scAdwOkxxtmZMU8HFgOPAdOBh0II5/byEmwinRR+d+h5kbHrgQrghV76yXZV5tgHgRRwXgjhjDzbKoeijham7nsJgJfHLcxdKQQ21pwJwOz65/Lue0xjLdXNe3vtu62ojG2jTwNgVt26LmVT971Ecaqt1/YNFTXUVU7K2V7JZmxqKGorKGF7JjE6Z0/uzc4CMHtPOh43ZeIzHw3lY4/crmncmbNOedthKloOABydbdTZvizdvrTtMCNaGnK2H9tYC5n1/45tr+TyfKmhKjs2N45blLtSCGzKxEZf/v2zY3NjL7H5ypieYnMDxanWXttnx+bsuvz/32ho85wpKYlM8A6uNwATSM+AvTbG2GWmbYyxJcZ4T4zxHTHGJ3P2cILEGPcA7wMOk16b+a3H1gkh1JCeTVwE3AK8OceYVwOvAn4LVAI/DiEU93DYvaSTxNOBK3uo877M9c15PpX3Z65/DNx/zGPqh5rG2iOL9e+pmtxjvT0jpgBQ1XKAstb8fgo0LvOzp3TfU3rpO33cmkM7emnf29gmZ+rv6LGOksfY1FBUXzWRGNIfr2oO9vzv2hkjh8qqacox++Z4Oo/RW9nuEbljN/ay4UoMAY7TXsnj+VJDVZfYHNHLv38mNqpaGvoXm72czzrjduwxX5xlx1qv7Ttj29g8ZXjOlJREJngH1+zM9YsxxkFfHCfGuJ+jyznMylHlj0jP3N0HfDTGzBSf7v00k06qdgDzSC/90JPvZ67fd2xBCGEWsAxYDeSeBtW1fvZyDj/I6vvdIYTC47VXblUt+4/cPlg2usd6B0tHHbk9IqtNb7JnkB0sG9VjvcbS9HHL2pspbm/u1r6puIL2wpLjjq0qz3EpGYxNDUXZ8TKiZV+P9aqa9x+53ZgVo72pbqo7crunZENjyUiaSqrSt4+J3erOXcCLymkoG5OzfXaCJd9xaejzfKmhKvtceLC0l9jMitt8Y6Br36N66TtdVtbe1CU2O9sfNzYzY6tqzv3LCCWP50xJSWSCd3AdyFyfFkLI/ZfW717nNKLDOcrekbn+nxhjz3+1AjHGlzm6dERvCd67gDrgbSGEymPK3kv6l6z5zt69gfT4N5OeQfwz0rOjJwGvybMPHaMk6wNFe0HPHyLasj5gZLfJt++2fvTdebu3ttntS9pb8hqXksHY1FDUWnh0Y7PijtYe62WXtRb1uC9pFzPqX6SwI/2zzMfmvD5nnezHj+13dtaSEY/NfUOf2yu5PF9qqCrpyIrNXpJV2fFTmm9sZvXdlmffXWKzo6+xmd+4NPR5zpSURCZ4B9e9pNeJHQncH0J4Z2YZhEERQlgAdK4gv/qYsrHA6Zm7D+bZ5UOZ64t7qhBjbAN+SHo5h7dlHS+QTvB2lufj/Znr/4lph4DbMo91myGcSwjhIyGElflcgPy3PpckaYAq2ho5b8sDQHp93F+e9UHqKyfSEQppKBvDQ/OuZdWMKyhItQMQYuzSfnzjdubvXAHAM9OWcf/869lfPpaOUMjeivHcueh9vDz+7KPt6dpekiRJQ1MkDPvLcFc02AMYzmKML4UQ/g/wz8A5ZBKZIYTNwArSCdJbMuvjnjSZ5O1S4N+AQtLLNNxyTLWpWbdfzrPrlzLXI0MII2KMB3uo933gE6STsJ3LKlxKegmLX8YY9/S8B9uR5zAn0wbSyzOQdfu9wJtDCKMyy1D0ZhLpjeKUkT2Dqyh1YmejZdcrTrXSWlDep747bxf3Mq7s9q1FpXmNS8lgbGooGuiMseO5fP3POFA2mucnX8BzU5by3JSlXcon73uZCQe3sXr6FZS1df8xzjVrbqapuJItNQtYPutqls+6ukv5abuehhjZMPHcnO2VTJ4vNVRl/+qhKM9fPbTkG5vH/KKiz7FZ2NfY9FcPpwrPmZKSyBm8gyzG+K+kE5O3AU2Zh2cC1wFfBbaEEP7yJBx6UwghhhAi6SUS7gBOA24HrooxHvuOMSLrdmOex8heV3hkT5VijCuB54ArQwjTMg/3dXO1zvorYowvZj3+ALAdKAPenkc/O4FVeV6GxV++2WswjmjueWWO7HWnelvnLNvB0uqsvvf3WK8qs45lc1EZbVkfcDrbl7cd7vWPgs6xuZ7kqcXY1FA0Is/1JLPXx+3L+ngFMcWbn/k216/4dxbsWM7Yxp2MPFzH1L3refW6H/GuJ//1yM82Rx/a1a19aUcL71j+Zd709H9y2q6nGX1oF9WH65hZt443PPNd3rrq6zSXVPbYXsnk+VJDVWOe65Znx22+MdC17/299J0uay4q7xKbne2PG5uZsTWWVfdYR8niOVNSEjmDdwiIMT4GPBZCKAbOBZaQXjP2dUA58I8hhFSM8Z9P4GFXAC2kk/xTgWlAO/B0jHF7jvrZs2+r8jxG9pq6B3qslXYz6ZnM7wkhfAm4HtgL/PJ4B8lazgG6zt4lxpgKIfwP8Bekl3D4Zm99xRi/ebw6WcddyTCY7VtXNZEUgQIi4xp3sHHcopz1xh1Mh01j6cgjyYHjyd45dlzjduqrJvXQd3r317rKrjvFdm2/g53VM3tt39tOs0oeY1ND0djGWkJMEUMBdSMmM6cu9x6hnTFS2dxAeT9mys7Zs5Y5e3L3XZuJt6n7c//gJhA5Y+dyzti5vFtZKhSwe8TUXtsreTxfaqjqEpsHe4nNxvS/f2Npdf9i82AvsdmYjvtjy7NjbdzB7ewclWsP6qzYNjZPGZ4zJSWRM3iHkBhjW4zxqRjjf8QYrwUWkJ7ZCvDpEELvK6n3zfUxxktjjBfHGKcDryY9M/dvQgifzFE/O+k7J0d5LnMz1wd6WZ6h038DHaRn4l5Lesbvj3PMJM7lSmAG6QT1j3OUdy77sDSEMC+P/pSlvbCUV0an/ynn7Hkud6UYmV2XLts49sy8+95bOeHITu6ze+i7uL2Fafs2ALCp5owuZa+MnktbQXGmfe5Ex8imemoO7czZXslmbGooKk61MmVfeoWijTW5Yy4Cm8aly2bV9RC7/VQ7chp1I9J/zC3c/kSf228YfxYtxRUUdbQyf+fKEzo2DR7PlxqqsmNzdg9fiBEjszKx1Zd//y6x2UPfxe0tTN3bU2yeduQXEbN7OFdnx2ZP53wlj+dMSUlkgncIizFuBv5P5u4I4KSdnWOM9wMfztz9QghhxjHldUDn0gdX5tntFZnrx/I4/k7g18A84AuZh7/fc4su3p+5LgJ2dS49kbUExdocddUHa6ZcBMCMvS8yef/GbuULalcyuqkOgLXHrAfZqxCO9H1G7XKqD9d1q7Jk64OUdrSQCgU8N/nCLmVtRaW8MDE9iXrxtt9QmmMW3EUb7wGgpbCM9RPOyX9sSgRjU0PRou2PA7Bl7OnsqO4+4+uFiUvYXzEOgIU7+p6E7UlbQQn3nfkuAE7fuZKxh2r71P5wSRUPzr8egMVbHqSsfVisRDRseL7UUHUkNutzx+b82hWMbkpvSbJm8kX5dxwCazN9L9iZOzYXHyc2X8zE5rlbHzpubG4wNk8pnjOVKAFiKBj2l+G+z5oJ3qEv+/eRJ3WF9Bjj/wK/zRznczmqdM6OfVcIoeeFBTmy6dk1x7Q7ns71dmcAL8YYnzxegxBCFfDWzN16YFcPl87Fk94TQjDu++jZyRexu2oKgchbV3+DmfXPpwtiivm1K7jmuXQu/qWahWweu6BL22Ubbuev77mRv77nxpwfYJ6ceTWNpSMp6WjlhlVfYWLDFgAKUu0s3voQl224HYDVU5ext3JCt/YPz30zrYWljGhp4PpVXzuyZmRxewuXvnQHi7c9DMCjc15Pc3F+P51SchibGooWbX+ccQdegVDAzxZ/lM1j5wPp3Y1fmLiEexamVxWavXsNM+tf6NL2kblv5J+u+Rb/dM232F8+tlvfO6pn8djsa6irmkRHKASgIxSyseZM/nvpX7Bj1GxGNu3lNet+mHNsL41bxPIZV7GvYhypzKfgtoISXpi4hO8v/Uv2V4xj/IFtLMvEt04dni81VK2ZcjG7R6Rj89pV/8GMuqzY3LmCa9amV2B7edxCttR0jc1LN9zOX939Yf7q7g/njs1Zr6GxtJqSjlauX/nvXWLz3C0Pcdn6XwDw9LTL2Fs5sVv7h09705HYvG7lV7vE5iUbfsm5W38DwKNz32BsnmI8Z0pKGtfgHUQhhHFAXYwx9lLtksx1iq7J3pPl74F7SSdx/y7GmP115deAm4AxwDdCCO+MMaaO7SCEUAb8F1AIvAT8KM9j/xy4BygGcv9l2t31pNf6PQBMizE25aqUea23k15v+FXAr/LsX0AsKOTWxR/nXcu/yKimen5/+ZdoLSwhxEhxqg1I/yz49rM/1Oe+W4oruGXxTbxjxZcZ17iTDz7+eVoKyyhKtVEYOwDYOPYMfr3ghpztGypq+Nk5N3Lt099k+r4NfOyRz9BcVE5JRwsFmfB8ZsrFPDHrtf189hrKjE0NRQUxxdtWfY0fXfBnNFTU8OMLPklxewsxBNoL0z/3ndCwlTc9850+991YWs3Dp1/Lw6dfCzFFWdthWorKiQXpZO+4g9t528qvUtmae2WkfZXjuX/B27mfdxBSHZS2N9NSXJ6e9QBM27uet676+pH/Pzp1eL7UUBULCvnp4j/i95/610xs/luO2JzO7Wf/QZ/7bimu4NYlN/H25enY/MBj/9A9NmvO4Nfze4rNcfz8nI/wlqe/wfR9G/jow5/OEZuX8KSxecrxnCkpaUzwDq53AR8KIXwduC3GeGS76sx6u78PfDHz0M8zyyScVDHG+0IITwEXAP8X+FBW2Z4QwvuBnwE3ABUhhE/GGDdkjftc4KvAxcBh4B15rqNLJjl7zXErdvX+zPWtPSV3s8Z+N/Am0uv8muDto4aKGr59yd9y4ab7OH3XKkY11ZMKBewcOZnnJp3PihlXkSro3ymltnoG/3np51i68R7m7nmWkc37aC0spW7EZJ6dfBHPTL0Eepl4/fK4RXz7kr/hoo33Mqt+HVUtDTQXVVA7chqrp13GixOX9PdpKwGMTQ1Fo5rq+eBvP8dTs17D+omL2V8+loKYYmLDZhbsWM55Wx448kdcX0w8sIULN97LtjGn0VA+lqbiSsrbDjH+4CvM37mCs7Y/duSPu1xm1q1jyeb7eWX0aRwoH01rURmVLQeY2LCZM3c8yfzalcP9122nNM+XGqoaKmr4zqWf5cJN9zKvdjWjmuqOxOa6yRcMPDaXfY6LNt7N3N3PMiIrNtdMufj4sTl+Ed+55G9ZuukeZtUdjc1dI6ezerqxeSrznCkpSULvk0d1MoUQ/hj4ctZD24BaoAqYTnpmKsBK4JoY454e+vke6aTlzTHG9/dyvJnApszdWZk1fnPVexPwC6ANOC3GuOWY8t8jvZzCmMxDm4A6YCIwLfPYK8B1uZZZyCSJ/wtYGWM8r6fx5jjmL4EtMcaZmcdmk54hHIDLYoyPHKePtwL/SzrxPCnGeCCfY/fS30pgcWX1PM5e9q2BdCVJw8Jf3X3jYA9B6uYfr/E9XENTCH7doqHH/IGGmmceuZFDDesBVsUYh1VmuzMncdYZp/PrW24+bv1T3atveB/PrnsRhmEsgGvwDravk96I7AvAo6TXvj0XmE16zdg7gA8AS3tK7p4kvwSeJb1Uwl8fWxhjvAOYkyl7DBgJnAOUAQ8CfwzMy2cN3QF6L+nk7ibSawcfzx3AXqCC9AxkSZIkSZKkZAvByzDnEg2DKMbYBvwmcxlIP+/n6FIFvdXbTB77CmbWBD77OHX2A/+YufRJjPF7wPf62OYOjhl7jPGzwGf70Ecr0H3HGkmSJEmSJCmhnMErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooN1mTJEmSJEmSEikQnb8JhMEewKAyAiRJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCeUma5IkSZIkSVJCxTC8NxiTM3glSZIkSZIkKbFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQnlJmuSJEmSJElSAkUgBudvxsEewCDLK8EbQvibE3XAGOPfnai+JEmSJEmSJGk4y3cG72c5cclwE7ySJEmSJEmSdALkm+B9GGc7S5IkSZIkSdKQkleCN8Z4xUkehyRJkiRJkiSpj9xkTZIkSZIkSUqkQCQM9iCGgOH9GrjNniRJkiRJkiQl1AmZwRtCqAGuBGYAFTFGN1KTJEmSJEmSpJNsQAneEEIR8P8BfwiUZBX9XVad0cBGoByYH2PcPJBjSpIkSZIkSZLSBrpEw63An5BO7j4HtB9bIca4D/hhps4NAzyeJEmSJEmSJCmj3wneEMI7gDcDu4HzYoxnAXt7qH5r5vrK/h5PkiRJkiRJktTVQJZo+AAQgT+PMa4+Tt2nMnXPGMDxJEmSJEmSJGWJYaA/0FfSDSQCzs1c/+/xKsYYDwMNwPgBHE+SJEmSJEmSlGUgCd5qoCHG2NSHY8UBHE+SJEmSJEmSlGUgCd59QHUIoex4FUMIk4CRwK4BHE+SJEmSJEmSlGUgCd5Vmet8Nk77YOb68QEcT5IkSZIkSZKUZSCbrP0P8Drg70MIj8QYG3NVCiG8DvgM6eUZbh7A8SRJkiRJkiR1ChBDGOxRDL5h/hIMJMH7Q+BGYBnwRAjhG0AJQAjhamAm8Ebg9aRnCv8yxnjvgEYrSZIkSZIkSTqi3wneGGMMIbwF+BlwGfD/sorvybodgF8D7+rvsSRJkiRJkiRJ3Q1kDV5ijPuAq4D3AY8AraQTugHoIL3m7vuB1/W0hIMkSZIkSZIkqX8GskQDADHGFPAD4AchhAJgDFAI1McY2wfavyRJkiRJkiQptwEneLNlkr11J7JPSZIkSZIkSbnF4b7DmE5sgjeEUEh6Bi/A3hhjx4nsX5IkSZIkSZJ01IDW4AUIIVSGEP4shLAcOAzUZi6HQwjLM2VVAz2OJEmSJEmSJKmrAc3gDSGcA/wMmA7d5oMXA0uAxcAfhRDeGmNcPZDjSZIkSZIkSZKO6neCN4QwCfg16SUZWoGfAg8A2zNVpgBXAtcBM4BfhRDOijHuGNCIJUmSJEmSJEnAwGbw/g3p5O4W4JoY4ws56nw3hPAPwD2kZ/l+BvjYAI4pSZIkSZIkScoYSIL39UAEPtxDcheAGOOLIYQPA/cBbxjA8SRJkiRJkiRlRAIxDHiLrcSL3VaOHV4GEgETgKYY46+PVzFT5zAwbgDHkyRJkiRJkiRlGUiCdw/Q0Yf6qUwbSZIkSZIkSdIJMJAE7/1AVQhhyfEqhhDOA6oybSRJkiRJkiRJJ8BAErz/ABwC/jOEMLanSiGEMcC3gAPA5wdwPEmSJEmSJElSlrw2WQshTM/xcCvwB8A3gedDCP8BPAhsz5RPAa4EPgoUAx/OtJEkSZIkSZJ0Agz3DcaUZ4IX2JRHnU9nLj35MRD7cExJkiRJkiRJUi/yTbaeqK8C/EpBkiRJkiRJkk6QfBO8s07qKCRJkiRJkiRJfZZXgjfGuOVkD0SSJEmSJEmS1DeuhytJkiRJkiQlVAwFgz0EDTIjQJIkSZIkSZIS6oTM4A0hlADnAFOBSnrZTC3G+P0TcUxJkiRJkiRJGu4GlOANIZQCnwduJJ3YPZ4ImOCVJEmSJEmSpBOg3wneEEIRcC+wjPSM3d3AeCAF7ABqgLJM9UagfkAjlSRJkiRJkiR1MZA1eD8EXEY6mXtejHFi5vHdMcbpQBVwJfAY6UTyp2OMswYyWEmSJEmSJEnSUQNZouGdpJdc+L8xxlXHFsYYU8BvQgiXA3cD3w0hPJ+rriRJkiRJkqS+CsSet8IaRob3azCQGbwLM9c/Pebxwuw7McYO4JNAMfCpARxPkiRJkiRJkpRlIAneEUBDjPFw1mOtpJdm6CLGuBY4SHq9XkmSJEmSJEnSCTCQBO9ujpmtS3ojtbIQwvjsB0MIASgBxg3geJIkSZIkSZKkLANJ8L4CVIUQRmU9tjZz/bpj6l4BlAINAzieJEmSJEmSJCnLQDZZWw5cAFwM3JV57GfA1cC/hhCagKeBs4F/I70h2wMDOJ4kSZIkSZKkLDEMZP6mTgUDiYCfk96i7h1Zj32H9CzeGuDHwAvAT4CpwCHgcwM4niRJkiRJkiQpy0ASvA8Cs4C/6nwgxtgGvAr4EdBCOgEM8FvgihjjCwM4niRJkiRJkiQpS7+XaIgxRmBLjsf3AO8KIRSR3lTtQIzxUP+HKEmSJEmSJEnKZSBr8PYqxtgO7DxZ/UuSJEmSJEnScHfSErySJEmSJEmSTp4IxCMrpA5fcbAHMMjcZk+SJEmSJEmSEiqvGbwhhI4TdLwYY3TWsCRJkiRJkiSdAPkmW53rLUmSJEmSJElDTL4J3itP6igkSZIkSZIkSX2WV4I3xvibkz0QKalCQaC0onywhyEd0XK4abCHIOX04794YLCHIHXzg50fHewhSDm9p+5Tgz0ESZKUEK6HK0mSJEmSJCVUDK6sOtwVDPYAJEmSJEmSJEn9Y4JXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKDdZkyRJkiRJkhIpEKObrMHwfg2cwStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSqgBb7IWQpgKfBJ4LTADKIsxFmWVjwY+BkTgX2KM7QM9piRJkiRJkiSIzt8c9gaU4A0hXA3cAozk6HZ1MbtOjHFfCOEtwBLgOeD2gRxTkiRJkiRJkpTW7xR/CGEa8FOgGvglcB2wr4fq3yWdAH5Df48nSZIkSZIkSepqIHO4/wwYAdwSY3xLjPE2oLWHuvdmrs8fwPEkSZIkSZIkSVkGkuB9LenlGD5zvIoxxk1ACzBrAMeTJEmSJEmSJGUZSIJ3OtAUY9yQZ/1GoHIAx5MkSZIkSZIkZRnIJmspoDCfiiGEItIbsR0YwPEkSZIkSZIkZYmEwR6CBtlAZvBuAUpDCNPzqHsZUAzkO9tXkiRJkiRJknQcA0nw/jpz/dHeKoUQioHPk16v9+4BHE+SJEmSJEmSlGUgCd4vAa3An4UQPpSrQghhMelE8IXAQeDrAzieJEmSJEmSJClLvxO8McYtwB+QXof3WyGEXcBogBDCYyGE7cByYBnQDrw3xlg38CFLkiRJkiRJkmBgm6wRY/yfEMJu4GvA3KyipVm3XwI+GmN8YCDHkiRJkiRJknRUxE3WIP06DGcDSvACxBh/FUI4nfRGapcAk0nP6q0FHgUejDF2DPQ4kiRJkiRJkqSuBpzgBYgxRuA3mYskSZIkSZIk6XdgIJusSZIkSZIkSZIGkQleSZIkSZIkSUqofi/REELoz6ZpMcb4qv4eU5IkSZIkSVKn4CZrAMP8NRjIGrxX5FmvcyO7gJvaSZIkSZIkSdIJM5AE7+eOU14NXAhcBNQD/wF0DOB4kiRJkiRJkqQs/U7wxhiPl+AFIIRwFXAbcEaM8br+Hk+SJEmSJEmS1NVJ32QtxvgA8MfAtSGEPzjZx5MkSZIkSZKk4eKkJ3gzfkJ6eQYTvJIkSZIkSZJ0ggxkDd68xRibQwiHgAW/i+NJkiRJkiRJw0EkDPYQNMh+JzN4QwhTSG+6ZsRJkiRJkiRJ0gly0hO8IYRy4OuZu2tO9vEkSZIkSZIkabjo9xINIYS/OU6VMmAa8FpgLBCBr/X3eJIkSZIkSZKkrgayBu9nSSdtjycAKeAfYow/HMDxJEmSJEmSJElZBpLgfZjeE7ztwD7gGeCWGOOGARxLkiRJkiRJ0jFidMur4a7fCd4Y4xUncBySJEmSJEmSpD466ZusSZIkSZIkSZJOjn4neEMIqRBCewhh7okckCRJkiRJkiQpPwNZg7cJaIsxvnSiBiNJkiRJkiRJyt9AEryvAFNP1EAkSZIkSZIk9U3ETdaGu4GswXsnUBZCuPxEDUaSJEmSJEmSlL+BJHj/EdgD/EcIYdIJGo8kSZIkSZIkKU8DWaJhAfB/gS8B60IIPwAeBXYDHT01ijE+PIBjSpIkSZIkSZIy8k7whhDeCzTFGG/NPPQQELOqfDxz6U3syzElSZIkSZIkST3rS7L1e8BO4Nasx/q6irOrPkuSJEmSJEknQMRN1qDrDNThqK+zaY9ETIxxIOv3SpIkSZIkSZIGyCStJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmh+rrJ2oQQQscAjhdjjH09piRJkiRJkqRuApEw2IMYAob3a9CfZOvwfsUkSZIkSZIkaYjoa4L3EPDFkzEQSZIkSZIkSVLf9DXB2xhj/NxJGYkkSZIkSZIkqU/cZE2SJEmSJEmSEsoNzyRJkiRJkqSEitHtsoY7Z/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJlfcavDFGk8GSJEmSJEmSNIS4yZokSZIkSZKUUCncZG24c1auJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmhTPBKkiRJkiRJUkIVDfYAJEmSJEmSJPVdBCJhsIcx6OJgD2CQOYNXkiRJkiRJkhLKBK8kSZIkSZIkJZRLNEjKW3FbE+dtuJvTdiyn+tAeYihgX9VEXpi2lNVzXkOqoP+nlIrmBs5ffyeza1cz4nA97YUl1I+cwrrpy1gz83IIuX9yMnvnKqbVvcD4fZsZ2VRPecsBijraaCodwZ7q6bw45ULWTb+EWFDY77Fp6Ctpb+bCTfdx+q5VjGqqJxUCeysmsG7S+ayYcdWAYrOy5QBLN93L3N3PMrJ5L+2FxdRVTebZyRfxzNRLe4zNTqMO7+aijfcyq34dVS0NtBaWUTtyOqunLePFiUv6PS4NfUWth5m//BamrX+EyoadxFDIwTFT2Tr/StYvvpZUYXGf+yxubmT8tmcYs2s9o3dtYMyu9ZQf2gvAE9f8BZsWvq7X9mWNexn3yrOM2bWeMbs2MHrXBkqbDwBw/9v/jd3Tz+nzmJQsTali7m46nxWtp7Gno5qCEJlYuI+lJS9wdfkqikKq330/1TKP3zafyeaOCRxMlVNIijGFBzm96BVeXb6aGUV7urXZ0zGSP9t3Y97HWFa6lg+PuKffY9TQ5Xu5hiLjUlJSmOCVlJcRh+t4+8Ofp/pwHQBthSUUpNqZuH8TE/dvYsHWx7h12V/RUlLZ577H79vEdY/+M+WtjQC0FpVR0t7M1Pr1TK1fz2nbn+LnF38y5weoZc/dQs2B7UfutxSVkQoFVDXvp6p5P7N2Pcu5G3/FbRd/isNl1f189hrKRjbV8+6n/pVRTfUAtBaWUJTqYPKBLUw+sIWFO5/kh+d/kubivsfmxIYtvGPFl6loOwRAS2EpJe3NTNv3EtP2vcT8Xau4dfHHe/xwP2fPGq59+puUdLQC0FxURlnbIWbXr2N2/TqemXIxdy5833E/wCt5KhpqedVPPklVQy0A7cVlFHS0Mrb2RcbWvsiMdb/mgbd/kbayEX3qd+pLv2Xp3f/c73HNfeZ2Fj32/X63V7LVdYzkCw1vpy6Vfj8soY32WMCm9olsap/IYy0L+MvqW6gsaOlTv22xkK8efCOrW+ceeawstNIeC6jtGENtxxgeblnIOyt/w+vKV3ZpW0CkOhzqvX8KORzLAJhVVNunsSkZfC/XUGRcSkoSE7ySjiukOrj2sX+j+nAdjWWjuPu8j7B1/EKIKU7f/hRXr/oOExq28Prl/8HPLvlUn/ouaTvMtY99kfLWRupHTObu8z7CrtGzKUi1c9amB7ni2f9h1u41XPnMf3P/ue/v1n795AtYNWc028fO40DlONoLSwCobNrHos0PcdHzP2PC/s28bsU3ue3SvzgRL4eGkJDq4IaVX2VUUz0HS6v55aIPsLnmDIgpFtSu5PVrf8DEA9t407Pf4ZYln+hT36Vth7lh1VeoaDtEXeVEbj/rg9RWz6Qg1c652x7h1S/cwpy657j6+Z9w75nv6ta++nAd1z79LUo6Wtk2ag53Lno/eysnUNzezNJN97Hs5Ts4e/tj1FdO5InZvc+6VLKEVAeX3/ZpqhpqOVw5lide/5fsmrkEYorpL/6GC+79ImN2v8RFd36Bh9/2j33uv6lyDPvGz2XvhNPYN2Eey37xt30ZHYdGjGffhNPYO2EeTVVjuPDeL/Z5DEqejhj40oFrqUtVM6qgkRur7mJhyVZSEZ5qPZ3vNr6GLR0T+MbBN/Bn1bf1qe9fHr7wSHL3VWWreWP5k4wpbCQVYUvHBP6n8UrWt0/lR4eu4PTiV5hVtOtI27GFB/nK2P/otf/vN17Fr5sXU0IbF5U+3/cnryHN93INRcalkiZGk/nDnWvwalCEEB4KIcTM5fHj1B0ZQjiUVf+zx5R3Pn5FD+0rQwj3Z+rsCSEsPmFPZJg4c+sjjDuwDYDbL/xEOrkLEAp4cepSfn3uBwGYvesZpu9+rk99n7f+LqpaGmgrLOG2i/+MXaNnA5AqKOLpOVfz2BlvBeCszQ8y+uDObu0fP+OtrJl1JXtHTjmS3AU4VD6aJxZcy/J5vwfArN1rqDq8t29PXEPeWTseZ3xjegb3bed8NP3BGyAU8Pyk87n7zHcDMHfPWmbW9y0pcOHmX1HVcoC2gmJ+suQT1FbPBNKxuXLGlTw8900AnPvKI4w5tKtb+8te+gUlHS00lo7kliU3sbdyAgBtRWU8ctqbWD11GQAXb7yLsrbeZ68pWWatvZdRdRsB+O2bP5tO7gKEArbOv5Llr/lTAKZsfJIJW1b1qe/NZ1zNz//wp/zmun9izbIP8cq8ZX1q/9xF7+b2j/6YR679e567+D3smuFPOIeL37acybaOcQDcNOIXLCzZCkBBgKWlL/KBql8B8EzbbJ5rnd7nvgHmF23jfVX3M6aw8Ujfs4p28cmRt1EWWokElrfM61PfrbGQx1sWAHBe6fo+zy7W0Od7uYYi41JS0pjg1VCwNITQ26f964GK/nQcQqgG7gOuAmqBK2KMfftrWpy55bcAbB23gJ1jT+tW/sLUpeyvSP/ReMbW3/at70z9F6cu5UDl+G7lq+e8htaiMgpiigXbHuvr0Nk55ujPRauaTfCeahZtT38/tHnM6WwfPadb+bpJ57OvvAaAhduf6Fff6yadT0NFTbfyFTOupKWwlIKY4swdT3YpK25vYX5t+lSzatoVtBR3P4U9NvsaAMram5m36+k+jU1D26zn7gVg1/RzqJ9yZrfyLfOvorF6UqbufX3qe6Dribse+fD12+Z0LC4o3sppxd2/MF1a8gLjCvan67Z0j9veNKTSP0+eVZx7+YSKglYmFqTfg5tj39aeXtFyGodiOQBXlK3pU1slg+/lGoqMS0lJY4JXg+2FzPV7e6nzvmPq5iWEMAa4H7gY2AosizH2bXqpKGpvYXL9egA2TTg7d6UQ2DzhLABm7Mr/j6/RB3cyMrOm1aZM+2O1FZXxyth0/n/G7rV5991pSv2LAEQCDTkSyEquoo4Wpu57CYCXxy3MXSkENtakExWz6/P/7z+msZbqzBcCPfXdVlTGttHpLzxm1a3rUjZ130sUp9p6bd9QUUNd5aSc7ZVchW3N1GxPx9qOWRfkrhQCO2edD8DEzSt+V0PTMNYSi1jfPgWAs4o35awTAiwq2QzA2tYZfep/XGEDAJvbJ+QsP5wqoTY1BqDL8gz5eLhlEQATCvYyv/iVPrXV0Od7uYYi41JSEpng1WD7MdAKvDuE7ivAhxBmA5cCK4G83zlDCOOBh4AlwMvAZTHGl07EgIebMQd3UEAEoG7k1B7rdZZVtTRQltks7XhqDhz9Q623vuszZWOzNlPrTXF7M2MbtnHZmh9x3oa7AVg3/RKaSkfm1V7JUNNYeyQ291RN7rHenhHppEZVywHKWvP7mdq4xqOxtqdqSi99p49bc2hHL+17G9vkTP0dPdZRsoys30pBTAHQUDOrx3r7M2Xlh/ZS0nTgdzI2DV87OsYSMx/7pxbV9VhvamG6rCFW0Zgqy7v/q8qeBuD5tunc3Pgq9nZUARAjbG4fz78deCvNsYS5Rdu5pDT/ZMPujmqeb0svF3F5Wd+/5NXQ53u5hiLjUlISucmaBls9cBfwFuAK4MFjyt8LBOD7wGX5dBhCmEJ65u7pwDrg1THG7r9FVF6qmvcdud1YPrrHetlllU37aC6p6mPfY3qsdzBTVtreRHF7M21F3f/onLT3JX7/oc91ezwVClg7fRkPnPO+bmVKtqqW/UduHyzrOTYPlo46cntEy36aS46/0/GIloasvkf1WK+xNH3csvbmLrHZ2b6puKLL2tA9jS37uSjZyhuPJs+aqrr/7DJXWXljPa3lfgGlk2d/x9Hz3uiCgz3Wyy7bn6qiqqA5r/5fXbaafakR3NV0Hvc3n8v9zedSFlppjwW0U0R1aOT3yp/kLRWPUxBi3uN+uHkhkUAhHVxqgveU5Hu5hiLjUskTiLjJGsP8NXAGr4aCmzPXXTJwmRm97wXagB/m01EIYSbwMOnk7mrgcpO7A1PSfvSPu/bC0h7rZX/AyG7Tm+K2o/XaevmA0qXvttx9d4QiDpVWc6i0mvaCo99dPTvrSh5fcG2vH4CUTF1is6Dnf9+2fsRmdr22fvTdebu3ttntS9rdNOhUUdzadOR2e3HPMyA7io+eT4taD5/UMUlN8ei5qDS091gvu6ypD2vlFgS4vuJh/qDqXspCKwDNsYT2zFySNoo4HEtp6UOfqRh4pCX98+OzSzYyqsD/J6ci38s1FBmXkpLIGbwaCu4E6oC3hRA+HmPs/H3LMmAW8IsYY12OFRyONQ/4ATAVeAK4Jsa4/+QMWUPN7tEz+cYbvpq+E1OMOrSHxS/dw9kb7+eMrY9y13kf4+XJiwd3kJIknYIOpsr56sE38nzbdBYWb+YtFY8xtbCOVop4qW0yPzl0GQ80n8Pa1pn8dfWPGVN4/KWcnm2bxb7UCAAud3M1SZKkXjmDV4MuxthGei3eKuCtWUWdM3q/n2dXXyOd3H0YuLo/yd0QwkdCCCvzuQDz+9p/ErVmLYdQ1NHzN8BFHa052/SmLWt2W3FW+1777mVG3BGhgP1VE3jgnPfx8KJ3UtLezOtX/AeVTfvzGpeSoUtspnqOn+J+xGZ2veJ+9N15u7e22e1bi3qeHa9kaSspP3K7qIdfHAAUth09n7aXdN8BWzqRysPRc1FL7Hl+R3ZZeWjLu/9vHbyG59umM79oG38+8qfMK95BRUErowoOc17pS3xm1I8ZEQ6zOzWKWw4vy6vP3zSnN1cbXXCQs3vYGE7J53u5hiLjUlISmeDVUNFlmYYQQgVwPbAXuKOPfdUA5cetldskYHGel2HxF3lj1rpTVU37eqyXXXaol7V6e+57b4/1RmTKWorKc66/25unZ7+K9oJiStqbmf/K431qq6GtMXvds+aeY3NE9jpqWW16c7C0Oqvv/T3Wq2pJH7e5qKxLbHa2L2873OULip7G1pjnuDT0dV1bt+fNrLqu1Tv2pI5JGlV4dPOfzlmxuWSXjSrIb8PU7e1jeKZtNgDXlC8n1w+uRhYcPrK52oqWecTjLMPbkKrg6dZ0n8tK1/Zp3V4li+/lGoqMS0lJZIJXQ0KMcQXpDdGuDCFMBa4FRgA/ijH2/vXkUX8M7AHOAO4PIfTnL+adwKo8L8NiMbi9IyaTyixWXnPglR7rdZY1llbntcEaQN3Iqd3a5zI2U1Y/suedZnvSUVhyZMODUY27+txeQ1dd1cQjsdnbDsHjDqZ3G24sHZnX5hfQdVfj7N2Ku/edPm5dZdddjLu2721sOzL1e94FWclyYOx0UiH98aq6rudZh6MyZU2VY9xgTSfd5MJ6AikAXmnvefO/VzrSZdWhMe8N1nZ0HP24Nb6wocd6EwvTyYpWijkQe/+O/LfNZ9JBIYHIZW6udkrzvVxDkXEpKYlM8GoouZl0TL6Ho8sz3Nxz9W7WAa8C6oFFwK9DCPlNJc2IMX4zxrgknwvwQl/6Tqr2olJ2jJ0HwMxdz+auFCMzd6fXx9syYVHefe+rmsiB8rG99l3U3szU+vXpvscvzLvvTsVtTZS3pHcFz2t5ByVGe2Epr4yeC8CcPc/lrhQjs+vSZRvHnpl333srJ9BQNgaA2T30XdzewrR9GwDYVHNGl7JXRs+lraA40z53cmJkUz01h3bmbK/k6iguo25KOtYmbVqeu1KMTMyU1c4873c1NA1jpaGdeUXpRMKatpk568QIa1vTZQtLtuTdd+Do7Nq6VM9fVjRkJXXLjrP8w8OZzdUWFG/tNWms5PO9XEORcanEiRBjGPYXhvkPfkzwaij5byAF/CHpRO3zMcYe/jrOLca4Bng1sA84B7gvhFDdayMd13MzLgVg+p7nmbj3pW7l87Y/xahDuwFYN/3S/DsOgecy9ee/8gQjD+3pVuXcjb+mpL2ZVCjg+WkXd22e6jjuIc7fcBeFMV1vW82C/MemRFgz5SIAZux9kcn7N3YrX1C7ktFN6Z/Cr52yNP+OQzjS9xm1y6k+3P2n9ku2PkhpRwupUMBzky/sUtZWVMoLE9Ob+i3e9htK27pP+L9o4z0AtBSWsX7COfmPTUPepjNfC8CErU8zdsfz3cqnvfgbRjRk/vA68zW/07Fp+Lq0LJ1IeL5tOi+3TexW/lTr6exOjUrXLe0hoZHDzKLdR24/0Hx2zjotsZhHm9MJkGmFuyntJcH7YtsUdmZmBbu52vDge7mGIuNSUtKY4NWQEWPcAfya9EZpBeS/udqx/TwNvAZoAM4D7gkh9LzgnI7ruenL2DNyGoHIm574d6bvzvzhF1PMe+VJXrPqOwBsnHAWW8d3/Qb7onW38We3vYc/u+09ORO4K+a9nsbSaoo7Wrn2sS8yfl/6Z8sFqXbO3vhrLl73vwA8O/NK9o2Y1KXtgm2P8ZbH/o2525dT3pw1wyemqGnYytWrvsNFL/wcgO1j57F5wlkn4uXQEPLs5IvYXTWFQOStq7/BzPpMMi2mmF+7gmueS59GXqpZyOaxXRP8yzbczl/fcyN/fc+NOT9cPznzahpLR1LS0coNq77CxIb0jLaCVDuLtz7EZRtuB2D11GXsrZzQrf3Dc99Ma2EpI1oauH7V1xh9KL1ESHF7C5e+dAeLtz0MwKNzXk9zcX4/61MybFr4WvbXzCYQufQXf8uELavSBTHFtBcf4oJ7vwjAjlkXsGvG4i5tFz76Pd75L1fxzn+5isqG2pz9lxxu6HLpVNTa1OXxwlybvMVU1/bNB48UFbcc6lJW0J7vCklKgktLn2Na4R4igX8/+Gaea50OQCrCUy3z+G5j+suGs4o3cmbJ1i5tbzt0Me+t+xTvrfsUezq6ztKtKTzAuSXpL39Xt87lGwevYVdHNTFCeyxgQ9tkvtDw9iPJ42vKV/Q6zs7N1SpDE+eVbBjw89bQ53u5hiLjUlLS9LyNrjQ4/h0ozNz+7/52EmNcEUJ4LfArYClwVwjhdTHGQ8dpqhxiQSE/v+hPueGRL1B9uI7rf/tPtBWWQIwUp9KzcHZVz+Cu8/+wz323Flfws4v/jOse/WdqDm7nPQ/+DS1FZRR1tB2Zebt5/CIeOutd3doGInNqVzOndnW6r8JS2gtLKGlvoijVfqTelnFncMeFN5Fz5xclWiwo5NbFH+ddy7/IqKZ6fn/5l2gtLCFkxWbtyGncfvaH+tx3S3EFtyy+iXes+DLjGnfywcc/T0thGUWpo7G5cewZ/HrBDTnbN1TU8LNzbuTap7/J9H0b+Ngjn6G5qJySjhYKYnotzGemXMwTs17bz2evoSoWFPLwW/+Bq37ySaoaarnqlk/RXlwGMUVRJmm6d/xcHvu9/9uv/t/2tWtzPn7e/V/hvPu/cuT+movfy9pL3t+lTuWB3bzpW7+fs/1lP/9Ml/tPXPMXbFr4un6NUUNPYYj8ycif8Y8Nb6cuVc3/d+AGSmgjAm2kf+47o3AXHxtxZ5/7/oOqe/mXA1Vsbp/IYy1n8ljLmZTQRgcFdBz5WAevL3+KS8vW9dhPU6qEp1pOB+CS0nUUh+P/UkfJ53u5hiLjUlLSmODVkBJjvBPo+18Wuft6MoRwDXAPcClwRwjh9THGphPR/3BzoHIcN7/qC5y/4S7m7lhB9aE9xIICakdO5YVpS1k95zWkCvp3Stk9ehbfe/U/cf76O5hd+zQjDtfTVlTKzpFTWTd9GWtmXgah+w8ONk48h/vO/RBT655nfMMWKpoPUNZ2iPbCEuorx1M7ehYvTl3KponnDPDZayhrqKjh25f8LRduuo/Td61iVFM9qVDAzpGTeW7S+ayYcVW/Y7O2egb/eennWLrxHubueZaRzftoLSylbsRknp18Ec9MvSRnbHZ6edwivn3J33DRxnuZVb+OqpYGmosqqB05jdXTLuPFiUv6+7Q1xB2qnsjd7/8285+6hWkbHqGyYScUFFE/YSZbF1zF+sXXkiosHuxhapgZV3iAz4/6Hnc3nc+K1tPY01FNQYhMKazlopIXuLp8FUUh1ed+RxQ08bfV/8NvW87kqZbT2do+nsZYRgEpxhYcZG7xdq4se5bTi3veUAjgidb5tGaSzS7PMLz4Xq6hyLiUlCQhxmG+CrEGRQjhIeBy4KYY41fzbPNT4G3A52KMn816vDOIr4wxPpSj3eXAXUAF6SUg3hhjzG9r6N7HsxJYXDX6dM6/ul+rSUgnRcthv8PQ0DRr0dzBHoLUzd/t/OhgD0HK6T11nxrsIUjSkPfMIzdyqGE9wKrMZujDRmdOYv4ZZ/P92x4a7OEMuve+9QpeWPcMDMNYANfg1TAQY/wN8EagifQGbD8LIZQO7qgkSZIkSZKkgXOJBg2KGOMV/WhzXQ+PH3dh1RjjA6Rn8EqSJEmSJEmnDGfwSpIkSZIkSVJCmeCVJEmSJEmSpIRyiQZJkiRJkiQpgSKQx8qVp7w42AMYZM7glSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUqoosEegCRJkiRJkqT+SQ32ADTonMErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooN1mTJEmSJEmSEirGMNhD0CBzBq8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaHcZE2SJEmSJElKpEDETdYY5q+BM3glSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEqposAcgSZIkSZIkqe8iEGMY7GEMujjYAxhkzuCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUm6xJkiRJkiRJCRVxk7Xhzhm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqQcQghXhhDuCCHsCSE0hRBeCCH8fQih8gT1/4chhJi5PNSfPtxkTZIkSZIkSUqoVBzsEZy6Qgg3Af8PCMArwDbgDODTwNtCCJfGGPcOoP8pwD8OdJzO4JUkSZIkSZKkLCGEJcCXM3c/AkyPMS4GZgMrgQXAfw7wMF8HKoE7BtKJCV5JkiRJkiRJ6uozpHOnP4gxfivGGAFijDuAdwIp4K0hhLP603kI4QbgTcBXSSeM+80EryRJkiRJkiRlhBCqgNdl7n7r2PIY4wbggczd6/vR/2jg30kv+/Dpfg7zCBO8kiRJkiRJknTUuUAp0AI81UOdRzLXS/vR/xeBCcBNMcbGfrTvwk3WJEmSJEmSpISKhMEewlAyP4TQl+UOvhVj/GaOx+dlrrfGGNt6aPty5vr0PhyPEMJVwAeA22OMP+9L256Y4JUkSZIkSZJ0KqgAFveh/qQeHh+Tud7bS9vOstH5HiyEUE56yYdG4I/ybXc8JnglSZIkSZIknQoOAy/0of7OHh4vy1y39tK2JXNd3ofjfQ6YA3wyxritD+16ZYJXkiRJkiRJ0qnghRjjkhPQT3PmuqSXOqWZ66Z8OgwhnAv8KbCa9AZrJ4ybrEmSJEmSJEnSUfsy12N6qdNZtq+XOtm+QzoXe2OMsaO/A8vFGbySJEmSJEmSdNT6zPX0EEJxDxutzTmm7vGcC3QAd4TQbWO8qsz1xSGE2szt8/NdxsEEryRJkiRJkpRAMUKM3ZKFw06MJ7zL1aTX3y0FLgAezVFnWeb68T70WwhM6KW8OKu8MN9OXaJBkiRJkiRJkjJijAeBezN3bzy2PIRwGnBV5u5P8+wz9HQhvfkawG+yHt+c73hN8EqSJEmSJElSV38PROA9IYQbQ2ZdhRDCJOBHpPOqP48xPpPdKISwOXO57nc1UBO8kiRJkiRJkpQlxrgc+GTm7jeBLSGEVcAmYAnwIvDhHE1nZC5VOcpOChO8kiRJkiRJknSMGOOXgauBu4FK4AxgC/AF4LwYY93gje4oN1mTJEmSJEmSEuokbDCmLDHG+4H7+1C/z7vexRg/C3y2r+06OYNXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKBO8kiRJkiRJkpRQbrImSZIkSZIkJVIgRZ/39DoFDe/XwBm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQlVNNgDkCRJkiRJktQ/MYbBHoIGmTN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJ5SZrkiRJkiRJUgJFIMbBHsXgG+4vgTN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJ5SZrkiRJkiRJUkJFwmAPQYPMGbySJEmSJEmSlFDO4JUGKKYiLYebBnsYkjTkbVm3abCHIHXzno5PDfYQpJw+/ZuPDvYQpG7+4fJvDPYQJEk5OINXkiRJkiRJkhLKBK8kSZIkSZIkJZQJXkmSJEmSJElKKNfglSRJkiRJkhIqFQd7BBpszuCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUm6xJkiRJkiRJSRQhxjDYoxh8w3yjOWfwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISyk3WJEmSJEmSpASKQBzmG4zBsN9jzRm8kiRJkiRJkpRUJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQlVNNgDkCRJkiRJktQ/KcJgD0GDzBm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEcpM1SZIkSZIkKaFiHOwRaLA5g1eSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFBusiZJkiRJkiQlUiDGMNiDGAKG92vgDF5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhCoa7AFIkiRJkiRJ6rsIpOJgj2LwDfeXwBm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEcpM1SZIkSZIkKYkixOG+wxgM+13WnMErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooN1mTJEmSJEmSEioSBnsIGmTO4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJZSbrEmSJEmSJEkJFIFUHOxRDL7h/hI4g1eSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFAmeCVJkiRJkiQpoYoGewCSJEmSJEmS+ifGwR6BBpszeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCeUma5IkSZIkSVJCucmanMErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooN1mTJEmSJEmSEioVw2APQYPMGbySJEmSJEmSlFAmeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCVU02AOQlBwl7c1cuOk+Tt+1ilFN9aRCYG/FBNZNOp8VM64iVdD/U0plywGWbrqXubufZWTzXtoLi6mrmsyzky/imamXQuh9V9BRh3dz0cZ7mVW/jqqWBloLy6gdOZ3V05bx4sQl/R6XksHY1FBU0t7EBRvvY17tSkYdriMVCthXOYHnJ1/AipmvGlBcVrQ0sPTle5iz+xlGNnXG5RTWTL2YZ6ct6zEuK5sbmLZ3PRMObGFiQ/pS3nYIgB8u/XO2jp3f7zEpGTxfaqhqKSzlyalX80LNuewvH0tBjIw5vIsz9qzg/O0PUhg7+t33+rFnsXrSpewcMYOmokrK2w4x+eBmFu98mLl7n+u1bYrAc+MvYM3EpdRWTaO1sJSKtkamNbzE+dsfYOqBTf0el4Y+z5lKghjTl+FuuL8GIQ73V0DqpxDCSmBxZfU8zl72rcEezkk3sqmedz/1r4xqqgegtbCEgpiiKNUOQO3Iafzw/E/SXFzZ574nNmzhHSu+TEUmydBSWEpRqo3CmALg5ZozuXXxx3v8ADVnzxquffqblHS0AtBcVEZJewsFpM9vz0y5mDsXvu+4H5KUTMZmchQUFg72EH5nRh6u4/ef+BdGNdUBueJyOj9a+ila+hGXExo28/Ynv0RFWyPQGZftR5IfG8ct5Kfn3ZQzLi9d/wsu3XB7zn6Ha4I31dH/pFHSeL5Mlk//5qODPYTfmYbSMfzg7E/SUF4DQHFHC6lQQEdBMQATDm7lXc9+mfL2w33qN0Xgl/Pfz9oJF6YfiCnK2ptoKSojhvR70nmvPMBrX74lZ/vWglJ+uvCjbBq9AIAQOyhtb6alqJwYCggxxZUbf8ZFr/yqP087kf7h8m8M9hB+ZzxnJsMzj9zIoYb1AKtijMMqs92Zk5g5bzFf+O6KwR7OoPvrD57H5vWrYBjGAjiDV1IeQqqDG1Z+lVFN9RwsreaXiz7A5pozIKZYULuS16/9ARMPbONNz36HW5Z8ok99l7Yd5oZVX6Gi7RB1lRO5/awPUls9k4JUO+due4RXv3ALc+qe4+rnf8K9Z76rW/vqw3Vc+/S3KOloZduoOdy56P3srZxAcXszSzfdx7KX7+Ds7Y9RXzmRJ2a/7kS9JBoijE0NRSHVwXUrvsKopjoOllZzxzl/wJZMXM7fuYJr1tzMxANbeePq/+SnF/xJn/oubTvM9cv/nYq2RuoqJ3HHOX9A7ah0XJ6z9WFete7HzN6zllc/9yPuW/Sebu0j0FA2hl3V06mtnkljaTWvX3PziXniGtI8X2qoSlHALQv/kIbyGqpa9vOmF77HrP0vEAk8P24xd857N7tGTOcX8z/AO9Z+rU99/2bWm48kd89/5X4u3XIXFe2HaC0oYdXky3hw1rWsmHoVY5r3cP72B7u1v/P0d7Np9AJCTHH5pl9w3o6HKO1ooamogsenvZbHp7+WB+a8jbFNu5hX/+wJeT00NHjOlJQ0rsH7OxRCeCiEEDOXx49Td2QI4VBW/c+GEKpDCK9k7n/6OO3HhBBqM3X/OOvxmOfly8f099nM4w/143mfG0L4egjhhRDCwRDC4RDCxhDCzSGEK4/TtvM1+2yOsmPHnAohHAghbAshPBhC+JcQwgV9Ha+6O2vH44xv3A7Abed8NP3hBiAU8Pyk87n7zHcDMHfPWmbWP9+nvi/c/CuqWg7QVlDMT5Z8gtrqmQCkCopYOeNKHp77JgDOfeURxhza1a39ZS/9gpKOFhpLR3LLkpvYWzkBgLaiMh457U2snroMgIs33kVZ5htynTqMTQ1Fi155jPEHXwHgZ0v+MJ3cBQgFvDD5Au5Z+F4A5u5Zw4y6dX3q+4KN91LV0kBbQQm3XvDH1I6aCaTjctXMq3hk3psBOGfbw4xurO3W/rHT3sh/vOpfuO28m3jstDceHZtOeZ4vNVQ9O3Epu6umAvC2dd9k1v4XAAhEztizktev/x8AXh67iE2jTs+738NFlTw59VUAzKt7mte8fCsV7en4KUm1svSVX3NhZubtwzN+j5bCsi7td1dOZt348wE4f/uDXLLtXko7WgAobz/MVZt+xhm7lwPw69nXETn1Z0oOJ54zJSWNCd7BszSEMK+X8uuBiuwHYowNwI2Zu58JIZzZS/t/ByYAvwW+kqN8LfBoL5eNeTyHXoUQCkMIXwFWAh8DZgCbgBeBGuC9wAMhhFtDCBU993Rcnc/lMWAD0AFcAXwKeDKE8NsQwtwB9D/sLdqe/j5i85jT2T56TrfydZPOZ1/mJ3ULtz/Rr77XTTqfhoqabuUrZlxJS2EpBTHFmTue7FJW3N7C/NpVAKyadgUtxd3D6LHZ1wBQ1t7MvF1P92lsGvqMTQ1Fi7Y/CsCWsfPZMbr728/zky9gf2dcvtLr973dLNz+WKaP82moGNetfOXMV2XFZfeYj8GPfsOV50sNVc9OuAiAGfteyLme7Rl7VjCqaQ8AayYszbvfzaPnH1ni4aJt9+Ws0/l4c3ElL9ac3aXspTELj9xe2kP7zsf3VYxnW3X3/1dKLs+ZkpLGT/mD44XM9Xt7qfO+Y+oCEGO8C7gZKAG+G0LotqBhCOENwLuAJuCDMWYW8unqphjjpb1c/r2vTyqHHwB/BLQCfwGMizGeFWM8l3SC94PAfuA64O4QQn+XDMl+LktijDMz/X8c2AlcAqwIISwY0LMZpoo6Wpi67yUAXh63MHelENhYk/6+YXZ97xtVZBvTWEt1895e+24rKmPb6NMAmHXMTLep+16iONXWa/uGihrqKiflbK9kMzY1FBV1tDBlb2dcLspdKQQ2ZuJiVl0f47IpE5fjc/fdVlTGK2PS3x/P2pN/3zq1eb7UUNVWUMwrmcTonB42OwvA7L3pf/eNo/P/1UFD2dgjt2sO7cxZp7z9MJWtBwDYdEzfDaXp9qXthxnR2pCzfc3hWsj8qdWXsWlo85ypJOrcaG04X4Y7E7yD48ekk57vDqH7quchhNnApaRnvuZ6t/gTYAdwAfBnx7StBr6ZufuZGOOGEzfs/IUQ3g+8k/Ryf9fFGP8lxtjYWR5jbI0x/hdwNdAMXAb83xN1/BhjfYzx68C5wHqgGrg1BKcu9VVNY+2Rxfr3VE3usd6eEVMAqGo5QFlrfj8FGpf52VO67ym99J0+bs2hHb20721skzP1d/RYR8ljbGooGtu480hc1o3oLXY647KBstbGHutlG5dZ9gGgrte4nHJkLBJ4vtTQVVcx6cgvC8Yd7vnftrPsUGk1TUV9/+Ffqpc/ATrLdlfmjt/ell6IFMBx2it5PGdKSiKTXYOjHriL9JIFV+Qofy/pL6u/n6txjHE/8JHM3c+FELIXo/oiMAV4HPjSiRlu32SSqJ/J3L05xnhHT3VjjCuA/y9z909DCCNO5FhijLs4OlP6TODaE9n/cFDVsv/I7YNlo3usd7B01JHbI7La9GZEy9HZEAfLRvVYr7E0fdyy9maK25u7tW8qrqC9sOS4Y6vKc1xKBmNTQ9GI5v1HbvcaO1kxm++/f1Vzdlz2HPONmeOWtTd1iUsNX54vNVQdLK0+cru3mMsuO1gyKq++q5vrj9zeU5k7EdZYPJKm4qr07ZLqLmWjWtLtW4vKaSgdk7N9dr/Htldyec6UlEQmeAdP55bV78t+MDOj971AG/DDnhpnkqb/DZSRXqqhIITwauBDQAs9L83wu3ABMDtz+6t51P866XVzq4HXn+jBxBifBFZk7r7xRPd/qivJ+kDRXtDzh4i2rA8YJXkmFLLrtfWj787bvbXNbl/S3pLXuJQMxqaGoi6x08sfXv2Ky46T17dObZ4vNVS1Zm1sVtzR2mO94tTRstai0rz6nrnvBQozP2V/dPo1Oes8OuPo4y1FXTdZm7N37ZHbv52R+0+U3/bSXsnlOVNSEpngHTx3AnXA20IIlVmPLwNmAXfFGOuO08cngFrgYtLLG3wr8/jfxhhf6LHVyXdJ5roBWHW8yjHG3UDn1qMXn6QxPZK5vrC3SiGEj4QQVuZzAeafpLFKkiRJGoCK9kOcv/1BADaNOYNfzP8AdeUT6AgFNJSO5oFZb2HF5MspSLUDEI5ZwHH8oR0s2L0SgKcnXcqv5lzH/tKxdIQC6svH88t57+GlsWf12F6SpN+l/m5qpQGKMbaFEH5MehOyt5LekAyOzujNuTzDMX3sCyF8FPg58HeZh5cD/5rHEB7MsfxvtnNjjE/n0U8uUzPXm2LM+5POS8DCrLYn2tbM9YTj1JsELD5JY0ik1qzZCEWpXmZWdGTPrMhvBkN2veJUK60F5X3qu/N2cS/jym6f74wPJYOxqaGoS+z0NhutP3F5zEy3vsalhi/Plxqq8v5lQkH2bMb8ZyReufHnHCgdzbrx57N2woWsndB1rseUAxuZ0LiNVZMvp6z9cLf2b1j/fZqKK9k8ej5PTX01T019dZfyeXVPA7C+5pyc7ZVMnjOVRCm/Yxr2TPAOrptJJ3jfB/wghFABXA/sBXpctzZbjPEXIYQfAr9PelmHD8QYO/Joupb0DNue5LfjS26d6+j2pY/OVelHDuC4vekcy/HW+N1JHrOOM+YDfd/lIWEas9eWat7HnhG5c/Bd1kbLatObLuuuNe+nvir3B5yqln0ANBeV0Zb1AaezfXnbYYo6Wntch6pzbI15jkvJYGxqKMpeT29E8372jJyWs15V874jt/P9928sy47LfdQX9xCXmXWAm4vKu8Slhi/PlxqquqxHWjqKCYe256zXZa3T1v15919Aimuf/w6Ldj3JmgkXsqtyKu2FJYxs3suCPStZvPNh7pz3HgDGNO3u1r60o4Xff/b/sW7cEtaNP4+6ikl0hELGNO9h4a4nWLTrSf777E8CMDZHeyWT50xJSWSCdxDFGFeEENYBV4YQpgKXk05Afi3G2PtXcl39inSCd0eM8bk829wUY3yoTwPO38HMdVUf2nQuU3HgBI+lU2dit9f+Y4zfBL6ZT4eZZRpO+dm+dVUTSREoIDKucQcbxy3KWW/cwfQH8sbSkTSXVOasc6zsnWPHNW6nvmpSD32nd3+tO2aDjK7td7Czemav7XvbaVbJY2xqKKqvmnQkLmsObmfj+OPFZTXNJfm9XWb/gVnTuJ36EbnjprPvnuJWw4/nSw1VNYd3EmKKGArYUzGZuXtz/ymzpyL9717Z0kB5P2bKzt27lrlZa+pm2zliBgBTD7ycszwQOXPPCs7cs6JbWYoCdlWlz81Temiv5PGcKSmJXIN38N1M+t/hPRxdnuHmnqsnwiuZ61nhOOtAZJl7TNsTbUbmetdJ6v+U1V5Yyiuj0/88c/b08P1BjMyuS5dtHHtm3n3vrZxAQ1l6V+LZPfRd3N7CtH0bANhUc0aXsldGz6WtoDjTPveH9pFN9dQc2pmzvZLN2NRQ1F5YyvYx6bicvWdN7koxMisTl5tq+hiX5Zm43J07rorbW5i6d32673H5961Tm+dLDVXFqTamNqQToxvH5I67CGwck/53n71v3Qk9fm3VtCMJtEW1T/S5/fqxZ9FSVEFRRysL9uT7I0ANdZ4zJSWRCd7B999ACvhD4FXA8zHG5YM7pAF7NHNdTR4zXEMI44EFmbuPnaQxLctcP3mS+j+lrZlyEQAz9r7I5P0bu5UvqF3J6Kb0noBrpyzNv+MQjvR9Ru1yqg9331dwydYHKe1oIRUKeG5y13XT2opKeWFiOsQWb/sNpW3dZ3RctPEeAFoKy1g/4Zz8x6ZEMDY1FK2Zkt5rdEb9i0za1z0u5+9cwejDewBYO/Wi/DsOgbVT0nuRLtj5VM64XLzlgay47EPM65Tn+VJD1Vm7Hgdg86h5bB8xs1v58+OWsL98HACLdvU9CduTtoJi7j7tnQDM37OSmqa+zQM5VFzF/XPeBsB5Ox7q18xiDV2eMyUljQneQRZj3AH8mvTmYgXksblaAjwFdL4L/lEe9T8GFJJePuHuEz2YEMJFHE00336i+x8Onp18EburphCIvHX1N5hZ/3y6IKaYX7uCa55Lh+1LNQvZPHZBl7bLNtzOX99zI399z405P8A8OfNqGktHUtLRyg2rvsLEhi0AFKTaWbz1IS7bkP4nWz11GXsru++R9/DcN9NaWMqIlgauX/U1Rh9Kfzgvbm/h0pfuYPG2hwF4dM7raS7O76dTSg5jU0PRmqkXs3vEVAKRa1d9nRl1mRlnMcXpO5fzujXpH+q8PG4RW46ZWXPp+l/wl3d+iL+880M54/Kp2a+lsbSako5Wrlv+/5jQsBlIx+W5Wx5k2fqfA/D0tMvYVzWx++BiivLWg0cuZW2HjhSVtjV1KSvsaBv4i6Ehw/Olhqqzap9gfOMrEAr43zM/wqZRpwMQCTxfs5i75r0bgDn1a5m1/8UubR+e8Xt8/vJv8PnLv8H+0rHd+t4+YiaPTn8dezJr5wJ0hEJeHn0GN5/z5+wYOZuRzXt53YYf5xzbhjELeWrKVewrqyFF+oeJbQXFPF+zmJvP/Qv2l49jfOM2Ltv8yxP2emho8JwpKWlcg3do+HfSCU5Iz+hNtBhjKoTweeA7wPtCCP8bY8y5aVwI4TzgLzN3vxxjPKFr8IYQJgDfy9xdA/z8RPY/XMSCQm5d/HHetfyLjGqq5/eXf4nWwhJCjBSn0gmA2pHTuP3sD/W575biCm5ZfBPvWPFlxjXu5IOPf56WwjKKUm0UZvYL3Dj2DH694Iac7RsqavjZOTdy7dPfZPq+DXzskc/QXFROSUcLBTEFwDNTLuaJWa/t57PXUGZsaiiKBYX873k38c4n/oVRTXW888kv5ojL6dx+7of73HdLcQW3nv8J3v7klxjXuIMP/PbvaSkqo6gjKy5rzuT+M96Rs311014+9uD/yVn2tpVf7XL/zrM+wJppl/Z5jBqaPF9qqCogxfVr/4P/PvtPaSiv4Ydn/ynFHS1EwpENpCYc3MqbX/hun/tuLKnmoVlv4aFZb0l/wdV+mOaicmIm2TuucTs3rP06lW0Hc7bfVz6eX829gV/NvYEQOyhtb6alqJwY0vOkpu9fz3XPfePI/yGdOjxnKmlizHd1TJ2qTPAOATHGO4E7B3scJ1KM8bshhNcCNwA/DSF8GvhGjLERIIRQQnpjuC8BZaSXdfiHE3X8EMLYzLE/A0wC9gHXxxjjiTrGcNNQUcO3L/lbLtx0H6fvWsWopnpSoYCdIyfz3KTzWTHjKlIF/Tul1FbP4D8v/RxLN97D3D3PMrJ5H62FpdSNmMyzky/imamXQOj5Bwcvj1vEty/5Gy7aeC+z6tdR1dJAc1EFtSOnsXraZbw4cUl/n7YSwNjUUNRQUcN3L/ssF2y8l3m1qxh1uI5UQQE7R0zm+ckXsmLmq/odl7uqZ/Lty/+OpS/fzdzdzzKiaS9thaXsGDGFNVMv5tlpl/Yalxq+PF9qqBrVUs+HV/49T0y9mhdrzmV/+VgKYoqJB7dw5u7lnL/9wSOJr76Y1LiVpdvuY2v1XBrKxtJUVElF2yHGH9rOgt0rObv2MQpI9dh+1r7nOe+VB9hWPZeDpaNpKSqjsvUAkw5uYeHup1iwZyWmVE5dnjMlJUkw3/W7E0J4CLgcuCnG+NXjVO9s81PgbcDnYoyf7aHO+4H/ArbEGGcep7/Of/C1QEMvVVfHGG/KavdZ4G+B9uO02xpjXJxpUwR8BfgIEIBmYD3QQXpTtRGZNj8D3hNjPHRsZ1mvWbfn38NzKQNqOLqpGsAjwAdijCd0a9sQwkpgcWX1PM5e9q0T2bUknZIKCguPX0n6HUt19D1pJP0ufPo3Hx3sIUjd/MPl3xjsIUhdPPPIjRxqWA+wKsY4rDLbnTmJmfMW83f/uXKwhzPo/ubDS9i8fhUMw1gAZ/AOZwuPU97ew+NFQPcFro5q7LwRY2wHPhZC+DbwYeBKYA7ptYZ3Ab8AvhdjvD/fQfcg+7k0kk72PgSsAG6NMT41wP4lSZIkSZKkIckE7+9QjPGKfrS5Lo863+PoOrPHq9uvXxFlZs9+tp9tVwL9+jqpt9esv89FkiRJkiRJOlWY4JUkSZIkSZISKAKuvpp+HYYzd+CQJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUm6xJkiRJkiRJSRQhNdx3GINhv8uaM3glSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEqposAcgSZIkSZIkqX9iHOwRaLA5g1eSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUooE7ySJEmSJEmSlFBusiZJkiRJkiQllJusyRm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEcpM1SZIkSZIkKYEikHKTNYb7S+AMXkmSJEmSJElKKBO8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEKhrsAUiSJEmSJEnqnxgHewQabM7glSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllJusSZIkSZIkSUkUIZUa7EEMAcN8ozln8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEspN1iRJkiRJkqQEikAc5huMwbDfY80ZvJIkSZIkSZKUVCZ4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhHKTNUmSJEmSJCmh3GRNzuCVJEmSJEmSpIQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSqiiwR6AJEmSJEmSpP5JxcEegQabM3glSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEMsErSZIkSZIkSQnlJmuSJEmSJElSEkWI0V3WGOYvgTN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJ5SZrkiRJkiRJUgJFwD3Whv0ea87glSRJkiRJkqSkMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllAleSZIkSZIkSUqoosEegCRJkiRJkqT+SaUGewQabM7glSRJkiRJkqSEMsErSZIkSZIkSQllgleSJEmSJEmSEsoEryRJkiRJkiQllJusSZIkSZIkSQkV42CPQIPNGbySJEmSJEmSlFAmeCVJkiRJkiQpoVyiQZIk/U6kOjoGewiSlBj/cPk3BnsIUjd/dfeNgz0EqYs/6djCy4M9CGkIcAavJEmSJEmSJCWUM3glSZIkSZKkJIqQcpM1GOavgTN4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhKqaLAHIEmSJEmSJKnvIhDjYI9i8A33l8AZvJIkSZIkSZKUUCZ4JUmSJEmSJCmhTPBKkiRJkiRJUkKZ4JUkSZIkSZKkhHKTNUmSJEmSJCmhYmq4bzEmZ/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKTdYkSZIkSZKkhHKPNTmDV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmhigZ7AJIkSZIkSZL6IUKMgz2IIWCYvwbO4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJZSbrEmSJEmSJEkJFIFUapjvMMaw32PNGbySJEmSJEmSlFQmeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIRykzVJkiRJkiQpoeJw32FMzuCVJEmSJEmSpKQywStJkiRJkiRJCWWCV5IkSZIkSZISygSvJEmSJEmSJCWUCV5JkiRJkiRJSqiiwR6AJEmSJEmSpP6JcbBHoMHmDF5JkiRJkiRJSigTvJIkSZIkSZKUUCZ4JUmSJEmSJCmhTPBKkiRJkiRJUkK5yZokSZIkSZKUQDFGUu6yRhzmr4EzeCVJkiRJkiQpoUzwSpIkSZIkSVJCmeCVJEmSJEmSpIQywStJkiRJkiRJCeUma5IkSZIkSVJCxdRgj0CDzRm8kiRJkiRJkpRQJnglSZIkSZIkKaFM8EqSJEmSJElSQpnglSRJkiRJkqSEcpM1SZIkSZIkKaFijIM9BA0yZ/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKBK8kSZIkSZIkJVTRYA9AkiRJkiRJUj9ESKUGexBDQBzsAQwuZ/BKkiRJkiRJUkKZ4JUkSZIkSZKkhDLBK0mSJEmSJEkJZYJXkiRJkiRJkhLKTdYkSZIkSZKkBIpAjMN8hzGG/R5rzuCVJEmSJEmSpFxCCFeGEO4IIewJITSFEF4IIfx9CKGyj/0UhhCuDiF8OYTwVAhhfwihNYSwM4TwixDCG/o7RhO8kiRJkiRJknSMEMJNwP3AG4Bm4HlgJvBpYHkIYUwfuns/cB/wx8ASYBewBqgA3gTcEUL4Zggh9HWcJnglSZIkSZIkKUsIYQnw5czdjwDTY4yLgdnASmAB8J996RJ4FvgDYEyM8fQY4xJgLPDnpFeauBH4aF/HaoJXkiRJkiRJkrr6DOnc6Q9ijN+KmcWOY4w7gHcCKeCtIYSz8uzvNuCcGON3YowNnQ/GGNtjjP8KfDvz0Ef6OlATvJIkSZIkSVJCpaKXEy2EUAW8LnP3W8eWxxg3AA9k7l6fT58xxr2x9x3x7s5cn57vODuZ4JUkSZIkSZKko84FSoEW4Kke6jySuV56go5Znrk+3NeGRSdoAJKGgZL2Zi7cdB+n71rFqKZ6UiGwt2IC6yadz4oZV5Eq6P8ppbLlAEs33cvc3c8ysnkv7YXF1FVN5tnJF/HM1EvhOGuMjzq8m4s23sus+nVUtTTQWlhG7cjprJ62jBcnLun3uJQMxqaGIuNSQ5FxqaHK2NRQ0lZQwtYx86itns6ukdOprZ7BgfKxAFyy4Zcse+mXAz7GoZIRPDH7tbw87iwOlI+hqKONmsYdLNr+OGe98luOt8PSvopxPDnrtWyqOYPG0mpKOpqZ2LCVs7c9wvxdqwY8PknMy1xvjTG29VDn5cx1n2fc9uCdmetHeq2VQ+h9ZrCknoQQVgKLK6vncfaybrP1Tzkjm+p591P/yqimegBaC0soiCmKUu0A1I6cxg/P/yTNxZV97ntiwxbeseLLVLQdAqClsJSiVBuFMQXAyzVncuvij/f4wX7OnjVc+/Q3KeloBaC5qIyS9hYKSJ/fnplyMXcufN9xP7wrmYxNDUXGpYYi41JDlbGZHH91942DPYTfiS1j5vGjCz+Vs+xEJHhrR07nJ+f/CU0lVUD6C472gmJSBYUAzNqzlutWfo3C2JGz/cvjFvLzcz5CW1EpAKVtTbQWlRJD+kfai155lNevufm4SeJTwZ90bOFlWgBWZTarGjY6cxITZ5zLhz77xGAPZ9B957NLqd2yGtKzX1/oQ9NvxRi/eeyDIYQ/B/4ZeDLGmHOGbgjhGuAuoDHGOKLvo+7S15uBn5PeaO3SGONjfWnvDF5JxxVSHdyw8quMaqrnYGk1v1z0ATbXnAExxYLalbx+7Q+YeGAbb3r2O9yy5BN96ru07TA3rPoKFW2HqKucyO1nfZDa6pkUpNo5d9sjvPqFW5hT9xxXP/8T7j3zXd3aVx+u49qnv0VJRyvbRs3hzkXvZ2/lBIrbm1m66T6WvXwHZ29/jPrKiTwx+3U5RqAkMzY1FBmXGoqMSw1VxqaGqrLWQ0w4sJWJB7Yy4cBW7p9/A4fKqgfcb3NRObcuuYmmkirGNu7k9575LpMObKEjFPL0tGXcv+AGNo1byK8XvJ3Xrvtht/b7y8fy83NupK2olKl7X+L1a77HmMO7aS0s5clZr+HR097ImqmXMLaxlqWb7h3weKUEqgAW96H+pB4eL8tct/bStiVzXd5LneMKIcwHbs7c/XJfk7swTNfgDSE8FEKIeVyezmpzRQ91DoUQ1ocQvh1CWJRVvyiEsCpT59s5B3K0bkkI4blM3Z/lObZulxzP77PHOe4Vx7bNKvtsjmOkQggNmef1+RDCuDxf73NDCF8PIbwQQjgYQjgcQtgYQrg5hHDlcdr2+Fx6GN+BEMK2EMKDIYR/CSFckM8Y1buzdjzO+MbtANx2zkfTH7oBQgHPTzqfu898NwBz96xlZv3zfer7ws2/oqrlAG0FxfxkySeorZ4JQKqgiJUzruThuW8C4NxXHmHMoV3d2l/20i8o6WihsXQktyy5ib2VEwBoKyrjkdPexOqpywC4eONdlGVmbujUYWxqKDIuNRQZlxqqjE0NRdP2buBP7v9T3rn8S1z54v9yxs7lFKZ6+oV23zw162oOlVVT1NHK9Sv+nUkHtgBQGDtYsvUhlm24HYCnpy1jb8X4bu0fOe3NtBWVUdncwHUrv8KYw7sBKOloYdlLv+ScrQ8D8Pic19NcVHFCxiwlzGFgVR8uO3vopzlzXdLLsUoz1039HWwIYRpwL1BNejbw/+lPP8MywZtlG/BoL5fVPbTLrrMDmAV8CFgZQrgeIMbYDnwAaAM+FEK4updx/A1wBvAS8Ic9jGVtD8fPvpwMB7L6fxI4SHqh6b8G1oQQelxnJIRQGEL4CrAS+BgwA9gEvAjUAO8FHggh3BpCGMg7z9rM+B4DNgAdwBXAp4AnQwi/DSHMHUD/w96i7Y8DsHnM6WwfPadb+bpJ57OvvAaAhdv79tOQzr7XTTqfhoqabuUrZlxJS2EpBTHFmTue7FJW3N7C/Nr0+lKrpl1BS3H3MHps9jUAlLU3M2/X030am4Y+Y1NDkXGpoci41FBlbGoo6lyC42RYO+UiABbsXH5kWZJsS7Y8SEl7M7GgkOcmX9ilrLWwhBcnpicmnrvtIcrau+eUlm68G4CW4nLWTzjnxA5eQ1ZMxWF/yfJCjHFJHy7dlmfI2Je5HtPLS99Ztq+XOj0KIUwE7gemAw8Bb+tlvd9eDfcE73djjJf2cvlArkbH1DkNOA14HCgG/jOEMCpT7xngC5lm/xlCqDq2rxDCOaSz8xH4UIxxZ66xADf1cPzsOifD6qxjXBRjnApcBuwGJgA9/UcA+AHwR6Sns/8FMC7GeFaM8VzSCd4PAvuB64C7Qwj9XTLkpqwxLokxzsz0/3HS38RcAqwIISzoZ//DWlFHC1P3vQSk13rKKQQ21pwJwOz65/Lue0xjLdXNe3vtu62ojG2jTwNgVt26LmVT971Eceab9J7aN1TUUFc5KWd7JZuxqaHIuNRQZFxqqDI2NdzUV044slnbnD1rc9Yp6Whh6t4NAGzqnNGe8croubQXlvTaflRTPWMbd+RsL6lP1meup4cQinuoM+eYunkLIYwHHuBoTvGNMcbm3lv1bLgneE+IGONm4P2Zu9XAa7KKPw88Q3r26j///+3dd5icVdn48e+dBAIhhBY6AqEjKChY6EFsoNgAC6iA3Vexvz9eFQUVUSy8Vuw0BfW1oiAIUqRY6YJSg1TpkBDSs/fvj/MsmSy7m93NzjwzO9/Pdc01O3POeXLP5lyzz9xznvs0jqsSmidTaiF/MzMvaXasoyEzLwU+UT3cq5qUS4mIwyi7/yVwYGZ+MTNnNxxjQWaeDLyIsux9T+Djoxjjw5l5ImW18c2U/5efRYRzfpimzr7vyW+wH5y8wYD9Hlx1QwAmz5/FSguGdona2tXleOXYGw5y7PLvTn3i3kHGDxbbBlX/ewfso87j3FQ7cl6qHTkv1a6cm+o2jXNx6uP3DNivdz493GfuLT1+4Dm3dtX20CBzV9IyXU1ZsDgRGKj85x7V/Z+Hc+CIWBM4H9iWUiZi38ac2UiY7BolmXkzZTUqlJINvc8vpJRqWAS8KyKmNwz7H2BHStmC/2lBmKOp8RqmaY0NVRK1NwF8amaeNdBBMvMK4Pjq4QcjYrl2Hezn+PdTSkEAbAe8ejSP3w0mz3/syZ8fX2mNAfs9PnH1J39etWHMYFadP7Ph2KsP2G/2xPLvrrRoHissWvKFVu/4uStMevKb7MFimzzEuNQZnJtqR85LtSPnpdqVc1PdZnbDJm2DzeXJ88rV3vNXWJkF4yc++Xzv+JUWPPHkCvP+xz9W9V995MFKXS4zH6fUxgV4R9/2iNgSeEH18OdDPW5ETAHOA55JKTn64sycOfioZTPBO0qqpGbvO++cxrbMvBr4PBDADyJiUkQ8nZIE7S3N0GlV+RuLUM3p0/ZcYLPq528M4VgnUurmrgbst/yhLS0z/wpcUT3cf7SPP9at2HCiu2jcwCe3CxtOfBvHDPXYC0dw7N6fBxvbOH7FRfMH7afO4txUO3Jeqh05L9WunJvqNgvGr/TkzyssXjBgv8a2BROWjOkdv0LPwGMbxy+YMHHQfpKW6TOUvN2bIuIdEREAEbE+8GNKXvXXVYnWJ0XEv6vbgX2enwScDewE3Ajsk5lPLcY9AiOteaqn2gdYufq5v83ZPgO8EngGpVTDTpSd+L6dmRe1JMLR9fLq/nHK5nCNdqvuZ1KWmg8qMx+IiH8B2wO7Aj8drSAbXArsDDxvWR0lSZIkSZI6QkI2b1/AztGE30Fm/j0iPgScQNmD6qiIeAh4OmWR503A2/sZukl133cvrvcDjXto/bLKGffnwMy8b6ixdnuC9+iIOHqQ9g9m5lcGO0BErEtZkv3l6qk/ZuZlfftl5oKIOBz4C2XzL4A7gP8edtRDt6zXNyzVKuWNgYNZEvcJmdl3686NqvvbM4f8NnMrJcG70bI6jtCd1f26g3WKiHfSz9L7AWyzXBF1iMZvjCcM8k3xQN8yD/XYK/QsYMG4lfvtN+A32BP8BrubOTfVjpyXakfOS7Ur56a6zYqLG1aWj1+RiQOsSB9wZfliV5ZLrZaZX4mIfwAfpiwaXIeSz/s58Llh1s5t/GOxrJzS0P7gVbo9wXsXSxJ//em36nlE9Je0XAScBhwx0MEy88qI+ALwseqpty9vEeVlWNbrW42SVB3MXgO83keBL2Xmcf209dbRHc5r6y1RMWUYY4ajN5Zl1fhdH3h2k2LoSLMba57Ne5QHV+0/B99YQ6qxTtpgHp/YUINq3mM8PLn/E+/J80sNqnkTVmJhw4l37/iVF85hwuIFA9ZH641t9hDjUmdwbqodOS/VjpyXalfOTXWbyfMaakNPXJ2Ji/pfnDe7qkk9ceFcVly8JEnbO37eiquwcNwKA9bh7a2921uLV9LyycwLgAuG0b/fZbmZeQxwzOhEtbRur8F7UmbuPsjtZwOMu7y6/RXofUeeD/w5M2ct4988v/eHzDx/sI6jYNDXxyDJ6AazWPJ6r6oeQynN8McBxjxe3fddij6YVRr+vWboTewu6/j/obzOodz61h4ekx6avB49lPemwXYHXrvaBXb2xCnMW3GVAfs1atwFtnGn4qceu9oFdpWBd5EdPLZ7q/7uIjuWODfVjpyXakfOS7Ur56a6TeNcfGjVDQfs1zuf1uoz95YeP/Cce7BqmzrI3JU0tnR7gndEGpKkzwc2AF4PrAB8KyIOqDe6UXd1w+vdCVgPOJ5SquF3ETGtnzF3V/fTYpBiIn1s0WfsaOutf3L/YJ0y8zuZudNQbpSC2GPeovETuXuN8t+z+YM39N8pk80eKm0z1tpuyMd+ZJV1mbnSmgBsNsCxV1g0n6c9egsAt099+lJtd6+xBQvHrVCNv77f8VPmPszUJ/7T73h1Nuem2pHzUu3Ieal25dxUt1nzifuZMrfspzRjav/zecH4Fbl7zS0BmPbQP5dq2+jRW5lQlQWZMbX/i3FnrrQmD1cJ4r7jJY1dJniXUxY/ZUnZhRMjYlllADpWZs7NzP8Bfkspp3BiP90ur+5XYwjlDiJiHWDb6uGfRiPOfuxR3f+1Sccf0/6x4S4AbPLITWzw2IyntG9735WsMfchAK7f8PlDP3DEk8d++n1/Z7U5Dz2ly053XsTExfPpiXHcsMHSe+QtnDCRG9crU+zZd/2RiQufuqh6lxnnAjB//ErcvO6OQ49NHcG5qXbkvFQ7cl6qXTk31U0C2P6ePwPwr/Wfw2Mrr/WUPldtvDcLJqxE9Cxmu3uX/vi64uIFbH1f2cf86o33Yt6Ep5Ye+ctmLy19F81lq/uvGd0XoLaUQE9Pdv2t2/eZM8E7er4G3E4ptvzhmmNphf8GFgMvjYjpfdr+BvSenb13CMd6NzCeUj7hnFGK70kRsQtLEs2/Ge3jd4PrNtiFByZvSJC85upvs+nD/yoN2cM2913BvjecBsCtU7fn32ttu9TYPW75DR879x187Nx39Hti/ddNX8TsiVNYcfECXnvV11lv5h0AjOtZxLPvvJg9byn/ZVdvtAePrPLUPfIu2eKVLBg/kVXnz+Sgq77JGk+URdorLJrP7reexbPvugSAyzffj3krDO2SPnUO56bakfNS7ch5qXbl3FS7mjdhEnNWmPzkjSjpk0XjV1zq+QXjl95g79It9ufz+36Xz+/73X4TuM+9/XxWmTeThRMm8vOdjuC+KRsDsDjGc9XGe3HpVq8AYMe7LmXNOQ88Zfwet5zJCovmMXul1fn5Tu/hkUnrAGXl72VbvIyrN94TgF1v/R0rLeqKqoKSgMjsvhx3RFwM7AV8qipwPJQx04GLYOBiyRHxDuA7wGPAppk5s58+yzzOSP/9hr4XM4TXN9gxI+IY4Gjgj5k5fYDxZwBvAC7OzL37tL0F+AHly6RXZOZZAxxjZ+BSyu6An87Mo4f6Who2f9s7My8e4PjrApcAWwH/AHbIUZr0EXEl8OxVVtuKHfb47mgcsq2tNuchDvn7l1m9uqRowfgVicwnC/vfN+VpnPGcDz3l5HaPW37DHreV//5v7nkcMydNfcqx15t5B6+/4itMWlj22ps/fiUm9CxkfC4GYMZaT+dnO72HxdVlcn1t/uA/ePU132HF6nKleRNWZsXF8xmXPQBcu+GunL39oTDkiiHqJM5NtSPnpdqR81LtyrnZOT56zjvqDqFlTtzrOGb1M6f62v7uP/Hyf5zy5ONLt9ify7fcH4B3XfzRJ+d1o/umbMxPn/MB5q5Ytq1ZcdFcFo1bgZ5xEwCY9uANHHDVN5nQs6jff/O2tbfn1zu+k4UTSnJ54sI5LBg/kRw3HoBn3H05+/3jVLphVn5g8R3cxnyAq6pSil2jNyex7sbP4rCjmnUxdOc45dhduf/Oq6EL5wLAhLoDGGNOAT4BbAS8D/hMrdE032cp9YenR8TumXlZb0NmnhQRLwFeC/w8Io4Cvp2ZswEiYkXgYOB/Kcndy4FjRyuwiFir+rc/AawPPAocNFrJ3W40c9JUvr/b0Tzv9vPY+v6rWH3uw/TEOP4zZQNuWP85XLHJC548IRmu+1bbhO/t/imeP+NctnjwOqbMe5QF4yfy0KobcN0Gu3DtRrs9+Y15f25b+xl8f7dPssuM3zPt4X8yef5M5k2YxH1TnsbVT9uTm9bruvf2ruLcVDtyXqodOS/Vrpyb6jbrzbqTt116NH/Z7KXcus4zeXylNVhh8XzWfux2nnHPn3nm3ZcTg1xwvvmD1/OWyz/NX6a9hH9PfTqzJ67GSovmsO6su9jxzkvY5v6rWvhqJLWDbl/Bexdw52B9M3P3asx0hrCCNiLeB3wVeISyivfxPu1DOk4/xx3yuFat4K36/RJ4NfCHzHxRn7YJwNeBd1LKDc0DbqaUdtgC6K1V/CvgTZn5xHBeS8MK3uuB3tXSKwFTWbKpGpQVwodn5m0DvY6R6LYVvJIkSZK6Wzet4FVncAWvK3h7uYK3uz2tuo2m71E2XFuXUn/2c6N8/HZzLCXB+8KIeH5m/qW3ITMXAe+OiO8Dbwf2Bjan1H6+HzgTOCUzL1jOGBq3D51NSfZeDFwB/Cwz/7acx5ckSZIkSZLaUlcmeAdbkTrImIth2SVsMnMusN7yHmd5xg319Q12zGq17DFDOMZVy4orM68ErhxKTP2MnT5IWzeUFJIkSZIkSRpA0o1X5z9Vd/8OBi42JEmSJEmSJElqayZ4JUmSJEmSJKlDmeCVJEmSJEmSpA5lgleSJEmSJEmSOlRXbrImSZIkSZIkdbyE7Kk7iDbQ3XusuYJXkiRJkiRJkjqVCV5JkiRJkiRJ6lAmeCVJkiRJkiSpQ5nglSRJkiRJkqQO5SZrkiRJkiRJUgdKoCe7fIcxun6PNVfwSpIkSZIkSVKnMsErSZIkSZIkSR3KBK8kSZIkSZIkdSgTvJIkSZIkSZLUoUzwSpIkSZIkSVKHmlB3AJIkSZIkSZJGJjPrDkE1cwWvJEmSJEmSJHUoE7ySJEmSJEmS1KFM8EqSJEmSJElShzLBK0mSJEmSJEkdyk3WJEmSJEmSpA7V0+Mma93OFbySJEmSJEmS1KFM8EqSJEmSJElShzLBK0mSJEmSJEkdygSvJEmSJEmSJHUoN1mTJEmSJEmSOlFCuscadPnvwBW8kiRJkiRJktShTPBKkiRJkiRJUocywStJkiRJkiRJHcoEryRJkiRJkiR1KBO8kiRJkiRJktShJtQdgCRJkiRJkqThSyB7su4watftvwFX8EqSJEmSJElShzLBK0mSJEmSJEkdygSvJEmSJEmSJHUoE7ySJEmSJEmS1KHcZE2SJEmSJEnqSElPdvsWY9Dt26y5gleSJEmSJEmSOpQJXkmSJEmSJEnqUCZ4JUmSJEmSJKlDmeCVJEmSJEmSpA7lJmuSJEmSJElSh8qe7t5gTK7glSRJkiRJkqSOZYJXkiRJkiRJkjqUCV5JkiRJkiRJ6lAmeCVJkiRJkiSpQ5nglSRJkiRJkqQONaHuACRJkiRJkiSNQEL2ZN1R1K/LfwWu4JUkSZIkSZKkDmWCV5IkSZIkSZI6lAleSZIkSZIkSepQJnglSZIkSZIkqUO5yZokSZIkSZLUgRJwj7Wu32PNFbySJEmSJEmS1KlM8EqSJEmSJElShzLBK0mSJEmSJEkdygSvJEmSJEmSJHUoN1mTJEmSJEmSOlS6y1rXcwWvJEmSJEmSJHUoE7ySJEmSJEmS1KFM8EqSJEmSJElShzLBK0mSJEmSJEkdyk3WJEmSJEmSpE6UkOkma3T5r8AVvJIkSZIkSZLUoUzwSpIkSZIkSVKHMsErSZIkSZIkSR3KBK8kSZIkSZIkdSgTvJIkSZIkSZLUoSbUHYAkSZIkSZKk4UuSnp6sO4zaJd39O3AFryRJkiRJkiR1KBO8kiRJkiRJktShTPBKkiRJkiRJUoeyBq80cpsCzH38Dq699B01hyJJkiRJzfWBxXfUHYK0lLtY0PvjpjWGIdXOBK80cisB9PTM54mZN9cdiyRJkiQ11W11ByANbKW6A6hTZndvMCYTvNLyeABYB5gH/LveUDreNsAkYA5wY82xSI2cm2pHzku1K+em2pHzUu3IeTl6NqUkdx+oOQ6pViZ4pRHKzGl1xzBWRMSVwLOBGzNzp7rjkXo5N9WOnJdqV85NtSPnpdqR81LSaHOTNUmSJEmSJEnqUCZ4JUmSJEmSJKlDWaJBkiRJkiRJ6kQJ2eMma3T5r8AVvJIkSZIkSZLUoUzwSpIkSZIkSVKHMsErSZIkSZIkSR3KBK8kSZIkSZIkdSgTvJIkSZIkSZLUoSbUHYAkSZIkSZKkkcmerDsE1cwVvJIkSZIkSZLUoVzBK6kdfBdYH/hP3YFIfTg31Y6cl2pXzk21I+el2pHzUtKoMsErqXaZ+Z26Y5D649xUO3Jeql05N9WOnJdqR85LSaPNEg2SJEmSJEmS1KFcwStJkiRJkiR1oAR60k3Wuv034ApeSZIkSZIkSepQJnglSZIkSZIkqUOZ4JUkSZIkSZKkDmWCV5IkaQyIiMkR8Za645D6ExEr1B2DJEnSWOUma5IkSR0sIvYBDgVeDawMnFRvRBqLImLHzLxmhGMnAr8EXjaqQUmSJMgke7p9izGgyzeaM8Erqa1FxCrAezPz+LpjUXeoVpntCKwLrArMAu4Hrs3MhTWGJj0pIrYADgPeBGzU+zTwSF0xacz7fUTslZk3DmdQldz9LbBPc8KSJEmSCV5JbSkiVgXeB3wAWBMwwaumiojnAh8HXgRM7KfLvIj4PfDZzLyypcFJQERMAV5HSew+v/dpYCFwDnAqcFYtwakbrA38ISL2yMzbhzIgIlamzMm9gTnNDE7qFRGvBvYHnsdTv6z9K/CbzDyzvgjVjZyXkprNBK+klqmSEy8GplE+6F2dmX/q02cV4MPA+4HVKcmL+1sbqbpNRBwJfJYy32KAbisDrwReERFHZuaXWxWfuldEBOV981DK/FuJpefoI8A2mflQDeGpu1xESdReEBF7Zubdg3Wu/p7/DtgDeAJ4RfNDVDeLiK2BnwHb9T7V0LxWddsWOCwirgMOysxbWxuluo3zUlKrmOCV1BIRcQDwPWC1Ps9fDLwyM2dX32yfCKxDOfm5G/hiNU5qiog4BPhc9fB64NvApcCdwGzKCotNKEmKdwFPB74QEXdn5k9bH7G6QURsQ1mp+0ZgfZZ8ILwHOB04jTJfF5jcVYvsD5wP7MKSJG+/X8BWV+GcW/V9HNg/My9pWaTqOhGxOfBnynlmAFcw8N/yZwM7AH+OiOcOdUW6NFzOS0mtZIJXUtNFxPbAGUDvDtqPUS6BXxmYDnwtIv4CfIty8nM78HngFGueqpmq2pBfARL4KvCRzOzp0+2x6nZtRJwInEApH/K1iPhVZi5oWcAa8yLi3ZTE7s69T1E+BP4S+CFwYWbZQaIs7pVaIzPnRMS+wIWURMT5ETE9M5eq+xwRqwHnAc+hXH68X9+rdaQmOIVy5dfNwJsz828DdYyIXar+W1I2pdy7+eGpS52C81JSi4yrOwBJXeH9lOTun4CtM3NNYDLwEuA+4BDgS5Q6kh+p+nzP5K5a4EDKpXF/yMwP9ZPcXUpm9mTmB4ALgKnAAc0PUV3mm5TkbgJ/oGyitl5mHpaZF/Qmd6U6ZOYsSp3y64HtKRuvTeltj4g1KQng51C+GHuxyV01W0Q8B9gNuBfYY7AkGkBm/hnYE/gPsGdE7DxYf2kknJdqtczs+lu3M8ErqRX2pCRvD87MWwCyOJ+S0F0BWAV4U2aekJmL6gtVXWYfSiLtc8vq2MdxlJWVLxz1iKRiNuVqhn9npptTqW1k5qOU986bKSt5fxcRkyJiKiW5+yxKbegXLSuhIY2Sgyh/y4/NzAeHMqAqL3Is5W/5QU2MTd3LeSmppUzwSmqFDSlJijv7abugur8vM3/WwpgkKMmJeZR6aMNxaTXu2aMekbrdccBdwBTg7cAlEXFbRHwqIrasNzSpqJIV+wD/ptTZPZuyCdszgYeBfTLzytoCVLfpXek43Lr4vf1dKalmcF5KaikTvJJaYRLQ70YsmflA9eMdrQtHetJ6wO2ZuXg4g6pV5rdTNr+SRk1mHgVMo1wG/2NgbvX4KODGiPhrRLynWi0p1SYz76Ekee+hXKmzHfAAMD0zr60zNnWdLYA7qtXlQ1bVj76DUvNUGm3OS0kt5SZrktqFZRlUh9WA20Y4diaw2SjGIgGlhA3l6oYLImIy8DrKxmu7UWqb7kzZ7A9gQkSs6GZ/araI2HOAps9QakcncAyw1kB9M/OS5kSnLrcapWTISDwEbDWKsUi9nJeSWsoErySpm00EhrV6t8FiYMVRjEV6isycDfwA+EFEbEZJ9L4J2KTqshZwf0T8H3BaZl5eS6DqBhdTkriD+eYgbYmfPdQckylXO4zEvGq8NNqcl2qpnh43Get2lmiQ1Cq7RcTi/m6UD30DtkeEq3sldb3MnJGZn8zMaZRL438EzKGsEnobpV7vLXXGqDEvluPm5w41S9QdgNQP56WklvJbdEmt4kmO2tWWEXHSSMaNeiTSEGXmRcBFEbEK8FrgUGAPLBuiJslME7RqZ6sNUkZk0HGjHom0hPNSUsuY4JXUCnvXHYA0iHUol70PR1K+tPBaKNUqM58ATgZOrko4vKnmkCSpDtsDF9UdhNSH81JSy5jgldR0mfnHumOQBnBq3QFIoyUzZwCfqjsOSarB8lwp5pe1ahbnpaSWMcErSepamXl43TFIUieIiE8u7zEy89OjEYvUyPIhakfOS7VSJqSbrJFd/iswwSupNhGxOrAhMAWYBdyTmY/VGZMk1SkiZiznITIzNx+VYKSlHcPIV5T1lrQxwStJktQEJngltVRErAG8B3gDsE0/7TcCPwZOzMxHWhyeJNVtU5bUeB6JLl+7oBa4Efhn3UFIkiRpCRO8klomIl5KqXk6lYGTF9tSakgeERGHZeY5rYpPktrIvyjvlzfUHYhUmQusTPly9gngNOAMv4yVJEmqnwleSS1RJXfPBFYAHgVOBy4GbqV8UFwF2AKYDhwCrA2cGRGvNMmrZvFyeLWhM4BXUb7s+hxwNXAK8OPMfLi+sCTWA14LvBnYHdgJ+FJEnE1J9p6dmYtqjE9dyvrQakfOS0mtFtntVYglNV1ETAFuA9YC/g9412C1dqvavN8BDgIeArbIzFnNj1TdJiJ6lvMQmZnjRyUYqRIRkymJtEMpiTSAhcA5lFW9Z5lIU50iYhplfr6ZJWVFHqF8QXFaZl5ZX3TqNtXf8uX6UOvfco0256VaISKuBJ69xrrPYN/DXRN1zsn78uj9/wC4KjN3qjueVnMFr6RW+C9Kcve3mfn6ZXXOzMci4vWUS0FfBrwbOL65IapLHV53AFJfmTkbOAk4KSI2ZUki7ZXAK4BHIuLHwA8z8++1BaqulZm3UzZdOyYi9gAOAw4EjgDeGxG9JUZOz8x764pTXeMSrD+u9uO8VEu5eFOu4JXUdBFxGbALsGVmDvmS+IjYArgZ+FNm7r6s/pI0lkXE7ixJpE2hfHC8CfhCZp5SX2QSRMTKwGsoX0bsQ6m1/4fMfEmtgUmSNEY1ruB96WG/qzuc2p17yn5dvYJ3XN0BSOoKWwEzhpPcBcjMW4EZ1XhJ6mqZeVlmvo1SC/UQ4E5ga+DgWgOTgMycC1xU3e6lJHgH2lBVkiRJo8gSDZJaYTVKonYkHgY2GsVYpCGJiFUoqyRnZeYTdccjAUTEhsCbKGUbNqmeXlhfROp2DSt3DwX2piwgSeA84Gs1hiZJktQ1TPBKaoWHgfVHOHZ94NFRjEXqV0SMB95Q3XalJHd722YBfwJ+DPzEDa7USlUC7QCWTqAtBn5PqXP669qCU9eKiL0oc/IAYDJlte4/KXPyR5n5nxrDUxervqDdj/K3fCOqL2uBuyl/y8+pap1LLeO8lNRsJngltcL1wD4RsWNmXjPUQRHxLMoJ0AXNCkwCiIgdgJ9QyoH0d0nxasC+wEuBoyLi9cOZy9JIRMR0liTQVqHMzRtYkkC7r7bg1JWq2vhvBt5IWUEewEOUOXlqZl5ZY3jqchExDvg48EHK321Y+m96Au8DZkXE/wKfzczFrY1S3cZ5qdZIsqen7iDa2WpKWQAALIVJREFUQHfvMWaCV1IrnAm8EPh6ROyTmQuWNSAiJgLfoLxL/6rJ8amLRcROlJqRkymrIs8BLgZuBZ6gJNa2AKZTkrxbAZdGxN6ZeUUNIWsMi4gtWZJA25glCbSTgNMy86oaw1MXi4jLgedXDxdS/rafCpztVQ2qW3Wlw++APSnvm4uBf/HUv+XbUpJsR1MWH7y0qh8tjTrnpaRWMsErqRW+D/w/yiVJ50XEYZn574E6R8Q04GRgF8omQt9vRZDqPtUXCb+gJHcvAw4bZDPAEyJic8rc3B34eURsnZnzWxOtusRNlC+2FgK/BE4DfudqHrWBXShz80bKFQ8PAxsC74gY2l5qmXli06JTtzsV2AuYBxwPnJiZD/btFBFrA/8FHEn5W34acFAL41R3cV5KapnI7O4lzJJaIyJ2pqySnAQsAs6tHt8GzKYk2Dan1Jd8KbACMAeY7ipJNUtEvAf4OnA58MKhJGurpPCFlJVs78vMbzY3SnWTiOihJNFuBx4ZwSEyM583ulFJS83NEcvM8aMUjvSkqpzNhZQ9G148lFIh1XnpeZRVky/MzIuaGaO6j/NSrRARVwLPXmPd7XnJm8+uO5za/f60l/Ho/dcDXJWZO9UdT6u5gldSS2TmFdWGLD+hXIr08urWV+8yoFuBN1jPT032akrC4r1DXYmbmfMj4r3AldV4E7wabQFsVt2Gy2/u1SyX4PxSezqMMjc/NNTzxuq89EOU8jeHUhYdSKPpMJyXklrIBK+klsnMqyJiO+Bg4PWUkg2rNnR5nLKL7E+AMzJzYeujVJfZDrgrM68dzqDMvDoi7gK2b05Y6mKH1x2A1J/MnF53DNIA9qCcQ54+zHGnA1+txkujzXmp1kno6fE72G7/GtoEr6SWqpK2p1Y3ImIKJcn7eGbOqjM2daU1gGtGOPY+YIfRC0WCzDy17hgkqcOsB9w43M3+MnNhRNwKbN2csNTlnJeSWmpc3QFIGvsi4qSI+J/+2jJzVmbeY3JXNZkJTB3h2KmA81aSpHotBkZa33k80DOKsUi9nJeSWsoEr6RWOAzYr+4gpH7cDEyLiM2HMygitgCmATc1JSqpHxGxSkSsHxGr1B2LJLWRe4AtI2LScAZV76VbVeOl0ea8lNRSJnglSd3sLMqGVl8e6oCICOAESpWns5oUl0REjI+IN0bE2RHxKGXF+N3ArIh4tHr+jRFhyS1J3ewiYCXgXcMc965qnBtZqRmcl5JaygSvJKmbfQt4BNg/Is6IiNUG61y1nwG8vBr3reaHqG4UETsA11Pqle8LrEb5MqL3tlr1/KnA9RGxYz2RSlLtvlvdHxsR+w5lQETsBxxLuQz+e80KTF3NeSmppVzxIUnqWpk5KyLeBJwJvA54cUScTlk1cRswG5gMbA7sDRxC2ZhtMXCotaPVDBGxE2UOTqbMtXOAi4FbgSeAVYAtgOmUJO9WwKURsXdmXlFDyJJUm8y8JiJOBN4D/DYiTgG+mZlX9+0bEc8C3gscSvmy7Nv99ZOWl/NSrZRAZtYdRu26/TdggleS1NUy85yIeBVlJeRalBPs9w7QPSgrdw/LzN+1JkJ1k4iYCPyCkty9jDLXZgzQ/YSqfvTJwO7AzyNi68yc35poJaltvJ/yN/z1wOHA4RExE7idJV/WTqNc/QDl7/lPgSNaH6q6iPNSUsuY4JXUKltGxEkjHJuZ+dZRjUZqkJm/i4htKCfUrwO27qfbTcBPKKsvHmplfOoqbwM2Bi4HXrSsZG1m3hYRLwIuBJ5fjf9m06OUpDaSmT3AwRFxHnAUsBmwOvCsfrrPAD6bmSe3LkJ1I+elpFYKl3FLaraI6KFcMRHDHNo7JjNz/KgHJg0gItYENgJWBR4H7snMh+uNSt0gIv5AKQfy7My8dhjjngVcCVyYmS9sVnyS1O6qzVCfC+zG0n/L76Z8efa39EOwWsx5qWaIiCuBZ6++zva86I2/rTuc2p3/o/157IHrAa7KzJ3qjqfVXMErqVUeAM6tOwhpKDLzEUopBqnVtgPuGk5yFyAzr46Iu4DtmxOWJHWGKkn21+o2qCo5snpmbt70wNTVhjMvJWkkTPBKapVbMvPwuoOQpDa3BnDNCMfeB+wweqFI0pi3MbBm3UFIfUXEczPzb3XHoc6RPS4A73YmeCVJXSsi9lzeY2TmJaMRi1SZCUwd4dipwKxRjEWSJLVQROwKHA3sg/kaScPgG4YkqZtdTKn1PFKJf0s1um4Gdo2IzTPztqEOiogtKDtxX960yCRJ0rBFxFTK3+g5wK39baBaLTo4GphOtQdJK2OU1PnG1R2AJEk1i+W4+XdUo+0sytz68lAHVBu3nED5MHhWk+KSJEnDEBFbRsSFwP3AX4DrgPsj4hMNfTaJiLOBiyibrAL8Cti51fFK6mx+MJUkda3MHDfQrepy2WB9GvpJo+VblA3+9o+IMyJitcE6V+1nAC+vxn2r+SFKkqTBVKt2LwH2YunFAVOAYyLiyIjYhVJ3f1+gB/gx8IzMPCAzr64lcEkdy8tKJbXCp4A76w5CktpdZs6KiDcBZwKvA14cEadTVvbcBswGJgObU1b6HELZmG0xcGhmWoNXkqT6fQBYF3gA+ATwV2ASsD/wEeC/gXcBqwG/Bf47M2+uJVJ1vkw3WQPI7v4dmOCV1HSZ+am6Y5CkTpGZ50TEq4BTgbWA91a3/gRl5e5hmfm71kQoSZKWYV9K6aQDMrOxPv5fIuIJ4FjKF7Sfz8yP1RGgpLHFBK+kpqs2DVgumXnJaMQiSZ0gM38XEdsAR1BW8m7dT7ebgJ8A38zMh1oZnyS1i6rG6UgNWgZHWg6bA/f0Se72Op2S4J1FudJRkpabCV5JrXAxy7cTbOL7laQuk5kPA8dQavWtCWwErAo8TvnQ+HCN4UlSu5i+nOO7+5peNcuqwA0DtPWWrrs1M+e3KB5JY5wJE0mtEjWNlaSOl5mPUEoxSJKW5gpItaOg1Md/iszMiACY29KIJI1pJnglNV1mjqs7Bkka6yLiacDHMvPddcciSa3iXg+SBD3ZU3cIqpkJXkmSpA4WEZsCHwfeBKwAmOCVJKl+z1hGjejB2jMz92lGUJLGJhO8kqSuNYSNWZZ1Yu7Jt5oiIjYDXgNMA+YAVwP/l5mLGvo8jXJp8iGUc7oArmt9tJIkqR+rMXiN6MHarQ0taVhM8EqSutn0ZbQv68Tck2+Nuoh4P/AFnnqedlRE7JOZ/4mIDwDHARMpid2/AZ/NzN+2NFhJqllEnADMyMxv9NP2TGB2Zs4YYOzXgO38slZNYOkQSS1lgldS00XEJ5f3GJn56dGIRerDk2+1lYjYFTiBkrSdA9wMTAI2B7YGToyIa4CjqyGXAZ/JzPNbH60ktYUPUN4Ln5LgBa4BLgX2GmDss4BdmxKVupq1oSW1mgleSa1wDMu/0tEEr0adJ99qQ++hJHfPBA7LzJkAEbEt8Ctgf2Bf4FHg7Zn5y7oClaQOEXUHIElSs5ngldQKv2T4Cd5JwIuB8SMYK0mdaldgPvC23uQuQGb+KyI+DPyWspHagZl5UU0xSpIkqU0kkD1+ZO7234AJXklNl5kHDrVvRKwAvBP4GDCuevrPzYhL6hURKwMvAraqnroZOD8z59YXlbrUupRakg/309b7XniXyV1JkiRJvUzwSmoLERHAmyl1JTdhyW7wR2XmWXXGprEtIl4I/BBYp0/TAxFxaGaeV0NY6l4rAf0ld8nMR8pbJXe3NCJJkjQsEbF4OQ+RmWm+RtKQjVt2F0lqrog4ELgBOAnYFLgVODgzdzS5q2aKiM2BX1NWTQYwG3ii+nld4JcRsUVtAUr966k7AEmSNKgYhZskDZnfCEmqTUS8FDiWsoNxUFalfRo4OTOX91tvaSg+SKn3/A/gLZl5JUBEPAf4AbAdZXfu99YVoLrSxIjYeKTtmXlnE2KSJElDt/cAzwdwIeXc832tC0fSWGeCV1LLRcRuwHHA7pSTnAeBzwEnZuaCOmNT13kBsBh4XWbe2PtkZv49Il5PKRPygrqCU9faGbh9gLYcQrvnd5K6zWoRsedI2poVkLpbZv5xoLaq3NLMwfpIw5JusgZ0/S5rfgCQ1DIRsSMlsfsSSmJ3JvBl4H8z84kaQ1P32hi4ozG52ysz/xkR/676SK20PJdlekmnpG60PdDf5pM5SJskSWOGCV5JTRcRWwOfAV5Dqf09B/g6cHxmPlZjaNIk4N5B2v8DTGtRLBI43yRpJJbny60uX/MlSRoLTPBKaoUbKCfei4HTKHV37wOIiElDOUBmzmladJLUJjLzjrpjkKROkpluHC5J6nomeCW1wjjK6ojxwKHVbTisKSmpK0TEScDNmfn5umORJEmS1BlMmEhqFWtKql3tFhGLB+swSHtmpn9LNZoOAy4DTPBK0hBExBGZ+fW645Ck+iSZVpvp9oo7fiiV1ArWlFQ78wsESZI611cj4gDgLZk5o+5gJEmqgwleSU1nTUm1sb3rDkCSJC2XB4A9gesi4qjM/ErN8UhExCeX0WXjZfXJzE+PYkiSxjgTvJKkrpWZf6w7BkmStFy2Bb4OHAx8uWE17y31hqUudwyDXy++MXD0Mo5hglfSkJngldTWImIdYKXMvLPuWCRJktReMvNR4I0R8WPgO8BuwLXV6sgvp4UpVY9L6PaCoJJaygSvpKaLiEeAP2Xmy/tpOwGYkZnfGGD4L4Bd8P1KUvfYMiJOGuHYzMy3jmo0ktQBMvPsiHg6cALwFuB44ICIODwzb6w3OnWbzJxedwySuosJE0mtsDowZYC2D1B2jB8owQtugqUmiYg9l/cYmXnJaMQiNVgHOGyYY5LyXpmACV5JXSkzZwFvi4ifUFbzPg+4JiLuHXxYbt6SACWpSXp6euoOQTUzwStJ6mYXs3yXzyX+LdXoewA4t+4gJKlTZeYfIuJkSg3TFYFNB+vekqDUVSJiMXBZZu5VdyySuoMfSiVJgpnA4rqDkCq3ZObhdQchSZ0oIrYETgJ2rZ46Azi/vojUpQKvQpTUQiZ4JUmCucDpwGmZeX3dwUiSpOGJiAA+DHwKWBm4D3hXZv6m1sAkSWqBcXUHIElSjV5EWdmzGuVD4bURcUVEHBERU+sNTZIkDUVEbAv8ibKx2srAj4Cnm9yVJHULV/BKkrpWZl4AXBARk4GDgEOBPYBnAV+KiHOAU4GzMnNhfZFKkqT+RMTHgE8AE4F7gXdm5tn1RiVJrZMJ2WM58ezyX4EreCVJXS8zZ2fmyZk5HdiMcnnnXcArgJ8D/4mIb0TEc2sMU5IkPdWxlOTuqcB2JnclSd3IFbySWmXLiDhpJG3NCkjqT2beQdl1+9MRsTtlVe9BwLuBd0fETzLzkDpj1Jj2KeDOZXWKiAnA0ylJjdsy85FmByZJbeoe4B2ZeU7dgUh97BYRI93ENzPTfI2kIfMNQ1KrrAMcNkDbugO0JWX32S6/2EJ1yczLgMsi4gzKjtybAGvXG5XGuC8BO0TEczLz7/11iIiPAEcBq1ZP9UTEr4B3Z+bDLYpTktrFdpk5q+4gpH5E3QFI6h4meCW1wql1ByANV0Q8DXhTdduKcpI+E7iwzrg05r2a8p75U+Dgvo0RcSRwHEt/aBwPHABsEhG7ZGZPKwKVpDbxgYjly6Nl5qdHKRap0T+A99UdhKTuYIJXUtNl5uF1xyANRURMAg4E3gxMp9SqXwycC5wG/Doz59cWoLrBXtX9KX0bImIq8Mnq4Q3AkcBtwO6Ulb87A4cAP2x6lJLUPo5h5Fd79V4pZoJXzTAzM/9YdxDqBonf70O3X/hrgleS1PUi4gWUpO5rgFUoH/iup6ykPD0z76sxPHWXnYEFwEX9tL0WWBmYC7wsM3tr9d5U1fg7ifIFhQleSd3oRuCfdQchSVIdTPBKkrpWRHwWeCOwESWp+yDwA+DUzLymxtDUvdYFbs3Mhf20Ta/uz21I7vY6Hfg6sGPzQpOktjSX8uXXNsATlCtuznDzSUlSNzHBK6l2EbHfIM1/z8wHWxaMus1HKdfy3Ej5QHgOsAggIp4+lANkpquFNJrWAvomb3vtTJmv5/VtyMyFEXEnMK2JsUlSO1qPcoXDmykla3YCvhQRZ1P+tp+dmYtqjE+SpKYzwSupJSLie8A+wLcz8wt9ms9i4II5/we8oZmxSZRVP8dVt+FI/Fuq0TUPWL/vkxGxFrApZc5dOcDY2ZQN1ySpa2Tm45Srb34QEdOAQynJ3lcDrwIeiYgzgNMyc6D3T0mSOtq4ugOQNPZFxFbAWyjvOV8doNsCyqq1xtsTwGsjYvNWxKmuFctx8++oRtutwIb9vO+9qLqfC1w9wNj1AC9JltS1MvP2zDwmMzejbFp5CrAicATwt4i4PiL+OyI2qDNOdYVfAwfVHYSk7uEHU0mt8Lrq/suZOX+APn/PzGmNN+BDlCSaK3jVFJk5bnlvdb8GjTnnUs7PvhERKwNExOrA/6Os3j0nMxf3HRQR6wBPA25pXaiS1L4y89LMfCvly683AX+gXLHzeeDkOmNTV3gV8MeI2K3uQNQdsie7/tbt/GAqqRX2rO5/NsxxPwbmU1ZgSFI3+BrwGPBi4L6I+BtwO7ADJcH75QHGvaa6/2OzA5SkTpKZc4GLqtu9LLkKR2qmfwFbUZK8X+n90laSmsUEr6RW2A64MzPvG86gzHwCmAEMabMrabgi4oi6Y5AaZeb9wCuAB4FVKRurrUZJ7h6ZmX8ZYOh/McAGbJLUjSJi5Yg4JCLOA+4APgtsQHmf/Eqdsakr7EjZ26GHUiLkuojYc9ARkrQc3BhGUiusAVw3SPs3gdsGaJuJu8Kreb4aEQcAb8nMGXUHIwFk5mVVDd6XAZsBs4DfZ2a/75MRMZWywVACf2pZoJLUhiJiL8pGawcAkymrdf8JnAr8KDP/U2N46hKZuRA4KiJ+TikJsgNwYUR8G/h/mTmn1gAljTkmeCW1wiJg4kCNmTnYKspVgKfUm5RGyQOUEiLXRcRRmfmVmuORgCevYPi/IfZ9iIE3sJSkMS8itgDeDLwR2ISS1H2IktQ9NTOvrDE8dbHMvCYidgY+ChwFvBvYNyLenpkX1hudpLHEBK+kVngI2CQiIjOHXP08IsYBm1bjpWbYFvg6cDDw5YbVvG5UJUlSB4iIy4HnVw8XAmdSErtnZ+ai2gKTKtXmqMdGxC+B71Pm6/kRg5aCzsw0X6OhSdxkDMq1bF3MNwxJrXAFZQOgXYHLhzFuT0oNyvObEZSUmY8Cb4yIHwPfAXYDro2ITwJfHs4XEpIkqRa7UD7W3wj8BHgY2BB4xzISaE/KzBObFp20xAzgSkqC143+JI0qE7ySWuFsSh20z0TEPkNJmkXEeOAzlBP23zY5PnW5zDw7Ip4OnAC8BTgeOCAiDs/MG+uNTpIkDcE2wDEjHGuCV01VbbD2A0pt/UXAF3ARi6RRZIJXUiv8iHLCvRfww4h4Z1Vfsl8RsQrlBGg34E7g9FYEqe6WmbOAt0XETyireZ8HXBMR9w4+LDdvSYCSJKk/l9D1F+aqXUXEJEoy913AOOAfwOGZeVWtgUkac0zwSmq6zFwUEW8ALgTeALwwIk4DLgVuB56gbKa2KSUJ/GZgKrAAONj6aWqlzPxDRJwMfBpYkTIvB+zekqAkSVK/MnN63TFI/YmIfYDvUTb+WwwcB3wmMxfWGpikMckEr6SWyMw/R8R+wE+BdYAPV7f+9O58/IbM/FOLQpSIiC2Bkyj1ogHOwMvnJEmSNAwR8V3grZTPNddSVu1eU2tQGrMS6MmeusOoXbevvDHBK6llMvOiiNgaeB/wOkqttL56N8j4erUBltR0UXZh+TDwKWBl4D7gXZn5m1oDkyRJUid6G7CQsmr3s16RKKnZTPBKaqkqafsp4FMRsSZll+NVgceBezLzkTrjU/eJiG0pq3afS1ll8SPgfZn52DLGfRWYnJlvbXqQkiRJ6iRXA4dl5j+GO7Daj+S9mXn86IclaawywSupNlUy14SuahMRHwM+AUwE7gXemZlnD3H4wcCalMvvJEmSpF7PzczFwxkQEatSrnT8AOUc0wSvpCEzwSupNhGxOmUF7xRgFmUF72N1xqSuc2x1fyrwgcycWWcwkiRJ6ny9yd2ImAK8GJgGzAGu7rvHSLVi98PA+4HVKVeU3d/KeCV1PhO8kloqItYA3gO8gX5q8EbEjcCPgRMt16AWuAd4e2aeW3cgkiRJGjsi4gDge8BqfZ6/GHhlZs6OiFcDJ1I2oQ7gbuCL1ThJGjITvJJaJiJeSlkpOZVyAtOfbSk1eo+IiMMy85xWxaeutF1mzqo7CEmSJI0dEbE9cAawQvXUY5SSYCsD04GvRcRfgG9RPhfdDnweOCUzF7Y6XnW6JHuy7iDaQHf/DsbVHYCk7lAld88E1qac4HwDOBDYEdiyuj+wev6xqt+ZEbFvy4NV1zC5K0mSpCZ4PyW5+ydg68xcE5gMvAS4DzgE+BKwEPhI1ed7JncljZQreCU1XVV76oeUk5z/A941QK3d64BfRsQnge8ABwGnRsQWJuIkSZIkdYg9KcnbgzPzToDMTOD8iPgIcDolH/P6zPxZfWFKGitcwSupFf4LWAv4bWa+flkbqVXtrwfOqsa9u9kBSpIkSdIo2RD4d29yt48Lqvv7TO5KGi2u4JXUCi+nFMT54FAHZGZGxIeqsfsDxzcpNnWxarX4SE0atUAkSZI0lkwC7u+vITMfiAiAO1oakaQxzQSvpFbYCpiRmTOGMygzb42IGdV4qRmOYeTV+GM5xkqSJKm7Lao7AI0RCdnTU3cU9evyT2YmeCW1wmrAsJK7DR4GNhrFWKRGl9D1pwKSJEmSpE5mgldSKzwMrD/CsesDj45iLNKTMnN63TFIkiRpTNotIhYP0JbLas9M8zWShsxN1iS1wvXARhGx43AGRcSzKKt3r29GUJIkSZLUJLGcN0kaMr8RktQKZwIvBL4eEftk5oJlDYiIicA3KN9u/6rJ8UmSJEnSaNm77gAkdRcTvJJa4fvA/wN2Bc6LiMMy898DdY6IacDJwC7AndV4SZIkSWp7mfnHumNQd8ketxXpdiZ4JTVdZs6PiAOAi4A9gJsi4tzq8W3AbGAysDnl2+6XAisAc4ADh7LiV5IkSZIkqRuZ4JXUEpl5RUTsBfwE2AJ4eXXrq7fe1K3AGzLzyhaFKEmSJEnLLSKuAq7KzLf10/Y+4J7M/MUAYy8FdnGTNUnD4SZrklomM68CtgMOB86jrNxt3EhgNvD7qn07k7uSJEmSOtCOwFYDtH0FeP8yxrvJmqRh8RshSS2VmQuBU6sbETEFWBV4PDNn1RmbJEmSJElSpzHBK6lWVVLXxK4kSZIkSdIImOCV1NYi4vnA0Zm5b92xSJIkSZLUXpLMnrqDaANZdwC1MsErqS1FxB7AJ4EX1B2LJEmSJElSuzLBK6llImJP4LXANGAOcDXwncx8uKHPc4HPA3tRNhdI4KzWRytJkiRJktT+TPBKaomIOIElu8X2Jm5fAxwREdOBW4ATgCOq9h7g58BnM/O6VscrSZIkSZLUCUzwSmq6iNgP+ED18E7gKmAS8FxgXeBbwE3AOymJ3dMpid2bWh6sJEmSJC2/jSPikyNpa1ZAksYuE7ySWuHt1f13gfdm5iKAiFgb+C2lHMOewB3AQZl5RS1RSpIkSdLoeBpw9ABtGw/S1nu1ozQkmdDT45TJLv8VmOCV1Ao7U2rufqg3uQuQmQ9GxJHARdVTr8rMa+sIUJIkSZJGySWYpJXUQiZ4JbXC2sBNmTmnn7arqvvbTO5KkiRJ6nSZOb3uGCR1l3F1ByCpK6wIzOyvITMfr368v3XhSJIkSZIkjQ0meCW1Cy9hkiRJkiRJGiZLNEhqldUiYs+RtmfmJU2ISZIkSZKkjpY9PXWHoJqZ4JXUKtuzZDO1vnII7b5fSZIkSZIk9WHCRFKrRE1jJUmSJEmSxiwTvJKaLjOt9y1JkiRJktQEJl0kSZIkSZIkqUO5gldSS0TEeOD9wBuBraqnbwZOB76amYvqik2SJEmSpE6VPVl3CKqZCV5JTRcRAZwJ7MvS9XR3BHYA9gH2a31kkiRJkiRJnc0Er6RWeDNLErhnAxdRSsRMr55/SUQclpmn1BKdJEmSJElSh7IGr6RWeCOQwMcyc//MPCEzv5SZLwc+TlnVe0itEUqSJEmSJHUgE7ySWmEHYBbwhX7avlC17dDSiCRJkiRJksYAE7ySWmEN4JbM7OnbkJmLgVuA1VsdlCRJkiRJUqezBq+kVhgPzBukfV7VR5IkSZIkDVUm/ayl6j6ZdUdQK1fwSpIkSZIkSVKHcgWvpFbZOCI+OVAbwCDtZOanmxKVJEmSJElSBzPBK6lVngYcPUBbVPcDtQOY4JUkSZIkSerDBK+kVrgE6O6COJIkSZIkSU1ggldS02Xm9LpjkCRJkiRprEkge1xP1e2/ATdZkyRJkiRJkqQOZYJXkiRJkiRJkjqUCV5JkiRJkiRJ6kdE7B0RZ0XEgxExNyJujIjPRMQqy3HMAyLiooh4NCKeiIhrIuIjEbHCSI5ngleSJEmjLiIujoiMiGP6aft31XZY6yNrrup1ZURMH+a4TRvGbtoOMY3Sv31K9W+f0up/W5IkaXlFxBHABcDLgHnAv4BNgaOAv0fEmiM45peAnwPTgYeBW4HtgS8Cf4iIicM9pgleSZKkNhMRxzQk5Rpv8yLi7oj4TUS8NiKi7ljbQZUcPaa/ZLIkSdJYlz09XX9rhojYCfhK9fCdwMaZ+WxgM+BKYFvge8M85quBDwPzgVdm5haZuQMlwXs7sCdw3HBjNcErSZLU3u5vuCWwIbA/8FPg7JF8w98GbgNuAmaO0vE2BY6ubpIkSdJo+AQld/rDzPxuZiZAZt4LvAHoAV4TEc8cxjF7z1ePz8zf9D6ZmTcCb6sevici1h5OoCZ4JUmS2lhmrtd7A1ahfLt/ftW8L3BsbcGNUGbuk5nbZOav6o5FkiRJ6isiJgMvrR5+t297Zt4CXFg9PGiIx9wS2GGQY15IKdcwEXjFcOI1wStJktQhMrMnM2+gnPDdWj39zoiYUGNYkiRJ0ljzLEqidT7wtwH6XFrdP3+Ix+ztNyMz7xmlYwImeCVJkjpOZs4DflY9XBXYBp66UVdEbB4R342I2yNifkT8u/E4ETEuIg6JiN9FxP0RsaDaHfi8iHjDYDV+I2J8RBwREVdVO/8+Um2sduCy4h/KJmsR8byIODkibo2IORExKyL+GREnRcRLGo8FXNTwuG/d4lP6OfaqEfE/EfHnKu75EXFXRPwkInZZRuxrRMQXI+K2qibyfyLiZ1WNtqaJiOdHxPERcWlE3FH9249FxF8i4shqlclQjrNeRHyjmhPzIuK+iDg9IrYZwtiXRcQvIuKe6nf2aERcEhHvjogVl/9VSpIktY2tqvs7M3PhAH1uq+63HuYxbxukz3CPCYCrPSRJkjrT3Q0/T+mnfVfgO8BkYA6w1IlptePvrygbOfSaCUwFXlTdXh8RB2Xmgj5jJwJnAr2J1h5gQXWsvSLi+BG+JiJiPHAC8L6Gp58AFlES2dsCrwFWr9oepLz+NarH9/c55FJ1fiNiR+C3wEbVU4spv5+NgNcBr42Ij2fm5/qJbVPgYmCT6qkFwCTgQOAVETGky/NG6M8NP8+pbmsAz6tub46IvTPzgUGOMQ34MbAeMJcyJ9YFDqbUj3t1Zp7bd1BErAycRnmdvWYBqwF7VLc3R8R+mfnoCF+fJEkagbmP38E1l76j7jBqN/fxO3p/3CYirhzG0O9m5nf6eX7N6v6RQcb2tq0xSJ9mHxMwwStJktSpNm34ub+TxO8ANwDvzcwrACJiq+p+PPBLSkL2GsoGEhdm5pyIWAU4APgipRTE8cAH+xz7c5TkblZjv56ZsyJiHeAY4EhGvoHacSxJ7p5E2YDi5iru1YDplE0tAMjM50TEdKpVvFWt4n5FxPrA74F1KK//OOC6zFxYxf5e4KPAcRHxr8z8dcPY8ZRV05sAj1J2Uv5VZi6KiKcD3wZOHeFrHorfAj8CLsnM+6qYVqbUhvsc0BvDawY5xv9S/l9eDPwhMzMingt8H3gG8NOI2C4z7+4z7ruU5O4Myv/3WdX/90rVsf6XchnhScCrR+PFSpKkoenpmc8TM2+uO4x2Mgl49jD6rz/A8ytV9wsGaIdSvgFg5SH+W804JmCCV5IkqeNExBTgkOrhI0B/Z/UPAy/MzNm9T/QmSikrNvcCbgSmZ+bMhj5PAKdFxA3A34H/iojP9a4MjYgNgCOq7sdm5mcbxj5Q9V+dhiTsMF7XVsBHqodfyMwjG9urOM+sbiNxLCW5e0ZmHtLYUMX+yYh4lLKC+Bjg1w1dDgB2rn4+KDMvaBj7z4h4KXAdS1YWj6rMfMpGG5k5F/hVRPyNcjnfqyJi48y8c4DDrAzskpn/ajjG3yLihcC/KKtKPgq8p7c9IvYA3gg8QJkrdzWMnQf8JiKuosylV0XEjpl5zfK9WkmSNAQ31h1AG5pKuXrt38MY858Bnp9X3Q9WhmpidT93iP9WM44JmOCVJEnqGFXidCfKqtoNqqe/mpk9/XT/RmNyt4+3VvffakzuNsrMK6sk7/bA3sBPq6YDKeeQc4EvDXD8YxhBghc4lLJHxMPA0SMYP6BqtenB1cPBSkicRknw7hAR62Zmb8mH11f3lzcmd3tVq5+/QFk53VKZeU9EXAs8l1KaY6AE788ak7sN4x+IiG8DH6OUqXhPQ3PvXDm9MbnbZ/zdEXER8HLKyu5rRvRCJEnSkPX9slqjrrfs1JqD9OltG2qJqmYcEzDBK0mS1NYiIgdp/hHw2QHaLh/geONZsivvMRHxsUGO33uCuUnDc72rWK/IzFn9DcrMmyPiHmDDQY7dn12r+/Or1aGjaSeWXBZ33iD7xzXahCU1fXtf94WD9B+sbblExDhKkvn1wI7A2ix5PY026ue5XsuK/WPAWhExLTNvr57frbp/a0Qc3P9QoNTjhaXniiRJUqfqvfJt44hYYYCN1jbv03eox9xikD7DPSZggleSJKndNW4aNh94CLiasqLyokHGDbTZ1posufRrqJs3TGr4eZ3q/p5ljLmb4Sd4e+vn3jFor5HZoOHndYc4Zrivu2/t2lEREZOAsygrqXstoJTn6P2wsSawArDKIIcaLPbGtnWA3gRv7+9tCv1v5tfXpGV3kSRJantXU863JlKukupv8cQe1f2f+2nrz1+q+2kRsWFm9nduNtxjAiZ4JUmS2tpgm4Ytw+IBnh/f8PO+mXnuCI/fDIOtVl5eja975SasEG6mj1OSu3Mpq2x/CdyVmU/+viLiUmB3YEhLk4eh9/f27sz89igfW5IkqS1l5uMR8Xtgf+Ad9EnwRsSWwAuqhz8f4jFvjoh/UDa3fQd9SpJFxAsoq3sXAL8ZTrzjhtNZkiRJHe9hYFH180gup+9dGbys1bnDXb0LcF9134zL/O9r+LlZr3skr3koeuv/fjozv5KZdzYmdytD+SJgqLE3rv5u5v+JJElSO/sMZQHCmyLiHVHV+IqI9YEfU/Kqv87MaxsHRcS/q9uB/RzzU9X9kRGxf8OYrYHvVw9PzMwHhxOoCV5JkqQuUtUP+1v1cP/B+g7giup+54iY3F+HakXDYLVgB/Kn6v5F1aZoQ/XkJnMxcHHdv1NWQ8Dyve69B+nzgkHalsfTqvur+2uMiE0ZvJZbr8Fi7217pKH+LixZrfLyIRxfkiRpzMjMvwMfqh5+B7gjIq6ilLLaCbgJeHs/Qzepbk85V87MXwBfoZR++E1E3BoR1wA3ANOAy4CPDjdWE7ySJEnd57vV/X4Rsd9gHSOi7y6/v6CUf1gZ+MgAwz45wrhOqY69FktWNwxF42Zvq/fXITOfAM6oHh4ZERsPdsB+XvdPq/vdI2J6P/1XBv57CLGOxMzqfocB2j8/xOMcVK0OWUpETAXeWT38aZ/m3rmyfUS8e7CDR8QqEbHiEGORJElqe5n5FeBFwDmUvQ6eTtkv4jhg58x8aATH/CDwWuCPwFRgK+CfwJHAC0ZSSswEryRJUvf5EfAHSr3WX0XEURHx5CZkVaJu74j4JjCjcWC1GcQ3q4efiIiPRsSq1bi1I+IbwBtZkpQcssy8Ffhi9fD/RcT3q9XAvXFNiYjXRcSv+gy9mSWrc982yCrejwH3Uk6k/xwRb+qNvSH+A6rj/7jP2F8AV/X+XPUbX43blnLSv/awXvDQ9dZJPioiXhMRE6p/d1pEnEH5gPDoEI4zDzg3Il7YcInhcyhzYSrwOH2SxZn5R+Dk6uE3I+J/I2Kz3vaImBgRz4+IL1A+7KyDJEnSGJKZF2Tmfpm5VmaulJlbZ+bHM3P2AP2jup0yyDF/lpnTM3P1zJyUmc/MzC9UV9sNmwleSZKkLpOZi4EDgLOAFSn1xe6JiJkR8Sgl0Xch8F+UlQp9HUlJCo6jrF54NCIeAe4H3gMcD1wzwvCOYkkC+a3AzRHxeHX8x4Cf0KfUQGbOAX5YPfwCMDsi7qhqn32pod9/gBdSEsIbAKcBj0XEwxExm1J79ufAq+hznpyZi4CDgLuANat+T0TEY5QVF7sAh47wNS/LUZTf7aqURPPc6t+dAbyBsgnbdUM4zgeBlYDzKb+jxynlOnYA5gNvyMw7+xn3LkpNuAA+ANzW8H8yh7LL839TVl43c6M8SZIk9cMEryRJUhfKzFmZuT+wH+Wy/DsptcAmAfcA51Hqfz3lkv7qsrF9gfdTErkLKMm/S4HXZub/LEdcizPzvcDuwOlVXCtUx/8n8ANKcrqv9wDHAP+oHm9MqX02tc/x/wU8k1KS4DzgIWBKdfxbgZ9RdjV+bT+xzQB2BE6g1F4LyqrYnwO7Zuawdjseqsy8A9iZ8trvrZ6eR0nQvyQzPzfEQ90OPIuSQH+Qktx/gLJa+VmZefYA//6CzHw7sCuljMZtwHhKXbkHgIuBTwPPrFZ4S5IkqYXiqRvwSpIkSZIkSZI6gSt4JUmSJEmSJKlDmeCVJEmSJEmSpA5lgleSJEmSJEmSOpQJXkmSJEmSJEnqUCZ4JUmSJEmSJKlDmeCVJEmSJEmSpA5lgleSJEmSJEmSOpQJXkmSJEmSJEnqUCZ4JUmSJEmSJKlDmeCVJEmSJEmSpA5lgleSJEmSJEmSOpQJXkmSJEmSJEnqUCZ4JUmSJEmSJKlDmeCVJEmSJEmSpA71/wELuk15Tr9aqgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -312,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -330,7 +527,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -348,15 +545,15 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Fine-Tuning: epoch 1/1: 100%|██████████| 1268/1268 [07:04<00:00, 2.99it/s, loss=0.0595]\n", - "Fine-Tuning Validation: 100%|██████████| 317/317 [00:37<00:00, 8.37it/s, accuracy=0.991]\n" + "Fine-Tuning: epoch 1/1: 100%|██████████| 2535/2535 [20:06<00:00, 2.10it/s, loss=0.0542]\n", + "Fine-Tuning Validation: 100%|██████████| 634/634 [01:03<00:00, 9.93it/s, val_loss=0.0424]\n" ] } ], @@ -364,16 +561,23 @@ "scgpt_fine_tune.train(train_input_data=dataset, train_labels=cell_types_train, validation_input_data=validation_dataset, validation_labels=cell_types_test, epochs=1, optimizer_params={\"lr\": 2e-5}, lr_scheduler_params={\"name\":\"linear\", \"num_warmup_steps\":0, 'num_training_steps':1})" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the outputs for the test dataset" + ] + }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Fine-Tuning Validation: 100%|██████████| 317/317 [00:35<00:00, 9.01it/s]\n" + "Fine-Tuning Validation: 100%|██████████| 634/634 [00:55<00:00, 11.33it/s]\n" ] } ], @@ -381,9 +585,101 @@ "outputs = scgpt_fine_tune.get_outputs(validation_dataset)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the embeddings for the fine-tuned model" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Embedding cells: 100%|██████████| 634/634 [00:21<00:00, 29.62it/s]\n" + ] + } + ], + "source": [ + "embeddings = scgpt_fine_tune.get_embeddings(validation_dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## We can now get the results of our model and visualise what has been learned" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualise the embeddings of the fine-tuned model" + ] + }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'UMAP of Reference Data with labels')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAAH2CAYAAACodJ/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yV1f3A8c9zZ272IIMASQgzibKXIEPEbdW6q7itdFt/rba2WrXW7tplq6h11YWzdWBVBFmyp0CYIYQZIDu5+z7n98fhXhJysxSEJN/365UX5D7rPE/ufe653/s932MopRRCCCGEEEIIIYQQQpxAlpPdACGEEEIIIYQQQgjR9UkQSgghhBBCCCGEEEKccBKEEkIIIYQQQgghhBAnnAShhBBCCCGEEEIIIcQJJ0EoIYQQQgghhBBCCHHCSRBKCCGEEEIIIYQQQpxwEoQSQgghhBBCCCGEECecBKGEEEIIIYQQQgghxAknQSghhBBCCCGEEEIIccJJEEp0WwsXLuSiiy4iPT0dq9WKYRhcdtllJ7tZ7eZ2u7n//vspKCjA5XJhGAaGYbB27dqT3TQhTojS0tLI87y0tPQL7ePBBx/EMAymTJlyXNvWmdx8880YhsHNN998XPd7Mq/t8XhuCCFOHumTCdG5dIY+2Yna/3PPPYdhGOTl5R3X/bZX+Lp/+umnJ+X4x4MEoU6SvLy8dn8ICD/Ro73IP/3008gywzD41re+1eb+/vCHPzTZ5rnnnmtzm+Li4sj6sbGx1NbWtrlN+IV/7E9MTAy9e/fmkksu4bXXXkMp1ea+jrelS5cydepUZs+eTUVFBampqWRmZpKSktKu7Y+97uEfm81GWloa48eP55e//CWHDx8+YedwzTXX8Ktf/YrNmzdjGAaZmZlkZmZit9tP2DFF6xq/IR/7nM/IyKCwsJBrr72WRx99lL17957Qtjz33HM8+OCDnfoNqiNKS0t58MEHefDBB092U06YTz/9lAcffLBd92whRPtJn0z6ZF+W9MlOPdInO3m6Q59MfDkShOpiXn31VTweT6vrPPvssx3e77/+9a/I/z0eD6+88kqHtg+/GWdmZmIYBnv37uXdd9/lmmuu4aKLLsLn83W4TV/GX/7yF4LBIBMmTODw4cMcOnSIAwcOfKFrk5KSEjm3hIQEKisrWbJkCQ888ACFhYWsXr36uLd/8+bNvPfeewDMmjULt9vNgQMHOHDgAEVFRcf9eKLjEhMTmzwvqqurKS4uZtasWfzoRz8iNzeX66+//oR1ip977jkeeuihLtXhsdvtDBo0iEGDBjXr2JeWlvLQQw/x0EMPnaTWnXiffvopDz30kAShhOgkpE/WPtInEyea9MmOv+7eJxNfjgShupC8vDxqamp4++23W1xn6dKlFBcXdyh9MBAI8O9//xuA73//+0DTDlB7hN+MDxw4QENDAxs2bOCcc84B4IMPPuC+++7r0P6+rM8//xyAa6+9ltTU1C+1r7feeityblVVVVRXV/Poo4/icDg4dOgQV111FYFA4Hg0OyLc/rS0NK6++urjum9xfPz1r3+NPC8OHTqE3+9n3759vPnmm1xwwQWEQiFefvllhg4dKsOH2qlXr15s3ryZzZs306tXr5PdHCGEaJH0ydpP+mTiRJM+2fEnfTLxZUgQqgu56aabAHjmmWdaXCe8rCO1QN59910OHjxIQUEBv/nNb4iPj2fFihVs2LDhC7XTYrFQVFTEO++8Q//+/QGYOXMmwWDwC+3vi3C73QDEx8cf930nJSVx1113RTpxJSUlzJs377ge40S2X5w4PXv25PLLL2f27NnMmjULu93Ovn37uOiii77S578QQogTS/pk7Sd9MnEySJ9MiJNHglBdyFVXXUV8fDxz585l165dzZa73W5mzZqFYRiRzlF7hL9hu/HGG4mLi+OKK65o8vgXFRMTw1VXXQVAXV0dmzdv7vA+1qxZw4033khubi4xMTGkpKQwfvx4/vKXv0RNJz+2jsMtt9zSZJz48fz24/zzz4/8f+PGjVHXMU2Tl156iQsvvJDMzEwcDgfp6emce+65vPLKK81qM4RrOoQ7rLt27WrS/mgd2cWLFzN9+vTINUpKSmLMmDH87ne/o76+Pmq7GhcuVkrx9NNPc+aZZ5KWlha1ZkVpaSk//OEPKSoqIj4+ntjYWAYPHsydd95JWVlZ1GMcW9Rv1apVXH311fTs2ROn00l+fj7/93//R1VVVdTtwxoaGnj00UeZPHkyPXr0wOFw0Lt3byZPnsyf/vQnysvLo273Rdp8PF199dX8+te/BmDTpk08//zzzdbZuXMnv/vd7zj//PMZOHAgcXFxxMfHU1hYyA9/+MOo7Qxf1/nz5wPw0EMPNauH0Ph5/kWO0R6nn346hmHw2GOPNVu2ZMmSSFuuvPLKZssDgQAJCQkYhsEnn3wSebylIph5eXmcddZZkd+PPd/WPuB98sknkWK4MTExFBQU8NBDD+H1els9v47ee6B9BTIb1zY59rzDae3z589vdo7Ha4heVVUV//rXv7j66qs5/fTTSU1NJSYmhtzcXK677jqWLl3a7n299tprTJ48mdTUVOLi4hg5ciSPPfYYoVCo1e0OHTrEfffdx/Dhw0lKSiImJob8/Hxuu+22Fu+lbdmzZw933XUXRUVFxMXF4XQ6yc7OZuTIkdx1112sWLHiC+1XiJZIn0z6ZNInkz6Z9Mm+mj7ZF+F2u3nllVe48cYbGTZsGOnp6ZG+wWWXXcYHH3zQ7n19/PHHXHDBBaSnp+NyuSgqKuJXv/pVm+2uq6vjt7/9LWeccQapqak4nU769OnDtddey5IlS77QeVVVVfGLX/yCESNGkJiYiMPhICsriyFDhvCtb32ryd/wpFLipMjNzVWAuummm9pc99lnn1WAAtTOnTubLJs3b16TZbfccosC1EMPPdRsPy+88IIC1NSpU5VSKrLds88+2+Kx9+zZo6xWq7JYLGr37t1KKaXmzp2rANWjRw/l8/la3PaBBx6IHKMl//jHPyLrLF68uJWr0Nyjjz6qDMOIbJ+UlKTsdnvk9yFDhqh9+/Y12SYzM1NlZmYqi8WiAJWYmBh5LDMzU5WVlbXr2I2v+7x586Kus2zZssg6f/jDH5otr6ioUJMmTYqsEz6Hxr9fcsklTa7xH/7wB5WZmakSExMVoCwWS5P2/+AHP4isGwqF1A9+8IMm+4uPj1dWqzXy+6BBg1RpaWmztt10000KUDfeeKO64oorIsdKSUlRFoulyXPmxRdfVE6nM7JPp9OpXC5X5PeEhAT14YcfNjtG+Hmdm5urXnrppcjfLikpKfL3AVRRUZGqq6uLeo1XrVql+vTpE1nXYrGo1NTUJu3585//3Gy7L9rmtuzcubNdr6swj8ejevTooQA1ceLEZssnT54c2Z/D4VBpaWlNrk1SUpJauHBhk21effVVlZmZGbmecXFxTZ4jxz7Pv8gx2uP73/++AtTXv/71Zst+9atfRfaflpamTNNssnzRokWRv4vH44k83vj6Nr4Xjho1SqWkpESWHXu+jV8X4fvS5MmT1e9//3tlGIYyDEMlJyc3uZ+cddZZKhgMRj23L3LvOfbYLWl8bwkrKytTmZmZKi4uTgHKbrc3O8dXX321xX0eK/z6jvb+0/i+bbVaVUpKSpPXimEY6q9//WvU/TY+v3vuuSeyfvi+Ed7Heeedp7xeb9R9fPzxxyo5OTmyrt1uj5x3+Dn6/PPPN9uupeeGUkqtXbu2yfMjfF6N/4bteS8WXZf0yTTpk0mfTPpk0ifrbH2y1rTW72p8LzcMQyUlJanY2Ngmr9Ef/ehHUffb+PXyj3/8I9LW5ORkZbPZItsPHz5cVVZWRt3HmjVrVO/evZv0TRISEpq06de//nXUbVu63+3evVvl5OQ0eQ2mpKQ0uc+01gf9KkkQ6iQ5UR2ehQsXKkD17du32U1kypQpClAvvviiUqp9HZ7wjenss8+OPGaaZqT9r732WovbtqfDc/fdd0fWKS4ubuUqNPXuu+9Gtrv00ktVSUmJUkopn8+nXnjhhciLePz48VFvWuH2t+dNKZr2dHgeeuihyDpvvvlmk2XBYDDyRjNs2DD17rvvqoaGBqWUUvX19er5559XGRkZClA//OEPm+278c2vJffdd58CVEZGhvrHP/6hKioqlFJK+f1+NW/ePDV8+HAFqBEjRqhQKNRk23CHJz4+XtlsNvXHP/5R1dTUKKWUqquri3QkP/roI2WxWJTNZlP33HOP2rlzpzJNU5mmqTZv3qyuuuqqSMdy165dUc8hNjZWOZ1Odfvtt0feiBsaGtRjjz0WedO+//77m51fWVlZpLPQp08f9eqrr0auoWmaauPGjerBBx+MPN/Dvkyb29LRDo9SSl199dWRzkbjN3ellLrzzjvVP/7xD7V169bI3ygQCKhly5ap888/XwEqOztbud3uZvsNP78eeOCBVo//ZY7RmrfeeksBKjU1tdnz6+yzz45cY0CtWbOmyfKHH3446htla4GGaMGbaML3peTkZGWxWNS9996rDh06pJRSqqamRv3iF7+I7Odf//pXs+2/zL3niwahOrJ9e7QWhJo5c6Z64IEH1MqVKyMftkzTVCUlJerOO+9UhmEoq9WqVq9e3WL7wh/cvve976mDBw8qpfS1ffjhhyMdtbvuuqvZ9uvXr4988PjmN7+pNm3aFLmGu3btUt/5zncUoGw2m1qxYkWTbVt7boSfbyNGjFBLliyJvDf6fD61detW9cc//lH9/ve/7/B1FF2H9Mk06ZNJn0z6ZNIn60x9sra01m/6z3/+o3784x+rRYsWRZ6rSim1b98+9dBDD0We7//973+bbdv49WK329VVV10Veb243W71+OOPRwKr0QJ/+/bti9xTLr/8crVy5Url9/uVUkqVl5er+++/PxLMevvtt5tt39L97rbbblOAysvLU3PmzIncb4PBoCotLVWPP/64+slPftLey3dCSRDqJDlRHR6llBowYIAC1Ny5cyPr7dixIxLlDd+42roxm6ap8vPzFaBeeOGFJst+/vOfK0Cdf/75Lba7rQ5PTU2Nys7ObvGm2JqCggIF+puKaB2ad955J3Ls119/vdnyE9nhqa6uVn/+85+Vw+FQoL8BOPaNLPwN6ODBg1V1dXXUY6xcuVIZhqEcDocqLy9vsqytDs/OnTuV1WpVLpdLrV27Nuo6tbW1kQj8sTe4cIcHUH/729+ibh8KhSLPtZkzZ0ZdRymlLrnkEgWoO++8M+o5tPY6+L//+z8FqP79+zdbNn36dAX6W5v2flv6Zdvcli/S4XnkkUci22zbtq3dxwoGg2rIkCEKUP/+97+bLW9vh+fLHKM1lZWVkW/vVq1aFXnc6/Uql8ulYmNj1Y9//GMFqD/96U9Ntj3rrLMUoB588MEmjx/PDk9r1+byyy9XgJo2bVqzZV/m3tMZglBt+e53v6sAddttt7XYPkDdcMMNUbcPfxCz2Wxq7969TZZNnTpVAeree+9t8fjhTIJLL720yeOtPTfCga3PPvusfScpuh3pk0mfTPpk0idTSvpkna1P1pYv02/6wx/+oKBp0D+s8etl8uTJUe+XTz/9dGSd5cuXN1l26623KkBdd911LR7/0UcfVYAaOnRos2Ut3e/C9+KXX365fSd5EklNqC7olltuAZpO+/vcc8+hlOLaa6/F5XK1az+ffvopJSUlxMfHc/nllzdZduONNwLw0UcfsXv37g61r7q6mk8++YSpU6eyb98+AO68804slvY9HdevX09xcTEA9913H1artdk6X/va1xgzZgxAh6cu7qjLL7+crKwssrKySElJITk5mbvuugu/309CQgKzZs0iJiamyTbh2g3f/va3SUpKirrfkSNHUlRUhN/v73ARzeeee45QKMT555/P0KFDo66TkJDAZZddBsCHH34YdZ2UlBRmzJgRddmCBQvYtm0bPXr04Pbbb2+xLeHnSkvHAFqciefSSy8FYPv27ZHCn6BrDsyaNQuAn/70p/Tp06fFfZ+oNh8vjWcCqqysbPd2Vqs1UuNi0aJFx71dX/YYKSkpkefe3LlzI48vXboUj8fDhAkTIvtuvNzn80XGwTeuKXC8OZ1OfvzjH0ddFn7erV+/vsnjp9q952S46KKLgLafD7/4xS+iPn733XfjcrkIBoO8+eabkcdLS0uZO3cuNputxb8LHH1tzpkzp83aUmHJyckA7N+/v13rC3E8SZ9M+mTSJ4tO+mQdI32y9VGXnyjh/s6SJUta7W/cd999Ue+Xt9xyC7179wbg1VdfjTzu9Xp5+eWXAfjJT37S4n7Dz/t169a1WEvtWJ2pv2M72Q0Qx9+NN97I/fffz5tvvsljjz1GfHx8pMBeuDPUHuFZWy6//HLi4uKaLBs4cCBnnHEGS5Ys4bnnnuP+++9vdV+Ni+wea/r06fz85z9vd7tWrlwJgM1mY/LkyS2ud84557B8+fLI+idKS0Uahw0bxuzZs+nZs2eTx0OhUKS474MPPhgphBhN+A0wWlHT1ixevBjQHdKsrKwW1wsXwWxp/6NHj8bhcLR6jJqaGrKzs1s8ht/vb/UYqampkRl5jtV4v1VVVcTGxgL6ORCeYvlrX/tai8c+UW3+Ki1cuJB//etfLF26lD179tDQ0NBsnT179pySx5g6dSpr1qxh7ty5kc5FuHMzdepUxo8fj9PpZOHChYRCIaxWK5999hlerxeXy8W4ceO+1Hm1Jlz8NJrwc+PYDuipdu85UUpKSvjnP//JvHnz2LFjB3V1dZim2WSd1p4Pffr0afE1nZiYyMiRI1m0aFGT6xN+bZqmSWFhYYv7DncEGxoaqKioICMjo83zufjii3nqqae46aabWLx4MZdccgmjR4+O3E+EOJGkT6ZJn0z6ZCeqzV8l6ZOdGF+kT3Y8lJeX889//pOPPvqIrVu3UlNT0yzg5Ha7qaqqokePHs22t9lsTJw4Meq+LRYLU6ZM4cUXX2xy31u1alWkYPm5557brnbu2rWLzMzMNte7+OKLWbJkCT/96U/ZvHkzl19+OePHjycxMbFdx/kqSRCqC+rVqxfnnnsuH3zwAbNmzSIvL4+ysjIKCwsZO3Zsu/ZRU1MT+ZY6HIk91k033RTp8Nx3332tdmoav3CcTic9evRg+PDhXH/99R2OrB88eBCAHj164HQ6W1wvHH0Or3+izJs3LzLbVWVlJUuWLOGee+5h7dq1fPvb3+bNN99s8s1gZWVlZJaYtmYZCWv8jVN7hL/NbGhoiPrm1d79t/YBL3yMQCDQrgi9x+OJ+nhCQkKL29hsR29R4Q4OwIEDByL/z83NbfPYYcerzcdT4zfVtLS0Jst+8pOf8Pvf/z7yu9VqJSUlJdIJra+vb/ffuCUn8hhnnXUWf/rTn1i4cCHBYBCbzRb5Bnnq1KmRTs38+fNZsWIF48aNiywfP358i53t46E9z7tjp2g+1e49J8Lbb7/NN77xjSYzWSUmJhITE4NhGPj9fqqqqlp9PvTq1avVY4SXN74+4demaZrt/savvffF3//+92zfvp158+bx6KOP8uijj2K1Whk2bBgXXXQRd9xxR5ttFuKLkj6ZJn0y6ZMdS/pkzUmfrLmW+mRf1pIlS7jwwguprq6OPBaemdEwDEKhEIcPHwb0azdaEKqt+15r/R3guPd37r77btatW8drr73GU089xVNPPYVhGBQVFXH++edz++23M2jQoHbt60ST4XgnSTj9uj031MZPvPambTdO/w5/e9aRb9xefvnlSNumTZvWbHpNwzD41re+BehvzdtKTT5w4EDkZ9euXaxatYqnn376hKZ2ngypqalcdNFFzJs3j8zMTP773//y8MMPN1mncYT9gw8+QOnabK3+PPjggx1qR/gYP/nJT9q1/08//TTqfqKl1R97jLFjx7brGEqpDp1Da1rrXLfmZLa5JevWrQP0B4HGH4Q//vjjSEfkO9/5Dp9//jk+n4/KysrIa+muu+4C+MLtPNHHmDRpEjabjfr6epYvX47b7WbZsmUkJSUxcuRIQHd84Oi3ceF/u9q9oTOoqKjg5ptvxufzMXXqVD799FPcbjc1NTWUl5dz4MABXn/99RNy7PBrMzMzs92vzfBU4m1JTk5m7ty5LFy4kHvuuYcJEyZgs9lYtWoVv/zlLxkwYECXHDop2k/6ZNInA+mTfVHSJ5M+WWcTDAb5xje+QXV1dSRLsra2lrq6ukh/J5whCV/8bxpN43uOx+Np1/M+HFhvi91uZ9asWaxdu5Zf/OIXTJ06ldjYWDZs2MAf//hHioqK+NOf/nTczuXLkCDUSRKOpu7du7fNdcPrWCyWJmOVW3PJJZeQmprKkiVLePPNN7HZbNxwww3tbl94fPyJWv/LCH8TdPjw4Sbf1h8rnKranuEax1tGRga/+c1vAPjtb39LaWlpZFlaWlokqn+iUovD6d4nMnX5qzhGW8fu6PFPZpuj8Xq9kTf4cePGNalTER4/ft555/GPf/yD0047rVkHtPG3j1/EiT5GQkJCpGMzd+5cFi1ahN/vZ9KkSZHjhDs2c+fOpaGhgeXLlwNHO0Knki977wm/7sNp2NHU1NR82WZ+YeFOWEpKCu+++y6TJ09u9iG7Pc+Htt7XwssbX5/wa/Pw4cNf6lvk1px55pn87ne/Y9GiRVRXV/Pf//6X008/HY/Hw6233trubyRF1yN9si9O+mRtkz5Z69tJn+yrOUZX65N9GUuWLGHXrl1YrVbee+89LrjggmbZWO251ocPH44MF42mtf4OnLjn/tChQ3nooYf45JNPqK6uZs6cOUyaNIlQKBTJljrZJAh1koRvAmvWrGmzwx0uPjdkyBDsdnu79u90Orn++usBneZ64YUXtmssKehvAVatWgXAihUrqKura/HnjTfeAOCtt95qks54Io0aNQrQUez58+e3uN6cOXMAPYb+ZLjxxhvp168fPp+vSZFeu90eKdD57rvvnpBjT5gwAdDXoLUPvMfjGAcOHPjKa9+MGjUqkhbckWt4MtsczWOPPRZJ9b355pubLAsXlx0+fHjUbZVSTYpHHitcJLG1b2++7DHao3GHpnHad9jYsWOJjY3ls88+45NPPiEQCBAfH9/h123jopAn6tvSL3vvSUlJAWi1cPCyZctaXNaev+mXEW7XoEGDWqyXFD63tvazY8eOqMvq6uoi7y/h6wlHX5uhUIgPPvigQ+3+ImJiYrjkkkt46623AP3h40QVkxWnPumTfXHSJ2ub9Mmikz5ZU9In++qEr3V6enqLw/Hb098JBoMsXLgw6jKlVOSe2Li/07i224m65zRms9k4++yzef/993E6nSil2nVuJ5oEoU6Sa665BtBp3X/7299aXG/x4sWRJ/fVV1/doWN873vf40c/+hE/+tGPuPfee9u9XfgbtIKCAkaNGkV8fHyLPxdffDFJSUlNKv2faEOGDIkUrv3Vr34VdcaC2bNnRz7MfeMb3/hK2nUsq9UamfXg5ZdfZvPmzZFld9xxB6DbOXv27Fb380UK8d16663YbDYOHz7MAw880Oq6fr8/UgyzI84666xI8crwzDOtOZ4FBWNjY7n22msB/a1me2cDOpltPtZrr73Gz372MwBOO+00pk+f3mR5eIaelr6teOKJJygpKWlx/+EihK19EPmyx2iPcOdmyZIlkeBC4w6Pw+FgwoQJeDyeSEHYM888s0ntifZoXHTxRH34+rL3nvDMNPv27YsabDp48CBPPfVUi8dvz9/0ywg/H7Zu3Rr1g9LatWvbfZ8/dshL2J/+9Cc8Hg82m40rrrgi8viAAQMi6eY///nP28wIa+9rMxgMNiuq3ljjTK/2zgYmuh7pk31x0idrm/TJopM+WVPSJ/vqhK91eXl51CzoPXv2tPpe0NgjjzwStZ/x/PPPR14L4fcYgLi4OK677joAfve731FWVtbq/jvyvG8tG9XpdEYy3k6J/o4SJ80VV1yhAGWxWNS9996rysrKIsuqq6vV008/rVJSUhSg8vPzVU1NTbN9zJs3TwEKUDt37uzQ8cPbPfvss5HHvF6vSk1NVYD6xS9+0a793HDDDQpQI0aMaPL4Aw88EDnG8fbuu+9G9n3ZZZepkpISpZRSfr9fvfjiiyoxMVEBavz48SoYDDbbPjc3t9m5d0Tj6z5v3rwW1/P5fKpXr14KUNdcc03k8WAwqKZNm6YA5XA41MMPP6z27t0bWV5fX6/mzp2rvvOd76ikpKRm+3322WcVoHJzc1s89kMPPRRp4w033KA+//zzyLJAIKDWrFmjHnroIdWnTx+1cOHCJtvedNNNClA33XRTq9dhzpw5ymazKUCNHTtWzZkzR/n9/sjyHTt2qMcff1yNGjVKPfzwwx0+h507d7b4/N69e7fq0aOHAlSfPn3UrFmzlNvtVkopZZqm+vzzz9WPf/xj9cILLxy3NrelcXujPbf279+v3nzzTXXhhRdG1uvVq5cqLS1ttu7TTz8dWeeXv/ylqq+vV0opVVVVpR555BFltVpVWlqaAtTkyZObbf/zn/9cAap///5qz549Udv7ZY/RHg0NDcrhcESOk56erkzTbLLOb37zm8hyQP3ud7+Luq/Wng+Nj/P73/++2THCwvel1s6n8ev7WF/m3hMKhSL3nkGDBqkVK1Yo0zRVKBRS8+bNUwUFBZH7b7Rjf/zxxwpQVqtVLV68uMX2t6Wl1/fWrVuVxWJRgLr88ssjzxufz6dmzZql0tPTI8+HaO0LX9ukpCQFqB/84Afq0KFDSimlamtr1SOPPKIMw1CAuvPOO5tt//nnn6v4+HgFqMGDB6v//Oc/yuPxRJbv2bNHvfDCC2rq1Knq9ttvb7JtS8+NnTt3qvz8fPXwww+r1atXq0AgEFm2bt06NWXKFAWouLg4VVFR0dFLKboQ6ZN9cdInkz6Z9MmkT9bScU5kn6wtLe2/urpaxcXFKUBNmjRJbdmyRSml7wX/+9//VL9+/Zr0d449v/DrJTY2VtntdnXNNdeo3bt3K6WU8ng8aubMmSomJkYB6tJLL23Wrn379qns7GwFqOzsbPXCCy+o2trayPKDBw+qN954Q1122WXq3HPPbbZ9S/e7zMxM9dOf/lQtWbJEeb3eyOPbtm1TV111VeQ9buPGjR24iieGBKFOotraWnXRRRc1eaHHx8erlJSUSEcdUAMHDlSbN2+Ouo/j3eF55ZVXIo83foNszTvvvBPZZu3atZHHT2SHRymlHn300SbXKTk5ucmN9fTTT2/SiWjsq+rwKKXUn//8ZwUowzDU+vXrI4/X1NSoiy++uMnfPzExUSUnJzc5L5vN1myf7eksmKap7r///ib7crlcKi0tTVmt1ibHXbRoUZNt29vhUUqpt99+WyUkJET2ZbfbVVpamnI6nU2O8atf/arD59DaG5xSSq1atSrSoQx/OE9LS4vc+AH15z//+bi1uS2N25uYmKgyMzNVZmamSk9Pb/LcDLf1hhtuaPGDr9/vVxMnToysbxiGSklJiQQJLrroInXfffe1+Oa9devWyHWwWCwqMzNT5ebmqtzc3Mgb5Zc9Rns1PsZVV13VbPnSpUubXJvly5e3eX2jPR9uu+22yPLY2FiVk5OjcnNz1Y9+9KPIOsejw/Nl7j3/+9//lN1ub9LO8N9pwIABTe7BxwoEAmrQoEGR5SkpKZG/6euvv97i+Ryrtdf3T37ykyZ/i6SkpEh7+/btq1566aUW29f42t5zzz1NnlON7znTpk1rElxqbNGiRSorK6vZa9rlcjVpV0eCUMe+7lJTU5v8vRwOR4eun+iapE/25UifTPpk0ieTPlljX1WfrDWt7f/xxx9vdr8P/4169OjR5F7aUhAqNzdXPfbYY5HXdUpKSpM+3tChQ9Xhw4ejtm3Tpk1q4MCBkXUtFotKTU2NBMca95mO1dL9rvF2FotFpaSkNHn9GYYR9TV4MpwCuVjdV0JCAu+++y7vv/8+1157LX379sU0TRoaGsjMzOS8887jiSeeYN26dV/ZdIqN075PO+20dm1z3nnnRdIav8pimHfddRcrV65k+vTp9OnTB7fbHZle9M9//jMrVqwgOzv7K2tPS+644w569OiBUqpJGnZiYiLvvvsus2fP5pprriEnJwefz4fb7Y5M6fyb3/yGLVu2fKHjGobBL3/5S9avX893vvMdCgoKsFqt1NTUkJKSwvjx47n77rv57LPPIuPyv4jLLruM7du388ADDzBmzBji4+Oprq7G6XQydOhQbr/9dt5++23uvvvuL3yMlowYMYLi4mJ++9vfMm7cOBISEqirqyM9PZ0pU6bw6KOPRlJev+o219bWRtJ8a2pqSExMpKCggGuuuYZHH32UsrIyXnjhhRYL29rtdj766CMeeOABBg4ciN1uRynFmDFjePzxx3nnnXdanSlnwIABzJs3j0suuYT09HQqKirYtWsXu3btikxz+2WP0V6NZ1WJVtxy1KhRkdTtxMRERowY8YWO849//IMHH3yQ008/HYCysjJ27doVqfFwvHyZe895553HwoULufjii0lJSSEUCtGnTx9++tOfsmrVqiYFK49ls9n45JNPuP322+nbty8NDQ2Rv+kXGb4RzW9/+1teeOEFxowZg8vlIhAI0L9/f372s5+xZs2adt9Tf/e73/Hqq69y5plnopTC4XAwbNgw/vrXv/K///2vScHXxiZMmMDWrVv54x//yKRJk0hOTqa6uhqr1UpBQQHTp0/npZde4i9/+Uu72tGrVy/eeecd7rrrLsaNG0fPnj2pr6/HZrNRWFjId7/7XTZs2MCVV17Z3kskuijpk3050idrnfTJpE8mfbIT0yf7or71rW/x/vvvM2XKFOLj4wkGg/Tq1Yvvf//7rFu3LtLutnz3u9/lww8/5Pzzz8disWCxWBg8eDC//OUvWbJkCWlpaVG3KygoYP369cycOZNzzz2XHj16UFtbi1KK/v37c9VVV/Hkk0/y2muvtfucPvroI+69914mTpxInz59IrOq9u/fn1tuuYUVK1bwwx/+sN37O5EMpU7BamFCCCGEEEIIIYQQokuRTCghhBBCCCGEEEIIccJJEEoIIYQQQgghhBBCnHAShBJCCCGEEEIIIYQQJ5wEoYQQQgghhBBCCCHECSdBKCGEEEIIIYQQQghxwkkQSgghhBBCCCGEEEKccLaT3YDuIi8vj4MHDxITE0Pfvn1PdnOEEEII0YKdO3fi9XrJyMigtLT0ZDen25K+kxBCCNF5tLf/ZCil1FfXrO4rNjYWj8dzspshhBBCiHZyuVy43e6T3YxuS/pOQgghROfTVv9JMqG+IjExMXg8HlwuFwUFBSe7OUIIIYRoQXFxMR6Ph5iYmJPdlG5N+k5CCCFE59He/lOnDUIppViyZAnvvPMOixYtori4mNraWpKTkxk+fDg33XQT1113HYZhRN2+vr6e3/72t7zxxhvs2rWL+Ph4xo4dy49//GOmTJly3Nvbt29fqqqqKCgoYNWqVcd9/0IIIYQ4PkaOHMnq1au75BCwztR/kr6TEEII0Xm0t//UaYNQc+fOZdq0aZHf8/Pz6du3Lzt37uTjjz/m448/5pVXXuHNN9/E6XQ22fbw4cOceeaZbNmyBafTSWFhIYcOHeL9999n9uzZPPbYY3znO9/5qk9JCCGEEOKEkv6TEEIIIU6mTjs7nlKKvn378te//pXy8nJ27NjBypUrqaio4IUXXsDpdPL+++/zi1/8otm2t912G1u2bGHkyJGUlJSwevVqysrKmDlzJkopfvCDH7B27dqv/qSEEEIIIU4g6T8JIYQQ4mTqtEGoMWPGsGXLFn7wgx+QkZHRZNkNN9wQ6Tw9/fTTmKYZWbZmzRreeecdLBYLr776KtnZ2QAYhsEdd9zBDTfcQCgU4uGHH/7qTkYIIYQQ4isg/SchhBBCnEydNgiVmJiI3W5vcfkFF1wAQGVlJYcOHYo8/sYbbwAwdepU+vfv32y7GTNmADB79mwaGhqOZ5OFEEIIIU4q6T8JIYQQ4mTqtEGotjSe0tflckX+v3TpUgAmTZoUdbsxY8bgdDrxer2SUi6EEEKIbkX6T0IIIYQ4kbpsEOqVV14BYOjQoSQmJkYe37p1KwD9+vWLup3dbqdPnz4AbNmy5QS3UgghhBDi1CH9JyGEEEKcSJ12drzWrFq1iieeeAKAn/70p02WVVZWApCamtri9uFlVVVVrR5n5syZPPnkk+1qU3FxcbvWE0IIIYQ4Gb6K/pP0nYQQQojurcsFocrLy7n88ssJBoN8/etf59prr22y3Ov1AuBwOFrcR3hK4sYp6dHs37+f1atXf8kWCyGEEEKcXF9V/0n6TkIIIUT31qWCUDU1NVxwwQWUlZUxcuRInnvuuWbrxMTE4Ha78fv9Le7H5/MBTWshRNOzZ09GjBjRrrYVFxe3GdQSQgghhPiqfZX9J+k7iU4rFADDCsoEpcAADAMsXerjlBBCnHBd5q5ZX1/P+eefz5o1aygqKuLDDz9sUssgLCUlBbfbHUkrjya8LCUlpdVjzpgxIzIbTFtGjhwp3/yJk84XCBE0FbWeAFXuACmxdhJddqwGWCwGDpv1ZDdRCCHEV+ir7j9J30l0OqGADjx56+HwTlAhSMyC5Gz9mCMWbC1nCAohhGiqSwSh3G43F110EUuXLmXAgAHMmTOHtLS0qOsOHDiQvXv3sn379qjLA4EAZWVlkXWF6CoafEE+3lTOUwtL2LivNvJ4UXYit0/M59zCTEJmEJejS9wWhBBCtEH6T0K0IeADTw18/h5U7226zJUMg86C9H4Q9IHNeVKaKIQQnU2nnx3P6/VyySWXsGDBAnJzc/nkk0/Iyspqcf1x48YBsHDhwqjLly9fjt/vJyYmhmHDhp2IJgvxlXP7gjzyfjE/nLW2SQAKYOO+Wu6atZZfzy4mpHSwSgghRNcm/Sch2hD0g7sKPnumeQAKwFMNa9+GvZ9DMKADUUIIIdrUqYNQgUCAK664gk8++YRevXoxd+7cyPTALbnyyisBmDdvXtRv82bOnAnABRdcQHx8/PFvtBBfMV8gxEebynl5eVmr6720rIxPNpVT6wngD4a+otYJIYT4qkn/SYh2MAxY/aYejteaTR/pdU311bRLCCE6uU4bhAqFQlx33XXMnj2brKws5s6dS35+fpvbjRgxgosvvphQKMS1117L/v37AVBK8eSTT/Lvf/8bi8XCfffdd6JPQYivRNBUPLmgpF3rPrmwhESXnWBIOlJCCNEVSf9JiHYwQ6ia/eBuuQbaUQp2LoOQH0zzhDdNCCE6u05b/OW1117jjTfeAPSMLbfeemuL6/79739n+PDhkd+feeYZJkyYwKpVq+jbty+FhYUcPnyY3bt3YxgGf/nLX9o9c4sQp7JgyKTWE2DT/tq2V0YPzav1BHDaLcQ6O+3tQQghRAuk/yRE21QoiLG/uP0bHNwG+WfoouWd9zt+IYT4SnTaT5nhaYABSktLKS0tbXHdmpqaJr+np6ezatUqfvvb3/LGG2+wadMm4uLiuOCCC7j77rs566yzTlSzhfhKhZRJlbvl6bSjqfYESLfKLC9CCNEVSf9JiNYpM6SH4LU1DK+xUFAPyTMkACWEEG3ptEGom2++mZtvvvkLb5+QkMAjjzzCI488cvwaJcQpxu0LkRzbsYBSssuOw2Y9QS0SQghxMkn/SYg2KIWBQsWlYrR3m9hkUAos0n8SQoi2SLheiC4qGDKpaAiQ5LJTlJ3Yrm2KshNJdNmxW9vd7RJCCCGE6DKUYSFojUP1Ht7+zKbcUSBZ5EII0S4ShBKiiwqZJlmJMSzcdpibx+e1a5s7JuZjNcBqkSCUEEIIIboXpUCZBttXWPC6LajeQ9reKC4N0vuB9J2EEKJdJAglRBflD5rM3VzO/W9vYPLAdP527TAuPD0Lhy36y3762BymFWaCgQzHE0IIIUS3EwrCwV3QIwesMU5CBRcTOvtu1OmXQEyUrPLYVNS4G/T/u3E9KFOZ+Ew/fjNAwAziM/0EzeDJbpYQ4hTVaWtCCSFaFgyZYBhkJ7uYd88Uaj0B+mckcH9eKr+/ciirdlVx39ufs7vKQ1F2IrdO6Mv5p2VhM8Bp7763BV8gRMhU1HoDVLsDJLrsJLrsWA2wWy3YrN23gymEEEJ0dRYDMnINfG6o2A2hkIHdGUNq9hCsPYdAZQnWVbMgLhUzdwxGn9NBAdbu2XcKqRBBFcJvBljVsIkS7x4CKkiCNY6hsYMY6MrFAGyW7nl9hBDRyR1BiC7INE0shsHuKg8PvLORjftqI8uKshO5fWI+//vhJGrcfkzg5WVl1PkCpLrsJ6/RJ1mDL8gnxeXMXFDS7HrdMqEvZw/OIMZuweWQ26YQQgjR1YSCimAAdq038NQ1XVZeYpCUAX0K8wmddy/KH6Biv5XkgAWbzaQ75o+HzBAhTDa6t/Np7comyxpMDwdqDrO4bg3X9DiPOGKxSdF2IcQR8rW+EF1MIBgiYMIj7xdz16y1TQIqABv31XLXrLX8enYxiS4H1z+1lH9+uoMadxCLpfvdEoIhE7c/yK9nF/ODV6Nfrx+/vo4/frSFOm8Qt1/Sy4UQQoiuJBQyMYOwbXnzAFRYzUEoWW2AMji018GBEiuEwNrNShiEVIhQ0I9phijx7mkWgGqs3nQz6/D/MDG/whYKIU513e8TpxBdXMhUfLSpnJeXl7W63kvLyphTXM5Dl54GQJLL1q2Gm/kCIRp8Qep9QT7eWM5Ly9q+Xgu2HWLnoQY93FEIIYQQnZ4ydTHyvVsNQoHW13XXQtV+6NEHDANszq+mjaeKUNBP0FtP1Y5VKEwW161pc5t608P6hi0EQwGCKkhAakUJ0e11n0+cQnQDXn+QkIKnFpS0a/2nFpYwKi+Vob0TSexGQ/EafEE+2HCAa59cQoM/xMx2Xq9nF5fSI8FJ0DSp8wbwB4MSkBJCCCE6MVMpwKDmUPvWP7wHLFbIyAOlus+MeGYoQNWOVexb/DohbwOH/JXUhOrbte2hYDUhQ+EN+QmagSM/EowSoruS4iZCdBFefxAMqHEH2LS/tu0N0EPNaj0B7r+4CEc3yYJy+/TQu5eWlVHQMwGvP9Su65XksjNlUAZxThvV7gBV7gBJ4cLlIVMKlwshhBCdjBkClM5wQrVvG1+D/jetF9i6yfd3waCP2tLPqdu9EQBbTCzlobb7Tj3t6ZyfMoGgCrKodg3VoVosWMh39qIwth/+kA+HtZulkwkhJAglRFcQDJkYBrgDIard/g5tW+MJcHrvxG4RQPEFQswpPjr0Lt5po7Id1ysvLZbnbx3D8p2VXDNziRQuF0IIIboA04RQ0EB1MKlZKbB2kwCUUiYWLNSWfX70MdPE2saAml6ODL6WMoWPa5aww7u7ybKdvr3Mr1vNOYlj6O/KwW5xnIimCyFOUV3/U6cQ3UDINDEVVNUHSI7t2Bt5cqwdq9E9bgVBU/HE/KND7+p9QVLbuF5JLjsv3DqWmfNLuPuN9VK4XAghhOgClKmH1fndEBPf/u1sdr0d3WQkngqZ1O3bgjJDkcf89ZX0cWa2uI3NsHJxymRmVy1sFoAKC6ogH9R8RqlnD8FQAELSfxKiu+genzyF6OIMoNYbQAGJLjtF2Ynt2q4oO5HEGHu3yILyB0LUeJoOVdxaXk+Mw9rq9Zo+LpdlOyvaVeh9wbZDlBysxyOBKCGEEOKUpoBQAKrLwWaD2PZ1nUjN1sP4usuEwkqZ+OsqmjzmqzmINRAk19kz6jaDYvpyIHCYMv/+Nvc/r241oMBbCwHf8WiyEOIU101un0J0baaCvVVeYhxWNu+v5faJ+e3a7o6J+dgs3eOrPFMpajxNp70JmYqXl5Vx8/i8qNtYLQbXjc3h2cWl7TrGs4tLSU+IocGvZ94TQgghxKnJDOlhdVUHAAN6Dmh7G5sD0vOUzoTqBkzTxAz6IUrGfMPOzzk7fjROo3lG+elxA1jfsLVdx6g33ez17gdnHFTtkUCUEN2ABKGE6ALqfEGSXHZeXlZGea2XaQUZXDcmp9Vtrh+bw7TCTJz27tGT8gRCJEWZAfDFpbsY0zc16vUamBnf7sLloIfm1fuCePwhlu+skIwoIYQQ4hRloIfV2RxQvhNi4iB3CBgtfDdnc0L/kQrD6D5ZUJgmoYCXmOTmQ+8aDmzHPFDG9T0uINOe1mRZsjWBA4GKZtu0ZHeoEjMYgJIl+uIGA21vJITotKSCrhBdwOF6P4kuOytLK7l6VG9eW7Gbey8czJi+qTy1sKRZIe1vTsznnMJMnLbu0ouCGk+Q1DgHRdmJTa5HjSfATc8s56XbxzEuP5WZC45er3inrVn2VFuq3H7inTY+2HCA4TkpWC0hHLbuEegTQgghOpO6w3qWuwM7wB4DKZlQOAkq9kDNQV2myO7U6yRl6Mxzq617ZJADKENhBrzEpudisTsxj8lSqtm2nIwevbk09SzqQg2UePcQVCGshqVDJbMMwFAhMANwaAek9zuu5yGEOLVIEEqILiDZZefFZWVcObI3Nz2znOdvHcPCbYfoleJi1owzqPUEqHEHSIq1k+SyYwEsBt2iFlRYrMOKLxji5vF53P3G+ibLSivc3Pefz3nwkiKevHEUXn+IKrefzMSYDg9XTIl14LBZ+HxvDTWeQLcK9AkhhBCdhQL8HkjrDdUHYN8WaKiC9Fz9WFovIsXHldIz6RndpIRBmKEgJimD+vKdpA0cx6GN85utEwp4+cizCpthpacjnRiLE4/pI9Oexk7f3nYdp7c1BcNq11XiD26D5F56CGB3GfcoRDcjn46E6ALCWVBj+qYyvl8PLnlsMRv21pKd7KK8xovbF6RHggOnzWDhtkOYQAdnI+70Yp02TAXj+/WIOvTuQK2XYEgx8Xdz+d4rq/nd/zbzrRdXoqBDhd7jnDYMA7YcqKOywU+DP9T2hkIIIYT4SlltkNIT9m6B/BEQn6qzn7av0D+7i2H3JtizSRcw7zZD8I6hzBD++kpsrkR6FE3GYnc2WW566kmzJVHi28PiujXMr13Jsrr1jIwrbNf+4y2x9HL2BE8dNFTqaF/Ap6cvFEJ0SZIJJUQXYLMYfGNMTiQLakRuMs8uLuWJ+TsYlJVAvNNGZmIMUwalc/bgTKzdLAsKwGpAea2XvVUeZkzOj1yj8NC7reX1xDltFPRsOlzvpWVl3HZmX/7vtXVtHuOWCXkcrPPwvw3lmAqSY+3UegL0iHe2ua0QQgghvjqGAVa7Hm63exP0GqTjHlUHIOgDiw2SM8EZC36vjo3YmpeW7NIsNjuhgElK3+GUr/uI+J4D6D3+atyHduGrKUcphc1iY2R8IWvcmyPbbfGWMilpFDnOnpT5Wp8h76yE4ToDatcK/UB8D/2HUCfyzIQQJ5MEoYToApx2K+cUZrK8tJJLHlvM9WNzmgwrS4l14LRb2Li3BofNgqL7BaHsVgs5KbFkJcYwc34JTrslco1qvQEyE2Nw2IxmAacXl+7i3e+fyfSxOby4rKzF/V8/NodJA9LxBUO8tKyMouxEHFYLlm6Wui+EEEJ0FlYbZPaDQ7tg2zKITdK1n1zxeva8qv2Q2ENnSUWZIK5bMCxWlGmSOfRcqkpWUb1zHXGZeTgT04lJ6Ymv9jA2f4CCmL4Ue3cCEFQh3qv8lEtTp/K/6kVs9+5utl+7YWNawijyrOnYGqph73p9kXsPPTIUr5tecCG6AQlCCdFFxDlt/PzCAsb2TeXJBSXNsqDOLcri7MEZ2A1wOLrfS99mteC0WwgpxXen9mfe5oN8698rCZqKRJedv107nO++tJrfXjGE68bk8PJyHXCq8QS48V/LePH2sYzp27RwOegheLdO6MtZgzPw+IPc8K/l1HgCPPi1Ij4uLueqkX1O1ikLIYQQog1WK/ToA+k5OgvKU6ezpOJTdXaUrgXVfWMiFqsNkxAog8Q+RaT0G4W3ah9mMIAyTazOWCrWz+PskRcQVCG2+XT/abe/nHcq53FxymQmJfhY3bCZ6lAtFizkO7IoiO0HwQD2usOw6jUd9csZCb56iE2WelBCdGHd75OoEF1YnNPG+UVZnFOQSY33aDHyxBh7ZAhed8uAaszlsKGAssNuphVkcF5RFjXeAHVHCohHG9K4cV8tpRVuLvrbIn5y/iBevWMcDb4g1e4ACS47iTE2AiGTF5eW8q9FpdR4Akwfm8PIvBQ27KnGbpVMKCGEEOJUFh5ml5Klh+CBDjwZFpAJbsFitWKGFLaYeJQZIrZHLgoFCmyuBAzg0KoPOGfYNMbFFbHKs5WDgQrcppf5tas4M2EYZyYMxUTXercZVqwVZbBzqZ4NDyC7CAZNgaBfAlBCdHEShBKii3Ha9Rt3rNNGzyTXSW7NqSfWYaN/Zjz+kInbF8QAMhOdOGwWzi5ofUijy2HlYK2X7GQX+6s9fLBhP3OKyyneX4epdFbUw5cWMSI3hddW7GbG5H44pPcqhBBCdApW+WTUIkv44lhtKPNo0XDDYiVrxIXsX/Ue+xe9jqtHb87oPRhbvC5MHnTX4C35nJi+w7ADVO3G2LkM6g7qKF/PIsgfB854XZDcGaeLdQkhuiy51Qohup1wRlhslGGJ915QwJi+acycvyNqYffRealc++QS7jmvgBmT+nHtmBydceay47BZ+HDjAdbvrmbG5H7EOeUWK4QQQoiuxbBYaJznbbE7yR5zGQ0HtlNTtpHKtR8DBs6kdBJ7FxCfN4SDn88l6Kmj56ivYR1+BYbFAKXAW6/HP9pj9M5sjpNxSkKIr5B8QhJCiEZsFoPTsxN4bcYZVLn9HKrzkRhjx2m38PKyMl5fuYdbJuQztE8yW8trKeyZiMtuobIhAAZcOqwXdqshGVBCCCGE6BYMw8AwTeIy84nL7IdxJGsq6Kmldu8WavZsJqFnf+Kz+mEE/Rj2WDCDeha8mAQ9/E7S0IToNuTVLoQQjTjtVjISXTw+bzuTB2dQlJ1IvTdIRb2f6eNy+c6U/qzcVckT87fz7Sn9cdhtOOw2kmOdJ7vpQgghhBAnh92BJehH1R1ExaWgMLA640jtNxIVCmDUHMDwu/VwO4sFLJLxJER3JUEoIYQ4RpzTxrfP6s/Hm8r51Xsb6ZUSS1qcg4oGP3ur3NwyIZ9vT+kvw+2EEEIIIcJsDoyEdAzDgOr94K4GQ2Gk5kJSFticeuidEKJbk09QQggRRZzTxgWnZXFuoZ5psNodIPnITIM2ixEpAC+EEEIIIY4I13RKy9E/QghxDAlCCSFEC2SmQSGEEEIIIYQ4fiwnuwFCCCGEEEIIIYQQouuTIJQQQgghhBBCCCGEOOFkOJ4QQgghhBBCCCGaCvpBmWCxgtV+slsjuggJQgkhhOjS/MEQIVPR4AvhCYRwOazEOaxYLQYOmxSYF0IIIUQ3FAyACun/G5ajReVNE0J+/VjQpwNQIQWhoF7ukDqp4suRIJQQQohOKxgy8YdMaj1Bajx+klwOEl02HFYLNqsFjz+IP2gSME0cNiv+kMmhOh8ep42EGBshU2E/sm54X76AiT8YwmGz4rRbIvsSQgghhOi0zBAYhg4mhfywczlUlgEKEjIgf4IOMDUchj3rIHe03mbXSqjeC0pBUhbknwGxKUeDVsEAmAHA0PvCAItNB68s0n8SzUkQSgghRKcQDJkETZN6b4hab4CMhBjmbi5n5oISNu6rjaxXlJ3IPecPZFRuGou2H+a07CQ+23GY5z4rbbbebWf25byiLPwhkxq3nwSXA08gRLXbT3KsA7vNwqE6L0mxDmId8pYphBBCiE7CNPVQOsMCKD20zjB0UGnLp/qxsOp9Oui0bwfsXArjboQt83QwqrH6Q7D3c8gcCMO+rvdXvlmv53eDLQayT4Nep0PAC1bb0WCVEEdIj1oIIcQp59gMp7Q4B7FOG7WeAJ5AiIyEGBZtP8z9/91IvS9IQc8E4p026n1B9td4KeqZzJ8/3sqNZ+Txj3nbeXl5WbNjbNxXy/+9to47p7q5Y3I+S3dW8fTC5gGt2yfmc05hJl5/kBgJRAkhhBDiVGSGdNDJ7wabE3wNOkPJmaAf37NeZzrljIC6CvBWg9UBQa/ObDIDsGE2nHEzbF/UPADVWEofaKiEFa+Ar77psspdsPkTGHUNJPSAIBKIEk1Ib1oIIcQpxe0PMmdTOS8tK2NUXirXjc2hxhOkrNJDRqKT9IQY5hUfxGKBuT+aTCBk0uALUen2kxrrICXOzqJth3HarSzbWRE1ABWW5LJzxcje/Hp2MS8tix6oumvWWq4fm8PPLiwgGDJlaJ4QossJHfnsCnr0jEXK5Qlx/CgTTAWhAFgMwDiSoWToIW5Wx5cfthb0g7tSB5z2F+tsJ3fV0eWpuTBgIjhi4XAJDLkQ6g7pgJUzDlzJsP5dSMwCVyKUrWr5WGl50LMAFj2ts52itscLy1+CM28HV9KXOzfR5UgQSnQZvkCIoKmo9QSocgdIibWT6LJjsxg47dKbEuKLCmclBUImNouFOm+AaneARJd+jVkNqPMGUBgkxNi+VA0ltz/Ir2cXs2jbYZ6/dQzLd1Zyxwsrm2UnzZiUz+SBGSzeUcHfPtkWWW61GCy992yeXFDCzBtH8c3nV7Z6vOnjclm2syJqAKqxl5aVMTovlfOLMiUIJYToMoIB/Tm4cj946wAD4pMhKePIZ2P5pCDEFxMKNP13/2YdJFImZA6GhHQImeCr0cGijAF62Fx7IsBm6Mh+j9RgMqxQexDikmHdO3Boe/NtKnfBsl1QeK4eSrdg5tEgld0FU38AB7dCwTmwe62+AbQkbzTs+KzlAFSknUHY+imcfrFur8yuJ46QtxbRJTT4gny0qbzFoTTnFmYS55SnuxAd5fYH2bSvhoKsRHYerGf17mp2VTRwqN7PnOKDDMqM565pAxmbn4Y/aPLvJaUU9UpiZG4KLnvrr7lwjSdvwMTjDxLvtDNvy0HeXbefd793Jk/M3xHJYrJaDAZmxkeG3N312jq+MboP35yUz54qT2SfAzPjqfcFCSmF1x9i0/7alg6P1WJw3dicNgNVYU8tLOGcwsx2rSuEEKeyUAhQcHg3HCw9mgUFULkXrFsheyAkpUsgSogOC/p0gMYRrwNEVhv0HqIjvmbwSK0kOxhBiEuFuDTwe3QQyh7T8osuHPRR5pF6TyFdZNyVCJ5qOLSteQDKmQDxPXSmlacGNn0ESdk646lxECrg0YEnV9KRYuUtsLt0JtTa/7bvWpRv0UEoWglqiW5H3lZEp9fgC/LI+8Ut1nxpPJRGAlFCtF8gEMRqQFF2EtWeADFOGxec1pP4I7PK/elKCwqFO2BSXusl3mnjhjPysBjgC5iggtR7Azjs1kgGVY0nQJLLTnyMnXpvAMOAOKcdp92K1Wrw4cZybjiSnfTy8jKSXHamj8vlurE5eP1Hh9w57RZeWb6btburuX5sDv/8dAcA8U4blQ1+/a/b3+r5jchJJmSqVgNVjW3cV0utJyD3ESFE52dCeSkc2hV9cSgAuzcCRZDYA2ySwCBE2wJ+PdzONHXwqWq3nlXO5tTD14I+PRwuHEyyWHVQJxTQQ+JCAeDIsL1gAKxWPczO16ADU854OLAZ9m6E2CQ9S50zTgeXMvrDxv8dbUtqLvQdC6l9dJaUMiE+Dbz1uk354+BAsV435NdDAqFRIfMWpPfTAatQ632sCKWgoQISe3b4coquS3rSolPz+nUGVGs1X+DoUJoLTsuSoXlCtCIYMgmZJiETarwBKur9xDmtxDqsrN5Vzdtr9tA7OYaHLzsdX8ikxuMHDDISnHj8IfZXe4mPsRLvtGMAsU47nxRHn8Hu5vF5jOmbyn1vr+HiodlMHZTBzy8qINFl5+onlpCXFtvqkLxbJvRlVG4qZ/bvwVMLSwiEFPW+IMkuO/W+IKlxLRfBzEuL5e/fGM7h+nZ2oo6o9gTomezq6GUVQohTRiioM6FaCkA1tm8LJGec+DYJ0akFgzrDyTBg12qoOQDJPaFHX8gZroNPvgaITdaz0Dnj9PjXPet0gMqVqBOFrDZd8NuVCDX7YNsCHTAKcyVB7igYfimsegPm/xP6jIDCaVB3WAeHQAef+o7T2699++iQQAzI6AcDJuvsqFFXQ8kyPVTPV68DV3WHIDUH9m9qfp5pfaHoPJ211RGGAZiAfAYTmhS2EJ2WLxAipOCpBSXtWv+phSWETEkFFaIlPn8QX9DkfxvLuWrmEs7/y0I+2HAAh82K2x9iSO8kHrtuBL/6+hDmFB/k7tfXYTEMqt1+6n0har1BKt1+6r0h6rxBdhyqx+0L8ujHW5sEkEBnFd39xnqeXFDCfRcX8ov/buS3/9uM02ah3htgb7WHF24dy8z5Jdz9xvqo2//49XU8/ukOYuxWlvxkKt89qz/lNT5cDis5KS4yE2Ioyk5sdp5JLjsv3DqW11buwdXBoHRyrKQDCCE6OQWHWv/uLiIUhOpy/a8QIopQAFQQdi6FOX+Cip1QMFUPd9uxBFa+BmVrICYBVr2mZ4mrKAVPLQyaqmela6jUw+kcsTpAVV+h16s90PRYnho969za/8LIq/Qwvt2rYdtCvR1A9mmQNwY+ewZ2r2kUgAJQcHA7LHlOB7dcyXDaBTBxhi5m3m+8zlzqPbR5/Sa7C4Z/Hda8rY/liGvf9bHaIT699ewq0e1IJpToxHQR8o4MpanxBoiVoTRCNNPgC+IPmfzhf1t4eXkZeWmxvPO9CU2ykJJcdt793pn8dU4x73++nw9+MBGr1WBreT0/e3tD1Eyn9IQYXrp9LBf+bRE1nkCz4760rIzhOcmRIXVj+qYyIieF6eNyWd7GzHYALy7bxai8FM4anM7p2Ylc/4Mz8QSC/OGqYSzefphbxufxr8U7I7WktpbXR4qR//WTbVwxsjdF2YnNglzRFGUnkhgjQSghROcVPHIbbqhqfb3GGqohMf2ENEeIzi3o13WV9n4OJUsgcxCcdiGsfkMPxQOw2HTAaOWruhZTwKuHzu3bCPPe1fsI27kMYhKh6HxI6qmDQWWrmx/3cIlet994PaNd6XLoNwHiesDgs/XxvXUtt9sMwcpZMO0uOLBFB8LyRullyb2gag+MuFIHsfxu/XufYXBwmz72/mL9+47FbV+j7CJdu8rScna66H4kJCk6LX9IUdVGzZdjVbubfwgWortz+4Ms2naYOUeGtoYzhY7NQgoHb2at3M1Pzh+Ey2Hlr3O2tZipdPcb6/nrJ9twOWzcdmZei8d/dnEp14/LxWLAkwtKSIl1cMO4HJ5ZXNqu9r+yvAyLYXDmgHSCIZNASFHrDTAqL4WLhvTkyRtGcs/5g3nsGyOYf/cUbj0zj2cXlxIyFS8vK+Pm8S23rbE7JuVjNdq1qhBCnLo6mBTe2iRZQnRboQBsnaczlkqW6kyhIRfDileOBqAAep2ms44Miw4aOeNg1yrYMq9pACrMWwurXoea/dD/zJaPX7Yasgbp45ohPaNd4Tl66F/jIXwt6ZGv6z8lZsK+DbD6LVj3rp4hL7WPnr0vZ4SeTW/q9/Xwvl2r9LalK6DvGIhNbf0Yznid7WVIAoBoSoJQotNq8AVJie1YVF2G0gjRVDBk8smmck7rncSzR4I+0xsVBg+zWgyuH5eD2xdkwT1n8fVhvfhk88F21WObt/lgpGB5NBv31eL1hxiUlcDGfbV4AkEUtCvLMS8tlt9fOYSVpZX88r2NzHhxFRf9bRFn/m4eNz6znPc/P4Cp4O7X13H2o/P57Qeb8TSaNe/FpbsY0zeV68bktHqc6WNzObsgE1PpayaEEJ2SAoyjI3faIyb+SEkXIcRR7mo9zGzXakDpzKDyrc2H0PUdp+svDb1Ev5AsVp011SoFG2br4XkJLRRlC3igcjek5erf68p1Pak969pue/54HTAzLDpQNHAyDLsUkrNhy6cw5y9QW64DbYv+BStmgcOl61SFj7VlHoybro8ZTWImTLhNZ3xtX6BrYgX9Okgmke1uT8KSotNSChJddhlKI8SX4A/pGlCF2Uls2l+L1WJw3dgcvvn8yibrTRnUgwSnjVinjd99UMyvv346zyza2a5jPLN4J+cVZVHQM4GN+6Knh1e59Yx2AN5AiAZfqM399klx8ea3x6OAnNQ4rhrVhxmT+kVmzntx6S5+/Po6rh+bw/O3juGSxxZTXutlf403so8aT4CbnlnO87eOYURuMs8uLm02rPCOSfmcXZDJJX9fiMth446J+ZxdmInN0ME5u00KbQohOgeLTSdNpOdA9YG21zcMSMtuecZ4IbqloE8HkvoM00PxAPoMh3X/abpe76E6yLPmLT0kbcglsGvlsXuLzlcPh0p0jactc6OvE/DqTCzQNZqUeXTmvZYMnAJ5o3X21u41+jigA2U5I2HiN3VG1KrXYez1OuNp1yq978Z2r9XHGnapLlS+b4MONNljoGchJGaAzw1lq3SNqx1LYNBZkDtSD/GzWPWMfBbJiemO5C1FdFqJLjsV9T5un5jPXbPWtrn+NyfmY2spFUOIbqrWE+RgnZfKI0NbB2bG422UKQS6kPevLj2d336wmZeWlXHlyF7UeIMdrsdW0DORjfvqsFoMBmbGN6nTlBLroN4XJC8tlh7xDmyW1qvg5qXF8vq3xrNg22GeXhh95r13vjeBm55Z3qTu1LwtB0k9JoOytMLNJY8t5vqxOTx54yi8/hBVbj8psQ6cdguxDiuf7TiE025l84E67py1luljc7jn/MEE/UHinAoLoAwDhwSkhBCnMIsFUOCMhYQ0qKtoff0eOR0evSdE16cU1B/WUdpwVk9ssp4VLywxSw9F++wZXXg8OVsX6a5ox7SUYYd2HM10sjmh9xBds8liA38DxKXAgc26QPmAiTo41lqaY95oXaNp/hPgO+ZLwfrDsOlD2LseRl+rC5BvngvDLtP1p4J+XTvK3aig3IHNuqZUej/IHKBrXoX8ukbVgElgscOoa47MGrhK15Cyx+jAmsUKZkBPmmdYmhdCF12aBKFEp2WzGGw/VMe5hZlcNyan1WFB14/N4ZzCTJwdnAlLiK6uxuOn3heMBGbinbZIQCps+rhcFu+o4KVlR19jtVGKjLemzhPAZbfy3bP6c93YHLz+EJVuP6mxDuKcNhw2A7cvyCt3nMFLS8u4enROi1mOSS47L9w2lr/O2cqLy5q/7sP1qG4Yl8PL3xzHz97+nE+3HOLeCwt4amEJMQ5rs33XeAL889MdPDF/B4OyEiIBMpvF4NU7zqBHfAyPfWNEkyyrMflpTBzQgx2HGkiJdZDosqNUEKdd3lqFEKcuZerAUu7psOvzlgNRab0hK19/VhRCHMOw6CF5iRlHa0AZxtGobd8xsHOJDkAB1B3SL6ZjM4pao0JgBnWx8ZzhcHAHHNqup6uMTYKMATq7yO6ETR/rgue9h8L2Rc33ZXPqYXcLn24egGrMWwf7Nung07YFOnUyLU8P88sZoWfna9pI3aZD248+lJChg2Gf/FWfb1K2vh5n3qaDW9lFsOAJncXVe6jOKAv6dXBNMqO6Bekpi07Labcytm8PZq/fx88vKmBM31SeipIR8c2J+ZxTmEmczIonRDNJLgdby+sjgZnGASkgMjxvxgsrKeipgzPegEmyq2PfWCXF2vn2lP4s3n44MtteWFF2Ired2Zc3vj2BtbureHPNXr4+sje3TOjLj19vXttAz5xXGTUApc/JzvRxuVw3NgdTKf5v2kDinDYSY2z8/MIC3lq9h5vH53H3G+ubbWsqKN5/tHP2t28M59Vlu3hjzV7inTYyE2OYMjCdd743gV+9t4mRuSlc/PdFmKrp/cZulawoIcSpyWrXn2GV0oEonxsO7QJvPWBAXBKk5+rPhxKAEiIKi1UHZnav1YW7d62ChgodbKnarbN9MgfC/s26FpQrSQdjQkFdELz+cPuOE58OiT110Gj+43q4W2MlS/WMfEMvBU+NzkxKy9PHOFzSdN3eQ3UQy1Pd8rEGTtbbH9qu95XSG2ISoGAabFuo60jtWtXyPsIKpunC6YlZ+kYS8MLa/+oZ+IZ/XQ8z7NFXr7PpIx00G3Odzugy7FKErhvo1J/KDxw4wMcff8yKFStYsWIFa9euxev1MnnyZD799NMWt8vLy2PXrtZTIT0eDzExMce5xeJ4i3PauHBINst2HmZ4TjKvzTiDWk+Aak+AZJedRJcdqwExjk79VBfihEl02RiclRCZJe6nb33eJFNoRE4yDqvB0zeNxhMIUdngJ9llJ8Fl56FLCnn0423UtJEVVZSdSEKMnd+8X8xLUTIWN+6r5f9eW8f0sbl8e0o/Dtf6cdqsnJGfxvSxOU2CTS3VrArLS4vl+VvHsHxnZdRg160T+jK1IBOrQZsZlLef2ZdpgzOo8wWZMjgzkrnltFvYuLeWX3ytEH9AF1Qv3l/Hxn21/HDWWq4fm8PPLiwgEApK8FuccqTvJEDXeDJNIkPzeg1uutxikQCUEC2y2nVmz/ZFOiMq+zQoWwO5o3QQKqO/zogqOFvXgNqzXgdWUnP1sLmM/rD2P7o2UkssVh04aqiAFa+2nEFVvgVWvgojroStC/R2wy+HJc9D/aGj62UNjp4hBTrYNPJqPVxu/TtNZ+2z2HTm0ukXwf5Nuk7Uild1u6K1eeilkNwbknpCxkAIenVdLItVF3Gv3q+DdK7ko9v53bDsJZg0A1D6+hqSEdWVdere8auvvspdd931hbc/7bTTSEpKirrMIqmAnUac08aEfumETEWNN4DFgN4pLhxWAzBkCJ4QrXBYLcyYlM/9/93IO9+bwDWj+kQCUi8s2cXMG0ayaNthZi6InmUYrrtUWtFyR2rG5H6UHKqPGoBq7MVluxiWk8R3pvbD4w+yaX8NP72wgJG5KTy9aCcb99VGrVkVluSy88KtY3li/o6owaWN+2r50ZFC5d+e0o9vT8lnXH5q1HP7/tT+TOjfg483lfNkCzWn4px2vP5gpKB62EvLyhidl8o5hRm4/UFiJQguTiHSdxJh8ucS4kuw2GDQFF10fOx0PVtcj77QZ4QOPm2YrWeGa+zwTj3EbcBkOOMm+Ow5PctdNHlj9b8bPmh7CF9lmd531iAdBEvpA+Nu0AGwsjU6k8oRe7QIeWPOBBhxlQ6KHZs9BXo44J51era8sddD6UpdvPzgdp0J5q3VUe3MQfrcLRZdV2rnsqb1o5J66pkCk7PBFgM1+5seJ+CBncuh/3g9BNAqN6iurFP3jBMTE5k2bRqjR49m9OjRrFmzhocffrjd2//9739nypQpJ66B4isTDjTFStaBEB1is1qYVpjJ8p2VkVni1u6uZlx+Ghec3pPfzC5uUgsqrHHWT3jmuWgZUdPH5nL24AxueXZFu9rz7OJSnrtlDLur3IzISWHe5nK2HayPFAwPhEz8oeidsenjclm2s6LV7CYgUqjcHzQ5/7QsRualopSissFPnMNGjMOC02rlN7M3txjMuvuN9ZGMp2jzHTy1sIRzCjPxBUwsBCUbU5wypO8khBDHgc0BeWN01s7K1/Swu4AfCs+Bde/AgeLo2ykTts4DqxVOuxDWvNl8nT4jdMaUtw5q2zGNJeiA04grdYZSyRKdtZQ7SmcX+d06+8jmaL5d7kg4sCl6AKqx2gN6+F96P6go1TWuhl2mg0cBL9SVAyase09nZx2rZj+sfRv6jYd+EyAUJYt+z1oYOEmPFQ74dK0r0SV16l7xrbfeyq233hr5fe/evSexNUII0TnFOmz87KIC5hQf5J431jOhfxrnFmbywYYDUQNQjYWzfu46ZwAPvrMp8nhRdiK3TMhj6uBMgqbJqrKqSE2p8Ix4IbP5nEsb99XiDYRIibUTCJk8/mkJm/bX8sT8HRT0TGDq4AyuHNmn2XZtDdM71rOLS3np9rE8taCEWk+An144mL/P3cb6PTWcPTiT3LTYdgWzxvZN5YLTerJsZ1WTZRv31VLjCVBW4WZonySCIRObfKsnTgHSdxJCiOPEYoPew6DPcNi3QRcKb6hsOQDV2LYFcPZd0GuIzmQyLJDaRweOrHadgRTyw5Tv6pn3QGcWla3VwZpjh/JV79HZTjaHzs7y1es6Tn6PLmpusUBWAVTtObqNYdFFwZe92L7zLVutg2M7PtNFysu36qF8y1/S9aR2r4segGpsx2e6ZpXd1XyZ363P212t60OZIRkX3EV16iCUEEKI48PnNzm3IIOzBqXjDYTwBU2eXrizXds+tbCEWTPO4OzBmTT4dB0kw4CXl5Ux+/N1PPaN4Sy456wmM+I1nmXu2Ayq8lovfXvEUesNsGl/bZNC415/iJRYR7PZ7VobphfNxn21ePwhRuWlkJ8ez8z5JXxnSn++/o/P+EYHglkzF5TwzM2j+eV7mzg2plbjDrB6dxWn9U7CMCUIJYQQQnQpZlDXPKrcrYuOGxY9DK09gn4dxCmYBihdQyrog91rdCBr6KVQdxhKl0HNkWyopJ46c2nyt3W21cFtR/cX7oMoUwegUvrAyCvhwBZY/ooOaI2/RQ8bNIN6XVey/n97C6UHPFBfoQNX69/TBcyHfE0Ps8s+HRbObN9+diyGwvNh85zmywyrPu+4tKPnJLqcbh2EeuKJJ/jjH/+Ix+MhKyuLiRMncv3115OQkHCymyaEEF+pg/Ve/EGTlDgHMTYrVW5/uwI6SS47UwZlgFKElMIdCOG0W3BYLaTE6uLlHxeX82SUuks3j8+LWlMqJdbBsp0V5KTGRS00/t2z+jeb3S7eaaPS7acjarwB9td4+eGsddR4AuSkxfL9s/t3OJjl9gcjxcmbXJtYOxv21lDrCZDgtBHTsQkFhTglSd9JCCGOsFh1zaVep+kMo1CwfcPnbA44/WI9tG3Pel3PSYV04CV3pC7kvfED2Pt50+1q9sH6fXoWvtHXHKnjdOQLw8QMXZ/J5oSEDBgZpc7ToR06uLX2LT3kzWqLPiyuNWYQPp+tA1Cgh+idcYMugu6ta33bsMM79YwIzvimdaqSeursp8M7ILknxCQBkgnVFXXrINSsWbOa/P7yyy9z//338/LLL3POOee0uf3MmTN58skn23Ws4uJ2pGUKIcRJkuRycO3MJXzww4lUuf0crm87oNM4QHTNk0ubBZnumJSP02blzx9vbVa4vHFdpcY1pYqyE0l02Xn+s1L+cu3wqIXGX1y6i3e+N6HJ7Hb1viCpsVFqHbTCabPy70aZWM8uLuXft45hX423Q/upqPc3K05elJ1IYoydjzYe4AdnD8ButSAf0UVXIH0nIYQ4IhSE2oOQHwdpeWC2I6BjtetC5jUH4JO/NA0CHdoBpcuhZyEUna8zoqqjDJmu2Qdr/gNDLoJ5/wCULmS+vxj6DIWCc/Rwv2PrPH3+np4Fb8x1sHW+Ht7nTNAZXG0VPw+LSdQBs7D6Q/o6mKGWt4km4NEBs8ZBqLzRehbB/Zt0dpUKAUe+wTMbtU+F9HUUnVa3DEJNmTKFs88+m9GjR5OTk4Pf72fRokX84he/YM2aNVxyySUsXryYESNGtLqf/fv3s3r16q+o1UIIceIkumzExdio9QRw+0JtBnTaMxPdna+2Xbg8XCT8+rE5/PPTHdwyIQ+bxWD62FxiHVY+3n6w2f5rPIFIEfURuck8u7iUzQfqiHFYmw3Ta0lRdiIJThsWQ9eTCpmKjftqMZUiNa5jwayUWAf1vmCTx745MZ+VuypRGGTEO4hzWnH7gtR4A1S7AyS77CS67FgNsFgMHDb5pk+c2qTvJIQQx7A79Wxue9ZD76F6ZrrkbKg72PI2BdN0Ue8Ns1teZ/8mPXxu5JUw77HoAZ6KnbreU3o/8NRAz8GAoQNLydmwclbzbcyQfjxvtC6kHjpSdypzUPvqWKX01uc84iow0LP/7VoJfq+uR9URdpceyhjWI1/XrNq1StfFik3RmVoBH6D07HwqBPHpOgCl9OlKMKpz6pZBqOeee67J77GxsVx88cWcffbZnHnmmaxevZp77rmHOXOijFNtpGfPnm12tsKKi4vxeFqYglMIIU4yh9XCjEn5xDpsmICpaDWg09GZ6MJBpmieXVzKkzeOotYTYHReKvf/53PuPn8wNouFZxZFr0tVWuHmkscWc/3YHJ68cRT+YAibAXdMyufOV9e2eb53TMzHajX427UjmtSnKq/10bdHXIeCWU67hS0HjqagXz82h7MLMnhlWRkrfnY2TruVDzeWMzPKkMTbJ+ZzbmEmITOIS2bQE6cw6TsJIUQUCRngrQcUHC7VAZTda6Ova3NCdhHMf7zt/R7crms1ZQ3WwZ5odq/Vw/cSs6B0hQ4SWWy61pQZjL6NMnXdqp3LdN2oPsP1jHTlW9rOhuo3Qf+76nWoP6i3HX2tDgjZY8CVpANibUnvp4uP+xr0kMZeQ/SsgrXl0Ot0nQFmhnSQqngOHNjctG3p/WDQVB2oUgGwSSCqs5EebyMul4tHHnmECy64gHnz5lFVVUVKSkqL68+YMYMZM2a0a98jR46Ub/6EEKcsm9XCOYWZoCAxxs4bq3Y3q7sU9kVmonvyxlE8MX9Hs+LdoLOmlFJ856z+XPfUUlwOKw6rhRpPoNXaTDWeAP/8dAdPzN/BoKwEXrxtLOP7pTUZphfN9WNzGJWXit1iwWm38ElxOQMy4nnnexNw2ix8tuNwu4NZt0zI4+VlZZGg3Tcn5jOtMIM6T5ABmfE47VZ+Pbs46iyDG/fVctcsnS1274UFkaLuQnQm0ncSQnRrNocOiqgQJGWB1aEDKcfWcwIdgDpUooMv7RHOCmopCOWphuReOquqoRKyT9PBoGOH4bWkarceFnjOXTDsMl1DqqVAVOG5OtvJWwenX6TX274QFjwJZ9wEnlqdYVXc+hcRAOSP10GowvOh9+k64LRvE2QO1DMF9uir61steR4CUUokHNoBFaUw+hu6PlZQAlGdjUzVc4zx48cDYJomJSXtfAELIUQXYLMABuw4VE9yrIMxfVO5bkxOs/W+yEx0Xn+IQVktV0Vq8AV55P1NlFa4Ka/1keSyc6jO1679mwqK99dxqN7HL9/bxIzJ+fzxqiEUZSc2Wa8oO5E/XjWEOyblc/3TSymv9fLbDzYT67AxPCeZN1ftId5p4+H3NjE8JyXquTc2fWwu5xf15LJh2Xz206nMuuMMesQ7qHYHeGv1Hsb1TePDjQeiBqAae2lZGXM2lVPj8eMPdrCmghCnAOk7CSG6NWXqoW1Zg3VB8cHTdJYQRtP14lKhZn/791uzX2/TEqtdH/vgdj0E0LDobCKbs/3HsDn0PixWmDRDB5LsMUf333sonHm7zrZa8QrsXgcHt8L6d2HARJ2JtfQFiE/TQbDs01o/3sCzdNHxxEzILoRNH8GcRyE2WQfPeuTp9qx6PXoAKswM6XUMo9llFqc++cr1GA7H0VogwWALaYxCCNEF+YMKZRj8+eNt/P0bw5g5v4QZk/MjdZfCQ8ninbao9Z1aU+VuXry7sTinjVF5qbz/+QG+MSaHJSUV5KXFdegYCTF2th+sbzJMz+sPUeX2kxLrwGm38PKyMh5+r5gaT4Aqt5/yWm+kQPodk/L5dMshLhqSzY3/Wtak5tSxw+humZDH6LxU3lq9h6+P6MWCbYe485U1zJjcn4oGP9eOycEXMnl6YfThhMd6amEJ5xSeQTCkkFF5orORvpMQottSR1K83VWA0gXF17ypA1EDJkLZal283DAgJQcObOr4vluS3l8HanoW6uF0didsX6QzlTZ9rNvTlp4FULVXB3RSc3Tm1eCzwbDqYNDhEtgyT2cfAQTcOuBUtRs+ex7G36wDYHvW6eDX4KmQlquHBzaujZWaC/njdGHzTR/rIYBK6cLrCZlHftLhwBY9a15DZdttD/p0xln2aWCYYJH8ms5CurrH2LBhQ+T/vXv3PoktEUKIr5bbHyRgQmF2Igu3HebKUb1Zu7saA5h1xxlUe/wcqvPRI96JzdKxr52iFe8OK8pOxGaxcG5RFr+eXcx1Y3OY8cJKZt44qkO1mRJjbGw5UIepaDJML95po94XjCyL1qZw7ap6X5Drx+XyxPwdUYNZafEO0hNieHze9kgwK85p48LTsnjvBxPpnRzLW6t2Y7daqGjwdShbrMYTIMZuIVaG5IlORvpOQohuTSkdQFn0NGQNghFX6mFlcam6TlNyL71OwKOHj7VXUs8jwa0obDG6GPmG/+nsJWXqmlSHS3RgKnOArg3VlvxxULJE/7+yTP9AyzPm2WN18AfA3wCbP4H8M2DDBzDyKn0NckbqoXKhgF7XGaezqvashzVv6ccTMyC5N0ycASg4tBPScnTw68Dm9l+j/Zv0MEcVQgZ5dR7S0z3G7373OwAKCwvp1avXSW6NEEJ8dWLsNg5XeyL1nvZWe7jtzDxunZDPbz8oZlVZFfFOG25/kCdvHP2linc3duuEvrywpJQrRvTmnMJMvP4QG/bV8vKyMm6Z0Jcfv76uzWPcMiGPoKko6Hm0TeFheu1tU7h2VXjoYPH+uqjBrMe+MYK5Ww5GssGeWbyT84qySI93UOX2c97pPan3BThc72+z3Y3VeAJYkJoGovORvpMQotsyDLBa9TA4dxWULNUFxYd9HZa8AHXlR9e1OWHq98ERpwM4bckdCWVrohzTAsMvg70bdBBm6KW6XpOnWi/fvxGGfA0WP9NyEAug6AIdHItLa76spdpQvU6D4o+P/l6+RdeLsjp0G/xuXStqx2K9X6tdFxjvP1Ffo9CRTPrSlTDhdD2UrvYQuBJ1fSqr7WiQqz2CR2bPE51KtwsX/vGPf+Tvf/87FRUVTR6vqKhgxowZvPHGGwD88pe/PBnNE0KIk8ZhM+gR78Ab0PWeajwBfEHFBxv28+KyMor317GitIqN++p4eVkZN4/Pa9d+GxfvPtb0sTmMy0/jpWVlOtMozkGlWwdvXly6i/H90rh+bFu1mXI4ryiLd9fu/VJtCteu8gZCTYYOhoNZK0qrKN5f12xo4cZ9tdR4A/iCJoGQSTBkUtkQIDXWQUcku+w47N3ubVl0AtJ3EkKI1hhNZ4XLHAQ7PmsagAIdMNm3SQ9Za0t6P1036UBx08cTM2Hs9eBM0PWUlAko/a/1yBdZlbt152XCbbo2lfWYL7gSs3TWUuYACPp1IfX21JFKzdGz7x1uVGpAKZ09lZyt62JFHjeh/hDU7NND647NrGqo0AXaldIZY1Y7mAGdLebsQDkGZzwoQ2dQdTZKQSAAfv/Rn2DHyl10Vp06E2r37t0MHz488rvXq4uXLV68mB49ekQev+eee7jnnnsA2LNnD3/961+58847ycvLIz09HY/HQ3FxMcFgEIvFwm9+8xuuuOKKr/ZkhBDiJDMMgziHjQM1+huo1mbBe3HpLt753oQ2Z6KbPjaHqYMzeX3lqiaPF2UncuuEvpxXlMkljy2ixhMgJdZBRYM/Eryp8QT4zQfF/PbyIYzKTeHpRTtbrM301IISrhrVG4XB9LE5vNhKMfDrx+YwOi+Vh98rbrasyu2nZ1JMi0MHIfrQwjpPgKykGBxWxYFaLy67lRiHtUPZYgkue6esrekLhAiailpPgCp3gJRYO4kuO1ZDz7pos0pg7VQifSchhDiOQkE9BM525Isnm1PXWfr08ejrF8+BcTfAaRfo2khmlP5G1mCdyWSGYOz0I8XMDV3Q25WsjzXvMR3UiUnQ2UVVu6Hf+COZWTawGLD2bT00bvBUqNqj9xeboguPl62CNW/D8K/r7cdcB8tePJqpdKzYFD2D3qaPmi8zQ7ptVbtbuEgGpPbRgbljr52nRg8ttNp05tTO5TBwsq4p1R69h+laUJ2tHlQggAIMjwe8HnA6weGEgKkTuwwDbJ06VNOqTn1moVCo2bdyoItiNn7c7XZH/n/ttdcCsGzZMsrKyli3bh1Wq5X8/HwmT57Md77zHYYNG3bC2y6EEKeaoKmYv/Ugw3L09OqtzYJX4wlw0zPL2yzePaZvGm+u2s2j1wxrViS8ssHHM4t3UnLYHRke9/Gmcn5+UWEkeJObGsf8rQfZdrC+zULjOWmxGAbce2EBw3JaLyh+0zPLoxZXT4t3YLMakWF6VovBwMz4yFA8m8WIOrQwyaW/ZYyxW4hzWnHYrMzZdICbx+dx9xvr27z2Myb3o9bjp0d8B2a0OQU0+IJ8vKmcpxaWNLvWt0/M59zCTEIhE6dUWz9lSN9JCCGOJ6WH4I26Ws8wF58GDVUtD7cL+WHZv3WQ6ew7dUHvilIwTb1tnxE6oLLsJag9oDOiYnW/jMMlkDFAL/cfuUf3GaEDOf0n6uBUxkBdl2rHZ7qY+KEduhh4YpZun69eB6TCQ9i2LdCBLsPQmVPbF+nsK/PIbL12l54hL38cbJ0fvV5TXKo+xvp3dQHy3FF6ljurQ9enqtkPfm/zzDCHC/Zt1Ps3LDpwZgb14yl9WglqHeFKhox+dLbp8VQgALt2YmzaAJWNCrCnpkLBaZDdCxwOCAa7bCCqU59VXl4eqq1ZA44xbtw4xo0bd4JaJIQQnVetJ8hzn5Xyr4EZFGUnEuuwUu1pua5RaYW7WfFuf8gkJdaO1WLh2cU7IwGi33ywuUldpZE5KXxzUj7/WlQKwIxJ+TitFl755jicNoO7zx3I4wtKuOGMXG57bgUb9tW2WWj82cWlvHT7WAIhk5JDDTx54ygswIFaL4kx9mZBq2MVZSeSHOvg6QUlJMTYmT4ul+vG5uD1h6h06wyttHgHFfV+eiW72F3liWznsFk4XOclNd5JSqyD/67dS5LLwfCc5HZli509OAMAh63zpJM3+II88n5x1HPbuK+Wu2at5fqxOfzswgJC/iCxEog6JUjfSQghjiOLVQdLfPXQs0jXZQoHcFoS9MPqN3UQJWcEnH6x3g+GLhK+Y/HRdQ9u0/8aFj1rXUpvWPK8fszu0nWjKnZBfA/AomfGMyxQU66HuIUC4K3VP9HUluuAVkyinqmuz1CdpeWu1plWcSlQvg1WzjqSkXWM+B4Qnw4Nh6H/BD1McNcK2Pg/XQvKGa+DTCm94YybYekLer9JPfX5OhN08Gz7Yuh/pg6mFX8MIy7Xgbj6w9Hb7YzXwTOlwNZJ6mmGQijTxFixFLZuab68shIWL4BBg2HIcLB3kvP6AqRHKIQQAoAajx9TQbXbzx2T8nlx6S6yk1xtbBNoUrz7hVvHEGOzYhgwMDOB3ikuajyBSF2louxEbjuzb5NspOnjcpk6OJPKei+DMhOwWgwG9Uzk5xcWEDIVT9wwkleW7+bFpbtaLDQOOvDhCYRIibVTVulmyh/m8fOLCslNdfGztz9vFrQ61u1n9sU0FQu2Head701g+c5K7nhhZdQMn9l3TuRb/17F4h0VzJjcj3W7axiTnwoKAiGT1DgHQ3on88bKPcyYnN9ittjtZ/bl3KIsLAa4OlGQxusP8tGm8laDa6BnHRydl8rkQek4rKYMzRNCCNG1KFNn/AR9ukD36jd0RhMGbRbM9lTD1nk6kGQceX/sfyb0HqKzqxoq9OM9+uphZzX7dLHzoE8HoMbdoGs0ZfQDTy1s+QS89TqokzkIBkyEnct0ofDW1FfobKbeQ/T2B7dCj356uF7tfp3N1JKBU/Q1MKxQvx+Wvdz0vD01OtuqZAmMvlZnWy16CvpN0FlhWQN1oMlq1+cXlwZZhbB5Hoy7EcpW659wEM3ugpzhkD9eXxtbx+pvnkzKNDF274oegGpsy2ZIz4Ds3jo7rLME2Tqg8/R4hRBCnFBJLl3rKMZmYeKAdFJiHSS67O2qa2QqsBgGsQ4be6vc2G0WzivMZOrgDBp8QSob/MQ6rditR7OReqe4+PPVwzi3KBNQpCbE8ElxOU8uaD606+bxebzzvQnc9MxySivcLbajxh3AFzD56QWD+ekFg3l7zV76ZWQwvE9KqwGs6WNzOLcoi3VlVcy8YSSPzd3eZobPEzeMZOb8HZEsJosBH2zcT2qsgymDMnhqQQlXjurN2t3V1PuCTYYTpsU79JBCmwWrxehUGVC+QIiQgqcWlLRr/acWlnBOYSb+kAShhBBCdDFmCDIH6kDUgc0w8krAgIz+R7OYWpMxEFCw8UPw1kDheXoIXcYASJ6iAzy1B2DFK/pfVxLkj0XljgJTYZgBnVVVeUyfZe/nOrtpxOW6btSG2S23QZk64LR/k85qyh2pM7MKpsHyl1reruh8XazcatcFxTd+2PK6oQAsfwUmfxvGXK9rSFnsuhaUKwn6DIOl/9ZZYak5+mffBj1r3sQ79PaGoYNQZlDXtepMQkey4za0XaIBgE0boVcfWv32tBOTIJQQQggAEl02HFaDGIeN+95ezyNfH8LCbYfbXdfoW5P78b+N+3l1+W4uGpJNnMPKT95cz8jcFL4+vBdnF2RS7w0ydXAGV4zoHRkeF+e0MCInlUc/3tpi4OfuN9Zz/dgcnr91DJc8tjjqcDoAu9XCt19aFcm6unl8HlYDvnNWvxazkWZM7sfkgemYIZMRuSkdyvD53ln9qfEGSYvT38S5HFbyMxJ4Yckubjgjj5WlFVS5/ZxTmBWZeS87OYZ4px271ehU2U9hCkWNJxC1Vlg0G/fVUusJEOfsfOcqhBBCtMrm1Fk9rkT47FldlHzvBv3YoR1NZ4Q7lmHRRbj3boI9ayGtr16/+OOjyzMHQd4oGH+LDgz53bB/I8a6d3VR8cXP6FnoovHW6iFtZ9ysZ8Db+3n0NqT0gS3z9O/1h/RQul2r4IwbYcp3dd2qPeuPFBE/kmWVf4bOyDIsgDq6fWvMoM7KGjwNvA1HMsbQ2VxVe3Vx9DVv6aF7+WdAVoE+Z8OiA10Wq74+nS0ABahQCMPvb1oDqjWVFRDwg7X1EQmdlfQIhRBCAOCwWvjhtIFUNvgZ1ieFOcXl/OK/G9s1C971Y3M4a1A6tzy3gtVl1fzl2uF88/mVmApWlFaxorQKy382RK3p9NAlhSzecbhdgZ/hOclcPzaHf366o9nycHHzcNHwxsGrb03OZ1+1hydvHIU/GMLtD5EW5yDWYcNuMfAGTF5etYsbx/Xlifkdy/Dx+IPYEnWHaPLADGbO38HlI3qztOQwlQ1+zi/qiScQIhAySYmzd+oAFIA3YFLtbrlWWDTVngBOu2RBCSGE6IJciToTKHMg1B2CTf+DkVfDsK/Duv9ErxFlscLIq3R2j7dGP5YzHHY1mpFYmbpI+IHms/ky+Gw9w11LAaiwUAC2zNXD5qIFobIK9D4ajpmwov6QDmCNuV5nLI26GuyxgKmH79mdOjDkrdPDxaLVi4pm30YoukAHs4wjBcVtDkjpBTUHYPjl4KvTQ/ic8RCbDMnZEJPUueo/HUsp8LUyrDEanw9iumYQSnqEQgghALBZLYztm0ZVg58LTu/JzPklkVnwZkzO549XDaEoO7HJNkXZiTx69VDuvbCAsio9TK6lWfXCdaFWlFZRvF8HoKwWg2mFWcxsZ+Dn2cWlXD8uF0uUiVBumZDHy8vKmmUuv7SsjDVl1Vw1sg8GkJkQgz9o8tM3P2fYLz/ikdmbsVgN+qbGU/sFMnxS447OaBfrsDFjcj+K99dS0eBnWmEWDb4gIdOkR7yT5FhHpw5AAdR7gyTHdqwGQ7LLjq2zTZ8shBBCtIfVpgMpOSN07SOl9BA5FEz+zpFMqWS9jitZ132a8j1I7AnuGj2UD3Q9pOp9bR/PMHSx712r2te+Qzv0jHOJWU0fd8bD4Km6/lQ0tQd0cCpzoC5gvuZN+PAPsPhfOgPLsOgAW0NV+9oBOigW8DTPZrI5dLDJ4dLXo89wyBoMaXk6AGVYOm8AKszZwRmQY1xHA3VdTOftBQshhDjuvEGT7KQY6v1BFIrReSnU+4J8/Z+fce3oPrquUSBEgy9IeryT+BgblQ1+6rwBclLjuHZ0H95bv5/KdmbKtBSwasnGfbV4/SEGZSU0qfF0/dgcRuel8vB7Ub4tBGYuKGF8/x488M4GPtxwgGCj7PgXl+1iTH4q5xZkUHK45XpT0VR7AqTFN+0UxTpsTCvQNZBqPUGsVoMEp13XxLJYOn1dJKvFIKGdtcJAByoTXfau2o8SQgjR3YUCOvCUkAnOOB2M8rth/bs6sJQ7CsbfrIfuhYfnNVSCCukMoOTstjOaGrPH6n/dHQj+VB8p+l17QP+emgNDvqYDWYe2t7xd6QrIH6uDambw6OP1h6H4I51hZUYvkdAiizV6cMV6JDSRkN6x/XUGliNBtNQ0PdSuLWk9UDFODFvXDNd0zbMSQgjxhcTYLRh2C067lce+MYJKt5/UWAdOu4VXlu/mOy+u4vHpIymraODJBSXM/nx/JPOoKDuROybl88jXTycYaqUGQiPxTlu7A1ZhVW4/8UfqCxVlJ3LLhLwms+1Fs3FfLYGQybWj+3C4zsfKXdWEGqVMzZy/g7MGpZMS27Fv2ZJj7Rg070jZrDrYFNuJM55akuiyU7y/ltsn5nPXrLVtrn/HxHz8IZMEqQklhBCiK7I5we/VE+Kl5upZ32IS4fSLdH2oLfOg7qCuc7R9oX4sdKTvYxi6CPmAyTobKKnn0UDRsQxD7zcmMfry1liskDlAB3iyBuvMoq3zdfHv1nhrdOHws38Ia//TNGC1b6OeETAxSw/NC7UjGJWQoWtAqa5ZcLslhmHoQFTR6bDw0zbXV0Wn6f5lF/0GT3qEQgghIpSCj1uYoe6bE/P59uR8fj17c4sFxO98Vc8cd+8FBYztm8qync0LMFotBgMz44l32khPcNIjvmNDu7KTXTx86WkkuOwopSKz7bUUgAqrdgcYlJXIMzePwVQmH244yKyVZawuq2bjvloafEGSOprhE2PH3olmtjsebBaDygYf0woy2lUrbFphJoZBp88AE0IIIZpRJgT9UPyhDso0rv8Ukwh9x+rZ3VRIFy73HtO/UArKt8KhEhh9LQyYCLvXNF3HGQd9RugMKxSEgjrwFZPYfH8tSciE6j26qHj5lvYVEgddDyoUBOXT9ZrMENTs0zWgdq+Fqj16371Oh7LVbe8vd5Q+Z3sHh6Z1djYbyu/D6NULBhfA5uiZ+wBqcAH0yQV7Jx9+2AoJQgkhhADA7QvyyPvFLQaYth2sx1Sq3TPH/ezCwVz6j88ijye57Ewfl8t1Y3Pw+kORLKuMhJgOBX4shsG/FpXwg7MHMvkP89o1e63VYhDvtPH7/23GGzA5rzCTc4symTiwB6ZSvLi0jGp3AJfDyjcn5vPDdmb42KIVp+rinHYrE/qn8+qKMu69cDBj+qby1MLoQctzCjOxGeDsghlhQgghBEG/ro90bGFv0AGi4jnQ6zRY9WbrASMzCKteg7PvgtzRsGuFfjw5Wxc5L98KK16FunL9eNH5Oii19dO225iWqzOhts6HjP6Q3LvtbQwDMgbq2ftCQfBUQUUZJGXpek5WB0y4VZ+/xa4LpR8uBXcrs7+l9dXBqi6a3dMWw2JFGRaMYSMhIws2roeKRs+btDTUaUOhdx+MLhyAAglCCSGEAPzBEB9tKm8xwGS1GFw3NodvPr8y6vJjPbWwhNdmnMHtE/ry9OKd5KXF8vytY1i+s5I7XljZJGDx0CWF7R7aNWNSPg6bQWaSC6vFoKBn68GrcODrhnG5KKW4ZnROZHjhkh0VFGYn8OPX13PlyN70SnGhTMU5hZntzvBx2rtXFlRYnNPGtaNz+GzHIXqluJg14wxqPQFq3AGSYu0kuexYjaPDEoUQQoguJ+iDjR9GD0CFZfQDTw1U723H/vywZz0MPguCXl3HadQ1sP49OLit6bq7VsK4G3U2kqe65X1arDBoqp61b/wtOuMqo5/OrvI1RN8mvZ8eSuithdLlR4qn23UAKzZZ17uy2mDu33TR9fxxema7CbfC+negfBvQ6BtCi00XUi84W/9u7doBlhbZbBjBIMpigZxcjF69IRgAvx/lcIJDjwzo6gEokCCUEEIIIBBSPLmg5RnqvkgB8Sq3nx+dN5BJA9IYlJ3EX+dsixrYefTjbbzzvQntCvwM7ZPMt19czZUje+O0WbhlfB4/fmN91PUbB75ue35Fs0ydm8fnEee0M60gg7vfWM+63TX89ILBvLV6Nz+/qKDFDJ87JuYzrTCTuG5e4yjOaWPSgAxCpqLGG0CZip7JMbquGEa3DdAJIU49wZCKZM1aLfqLlZaYShEM6Y/QBrqMi9XQvyul/+2OWbAiCgXs39j6Oj36wf5N7d/n3vXQswBOu1APfduxuHkACnRh8G0LYOz1sPK16IXNbU4Y/nUdTFr9pg4GDbsMvPUw9DJY+WrT4YOgh+uddiGseQsqdzVddnArbP5EFzTPLoLti2HbfF2YPP8MXV9qyCV66OG+TRDwQkyCPh/Qdai6awAqzGbTlURDIZTNpm8wTifKYsFi6T79pu7dgxbiFBcMmZEZtmo8fpJcduJj7DR4A2AYJMTYcLSQadB4W28gSEKMHZfDSp2n7W1F91PrCbQaYPoiBcTLa73srfIwOj+t1SyrGk+Am55ZzvO3jmFs31SejBL4aVx8vLTCzbKdldx+Zl/unDaA1WXVzfad5LLzwq1jeWL+jhaHF979xvpI/ap/frqDF5ftYnTfFL42tBe3PLucX19+Oq8dyfCp9gRIdtlJPJLhEyPDywAigabYbh6QE0KcWvwhhWlCtScEGCS7LARCirLKIAoYmKFn7LQaYKKDTabSo4T2VofYUx0kNdZCnNNCisvAYTVYtsvPgTqTAek2CjLt2Cz686Olmw4tEkDFzuZBnGPZHDoY014Br85e8tTqAE5rdZZ2rdTFwM+4UddoKlsDvjodfMocBNmFsOdzPYsd6CF/a96CMdfpmkxjp+vhguEsLUcsDLkYlr+s9xdN0Adr3oQx1x9Z9yXYsQTyxur2fvIXnR3V7wx9LqYJhlVnTslr5SirVQejrLof1d2ujPQahThFuf1B5mwqZ2aUAtG3ndmXUXmp3PfKGr42LJtpBZkYgMcfwmm3AAbztx7kUJ2PaYVZhEwoOdxAj3gHybEOTFPx8LsbuX5cLn17xFPnDVDjCZDkcpDokuBUd1Tlbr2od70vSGpsxwqI90xysXFvDTWeIDPnt5xlBVBa4eaSxxZz1zkDeG3GGVS5/Ryo8ZJyZOhctOLjTy/ayai8FO46ZyCj+6bydKPg1fRxuSwvrWxX/aqxfVP5wdkDeOjdTTy5oIQpgzIYnZfKtEcX8Mn/TWb9nmpO75VESpwdlASghBDiVBU0FW6/YmWZn73VociAIAPonWxlVI6DWq/Ja2vcDO1lZ2CGnUBQ4bRDtUexpMTHadkORuU42VMdpKLBpNoN2UlWzujrZE9VkBqvwlSKWq+ixquwGJCRYMFmMbBbu9tHyW4u2I4v54I+HdxpL0cseOugZAn0yNfbt2bPOl0QvfcwHRSqP6QDUxVlMP/x5kPulKlrQw29RGcmjb0eGqp00CkhHQ5ubzkAFdmHgk0fwRk36X0oE3Yug/4TdNBt7+eQO1IHt9L76QwsCUCJRqQnLcQpyO0P8uvZxby4NHoGx/+9to7pY3N44JIiLvrbIpaXVHLvhQU47Fb8IZNnFpZw5ajeLN9Zybf+vZKgqYh32qj3BbFZDL43dQD3XVzEBxsO8JM3P28W5JoxSQ836orTy4voUmJbT4/eWl5PjMPaoQLidquFv3yylb9dO6Jdw/hqPAEefGcT5xVm8cJnu1izu4p6X5AtB+paLD7+97nbefn2sbrQeGEmB+t8ePwhclJdXD1zaZvHBJi5oIRnbh7Nw+9tYuO+WiobfNw4Po8F2w6RmRTD5Lh0Khv8mAp5TQghxCkqZCpqPCYfFnsJmk2XKWB3dYgDtR7OK4xhYj8H87f7MQwYmG6jzqdYXOJj2qAYSiuDbNgXIjvJRrILgiHYWxPi831+zugbg90WYs4WL9Weo29MBjpQNTbPgU4M1R+4DUNnWFkNRcjUj7U1HFB0IrHJba9TvhUKz4Udn7W9LujaSfs26uLf/hZqNh3LDELZSig6F5b+u+3srKrdOnhkWHRAqbIMUnN0JtPG/7XvmHUHwV2tg0wHt+l9BrzQZxg44nQ2V3p/nQElxDHkWSHEKSYYMpmzqTxqAKqxF5eVMaZvKredmcejH29jTN9UphVksmjbIa4a1YfnPyslxmHliRtGYZqKel+QeKdNDz22WludBe3+/27EabNy5oAe1Hp1seHkWDsJMXaCpsnBWi8JMQ6SYm3YLZI11RUkuuytBphCpuLlZWXcPD6Pu1uowdTYjMn9eG7xTmIdHR/GV+MJsGZ3FStKq7BaDAZlJUSCqFvL6wk1ikht3FeLJxDCabNgKnh1eRm3npnHoXpfh+pXuf1BBmUlULy/jop6P44kC3eePRDTNHE5rOTFxMnzXAghTnGfbPURNMFpA8Mw8AdVky8xAibM3eLjsqEuEp0B1u0NMDDdzqoyH5P7x3C4IcTADDvegCLOcTSQFOc0KMyyU1oZZMnO5u9pCqhym0eOZ7Bxv599NSFMBQlOg0GZNnol2SirCmC3GPRK1nVhTHRQSgeqIBACh00CVJ1GUk9wJughcC2pKNUBmbQ8/f/W2F261tKn/4CMAXpYXXtZjnysVwqyCiBnOMSl6cfcVbqA+YHiowGq2gO6TRYrZA2CQzsgcZguMN5eVXsgNuXIL0pnYCVlQ4++evY8i/SbRHQShBLiFBIMmfiDJk/ML8FhszCtIIO0OAcVDX7mFB/Ef8xXezMXlPDCbWP4cOMBFu84zDmFmVTV+9m4r4abJ+RS2eDHahh4gyGUOjpN/a7KBt7/PHqqbeNizlfPXNK8KPOkfCYPTMc04VCdH0yTHgkxgA4eVLkDpMTq2jk2ixQn7iysBm3OUPfi0l28870JXD82h5eWtV5A/KxB6fx7SekXGsaX6NJZWd89qz/Xjc3BNBWBkHmkELji30vL+PeSXZGheZUNfkKmiVIGp2UnYjEsVDV0oP4CUFHvJ/5IXaOUWAcNviBD+yRjs1pw2eWtUgghTlWmUpimYn+tSVGmjX7pdqxHEjwsFthXHWL9vgCVbt2HcgcU+2tCTB3oxBvU2xf1tBNjU8QkWPH4FaWVQWJsBnlpNvxBhWHoYFR2opVeSRb21jTtj8XY4NyCGLYdCrJxf9Ph7Z6A4mC9n4SYAOcPjiEQVARCep/+ENgsUO9TWC2QGGPB7TexW2VoX6eRf8bRmkst2TIPRlwBnz3X8kx6NqeeCU+Z4KvXAatBZ+kgUVuZTQA9C3VQ6Kzv6/XVkW3MoN5n3igomAar39DrWWz6GOFAlMVOxysTNYrwJmToWfOSe+kMKwlAiVZIz1qIU4THHyQQUjT4A/zkgsGMzE3RBZHdfpJjHfz+iqGsKqvivrc/Z1+Nl4GZ8cQ6rChT8cT0URyu91HtDnD5qD6ETBNf0GTnYTdrd1czrTALgL3VHnrEO+idEsunP57CLc8tZ+3umkgbwsWcn1ywg1VlVcQ7bRT0TIhkn2zcV8udr65l+thcfnzeQOIdVhw2Bx9vKo9aTPqbE/M5R2YR6xRsVgvnFma2GmCq8QR4c9UefnrBYIbnJPPs4tKoQzmH9kmm9LBOIe/oML7TeyWS7LLz2HXDqfUEiHNYsVkMarxBKhv8JLvs3DExn1sn5HHTM8v5fG8tiS47KbF2rBaDswZnsn5PNTlpHai/gA481fuCFGUn4rRbsFmsHKjxUNAzsUP7EUII8dUJmSb+EPgCiqxEK/6g4uMtXqqOBJycNhiQbmfaoBgafCYOm4HDZmCaCgXsLA9Q4zFJdFlIjbVTXmeyuyrIyBwn2w4GeHeDB7dff9B2WCG/h40J+THsrw2ycMfRjKjROQ7cfpP8NBuFWXZCpuJwvcmWgwHK63Rb6ryK/xV7+drpLoIhXbtq3d4AexrVroqxwYAMO6f11JnnNvkgf2qz2nXGUUMFlK2Kvo7Fpoeo1R3WBcRLV8DuNUdrNVls0Os0yB+vg0OuI/0O95E6TdlFsKeVDHSbE3oPgf4TdXuUqYfFhUI6s8pbq4f2xafr4Nbob+jC44mZR4qGW6ByNyRl6RpXST2hZl/7zj8pS2dQAeSMhNpyiEul+5XZFh0lnwyFOAW4/UGCIcWykgrG9+9BVUMV10TJQrp9Yj4f/HASnkCIWneASrcfX0jhsFmYU3yQF5fuYnBWAk9MH8lLS3Zx+UhdF+qOF1ZGLW7+0u3jeHP1Hv700VZqPAFun9iXKrePb5/VH68/RKXbT+qRwtCvLN/Ni0t19smLy3ZxRr9UzuiXxq9ntzys74ezdMDq3gsHSyDqFGezWgiGTO69sICx+WnMnL+jxRnqrntqKRMHpPPkjaPw+kNUuf2kxDpIjXewbnc1lzy2mLe+PZ56X7Ddw/iSXHamj8vlmxP7UusN0OAL0TPJxSebD/JklOL8Mybl88o3x/HztzcA8JsPtnDvhYM5XO9lUFYCMfaO1a9y2i1sOVDH768cwpzicq4c0YfkWLsMwRNCiFOUziYyqPWESI2zMnerNxLwCfMFYcP+ANsOBTi/wMXB+iArywLYrQZ5qTaKetqpbDDZVRWk3qfYcTjIuDwHHxV7qPE2LUboD8Hm8v9n773D6yjv9O/PtFPUe7OtZkuyLPcm94JtikmAQOimmZpNIZCElM0m2TfZLJtfNptNCIshQEhMC5BC6NUF494ty02SJTf1rtOmvX88kixZ7YiAsWE+1yVLOmfKM8fnjJ655/7eX4OKBoOLC71cNt7D6/sDFKSqjEpQqag32FEXpD1ko0owIk6hONtNyLBZczhAwIC2oE17wKItaLP2SLBP3mHAgL0ndY43mVxU6MGwbVTHEXVuo7qEwyhjnMh96hJlusShrBkioHvPnyEqCbKmw8KvQKBdCEYR8dDRKLKYYlJ7B3gfWQ/TrhHiTmtN332PmABFF0H9UdH1ztcE+QshfhSUbYDqA6ddVLIq3FIFi2D6dRBogc2rYd6dYgybVsPir0JOMez669DHHZMKnlioOyK2q2iQMkaU4amD54w6OEi2bQ8Q9+rwcTJt2jR27NjB1KlT2b59AKXc4XOJYVoEDZPjjX5GJkTwn6+VsnqIUqfvX1LIJf+7jmNNfkBcRN86J5uZOQm8VVJNcrSHqZnxA7an72JFcSYPXDyWFn+If/3rPh6+cRpvlFTz1IcVfcLMb54ttn/LE1s42uDj3y8bR1yEi3uf2zXkMf762slcVJSK1wl1PufxhQza/QaRHpUmX4j2oEGsV0OTZZ7YUMHTm6u6y+Bkie68pgV5yVw2OYPLHtrAyHgvq26axoJfvI9lC4Hp5a/NZdXa8n7fj10loNsrm3j8gwqON/n5x9fmhfH+zeK7FxfwzJZK/vP1g/z2+inMz0viz1uPcfnkDDZXNPKNMN6fv7x6IuV1HbT4de5akEvpqVbm5yUR6XYmUZ9XnL/Z5wbO/4PDQBimjWGJvCfdhD0nQ1Q0DF6y5NEkrpzo5a97/Ph1cfkjSTAnx0VajML2qhCTR7rYdDRIdas16LYiNInLJ3rxhyyQJN4+ECBo2CREyKiKRNCwaeywsIHJIzQy41XeKPUT5Za5IN/NX3b7B2y40UVWvMK0TJdwbzlC1LmPZYEZEiKMZYgSN18z7H0VGit7L6u4wBsLo+eIjnQf/kGUzy36Oux8EZp7OJHSxsLEL8Lh9XB8l3A5gRCgCi4Qrqb2OvHYmPkiS2rL0wN31dO8MHelEI3e/bUIJJ9+HRx4R2RJxWXA5qcHd0NJknBUNVQKAW38JVC5HbJniO06YeSfW8L9u+28QxwcPmV008JGImRavL6velABCkRL+RnZCfz0ivHc+uRWQLiOvvPiHm6alcl3Ly7kpe3H2FzRMGR7+q5wc7cq8/CN03hk7RFsJB65aXq/TqiD1W08tXImX/rdhywdl8bdf9xGYfrAodFdPLa+nHl5SVg2jiPqHCfCpeJSZEKmRZxXIynKhW3b6Cbkp0YzMt7bLUJZNsiSxLUzRjEjWwiULX6dn15exDulNd0T7Ba/ztee2cmzdxYzIzue339Q0e1QivVqPHPnLH73/pHuMsCvLh4T5vu3kuLcBMZnxALwyNoyLhibwuVTRvD1Z3byy2smhZVfNTs3CU2RmTwqjr9sP87K+bk4VnIHBweHcxfLhrp2i90ndBbnuTk6hAAFENBtKhoNpoxU+bBC/B2zbdheFeJLkyIImTaGaQ8pQIHIlTrWZJAcJXO0QWdcmkZukkprwEI3watJaAocqjUoqdbxaBKTRriI9kgcqjVIjJTxqBKGZdPQIUoKz6SqyWR6JuiGjW3bSN1/l4QD3uEcQ5ZB9nT+ogqxyB0Jk6+A8g/h+F4wAkKkSS8UjijLEIKPZQihSZZ6C1AgyuN8TeJ73jxRomdZkJgFH/we2us7d+mG3GJYu2pgAQpA9wvhasHdIri8sQp0H4yeC/te7xSYrhPOqv6C1FUPTLoMXBHiOFQ3lG2E/AVQuQMyJzsilMOQOO8QB4dPCcO00DuDyP/7rYPcvWgMT7y0F0WWyE+NGlTYeWx9Oc/fPRtVplcb4m2VTTT7QywtSuPOp7aFNY5V68p5/JYZbCqv57a5Obx/sK7f8r0up9XhmjYev3U6kS6FVTf3L1Z1le11IbqPmbgUmeoWP00dottejFdDkUQpmFP2dO5w5v+HP2RQVtfGReNSmZeXRItP7y7Bc2syz2yu4qevlNLi14WoMzqJD8vqe21zQX4y75TWcri2vVcZX1ZiBB+WNXQLRYoscUNxZtjv30fWlvHnzs9CyclWWgM6pmWz5WgjNz++madWzhwwv+quBblcMDZFON9t2Hu8mbsWjuaOp7byq2snO4Kpg4ODwzmGYVqARFvQYu2RIBMyNI42GGQnKuQla0S7hVDTGrA5XKdT1WT2chwdrjVYlOcGTs9R3KqEX7cZGadS3mCEPZayeoOkKDdj01wcrNF5ZZ+fjtDpnSVEyIxL07hknJddx4PMzfWALdxSmfEKHSEbTZGIj5CpajLYf0rvVQJoI4SojFiZzZU6LQELGUiLUShK13ApktNJ71xFloUQU39UOI1Gz4XCZYgbXLYo2Tu0VnyPHwFj5gl3lG1DagHUHBTbcUVA1jRY87AI/XZFQEyayIk6tf+0AAUwchLUlg3eqa8LXxM0nYC8+bDrb1B9UJTh1ZeJMez6mxDFQh2iq56/RZTzpY0VwlPIB4YO/mYwDSFAlbwpnGD2pI/5xXT4LOLMsB0cPgV8IYN1B2uZn5/M2kN1bK1s4jbdZPHYFB67ZWhhp+RkK61+nQuL0nht7+lWql3ClSbLw2pPb1gWc8Yk8fNX+y8F7HJadZUCmpbFmoN1/YaR3zonm5e/Nre7bK+LNr/Ow+8fZvfxll5lfivn5XLhuFQM08LjlOudk3hdKvmp0Wwoq2f8iDgq6jt4a381e0+0cLC6DcsW//c/vbyIRQUphEyTpYWprCjOZPXmql7C0v5TrTyytoyCtGhiPCr/e91UVq0t795XfmoUgZA5rPdva+D0Z6HVr3dfcBxt8HHZQxu4sTizT35VpFvh3QO1rPzDVn56+XguKExBkSS++fxONpY30uo3SI6yHHHUwcHB4RxBN206gjZel8hNsmyI88qkxSg0dJiU1ug0dog7c4mRMgUpGtNGuVhzJEhDx+nOeKrcW7gxLdEh1qVIBPQ+ux0Qv27jUSXWHglysqWvlanRZ/FBeZDx6RpzcjwEDeF62nNCp8l/+g6iR4UxyRoXFXr5oLz3tvydnfy8mkSsR0W3bE62mBysNRiXqjJppMvponeuorogKVsIPsEOiB8pHEqq67RrafzFQlgyDeFQ0iKEc2rf63Bijwg0rz4gRB8Q3+vLYdwy2PNK7/0l50LVzvDHd3wXZM8UP9umyKfqSumpL4f3HxIZTxlFp8fYfALe+604jqKLRBaUpIgSwtojMGKiWN+ynO54DoPiXPE5OJxlfCGDVWvLuGZ6Jrpp88jacsakRJEQ5SY7MaJfF9Jtc3N47RvzufmJzZTViW4aLT6dxEhXr223Bw1iPBonmv3DGlN7wOBIbXtYpYDFOQm4VJl7n9/V5/meYtVTK2dy2UMbaPHrxHo1UmLcfHNpAR1Bo4/AVnKihW8uy8cXMohwhKhzkki3yoL8ZAzTZnp2PMW5CbQHDVr9BjFelWiPhtrZwnr1puOsnJvN95cXMiUznvcP1vYSliwbSk+1UZgeTUfQ6CU4RblVGn2hgYbRLz0/CxEuFatH1GGLX+fhNWXdwleXAHqktp0xKcJxmBTl4kB1G/c/v6s7Z82lSnxwpI6ZOYnOe9LBwcHhU8a0bNqDFl5VAiSONZkkRcqkxyisK+srAnWETKqaTEbGKSzJ9/DOwQCNPgtN7tVUvnNZ8Ygs2WhK+GNyKRIBw+5XgOrJvlM6GbEKQUOEkZ9JoDM8vabNZHGeh7cPBGjyW8R5JXISVSJdEseaDQI6xCiirK/JZ7LrhM7+ap3CVM1xRJ2rqC4R4N1VHierohtdbEan4GOL8jxZFZ3xLEt0siu6ULiULBP2v9V3u54YaG84Y19uIWSFix4QYwERMG5b4I4SHfRAjK32sPgCUQ6YNR0Wf02sJ8sQaIOD70F9hVgmrUC4u1yRwuGluvrs1sEBHBHKweGsYpgWaw/WctXUUby04ziXTkjnRLOf398ynV+8caDf7JqSk618+4XdrCjO5O9fncuTHx7l9+sriI3QaOjofbF+qKYdlyKTFDW8k36sV+O37x0Ja9lV68p59ObpyBIDhmo+vbmKKZlx3FicyWt7T/H0HbP4sKyh3y5nt83NYUZ2PBvL6inKiMXllOads7hUBZcKEZ2/R3s00mN7L2OYFqMSvPh0E0WSKEiLYkF+MvXtfSfe/QlO7UGDhIjhv38bOkIUZcSgyBLxHlefznhdwldXF77f3zKDQMikxa+jmzYZsR4umzyC1ZsqyU70khDpZldVE+sO1rGgINkRohwcHBw+ZdyqxL5qnexEFRuYN9rNhvL+XUhdHG822VoVZEm+m7cOBBgVrxLQe09ebOBQnUF6jExWgsrB2vBK8nKSVI43h7fsvlM6c3NdjElSqWg0MPuJnaprt9hzMsSEDI0DtToLx3jYezLEkTqjV/SCXBkiJ1FlSb6HHceCyJIQ6RTZEaLOWVT34M9LQFIuHN0EObPACMHJ/ZA5pX9hye7HaaQHhPgTLq4IISJpXkgZLXKpRk0RHfl6jU2CoksgeTRUboP3fyscWZIsQtCzp0PBYjHR0jx0y7ySBKYuRDYHhzNwrvQcHM4iIdOiti3IlqONrD9cR6MvxIpZWWw4Uj9oeDKIEPE3S2pYkJfEa9+YT6xX462S6l7LmJbNa3tPEh8hLsLDoSgjhmiPxuv7ToW1fMnJVmTgR18sItY78B+WJzccZcXsLP64spiH1xzh3ud29RIFurb17Rd289i6CqZmxhPr1Qj1NzNzOG9QFZklhalsP9qEqsikx3r589Yq4iL6vlf6E5wO1bTjcSnDfv++VVLNbXOzOVzTTlldG7fOye6zbHZiBC9/bW6343DJr9Zy5f99yOwH3+OuP20nJzGCtd9ZxLN3zcYXNChIi2XSqDhsGwIhozOLxMHBwcHhbGLbNiHT5kSzyakWC0WSSI9RMEybY81DB5JXNJgYFlw8zktRusrBmr41dxX1OkmRCnFemTjv0GKOJkNuokppdXgi1MkWE0WWyEpQuGpSBJnx/VuuyuoN0mMVFo3xsL4swIGa3gIUiGv9snqDtw8EmJ7ppiNk4TQ7/wygakKAMnXhisqZIYQeV0TfZVtrIDG792M1h2DE+PD3lzkFTu6F3NnQWgst1ZA1tVNI6sH45RAZD+tWQfnG06WBtiWyqzY/DRVbQHNDyeuw7XlRKljXmS9lhEQpn4NDDxwRysHhLBIyLK6aNoo/bKggOdpNUpSbG4ozeXLD0bDWf2JDBUnRHh5ZcwTDtPptIX+qJYBblbl9Xk5Y27xjXg5tQX3IVsE9qW4NkJXg7b6g74kiSxSmRxPhUvCoMjsqG8MQ2CpZf7geGTDOnG05nHdEuFTm5iUhA3uON7NyXg7RHq2PsNSf4GRaNs9srupXROqPuxfksq2yketmZFGck0heWhT/8eoBZuYkcMPMzO7lYr0af1xZzKq15XznxT39C6Iv7uGXbx6kqUPn4v9dz/LfrGf2g+9xzaqNvF5SQ9CwCIaciZSDg4PD2cKwbAK6jSqJAO9Lx3uI9kjkp6gcrgv/fHywVqeuTTh0u0q2NUWEhydGyhSmaWDbyLLNojwPnkHMr7IEC/Pc+EJWryDyoQgZNpuPhnjnYICZWS6yEnoLUYmRMqOTVEzLptFn0uQbfD7U6LPY05mNZdmOC+ozgaIJ11RSDgR94ueMfoSlyu0isLwnJ/eJEPSI+KH3E50iOuO5IiF7hsh1qtgEJ/bBjOuFOwogboQYy7YXROj4QFRsFuvGjRQCWs1B2P4CrH9UuK1sS4hrDg6dOCKUg8NZwDAtOoIG5bXtGKbJ47fO4FvLCkiOchEyhhfCHAiZbKtqYu2hOr62eHS36DMjO54lY5P5l8VjaA8YLBuXyo3FmYNu78biTGbmJA77eGI8Gr948yCPrivnqZUzifVqxHo1vrp4DOseWMxD10/lgYvHEjQsZo1O4quLxwzqmgLR8a9DN1GcUrzPBBEuFU2VmZWbSFvQoNWn9xGWBhKcVm+q7CMi9ceK4iyWFKZimCbfujCfSJcKNmw52sgtT2zh7oW5/PLqiRRlxLBiVhabKxp4ZsvQjsNN5Q18c2led2lDyclW7nt+Fz9/rRTDFrluDg4ODg6fLCHTpqkzUDxoilDvl/f6OVRrEOeVaAmEf9OqJWCDBEfqDaaOcnFBvpsrJ0UwJ8fF7BwXY5I1TOBgtYFu2nxhvJecRIUzK9wyYhUuKvQgSyLLKVwkRDlhyLRp9Fm8ezDIrGw3LgUy4xWWF3lYMNpNjEfmaINByIQrJorxRWgDC0xH6nQiXTInWwwM03FDfSaQFZGl5PICNqTmiaymntQcFLlQXUHgIESew+th+jWDl+V5YmDmDRAKCCGrvgKik8DfBgfeFeHjC78C4y6C3DlwdOvgAlQX5RuFu2reXZA7SwhZvibY9EexvmmcDj53+NzjhFw4OHzC+EIGtm0TNCzS47wcbwoQ6VZwazJH6jr6dGkZiiZfiCi3ytObq/jDrTP4wsQMfJ1dv0bEe9FNC9O2ueuP2/jN9VMpzklgVb9ZTNnMyE7g5ic289d/mdsnQ2cgijJiiPKoyBI8t/UYUzLj+Nri0VxYlMaWisZ+g9UH6pjXk5KTrbT4dEqaWpg7JsnJhfoMoHbme1W3BsCmW1jqKQSt3lTJy1+b2+vxFr/OLU9s4amVM5maFceTG472eU/dvXA00zLj2VRWj6ooLPrlGr44KYMHLiog1qtxrMnPt1/YzZemjODJW2cQ4Va55pGNYY37iQ0VPH/XbJaNS+3VmfLpzVXMyE5gYUEyLsXpnOfg4ODwSWGYNpZlEx8pc6rFpCNko8pwUaGXVr+FW5WQpfDnT105lr6QBajUtllsKA8SNE4/n52gMj5Do7bNpKbVZFy6xsxMN40+E9OGWK9MyLA5UGNQ2Wjw5ckRRLgkfGG4oUbGK7QGLOK8Mj7dpslvcaLZZE6ui/gIhS1HQ5w4I9vKrUJhqsYl4zy8dTBAW6DvfoIGNPktyhsMRsU7l3WfKSRZiDjNJ2H6tbDlaZH7BMJZtO15KF4B7kghFFkGHN0i3FPzbhei0PE9p0PRNQ+MnAxj5omSuvZ62PGi2NaMGyB/EWCLMj/dJ7riqS7wNYI7GoJtg4830AqNVeIrOhUWfxX2vw3Hd0PZRshbIMSoofKxHD4XOGcrB4dPkEDIwLbh7f21PLa+rxB075I8JoyMHWQLfYmPcBHjUfnRF4t4q7Sm37Dvuxbk8uBVE1n5hy0syEvm8Vtm4NdNmn0hYjwabk3mmc1V/PSVUlr8OkHD5La5OXz7hd1D7v/uBbkEdJPfXDcVtyaz/nAd1xdn8fNXS/t1mQzUMa8/mnwhXt17ihk5Cc4F/mcIr6Zg2vCTv+/jh18Y10tY6hKcnr5jFjNzEro/J0cbfFz20AbuW5bH03cU4wuZVLcEiPVqRLpValr9WLbFc1uP8ZPLx9MW0Fm9qZK5oxP4zXWTGZMaTSBk0ugLETQsIlyweGwKJ5r9A77/uig52UpNa4D/eecQC/OTewmoj60vZ9m4VEKmI0I5ODg4fNzYto1hAhIcrDU4UKN3C0UAshQiK0GhOMtNRow8ZGe6LtJjFEzTpiBV49X9/j6CjmVDeYNBVZPBBfkedBNeLQkQ5ZaI9chIErQHLZr9p9dr9psUpqpsPzZ0mdGEdA2XIjF1lIsot0RHyKYjaJEUqfBqSQC/3r/AtOuETkfIZkm+h5f3+vuNTjAtUY5X1WSQlaAOS5xzOIeRVQh2CBdUYyXMvR3KPhRld6YuRKStz8LEy0QnvRP7oL1OiFHBDshbCAUXgK9ZWPE8MSI3audfoHAJJGYJ15VlgxkUpXeH18Ouv54unYtKEm6p+XeK9RqODj5mf4sQuI58IMr9Zl4vAsqP74KCRU42lEM3jgjl4PAJ0RE0sGyb/3rjAKs39S/OfOXpHWz+wZJhuZC8LoUff3E8j6wtG1D0ufe5XdxYnMlDN0zlsoc28H9ntKc/WN3WPZEpyoghZFrMyI7v41I5kxuLM5k0Kq5bSCrKiOHnXxrPe6U1Q5Y59eyY9/Casn6XiY9wsfdEC61+w+lG9hkixqvxwrZjXFiUxmUPbeDG4kwevXk6gU4HX3yECySbuAiNJ26dgWXZtPh1vC4FRZZ4bF05W442AvR6/95YnMkPvzCOkGFSkBaNP2QycWQ82ypPO/IUWSI/NYoJI2JZWpjKNUM48rpo8oWoaQ30EVBLTrbSGtBF6Z+Dg4ODw8eGbdsihFuCjRVBjjb2FZgsWwSNB/UAC/I87Dg+dKalKkNOokrQsNlQFuzXUdSFYcGawwG+NCmC0mqd9qBNe7DvOGQJot0yUW6Zhg6r37F2MTPThUuReLXET8gUesCIOIXZOS42VoT6FaB6crjOICtBIStBoaKh734iXRIB3aa61WJUnNAVHD4DyDLEZUCwXQhPtWUiv2nsEvA3C6eUNwZqDovnR8+FkF84lyo2Q3WpyJjydOZu+ltOu6K21MKir0JCFqSMES6ptf8nxCdJgtQCIT5Fp4pxhPww7WrY9mchiA2Eop0WmjoaYMszMHelEL9CPrCszjJDh887zizaweETwB8yMCyL9w/U9StAdWFaNk9uOMod83O57/ldQ263q/tXbVtg2KJP6an+bbS3zc3m6U1VvLb3FE+tnMm0rHie2FDRt/xpQS4XjE3h2a3Huh8/UN1GUrSH7/9l35BjB9Ex79Gbp/PI2rI+k8aijBjcmszB6jZaAzppsZ7+N+Jw3uFSZFKi3YzLiOXSCek8vKaMRwYQRn+4fCxXTBnBqRY/v3jzYC/B9Ey63uOzcxNJi/Hw75eN53fvH+GZLVXdGWU3FGd2O6ISIlxEuFRe+socrvjdBo419dP2uJP4CBftnbffz/wsNft03KrjgnJwcHD4ODEtIUSdbBlc1AE42WrR6reYkelic+XgeTUzMl00dJh4NZnqtqFzpEImVDQY5KWo7D7Rv8upIFWl2W+ztSrIknwP6TEmB2qNXmHiGbEK49I0vBq0BCy+OMHL+4eCNPosfCEb04ITYXT3AzhQYzA+XesjQqVEib9FjT6LxEgZJ3HnM4ZtQ9MJ4SKq3AG7/y5Uxi5hydcMMSkw5UpRqqe5YPufwep8n1jm6RK+nnQJW6MmQ/woWPs7IUBFJorSv1CHCD9vOCrK9SITIWs6zLgO9r4q1j0TWREh5ofXn36soxFOHYBRUwBJCFwOHx3bFkKeLJ/3r6UjQjk4fMyEDJOAYWFaNo+uKx9y+dWbKnntG/NZUZzJ6kG6yN1YnMmM7AQ0Vea/3jgQ1lgGE30Abp6VxQUFKbyyZzdel8Itj2/hNzdM4c93z6bJF6KuLdirfO/pzVV8edpIXvvGfB58oxTTsgmEwg9WP1DdhmXZXDl1BCUnWzlU047ZObDb5mbzzOYqLFsEnzt8dlAVmYUFKaxaW8bdC3MHzXlaWpiCZcP/e/PQgMJpT57ccJSLx6ezqCC5O3g8OzGCp1bOHDCj7I75ufzlX+Zy9SMf9uuI6imI9txP12cpzqvhckrxPhKGaaFbFr6gSWtAx6MpRLs1bNtGUSRcnTliDg4Ony8M00Y3bUwbDtSE10VrzZEAl42PQJVh27FQr7I9AI8mMW2URoxHuJWqW8MvBSpvMCjOcvUrQuUnq0zOcLH3VIg4r8yG8gAzs91kJXoI6uI4vJqET7c5WGNQ3mBg2SKAfGmBhx3HQkS6JU62mEOKRpoCuYkqo5NU4rwyV03y0uS3OFhrcLLZZHyGxqFaMcbESBnl/L4udTgT1QWp+XCqFKKT4YKvC+eTrxkUVTiWFA1kl8haOrbztAA1FFU7RCe8qh1ghMAbC7NWwKG1cGxX72VDPmg6BlHJItQc+gpRaYXQViscUGfuZ/IVwgFlhBFw7tAb2wbDAGxsJCTTxFZVME0hRgGmIqHK55esc36N1sHhPMC0bLYdbSI3KXJIcUaRJTLiPDz4Rin/+aUJzMhO4NF+sqO6QsT/v1dK+MEl44bVTc+2bZZPSOeVPae6Hy/OSeBHXygkOymK1oDOty8sIMqtkhjlwrbhwddK2VbV1G/53uaKRlYUZ/KzKybQ3FlK9dXFY7rDm/sj1quxYlYWN3R267uhOIvYTnHr2S3HCOomM7IT+OkrpRRlxBDjdU5NnzUiXCp3LxzNukN1tAeN7nK81oBOQqSLOK+GYdk89O4hbpqTM6z3eFtAZ/mEdG55YiuxXo0/riwetFz1vud3saI4a8CMsp6CaM/1AiGT5RPSifFqODrJ8PGHDIKGRZMvRH27cKaZls1LO46RHO1mYX4KlQ0dpMd5nXJcB4fPGZIEAd0m0i1T2z6wW6mrtC4/RSXeK2MBoxIUshIiqGoyafSJC/CkSIX0WIWKBoO3DwSYkeUiYITvEwrqNlFumewEhSa/hQSkRClMGqGhKBJ+3SY5SiE5CpKjFBQZ/rbHj6qAJksEDZuOMwLLq5pMolwhJo7QuoPSc5NUyuv7F8cy4xVm57g51WKy83iIZr+NLEFajMKkDI052S58IZtDtUb36yIPs9mNw3mA6oL0QvHzyZJOZ1KCEHVUtyizq3wfii4S4eDhEmgVQtaJPeL3ootFwPmZAlRP2utEDtXsm6H28OnyPm+cyJna9XLfdToaRNmgaYhjcQgfyxJiU2UFlO5HaqgHQHK5YUweFI0HVUNua8eOiUFSz5+b+M4sz8HhY8a04a2Saq6dMWrAZXqKMl2lQq1Bg0Vjk1k6LpX69iB1bUHiI1y9QsTzU6No9A3vLkJjR4gff7GI+5flEzIs4iI0otwab+2v5oGX9vYSvP79snHEeF38aRBHFog29pMz4yiv62DtobpBu9+F40pZWpjCPX/aTotf52dXjHdcJp9RIlwqSwtFqHer30BRJDITIohwKfx52zF+9fZhLpuUTrMvvLvgXQRCJrIssf9UK19dPKbbETUYqzdX9ptR1uU4/OkrpX3WafKFuHbGKCRxLwrDCScPm46gwZsl1Tz+Qd9S31vnZFOUEcuqtWXcNjcHX9BEAryOEOXg8LkhZNhUNBqMTR34IirWI7GkwEOTz2Lncb07lDxCE13zIlwSAUOck6vbTDYeDaJ3mkIME9xq+AKNW5UI6jajk1QSIxVs28ZCdKLbeVynoeO0UDZ5pIYmC2EKHRjE33SozmDCCBev7PMT55WZOEJjRKzCB+XBXt3rM+MVZma5eOtAoFeJH0BZvUFZvUF+ssrEERoeTSI/Re21vsNnjC7xZuTE06HhAOWb4Mh6ke1kmaAMQ+RRXKKELtguXFDxI2HHS0Ov11YLdeUwYoJwOaWNhXHL4NA6aKjou7zUOU9SNCGg6YFO95YTXjYkpgnvvwMnT/R+PBSE/fvgyCFYejFybCz2rp3Yk6cgKep5UarnzPAcHD5mWv06+0628PWYvH6fH0qUuXdJHvPzkqiob+cPHx7ltb2nuh0ZqTEe0oeZlRTpUvnaM9v59bVTWH+ojmVFafz8tb6d7BRZYum4NO58altY2+1ZnjRQ97twXSk3Fmfy8ysnsHpTFReMTXEu7D/DqJ3lVj2dLoZpER/posWv09ARItY7vDs50R6N400+FFnihuLMsN/DT2yo6H4PF6afdhze8sSWfl19ydFuUqLdBHWTdYfruWBsCoppOWLJEPh1g6c3V/LXnSc4VNPe/bgiS1i2zZ+3HaO6JcBV00ay7nAdHlVmZm4imuKIfA4OnxdsoMln4VIkVFkEhPck0iWxbKwIIj/TOeTT4bX9fhbneciIkdlXbVDZaGBaoMmQk6QyKk50aS05Fd5NjuxElcomgxiPzLFmA1WWsG3YUB7sIzFlJ6isOdxP7k4/GBZUNhpkxiuU1hicajVZnOdmZo9sK1WG2Tlu3u5HgOrJoToDtypxQb6bKLeM5tTiffaRld7izYgJULZBuI1kFTKK4PC68LaVmt/pTvJAxnjhsrLCLFmt2gmTvghj5ol9734Z6vsRoEDkRBk6GAHY9jykT4DcmUI0c5xRAxMMwqEDwg0VFw/NTeCNgPwCSE0DVRXLlB+GKdORoqOx95dgFY5D1s7919WZOTs4fMy0+HXK6jpIiHT16XoXjihz15+2c+e8XL62ZDT5qTHctzS/u4OYW5Pxasqwuum5NZkZ2Yl8cKSe2vYQG47U97vv/NSoYeU7dZUnFaRFU3qqrd/udytmZYXlSnl6cxUzsxO4b2keLifw+XOHqsgsLUxlxaxM/rztOL/48qRhvccjXArRHu0jvYcB1n5nMZJEt+OwpwDVs7teSrSbkGlRWt3GGyXV7Khs5DsXFxIIGXgcIaoPhmkRMi0aO0JMyYxnydhU3JrMX3ecAAmunDqy2wmaFOUiLkJjdHIkCVFu1h6s46KiVEeEcnD4nCCqyCSa/RY5iSqH63pfDE8eqXG4zhiwdC1owJulATITFGZlu5mT4+p2Bh1vFq6oObluUqIGL/cDIVyNTlLZXhVkTLLG2wf8LC3w8Jfd/n49Th5V6lN6NxgdQRuPJgQjy4Z1R4JcOTmCfad0OkI2uUkq1a0mjYMIUF2U1uiMz9AcF9TnFU8MTL0adrwgQsTjMiBuBDSfGHJVsmdCS7Uo9XNHiRDxcPE1CjfTxqegvb7v87HpwrXljRcOK0kVAWczbgaXC9rqISZRZEQ5QlRfDAMUBdLSISkZoqLE75oG5WWwb49YJiICxo4Tz+WMRtqyUTjPusLLz2GcWbODw8dM14WUP2Rw65xsvvPinu7nwhVlHvugnAmjYhmdFMH/rS2npjXQnc304y+OC7ub3sq5Oaw7XMdNs7O486mt/N9N0wd0iUS51WGX+jX5QkS5T59GerqjJGl4rpRH15ezdJxz0fl5JcKl8oPlhczMSeTAqdaw3+N3zs+l5FQreSlCKBrue7jFF+KJDRX8ZceJXhlQPUtmDcMkJsKFZYMvaBLr1fjhpeOI8Wq0+kPERbic0rwz8IUM3imtYdXavhl3dy3IZX5eMr997zD7TrTQHjQ4VNPO2LRo7lqQS05SFNFuBcsWLiqv5kxVHBw+6yiSREasQtCwKUrTKK83MDvPyW4VRsap/G1P30YSPbGBykaTOK9OYaqGadk0B4S7al6uG59uM3+Mmzf2BwYUjRQZLijwoJs2EzNcyBLMynZxpM4YsFOraYMqS+hmeEqQqohOgF3oFpTXi258u47r5Caq7DkZnmPLsEQnvzHJznnyc4mqQVI2LPoqVJcKwWfS5bDxDyJMfCCKLhGOqviREBEn1h1OeZykAJIISO9JdApM/AK4IqCuAuIz4cRx2LcXOvOMUFXIGQ0To8DjHtbhfi4wdNi3Dw6Wgr/H/2FaOkyYBBkjwOUGXYfGenj3LYiKhqUXwsTJQpxSVUeEcnD4vBHj0ZgwIpZjTX5m5iRww8xMntlSNexSoVVry3j6jmJ+/MVxtAdNmn0hYjwaHpeMS1G6tzsQK2ZlcVFRGiebfViWzWO3TCdo2AO6RNqDBgkRw7sb0bONPQhnScgQ7ihg2K6UtoBBpNs5LX1eiXCpXFiYgmlDYXrMkO/xG4szWTYulY6ggapILC1MHf57ONJFVkJkr4uLniWzD793mO8tL+Sd0lp+30/TgDvn57JsXCqWaeGklQt8IYOfv1bK6k39uz3vfU4Ew3/3kgIO17b3alLwo7+XsKWikW9fWACAadr4bcMpeXT4yNi2je3YRM55JMkmN1HmZLOJT7KYn6vxQUUQ04JRsSonmnRChggI7w8bCTqfPVInsqXePRQk0iVhAy1+C1mCC8d6+MJ4L3tOhDhSb3RnRkkSjIpTmJih0eS3eas0gA3EeUUOVVXTwKJQbZvJyDilj3trIEbGqWytCvZ67GijwZwcN/tO6kS4JFr8Q7ugumj2W8L44ETsfD5RXeJr1BRRkidJMGcl7H9LhIf39O9FJUHBYogfJcrnZFWEk8ekg21C+cbw9pmUI77PvkWU4rXXQUya6Jx34F1orYVZN8O6NXDsjLmAYcDhg1B+BJZcCMnJcB6Uj50VdB3eeg3q6vo+V31KfM2eC8kpULpfCFJTpovX883XYfkXkPbvE2KVrgvn1DmKM6tzcPiYkSX48rSRpEa7+dHL+/jRF4qYmhXHmoN1wxZl2oMGqzdVUt8uJiulp9qQJfjWhfn866WFzB6dyCNry/q9MJ6RncAXfru+Oyj8mukjuXl29oD7O1TTjsc1/FK/nm3sAYKGxe9vnk5bwCBkhj+JAlHKmDbMzCuHzxYel0pH0ECT4V8vLWRmTgKPDSD+LC1M5WevljAtK4GTzX4unzyCSLc6rPewhMR1MzPJSoxg1bpyjjf5u0tm1x+u4/V7F/SboQbiM/rNzkyzHywvRHbcUBimxTulNf0KUD1ZvbmSyZmxlNd18PCasu6A8q4GB1My44h2q8zLS8awbMdp5hA2tm3T1tZGa2srPp8P0wyzXbnDp45l24CEDxvbholeCBg2UrtEcwfkyIOLiSYyfttDRygSTfawtMCDjU1AF80kIt0SkgQ1rSaj4hWmjHTRGhDzlAiXTLPfYu8pncrG0++ZZr+NaYE+kA0KOFSrMz3THZYIlRIlI0tQ3dp7fhQybdyqxDVTI7Dt4ZkYujrt2baNdB4EEjt8QmgekfEka+CSYMKlgA0NlSJ/KSYFIhOFMLXlaZhxA+z6GyRmQnax0HAjEkSp3VBkTYeD78PISTB3pSjJ88bCvteFq2rh12HXzr4CVE9MU7h4vnwdnLtaydlDD8HWLf0LUD3Z9CF88QroaIe174mcqDnzYPpMOHxIuKT27oZx48Xy56gQ5YhQDg4fIyHDxLZhVEIELT6dH146DlWRSI7y8JMvFlHXHhx6Iz3oCBrcMS+XuvYgMV6NWI+GJoNuw5qDtbQFdJ6/azYNHUHq24NkxHpRFZknN1Tw45dLemXb7D3Rglcb+DaZadk8s7mqTwnhQPTXxh5Ak2X+47VSIlwKX108ZljHG+NVCegGHqf85nNNpFslEBKT+bFpUTx/92xa/TotPp3YCI0Yj8a2ykYu+d91LMhPZkZ2Ag+8uIfxGbHMHp3InfNz+WYYpXy3zc3mjxuP8vTmKlYUZ/L4LTNQFYkNh0Vu2lMrZ/J2aU3YmWYXFaWif86DykOmxSNrysNatmf5bsnJ1l4NDh54cQ+/unYyb5VUs6zzdXVEKIehsCyL6upqWlpaPu2hOAwT2+786uFpkiSJCE0IR5ZtDx68bYtloiw/MYaPU9UGG2tikSSJpEiZGVkati3x9oEAbUGLL4z3srUySLRHJiVa5rX9ftqD/QtNQcMmQpNoC/T//KlWC920mTxCY9eJgR1THhXm5LrZ088yHlWiLWjx+v4AC8e4SYtWaAuE56xKj1GQ5c6yQEeD+nyjqCJc3FKg9oAQpiJihQhVfRDKP4SUfCheAR1NMONa8cFTXaIMbMoVIufJGkS8z50tXFNV28WX5oXCZaLzXXWp6NTniRSh2kNhmqLL27jxok5VOffLyD4RdB2QoOzw0MvatnBBjR0nuub5ffDe27D0IuGCG5MHLz0PEyZyLofFfX5nyg4OHzMdQYO399f069q4dU42eWbUoCJQf7hUmZue2EzpKeE2umBsCr+9fgo/f1U4M766eAyv7zvFExsquGlWNg3tIe5Zvb3f3IJwnE6rN1Xy8tfmhlUG1V8b+y531Bv7qpEkifuWFQzLlaLJMqaF43pwwONSMUyLzMRI3i2tZd+JFnwhg4aOEG+VVFOQFsN3Lipg8dgUArrFk7fNwNXZee/CIhFyPpgbp+d7uMWv87s1ZTy6vpz1D1zAqnXluFSZaVnxXPNIeNb0rkyzkGFhY6DKIEvy5+Z9bJgWhmXR6tc/cnMDoLvBwbSseAIhk3cP1LJ4bAqKc2XlEAYtLS3dAlRCQgLR0dG43W7HHXKOYts2NtAasDEGcBpFaBLuzs9/s9/qNxi8c2MYeoiArw1fazONjc0oukwb0Vi2habIrDkcoL7DYny6xskWk8P1Jl8c72JrVXBAAQqgqtFkdJJKTdvAmYNrDgdYNtaLV5PYe0rvtT0JyIhTmJHporzeoLyhr7g0OknlWJO48D9UqzMt0xWWsyrKLZEYqbD/lE5+iooi4bzfP+/IKsiIwHFJgdpDIrvJGwtL7hMij+oWuU09UTWISoHZt8Luv/cNHNc8ohte2lghVHWh+8ETDRWbxe95C4QDSg8v14wjh2DSZKitFSHcXe9fVT3982cVXRfuNUUV2VnhOncrymHWnNO/2zZs2QgXXyqskZIsAsxH99+p/VzAEaEcHD4GfEGD/3h14JKd77y4h5tmZfLdiwuHJ8oovcvdbpmTzVv7a3plTN39x23IEiwpTOH2P2ylIC2aKLfaHfZrdk7swnE6tfh1bnliC0+tnDlgGdRgbezvXpDLvhMtQgSzh+esuntBLk9uqGBMSjQXj3cCyh1E1zxVkblkfBpLClNo9Ru0BnR+9IUiYrxqt+gUfUYFZ1fIeXFO/+Wqdy/IZVpWAjf+flOv9/CYlCg6ggb7T7WyfELasAWVVr9OTWuAzIQIPJqCZVsoPUpSNeWzKUr5QwYhQzgBGjvCnHR20hrQmZ4VD9B9vupySJ1q9lPTGqDJFyItxinTdRiapqYmAFJSUkhMTPyUR+MwFLZt0+K3sJCQ5f4vNgMmKIqES5FwaxKhQcK/XYoXl8dLpEejurqWGKmNNjuaqSM12oIWp1pFplR+isqeEzpzclxEuCRCBszOdhEfIUrlfLpNeb1BVZOJZcORep0rJkYQcULHN0CgecCAN0r9zM1x8cXxXuraLTqCFpIEaTEKft1mx7EQVU19LzI9mkR2osrOYyEUSTirsKEwTaW0emAhSpZgbq6bY00GB2p0xqVpGJZoQubggNb5dzOjKPx1VA1iUmHu7dBaDXXlwuEUnQIpo0XXtV1/g0DvKA6iEk935ItMhOqK8Pfp9wsRJjpKiCltbRATIwQaSRJf6mdQsgiFxLFVVQphUA/P+QgI11qX6+nkCfD5oKUFmpogJRWwobUVmhohPuGcfP3OvRE5OJxnhAyzWxgajD9tquLq6SO5fV4O9/9595DbPbPc7UxnxtTMOFyKxKqbp4Nt41JlVt08vbvleUKEqzvsd/WmSlr8elhOp6MNPv60sZKvLBrNzJwE/LqJblh4XQqKLPXbxh6Es2RqVjy2bfPLqyfy5IajYTurVhRnckFhKn/deYI1h+q4oDAZzXFDOXTSJUZFuNSwM8MiXKoQr8amUNcepKE9RHqsB69L4UhtO1uPNnbnpXXRs0NkYqSL5mF22mv260R7VDRFxrJFpklNW5DECDc2EDIMXKr8mSrX6+kAtWyb/7tx2rDWT43xcO2MTG6dk9PrfBUImaTGeGgPGjS0h4h2a5+p183h48e2bYJBUfIeExPzKY/GYShs2yZkghFGtYg/ZOOOkIh0SZgBm8Ga0HlVCTk6hpqaWtxSCGybtBiFvZ3d5jITFDRFoihd41SriW3bLMpzc6jW4HBdCMuGGI9EforG9EwXG8qDnGq12HdSZ0m+h7cPBgjo/Q8g1iuTHK3y/qEALlUiPVYhO15hY0WQqqb+MzLdKizJd1NWp5MRqzAhw0VVk0FNu8mEdBdeVTir9DO0q2i3RHG2m1iPhCJJBAyobTdJjpJhwPh2B4cwkBXxFZsuSvaMkOiihwzNx2DCcvjwSQh29FhJOl36JcnDCxpXNbGuyyWElego8V0PCXFKkk53fPusEArBqZMi3yknV5TO1daGv77LJV6zjJEwvRhqqmH3TqitEW6yUEgIW60tEBN7Tr52596IHBzOM3TT5tF14WWg/MerB3ji1hmsKG5i9ebhlbtdOC6125mRnRjB/143hQ+PNPDKnpP8++XjWXewjkcHKAXsCvs92uDrdjoV5ybw6Lq+y3e5RK76vw+pavRRkBbNmOQovr+8kA/L6ll7qK6XANUVEr2kMIV7/rSdfSdbubE4k0c7BbFWv873l49lVm4Cq/rZ38q5OczKTQRsHrxqAteu2kSrX1ysOyKUwz9Dl3iVIsPxJj//8/Yh8lOjuG5mFmPTormxOJOne3wOe3aIbOgIETfMTntxXo1oj4okSeimhSJLuBWFEy1+Yr0a0R7RMvyzknvmCxn852ulrN5cRaxX46bZWSRHu4fl9rRsm8se+gDL7n2+6ggaRHtVDla3ER/hoi2okxTttHJ2GJieHfAUxbGCnOvYMKCYcyYWoJvgUiDWI9MRsgmZdq/SPEUSjiKXItHkEzlSmgLzslyoMrSHbNJjZIqz3HxYHqS23eSScV6O1BnsPK732lajD442mqRGyywY42FDeZCSah1ZhssneNl/SudwnU5XZFOcV6IwVSMzQeWDsiDVbUJwqmoyqW1TKM72EB+hc7jWwNd5zJoMuUkq49M1FBnWnDLoCNlEuyVGxAmh7EBNiKRIhSsnRXCsyaDZbyFLEiPjFBIiZQzTpsFnkRwpM22URkC3UT7r5UsOZw9Fg4xx0HIKSt4UHfWypoIegHl3woH34FSJyI/yN4vueIFW8LdCZiZsksLLJMrOhlBQCF/tbbB7F1QdPb1uYhKMnwijRnUKZOf5tYGuC7Fo22a45FJoqBch7jNmCkHOCMNRnjNalDyue18ITGPy4MKLRUlfY4NYJmOEcEmNzPxkj+cjcv7Pgh0cPmWGU7KzuaKRpo4Q31teyLSseH7/QcWg5W5+3eTL00ZwUVE6s3MTqGoUF7N/XFnMQ+8d4dW9p/jH1+bx0HtHBi0F7Ar7veyhDRxt8HHZQxtY851FXDA2hbaAQatfJ8KtkhDposUX6uUSKT3VRumpNtYdru8lLjX5QqTFevBqCo9/UMG+Ey38/MoJXPbQBh5eU8Yja8u6SwMBZmYn8PQdxXQEDdqCBjEejSi3SlA3CVkWhmnj1VSxTMjAF1TwfgYu1B0+fbyaSnFOAlMy42j16xxv8pEe6xEle7kJrForxNGeuWnvlNbyiy9PGpagEuPVWHeojokj4/iwrJ4/fHi0X5H3grGplDW3E+lSiPFq3WWF5xOGafHO/hpWb64iOzGCp1bOZGtFI7ppcdeCXO59bteQ2zjT7dnzfPX9S8by990nKUwXOXPqAKU6Dg4O5ycSdMcFnImMMD/YthCg6FzWkkU5nkeTiHBJ6J2WKEWWUGQRIO4P2cS4ZWpliWi3EGxsSSI7QWZknMaaIwFq2yzm5Lg40Wyy4/jAF3w1bRZrDwdYlOfhL7t9VNQbTEjXGJ+hMXGERle1tdB9bBo6TE629LYsVTSYNHb4KUjV+OIEL0HDRpHApUqcaDb5oDxIarTC1FEu1pcFaQvaHKjpWZZjMCJWZlGeh9aARZPP4lCtztFGk2iPREGyRmqURH6KSqvfwrDAdX79OXE4l1E0SMiE6FTxobU63/SqG8Ytwx5/MbTWYqtepNxZSLWH4MQuyJ4HWTlwNIyb9OMnivaOx4/ChvV9hauGetEFLicXZs+DulpRYqapQrQ5X4RXyxKZTxKwczssuwT274UDpTBpCgSCkJcPpSWDb0eSRCj55g+FI0pRRVe8hnqxzYOlEBsnvg4dPAsH9tFwrvAcHP5Jmnz9T2AUWSI/NapXPhOATzdoqA3S7Nd7CTqJUW4SI128tOM4v3vvML+8ehJj02No8+s0+UK0BQwyEyL4zfVT2FHV1B1MvrmiIazuXVMy47ixOJOH15QxMt5LUDf5yvM7SYh009AeJDnaw799YRyWbTNndGKfEroWv95LXLpyygi+MCmDpb9a2/0ajE2P7t6HZdMdNgyQnxqNIkscrGnjjX3V7D3RwsHqtm4HxF0LcllamEqUWyXSrdIRctpqO3x89CzpS4pyo1sWrX6DOaOTWDI2lbaATm1bEJcidYso2yubuGN+LveF0Wnvrvm5nGjyUZQRy+/eH1gU/sZzu7ixOJO7F47mhe3HuXraKAzLoj1oEOd19cq6OlcxTIugYfHI2vJuUfyRtWXsPNbEtKx45oxO6uMyO5Oebs8zz5XPbT1GcW4ije1BVs7N4Z3SGq6eNuosHqGDg8PZRgLcqoRHlZBlcR0qSWBawjHVFQ1jmBAybGzbRu3slqfKYhmXKuFWwTBsLMumNWDz8l4/0V6FwjThOBJB5zAqXuVve3yDDwqobbeoazfJTlSJ9cgcrDXYcSyE1CkkZcTITBnpYs9JnWmjXMzOcbGxItTLWdUSsNlSGWL3iRBL8j0EDYv1ZSG6pjmNPosrJ0Xg0aQ+7rA4r8S80R72ngyx52TvzJgWv82WqhClNToXj/MS45GRzt0/HQ7nM1qnE9m2RbmdJIGsCjE5diQVDQZZ8bFoidlwYi8ULIHiWdDUILKKBmLaDPBGCAdUfwJUTyrKIS4BEuKhuQkSEkQJm2UJwSUiAmwLW1HBNJBkRTx3LgScGwYcr4L6euFQGpUJ1aeEAAXg8YhsqKnTRY5T9an+tyNJMHe+OK7i2RAZJYLNNZdwQVUdFa/n/IVQug8Kx4GmnbXDHA6OCOXg8E8SH9H7wx3r1VgxK4sbijNP5zNFuojzasiyRFA38QVNFuQlY9s264/Us7WigQvHifDli8alcs30Uby1v4Yfv1zSx0lx14JcZmQnMDopkhuKM7nzqW1hjbNnO3TRmr6STeVN3c//9vopxHhU6tpNvC6F71xUwLSseJ7Y0NutVZgu3BxTs+K5/tFNvUS4Jzcc5YlbZvDI2rJud0OXu+viojRWrS3nt+8f6TO2kpOt3PvcLlYUZ/HAxQW4FGnAO6QODv8sXYJUT6ddpFslLkJj+9EmpmclcMPMTH741728du/8sLpFLh2XytObK4mPcIUlChfnJLAgL4nbn9ra/fkaFe/lN9dPYWxaNAFDdJpr8evERWjEeDTc50CJqi9ksLWigTEp0US6Fe5bls+WTiF8RnY89R0hvvHcLp65s5iZOf2X/Ha5Pb/2zE5ump3FTbOyMEyLJp+OV1NwazLvltZwQ3EWQcNiz/FmVOfCysHhM4UNaIpE0BTOoGiPjGWBL2QT6vz7LwEuRcKjCaeTYQnhR5ZAliSChsjekyXwqBJIYn1fSHTRs2zwmza+NouatiBxXoklBR5OtZgcbzYIhpkDfLDWYPooDZcq8WpJgM7eKximzfh0DbcKEzM0bCAzXiU9VmF/tU5Vo0nIEM6t0UkqBakaJ5oNNpT3Fql0E040GxSlqWw/JuZUcV6JghSN3CSVI3V6HwGqJ21Bm7dK/Vw63svA7QMdHD4GJOm0INWJAmQlqsiANe1a5J0vQulbkLcYLv4C7NoBZUd6l5nFJ8DEyTBiJDQ3w6HS8Er3DpTAVdfCpg3wTpkQYxQF6/IrkYIB2LMbqee+0tKxx09ESkv/9HKRDB22bIZjlTBztjjOwiJ4/93Ty5gmBIMi12nJhXD4oHBEtXXezJckGDFKZEfFxkHNKTh+HHwd4kTX3grpGTBuPERGQiAAJ0/CpKmfyiGHw3ktQlVXV/P222+zdetWtm7dyq5duwgEAixcuJA1a9YMuq6u6/z6179m9erVHDlyBJfLxeTJk/n617/OlVdeeXYOwOEzQYxX6y7Z6SpL2VLRyF1/3NbPxVcOM7Lj+ebzuzja4BOPzcnmwasmsvtYM7997wj3Lsnj56+X9ttevkusubE4kz/dUYxfN4fdDv2+pfl98qZuLM5kcUEK24828ty243QEDb6+JI9Lxqdx0fg0Wvw6bX6dWK+GS5V5enMl//b3kj7h5CUnW7Gx2fyDJTR2hHCpMpoiU1bbwTultf0KUD1ZvbmSmbkJLCtMIdLtZHo4nF08mkpxbiK6afGD5YW8dyCBB18r5fvLCwfsFnnn/FyWjUvlP1/dz1cuyAtbFF61rpxHb55Oaefnd+7oRFbdPI2QYfPq3mqe3NC3VPfuBbksHZdKxKcU0O0LGaw/XM/kUXEYls0DF49lZJwXSZL46uIxbKloICHCxd4TLdz0+808e+csinMS6QgadIQMkqPd3V06X9p+nD/cNgNFlmjyhahvP91M4d3SGmK9Ltyqwp5jzczLS8bRpD9enPmTw6eNhMhw0k2baI9MULfxn5FSbgNB0yZo2kS6JFRZoi0oyoG8moRblbrL9rq+d227P5r9Nu8eDHBxoZc9J8NvPNHss4h0y7yxP4C/06nkUWFhnodGn0WkW0WRoaHDpLHdYmyaxqQMjckjXMiSEM+qWw3eKPXT4u//ZNYSsJmQoTEuTdzY7AjZHG82CBk226qGzohpCdjUtJqkRDvB5A5nH63TlYjiwp56NZK/CRrKIKUAxhYKh09tjXDtRMdAVDQoMmzeCLPmCJdTOPj9wiWk60KAkmXMq69DampEeuctIeb0pPoUUvUp7NF5SLPnnn0hyjTh+AlISxeur+pT0N4uHl98AVRXw+4d4rUpmgiv/wNS0yAxGS69DEJ6Z2i7Bh0d4rWrqhQ5WRMSRAc8WYbERBF0vnEDTJgklrvwErGuroP73MvUPK9FqOeee4777rtv2OsFAgGWLVvGBx98gKIoFBUV0dHRwZo1a1izZg3f/e53efDBBz+BETt8FpEQpTg/ermkuyxloFKcb7+wu1c+0/EmPxUNPoKGRW5yFIlRbhp9Ie5ZOJpYr6u7q92ZPL25imXjUkiIGN5JJaCbXD19JNc9KlrTd13Yzh6dRH17ACSJ7y8vFIHiAR1ZgpqWAL9bI8Sj/SdbOdBZQjcQTT6dEbFuJAkq6zu480/bWfOdxeFfnK8tY8nYFNzncDmSw2cXtUcp3PIJ6SwdJ0r1Fhcks2xcKq0BnWafEGRjPBql1a3UtwXYfqyZQGj4onBBWjTtAYNVN03HFzT49TuHBy3lWzErix8sH3tWhSjDtDBMi5Bh0RYwWPmHrf02QLhm+kjcmsIXJ6WTnRhJo09n0S/fZ/KoOFatmEaLX2fJr9ZSlBHLM3cW8/b+Gh7vJxfv1jnZTMmM47F1Zdy5cDQS0BYwnO54HyPO/OncITs7m8rKSp588kluvfXWsJ/7LKDIEOmWMMy+AtSZdIRsYjxSd8meZdMdUN6FJkt4NQmXR6Z6gO00+4VTShpGeY4kgWHZqAqMiFXITVQYFa8SMm2qGi2yEuAf+/2kRCvEe2UaOkwSoxT+stsfdvi6IkOLz0K3RMe8igYTtwpH6o2wzU0HagySo869i02HzxeSqkF0CnhjhUsnMlKU8GWMEB+mQLvIjYrLhaoqmDazr3g0GH6fyEIC9MsuR7Es5P4EqJ5jKjuMHRuLNG784EJUl2jTVROMPbxOf10YXc5FGzLSRdj6pg2ia10XqtYZKH4JbN8G8fHw5WvF+KoqYesmuOgSIby9+rJwjqkaREXBlo29S/Y0DXLHwMLFYl8TJ4vOePEJwx/7WeK8ntHFxMSwdOlSZsyYwYwZM9i5cyc//elPh1zvu9/9Lh988AE5OTm8/vrrFBQUAPDyyy9zzTXX8F//9V/MnTuXL37xi5/0ITh8BpBkWFKYiltThpXP9LXFo7mwKI0tFY3c8sSWIbvaddGVn7KzqpkVxVkocvila4lRLizb5pdXTyK+03XwTmkNG47Us7QwhSiPxrJfrSUt1kOUW+X+ZfmMSojgxe0nwn494rwa//32IaZmJbAgP5l7L8gb9sV5q18nPc4b9j4dHD4JugQplyJjWhaWDe/ur2FeXjI/e3U/b5VUMyUzngcuHkuUW6XRF/6ddYAmX4got8r3LimkoqGdA6fahjx/rN5USXFOApeMTxuwNM8wLUKmyLxq8YeI/Seypnwhg5oWP6kxXn755sF+u3qWnGzlZ6+W8ourJjIvL4kfLC+k2acjSfD+txdRVtfBruPNjEmJJtqj8eStM3jw9QP9Zkb1DCe/a0Eu7x+oYX5eMh2hMOtmHMLCmT/1xTRNXnrpJV555RU2bdpEbW0tPp+PuLg48vPzmT9/PjfeeCPjx4//tIc6IGvWrGHx4sUfef2Kigqys7M/vgENgiRJ2LaNpki0+q2hV0DkPkW5JAKG3d1lrie6ZaMHbdyy6BInSaeXiXBJZMYruFWxfla8TMkAsStnkhwlY9kwbZQLw4JTLSZbqnzEeWWmjXKhmzYLxrh5rSQAwLRRGh5NIiNGobwhvHNXZryKP2Th1iTWHAnyxSIvDT6LI3Xhn/vaQ+G9jg4OZwW1R45UsAOq9ojStCPrIDEHIkaI3zW1t5VxKDSXEHmiolEio0W5XxgilrR/nyhXGwjDEMJOyV5oaRYXeKlpogQuOloIQD2x7dP7lbr/6QyzM4VTS1NhzXuiS12f/elQWQHZOTBzFhw5BHV1YjPJKUKc6vCJvKhQCLJzRa7U+rV9XytdF4HkJ4+LEsjjVWJ5EPXK5yDntQi1cuVKVq5c2f37iRNDXyjX1NTwyCOPAPD44493T6AALrvsMh544AF++tOf8pOf/OS8nEQ5nH00WcYwTebnJXH1IxvDWufJDUd5/q7Z/OdrpTwdZlc7oE/WlGHbbPjuBfxpU+WArqkuijJiMC2bu/60jQiXCAA+2MPVtKI4i/svzOf2edn88q3DKLJEZmIkiiQNq0NYtFfDsmDyqDj+sKGCuxaMpqK+I6zXpYvWgE46jgjlcG7QJUYZpsXIeC+mZfPaXnGfvT1okBDh6v4+HJKi3OimzbSseNoDBt/dsDes9R5ZW8aSwpR+BSVfyOCd0prujn9dFGXEcPdCEf7f5aLqK1ZpRHs0dNOiri1AtEf8nhbr5a3OTnj90bMM+ZpVG/vNsZuelYCqSHxrWR4byuoHDS2H02J9e9BAU2SSnLv7HyvO/Kk3mzZt4pZbbuHQoUPdj2maRnR0NA0NDWzYsIENGzbw4IMPcuWVV/Lss8/icn2Eu+OfMC6Xi9TU1H6fa2xsRNd1NE0jIaH/u+OKcvbL4G0bhjBBdaObou4uMMQKfsPGRuRExagSk0e5SYtRqGo08Ok2DR02OYkKl433sOuETlXT4BewBakaWytDfZarabN4szTA0gIPUW6J9BiZU60Wo5M0dhwLUpCqhSVCJUbKRLokQOadA6LkT5YhyiUNKw/P6SLqcE4iSaLLXlQSGEHxmO4XAdqmCQ0NMHIUHBt8XgAIx8+IkbBlE1bxLCRFQTp8OLxxBALYtdVIGSP7PhcKwpuvibH0pPyI+MorEEHgqtqZNyWJIPBTJ8VySUkwKguOHxMlhjExMGc+VFb3L0CBOP5LviC2//YbpwUtWRbr7NkN4ydAzmiRJWWa8MG6wcW6tjb4cL1wl6mq6I6Xlx/e63OWOa9FqI/Cyy+/TCgUIi8vr9+7RXfffTc//elP2bFjB2VlZYwePfpTGKXD+YSqyGiWCNUdjtun2R9ix7GmQZfrzzXVX9bUQK6pntw2N5unN1dRcrKt3+dXb65kSmYct8/LJaDbbK5oIBAy+cvOE9w6J5vvvLhnyOO6e0EuvqDOHQtyueWJLUS6VW6alUWMZ3idGWK952YnB4fPN6oiMzM3EV/I7BZmD9W043EpqLKEx6UMS7BNjnbz+5un4Q8ZdASNYboFjT4leb6Qwc9fGzhP7hvPinK+f10+FhsGFKtunZPNzJwErnt0E9EelT/dXsxj68opTI/u1e3TtOxe3fF6uri6HJsRLoVH1pYxPauR+y8s4PIpI7n+0U1hHWdXM4W6tiBH69uZnpOIKoMqf/oB7Z9HPqvzp3/84x9cffXVBINBEhMT+fa3v81VV11FXl4eIBxSO3fu5KWXXuLhhx/mL3/5Cz6f75wUoebMmUN1df+FaIsWLWLt2rXMmTNnyNyvs4UEmOHWmkF32LgMDOX5sW0bjwZLR3vZX2OwoTyI0WOl7ccgPUZhVo6LKLfO/ur+xaLsBIUIl8Sx5v6FKtOGtUcCfGlSBDOz3aw9HEBToKzepDDNRWGaSukA2wbQFJiX6wZs1hwKdDu8OoI25Q0GI+MUDtaG54YaGacgXiVHjHI4x9DckJjd+bMXWmtEW8vEJNEhrrAoPBFqTL5wGF16GboqodkghYLhj6Otve9jhgFvvt5XgOrJ4YOi+17RhNNCUzDQexmXCyZNgeVfFIKW1yuyrqZMh5QUUBQRGF5RLhxQCxYJ99OeXWL9lFSRnzUqS4xJUSDgF/sZOQr27xPHPhQnjp8OQN+zS4hcF14ixC1JEt/PAT53ItSmTWLyO3/+/H6fHzFiBDk5OVRUVLBp06bzZhLl8OmiSAzqQuqPurYgUe6hP4IvbDvO47fM4OevlQ6YFXOma+rMsfRshz4YT2yo4KKiNCaOjGXFrExONgdYvamSl782N6wOYYvHpmBZNrc/tZ2jDT4UWUKSJVyqPDw31TBFKweHs0WES7QkvnN+Lt98fld30PbNs7N5ZnPVsARbWYJfvnmQuxaOHnYpX2tAJy3W0/27YVq8U1rTrwDVk3/sPsm3Lsznv986OKBY1XU++ePtxWypaARg1c3TT3f77CzlfXbLMTya3KsMOdarcdOsLFbMysKvmzR2hIjzarg1maaOIJFuddi5WbIEf9hYyTuldXx/+Via/UH8IZM4rwuPJqObolX7Ryk3dAifz+L86fDhw6xYsYJgMMi4ceN48803GTmy911yRVGYPn0606dP5zvf+U4vB5nDP89w5RKJ8BrA2YCMxNbKIFXN/a9xqtXkjf0BLhnnocVvc6LltNAkSZCfrDJxhIu3D/gHNR8EDDjeZDIiTmbZWK+oLALeOxTgwrEevJpEySm9Tze+5CiZ4mwXlmVT02azKN/DG/v9hEw4XGcQ55FIjFSIcku0Bwc/akmCsamig5+DwzmJ6gI9AHnzYf9bULUdxhfB+vXC8TNhEuzdPfD6yckwZZp4s586gZSajOTyDK+U78ybB7YtQsEb6odeNyZWZDV9sLb/50Mh2LpZOJYuuVSMa/FSIQLt2S0cVFHRwplU3CkSvfW6WK54dqfQVAKbPjydHZWcAmPHQVYWtAxuXOjF0QpRRlg8G9a8Cxs/EAHwtg2KCnpIjNPt6Swb1M66OPW5m611Wa0Hmxx1PXfw4MGzMiaH8x/DBq82PBt7jEejPYz+wNOzE3j3QE1YWVPbjjZxY3Fm92NFGTH877WT+ebSfG55YsuQQlnJyVZaAjpv7a/mhW3HSY/z0OLXueWJLdy9MJdfXj2RooyYXusUZcTwy6sncteCXNoDBn/cWMlDN0wh1qthWjZvlVTT0B7g1jnZQx4rwD0LR5/usuHgcA7idalcWJTKilnis7Z6UyUzcxIIhExm5iRww8zMQde/sTiTWbmJmBbkpUWhKfKwS/nOdBeGTItH1gzdXWbFrCzeLa0dUqx6enMVu6qauGR8KmsP1nHXH7ex5FdrufqRjVz463U8+PoBpmfFcfvcHN7eL5wXE0bE8s79C8lLjeL2p7ay+JdruOr/PmTJr9Zy95+2s+tYCxGaSnZiRNjH2eQLEelRWZifzOrNlbx7oJZYj0ZatAe/YXK0wUdHyMC2RSMEn5Md9YnxWZw//fCHP6S1tRWPx8Nf//rXPgLUmSQkJPC3v/2N2NjYPs+FQiEefvhhFi9eTFJSEi6Xi7S0NC6//HJef/31T+oQ/mlmzZqFJEn8y7/8y6DLvfvuu0iShCzLlJefPtcsWrQISZL4yU9+QigU4sEHH2TixIlERkYSHx/PsmXLBjx+G3HdI0tQWrKP+792DzMnjSUzOZqs1FgWFk/hP37yQxrqxQViV7lZODGYMqJ8byAHUxd+3WZ7VYjibBejk1RyEhUmj9C4apKXSSNcbKsK0jxAR7ueVDUbWDbCcWUKgakjZPP6fj8eVeJLEyOYP9rN5BEa00ZpfGG8h7m5bg7WGGiqRFOHRV2bybRRLqI7w9ozE1SONurMy3UzlL4+K9vl+J8czn00D4yaAmPmCxEqMR6KxsM7b8LoMTBvIcTF917H7RYC1ZILYe17UHMKsnNRG5rwB9shMyu8fcuyKOXria4Lh9FQRETAyJFCIBqKndvFmBsb4MXnYMsmOHUC6mpFZtPunbBru1DUc3Jh3gLhCPv7X8RYeoaX19XC+jWw9n2YNQ/6+dvTL6Eg+DqEuyo2TrivTAsOHhLuqkOH4MXn4dk/icD01tbe+z0LfO6cUI2N4q7uQPXwPZ9rahpccVy1ahWPPvpoWPstLR3cgeJw/hIyTN7eV8O0nIRhuX3cmszB6v5L47pQZIkbijPD7iz3xIYKnr97NhePTyPSreJWRfC4bllUNfZfpncmbZ1C1W/fP8LKeTndx3TZQxu4sTiTRzsdEU2+UHe4+TObq4Rj69YZ/O+7h8hKjOAfX5uLbtokRbnQFJnkaM+QbqoVs7K4YGwKLvXs51I4OAyHCJfKD5YXUpyTyCNry7jliS08tXImB6vb+OriMUzNiuPJDUf7lLrdNjebGdkJXLNqI/cvy+ea6Zm0BQ0iFXVY548Yb+8/363+ocv5hns+WbWunDljkrjvz7uwbOFyOjOXrq49yH9fM5lX95zkCxMz+M9BAsfv//NuVhRnDejY7I/EKBcyEhcWpfHTV/Z3d8/cUtHAmJRovrJauC67On3GRooLMaeT3sfPxzV/OlfmTjU1Nbz44osA3HjjjeTnh5+bcWZntcrKSi699FJKSkq6n4+JiaGmpoaXX36Zl19+mXvuuYf/+7//+/gO4GPinnvuYfPmzTz99NP88pe/JCKif5H4scceA2Dp0qXk5ub2eT4UCrF06VLWr1+PqqpERUXR3NzMO++8wzvvvMOPf/xjfvKTn3Qvb9s2liW6zj3861/y43/7AVZnqUlERASGrrO/ZC/7S/by7OqneOall5k7cyoB3Q7LCSVJEn49vKDuqmaTWdkS2YkyIUPCF7LYUB4kLUYmLUahomHo0GPDFOLYyRaToGFRmKZRdyRIwIAPK0JsqwqRmaDi1SR0HbZXhTjVapEaLSNLkBytsKE8yOUTvKTFKLgUCVmyyU3UqG03uXCsh21VIeraex9TtEdi2kgXabFiHQeHcx7VBaPnwKjJULUT8ieKznk7tolubssuFh3w/H4h5iQkCAfSG69BcxMEg7AsFTk5FU1VCRWNw1V5dOj9Zuf0FWoloKVl6HXzCoSQY4RR9WLbosTQ5TrdJS8hQYSiZ2ZBU5NwIekGzJ4nnEgvPicEsYE4ViVcYlOmC2fTUEREiJDz1hYoKBTd9MqPQOFYePtN4YrSQ7BvT2d54FG4YCmkpPV1i31CfO5maYGAqN8crJbf7RYBqH6/f9BtnTp1ih07dnx8g3M4L9FNm0fWlbO4tn1YpTjPbK4a8m5efmrUsDvL1bUF+OPGo5SeagNsIlwqS8amUpgePWAeVE9ivRr7T7YyOjmSgG5w14Jc7n1uFy1+nYfXlPHI2jIK0k5nw3SFm//muskEQgZ5qdGsWlfOE7fO4B+7jnPLvGwM00JTZL5zUQHTsuJ5YkPftux3LxzNkrEpRIZRoujgcC4Q4VK5ZHwaS8am0OLXaQvqzB+TRGvQYGFeMheOS6M9aNDq14lwq6iyxOpNlfz0lVJa/Dqr1pWzqCCFw9XtxEWoYZ8/7lk4GtcZt8Vb/EPfwfoo55MWn05BWjT+kNkdPt5fLt0vrprAewdqhwwc78qeu7E4k4fXlA26bFFGDHERLn6/rpwrp46kIC2akpOtNLQHKc5J5B+7T/LSV+Zwxe82iMyr53axojiLb12Uj6ZYTmnex8zHNX86V+ZO77//frfo8aUvfekjb6ejo4OLL76YAwcOsGjRIn7yk58wa9Ys3G43LS0tPPHEE/zoRz/ikUceYezYsdx7770f1yF8LFx77bXcf//9NDU18fzzz3Pbbbf1Waa+vp6//vWvgMj+6o+HH36YQCDAI488wi233ILH4+HYsWPcf//9vPjii/z7v/87U6dO5bLLLgOEC8pv2Dz5xOP8279+j6ioKL7xre9yw823kZqahmma7Nuzi3//4fdYv/Z9br7mS+wv3Y+tRg55TBKiwsUIT4PCtuFEi0ldu4VHk8hLVslJVLFsEW7uViQO1uqcah14gxEuiY7OkrlGn8XIWLU7qBwgZNKn050qw4wsF6rcuX7Ipq7dJClKQcZmQ3mIGVkukiJFd76FY9wEDZvaNgsbEWge75WxYUinlIPDOYXqEt3nsmeI0PKIOFEaFhkpHDmxsaJErKoS3n9HCFJd1NeJZXQdQgHM2BjMCRNR9g4yf4qJxZ41B6lPOR7hfXjiE0SJW7icOgmTp4qfs3OgeI4QfLZuFiJaF4uWiE58gwlQXRw6CJMmC4HJN4ixQJJgTJ4IO0cSghOIdYIhuGAZlB0R+VWHDojX0rLg/Xfhy9eFf4z/JJ+7qz2PR2RohAaxnAU73xxe7+DdudLT05k6dWpY+y0tLR1S1HI4P2n1i0DyE83+sLKTVhRncsHY1CEv1gCi3Oqws6YaO0JMzUzgvmUF3W4FWZZ44taZ/HHj4F30ijJicKkyB6rbmJYVjy9kMj8vudcxWTadAtdpbizOZF5eMr6gTpRbZevRJnTT4sszRtLYEeTfXy7hJ5cV0R4wuKgolYvGp9Hq12kN6MR1duRSJPA47gWH84yuznmSBPGRGtWtQS745RoK0qKJ8agkRrlpaA/SGujdjRI6RR6/TmF6NEHDZGF+clhuwf4648V6h75zFeVWh5091eQLkRrj4f+7bHyf8PEuDlS3ERfp5pEXw+vu98SGCh69eTqPrC0bVIi/Y14OiiTx7JZjLJ+QzvQsYdFv9utUNvq4cHwaEvD6vfO5/rFN7D3RyurNlUzPjueiolRHhPqY+bjmT+fK3KnLtQQwZcqUj7ydX/3qVxw4cICFCxfy1ltvoWmnS2VjY2O57777yM7O5sorr+RnP/sZX/3qV1HVc+dvndfr5ZZbbuHXv/41jz76aL8i1FNPPUUoFCI1NbVbRDqTlpYWHn/88V6ZWaNGjeL5559n8eLFrFu3jh/84Afd60tAY1MrP/rBAwD8+c8vsHDJhQR0GwuRxTVpyjReevl1Llo8l507tvPYY7/nq1+/F32I01i4uVE9sWybKSNdVDQYvHMw0F2Cp8qQk6gyI8tNfbvJxopQv9sem6qx75QYmEuRaPKZzB8t3EsVDUafdWI8EvNy3dS1WQQ8MjEe4dFoC9okRto0B20qGk0sO0Rxtptmv0mESyLSJZGbpCJjYyGJa2gJZMlxQTmcZygqWC7xYfV1wMt/BY8HNJcQRs4M/u5JWytIElowCBFp6BOKsKOjUffuER3iuvehQM5o7JmzRLe4M5EkSM+A5ubBxypL4YWCd2FZQmRLTRMC1FuvQ1Nj3+VSUmHblvC2aehClMvMEk6rgcjOERdrk6dBXJwQ9664SoSinzoJWdkQFSWW/eIV8JcXhBJvmqIccOIk8X/wCXPu/BU8S8THi0lsl628P7qe61p2IO6+++4B7widybRp086JO38OHz9NPiHodGUnPbVy5qClOBcXpYFkc0NxJpsrBn4fgmj/nhIzvNbk6bFeGtpDH6mL3t0Lcnl6cyWWLTptxUe4+Obzu/i3L4wbsrzouy/u5n+undKdydIRNHh2SxV3zM/l/YN1bPutKOe7cVYWlmUjAynRbmzbRjctIoeZiePgcC4hy4AN7QGjX6F2IDpCBrKk8pOXS/j/Lh8/pFtw6diUPl3xAGK8Q5fztQeNYWdPxUe4WFSQ0it8/Ew+isPKMC0K0qIHfJ1WFGeybFwatm3z+jfnY1o2X5oyklvn5JAa4+G9AzX4dZO7/7iNO+fn8syds7jhsc3sPdHCY+vLWTau/zb1Dh+dj2v+dK7MnRp6dEIarMRwKB5//HEA7r///l4CVE+uuOIKYmJiqK+vZ/v27RQXF3/k/X0S3HPPPfz6179m06ZN7N27lwkTJvR6/ve//z0AK1euHPAYR40a1a+AJcsyP/zhD7nwwgspKSnptf1//P0vtDQ3M2HSFGYtXIYsQVyEjGF25kVJoEgurrn2Onbu2M7bb73F/fd9E92E4CBt9VRF6nZDhUt8hMy+UyH2nertVjIsERJe0WCwKM/DzCwXmyt7q2ApUTIeDY52lu1pisT+anGjbWaWiykjNcrqDTpCNqoMI+NU4rwSJdWiK19uosqEDHFelzsdXF0d8SqbTOo7/OSnqMRHaNiIaBdZktBNmyi3I7Y7nMdoLiF+dIkegYD4GgpJEiHfuo72+qtw2eUEs0dBTi5WcyN0tCOpGkpqhjiZaCqy1M9nRdOgaCKU7h98fx0dQtAJo4EfIHKYfO0iSH3Lxv4FKBDlhv7w4lIA4WbyDpKrmZIKs+aK17S2BrZugpAuOvXlF0DuGFGiV18nwsovWAYXLYc3XhXrlx0WDqmzwOdOhMrPz2fDhg0cOXJkwGXKysq6l3VwGIr4iNMTsqMNvgGzkyLcCi5FZt3hOp76sJJffHnikK6H6VnxxEW4hpUVoyky96ze3sdhMFQXvRXFWcwdk8S//b3r7rBEW8DgndJatnYGng+UB9VVXtQW0LsbVHhdKnPHJHWXHQ5UzqfKEs/fPTvs19vB4VxEkWT8ukFi1PADxn1Bg9aAwfLffMDa7yxi+YS0Pm7BqE634EBZRy5F5u6FuXzj2V0D7utQTTselzKs84lHk1k2LnXQHKmP4rDyh0y+e3EB/+/NQ5ScbEWRJfJTo5gwIpbl49OYODKeFr/OtspGHl1X3o/4nUO0WyUlxt1ZhpfJE7fOYOmv1nY7zJzS3o8XZ/7UlxMnTlBZWQnA7bffjqIMnGfY3i5ag1dWVp5zIlRBQQGLFy/m/fff57HHHuM3v/lN93Pr16/nwIEDSJLEnXfeOeA2ugLK+2P+/PmoqophGGzbto0JEyZgA1s6Q34PHyylIGcE0Nktr+dmbAgEhBvuaGUlLQGLaLeMakJAt+mpRcmSKJ/TZHFj36NKMHScEzEeiSi3zP7qgRsbGBasPRzg8oleDtRKtHQ6peK8EovzPew5edohZVpibI0+izdKA8RHyGQnKCRFypg2HK7TqWoyu+dpAcMmaIjDHhGnYNlwtOH0WDpCNjuP6+w6ruNSxXIeVWJ50eAVGw4O5wW2LRxLcfEi82koXC5ISATbEu6g9nZUFFDcmJKNnJiMlJiMjXA4qsoQHbfdbpgwGfbuGniZI4dh6YUilymcTnwFhaLUbfKUwcv4TANUTYhG4eByCydTW6vIcnJ7RGB6VLQIN09OgWOVsGF9b+eW3ydC1Xduh6UXCUFq72548zVYfhkUjIWDB0TZ4yB/xz5OPncztFmzZvHkk0/ywQcf9Pv8iRMnqKio6F7WwWEoYrxar4u6/sQWgP++ejK/ffdQt+gUjmtqRnYCb5Wc4o75udz3/K4hx3Ln/Fye3FAxaInL05uremWyFGXEcOf8XGaPTkSWJTqbzxDhUqhvDw14TD3zoLqoaxct2IsyYohwKeSnRvPtF3rXaJ/pEvnt9VP65Ns4OJxvqIqMpshEu+VhiTxRbhXbtmkPGoyM96IpMkHDwrbBrcqMiPWiqhKaLA9aXqYqMksLRce+gTrfmZbNvhMt3L0gl288t2vI8d02N5u39tewIC95UJfTR3FYeTSFinofj90yHU2W8GgKbQGjWzxyqTJbjjbyo7+X9CkfLjnZyrdf2M2uqkx+evkEth1dz+rNVczMSWBFcSa/W1NGa0AnA+cC7ePkszZ/SkxM7P65sbGRjIyMYW/j5MmT3T/X14fR4hvwDZbl8Slyzz338P7777N69Wp+8YtfdJdfdoXIL1u2jJycnAHXHzFixIDPeTweEhMTqampoba2FhBCSm21eP0CgUB35thg+Hw+DAtaAhZeVSLWI0QdyxYlaYoMpg2maYMEHg1cBgSHuL6bNELjcK0+ZE6n3umKKkjROFCjU5iqMTpJxa9bjElSKaszCHXuy6WeVtKafBZNvoFLeVyK6NKXEaugSBI1bUa/eVY2EDRAk2Fhnqd7vubgcF6jqkJMKhovxJOhGJ0nOuSlpsOpU9i5Y/CH2jlhN5PrHoEiD1NE0TSYNEmIUXt29u0SFx0NM4tF+WBevshmGoxRmeDSxHFVVg4uWlVXi/K6w2F0lJUkyMoSYtmYfJgxS9jwTxwTDqlAALDB4xWCVF1t320EgyIr6oqrhGuqyy01e54QodxusExxrJ8wn7srv8svvxxN0zh8+DDvv/9+n+dXrVoFiHyAMWPGnO3hOZyHaIrEnfP7dorpElu2Hm1iZk5in3KWLtdUeV0Hj948nXfvX8iL98zmg+8u5vm7ZzMzOwHLsinOTWRRQTIrigdv+76iOIvZoxPZerQRZYiZyZMbjvKVRaPZ+P0LeO6uWUzJjMMXNNBkmfe+vYgJI2JoDxrER/a+e9DzmEpPtfWZsEV2ilN3Lcgl0qXwlx3HB820GijfxsHhfERVZAzL4rY52WEtf9vcbEKGiapIHKxu4675udS2BnCpMvGRLhKj3ER7NbyaGtZnpKtj32+vn0JRRkyv54oyYvjt9VOYn5fE0nFCrBqMFcVZzM5NYt2huiFdTj0dVuHQ5bD608aj6IbF2kP1XPfoJuY8+B6X/O96Fvzifa59dCNtAZ2XvzaX7MT+reerN1exsayBGzvPjavWlXPT7GxR0uMd4s6nw7D5rM2fioqKun/euXPnR9qG2ePudWlpKbZtD/l16623/rND/0T40pe+RGpqKk1NTfz5z38GRJfDrg6Cd91118e6P0mSsG2htFxx1TXUtRt9vurbDUzToqlD/L5jv3DaWTZ06DZNfgtfyCZk2Pg7u+b5Q+Jn0xLd95bke3ANck06dZTGyDiV/BSNBaPdpEYPfq4trzcYnaRycaEXJHj3kJ+SauHqvmKil2i3hEcVOVLhkp2gUtdmMjvHhUuVGBGrsjjPTayn71wuPUbm0vFeotwSsqNCOXyWyM6BESMHXyYuHiZOhvp6Ie5UVsCESTTQQbY7ffgCVBeqJtxA19wACxZB0QSYMAku+QJcfhUkpQgH1szZkDN64O2MGAkLFsOe3ULcCgUHXhbgYCmMLQxvjCNGCptlY6Mo99u1A55/Gta8B1s2wfo18PwzUFEmyuwys/rfTigEe/fA2HHi9+pT4ntyCmTnin2cBT53TqjU1FTuvvtuHnroIW6//XZef/11CgoKAPjHP/7BL37xCwB+/OMff5rDdDiPcKkKy8alDlhaN1hb9P4cRqkxHn546Ti+8+JukqM9LCpIZnZuIvcsGs3kzP5dU3cvHM0FBSmU17fz4JUTcWsyz245NmAIecnJVlr9Om/sq+at/dW0BgwO1bQzNi2aO+bl8Myds1i9qZL4YZYCulWZ6VkJLBuXitelcvfC0YxJieaRtWV9xnzPwtEsKew/38bB4XykK6R89uikIUttbyzOZHZuEqoi8+S6cq6fmcnScalIEv/UZ6K7Y19hCq1+g9aAToxHI8ar4lJOu6l+sLyQ4pzEfj+bd8zLZUlhChuO1FPdGhjS5WRaNs9srhpWd9AXth3jD7cVDxh2PlT5cBdPbKjg8Vumdx+HXzdZPiGdaI8jQn3cfNbmT4sXL0aWZSzL4q9//SuXXnrpsLeRlpbW/XNlZSVjx479OId4VtE0jdtvv52f//znPPbYY9x8882sXr2aQCBAWlragIHkXZw4cWLA54LBYHcGV0pKSvfj6Z2v3/Fjlf2u51IkTBuMAYwENqD3uBvmMiVcqqhsUWSJkGFT225y+cQIyup0jtQb+DpzmUbFqxSmahiWzd92+7AQYlBxtpuOoMW6I0H0M67FvJrEmGQVqXO/qdEK2QkqDR0W24+FGBGrsLzISyBkkxEr49Uk/Prg9qpIl0RajEJilIy70z2lKRIj4hTSY7y0BiwafRaKJJEaI6MpEqrMgKWPDg7nJV2f4/kLYc8uOHRIuKO6kGVRhjZztshYGj8RThzDnrsAPG5SFQ+a/E/+3e/Ku8sdA1k5wnkknyFKqyrMnSeEsH27oa4OsEV5YNGEzpLCZiEslZeJLn+DceK4yGCaOh12DBx7QGQUzFsIB0pER71174uQ8TMxTVE62NgIF14Mra39lziWHRb7VFUwDGioh5hY8boO0gH34+S8vvo7duxYr44mXVbeDRs2kJSU1P34Aw88wAMPPND9+y9+8Qu2b9/Oxo0bKSoqYvz48bS3t3dnGXzrW9/i8ssvP0tH4fBZINKt8q+XFjIzJ4HH1vfOL7lkvAjXHayc5cwSte8vL+SXV08mLkLjxe3HWf6bD1Bkia9fMIYnbp2BLyTKVtJiPHg0hb/tOsHc/3qv+yJtsBDyWK/GillZRHs0LihMZeKoOBI6852e3XKMn/xjP9srm/j+8kLWH6oLu3Rn5dwcWnw6318+tvsiOtwLYgeHzwrtAZ29J1q4e2HukKW2JSdbmJGdwLiMGBYVpKApEi71n6/F7xLDIlwqabGefpcZ6LMZ7VExLAtJgmlZ8UzLig8rR2r1psrwuoPOyuKCsSk8s7lq0LDzLs4sHz6TkpOtWLYY69ajTTT7Qlw3MxNNcS7QBsOZPwlR7aqrruKFF17gmWee4YEHHgg7y8q2bSRJIjs7mxEjRnDixAn+8Y9/cNFFF33Co/5kueuuu3jwwQf54IMPKC0t5bHHHgPgtttuGzCQvIu1a9d2vy5nsn79egxDZBxNnz69+/G5c+fy1FNPsXvnDlrqq4lPTsMSlXRoikSEa2gRpydBwybSJSEjYVk27UGb5noTt2YwKl4hP0VD7SzZq2412VoV4lTraTfbwVqDQ7UGs7JdLM738M7BQPe1cUq0zMIxHiobDV4t8dMSEE/IEmQlKEzI0GgP2jT5LPwhkwi3ypJ8N2+WBvqIWV1oCiwpcCNJNhGa1Ou1kyUJWYGESIWEyLOT0eLg8KlytByiYyAlTQgzx6pERpHLBaOyoKUZ1rwrBJmoKJFdFBmJpLn42GWTwXKRVA3i40XXOzjdjrNLvImLE6VxObkQEyNcSoNlPr37Nlx0ich12r1THGfPcWTlwMxZ4uexRVB+pH8BqieNDVCyF8aNhw/7KXEMhYT4FBkl9ichSg3PkgAF57kIZZpmr+4mXRiG0evxM+vvvV4va9as4X/+5394+umnOXToEC6Xi4ULF/L1r3+dq6666hMfu8Nnj0i3ysVFqSwbl9odKBzj1YhyqxxrHF4GRG1rgKc3V3LdjEzWHapjxawsbijOJBAyqWr0kRHjoSA1mt+vr+B/3jkUdgh5dmIET62cyZaKRq5/bNOg3fPeLa1hdHIUabGeoS8si7O4eHwabrWvsBTOBbGDw2eJwvRo/vhhJW5NHjDM/+CpNr65TFzwjk6OQpL4WASo4TDYZ9MwLSTgW8sKONns4455Odz3590DbqurO+hf/mUuM7IT+P0HfcPE75iXw4VFaWw72sCNs7K4+pGNYY3zyQ1HefRm4XbqL7OlLaDzr8sLueXJrSREuhib5j7rr+X5hjN/EvzsZz/j9ddfp729nSuvvJI333xz0GyjpqYm7rjjDh5//HHi4uIAuPPOO/nJT37C448/zu23395L3DuTxsbGf6oT3ydNVlYWl1xyCa+++ir33HMPe/fuHTKQvIuqqiqeeuqpPuWGlmXx85//HIBx48b16rx39dVX88ADD9Dc3My/fu/bPPP0091CjN35T9dn3rIs2lpbie183fvD7ly+a50Yj8Sk0W6ONFhUNeqkRMukxyi8tj8wYP6TDWw6GmJJgYcxySqHag3ivBKLxnhYXxbgVGtvRcmyoaLBpLLRZP5oN5ZlkxGnUd5gYNtwyTgvu0+GONYjiFyWIDNeYeooFx5FQnVEc4fPO7YtMowio8Tvb7wmysPcLtGZbn+JCOMuGAvTZgqRJyoaSf0UpYxBBRtbOItAOKsGy3wKBuCt10VOU3qGcC+1twrRKTVdCEpbNwnRS5bhQGl44zt0CK68GrZt7ptzBWJbF18KmzZ0vtae026ws8B5LUJlZ2djh5NQ3w8ul4vvfve7fPe73/2YR+XwecbjUjFMi/hIjaP1HWQmRmCaNvGRw++YVXKylZRoNz+7YgIfltVz1x+3dV/UfXXxGHKSIvnvtw8Nup2eLoKnN1fxx5Xhl7888OIeHr91Bjc+tonfXD9lQFeHU1bn4HCaaI/Gvz23kx9+YRxbjzZyz5+2YVh2r26Qdy7IZUFeMn/eVkVSlOec/Pyoikx7R5B3S2u5asoIspOiuGFm06Bi9NwxSXQEdY41dQwovnm0WoKGTX17cFB3aE9KTrYSCJkUpEX3cox2EevVSIpy8cY35xPr1QbsIOhwGmf+JMjPz+dPf/oT1157LSUlJUyePJlvf/vbXHXVVd25VqZpsmfPHv7617/y29/+lubmZh5//PHubXzrW9/ipZdeYu/evSxevJif/exnXH/99d3B583NzWzcuJFnn32W7du3U1JS0u9YzhXuueceXn31VdatWwcMHUjeRWxsLF/5ylfQdZ2bbroJj8fDsWPH+Pa3v92dIfazn/2s1zpxcXH8+te/5tZbb+X5556jtaWFH/3oR0yfPgNZkbFsi0MHD/Daa6+x+g9PcN8D3+fq624ccAyS1NloSxJOooBh8fe9fqzOCNxxaRp7Tg4dQO7RJI426BSluzhcazB5pIs9J0N9BKieWDasLwty+QQvtm1zpM6gocMiM15hbKrGjEwXzX4bTYZYrxhPz/ByB4fPNZoGhePhlb/B9JlCHDlxDE6dEl3exuRB/ljhKLIsIQB9mgLUYMiyKMlLTBJB39OmC7dRbc3Ay8+eBydPwAfrIC0dvF6RzbR9mxDfAPIKhAOstSW8cQQDohQvPgFqqns/Fxsn3E+qCnPmizGcRQEKznMRysHhXKTLXTAxM47NZfVMz0kk1qMNL1tJk4n1aiREufn5q6W9LvwGy5jqSVfL8y0VjXzrwgIUWRpW+cu0rHga20OETIvLHtrAjcWZPHHLDHTLoiNoEut1yuocHM5EUyQunZjR/Zl55KbpBHQTf8gkMcpFtFujsSNIU0eIL00ZiUeV8ZyjokmMW6PkRDNXThlBW0AftMRw5dwcpmfHc9Pjovz31+8c7reTZlFGDKvvmMmR2o5hjaXJF+ruNNqToowYVFlGliSiPfLnr9uKwz/NFVdcwXvvvcett97KkSNH+N73vsf3vvc9XC4XUVFRNDc3Y3W2upYkieuvv57IyMju9aOionjjjTe46qqr2LRpE1//+tf5xje+QWxsLJZl0dp6+rNyPgS2L1++nKysLCorRU5TuIHk//Iv/8L69eu56667+OpXv0pUVBRNTaezSH74wx/ypS99qc96t9xyC36/n3vvvZfXX3+d119/HbfbTVRUFK2trej66VyYoXKQ3IqEZdvIsmjNHtA7HVWIPKdYr8yx5v7LYiQJshMUClI0Yjwyft3GpcKXJ3tRZNhWOUTAMEKIOlRrMDZVJTtBoSNocbLFpMVvUZSmkp2oIUkM2TzGweFzhyyLLnS5o0X52q4dwkGUnHK6NG7XDiHA5I+FjIEdq586iiIcTbYtSt7WroELloqspoOl0NZ5M02WITMbxk8Qbq8N64XAdnKAfL2qo6IcbzgYRv9iXcFYKN0vuupNmtI3++oscG7OfB0cPgNEulTmjEnG6rzlduf8XL75/K4h17ttbjbPbK7iXy8t5L3Smj6iUX5qFIGQOaCLoCvzqat8r9EXwrRs7l44mpe2HSPWqw3asQ5Ol7+0Bwz+tLKY+vYgsV5NiGOaysh459Th4NAfXY0KtlQ09mk60BE0uoPHF+Qls3JezjkrQAGoisT1xVl0BE2afTrXPrqJG4sz+ePtM/GHTKpbAiRGuUiO8vDwmiP8f6/s7z63nJlzp8gShWlRRLgUTNMmKWp47tD4CBftQaPP47fNzeaJDRXkJkcS7daYl5dEyDCdcjyHYTF37lwOHDjACy+8wCuvvMLmzZupra2lra2NhIQExo4dy8KFC7npppu6w9h7kpGRwQcffMALL7zAs88+y7Zt26ivr0eWZbKzs5kwYQJLlizhmmuu+RSObnjIssyVV17J//zP/4QVSN6Fy+Xi3Xff5b//+7955plnKC8vJzY2lunTp3P//fezfPnyAde95557uPjii/nd737H22+/TUVFBc3NzcTExDB69GimzpjFhcu/wPyFFww8bgk0FSxbwrZszjQ7eTUJX8jqt1u6JsOifA8yUHJK53iz2b1+nFeiME3j4nFe3jsUpNE3eOeo8gaDSSM1chJVClI0ZAkMS4hcTtmdg8MgaBrMmiMylw6WwoH9vZ93uWDWXCHwnGXXzrDx+cDrEQJQ9Ul45e8izPzyq6CjXTi6oqKFy2nPLqiqpM/JSdNgdJ7IlvJ4AEl8j0+ApsbwxhEVJXK1epKcIsS+l/8Gvg7IzIRgCEaOcjKhHBw+K3RdCPmCBksH6aDXxY3FmczITuBwdRu5SVF898W9fZaJcqsDtkzvmfnUs3wPBg8r76LLPRXhUsC2SYzUWLWujD3Hm0mO9nDRuFSWFqUO92VwcPhc0dWooDgngUfX981GWlGcxdJxqUT24+w5l3CpCnnJUTR0hIiLEOL1qnXl3Dgri/987QC1bQFykiK5bW5Ov6Hh0L8oHjJtkqM9/Ptl4/jV24eHFMW73KEHq3uX4nWdL3/6Sikj4708evN03j1Qy4WFKQNsycFhYBRF4brrruO66647q+sfPXr0Iz03XNasWRP2sm+//TYQXiB5T1wuF9///vf5/ve/P9zhkZ2dzf/7f/+vz+OWbWPb0BKwBiyjk4Fot4xliRv6Hf2EmZu23a8DSQIW5nloD1hsOhrqI141+202VoQYFa9wQb6bN0oDtAd7L5UeIzM6SSPCJXWPscVv0RqwOd5skBAhgssdHByGQNVE17YpU0X2UXMTSLJwPmXnnC7FO9fx+4VgZBowYhQcrxJup4OlcOggKDLMngsHD0Dl0b7r5xWIssSTJ0RYeUeHELQys0TXu9paWL+2dwfBM0npvF7rCjqXJMjOheLZsH6NEKAASkth0mThmnJEKAeHzxYuVWZLRQPfXz6W4twEHl3X98L0UspeHQABAABJREFUtrnZzM5NYt+JFu5dlk99e6hft1N70Oi3ZXqsVxtW5lPPluf9XShKkoRbU7hrQS6GZXOopp281ChqW4P4dR9xXpdTjufgMACRbpVLJqSxbFwqLQGdZp9OXIRGjEf72LrgnRUkcX6QJImijBhR4hIyeXXvKQCSo93Eevu/uBpKFL9jfu6gongXK+fm8Pb+GqZlxZ/O1Zqfy6RRcdzyxBZa/Dotfp1AyOStkmqWjnVEKAeHj8qaNWvYt28fsiyHXYr3SSJ1/hPXWSIXME67nCTArUp4NYkuecmyhfPoTNoCNm5VIsot9RKRRsQpuFV492BfAaonx5pMEiIMJmRobKwQNwITI2Xm5boxbZvDtQYtfgtJkmjyCVHKrVqMiHPjUiR8ukXIf3q8sixyqxwcHM6gSwgpmiBEHCThCvoUSsY+MvHx4gQlqzCuSIhQHo8IHe8Shdo7IGe0KNPrydhC0dXu1b+L5XvSUC9EqVlzYNnF8NZrA3femzxVdBu84Wbxu2EI0ep4FZw4fnq5E8dEueCOrTB52lnL2nJEKAeHs4CqyEzOjGfV2iPcuWA0SwtTaQ3otPpFW/Qoj4puWgQNC4+msL2yCY/W/0XqoZr2flumr5iV9ZFanofjnpozWpS4KJLEv71SwpqD9ZiWTVFGDHcvzGVpYeo5F6zs4PBp41IVXCpEuFXSY72f9nCGjT9kYNki58qnW9w6J5s/bzvWy4nZ0B4kyq12n4+63JRpMR7+40sTeOi9IwOK4vc9v6tfUbwnK4ozuXh8Gq0BneKcBOIjXER7NSzL4t7ndvUSr5p8IWpaA7QGdCLOcZeZg8O5SE1NDd/85jcB+PKXv0x2dvanOh4QOVC2bSNJoqSuy21kIwLIbcAwwbBsVFliIF3HsqGs3iA/RWXHsdPnmoIUldIaY1ABqouDNTpXTIxge1WIGK/MBXkeNh0NUtXU+yLwVKvJzuM6U0e5SI9R2H0iSHGWG8uy2HtSp9FnUpiqkZWgOiV6Dg4Doarnbvj4YOi6cB21tggRyO0WgpBp9j6e+jqRxzQyE0ZlikByTRNff38J2tv7375lwYcfwKIlMGGSyMrqiSSJTnreCHj2T2I8Hg+MyYfCcZCSdrqLA3S2FbWgoUGIfmfpNT+PJEUHh/ObCJfKPYvG0BE0qG4J8NNX9vNuaQ2aIvHB4XqO1LZz1x+3MiY1iue2HOvX7QRgWjbPbK7i1jnZ3Y91hZU/ueFoWGN5csNRbpyVRXyEcE+tWlvOd17c0yc4vcs99fCaI0wYEcvOykYeun4K6x5YxFcXj+F4k59vPLuLn792AF+ob16Lg4PD+YkvZKCbNi1+nbagSW1rgJk5CczPS+51bmoNGAQNkzvn5/LVxWNY98BiHrp+Kj+5rIitRxvDEsV3VjVz37K8Xo8XZcTwm+smc/+FBXzzuZ3M/s/3WP6bD5j94Htcu2oj7x+o4z++NIHsxIjudbpyo5qHKO9zcHDozXXXXceoUaMYOXIku3fvJjo6mgcffPDTHlY3siRhIwSn1oCFL2QLAcoWZgNNAY8qETBsLFtUuvTHgRqd0UkaKVFy53YhLUahsiG8+UvAgJo2k4xYhUVj3Gwo7ytAdWHZsK0qRH27ybRRLkKmjdclk5+isijPQ0m1ztbKEIb50bpUOjg4nIPoOlSfgpYWUUJnW/DOmyKAPDlFiE1d1NWIk9i8+SIn6r23RWnewdKBBaie7NwuRCWPR/yuaaKM7/IrITYWXv+HGA9AIAD79sBfXwK/T5QCduF2i+8DOao+IRwRysHhLOLVVAK6RaMvxIYjDfhCFh6Xytj0GKI9GqtumoEMvFFS3e126o/VmyqZmZPADTPFyWyosPIz6Wp5fu/S/LDdU1sqGpk0Kp5mn0Gc18UNM0fx2jfmkp0YwepNlbxbWothDh7Y6eDgcO5jmBYV9e3sPt5Mi1+npiVAjFfjlie2cPnkDBKjXN3npkM17VjA0sJURidHctcft3Hhr9ehKjKr1paHtb/H1pfz5WmjePf+hbx4z2ze/dZCnr9rNi5VZvEv1/B2aW2v5UtOtnLv87v43ftHeGrlTGK9ovtopFvhYHUbMR4ne8XBYThUV1dz/PhxIiMjWbp0KWvWrCEnJ+fTHlYvuvxCqiwR6ZYIGjatAYsGn/iSJNBNm4Bu41H7dxd1hGw+KAuwKM9DXrKKRxWle8PRgQKGTVqMQovf5kTL0BdtO46HUGWJgG4jAREuCduGZQUeTrWZHGs2uhvYODg4nMd0dlHlxHEwdVE+KEni6/V/iPDx+HhISBTPTZkOx4/B88+IcPKWZsjJETlR4dDSLDrtffk6uOV2uG4FFI0X3QXffA1C/eQHGzq8/aYId0/ujC7IK4Cj5ZCQwIBW0k+A89Dj5uBwfhPpUkiNdvOPr89j+9FGrl21sduBNCM7nu9fUtjL7fSdF/f02UaLX+eWJ7bw1MqZTM2KY0tF44Bh5QPR5Atx6YR0bnliS1jLr1pXzrTsBOb/13sUpos8l2XjUnnurllc9Ov1PLK2jCWFKU4+lIPDeU7ItEiJ9vLw++V875KxhAwLt6oQ6Va57KEN/Oa6ydy1IJd7n9tFlFtFQeI/Xy/l6c1CzC5Mjx62KF7TEuC/3z5IXVuQSydmEOlS+j339aRnafHYtGi2VzZRmB5DzAAZVQ4ODv0znNDyj3Pd4dAl03g1iVa/hTGAbqNbNl5Oi1ZncqrV4p2DASaP1Jg2yoUq965MGQqPKhHtltl1Irw5V9CAyiaDhg6L400mBakqY5LFOWpmpotdJ3RGxamOK8DB4XzHtqGuVpThSbIQeSoqoKBQuJZK9opcpvkLoaJcOI8+WHv65KMooLlEx7xwaaiHI4eg7AhcdS28/YZwYA2GoUPpfhg7DpqaRPbWe2/B/MXgcn/04x8mzjnPweEs43WpJP7/7J13fBXnmbavaaep9wKoUSQhmmkCYzA2uBHHm+YU3L2OyWYTOz2b7CabTd3sZrPN688lsRN3x6nu3cY2NmDANElIoIIA9XoknTL1+2MkoXIkRNwo7/X7yVjnTHlndMo799zP/cR7uWtzLV/93Z5RJXD9UXM45Hes22ksDZ0hrrhtC/FelR98tIxpySeXOZOR4CVinLx7qjg7YTjP5WdPV5Hg0/ji2iIqmoIEw6IkTyA43QlFLfqjJs9WtCDLEnFelecqmtm0pojesMEtj+xm0YxkNi7P4+oV+bxS3TYsQMHkHTwnojuk094XZVdjDxfNzTqp0uIbzyvkwpIsttZ1cuOqQjGxEQjOQCTc8rlg1IkpQNkOKIN38fujNrIkMVE0XHfIpr3PRrcc+qIOM5Kn1ihCU9zyvYBXois0ded314BNglemX3fYecRgS10UgIwEhbDhoIuSPIHgDMCB/j5obYHERGhthmgUiksgPt5dpLrKdUrNm+9mOY1Uv2375J1Iqup2FMyZ5gpSJxKghjh0EPILYP0lbhlfUjL4fSe373eJmKsJBB84Di9VtfLAtvElcCNDx4fcTpvOL+IXVy4YV5pXlpvI9y4vpTQnkStuewN5sHvVVCjLTSQt3kt/9OREo+6QTvyIWd2D2xp5obKVq1bku5PDiMhiEQhOd0K6SdeAPuzIbA2G8WsqS/JTubo8b9Rn0+dXF44TjCbq4DkZGQnu59FfU1psmDay7JCV4OOCkkwMURYsEJyRmLYbQB6LqOngHTRBmg7YjoNPk7i8zE9plkp2gkxOosz8XI1PLPKTk6TwTGWEPcd0SrKm5p6cla5ytMdCn8iGNUWO9lhUtxnIEszOUDA+2CgWgUDwfuDgikKWBQcPuv/OngM11XDp5ZCc7C7XeBgGQm4w+aj1Hbe8LuMkOvxmZLnh5AWFU8uRGkJ3hXBSU92Bl58LxgdrJBAilEDwgSNxxwRZKWNDx4fcTnXtA9x17VJe+tr5PPuV1bzyjfO585ol1LUPcMVtWzjUPsD9Ww+PCiufjBtWFfD7HUfwaSf3ETAU/DuSu1+vQ0KiLDdBZLEIBGcAAY9K8ghHZmqch3NnpvHI9kb+bu0s/udz5xDnVfnGY3sIhs1xgtFIMX0qlOUmkhbnZdOamcyflnTSLip3eYlPL5uBbtqiJFggOANxgIgxsfgTMR28qsRQszkH6A07bGuIkhKQWTDNw3kzvST7JV6ujvL8gQhhw6Gx20JVYOG0yecvmfEy83M97GvSCUYc0uOm/jmTHq8QjIwWx2ta3blUdoLbRVUgEJzmSBLkTnPL6vbvhbQMN2h8drHrirrso3DpR6CgyM1zikXNASgpndr+snPcbnYvvwAZGccDyqeKLLtCmGW7YeraB3sNJ2ZqAsEHTDBiTHqXf2wZXm/Y4PZXa1n985f50sO72HW4h4Ot/az5t1e4/dXa4bbmJyrfG+Kq8jyWFaTyPy8fwqOe3IWiV5Opbukb9bhbhmfw6aV5JPrFTEogON0JeN38pyFH5jW/3o5h2dxwXiF7j3bTHzG478bl/L+rl8R0U8bq4DkZN6wq4J4tddS09vEPl5Yw/SRLi1PjPER0t0tfZVMvmmh5LhCckUyW3207ENIdEn0yIz8C2gds3qzXef5AhHeOGqTHKYQMe9R6L9dEmZGisGaml7Qx4pJPk5ifq3H+bB+v10bpCTscbDOYkzm1CzafCtOSFOrHdOALGQ49YZuAR0KVxWeWQHDa4zgQjkB+IUQj8PwzkJPjCk4Zma5IpapQWDSx4HOwBnKnuwLTZKgqLF/hZkvJCvQG3bBxeYrSzrTp7hiTU6Byv1sK+AHfwBMilEDwAdMbmrxkbaIyPNuBquY+/rL7GMsKxotNUynf+8WVC7h5TRHX3bOdrgH9pC8UH9rWGHMS2BM2WFGUhkc4EASC0x6PItM5EBnlyNzwP2/wwNYGVs/JYMP8HHpCBlHdIiUu9kRqqqL41eX5XFKWzerZGXxqyXQ8qkK8Tz0pcTzRp/HQtkbue7OR8qI0POrU8l0EAsFphDNx2PgQEdMhbDgk+WVkSUJVIE6TSPRJzM1SWZirgQSXzfWTl6IMx69EDIdnKyOEDZv1xT4+vsDPujlePlLm4xML/QQ8Es9VhWkOunVzjT0W8V6JvJQTf9YsnuGhoctEj1Fyp5sOmip90Nd+AoHg/UBV3eynpcvdTKj+Pnjiz25ouGW5IlRNtSv6ZGTGFoz0KGx+GdZe6IpVsTKiEhLhssvB64OZs2DxEkhOckPPC6bY1XTuPFcw6+0Bj2dQwPpg507CtiAQfMAkTaFz01AZ3lXleTy6aSX9EYOekEFSQCPBp/HO4S5uPn8mi/KSuXdLw3C4eUNniG/9fi//+JESHr15JR39UQaiJmnxHmRJ4jdvNvCjJ6tGuace/9IqNi7P46Ht4zOqhhhyT/3oyaqYzycHNFICmiiDEQjOAFRFpjA9nox43/BnQ2/Y4JcvHOTeLQ08+eXVPLWvmW31Hdx1zTLKchNHNViA8R08R35OgSsebVpTxIqiNL7y6DsEwyb9UZOW3gj/9Znj3fdOxKbzZ1LX3kdeWhzrSrOImyiJWCAQnN5I4FFjdx0fScR0iOg2EpDglfjIbD+SJGPaDm/URWkJ2sxIVijL0VhZ6KW938K0INEnoSkSFc06HkWiIFUlbDpETYdtDaN36jjw6sEo64p9qLJOXed4R6gqw5I8D8l+mecPRGKO1a9JeBQJ+QNsiy4QCN5HhoSlyy6Ht7dBQz0crHZ/5i90O9G98AzMKXaDwetjxLO0NMOLz0P5SliyzA0R7+93Ra4Zea6AFYnAk3+GcNhdR5Jg3kJYvtLt0NfXN367Q8ye427Dtt1uD3OK3a58HzBitiYQfMAk+rWYF21j6Q0bbK5p59qV+SiyRHail6rmPlr7onzl0d0k+TWuXpHHPdcvw7RtBqImCV6NeJ9K94BOb0QnOaDxZm0H585M49t/2Mu2+u5x+zjRheINqwpYVpDKdfdsHxavRjLkRPBp4uNEIDhTCHhUJOCblxSzJD+Fe7bUU9EUpDtkcNWvtvLgTSvITw3Q2R/lptVFfPXR3eO2MVJMv+vapTiOQzBs4FUVvJrMM/uaiZoWl8/P5Vdv1FPV7E6abnlkN0/fspqryvNGdd0by9XleawrycR2HGZlJuAXwSoCwRmLBHhUCUl3OGEsuOT+GCaEdJs4r8yWQQEKIBix6RywkSVI9rvle15NwrJh0XQPvWGbN+ujhA2H9cWxc1a6QjYvHoiwqsjDgmkaNW0GvREHWXJznorSVZp6LZ4/EMGM0Ssh3iuR6JdRRCmeQHDmoChuNpPjwOKlbsncsWNudlN8AsTFwcc+BV2drmDU0nxcSBpJRzs89bgrGC1b4QpGR4+4rqqXX3AFrU98GpqOuY8ZOgz0ueLU5R+Dt7ZAY4O73hA+P5TNg5K5rmhlWe6Y1A9n7iRmbALBB4wswaY1Rdwyhbv8N6wq4NmKFj61eAZ9EYMFM5K58o63BgWofDaW59EfMekJG6TGeZAk+OOuo7xa3U6cV+U7G0r5pz/v581/uJCMhNgTqZEXindfuxTLdgjpFnFe15b50LbGUe6psdy8ukhksAgEZyB+j4qm2GyYn82l87LpDRsEIwbJfteRedHcLBzg4rlZE7ophzLtgmGD724o5WdPV1HXMUB1Sx+lOYlMT/Fz6bxsLinLJhgxCUYMEn0qCT6V724oZXlhKne9VjdOHL95dRHr52ahSqCoinBhCgRnOJIk4TgO8V6Z/qg9oRAlAXEemVbHwaNIGKaDoTk0B200Bc4r8pIeJ3Ow3WRHo47luI6p2RkayQGJtw/rLJ7hpbXPpjRbnbRUrjts82RFhIx4meIslfk5CoYNdR0mT+4PM6BPLJfNzdY4sZomEAhOO4bcUIE4t0Quv+D440PPpWe4ItDlH4NXX3LdSyORJDfAfMkyGOh3Rau3t7qC0eximDnbFbqmT3dL6XAAyRXBIhFYcS6sXAXHjrr20fh4N2fKsd31HAf8J5e/+V4jRCiB4ANGliQuLMk84V3+oRK4/cd6qWoJUpaTSHNvhJBu8viXVrG9voub79sx7uLs+nML+MEVZVx3z3YiusWG+TnEezUunpvFk3ubY+5r6ELxjs21/Oq6pfRHDNaXZvOTp6p48ARleuvnZokMFoHgDEVV5GGBJ86rkkvsScs/fsQVjO5+fbxg9PnVRVw0NwtJgn+6fC49IYPkgEaiT8Nx3KCXgEcl4FXJTnLFctOy0S2bi+dmsb40i+BgSfLQeqoMiiwL8UkgOMvQFEjwyoQMB3NMSKUmSwQ8Eqbl3v23HYeUOIVjvTaqDBcV++gYsNl8KDwq37JzABq6LDLiZc6f5UWR3dK/kiwNy4a52SqVLRO3L+8csEnwyvRGbDRFQpaZVICama4yM11FFTfwBIIzF1l285Ymek6WXbHp4kvdcrv6OjAMCASgaCbohtu5Li7e/ckvdMUj23aDzR3HFZ3GXoLFxbnbcRzIyx+dK+VIoCpTDzB/HxEilEDwAePVFCzH4bsbSlman8Kv3qifsATuDzuPcvOaIl4/2E4wxU9vxOC+G8u5Y3NtTNdBRVOQb/5+L1eV5/HbG5fTNaDz6SUz2N7QSXlRGleX5/HAJMLXxvJ8ygvTeP1gOz95qpLvbChl2QQXlkNOBJHBIhAI4rwql83L5uK5WfSOEYxkyZ0LAcR5VLyqjCrLSBJ4J3AxjRS/hrafk/Th3rUTCAQfLrIkYTsOquy6l2xHwhpUk1RZQpLckHHLdpAkCdNy0E23fG/RdA+9EZvthycOlWrvt3nlYJRLSn2cM90Vuwd0h7JsjUSfzK4j+riA8SSfxKoiL4k+CUlyP7MK0yTSAgr7m3Wag8fLYVIDMmU5KtOTVeEgFwgEx0vhEhJhwSK3rI7BLnqa57iINSQ+SdLEnfVGMtEyyqljGhBXjwLBh0DAoxLWTS6dl80FJZl0h3Q6+3VSAh68msyLVa1UHOvl5jVF/G7HES4py8GyHGak+Hm1un3SEHGAB7c1ck5eMutKswhoMs3BKIZp8+3LSvj0sun85KkDbKvvGl5+SPi6tCwHRYb1pVmsmZNBf8TkgpIMLpo73omgKZJwQAkEgmG8mvt5EJhEMBIykkAgeDfIkoSNg4xrEnAct3uwYblilF9zA6Ecx0GWoSdskxan4lUlntgfI3tlDJ0DNsd6LArTVKKmG6HQOWCRl6JSkKpytNekJzSY/ZSokOgb3BfSsLNJlsATD+fP8uEw2AVPAUWWUCSQRQ6UQCAYyZAYNVE+kySdUgLSe8GH78USCM5S/B4VWZLwqTLZiT4K0uLczxhJ4solM8hO9rHlUDvrSrO49p5tIEv4PSr3bmmY0vbv3dKApsjUdYTQFJmkgIZlO6iSzK+vW8Zr31zL77+wkpe+dj53XrOEuvYBmntDqIMlLgGPSmaijyS/Z9iFUJqTSE6SnzivKgQogUAgEAgEw7zyyitcfvnlZGRk4Pf7KSkp4Xvf+x4DAwPv6X6GuslpihsoHvBIxHvdf4eK4CRJQjcdDrab+DWJ9n6L0CQlciOpajEwLGgJWlg2ZCSoyJJDT8giPU7Bq7pCU3WbwR/3hDFtyQ2jGkSRJTRFxqNKeFWJBJ+MT5MHS/WEACUQCATCCSUQfIgMOQdMyybRB15NJhgx6YuYlGQnUpqdyOaadnyawguVrVw8N4vK5sm76g1R0RSktTfC1363m6rmvkG3UyEXlmQSNS08qsL/vXKIlmCE6pY+bAeuXpEvMlYEAoFAIBCcFP/7v//LrbfeiuM4TJ8+nRkzZlBZWcmPf/xj/vCHP/DGG2+Qmpr6nu1PGhSiJNzsJ/cxUCVwHAkJ8Gsy84u8SDh0DcRoUTcBXSE32+nNerd0L9kvsWiah4wEmfCgkLX7mNusRZEh4JFEvpNAIBCcBOJqUyA4BVAVGY+mkuDTmJbsJzvJR8Cj4veorC/N4rEvrOSKhTkEI7E71E1Ed0gnfjCzqaIpyDce28N/PF+NZTt4VZlz8pKpanYFqLLcRBL9U6gzFggEAoFAIBhk586dfOUrXwHgzjvvpLGxkV27dlFXV8eSJUuoqqri85///Pu2f1mShn+kESG8kgSO4+ZDSSehEUnS6MZ1PWGHVw9FOdptEfC4nfSGNKfCVHU4804gEAgEU0OIUALBKc5QaVy8RyHJd3IiUUrAQ390dEeXB7c18trBdo50h7hmZQFDzvAbVxUibuQJBAKBQPDBY9sOpuUQ0m26QxYh3cawHGz71Fc4fvSjH2HbNtdccw0333zzsBCUm5vLww8/jCzL/PGPf2Tv3r0f+NhkSSJiOGQlTD1CICNeIRge75zaeljHAUzbYUaKgkeBBdM0MXcSCASCk0SIUALBaULEtEnwqZTlJk5p+bLcRLyaTHVL37jn7t3SQFaCD02WKc1J4OryfC4syUQTpXgCgUAgEHygmJbD4W6TZ6si/H53mCf2u/8+VxXhcLeJaZ26QlR/fz/PPvssADfffPO452fPns2FF14IwGOPPfaBjg3cbnlRyyE1IJPkm5paVJypUtNmjnvccaC61USVJdLjZS4t9eNVJRShQgkEAsFJIa44BYLTBccNu9y0pmhKi9+wqoCHtjUS6yZqRVOQ/qjJgG7ygyvK+PZlxfg9ssiDEggEAoHgA8S0HHY06rxeq9MVGu2+6QrZvF6rs6NRP2WFqHfeeYdoNIrX62X58uUxl1m9ejUAW7du/SCHBoDlQLxXJmzYLM/3nLAsLzdJIS1Opr5rvAgFcLTHwnYc5mRoeFRQxbRJIBAIThrx0SkQnCYoikx/1GRFURobl+dNvJws8fWL5nDerHTebuhCmaATS3dIJ2JYtPdFaemN4NNEnwKBQCAQCD4obNvhSI9JTXtswWOImnaTIz3mKVmaV1NTA0BeXh6aFjsyYObMmQBUV1d/YOMaIk6DgajNE/sjOMD6OT58MaY76fEyF5d4WT3Ti2XDujk+ZqWrjL03Z9huxtT+Zh3DYlQGlUAgEAimhrjqFAhOA0zLpqGjn8rmPv7vlUPc97flrJiZxp2ba6locrvlJfk1vnbRbP5m0TRCusWxnjD/+okFeDWZh7cf4YGth+kNHw82Twl4CHgUbnv5EPdcv+zDOjSBQCAQCM5KbAf2N08uQA1R0WwyI1k95e4ed3V1AUza+W7oue7u7g9kTCOxHMl1ktmws1Hn4lI/H1sQ4GiPRVPQQpEc5mZ70BSobDF4+7CB7Tgk+GRmZ6gsnuHhrYYoR7otAOI0V3Sq77Qoy/FgWo7ojCcQCAQniRChBILTAN2ySYv3ce+WfTR0hvjL7mOcPyeDu65dSkS3iBgW+WlxvHSglat+tW1YmAI3G+r6cwt4/EuruO6e7TR0hijLTSTOq6LKMoosocoyId0k4BEfCQKBQCAQfBDolkN3aHwAdiy6Qjb6KSh4RCIRADwez4TLeL1eAMLh8AcyppGYtkNz0D3HJdkaFc0GNW0GM9NVSjJVEv0y1a0G7xwd3X24N2JxtMciLU7mgtleJHQauy1mZ2o4jkNWokJL0CLRJ5PkP7X+JgKBQHCqc6rdUBEIBDEIRS0GoiaVzUEUWeITi6fzD3/Yx+qfv8wvn6+mID2Of322ilsf2T1KgAI3/+mbv9/LXa/V8dsbl5Pk17hhVQGd/VGe3t/MdecWcM+Wel6qasO0pjYZFggEAoFA8O6ImidXXqef5PIfBD6fDwBd1ydcJhqNAuD3+z+QMY2ka8Cd13gUyEtROdRuoFvQ2meT6JOp7zDHCVAj6RywebkmyspCLyl+iRkpCnXtJvNzNA60Guw8oqOfonldAoFAcKoiRCiB4DQgpJt0hdwJXkl2ArppUdkcJC81wM8+uYDnK1t5YGvjpNt4cFsjbzd08fNPzmfN7Azy0+JoaB9gWUEqD25r5I7NtehChBIIBAKB4APBq56cg8Zzkst/EKSkpADHy/JiMfTc0LIfBvmpKv1Rm4gJSX6Ji4p9SBLsPjaxeDZEV8imqdfiohIftu2QnaTQ0GXSHLQ51mPhCA1KIBAITgpReyMQnAYEPCrpcQ5/f8Esrj+3gI7+KEl+jfv+thzdsrn7tbopbefeLQ38btNKJAmCIZ2bz5/Jr9+oY3qKjwMtfQTDoiRPIBAIBIIPAo8ikRqQx3XFi0VqQMZzipXiAcyZMweAxsZGDMOIGU5eW1s7atkPkvR4mY+U+fBrEv1RB01xQ8eP9JgoskR0apFc1LQZTEtyhaskv0TiYGbUkW6T/oiNN155fw9EIBAIziDetRPqwgsv5NFHH8UwJrayCgSCd0ecVyEjwUdhehz/8kQFHkXm6hX5VLf00RsyqGwOnngjuKV5XSG31XO8z4NPk9l0/kwevflcdn1v/Sk5wRUIBIIzETF/EsgSlOVM7cZPWY7KBM1uP1TOOeccPB4P0WiU7du3x1zm9ddfB2DlypUf5NBwHAcJid1HDV6sjuDXJGalq7T324QNh54p5nEB9IRtZBkqmw2CEZuKFgMHSPbLJPllbFs4yQUCgWCqvGsR6tVXX2Xjxo1MmzaNb33rWxw8ePC9GJdAIBjEtGws2+Fnz1Txjcf28Mz+FnwehWtW5PN8Rctwmd5Uae2N0B81eauugz/sOsqLla30hg2qmoL4PApRwxTZUAKBQPA+I+ZPAlmWmJGsMidjciFqTobqdsY7BVWohIQELrnkEgDuuuuucc8fPHiQl19+GYBPfepTH+jYHCSeqwpzrNeiJ+xg2lCa7WY5OQ5IJ3E6JUkCB6rbTXQLekI2T1dECHhkWvtMTNudr9m2qM0TCASCE/GuRairrroKr9dLR0cH//Ef/0FJSQnr1q3jd7/7nbi7JxC8BxiWzfOVrTy4zc18smyHFypbMW2b/U29pAYm7kgTi9Q4D8GwwQuVrVxcls3hzhBeTSYvLY7atn66QwZR0yZqTNGjfoZiWjYh3aSlN8yB5iBNPWH6IyZh3SQihDqBQPAuEfMnAYCqSCzN87B6pofUwOhpeWpAZvVMD0vzPKdcV7yRfO9730OSJO6//37uuusunMGQpObmZj73uc9h2zYf+9jHWLhw4Qc2JgcI6TZ9+nFRqL7TwKNItPfb9IRtshKmXkKXFS9jOQ627XCozWDxDA8byvwEIw5hA472WBi2hGE7mGd5UHnUtDFth/Z+i+Zek2DERjcdTMs+JcP1BQLBB8+7Dn+5//77+d///V/uv/9+fvWrX7Fv3z5eeeUVXn31VdLS0rjhhhv4/Oc/z6xZs96L8QoEZx2WA796vX7UY69Wt1FemEpNaz8+j0JZbuK4rnixKMtNJDPBS3tflM6BKAlelYL0OK67Z/uo9ctyE9m0poh1pVnIEmiKjKqcPX0MQrrJi5Wt3Pla3bjz8vnzCrmwNAtUG9O2UeWz69wIBIL3BjF/EgyhKhL5Ka7bSbccdNPBo0p4FAlZ4pR0QI1k2bJl/PKXv+RrX/samzZt4sc//jHp6elUVlYSjUYpLi7m7rvv/sDHpY+5l9bYbVGa5Qz//7J8L4k+iWDkxMLI3BwNCdc9VZqj0TFgsfuoQV/0+LoSOrlJCisKPTiA45yaYfLvF4Zl4yCxt8mgdtAxNkRqQOac6RppcTKmBeCIuZNAcBbznrz7k5OT+fKXv8yePXt46623uOGGGwgEAnR0dPCLX/yC4uJicXdPIPgrCYbHZz61BiN4VRnLdnhoWyPXn1swpW3duKqQuo4BkgMa/3z5PP71mQN847E94wSsiqYgtzyym589fQDbgW21HYTGzubOUEK6yU+fruKWR3aPOi9Jfo21xZksK0qjP2rS2hulL2IyEHXdUQKBQHCyiPmTYAhZllAViYBHJjmgEPDIqIp0ygtQQ3zlK1/hhRde4LLLLmNgYIDKykry8/P57ne/y44dO0hPT/9gB+S4bqiRRAzHPacS2A5Utxosz/eesCyvIFUhoEnYjsQFs3009Vi8XquPEqAGd8mxXosn94eJmg6S5BA1HKyzoETPtBwcR+L5qghVLaMFqBkpCquKPKTHK2iKhCSB7UgYwlEuEJy1vOcSdHl5Ob/+9a9pamri9ttvZ9GiRTiOwyuvvMLnPvc5pk2bxre//W0OHTr0Xu9aIDgj6Q2Pv/Coae3Hq7kOqAe2HmZ5YSobl+dNup2ry/NZWpDCT56qQlVkttV3Dpf4TcQD2w7z0oE2Fhek8vC2xjNeiDItmxcrW3lg6+jzUpAW4Mkvr+LiuZkokkRYt2jrjxIMm4QNm0Nt/QxMtcWOQCAQxEDMnwSnO+vWrePpp5+ms7OTSCRCdXU1P/nJT4iPj/+whwaAbkFHv01+qluGt6/JwLQcLpztJeAZr0TJEpRkqSzL8/BSTYSwYeNVJXYdnVwQjprwem0Ux5FQZDAsB9s5s4Uo3XLYcUQf1+nxvCIv5xV5CekOb9RG+d07IR7dFeLFmgiN3Ram7WCJUHeB4KzjffNBJiQk8IUvfIGdO3eyc+dO1qxZg+M4dHZ2Dt/du/jii3n++effryEIBGcEKYHx7Y4t2+GFihZuXlNEb9jgunu2s+n8In5x5QLKchNHLVuWm8h/fWYRt66fzXX3bGfH4W4k4N4tDVPa/52ba7Ed2Fiex+7G7jM6C0m3bO7YXDfqsSS/xkM3rcCjKtS09vO3v32bdb/czJV3vMW6X27mb3/7Ngda+hiIullRAoFA8G4Q8yeB4P2jrtNgfq6HwZxxNh+K0hWy+eg8P2tneSnOVJmdobJ4hsaV5wQoztR47kCEnrCDbcOB1qk5Eoc68NmOK2adyTqLbjooskR95+g50LI8DzNSFF6vjfJSTZRjvRaGBabtioFb6nSeqYhg2hKmZWEOlqI6Z7hgJxAI3kcRCiAcDnPvvffyxS9+cbg9q+M4pKSk4DgOL774Ipdddhkf+9jHCIVC7+dQBILTlkS/Nk5YAthc087a4kw2Ls+joTPEFbdtoa59gLuuXcpLXzuf339hJS997Xx+e8NyVs9O5xO3b6GhM8ScrHh6I+a4Er+JqGgK0tYX4c3aThbMSDmj7dOxSh9vWl2I36Pw3y8e5Ju/3xuzdPGbv9/L/7x0CNNyqGkN0twbZiBqopsWAoFAcLKI+ZNA8C6RQI1xldPUYxHQJM4t9A4LUe8cNfjD7hDHei2S/TLp8TKpARnddHimMjycGRXnlTnaM/Xv9cNdJrUdBv1RhzNZV1FkN5h95PRQU2Bmusrbh/VJz1l32OaFAxFAJmQ4yLIralm2EKMEgjOZ90WE2r17N1/84hfJycnhpptuYtu2bSiKwic/+UlefPFFOjo62LFjB9deey2yLPPEE0/w/e9///0YikBw2uNRZG5eUzTu8ZZghN6Qzq3rZ/PA37pC052v1bH65y/zpYd38bsdR6jr6GdAN/nk/3uTI91hAOK9KsEYJX6T0dmvc8fmWv716SrO5GiD7tDo86LIElevyOelA208tP3EpYvPVrTw53eaWPmzl/n0nW/xzP4WUaYnEAimjJg/CQTvDRLELLGLmG5geEacxCcX+rm42Mu8HA1VhkPtJsd6LeI8En5N5vkDkVHZRooM5klMgkwbLBueOxAhYp65ZWeW7WCM6Qg4P0fDchxqO048B+oK2bT0WexrMvjznjDVbSa2456/M72MUSA4W3nPRKiBgQHuvvtuli1bxpIlS7jzzjsJBoNMnz6dH/3oRzQ2NvLYY49x4YUXArB48WJ+85vf8Je//AXHcXjsscfeq6EIBGcUqiKzriSLq8qPZz4l+TXWlWSRGu8lpFukx3v5xw2l7P7+Rbz6jbXcvnExt6ybzTuNPVxxm+uAGiIr0RezxG8yUgIe+qMmD2xr5KUDbWdsSV6Sf/R5KcmOR5Ml7nmjfoI1RnPvlgauWpGPLLkOqVsf2c3PnjlASAhRAoFgAsT8SSB4f1BlifI8D0NSlF+TWDvbdUA1BW12HzWo77JICUh8YmGAzy4OsCBXo67D4qmKMAP6cQFEkVzxKs4z9UunOI9ExHQwLNjRqGPap0fI/MkiyxI+bfSxzUhRqGkzx4XDT8TBdpPCNJWQ4bD7mDHojuKMvvEpEJzNqO92Azt27OCuu+7ikUceYWBgAMdxkGWZSy65hL/7u79jw4YNyPLEH9gbNmwgIyODY8eOvduhCARnLIoM39lQSnlRGk/sPsY/XT6X7fVdfObOt0aVh5XlJnLDqkJWFqVxza+3Utcxvkzj8gU5JPjcEr+xpWWxKMtNxKvJVLf0AW5G1PrSzDOyte5Q6ePQeSnNSTzp0sWIblGcnUBVs3u+Hth6mPLCVC4py8KjKu/b2AUCwemFmD8JBO8/OckKn0zVONhuMDNdo7bD5PXaKOaIe2kH28Gj6CyZ4SElINPYbY4TP1YWejBsh5npKl2N+gn3q8iQn6rydIXrQj/aY4HjuoaU06Tj4VRxHMhNVPAoDDvHFFka1z1wMvoiNv4RQlbHgM3bh3UWz9CQ4bTpEikQCKbGu76KXL58Ob/+9a/p7+8nIyOD73znO9TW1vLUU09x+eWXTzqBGsLv94u6X4FgEhRZYnN1GwGPxH999hzufq1uwnyibzy2h9tfPcS9Nywf5+y5ujyf8+dk0NDRz/XnFkxp3zesKuChbY3DE7KKpiC9IYPwGRjCrUhww6rCUY+dbOlid0gn3jta379jcy2mJT7jBALBccT8SSB4f5Ek8KoSlc0GJVkeDraZ7DlmjBKghtAteKvB7e5WXuAZ9VxeisL0ZJVdR3SK0tVxrp9YzM5Q6Riw6B90UzlAZ8iiO2RhWA6mdbyEzbDcDCTDtDFM57RzmysyREyHOZnH55y27c6ppr4NCWvMZ1ldpzn4+Hs1UoFAcKrwnlgZ1qxZwyOPPMLRo0f5yU9+Qn5+/kmtv2XLFurq6k68oEBwlmLaDr998zBJPg8vVbXywLbJ84ke3NbI2w1dwyV8ZbmJ/OLKBdyybha2A//yRBXLC1PZuDxv0u1cVZ7HsoJUHhyzv2DEZHttF30Rg9ZghJBuEjUsBqImzT1hKpuCNPecfuHcmiKzriRz+LxUNfeR7P/rShdHUtEUJBg5OTFLIBCc+Yj5k0Dw/hLWHebmaJiWw77mE38P7zyiMz1ZJc4jkZukcMFsL+UFHkzbob7TorLFYP0cL75JaklmJCvMz/Wwc4xjynEgOaBg2g6W43CwzSBi2DiO23Xv7UaDHUd0jvXamLaDYZ4e6ossSQQ0ibIcjRnJruO7o99iRsrU3d+5SQpdA6PFN9uBI90mZ6DxXiA463nX5XhVVVUUFxe/q21Mmzbt3Q5DIDijGYha/OLTC0n0qfzz45VTWufeLQ08/PkVfHLxdLyazEPbGnn07SP852cWsb2hi+vu2c5vb1zOkvwU7tlSH6Osr4BlBalcd892ese4gRJ8Kim5iciShCpLBCMGFU1Bntvfwr5jvdS09mPZDmW5iXx+dREXzc0izvuuP27ed1RFxqfJfGX9bBbnJ/PbNxvwaPJJlS7G+1RkafCu3gg/f0/YIDvJ/34O/6zFtGx0yyYYNokYJgk+jYBXQZPlM7JsVHBmIOZPAsH7i+NAf9QmPODQG56aoGNYrvDxsfk+eiIO1W0m9Z1uXhHAviYDWYLL5/k51G5S3WYSNtxtZyXIFGdqZCbIvFwToTcyep/xXpmt9VHS4xVmpqvMzlSpajVoCdpISIQNm56ww8F2E58mcW6hh6wEBe1kLEUfEqoigeVwbpGXxi6TQ50mF87xEdAkQsbk514CSrM0QrrN+bO81HWYHO2xcMA9t87gQoL3HkMHJBzTAEUBByRZAkWFKbhxBYK/lnd9VTh2AlVRUcGOHTtoa2sDIDMzk6VLl1JWVvZudyUQnLX4NJmHtzfykfk5J5VP1Dmg8x8vVPPs/hZsB5YVpNAWjALQ0Bniitu2cM2KPB7dtJL2vgid/TopAc+waPWjJ6vGCVBluYnYjsOKn71MaU4iN68uYv3cLIozE0hcqrFpzUy8mszD24/wwNbDfOXR3VxVnsd3P1JKnOfUF6L8HhUHKM1O5FfXLsOxHTatKeKWR3afcN1Na4qIGBb/89nFo85Bb9ggya9hmBaayIV6TwnpJpur22jri3LR3GyQJI71hEkJeEj0q3gUGU0RYpTg1EPMnwSC9xfbcdhcG+WikgA17SfOcRqiOWghSxJv1LnzpenJCtIIEWTPMYOGLpPVRV5KszUkQJagN+JQ02bwVn0UY0xFXVaCjONAXadFXafF3iaDi0t8zM3ykJVgY9sQ75UwbahuMzjUbvJKTZQL53jJTlROixwpVZGQbIfCNIX8VBXLdlg908sL1ZFJA8aX5nnoi9jsPKKT4JMpy9FYnu/hzfoofk3CdsA5A7O03nds2/1xnNGCkqKAZeFYlqvt1R1EOnQQQgOgeSC/AGduGZKsgMcz0dYFgnfFe3ZF+OSTT/Ld736XioqKmM+XlZXx4x//mCuuuOK92qVAcFZgWjYvH2jj9YPtrJyZdlLrdvZHae+LDn/590fNUTlRvWGD216pBSQWTE/i7tfr6I+aVLf0TThhGJkRdaCljzteq6W1L8LlC3LZdN9OukI6ZbmJXH9uAY9/aRU/fLKCmtY+3q7rZFFeCqoi0xcx6A0ZJAc0En0aHvXUEgkCHpXi7AR0yyYctbiwJIurV+TxwNaJyyCvKs9j4YxkrrhtC71hY9Q5+PGTlUhIPL2vhfWniSvsVMG0bEzLxnIgOPi6SRp83SgyPLK9kYvLstnZ0M3n79sxztG3aU0R60qzMCwb/2kgggrOPsT8SSB47xly0Vj2oInmJCrbHAc0xe1uFzYcesM2aQEZWTrera037LClXmfdHC/PVkUI6c6E8yZZgoXTPFS3uTf1FBky42XqOwzKcjRq2gzqO93oguxEmYW5HhZN01BkCccBy3YFtbDuMKDbqIpESkAeHOepJcy4QpGEaTlISKQG4OISH1sbovSMcaMFNImF0zXSAjLPH4igW9DWb1PbYZKdILN6lg9Fgm2HdZbmebBtG009deaKpzSGwbBy2tMNHR3uCzE7FwIBHElCGuiH556BSHjEiiHYuxtp3x6c885HmpHnCliqmD8J3lvek1fUD3/4Q/7lX/5lOBxTVVXS0tyL5c7OTkzTZP/+/Xz84x/ne9/7Hj/4wQ/ei90KBGcFumVz5+Y6HBxSAyd3RyIt3kN+WoD+qElNaz81rf34PMq48rL7tx7m8S+tYnZmAg9tn1xoWVaQyn+/eJC/v2AWG8vziOgWXSEd23F44WtruGdLAw9sPcw3f7+Xq8vz+a/PnENt+wApAQ1NkfnjriP84vmDww6rIaFg/dwsAqeYSCABkgyWbfPtS0tYkpfKr96om1LpYkVTkG/+fi9Xlefx808t5IGtDfzyhYOuK2xDqRCipoCumxgOvFjVyl2vjT/vm9YU8Zlleexq7Ob7j1eMc+1VNAW55ZHdXL0in+9cVkJYN4UQJTilEPMngeD9QQL0wXjGAd0h2S/TMTC1wO/UgExmvMwlpT40RaKhy6Qv6pCXotDQdTznsjtkU9Xqlp29XBOhP0Y3OFWG1TO96JZDfafJkhket8NeyCIYcTjcbXHOdA9l2Q4VLa4Y1RqMcG6hB68qsaU+Sk6iQlmOhl+T2HVUp3PAQVNgVrrKoukeVBkk6dQQoyzLxrTBBgwT4n0SPWGTS0v99EVtmnotHAfS4mTS4xXqO02eq4qMc4619Nm8ejDC+mIfLUGTF6osLp7rx7BstFPopuUpiT7o+ms6Bju2Q9+YCor0DKRzz4P4BFi4CHbtcEWrkTgO0uuv4lx8GVJ6BliW66ASCN4j3vW7+Nlnn+UHP/gBjuOwZs0ann/+efr6+mhubqa5uZn+/n6ef/551q5di+M4/OhHP+K55557L8b+V/ODH/wASZIm/bnjjjs+1DEKBEMEwyaVzcFRAtJUKMtNJD3ey2eW5XHb5xaz+Ztr+cL5M/njzqPcvKZo1LK9YYPr7tnOpvOL+MWVC8btYyjY/OY1RXz3j/t44KZyCtIC3HzfDtb9cjNX3vEW5/38Fa69ZzsFaQEe/9IqCtICPLDtMM9VtPB8RQvn//urfPrOt0j0e3jxa+czf1oScFwo+OnTBwjpp0bHvbBu0h81aQlGqG0fIDwYun6wrY+7rl3KK984n2e/spo3vn0Bd16zhLr2Aa64bQsNnaFx23pwWyNbDraTHu9hWUEKuxq7ebGylcgpcqynKiHdxHTgZ89Ucesju2N2grzlkd387OkDzJuWxJNfdl9zsXhg62FeOtCG4zinVVC+4MxGzJ8EgvcPh+Pmp0MdJnMyp3YDQpZgZrrKs1UR/rgnzOP7woR0hyS/zNI8D2PvH1U0G1S3GnykzM+amV6mJSmkBmSyEmSW5Xn45KIAYcNhW0OUS0r9eFV4ujLMi9VRth/Weate5497wuw8ojM/18Pi6RoO8GaDTqJfJsEn09Bl8VRFhL3HDC4u8TM3S8WwoKrV5JnKcMxufyeDbTuDHfvs4c599kl23bRsB9N2RbXX63ReqYny9hEdw3Jo7rV59J0QVS0GST6JshyVpl6LP+wOsf2wPk6AArd8sTRLQ5Hgo/MCXFbmRzfdfCj93R7wmYw5OLc8XA+vvDhegALoaIenHodgL2TlwGWXT1h2J+18e/B/JLe0TyB4j3jXt4R/+ctfAnDllVfyyCOPjFPiPR4P69evZ926dXz2s5/lscce45e//CWXXHLJu931uyYzM5PZs2fHfC4nJ+cDHo1AEJvesHtHw7IdHtrWyPXnFvDN3+894Xo3rirk/71ay+2v1gIMl4etmpVOkl9jY3keD43oejeUEXVVeR53XbsU23YY0E00WR7OiPrvFw/y4E0ruGNzbUzH1Ej3z29vXM4Vt23h3i0N3HXtUu7YXEtFU5BbH9nN1eV5PPT5cjbevZV9x9wvyAe2Hqa8MJXL5mWfdGneUDC1btooskR/xKQ3YpDs10j0a3immAlkWjZR0+a5ihZ+/cbxsHaPKrPrexexuaadh7c38pX1c7hy6XS++dhentnfPKEFP8mvcfWKfJYVpuE4DrOzEkkNeIjzurlTwpkTG9OykYAXqlonLYEEeGDbYZYXphDnVYdfc2MdUQB3bq5lXUkmlu0QMUx8mjjvgg8XMX8SCD4Ymnoslud5mJGscKRn8hsRxZkqPRFnOFQ8bDjsazKo7zDZUObjsrl+XhkTOl7dZlLXYbJwmsZ5Mz1YNvRHHVr6LJ7cH2ZAd7ik1MexHpNdR2N36GsO2jxbGeaSUj99UTecvLrNoDhTo6PfzaaqaTfxeyTm5Wroliuu9YQdth/WWZ7vGVeaZzsOts1wdznTZpRryrAcJCAYtYn3yhztsWnrc89PerxMfqo6pZI/03LoCdu8VBNhTHNgmnstynI0oqbDzHSNtDiJlqDrIIuFLMG5hV7S4mQOtI7O18pNUijLVkmPVzAtxw1DF4zGcdyft7ZMvpxlwSsvwcc+CQerYfVaeOn58ct1drjler7BxjqODUjHM6a0k+sgLRAM8a5n4Tt27ECSJH75y19OagWVJIn/+I//4LHHHuPtt99+t7t9T7jsssv4zW9+82EPQyCYlCT/8bsTDwyWzW1cnnfCsrmlBSn88MnjnfSGBKKry/P4xiXF/OOGUsoLU0eVOfWGDTbXtFOSk8jFczMxe2y++NCu4Yyov79gFtvqOyfdN7jun3PykrmqPI/bX60lolsUZydQ1dznHse2Rpbkp/CbG5Zz4X9sHhYN7thcy7rSzFGC0cjOZ71hnST/8cBpVZEJ6SZv1XZQkp3Em7Ud/ObNhnFlW1843y33808iPIR0E8t2+NdnDvDgttHHp5s2e470cOv62RRnJVDd0kdbMMpT+5on3F5BWoDf3ric7fVd/O1v3x43ppvXFLG+NEsIUTHQLRscuGPz1FrP3/laHffduJxXqtuGX3NjOdodxrBsPIpMT8igNxIiyacR73PDU1VZRpHdPAuPCI8XfACI+ZNA8P6iyoD7dcLrtVEunOPDqY9ydAIhanaGSlmOxrOVkXHP9esOzx+IcNlcHx8p89M5YFPfZWJYDj5NYk6GWy4XNR1a+yzerD8ehJ6VIONVpQkFqCF0C96sj7JmlpdD7SYNnRbzc0Y7VCpbDEqzNJbkeTjSYxI1ob7TZHn+8eVsx82nquswOdBq0BN2xabMBJm52Ro5SW4XtLoOk7Q4mZ6wW/pmWG4JowN0DsjIQG6y+x1pD2obOA5IEh7V/cwybYeBwXMTy6C0s9HgigU+1szy8najTldIxphEB1xZ6MWjwpMVYawx22vqtWjqtZiTobI0TwRmT8iByqm5lgb6ob3N/ZumpkFyipsfNZLsHPB4IRqBygp3HUWFvDyYPgNCIVeIkgBVCFKCqfOur3x0XSc5OXlKbYKnT59OSkoKuj71DhUCwdlOol8dznAaKpv77Y3LWZyfzL1bxgsusfKJRvLAtkYW5SVzwZwMFs1I5nebVtIbNugNu86hBL+GhMN9bx5mXWnWsHCkyBIby/P4/G93TGncIx1Q3SGd+DEe9l+9Uc8FJZlcXZ7H/w2KBhVNQYJhczgbKqSbvFjVyp2bY+cBrSvN4jdvNvDRBbncufkQHQM6i/OSyU8L8GJVG35NYW1xJkvyU+nq1+mLhkjyayR4NfqjBpIECV4NSYJtdZ0EI+Y4AWqIQ219fGrJDH7yVBVNvWG+fWnJhMee5Ne478bySR1jtw5mFX3zkmI0yz6lgtk/dByH3oh5Up0gdcvmUFs/16ws4I7NtaPcaUOC4Oaa9pjZUtefW8C5M9Opau5laUEqpu2ccvlkgjMPMX8SCN4/JMCnSTBouOkYsHm5JsKaWV7m5TjUtJl0hdwueOnxMsWZ7gX0c1UR+vXY9uaesEN3yKFft8iMV1gy3YPluF3bTMvBsB1eOxTl/NleJI6XAxZnuuHjU6FzwCZqOOQmKbT0WWhj7okYFjR2myT5ZGala1S0GNgOHOuxKEhTB8vO4dmqMMERbi0HaO2zae2LkpMoc/4sH4leCU2BvBR1cF3XiRQ1XdHpQKvBO0fDGLYrtM1MV5mdrtE1YOHTZLebn+XwzlF9wpLA5ICE7Ug8UxmmL+owL0ejsTu2CpWZIJMRL/PE/vEC1Ehq2k0SfRKzM1WRDzUW24Ijk98oHkVDPSxZ5pbbnbcGNr9yvIRv2nQ473x4/VU4dnT0evW1rjtq9fmuKyot3c2VEs4owRR517PsoqIiqqur0XUdzwnaOEajUfr7+ykpmfjiTSAQjMajyNy8pohbH9kNjC+bi+gWA7pJZoIXWZa4780GfvRkVUwBaoh7tzRwSVk2v37pIH+7uogthzqoag7SOaAzKyOemZnx/Py5aj6yMHdYAJuTFU9Et05KGLBshyX5KaQEPPSP8WhXNAXpDulce24B/2+EaBCMGGQn+QjpJj99uipmOdZw4HR5Hl+9aA6WbfMPG0rpj5h09EdJDnj4908txLBsXqpqi9k17fpzC1hemMo//ekdrliYywWlWXz793tZVpBCxLDITwuQEvDQOaDzSnU7VyyaxnMVLTy0vZEfXFFGgm/ij8+rV+RPyTH2wFa3lOyi0iwhQo1AUSR6QlObsA/RGza4YVUhAY/Cf356EX/afYzWYITW3ugJBcGhEtKb1xTxf6/U8ndrZ+I4pgiPF7yviPmTQPD+4lEkpicpHOl1JxgdAzZ/2Rtm8QwP58zQ0GQPDiDhEDIc9jebDEwgQA1R02ayJE/DtKEvamM7sPtYlKI0la6QTWfIJmw4TEtWhh1XGfEyu45MXUA+2mORl6LQE7bdHKQx9EUcwKYoXaWixf2ujJoOlu3gAM8fGC1AjaU5aLPtcJTyfC8R0y2lC0Zs6jtNFk7zEIzYvFWvj2ooGDUddh0x2NdkcMFsH+39FnuOWaws9CJJUJyhkuh3RaQ4r4QEhAwHryLxdmOUvqiDX5OI98qkx8UeW3GmxoFWA8sGvyYR8EjYg+d5rMhV0WIyJ0sIHuORjudCTQXLhNAAvL0VFi2Bj3wU+vrcMrzCmfDic65bKhaRsFvCd/FlUHMASkqFECWYMu96hr1x40a++93vct9993HTTTdNuuz999+PYRhs3Ljx3e72PWHPnj1s3LiRlpYWEhISWLBgAZ/97GcpKyv7sIcmEAyjKjLrS7NGleD1hg0e3NaILElcf24+SX6NYMTAceCzy/NwkHhg6+FRQpQiS8zJiifeq9IfNemPmHzxglk4wCVl2cR5VX71eh3fv7yMG3/z9rgMqnivSlfo5O7C94UNbr9qCZZtU93SN+75zn4dT5JMaU4ituMQ71VJCWiEdZMXK6eSB9RIeVEaq2alcaC5j6TBDKg/7DrKp5ZM57aXD8V0No0UHn74sXm8c7gbHPjGJXPwKDJJAQ99EYOekEGSX+PfPqWhSvDEnmYUWeKiuVkokjSuy+DQeR5yjI095zWt/VhjAqTu3FzHupKskzqvZzoyrpvsZEj0a+xs6GJxfipLClKYk52AV5VJ8msc7Q5NWjoJx0tINUViy6EOygtT0BRRmid4/xDzJ4Hg/UWSYGWRl8Rmi5p2A0WCC+f4MCzY1qBzrMcaFKEgN1mhNEujNEvlpZooEcP9rs5OkMlKVFBlt9QubNgEIw47GnVKszSyE2WW53mJ80rsaHSbk1Q0GyzN89DRHyZigixLmBOFR8bAsiE/VUWRobXfIiNeJmo6w8KSLLtZVQGPxLwcDUV2ha6esEXUdB1bJ6Kh02LJDIcDrQa9YYckv8SqQi+9UWdUKeFYDAteqYnw0fl+shJkFAlKs1SS/ArBiE1li0F7vz187kqyNZbneTGMCIkBhYZOkxkpKvFeaVQ3QQnIS1E40m2yvthLWpxCf9RGllwxqqHLHB4ruMffOWCTlSC+o0fhOG7Xu7FldRORkgpeH5y31s2G2rfHfeOkZ7jbOmcJvLHZLbuLhW27HfjOvwAOHYKZs9zufCe4sSIQvGsR6utf/zpPP/00t9xyC5qmcd1118Vc7r777uOWW25h9erVfP3rX3+3u31P2L17N7t37x7+/fHHH+cnP/kJt956K7/4xS9QRCtKwSmCV5X51qXFrJiZxp2baxmImsN5Q9fdOz5v6IZzC3jm1tX87OkqWoIRygvT+Fx5HhHdoiukkxrwEO9TeXJvE39+p4lPLZnO2uJMVs1KxzDtYbfTyAyqd450kxo4uS8Vn6bw6PZGPluex5L8FABCugW45U5ZiT7CusWDN5XTFzFp74tiWg7WSeQB3bG5lsX5KfzTn/cR53W3+fnVhWyv75qwtG6IBwdFrKL0AF999B3+6fK5vFnbOSpXSpElLpuXzWeWzuC2jYv46VOVRHSLP75zLGZI/JyseHTD4oKSTO6+bunwOU+P9xDwqDyzr5n/efkQXQPuJK+iKUhfxBCumzEk+rWYIl8sLirNJMmnETLsmPlbN6wq5PEvreK6e7bH7GA4xFAJ6Rfu38GFJSsxLAdRlSd4vxDzJ8GZQktLCy+88AJvv/02b7/9Nrt37yYSiXD++efz6quvfqhjUySYl6uyYJqGYTnUdYwPB3dwy9naghbnzfRyeZmPjj6L1HhluPwtYjj4PRKl2V5s28Fx4I26KCVZKiVZGoosERk0oDR2WyT7TS4p9fNmfZSo4RDnlYlMsatbnFeiN2KRl6IS0h2W5skENGkwq8kiNaBwoFVHliAlIDOg2/SEbaYlK+w5FltAUmXwqq4YFh3MfTrabVGQqtIxYGNarovqnaMnvtlo2LC/2aAkU+PlmgirZ/l4qz5KY7eFBOSnKhRnaST7ZUK623nvvFk+QlGbQ+0mB02DZXkeXj0YHXZbaQpYDszP9bC/WeflmuiwQ96vSczOULmkxM/2w1EaulyHWX/EJi0gi4DykagKFJfA0SmU5MXFQXGpKzzt3zs6R6rxMOzeBfMWwGUfhWeemFiI6miHaNR1T82aDQMDrlKqigmUYGLe9avjZz/7GWvWrGHfvn3ceOON/PM//zNr164dzjg4duwYmzdvprGxkaSkJFavXs1Pf/rTmNv6/ve//26HMyVyc3P54Q9/yCWXXEJRUREJCQnU1NRw++23c8cdd/Bf//VfaJrGv/3bv026nTvvvJO77rprSvusqqp6L4YuOEtRFRm/JrN6djpLC1JI9Gr87JmqcSJLkl9jbXEmK2elY1g2t66fQ1ail5cPtHFzjJK0G1YV8m+fWsB192xn95EevnzhLFr7osPLjMyg2tHQRZxXnbIwUJabiN+jEDFtVFnil59eRHdIJyPeS7xPpSdkoCkSKQE//RED07LJTPTyXGUr58/JiFn2N9ZZ1BqMsrY4kySfyv9dtZiOfldgy0r0sbuxhyS/NmlZIrhd0+6+dinfu7xsVMnWUGe7jSPEu45+ne9+pIzesMHju4/xwE3l40LiZ2XGkxrvpSAtEPOc37ymiNe+uZaH3z7CbS8fGszjMkmPs1CF6wYASZJRJJsbVhXyjcf2TLqs61RbyM+eruKBMe8HRZawHYdH326kuSc8afc8cAXBiG5h2g59EYM/7jjG9asLRD6U4H3hbJ0/ibnTmccjjzzCV7/61Q97GDGRAEWSqGrRSYlTYoaDqzIsnuGhME2lJWjRFbJJi1d4oy5Ka99o4WjXEZ2iNJX1xT42H4pwoNUkPU4h4JHwKG64OMDeJoP+qMOqIi+K5DA7Q6Vz4MQCjyLBzHSVhi6TN+rCg6V3LtkJMvNyNWQZFk7zYts209VepMREjvWYRE3XPTSS3CSF4kyV7EQF3XJQZQnDcjOfFAnqOl2BzatKIMGKAg/vHDE41jt5F8G6DpMlMzwsyfOw84hOY7eFKsPa2V5UWaKixeBotzUsMiX7JeZma5Tlenj5YIT0OIXVM71sbYiiW7BomoeekM2L1eMDzsOGw94mg8ZuV9hL8BrsazZQZCE+jcMBcnJjh4yPZd3FrgC1d/foxzOz3B9FcQPJ62vd7nnPPT3xttrb3eUdB+LjYesWWHGuCCsXTIjkOM7U/aExkGV5uKvL0KbGdnmZ6PGxWNbkH3gfBP/2b//Gt7/9bVRV5eDBgxQUFEy47A9+8AP+5V/+5aS2v3jxYnbu3PkuRyk4W6lqDvJyVSszUgPcMpgRNcTIbmy/ebOBo91hnvjSeRNm4QwJOh8/ZxqXL8jl8v95g59/aj7F2Yms+bdXRi2b5Ne4qjyPz68p4rWa9uF8qsn4xZULuKA4k5cPtMXsWDeUyfTjJyu5dH4OK4vSuPv1Os6fnU5Wkp/L/vv1UfsfKwhlJXhJjfPwfGUrv36jfsLtn8j9AvDaty7gQHOQm+/fGfNcVjQFh8/X/GlJbJiXzaysBL79+7389BPzebuhi3u3uOf8mVtX83+vxC4DHOKq8jy+fnExA1GDa369nQduKicz3oNnku59ZxsR3SRs2Pz7c9WTZmvdefUSoqY16v0Q6/WSGvCQGu9h75Eebnlk94RC1J++eC4/fbqKH31sHtvrukiJ83DZvOwpZXbppoVhOYSiJgO6RZxHIeBVRVnfaciSJUvYtWvX+/qdfbbOn96vuZNt21RXVwNQXFyMLJ/4PSt4b7jnnnt4+OGHWbZsGcuWLeOdd97hRz/60YfmhBr7WgCJvqjD1obxopJHgYtLfHSFbN45apASkFlR4OGZyghhY/QlUsAjMSdDZXqKgk+VUGSJw50mTUGL8gIPe44a1LSPz+PJT5E5t8jHX/aGCRmTX3aVZKkUpqk8E6ND3xBLZnjIjJdp6DJZNF1D7T2GM9CFkT2fF2uidA7YyBKsnukl0SdT2WLQ0GVi2VCQqrA838Nb9TpHYnQJnJaksLLQwztHDWo7Js8W+sRCPwB/3BMG4MI5XiKGMy5PKiNeJi1ORpZcV1NRmsrzByKUZGsUpKo095rkJKn8cU9o0s55ANOSFc4r8vL24ShL89wAeE0F+QSfkWcNpgmODYYJzz0Fvb2xl5tTAkuWwiMPDrY9BAoKYcE5oMhw5AiYBsTFQ16+u8zrr44PKB+ifCUEg275niTBg7+Fj33SFcNOhGW52VSK6pbyaZobsC4r7raEs/a0Yqrzp3d9xbNmzZoTTo5OJ77+9a/z3//93zQ1NfH4449zyy23TLhsTk4OixcvntJ2q6qqCIfD79UwBWcpKQGNq1bks/HubaMej9WN7e8vmBUzHDvWBbrtOLzwtTW8VtNGWpxnnNupN2xw+6u1PLy9kSe/vHqc+2csV5XncWlZNv/5wkF+vaV+3PMjM5n+6fK5XHHbFj66IJd/2FBC2DAwR0xCRgpCQ86iJL/GE186j58+feCEYdMncr+A24XvhcrWmOcyya/x9xfMGido+FSF/9l4Dtf8ahtrizO569qleBSJNw91TqkM8Jy8ZOK9Kg/etAJVkTAdEBX0I5DAq8l8Zf3sCTtB3riqgPNmp3PlHW8NPx7r9TJynZvXFE1ampce7wUg0aeR4FO4Y3Mt60ozTyhCDURN6jv6SY/3MRA16QrpWAEPlgMd/REK0+NFyaVgFGfr/EnMnSbAtsE2wYyAHgGPD1QfyKpb2nIKc+ONN3LjjTcO/37s2LEPcTTjsR233GusAAWwqshLS5/NjkbXpXRetsauI/o4AWrxdI3ZmRr1nSZb63UihoNHlchPVSgv8KLIMDdH42C7yViZ6XC3Tfwxg3XFPl6sHi9uDTEjRWHhNA/PVk7+mt95ROfSUh8h3eHVg1HWzp4OSdORgenJCp0DNucVud9lT1WEh8vaknwSy/K9PH8gPGFu1LFei+cORLi0xEd3yKYrNHEJoSpLHGx351a5Sa4b7JWa4yV2hWkKZTkaqizR1GthO5DglVAViTWzvDx/IMKeozqrZ3qpbTdOKECBWzapmw7L8710hyyagzZlORqy0ClcVHUwHFyFyz8GtQfhQBX09rjPZ2ZBaRnkToPK/ccFqHkL3DK+N7dA85j373bNDR1fcwE8+xR0d43fb2bW8c+poW3u2+uKU5PlQ+m6O7Z9e9yufo7jCk/TZsC8+ZCa5opqwlF1xvGuZ8Qfdq33e42iKJSXl/OnP/2JgwcPTrrspk2b2LRp05S2O6QKCgTvhqSARk/IGFeqNrYb28hw7JFM5QLdsGy+dMEs/u7B8a/X7pDBVb/aykOfX0F5UWrMdvc3rCrg/DmZvH6wI6YANZIhMeaq8jxuf7WWpQUprC/NxJQdynITOdodjtnZbOh4H91xhNKchAmDv8dufyISfRr7m3rHncsTna+bVhfx2xvLufKON7n79Tpe/9aF3Pna1LKshvKH3q7vIjmgUZydgCpJeMb2Yz5LUWUZw7IJeFVKsxO557pl9EdNukM6KQEPcV6VYESnN3z8/RBLjB1JRVOQWx/ZPaE4WZabSLxP5b8+cw5JAY3Ofp2KpiDBsDlpSV5YN+mPmlQ19/GbN/fFdOVlJviQJERpn2CYs3X+JOZOMTB1aK2Burcg2HL88cRsKFoJWXNAFbcp3g16DFNPkk8iLU7m1UOu6JPgk0j2SzR2j1ZDlud7SA3I/HlviFGNfnWHrpDN3iaDNTO9pAZklud72HZ4fNldRYuBLMPHFvg50GpwsM2kX3eQgKxEmeJMjWlJCpsPRoiaDrIEk2WZV7UaFGdpPH8gwqF2k9SAhCTB7AyVtj6L5IDMk/vDo7ZRkqVR3WowEHUoTFPwaxK2Ax39Nh0Dx8WmvohDRYtBabbKlrrYJYRJPglZgs7B9YozVQ60HBfgFk3XyE9R2X44SnNwtJDl1yQW5GpcNtfPc1UR/B6ZnUfc72JNdjOxJEkipNtEY/zd6jpNshNkwqZDW59FabaKW3gpAFwRx8F1E82aA0WzBjvWOaAbbn5TMHi8692MPDcb6unHIZbobxiuoNTfD+svhj/9fnQHvuQUCMRBlnLc0QTQ1uqOZSJ03e2qt2P76Mcdx820OtoIixbD3HmuW0o4os4oxGw4BkOtks2TaXEpEHwAyA7jHD2xBKc5WfFEdGuUWHUyF+j/cFkJf7uqMKaI1NAZ4tZH3uGOa5awtCCViG4NCwNeTeaR7Y2cO8vmyb3NLCtImbAr3BBDYswdm2u5+/U6LpqbxV92H+X6cwto6AwNC0JD5XCJPpVrV+bz7L5mXvvWBaPcSV5N5uHtR0Z1Bhy5/VhDKMtNJN6rUt3ShyJLXFWex02/3TGl8/XVR3dzdXk+D960gjs2H8KwbKpb+6bUFW8of+jFqla+u6GU3rBBakDc6RlCVWRMy8a2bdLj3SB9JAdV8SJLEqZts6OhmzlZCcPrjBVjJ2IicfKGVQXc/VodwbDBdzaUsrWhE4BgxCA7yRdzWxHdJGLY/PeLB0/oyvvGxcWosiVK8wRnLGL+9Fdg6lD1IjTGKFsItsDuP0H+EihZL4SovxJZdp1QY5mTOehcGvx6Tg3ItPXbo+YKOYkyuUkKT1WEJ3TqWDZsPhTl4hIfOUkKF87xsr/ZoG2E88qrumY3RQZNkfjIPD+q7F6j94RtwrpD1HJYO9i9T1Ogrc+mus3gyIhspSGOdFusKvKiylDTZrChzM9rh6LMyVRZlu+lutXAdiA9TmZWhkqCVyY9XuZwl8knFgVo67PoizookitOGZZDRbMxHPp9qN3k4wsDeFU9phBUnKXRr9tutZTklsm9Xutmis5MV8lLUXm2Khxz3bDhsO2wzvxcjSvm+3Ech/m57iVpdqIbxg5u+WNL0OJAqzHKxRY1HfqiDjNSVA62Hf/7CQYZckNJ8vFOdZGI6zja/hZ0dcFFlx5fft5CeHtrbAFqJPV1UFDkilo1B9zHJAmWLIOqCtdZdenlkDA4L5vsD2NZbpD5WAFqLLt3uR38cqcJEeoMQ4hQMdi/fz8A06dP/5BHIhCMJmxYJPlGCxWxBKd4r0pXaPTdq5O5QF+cl8yX1s1i9Zw0fr/zGM/sbxkWUcpyE/ncsjx8qsL192zHtJ1hsaWlN8Kt62aT6FX52kVzJhWHhhgSY4qzE6hoCtIbNnhybzO/uHIhF5Rk8sUHdo0qh7NshziPSsCrxnQnXX9uwahyq5Hbr2ruG3e8n19dhG66NvF1xekAVDYHJyxnHMsD2w6zvDCFm9fMRJYltn93HbIs0TOg0zEw+fF3h3RagxHCukVqwINpO3gn3dvZhc+j4ugmjsed5Cb4NAIeh+/8cR9P72umODuB2z7nlvVM5P6biLHi5FXleSwrSOVHT1bRGzYoL0rjguIsXqxsJ9EXWxw0LRsHeOlA2xTfVylsmJ99UudAIDidEPOnk8S2XQdULAFqJId3Qmo+ZJee8qV5pyKO43aGS/JJ9I4I+k6Lk9l15PhcKZb7qDhTo6L5xKVituOGka8q9BDvlVgz04skQTDsgAQpfnm4y14wYvPorhCy5GZSXTDHh0eV2HFYp7HHwnHcseSluOVspVkarxyMDIeeD+3PFavcYzJth4hps6U2yqeXBGjvs9hQ5sOrSNS0uW7dtDgPugWP7wuPKwnMTXKzopL8JnuOGegW9IZtEn0y7f2jnUyZCTKz0lX6dJvpSQqFaSq2zXCg+PxcjTfrojEFqJHsazLIS1Go6zTxqxKzMjRa+yzeqI1i2m5gfFGayrmFXg53He9q6FEkwoZD1HTISlCQAMt2RFD5SDTNdSV19kBamtuxLj3DdTMB9PW5pW6hEMTHuaVwU+FAJSwrd0UoVYVzV7vi0FB3vRefg099Bvx+SEmZWIiyLNjzztT2uX+vG7Zu2+Lz7wxC/CXH8NRTT1FRUQHAxRdf/CGPRiAYjSxJxPvcDnVDxBKc+qMmqYHjd0yHLtDv3dIwpf3cs6UBTZZJDXj5xw2l7P7+Rbz2zbW88vXzufOaJRxq78d2bG5aXURVcx9vN3QT1i3+/PeriPdpfOauraz75WauvOMt1v1yM5vu30lBWoDHv7SKgrTAuP11h3TiB/NyhkSaHz5RgWU7/PuVC4Y7zX3i/71Jgk/lZ89U8c3f7x3XpW/IdXLXa3X89sblJPm1cdsfyVXleayZk4FPU/mbhbn89OMLaO+LnvT5uvO1OmRZYvXPX+bae7bzUlUbsizxzcf2THr8KQEP/VGTYMSIOT4B+D0qzb0RNvz365iWQ09I5+K5WdgO1LT24/MolOUmxhRjJ2NInNwwP4dfXLmAm9cUcd0924dff3dsruXSsmzmT0sk0R/7b2PaNpYD97wxednpEPdsqccSd2wFZyhi/vRXYJtQ9+bUlq19011ecNLIEti47p1Rj8uM+kwO6Q4JvuNChkeB7ESF+s6pnfeh3KP9TQZb6nQaOt2yOMNyeHxfiDfrdRq6TOblaCiSO64Li320Bi2eqYxwuNsavma3HWjoch/vCtlcOMfHSI1Fkly3lDF4ALbt3qxxJFcMWlfs42CbyZ/2hqlsMZiZrrG/2WBH4/i8q6GxP1MZpjBNpTBNGR7DyH3Kg5371s5yOwM2dFrkparEedzSPFlynWOm7dDWP3GW1EiqW02yE9yuhb/fHUI3HdYNHqtpQ027ydOVYXKSFObluH+/gjSVpl73XBWlq6iKhNCfYiHByy/Atq2gDna6u2C9KxodPOBmQKVnQHPT5K6lkTQ3ueV3y1fApz7rlvy99Lz7AgSIhF1Ba8lyN2cqVh6UYbg5Ty3NU9tne5vr6LKn9poSnB6cdSJURUUFmzZtYs+e0W2/bdvm4YcfZuPGjQBcfvnlLFu27MMYokAwIaoqY9kON6wqHH5srOAEoy/OIbZbajIqmoK0BiN8+497WfmvL/PZu7ayvaEbj6pw7a+3cfurtTT3RFhfmsXG5XnDpWt3bq7jG4/tmbI4NMSQGAOQ7Nfoj5qkx3sJeBTu3Fw3LDhdvSKfLbVTC/7ec6SH//nsOST5NdLij28fXMfUkPDwidu38LNn3G5oFc29xHvVv1rQGHJzfeOxPaOONdbxl+Um4tVkqlv6yEjwYtg2wYi4wIhFst9DXWeIO1+rY+/RXi4syWRjeR6W7fDQtkauP7cgphh7IgzL5vsfnUtd+wBX3LZlVFB5RVMQ3bT5xsXFeCYJJQ+Gx2e0TYSbLzVxQL5AcCoj5k/vA2YEgq1TWzbY4i4vOGmkwYycwjSVvJTjJT1h3SFxhOjU1mfjUyVSA+5nvl9zHTfmSVz79oTdHKPmoMXbjTp/2O12fFtV5AorHf02qgxrZnmZneGWng05fCbi7UYd03YFlyFmJCt09tuYtiv+eFSJgFd2c52Bd44aHBzs1Dc9WUG3HPY3T76fqAlb66Msz/dQmKaQEpApSHXFn6V5Hj650E9RuspLNRGO9drsazLYe0xHkSVa+23yUhTS4xWOxei6NxFHe0wy4o+LXm/W60RNh/m5x+eJURNeqYlSlqMxI9k9xq4Bm4BHwqNImJYzaX7WWYttQXIy1B1yRZy6WldA2vBR8HhdF1TuNNeVdDI4jluD+sSf4Y3Xxq9fdwhyciAtPfb6suyWB54M4dDk+VKC046zToQyDIO77rqLRYsWkZaWxuLFi1m+fDnp6els3LiRYDDI6tWruf/++z/soQoE45Bws3JWFqVxdXkeMF5wAkZdnENst9SJGOkeGhJWbn/1EPfe4IooCX73Tt43Ly3moZuWs72ha0olSW83dHHV4NiBUWJMWW4iCX6NJL/GdzaU8vKIMqchd9JUXSd3vlbHwhlJPH3LajITfdx1zVKevXU1r3/rAu68Zsko4eHBbY28WtPOkc4QPo/C/GlJ7+p8TXSsIx+7YVUBD21rpDQnkZSAh/vebCAYFiJULBL9rvvvga2HmTctiUffPsJ3Lyvhvz6ziB0NXSwvTGX17IxxYuyJ8Goy19+zndtfrY3ZPbE3bLBiZuqEnfFse3xG24kIRoQIJTg9EfOn9wH9JC/EDCFC/bXIkoMMrCjwcs50Db8mUddpMjvjuNjhADVtJgumuY/ZnPx1ryxJowQR02awvMwVVhJ97vdJVoLMwmkeKk4gDA1R2WJQknl8jlGapVHd5q6bn6rQF7EpSlNZPdNLxHA41HF8PlGcpVLdOrX5RUufK6Itnu7Bshz8msy0JJkkn8Q7R3VeOBAZDiMHqGgxkYCWXpOSLHdeeDKinTWYkzWS3cd0Zmeoo859yHA41mNxbqGX3Ud1itJVbMeha8AS4sREKCqUznNFo5dfgGnToemYK0itXedmN02fAUlJU9+m3+9OfnZuh4H+2MvourtvdQKHv+NM/NxEaCIP70zjrBOhCgoK+PGPf8xHPvIRkpOTOXToELt378bj8XDZZZdx//3388orr5CcnPxhD1UgGIemyEiOw4HmXm5dP4f/+swiSrITRglOQzyw9TDLC1PZuDwvplvqRIx0Jw0xJKJ89aLZ+FSFzQfb8SkyeWlxUxaH7t3SwFUr8oet00NijO3AjasK2Xm4m+9cVgLAnZuPd5r7a9xJnf06f9p1FBywHZuQYWHaNhKMa41+5+Za1pdl8/C2RtaXZr0n52vssQ49duN5hSwrSOXBbY1sOn8mumnxqzcaSJqg7Otsx6PIbDq/iN6wwXX3bGf93CxeO9jOtBQ/v75+GT5N4fpzC0iL94wSYyejLDcRTZE50DI+J2yIRL+Gd5KJku04JJ9kmHyyX4TPC05PxPzpfcATu+HBhGgnubxgGFWRcYDmXpNZGSp/s8DPnAyN1IBMZsLxy6GqFgOfKlFe4CEcdfCqEnGeqYkcqgypcTK94dEqjAPsOuoKK8VZKruPGvRFbQzLGZe3NBFNvRY+TSLeK7FkhkacV6IzZCNLsCDXg2lDRpx7LJUto4Wt9DiFY71Tv8l1pNviUIeJDfg90Npn0x22KcnS+NgCP7MzRn8vVrcZJPoVZAnS4mUSvFMXheK8EpEx5YE9YTd4PDdpdBB1XadJyHBo7bNYMOiU2nPMGC4FFIxBliEv33VDRSLwzJPQF3RFp76gmw8VjUJ6JsTHT22bs4tdR9Vk+PyTP2/b4PVCUvLU9pmQ4I5PBJOfUZx1VzzJycn84z/+44c9DIHgr0JV3Lb1K2amc8fmQ1x/biHnzU6nL2yQkeBl95Ge4VK1oQv23964nB0NXcR5XTfJ2FK5WIx0J43l3i0NPHhTOYc7ByjJTsSwHbpC+l9VurYkL5VLy7K5980GPn9eIReXZdEfNUn2a7QEI6O2mZXoYyBWj+VJ6A7pbD7YTk6yn9r2/uFOaJMFmG+r7+TKpdPfk/MVKxR9qMzrh09U8NEFOawryWTj3W8xPcVPwgQB2Gc7qiKzvjSLq1fk8cDWRq64bQtXledx1YoUWnsjOI6DKkGcV2XTmiJueWT3Cbc5UvyMRVluIoknEIxkWSLJp53U60T8jQWnK2L+9D6g+iAx2y21OxGJ2e7ygr8aVYZpySrt/RapcTJ9UZu+qMWFs328WB2hY8DN+XupJsKamV4un++nO2QxO9MVjk5EYZpKW59FKEbmUm/YoT/qEOeRmJerociu2HIyhA2H84o8xHvdkPPLSv3olkNfxOZYr8X8XM1tOjbCqTQ9WUFVwDyJiivLdnAc18G1stDL7mNu17tdGKTHyawo8JDsl3m70XWMt/XZzExXeak6wkUlPjLjFbYf1qfkiJqVocXM3OoJ2cSPEf+ipoMDXFLqoydsE9IdCtLUmDcWBYMoitux7tmnoKfb7Ta35x3IzgW/z3UszS2DhYthy2uTb8vrheJSNwNqMuYUx86CGkJVwTShbB68+caJj6FkrsiDOgM565xQAsHpjt+jIktw8+qZ7DnSQ9SwqW3vRzcdvrh2Fr+4csGwG6ShM8QVt22hL2qS4FO4eU3RlPYx2QV6RVOQkG7x46eqeHx3E7pp094XPaljCEYM/nFDKZ9fU8hXH93N9JQAt6yfzRfu38lPnqqiL2rS0X+8HK4gLcBPPz6f1Li/zp10z5b6UY6kyQLMAa67ZzsSsOk9OF+xQtFbgxFuWFXI362dRedAFN1y2LSmCE0Rk6iJCHhUvruhlP/93DlMT/Fz+6u1rP75y3zp4V3c9Xodu4700BUyuHAwp2wyhjrhTZYtduOqQk7053Czopwpv06+cP5MVHG7ViAQDCGrULRyasvOPNddXvBXI8sSHlUiM0FBkyWmJSsUpmm09FmsK/axZqaX7AQZWYI36qLUtBnEe2VKszRSApNfMgU8EgtytXEupJF0hWzqu0yeq4rgUaRxZWgnwqdKJPpkXq+Nsv2wwR92h2gJug6pQ+0m/VFnOKgcIDtBZmWhW54Xf7LuJNMNF7cdyE48PtCOAZvnqiJkJcgUD5YHOrhliBETnq2MYDtQknXiGy5+TWJmujqcXTUSKUanQo8CcR6ZrpBNZatJvE9mZrp4T0yKJLni0eV/A+svcTOg4uMhNOCW1i1Y6AaF5+TAoiUTb8frhYsudV1QXZ0TL5eYCFnZk3exk2X3p2gm5BVMPv7pM9wA9clELcFpiXjnCgSnIX6PimnZrJyZhu3A8sI0BnSTDf/zOleV53HXtUuJ6BaGbeNVZTRF5p436vnkkhlsXJ43aXbTyFb1E9HS6+ZSvHawncvmZZ906Vp2ko+j3WGuuG0LvWGDF6rauKo8j59+Yj4/eLyCtmB0eJtDoee3v3KIv7tg1l/lTrIdxjmSwC0vPCcvmavK87j91drhAPOGzhDfeGwP//u5c971+YpVpped5CPgUVj7769y97VL+cTi6ayfm4VHFVbjyQh4VC6bl8260kyCYberYKJPI8Gn0tAxwFcf3c36uVl845JiFucnc++WhlGvlbLcRDatKWJFURqfvvOtCfOcrirP48KSTLQTXCGoioxu2awb4dKaiKtX5HNhSSZeTfyNBQLBILIMWXMgbwk07px4ufwlkDlbtCd/jxi64aMqEobpZg1tqYtSlKayJM9Dkk/GdtyQ8d1HDWzbYf0cL2816ByNEbqdGS+zaqaXyhaD1r6JHRuO44ah90XdIO0Er0ycR2JAP7EjKtEnocgSId0e3oflwNYGnXMLPSzJ86DKEv1Rm7Q4mY4Bm2X5Xt6sj5KVIDMrQ2XnkRO7uTQFpier7Gx0G3Uc7THJiFNoCR4/LsOGtxp01szyUtNmkuyXGNDt4XPqOFCS5Yau103QWdCvSawr9lLRbMQ8/sx4Zdy6hWkqOA5v1ulMT1ZI9suuniFcUJMjSa77aNp0yMxyf3eGWh9K7u+HaqCkDPLzoWI/HDnsupXi4mH2HLcMz3GgeuJrAwIBuPiyqXXak2U30HzN+VCZDlWVbvj4EH6/67qaN991awnOOMRfVSA4TVEVeVRgclNvmN6wwe2v1nLH5lqKsxO4ZkUB6fEevvDATmwH/rDrGL+9cfmEF+g3rCpgWUHqqFb1sUga7GAHoCgSHlU5uZIkr8bN970+ah9DgtCaORn4NYU4r7vNtcWZbKvv5IFtjSQFPFx/bgHf/P3eE+5nrDspliMJ3PLCu69dyusH20kOeIZL6vqjJnUdA3z1ojksL0zl7tfrTvp8xSrTK8tNxKcp3LW5ju6QQXaSj6tz8/B7xMfxVBh63Qc8KtlJx0tTirMTuPeGZfRFTDRFIsGrDoux3SGdlIAHrybzzL5moqbFretm86s36mP+TdfMzsCnyRMGko8k4FHRdZPvXFbK8oJU7nxt/Otk05oi1pVmERfj9ScQCM5yVA+Uroe0fKh9c3RpXmK264DKnO0uJ3jvkdxgbMOC6jaT6jaTnESZ8gIvL9VEMAY1p6gVZckMD0vzPNR3mkQMB02RKExTUGSJd47oNHRNXvOWHi/T1Osu0x2yGdAd5mSqvDOFUr/iTA1Zgu2HxzdN2XXU4GPz/fSE3czLudka3WEbSYJjPRa9YZsNc/1UNBucqAlvaZZGU681vFys4HBwS/50081tmputUdPmruA6mBxeqI5wWamfonSFqlaT5l4L24F4r8ScDJWZGRoHWo2YHfuyEmSQ3DK/IbwqFKSq7G3ScYDsRAXHcbBsCVnc25kakhTbURSfAPMWuiVv8Qmw6BxYvsL9w0ei0FAHLzzjLnPFx2H/Pjh4AMJhd32v1xWp5i1wy/+0KcQODAnqtu2W282dB91dEAmD1wepaYMB5iLC4ExFzIgFgjMAw7SGS8rAtTBXNffx82cP8PiXVvHZZa6bZ6g8b6RbqjukMy3Fj4TEfW818KMnqyYVoEYKK5LkClAvVrZMWRzadP5MHtl+mO7Q+H3cu6WBu65d6rqHNYWbzitkeVEan//tDsANW3/8S6vYWJ7HQ5OUUsVyJ8VyJAHDgsGP/mYeMvCV9XP475cO0h81ifOoGLZNT0gfPl8DujlcFvjQtsZJz1esMr2bzivEth0e2NZIWa7bGe9od5jZWQknPHeCiRkpTgGsnpPBS1VtPFfRQmswQn/UpLqlj9KcRDITfayZk8HKmWlETZuwbqGpMnEelc7+KPE+9aREQY9HRbZsLp6bxbrSLIIRg96wQZJfI9GnocqScEAJBIKJUT2QXeqKTWbE7YKn+dwMKFk95R1QR44c4Zxzzhn+PTLYfn3Lli2kpx9v0/6tb32Lb33rWx/4+GJh2Q6WDe39FrmJCgdGdI9rDto09Vqsm+PjlYMRoqb72JMVEdLjZWYkK6QEZKYnKwQjNs8fOHHXwtSATECThkWo6jaT2ekqmRkazUFrlNNoLNOSFGZnqLzVEKUtRpB5xHA41muhKQ6ZCa4DaX6ORu1gh7z+qMOBVoOLSny8cCAyoRA1M11lTqbKM5XHjyfeK9EVij22oz0WC6epJHhlFk3TCBk2zb02quKGuUdMh/pON0T8glleJAl0E2o7TZ6tCtMXGe+YUWVYMsND1YiyRlWGdXN8dIdt9jebKBLMzFBxbPc5wXvAyCYsQy6l3iD090FKKly8AY4egTdfh5xc+PiVYJnuBYfX64pJ6kl+Vg2V5dm2u7+0wc8KxxEh5GcBQoQSCE5zBqImL1W1srwwbZwbaWQ4+Uj305BbasP8HD61ZBp+LZ4XK1uHg7snY5Sw4jg8tK2RspwEyqYlnbB07eryPM6dmca6/9gc8/mhIO/ukE5LMEJ5URqGZQ8HlPeGDW78zdv85e/PY0VhbNdJLHfSZEHrAH0Rg+mpARo6Q1y5ZDrXrMznid3HSPCrDERNfvBEJT98spLi7ASyEn389OPz+b+XD/HgSZbpXV2ez0Vzs/jc3VvpDRv88G/KeLuhi5LsqXV0E0yd4dK9kky6QjrtfVESfRpeTeahbY08tK2Rq1fks64kk56wjkdRCHgV0uM9U3JAjWWkMzHOq5KTdILuMAKBQDASWQbZ4wpSvtPrO8GyLDo7x+fEmKY56vFQKDRumQ8Dy3bojdi8cCCCacOnFgXGlcVtP6xzznSNjy0IUN9pUtfhup+G8pFnpKg095rkJqlkxMuTdrmTJFdYOdBmMrSHhk6TZXkeKlt0Vs/0UdlscLDdQB9hpvKqrgOqLEejps2gvnNip1XXgE1+qsKhdoOadpNLS32jytn2NhkUpCn8zYIANW0GB9tM+nUHWYLcJIXiTJVEn8wLByLD50GT3eN852h4gvPolhR2hWxUGc6f5cOwHAYiNsWZGsd6LGo7zGExLDtRZs1MH+19VkwBKt4rcV6Rl+6QzcF2E0mCvGSFc2Z4cByHv+xzxbEleR5CUZs4rywCyd8PhgSg+Hg3/6n2ELQ2ux32kpIhZ5r7eeUJvDf7GxKjBGcVQoQSCE5jQlGTnzxVxUPbG/n7C2bFdCPFcj9FDIsEv2vtfmhbI9/7cwUP3FTOVeV5k4Y1xxJWHth6mDe+fQF3ba5j0/lFE5b63XReIevnZrHx7m0xnUMeVWZ9qZvDMzMznh88XkFhehxfvGDWuOXa+yIk+T08eFM5nf36qHKrWO6kE3VCS/RpfPv3e3jpQPvweDetKSLBq9IedEPXh9xlVc19bLx7K7+9cTnnTHCsf3teIUvyU4aFsCFxbF1JFn/YdZR9x4JcXZ7HupIsbnnkHW7beE7McQneHUPCkEeVSY/30B+x6ArpXLuygC9dOAvPkHtKlMkJBALBX01BQQHOVHJgThFMG56vigwLPtWtBisLvbxcExk1T3jnqEF1q8nsTJUVBR78HhkJh7pOa9jJk5vkhpq/fijKsd7xIpFXhVVFXkzboXJE6ZnluA6mkiwPNW0GKQGZjy8M0NpnoZsOXlUiK0HBsByOdJvsiJHnNC1JZtF0D3EeaViMOdxlMhB1aA5aaGMaYdg27Dyis3SGh9kZGh4VcKAzZFPdatLQFR11/MVZrksrHKPbH0CSX0K34JWDbtmiR3HdVIume0jwOaPcZQAtQZtXDkZYnu/hnBkeajvcsaoyTE9RyE5UsCwH25G5qMRHkk8iGHGoaTMozdLwKLBouoeZ6SotfRaJ4l7P+4eiuD8FhVBY5LqeJNlVVIVoJHgPEDNvgeA0RTctnq9sHXYeDZeqxXAjjcyK+ur6OVy5dDpffvgddh7uHp5w/PjJSv7zM4s4J+/k8qKmp/gZiJp8aul09hzpoT9qjir1S4v3kBzwYNsO1/xqG6Zts6wghf6oSU1rP7lJPn788fksyU8hGHbLmDRF4o5rlvBiZSs+bfQXXbxXpWNA55ZH3uHxL63iqX3NvH6wfbjcaqzQdKLg8LLcRDRF5vsfLWPHYTcovaIpyC2P7OYbF83hk0unj1tnorLGlICHrEQflmPT1a/ziysXjhLHHtuxk//57DnEeVUuLcvhJ09V8PFzpg12WRO8XwyJUT5NJT3B+2EPRyAQfIgMiSXO4H8k6Xh3L8GZj2k7VLaMdhztOWawZpbMujk+th+O0jvCpRMy3FI2TZGYliTx3IEIkRGijGk76KbDsnwPSx2objPoHxRWpiUrTE9Wqe0w2XlEZ+T0JD3OzT16pirMsjwPWQkK9R0msuwGpyf7JSzHHeuRbotF0zQSfe5cYUC3mZGi4Ndk6jpMdnWbGDYENIlZGSplOR4OdxnMSFGoGdF5znagJ2RT0WyQn6bw5P4ooQkEpqI0lZIslWcrY5caarIbYH6k22TtLB8vVLuiXlWrSXPQYsNcP0n+8XOb9n6bpyoipMfJFKSpJPlkLNuhNWiRFpB5qiJCgk9Cktwywv6oO77CNJVPLgrQNWDTH7HJSVDEe/aDYKhMT5THCd5jhAh1mhI1LEzbIRg26A4ZpAQ0Ev0ie+RswrAc7nqtbvj3iUrvhhgpJH32rq00dI62xW+Yn8M9W+qJGDb3/e1ywrpFS29kUocRuC6j+946zIPbGrmqPI8vrp1Fe3+EiGGRk+QjNc7Dn3cfo6NP5/+uXkJEd90oqQEPiX43e+eFylY+c+db48Z7/bkFZMT7uKg0kxeq2gA3MDw14Bl1vLnJPu7d0jBKgJpq0PoNqwq4Z0s9RRlxw13yhvjPlw5y9cr8mKHrY0Pg470qWYk+/uGyEtb++yvMznIfGyuOOTikBDTCuomqKKwrzfyryr8EAoFAcHI4jkPUdIiYrngAIAFeVcKvDd7kFxe2ZzQScLBt9HzAAV47FGVejsZFJT56Iw5tfRa2DckBmdwkhSPdbo7RyGhJRYLl+R5aei3ebNCZl6MxL0ejK2Rj2tDRb7GjMUSMOErm57oldn0Rh5dronx0ng/LcTAtCd20yU5Q6Ys6ZCUqzM/1UNdp0thtIgHL8j10Dtg8tT+EMaYKsLHbItkvccEcHx4FErwSfYNCTlfIJjtRYV+zARJcPs8/XL7XH3VL83KSFEoyVRL9Mi9UR+ifoHNfSbZGc6/FW/U6l8/zk5UgD3ft6wk7bD8cZXm+F69KzOPvGLDpGDgesn7OdI36LouQ4cQUxpqDFgleCZ8K8V4ZRRHv07Me2wbDOC6UWSZ4xI3G0wUhQp2GDERNnq9s5VcxunXdtLqIi+eKLkxnA8GwMZyVNMQ4h45hYZg2fo/bvWUiIemq8jzWz83i5QNt3PVaHQ9vb+SpW1az63A3f9p9LKbDaGi9IZfRkChzYUkmj7zdyOHOEIk+lds2LubSshxerGrl5vt2DL9mZ6T4eebWNfzr01XsbOwm3qtSmpNATWs/lu1Q0RTkm7/fy+4jPfz8UwvZ/otX6Q0b1LT24/Mc78YX05EU5yErwcuWQx1ccduWCQWokeOfnuLnrmuXcsfm2uFjtWyHv+w+xs1rirj1kd0xtzFUpgfwiysX8NC2Rkz7+GNj6QkbLC9Mo70vwnc2lAwHaQvOTqKGNZhPYtATGgwz92uoEiiyhKa6NxVMy0a3bIJhk96wTpLfFXE9ytS6+AkEZzuO49AXddCt0V9mDhAxXXEqwSujKo4Qos5wYgVzO8C+ZoOKFoMZyQp5qQrTkhRqO0z+tCc6yjkF4NckzpvppT/qkJWksG6Ol+o21wXk1yTerItixoiJknCFK68qUT2iXE2RJWraTAZ0h4tLfBztsZiRqtISNHi9Noo1uK3VMz0EIw61HSYXzPGRFie7TcwMh/pOt7tfT9jhhQMRLi/zc+EcL09XRDBsqGkzWTvbS0Wzwb4mg4Yuk+JMjcvm+vEOlub16w6aDM9WRYbFq7HMSlcpHgwwd3DdX8VZGq190eFl6jotFs9wKM3S2H1s8u5/XhVmZWg8VxU7ewrc/KkB3SFOCFAC23Z/mo5B5X4IDUBcPCSnQH4BpGeAM/iGUVRXnAqHobXFfaOnZ0BCgltS6AzaYYdwnNEh7YL3DXGWTzNGZgCNpaIpyFcf3c1V5Xl8d0OpEKLOcGJ1l4PxDp1ZGfF8Z0Mpbzd0sbmmfZQgM9IttPHubayenT4s5nT2R9lYnkd2km/KAeDgdqGraArS1BPhqS+fR3/U4r9frOGBMVlT//rJBdR39vN3F8wa5Y7yajIPbz/CA1sP0xs2eHBbI+VFafz8k/P5wgO7sGw3DH0o/yqWI6k/ajItxcd/fvocvnd56ZTKC3vDBhHdojg7YZSA9MsXDvLGty84Yej6icr+hkj0aVS39DEvNxGfEKDOaoaaCtz5Wh0HWvqYkxU/7Ki7eG4Wa4sz6YuYeDVleLmh13GSX+NrF83mY4umYVg2A7pFwKPg0xRM20FTZBQJNCFSCQTYjkNYHy9AjcQB+qI2KX63TEpwZnIifdF24HC3xeFui9wkhfOKvGQnqtS0GYR0B1WBGckqOUkKNW0Gu48ayBLkp6rMz9VIDcjYDnxyUYCqFoO6TpOw4eBRJPJTFeZkaoR0h5dqIgy9HJP9EqoMwajDwlyNvqiDV5OobjV45+jouV5ukopuOszJ1KhuM2jqsTAd1/E0K0Nlw1w/Va2uyHSw3WB2hisy7Tyi09TrBoIvnK6x+6jrwtrRqLOjUUeC4XLBtTM9XD7PT22HycE2k2DERpYhJ1GhOEsjziPx/IgA88NdJoune8adx2M9FnMyVQZ0h4PtsVvyeVW3893BdoNgjLDyIVIDMsGIQ4Jv8r+f4AzHtsE04YVnQNVgbhlkZUMw6L65ExKhox1S06Av6IpKW990HxuioBAWLXaFKz0KSOD1QCgMfr+7rcBg6LoQpN43xJk9jYgaFs+NyACaiAe3NbKsIJXL5mWL0rwzmJSANunzI4O0XzvYwYtfXcO5M9MwLYem3jA5SX40RebeLfXDTqZ9x3pHiTmXzM3iqhX5lBem0R81TxgAPrIL3d+tnUVXSKe6pW+cADU7K55FM5J5Zn8L927ZF7MM7/EvreK6e7bT0Bnizs21/G7TSn5x5QLu3dIQM/9qpCMJ3Oyow50h6toHxuU2TTT+7pBO/Bjxtjds0NAxwJcunDVhmeONqwpZWpAyadnf0LLxXpXHdhyh5KNlk/79BGc2oajJz56u4om9zVy9In/4NTpSjN1xuIsVhak8sPUwf9p9jJrWfgAK0gLc/7fL6Q4ZhA2bgag5vJ4D9EdM0uI87GjsYmFeKj5Vxi8ET8FZjITrdjoRDhA2HfyaKMs7UzFtRpWOTUZz0MJ2HA606izI9RAx3e54CT6Jl6rDdAy4rynLgbpOk7pOE58KF8z2keyXmZ6sMCdTxaNKmBa0BC22NkRpG7Pv4iyNmja31G52hsobdVHOm+nj1YPRUcuVZqrIElS2GFS3jRZ1ghGHXUcMqlpM1hW7JUkHWk132+0GC6dpLC/w0DVgMztDw6tI7D6mD5fKDb074j0SyQGZQ4Od+tbO9hLwSFiO24Gvus3NqBrpjtctUGNcboQN17FVlqORn6pS3WZwrMddN84jMSdTZVaGxsF2V8ybCJ8mkZ2osPeYjld1/19wlmJZ8PILMD0PimbBvt3w2quuMAWu+FRYBCkprjPKtmHeAjhQ6TqhVq+F7GxAgt4e90dW3MdU1RWy9Ah4PO7yudNAm/x6S/DXIWalpxGm7XD3iAygybj79Tounpv1Po9I8GGS6NdiZhXFYnqKn6hl8+WHdvLQ51fyny/W0Nkf5V8/uZA5WQlMT/EPiye2406+r1mRz8qZ6Ty24yh+j8I9W+pjZhyNZKgLnSRJbCzPQ5Ek/uEP+0Ytk+TXeOimcn72dNU4cQoYLsO7qjyP3964nCtu20JFU5Bg2KAvcjz0PBg2+M6GElYUpcZ0av392pmkxXliuqQmGn9KwEN/jPCCeJ/KrY+8w7KC1HGCVnJA42h3aNKyv5HnJ2pY7D3WSzBsjBO8BGcHUcPihcpW3jjUweNfWsX2+q5RpaqKLHHZvGw+u2wGACtmprGuNAuvJvPnd47x6aUz3BKIli6+88fxIu7Nq4tYV5rF8qJ0alr6mJkRT8Qw8Wni9SY4+3AcG92EE0tQLlHTIaAJAepMRZOhLGd06dhEzEhW6Is61HZYLJ3hhmX/YXeYNbM8rC/20zFgU9thEDYcNEWiKE1lWpJCW7/FcwfCrCv2s6UuSlOMrnlD5KcozEhWeHJ/mNwkhd6IQ06iQm27MW6eMjPDFXLGClAjCRsOL1VH+eg8P/WdJo4DwYjN05URUgMySX6J5qDFtCSFjy0IcKzHojtsIwGZCTKZ8QpRw0aVJd5u1NlzglI6AL8qoccYUsAj0d5v8/i+MPmpCmXZGufP9IIEugmyBK/XRjjWO7kguCBXI2K45bS9YVuIUGcrlgW9va7QNCMfnvwLRCOueFQy1/1RFbf0LhyBOAVaW6GjDVauAq/PLdPr6IB3dkJX5/FtSxLMyIPlKyEhyXVQTZ8Buu4+JxxR7znijJ5GxMoAmoiKpiC9EUO0Hj+D0RSJz68u4iuP7j7hskPi0A2ripCA82al89Xf7cGwbXpC+nFhJ2KQHPDg12Tuf+sw3/tLBQCPf2kV7zT2TLkcbU5WPBJuudHY1+xN5xXyVm1nTAFqJA9ua+ScvOThsPDeiEFVc5AfPVk5LCgBlBemcs/1yzAtm56QgU9TiPOqxPsU+sLmsFA3UUbTECNdXGMfz0jwUV6Yxv1bD48TtFp6I/z571dx+YIcHpzkmK4qz2NlUTq6bVPd0kdfxABEf+GzEdN2eHBbI/fdWM4dm2uH31dJfo2rV+SzsTyPiG7REzboHDAoSo/nN2/W81ZtBz//5ALivSp/3n2MHzxRiT4mdKSiKcitj+7m6vI8/uGyUryqjAMEIyaW7X5ueGLdshYIzmBi3XR4L5YVnH5IkkR2gkJ+qsLhronFIb8msTTPw/bDOuUFbqmZKsOKAg8Z8QrPHwiT5JfJSxlyOjm09Fm8VX88P+rVgxHWzvZR02ZQ3WqMyqLyaxIlWSoz01VerokSMV3Rpi9qk+SXOTSmfM2rMhwWfiJcB5JBcaY7T8pPUWnq1ekK2XQN9qTpi9gYlkOSXyYloBAxHA53WaQGZOo6TYqzPGxv1IezqCajKN3tkjcSVYYZKSopAZtgxKG+06K+0z0xQ6V/RekqKwq8vFQToScc+423cJpGbpKCqkhuTlay+P46azFNqK6CpcvgiUEByueHiy6BgQF46w3XvTREcjLMnQ8LF7u/D7lbk1Ncwamn23VKgSs6NR5217/8Y243QMuC9lZISwfb4z4mugS+ZwiF4jRiogygiegJGeQkiYvcMxWPqnDR3KwpZxVVN/exrjQLVZFZPzeLr6ybTThq8YMnKvnhCGEnllNoqAvdRK6jkflK01P8fPOSOeimTVdIHzUWRZbYuCKPa361fUrHeO+WhuGw8IBH5aK52fxux1GqmvuGL9g/V55Hf8SkJ2yQGucKaG19YTxKgD1He4ezo07EkFA39gJk05oiXqpsJT8tMFwiOFbQuu6e7Tzx5fMoL5z8/Ow71sPeo73Yjis4CM5OghGDZYWpbKvvHH7vFqQF+O2Ny8e5osB9DW1aU8QNq5YR0k0aOgdYW5zJroXT2NnYzT/9aR9HukcHuj6wrZFz8lKYlRmHabl3uf/l8QpWzUpnvWheITjLOJnKOuGBOvNRFYlVhV7iPQY1bca4DnM5iQorCj3UdZjMTFfJTVLQFAmQyE91XyFdIYeu0HFhJRbt/TbPVoZZN8fHvByNjgGbqOng1ySS/TJHe0xeqokQNaE4U2VejkZrn7u9sZLM/BwPzb1WzE5zsTjYbnJJiQ/TdshLVXnnqE7EdN1OKwu8WI7DoXaT+i4LVYJpyQqLZ3gwbYc5WR5Cus2sdHVS1xWAIsOcTHVc6eDMdJWI4fDOUYPzijzsOKIPn6uhY6vrMEnxS2wo83O0x+Jgm0lf1EaRIDfJzZ8KGw5dAzb9URvHgVwhQp3FOJCYCC0t0N/nCkLrL4ajR+GdHeMX7+mBN1+HY0fgvPPdkrz9+yArC8rmw9x58MKzo/OiolF49UVYd4n7/5nZ0N7mClI5ua5oJcvuv8Ih9a4QZ+404kQZQGNJPsnlBacfcV6Vf/xIKeVFqdw1gfixsiid6pYgX714znAnNlWRuWl1IbXtA8D4PKWxDHXde/LL5/HYppX0RgxaeiOkxXtJjfMQjpoc7Qnz6+uW4dVkXqhsZWZGAqmB0UGVJdkJ6IZ9Uo6+iG6xYX4OqiwxJyueq8vzeONQx6QX7DevKSItzsfC6Yn4NPWvDhW/qjyPC0v/P3vvHR7Vfabv32e6Rr0XQBWEhCimSYAoxhQb9zh2iiFusU12443tbJJNst/sb3ez2SSb3Wx243XcgmPHJY5LEnebYqpBFNMRTUgIUEVdmj5zfn+8GtWRNLJxDOZzX5cu0MyZ02YknXnmeZ43lQU/30CLw9svItg3ehdpNREI6MRGmIfsnzpa28HX5mbxD68epCgjhhib+vm8XGl1eLm9JJP7npGLptgI8yBXVF8O17TzrT+Iu+kfVhTwD68e4OC59p6JqG8/uIBv/H4POyqbe8rNAbrcXvJSomnqdOP0+HlgyQQMGmw9cZ75E5Jo6XJhMprUlD3F5xsdLEYNDT2sSJ7VpKGjxKjPOyajxpQMM1PHmDnT4qPTLZG6cfFGNMDj05mUbkZDPkALoqODHv6ro8Ot0+wM4PRCYqQBv66xu9pDrM1AZoKJ5QUm/AGdxs4AB2s8TEq3cK7VT7zdwNnWXoErI87AmZahBa+BdHaXmx+q8aIDV+XbOFTjpSTHyoen3JwbEBE83eJnd7WH0lwrkRaNCLPGjHEW2lwB6tpD26EMGizMs1Lf4afZ0btMWoyB6eMslNd6Odvq5/1jLpYXRNDicA5yPCVGGmnu9FPf7mfaGDMR5t7+qQ9PuclONJEUaeDDSi8ZsUaMqqvt8kUHklNETALIzpW4XCgBqi+nq2QiXt4EmaR35LDclpUNy1fAlo0QEys9UD6fxP0sZjh9DmpqIOCH2DhITpZ+qE6HuK7SMyQCaDQqMepjoM7YJcRoOoDUm9zLh0iriRWT01hWmEqby0u700uMzUyUTS5sLEYDC/OTB73BdHn9JEZZhljrYNqcXnyBAJoGCXYzFQ2d/PBPBzlR38GE1P4uKk3TWF6URqTV1O81W5geTesIvUkDaXF4uHXmGJ7bcZq3D9byxt/N5+/9Or9479iQb9gf/INMifzm4vEYNPjhtYVDurjuW5DL7OwEVj61o0dYCgp4SwpSee9QbY8LcWBEMMi983OwmAx0un184/e78QX0nvNhMmjcOa//JL5/u3kyFpN6w3+5khRlod3ZG1VdNSernytqKJ4rq2ZmVjy/u7uYq/5rU89E1Hvn5/DkHbNoc3lxuCVWmxZjI8Ji5LU9Z/ivtSf6vbbvmpeNxxcgMcpKs8PLy7vPkBJjZVF+So9QrVB8XtAMBvSATCdzDzMdL0iEWVOl5JcJFpM8z5nx8ntP0ySVYzRApDX032hTtyBlNoI3TE0oxqYRaTFgMmrofh0DGh+d9fJRiDLuCSk6ba4AU9LNPQISQJTFgNEQRjauG2P3sZxo9NHl0Ym0aMzPs7LumIuGztDr8fhh4wk3ywpstLn8nG72s2i8jaomH0frvbR1T68zaJCdYGJyuolWp872SnG9x9o08lPM5CSa0HQ4XCfH1+bUKa/zUphqZntVr0M+J9FIYqQBTQOHF/ad89Dp1jEZYGycifl5VtqcAdYec2EyaszNsfQ8Z4rLEKNRpte5uiOpBYWwf294jy0/DPkFMhWvokKifF1d4qiavwhOVYDLCfZIEZccDonnna7qXcf+vTA+H4rnwNKrxSH1wTqYegWkpCohapSos3UJYTJo3Lsgl4fD6AC6b0Fuzx9Kxecfi8mIxQR2qynsCKbVbMTj10clbMbbLT0j32dkxTMzK75nAl8/dJ0Xyqq5pih1UBwuZpQxtORoKxlxETz4h/09QtjmE+fDnhIZZzfz8Ev7+NaSCay5azYOjx+Pz4/NbMRsNHC8vgPNAL+9c3Y/99Khc22YjRr/9lZ/d1TfiGBAh1UlmSydlMqe081cOTGZktxE2hzeISfxrSrJZElhinKdXMZEWU2caZb4nNGg9XNFjcRTWytZXJDCqpJM/m9jBdmJdr42N4v3j9Tz5JbBIuv9C3NZ9+1F3PO7XRw819av+P+H1xaiaRop0TYmpcfw+KZTrF6Uq4QoxecOTZM34X6XznBD8iIt2qiie4rPByZj+E+6hvT65SWZOFo/cjYuKdKAzdT7ujIbNWZnWQjoUNE0+PFH6rxMzbDQ5dGZmNpnGxqMiTUS3l8Kide1OQN0eYIveJ2adv+QAhQ9S8HO026WTrSx9ZSHxoNO8lNMLCuw9dxvNmi0uQL4dYnNXT85AqNBhK/KJh8+v87Bei99KwtPNnq5eaqd3Wc86DoUpJqZnG7GF9A5Xu+lKN1MQqQVDfAHoLHTz8YTbpodAdJjjMzLtaAGfl/mGDQpF7fawGqF2Fg4dza8xzocUkQeCMCEfGhphgWLYNdOqKzo7YYC2LkdMrOgdCEUFsH698Hr7VZ1j8n/i0ukK+rKq2DfXoiMFLeUImzUleYlhNVsZHmYHUDLJqViVb+tFcNgMRo43+EKuzPp3vk5WE29kR27xcQPry2kJCeRxzZVDHrzOzE1ipykKFJjbD2v2fLadmJtplEJX4mRFm58ZCttTi9TxsRgNhp5fFP4UyKfvGMWbU4v//LGkZ5S89/dPRvQ2HKikae3VVFe297TiZUaY+PKiclcVZDKizurB3Wx9Y0ILp+Uyty8JJ7dfprbizNxewN4/QEqz3fx/pE6Dp5r6+nXKsqI4Z9vmMTyojT1Jv8yx6hppMTICO381ChcHv+oIqotDg93zMvmhZ2Dy80HLvtgd4zvhftKuP3JHRw8J9t5vqyakpwECtKiWTAhia0nGvny7HFsOd7Y0x2nUHxe0DQDoBNjM+D06rh8/aN5JoOG3SxihHJBKYbDYNAw6DpT0s1UnPeN6IaaOsaMxdhf6DIZNYqzLUwdY+ZQrZemLnkDnBhpYGKKqUdsmZJuRtfhWIMPt1desWnRBuo6RnZEFaSaOVjTe/0yNm5wb9NQtDp1Olw6Y2ONnGn1s/+clwM1XrITjMwYZ8brF7Gp4rwPgwY2k4ZBg9RoI1PGmGnq8lM+QKBz+cDh0ZmfayU12ki7K0AgoNPY6acgzYLXp+Py6t1dWX5cPp3cJBML44xy/gyov0uXO0aT9IdMyIfm89LZpI9ikoTbBS0tkDteHFXr14qbaSC6Lg6otjZYcT1cf5NM4vN2/zxVnYLJU2QdtghxV506CXY7mMNPmFzuqHdClxjBDqDinISQn3rftyCXZap0VhEGJqOBnOQokqNtIwqbq0oyWV6URsQA8cRukSjgksIU2p0+mrrc2EzGHvfPk1sqeWzVDL5z9USJEX1YiTegc3dpDt95ef+I+3jv/FzWbKvk1HkZ5/KtJRNo7vSM6g270+NnYlo05bUiBhk0Da9f54Zfb+GrxZn9OpySo60kRlooq2ymy+3lkQ8qQq7X6w/wLzcW8eaBGnZXNXHXvGy2nmhkUkYMH1W30uLw8ODS/J71JkZZxBVlMgw6h4rLD4vZSILdQlFGDHaLcdQR1aZOD5ZYAw8uzf9YMb42p5fYCDMtDg9j4u20O71kJ0ehaTA3LwmvP6Au9hWfOzRNAwJEWDTsFplmpiNuRDGO693LKBTDYzIaCOgBlhfYWHfMFbIsXAPm5lhIjTaGdFqZjRpmo0zg03VxGDV2+tlzxkttu5+JKSamZJiZNsbCpDQzba4APr9OSbaVd8udwxaUT0wxYTVpVHd3So2NM2IxaZzvCj/Od74rQIzNAHSXiesSWzxwzkerM0BBquxbl1vWGW0z4A/o1LYH2FLhGXK9CXaJ30VbNYxGjbRYE02dfowGjRibRkCHuAiNhEgjNpOGyaBhMKDEYYVgNEJauog9FuvoHmuxQmeniEUnjoUWoPrS2gIH9kHeeJg3HzZ9INufMBFsNtAM4qgymyXqNxpBTKFEqEuRYAfQ8knSAdTq8BJnNxNjM2MyaMoBpQgbu8WEBny3WyRas61ykLD5jUV5LClIwT6EsGnqjufZLSbi7Cae2lLJL9ce75kyd+3/buXr87O5Y242V09Ow+cPsKQgJSxH34ysOP75jcM9308ZE8vZAVPARqLF4ekpaobeKXgtDi+PbqzgsU0V/SYDrl6Yx4IJSXzxNx/2Kx/vS0yEmYCuc+vMcRjlA3bmT0im3eWlJCeBaJuZDpcXo0EjJykSu9WI2aCKnxW9mIwa9y/M5bFNFSREju6Ts3i7hVaHl+umpHPnmvAmTfaN8b11sLan2P9Lj28POYlv6aRU5dhTfO7QNIOMh9d1TMa+t8vkM4UiXCwmA7FagFum2alo9HHivA+nJ4DZqJGZYGJSmgmjpnVP1Rua4P0BXSc5ykiV2Y9BE/fT8QYfY+ONFKSYSLIbwKBxosHLNYURlFW5BzmirCaYlCadTO8fdaHrkJ1gZHbWKN+shyAl2kBqtJFtp9z4AtDY6cZqgkiLXNe4fAFumGxn79nQApSmgb077hrQdSwmDV0XY0tSlLG7AF5+Fm3qfYxiKAwG8HklStfZAWPGhhfJs9shMRH27JJ1HCsf+TEAJ49L51NkpMT/ShdKGfqWTVBf13/9Ewtl6p7qhgoLdZYuUYJC02g6gBSKUERYTJiNAa6dksY1k9Noc3ppd3mJizATbTNjNmpYTOFdENjMJu6Zn0NWYmRPRK/N6eWXa0+w9kg9319RwMyseHQdHlo6gRlZcTy9rSrkVL9gkffY+Ah+dH0hs7MT+Mc/HeSH104a1fHF2y10dn9kGGoK3sDJgE9uOUVxTgLVzY6Q6yvKiCE2wozRAKYBwlJfB6JyIyqGw2IysqQgld1VzUSYjaOKqFrNBgwGGS4w2hjfnfOy+fLszJEn8c3J4ofXFighSvG5RIlOigtB8O//hGQTuckmDFqvGWIk8WkgBk3DaoLZWRaKsy3UtfvxB3SiLAbi7Qb0brtUeoyRI7UeirOsoEFNm797Oq+BtBgjjZ1+PjrjYVyckQkpEudbf8zFgjwrCXZD2G6oBLuBYw3yQVxGrJHSXCtbKlz9ep7cPnD3ueFEo5eJKWb2nBksRI2LM3b3SQXjsSJMWdRnc4rRogMms0yzmzw1PBFqYiGcOiWl436fOKLCwe0WR5TTCVctl23t3D54OYcD9u6Bs2dk4p5ZDQcbCXV1qVAoetxMIOJJBh9f2OyJ6BWk0Oby0ubwEms3YzUa2HKikWP1HUxIiSbSaqIwLYY1d86m0+2j1ekhOdpGQqQFj8/P+Q43a+6ajcXUW+zd6fbxrzeP/g27yaDxn7dN7TehbigGRvgG8o1Fef26sRSKj4vRAN9fUUjl+U7uX5jLg3/YN+Jj7i7NZl15PSsmp4/aFdjU6SEu2czmE80jR/h2nKYkJ4EVk9PUa12hUCiGwWjUuFDeHatJQ9d1MmIN6AERTI83eKlo8uFw6SwttDF9nIXyOh8tTj8xNgMGTcPh0elyB0iwGyhIlfjejio3Dd1uqZONPvJTTJyvHDoqFyTGphFvl0L164tsmE0am0+6qB+hi6q62U9J9mBnr0GD6WMtWNVkO8WFwGQSBRMdEhKlk2nfR0MvPy4T8ifC22/A8mvBM7oKBPx+0AMQ8IcWoPrS2AC7d8KsYiVEjYASoRQKxQUnKGpZTAYS7Gac3gBGg4ZmMPDD1w5xrK6dW2aM4QvTx5KdFAmajtlow6hBq8PD2iP1bDreSH27q6fYO8gLZdVhd0qtXpiLzWTk+Xvn8Nimip4JdSMxMMIXZNWcLDXZTnFB8PkDGDWZAgSwtDCVlSWZPF82fER1dnYC+8608vbBWq6cmDKqbcbbLZiMBtZsrQxr+cc2VajXu0KhGBZd19m+fTuvv/46W7dupby8nPb2duLi4pg+fTp33nknt99+u+rbGgWapmHSNAJIb1leson8VDMNHX6aHQE8Po2idDNGgxl/QEq7O9w6xxq8Q5alnzzv5QtT7Rxr8PUUoYfcNuLG8gV0ClJN1LQF2HPGQzhtNx6/Pmgyt8kAi/NtRFrU86+4AAQCUhBuMsKG9VI0ft2NMqnuwL7+PU/RMVBQCDl5sO59mXTX1Qlx8RLJC4TZkRYdLR1Qhw+Gt3zFCZhdPOpDu9xQIpRCofjUCIpRRkMAXyDA4vxklhSk0OHy0ur0EmMzYwDKa9qpbXOTFG1l9e939xOdBvLcjtN88J0rwyhTz2JJYSrvHqzlisx4Ht0YumQ8FIlRvRE+6NONVZii4kmKT4zPH8DnDxAAfvpOOc+XVTNtbCzP3zuHWVnxPLV1cDdbMKL66p6zfHHmWL7w6IesmJw+KldglM1Ih8s3qghfu9OnXvMKhWJINmzYwNKlS3u+z83NJScnh8rKStauXcvatWt58cUXefXVV7FaP3k30eWEoVvQMXb/mxZjlAErSJWAL6BT1+7H7YUom8aJBh/+Ia6fLN0OqyX5NjaedPU4pPpiMkBprpWUSCNo0OYM4B4wSXI4IswavoCOzSzRwrxEE/kpZgwGBolTCsWo8HjEWaTrYiP/aA/UnJP7/vwqLFkGS68Gjxu6uiSqF2GXTqdN66FoMsTEwvvvwOKlkJktU+5GIj1DRK+4eKgMbzI3Pp/sW2b2xz3aywJ1ZalQKD51gmKUrduZGmk1kdbdZebzB5idk8iv1h5n3vhEvjJ7eHHp+qnpOD0+vnFl3pCdUqu7y9Q1LcA1U9Lx+gOjerOeHG1jzZ2zOdfqJC3W1jPZTjlCFJ8Enz+A2xegxeHBgMau0809zqf9Z9v46pPb+d3dxSwuSKHF4aGp0yOvPbOBdeX17D/TyhdnjuXONTtp7vLw/uFaVi/M5Vthxvj2nG4hJylqVPvc7vKSFmv7OIerUCguA3RdJycnh4ceeoivfOUrpKT0OjR///vfc9999/HWW2/xT//0T/z85z//DPf00segBSc5ihBlQiM9RqPFKZPzVkyycbDWy5kWf8+HeVYTjE8yU5RuZvcZD06vzoI8K11unRONPjrd4lQfG2ckL8lEIKCDJs9rSpSRuAgDB2vDiy/lJ5uIsmrcMDlCisY1HbOK4Ck+CV6v9Dcd3A9nqyEpCRYtgePHepfxeeG9t2WK3dQrICoams6LKyotXRxQHR1wulL+b7fD9BlQXTW8G0rTYMo02VZxicTywsXp+rhHfNmgRCiFQvGZEhSoHl6ez46KJr65ePyQ4tI3FuVxVbeTqqnDzaIJyVwzOZ3mLg9NnW6So63E2y2cPt/FhxWNTB0bj0kLYDIZRvVm/VRjB3tOt+LzB1g1JwujQVMClOIT4fD4WHeknie3nCKg66y5q5jHN/X/VO3guXau+q9NrCrJ5I552VhiDbQ6vBgMGrfNHIdBgzanl9+smklchJmYCDO+gB52jO9UY2fImOlwxNhUp4FC8dcgoAfw6wHcugdXwI3NYMWqmTFqRgzaxfv3p7i4mGPHjmEO0X/yta99jTNnzvCP//iPPPXUU/z0pz/FYLh4j+VSxGLSSIky4AtAIKAzO9PC3GwNh1fHAERaNQLdpeazMi04vToBXYrHrxhr7plKZ9A0atp8lNf5cPt0xsQamTbWgtEAY2KNnGsb/g14hFljXLyJPx1wMDndQl6SSXX/Kz4ZXi+cOA5HDop4VDxHhKDaGhGeBlJxUr6SUyA+HgxGqK+H0gUQFQV5E2SdmiZupSXLYMO60OKSpsnjQH5A0KSLyucbvGwoItTQsJFQIpRCobgosFtMLMxPxuMPsLQwlauL0uh0+2h3+oiNMBMTYcJkkIupOLu8Ae90+Tjb4iAp0kJKWnSPUJSdHElClJU2h5fESDMmg4G5eYmsKsnkuRHerC+ckIwvoJMcZWFxQSpA2NMBFYpQONw+/nvtcSxmI499bRboOr6AHjIW1+b08n8bK/jNpgompkUTZTXR6fbx2ztnc+hcG3tOt+Dw+LCZjXxldiYPvbSPF+4rGTHG99qes9y3MA9NY1SuwJgIdZmgUHzaeAM+Klxn2NV5mEZfc8/tyaYEZkcVkWcbh9lwcf4sxsTEDHv/ihUr+Md//Eeam5tpbGwkNTX1r7Rnlw+apmE2An0m8ln6OJCMfdQgk0ESTQYNIgeMphsXZyI9xoSm9aaeNDRKc62sPeaixRHaNWI1wfICG7XtPpYVRGA3a2iAWX14p/i4BALQUC9upetugpMn4M0/Q1aOxOyGo7GhfzfUgkXw/DO9rqcvfgm2bITps+C2r8KRQ3DqJLhcEuPLyYOJBdDaCmeqYcYsEa9y8uDEsRAbHIDZDBljPtZhX05cnH/RFArFZUnQFWXvHq4SbTOTHjv08naLiZSYwVEhWYepX4zIoMF3rp5IcU4Cj28+NejN+j2lOVxVkILZpBEI6FxVkAoaRKg+HMUnwOXxsb3iPF+bl83uqmbuf3Y3douRf7imYNjHBXT6TWc83+HmyS2n2FXVAsDs7HiWF6Vx8Fwbtz+5Y9gY35GaNr6+IBeXz0+kxcjX5+fw7T+GV+xvUW8iFIpPFW/Ax6b23RxwHB90X6OvmbdbtzDNns/CmFkXrRA1HE5n7xTPCOUO+MwxDtPNZDBoDNClMBhBJ8A1hTZONHo5Wu+j0y1ZP4sRxiebmJwujimjwYjNJFPLlHtc8Ynw+8TVdOUS2Lge6mp77xvN7xGTWaba9Y3dmc0Sl9uwFnJyoXguTJkqL3avt1f8GpspDqrX/yTOqhmzpWNKH6ElbcJEcVeZLr3f139N1NlRKBSXBREWE2ZjgGWTUllSmEq7y0tbdzl6TIQUpPt1HaOmybhlg6YcUIpPhM8fwK9D0Zg4Hv3gBLtOtxBlNTEpPZqMuMEXUUaDRn5qVI/76Xh9J/7uYo/I7tuCdLp9JHSrtQNjfNY4A26vXHBdU5TOs9ur+P5rh2hzeinJSeA3q2aG5QpcXKAm4ykUnyYBPUCF60xIAaov+x3HGWtNZYIt66KO5oXixRdfBGDatGkjuqYUFydBR1N+spn8ZDN+Xd6Hm40yEc8ouhMR5qDIpXJ4ik+Ixwu5ebDvIzAaYfJUEXUmTJTJeEajCD2aBmPGiXMpNk4+ce7sFLGo8hTk5MC5cwPW7QGbFVxOWaaqEsaMhStmiOgUFSWxux0f9opfHe2yjbnzYfvWoYWo9AyYNl2m7ymGRYlQCoXisiHotAJ5U58eqz6VVXx6+AIBvH4/5ztdrL5yPHd6/LQ4PGTERRATYeZfbpzEL9eeAGDVnCxuL8nE5fHT7PCQ0O1kenHnGXZXNRNhMXKsrtcZdby+E5vF2BOtC8b4XthZzdvfWsDaI/X8ad85jtV19Js2WVbZzC2PbuOPq+dSnJvI45sqBhf7L8xl2rg4HB4/0aoTSqH41PDrAXZ1Hgpr2V2dh8m1jrukRKg9e/bw2GOPAfD973//M94bxSfF1B336/vmMaKfs0qJT4oLgN8Pji4pFY+NE7Govk6En9YWSEmVCXd7d8PCxSIqHSuX/ic9APEJMLEQZhXLfWXb+6//7BnIHQ8f7ZbvdV3EpuhoeOMv0NkxaJcA+GADXLUUrrkODh6Ac2d6xajoGJhUJJG99jZITPrUTs/nBSVCKRQKhULxaaCD2WjkaF0nT287OEjsuXdBLm9/az46sL2iifuf3R2i0ymHe+fnAJCZYKeqyQGAP6DzQlk1d83L5ruvHOh5zO0lWWw9eZ5/f+fokLtV1eRg2X9v5oV7S/j910to6fLQ4pAIX0KUhf1nWvneKwf47V2zL/AJUSgUfXHrHhp9LWEt2+Btxq17MF8il+719fXccsst+Hw+vvCFL/CVr3zls94lhUJxKaDrIuq0tcKHW2XSXV/skVAyF665Hso+lL6ovnR2SpdTahosvRrSx8C5s733Hy2HFdfDgf29Bed546GubmgBCmTZte/KsvPmd7uuusShFWEDnx/Wvw/LV1yQ0/B559L5OEWhUCgUiksIvw4/fbuc77y8f1AR+OGadv759cOYTQYe21jBd185EHKZ77y8n/96/ziaBs/fW0xsRK8z6bkdpynOSeD24kxAYhC3l2Ty9LaqEfetzenle68eQNd1/u7Fj/j5u0d5+2At7U4vD/5hH1+ePa5vx61CofgUcAXco1ze8yntyYWlra2NFStWUF1dzcyZM/nd7373We+SQqG4VNC6I3VvvzFYgAJxSZnNsHfPYAGqL/V1IgpNLIBFi2W9IE6l6ipYvERifSD9T6dOjrxvui7b/GiXlJ9v3wq7d4p7a8c2meAHKo4XBuoMKRQKhULxCfH5Azg8PuraXByra6euzYnXHyDWbuknHPVl1ZwsNh1rHLabCeC5stNsPNZITISFBxbn9dze5vRy55qdrF6Uy3/eNpUVk9Nwefwhp+6F4nBNOx5fgLyUKL48exw3XpHBnWt2csPUdBZPTBm2wFahUHxybAbrKJe3fEp7cuHo7OzkmmuuYe/evRQVFfHee++pLiiFQiHoupR/+3zy5fHIv83NEpMLxu66OiFmiMlEsXEQFw9Hj4y8vbpaON8oj5k7v/f2HR9KzO+6mySaZ7HIdLxwcbnAaJIpeKUL4PgxmaJnHTwsSRGaS8PTq1AoFArFRYLH58cf0Ano0OXxYTMZ+eBYA0+EmLp417xsXn+glDvX7OyJ0kGva+m+Z3aHtc0nt5xi/oQkvlqcxaMbK2hxiIW8qsnBjY9sY2VJJv96YxH1HaNzVrS5vPzLjUU8taWSl3ef5dvLJzI3NxGr2aCK+RWKTxmrZiHZlECjr3nEZVPMCVi1i1uEcjgcXHfddezYsYMJEyawbt06EhMTP+vdUigUnzV+v4hLegDQoKVZCsCrT8Ohg1L8HcRihQn5cPUK2LKpf5QOJA538nj/iXfDceyorG/MWOmLammWfdmyCTKzYNIUiIsD6yg+FLBYpffJZpNJfpMmg9st6zCrLs1wUE4ohUKhUCjCxOHx4fT6OXSujT/uqkZD42fvHOXBP+wLGaf77isHeGLzKZ65p3+ULj81atSupTaHl91VTXxryYR+97U5vTy6sYID51qJG8J1NRQxNjOdLh+3l2Sy5q7ZTMmIxm4xYreoz6gUik8bo2ZgdlRRWMvOjirCeBGXkrtcLm688UY2b95MVlYW69evJy0t7bPeLYVC8Vnj84nIpOvSm+R2izPpwH7Yvq2/AAXgccPhgxKlW7BIhKO+REZCW1v4229rBbsdjh+VwvK+VJ8WR5TXJ6Xi4ZKfL8cTEyOClKaJIGW5uD8ouJi4eP+aKRQKhUJxEeHw+EAHk8HA2AQ7K6ak82HFeV7YOXyc7vmyanZVNbOyJLPntiiriWbH6PpdWhwe3j5Ux7VT0hmYlFtZksmElBiibSaKMsKLvhRlxBATYSYlxkpipIhXY+LtRFqVAKVQ/DUwaAbybOOYas8fdrlp9vyLejKe1+vli1/8IuvXr2fMmDFs2LCBcePGfda7pVAoPgt8Pinx1nVxQPn9EBUtMTx/twjV2ADlh4dfT2OjCFVTpva/PRBg0EXQcBgM4A9AxUnI7L0OQ9NgzjxxQTm6JFpnt4+8vugYSEoBk1HWazSK+0k5oEbFxfnXTKFQKBSKzxCPz0+X20dtm5Ojde20dnnQddhR2cS/vHGYe5/ZhV+HxzedCmt9T2+rYuWcrJ7rpk63jwT76D4xi7dbOHiuDYfHx8S0aECEpP+8bSr3L8zljjVleAM6d5fmhLW+e0pzMGpgM5uIsJiJtJpUBE+h+CtjNphYFDOL6+IXkGzq/4l/simB6+IXsDBmFmbDxSkO+/1+br/9dt5++23S0tLYsGEDubm5n/VuKRSKvzZer3Q8lR+GDzZIDM7nE7HH7ZKep8YGMJvE6RQOJ4/D2HFgi+i9raUZ0tLD36+0dHmMyymupYQEmDYdbv0yREZJAXpUlGzrqmXDu5msNliyXGKFJrPE74zquunjcHH+RVMoFAqF4jOiy+1jXXk9L5RVMys7ga/NzcRqNtDl8ZOVEMlts8bxdzETMMCo4nQuj5+JadGU13ZwvL4Tm8VIUUbMoBhfKIoyYrCaDRyr68DtC/DYqplYTAZ0Xabk/fjNctqcXp7bcZqVJVncXpw5rENrZUkmVxWkYDaqz6IUis8as8HEBFsWudZxuHUProAHm8GCVbNg1AwXrQMK4I9//COvvPIKADabjXvuuWfIZX/9618zffr0v9auKRSKvxZer8Tq3n8Hps2A0vngdIlAU10FVZUSeYuJhXGZUHMuvPV6PFBfDykpEp0DmU43bYYIQu4wysQnFsLmD7rFJR2uvg6qTkncr7m7j+/4MYn91dfBdTfC/n1wulKcWyDHkZMr4pUtQrmeLgBKhFIoFAqFohuH28dP3y5n68nzPHNPMUdq2okwm3j3cD1PbektHp+dHc8PVhSOsLb+tDg8RHVH3fwBnRfKqrlrXjbffeXAiI+9uzSbF8qqCehgMxt59IOTfPfqAu7+3U4OnusVsZ7aUskt08fw0NIJzMiK4+ltVYPK0u8uzWbhhGRsZgMmJUIpFBcFhm6xyYyJKGMYkZCLBLe7dxhCVVUVVVVVQy7bNpoeF4VCceng98O7b8PMWSI0NTaK6PPyixK/C9LWAtOmjW7dHo+4jvp+f+qkROk2bRj+sVOvAKdDJuRNmgynT0unVM25XgEK4OB+WL5CRK3dO6FgEhSXQGurOLli46C5CcwW5Xy6QKirT4VCoVAoAK/Pz87KJt4+WMez95Tw7IenKRoTyy/eO8rDL/UvHu90+/oVjYdDvN1Cp9vX8/1zO06zKD+ZVXMyh3mUuJZmZyfwfFk1RRkxmAwaL+85S02bY1D0rs3pZeVTZbh9fvJTo1hz52zWf3sRr3xjLuu/vYjf3jmbwrQYomwmIlT5uEKh+ITcdddd6Loe1teVV175We+uQqG4kOi6iEydHSIKjRkHZ6qlpHvtu/0FKBAByTLKCJvdLmXlfTl2VDqcliwP3eNkNsPM2TB+AmxcL0JSQSEcPQJ1tTC7pH/szu+Hte/Jfs8pldjglk1SZn76NDQ1QkqqPMag5JMLgboCVSgUCsVli9vrxxfQaXd6aXN5yUqKZO23F3K2xUGc3cyuqmae2zE41vZJ4nTB71cvzMVuNfKDFYXMzkrgiT5Oq+Ayd5dmMzs7gTvX7KTN6eVH1xfyQlk1Xy3OJCnKRrzdOih6V9Xk4Ppfb2NlSSYr52QRYTFiMlqJtBixW00kRVmUA0qhUCgUCsXHw9f9gVp9LVRVgd8nhd2pqRJZW/++FIiHelx9HWTliJtpJKKiIDFRRCGDQUrEC4sgOxfOnYX0DLjlS/L/+joRxeLjZf3nzkrfk9sNc+fLRL2oKHFEtbWK82njeujs7N43L2xYB3HxMO0KKJwEmgGZSGNW4tMFRolQCoVCobgs6XL7eP9I/5gdiPhzT2kOd5fm8KXHt4d87GjjdKsX5mI1GnjlG/NIi7URYTHyl33nKP3ZB8TYTPz5gVJKJyTR5vDS4vAQb7dgNRt4oay6p+9pZUkmc3OTiLQYmTc+mTaHB4vJwMPL8gdF79qcXjYdbyQ/NZqrClKwmjSsZvUnX6FQKBQKxSfA44HWFhFwHI7+99XVwtxSaKgf+vFHj4hQVVkhotFwTJoMHi/c9lURgTxucUG99kdwOsWZNKcUMrMkKtfRJmLTn1+R+1PTZFuRkWAyQcxMKD8iYlZ6Otx0C9TUSP+TxwMRETA+X4QvXZd1Kj4V1BWpQqFQKC47HG4fP3mrPGR59+Gadp7aeopZ2fHDFo8/t+M0rz9QGlYJ+LRxcXzv1QP87JapvLT7DL9ad5xA97VXm9PLFx/9kGfuKebU+U7WHqnn4Lk2jtV1ENBFFPvxTUVcVZCC0xvg4Ll2vv/aIdqcXooyYrhvQS6LJ6Ywf3wSXW4/Hl8Au9VIUpQVgwZmo+p+UigUCoVC8Qnx+6G9Hd57u7e0uy8xMdIHNRxnz0hZeOkC2LZlaCFqwkQRl976C8yeIwLUjg/7L+PxSOl4YpK4l3LHi0A2dhzExoqDyekQV9SpCumGCmKPhAWLJM43Lkt6nwIB8LrFAaWmBX+qKBFKoVAoFJcVbq+f947UDyscRVlNNHS4h7wfRDy6c81OnrmneMgS8PsX5jInN5FHN55keVEa+8+28j/rT/QIUEGqmhzc+IhE6B5cmo+u63S5fUTbzMRGmDl0ro27f7eLPadb+j32cE07D720j5Ulmdy/MJfvv3aAX335CmraXKTH2LCY1UWUQqFQKBSKC0DAD9u3hBagehjB3aTr4qJavASuvQGOHBYnUjC+l5YOk6dAarpM3bv6WoiKhtdeHnqdTeclShcRAV+4TeJ2JpNsZ6hJfI4u6a1avkLifgE/dHWJ+0qVj3/qKBFKoVAoFJcVvoDOk5tPDbtMp9tHgn1kG3Zf8eil++fS5vTQ7vIRbzcTbTOjo6Pr8I2FebS5vERaTGz53mKeL6vmuR2naXN6e9bV5vTy6MYKHttUwbVT0vnXG4t440AtdotxxMjf82XVTM+M47qp6VhNRgrSopUApVAoFAqF4sLR1QVNTUPf394OhZNHXo/PB+veh4kFMGcuzJsvwpbR2O1G8oAegMZ6EaIcXXDzF6G6CvbvhY6O0Ot1OuHQAemKqjk3tAAVJBCAnTvgqmUS7dN1JUD9lVAilEKhUCguK9qd3mFjdjC64vFg/9I9pTmYjBoJkRYqGjrJSozkw4rz/O7DwQ6pu+dl8/oDpdy5ZidVTf07FQI6vHmgloeX5nPN5DTufnpXWMf19LYqnr+3BH9Ax+UNEG0L62EKhUKhUCgUwxMIQG3N8MvU14HRIJPkhuuFAhF8YmKh8pQUjXvccOI4FE2Gg/uh4mRvATqA1SoxvhU3wLr3oHkIMay+DgomSUxvIBaLRO087t4YYHOTlJdbLBLB07Th91txQVAlEQqFQqG4rGhxeEdcpm/xeDjctyAXgwY+v84Tm04xNt7O/31wku++cmCQiHW4pp3vvHKAJzaf4pl7iomNMIdcZ7vLi88f6CeYGQ0ahenRzM6OpzA9GqOh92LpcE07Tq+f/11/gkir+iRPoVAoFArFBWRgl0Aoyo/AzNkjT5OLi5cS8NzxIgpt3SxRuLXvSfl4XwEKRCg6sE96oZYsB+sQn7QF3UxBESwiAqZeAbd9BW79CnzhVvjq16TQPC5elmmoE/HKN1zMUHEhUU4ohUKhUFxWxNtDiz5BjAaN/NQozne4+JtFeew708rzZUP3R60qyaJ0fBKv7DlLfKQFm8VIWWXTsJ1T0BuhW1mSyaMbKwbdH2e39AhmsRFmVs3J4vaSTFweP80ODwndE/Re3HmmJ9pX2+piWVEaFlVErlAoFAqF4kKSnDz0fVariEoZY0TcWXaNdDK5Q/RrJqfA0quhrg4i7bD3I8ifKFG6pvPD70N1lRSP5+fDwRBVBfHx4mbSddmXhVfC6SqJ/7U0yzIRdtne8hVQfliigGnpIwtnigvGZX2mP/jgA66//nqSk5OJiIigoKCAH/3oR3R1dX3Wu6ZQKBSKT4nYCDNFGTEhb//m4vFs/t5iHrl9BneV5tDm9PCDFQX895euGPSYoowY/vtL0/iHFRO595ldXDctg2c+rOL2kkye3lYV1r48va2KlXOyMAxwfxdlxBBhNhBhNpKdaOf1B0rJTrRz/7O7WfLLTdz22HaW/HITq3+/p9/9iVEWZmbGqWl4ik8Vdf2kUCgUlwF9J9cZDJCQCNHR/ZcxGKBkHnzxSyIAVZyEHdtECLrtqyICZWZB+hgRqVZcD1cuEfdTU6OIV+cbZELdyePh7dfRIxLNCxWdyy8An1ccVguulMLy7dt6BSiQiXn798Ibf4bcPNm2pokYNWzpuuJCcdk6oX7961/z4IMPous6Y8eOZdy4cRw5coR/+7d/49VXX2Xr1q0kJCR81rupUCgUio+Jzx/A4w/Q7vTR5vQQG2EhJsKE0aBx/4JcHnxpX8+y2Yl2nrmnmJ2Vzdz/7O5+EbqSnAR+eG0BL90/l4YOF81dHuK7XUgvlFVjMGjcPH0MLo8fv67j8vhH7JwKcrimHZfHz8S0aMpre4s27y7N5rkdp/na3CxeuG8Oj2w4GdJZdbimne++coCVJZk8f+8cYiNMdLh9dLn92K1GLEaDEqQUFxR1/aRQKBSfYzwe+bfyFHR1SuwtN08ibpoGM2bBpu6+JYNBonFeL7z6x/6up8pTYLNBcXfxeHu7rO/wIThzWpxHpQslBpeQKA6oUK6pUDQ3SbeTPVLWGSQrG0xm6ZaaMRPKPhy+m8rpkH6pL9wG589DdSVERomQpWkyYU/xqXBZntk9e/bw0EMPAfD4449z3333oWkaNTU13HjjjezZs4f77ruPV1999bPdUYVCoVB8LBweH+vL63nvcD1NnS4mj4nDF9AZGxfB7Jx4lhSmcntxJi/srCY2wsyz95Tw2KaKkEJPWWUzN/3fh6wqyeRvF4/nkQ9OUt/u4lhdBwFdXEu/u7uYqqYuoqwmmh2eUe1ri8NDlLX3z/HKkkxmZyfwP+tOsHpRHuvKG8KK9s3OTiApykKExcjP3jmKw+Nn9aJclhamYrdcln/uFRcYdf2kUCgUn2O8XhGPYmJgzFiwWUXs8ftF7LFHQlwCzC2Fsu1wxQy5b9OG/q6pIC6XFISPy5QOpvfe7nUa1dZ0x990EXsGdkCNhM8nReJBMrNkv9a+B3PmgcEoMbyR6OqSiF9cvPz/yGHYu0cm5qWkKiHqU+KyPKs//vGPCQQC3HHHHdx///09t2dkZPDiiy9SUFDAa6+9xoEDB5g6depnuKcKhUKhGC0Oj4991a3My01i8cQUNE2j3emlxeEl3m4mJsKMQYNvLh5PcXYCBgNUNHaw90xLT9F3fmoUUVYTnW4fx+s78Qd0niur5orMOCalx7DxWGPP9g7XtOPy+kmKstDp9pFgt4xqf+Pt8riijBjuKc1hVnY8d67ZyU3TxxAI6Dy5+VRY63lyyymevGMWTo+fTreP8toOvvXiPlbNyeKH1xYoIUrxiVHXTwqFQvE5xds9tCU3TybhGTQ4e0aEGbNFRB6DATwu6Vr66irQEQGnaApUnRLRJjZeHtvZKbe53XCmWibWZeXAqZO922xuEvHn2FGIjAx/Xw0GKRy3RUBSMkyeCmazCFAaEBsrBemhhLFQHD8Gi64CR/e0Yp9PHFI33Azxytn7aXDZXZF2dnby7rvvAvS7gAoyYcIErrrqKtatW8fLL7+sLqIUCoXiEsLj86PrMCEtCpvZyNoj9Ty55VS/eF1RRgy/+OJUDAZYVpRKu0sKvR+5fQZxEWYMBo3WLg/nuwaXfz+9rYon7pjFY5sq+g2JqW93MS7BjsmgYbMYKcqIGTQVLxRFGTEkR1t55KsziLObqW1zcuMj2+h0+7hrXjaOPtG+YGH6QHEsyOGadtw+P1E2I8fqeqN9z+04TUlOAismp6lonuJjo66fFArFRUsgIIKDrotAoQqmw8fvl/N3/CikZ0BUNBw+CEfLpbcpyPatIlDNmSfuqNoa+dJ16YK6+YvgdEFlhUT6UlJh5iw4fRp2lUmP0+Sp/UUoRxckJsk+2GyQkADNzYP3cSBZ2fKYOfNE7IqIECGp6bzsh9vTG9OLiZHlrTYRl+pq5asvXV3ymmls6L0tEIA9u2DhYrCM7sNFxchcdiLU3r17cbvdWK1WiouLQy6zYMEC1q1bx44dO/7Ke6dQKC5XPD4/Xr+O2+vH7QtgNRmwmo2YjRqWvnZjxZA4PD7WHalne8V5/t/1RfzkrfKQMTaX109cpIXdVc38/csHBglUd5fmMDs7nu++vJ+qJgdFGTHcNS+b1x8o5c41O0N2OCVGWdhwtJ57F+TyQlk1d83L5ruvhJjaMoDVC3PZeKyB32yqIDbCzFN3zOK6KemcaOjAbjZyosUZ9mQ8OQd+tlc0DZqi/NimCpYUpigRSvGxUddPCoXiosPrBT0gPUB+f3esyytRLF0Xd4xiaIIxu3feFDdTVLSITZUDHNiJSeJkysyChgbYtkUEpL7sLIMpU6UQ/J03xFVktcG06XDtDfDBOnEo9SU5RZxSM2aJG2ryVNi8cfh91jRZzmCAjRuk2HzRVZCTCzGx8ryfrYboWJnQl5Aox+PoktdDyVwR0fZ/1HucZrMIZ5om6wsE5PtzZ+X/igvOZSdCHT8urfuZmZmYh/jFlJeXB8CxY8eGXdfjjz/OE088EdZ2y8vLR7GXCoXicqLL3Vuc7fIFaHV4iLNbsJiNnO90ExthIdJ62f26HhUOj49/f7ucN/bXsvUfFvP+kfpBAlRshJl7F+Rwd2kOP3u7nOfKQhd9f+fl/awsyeSZe4q58ZFt/cq/n7mnmOau/h1ORRkxJEVZuaYoDdA4cKaN4pyEns6poVhZksmc3ETcPj/17W6+vSyfD4428M3F43F6fZRVNpGXHMXrD5SGLEwfKI5VNTlIiLTwl301FKZH93NMHa5pp93pU5E8xcfmQl0/qWsnhUJxQfB6oKMDDuyXSFggICJCZjZMmSYOGJ9PdfoMRyAgApTHI9Pmzp3tL0AZjTJhLjFJxKLzjRJTCxVz83mlS8njgcVL4a3Xwe2Cndth+kwpJ6fPNLv4BLBYJfKXnQMup0TzrpgB+z4Kvb8GgziTnE5xPi27RlxQHo/sa0aGlKYnJsprYFcZrH+/v5C0d4+Uos9bICXkhw6IU8rrhdu/JsKcwSgusGNHRaSz2S7AyVb05bL7qWzutvgNN7kleF9LS8uw66qtreWjj4b4IbkMcHv9+AI6Do9MYoq0GrFbTJgMGlazcm4oFOHg8vjQgbLKFp4KERu7d0Euyyal4vT4iFACQkh8/gDryut5bkc1f7dkPAZNG9SjFJx+5+wuLA8lQPXl+bJqpmfGsbIkk0c3VvS7bdGEZDrdvQWad5dm89imCr42J5v/9+cD/Oj6SZTXtvPNxeOZkRXH09uqBj2vX5+fw/KiNFY+uYO75uWw8btXisupywO6TnpsBP/vT4d46s7Z/PvboR1dA8Wx771yAJvZyC+/fEVIx1Snywux6kJK8fG4UNdPl/u1U783Q8Hx4sE3dCpCpFCEh8cDFSdl+llfdB1OV8rX7BLInyjignJEDcbvhxPHRNCZPEXOXfnh3vs1Da5aCi437N4JCxbJBLyRepYOH5TznpLaO5lu30fwxS+J0BRk+kw4Vg6xcXBwv7iibBEwfoLEAsuP9IqLJpM4rAoniVMpuB2LWcQxk0n2y2iS3qnMTPhgPdScC72PdbUivl13A7S1isvr5HF4b78IZyBC1sRJ4q5SXHAuu3c0Lpe8sCzDZDut3S9up9M55DIA6enpzJgxI6ztlpeXj7i+S4kut4/K850kRdnocvtodnjwByz4A3C+00VOUpRybigUI+Dx+fHr8O9DxMYO17Tz8Ev7WFmSyQ+vLcTj82PQNDz+AO3OXvdUTIQJi9Fw2UatPP4AT2w6JaLd/Bzand6eHiWgZ/rds9ureGhpPt/+48gxOSBk/9PT26q4ZnI6J+olihecZPfSrjPcMn0s68ob2FXVwsqSTKaOE8Fq+aQ0Ot0+2p1e7FYR6p/bcZqSXA+PfW0m2yvOY9Q0HF4/HW4fVrOBgK7zN4vHs/ZIXViT8aZnxvFP10/iXLODf3jtYEjHVFpsxCjPrELRy4W6frpsr52CfTUgb6BdLnEOgLyBskX0vrnStNDrUCgUIp40Nw0WoAayq0zcNskpIkRpSGeR2yUxsQibFGvreh9BOCBChvEy+DBd18VNlJMHhZPBaID6ut77x+fLuSj7AG79ijiWnI7w1n20HAoKe0UoXZfbxo4TsX3efOlZOnRAOpwO7JX/xyeII2vsWOl7WrQY/D6Jz509Azt3SLwuOweWLINTFSJWtXT3SNntMH+hiE9DCVBBnA7pfCqZC50d8nrpS1MTfLhFOq6WLJPIp+KCcdmpBLZuO53HM/QIbbdbStgiIoa/YF+9ejWrV68Oa7szZ8783Hzy5/T46OqevPS7D0O/2UmJtqFpqOiHQjEMgYAeMjY2kOfLqinOSWD5pFTePVLH45sHO6buX5DLksJUNE2us7z+AGaT4bIQp3x+nafvLsbjD9Da5cXh9fe7f9WcLMoqmxibYKfV6eknUA3H4Zr2Qf1Ph2vaae7ycM3kdK6cmMzs7ATuXLOT5GgrzQ75u9Lm9PLoxgqe3HKKZZNSSYq0YDUbOXSujVanl2N1HQR0WDE5jYy4CIwGA196fHu/53TKmBh+//USbn+yLOS+DeTpbVX8cfVc1mw9xdG6jn5xvKN1HXz3lQPsP9umpuQpPjYX6vrpcr126qG9vVd8CuLzyZsgl7P3U/dLSIh6+eWXWbt2LR999BE1NTU0NTVhsViYMGEC1113HQ899BCJiYmf9W4qPi/4fbB/b3jL7t8LS5aLM+rwQWht7b0vLg4mTYFx4+DMGek70jQRNGLjZMKb30/Pp1Am0+cr2mcwwHU3ihhz7ixkZfW/v6BQRJqcPOlTqq0Jf911teKG6kvNOVnnbV8RsWvde91T+Izg675ua2mGPTtFcLJY5Hfl+fOyj0ERf+w4+T353jv9i8RBeqhiYmW/w+F0FcwplceZTLJuWwQE/BI9bG6W497xIRTPVQXlF5DP0U9SeMTHxwO9tvJQBO8LLqvoxe314/IF+NW6EyPGQ76zfCIGfNjUGx6FIiR+nUGxsaF4YvMpSscn8dBL+waVTh+uaefBbsfU3145nt2nm1kwIRm3ywfoRFrNtDu9tDi8xNvNxESYPxeF5z5/ALcvgNPro9Xhw24xYjUbsFuNxEaYaXN6MRo0bi/JZPWzu3n67mLONIf5KV43LY7+/U8ADrePf7phEr/bVsWP3yynzeklwmIkwS4XJ0MWic+TWFxNqzhKspMi+enbR0P+LvUFdJo6RyeYNXd5uHNeDrfMHDdkgbmakqf4uKjrp09AcHJXV+dgAaovPp+IVLEx4tC4RISon/zkJ+zfvx+r1Up6ejpTp06loaGBvXv3snfvXp544gnef/99pk2b9lnvquLzQEAPXxCprxPn4eFD/QUokO8/3CKOnyumw19elT6p2SXyM9vlgCOHob1NfhYzxkB+gfwsX8pihM8nx+N0yO8ZEPFFM8CEiRLRi40TZ2bNObh+FnS0i0ssXAKBwfHi4G3vvi0RuCAuJ0RHyyeoU6ZBdq4IQC4X2KxQmiJi0cH9sh9ZOVKMPlCAAumYsljExRTufjbUQVoG3PZVWWdHuzjApk4X8e3gfnFczZ4T/vErRuSyUwfy8/MBqK6uxuv1hizXrKio6LesopeArrO+vCEs58aMzHiunZKGy6OEKIUiFANjY6EwGjTyU6OwW4w4PX4K06M5XNMRctlgLOtUYxcVDZ3cvyiPDeX1IZ1T93V3TV1qsVmfP4DXH8Cvw+nznSRG2ehy+2l3eTEZNMxGEw3tLt55cAG3P7mDCIsRl8ePX9dxef3E2kdnp463W/r1PwFYzQbuWrOTI32m4x2v78RmMbKsMIX/d/2kEYvE95xuZsPRoX+XRllNPc6qcHF4fFQ1dfGzd44Oud1/e/OImpKn+Fio66dPgKb1TlsaCT0A/u43a8Fx8xc53/zmN5k4cSJz587t97o4ePAgt99+O4cOHeL222/n8OHDw6xFoQgTRxgfJhmNIlYkJ8vPVNEUOHxgsBAF0gWUkioCTO05cT99uFXcU305dxY+2i2OmNxcMF9iQlRw+huI06jihJxLi0XEt9w86WmKjhaRr6P7GicqWs5b/NB9gIOIjYWuAdPzYmJlPX0FKBCBZ/JU6WA6fgz+/Ir0VAWxRcDEApmwt3ePONSqq0Jv12CQ35+jIaCL6LVlU/+Jf5oG4zLl+T56BE6egElFl8yHAxc7l9a7jwvA9OnTsVgsuN1udu7cSWlp6aBltmzZAsDcuXP/2rt30ePXYc3WypEXBNZsq+TqyWnsrGyiJCfxknuzq1B82rQ4hv5EPJSbxmDQWHNXMc9uP81zO07T5hz8+Ke3VfHkHbPw+XV++nY5zw8xAe6hPl1Tl8rPpsPjY9OxBmZkyYXQkWEiwYvybfzh/rn88E8HaO52M9W1u5iQEkVRRky/xwxFUUYMVrOBY3W9YtOUMTHYLeK0unZKGk2dbtpdMoHutY/O8h+3TuMX7x0b0Sn6w2sLufvpoe3inW5fj7MqXGIizDz80r5+4tjA7f6/6yfR7vKiaRBhvjSed8XFgbp++gQEAvKp/lBomnTUWCzyRrG9XVwIFjPoxou+n+a+++4LefuUKVP47W9/S0lJCUeOHKG8vJzCwsK/8t4pPneM9LdryjSYNBmaz4twdPCACCvLV8jP1o4PoXXA8ITyw7D0aukj2rJRRJpQ+P2wfWu3yJV9aRSeBwVwXZeJgmvf7RWYgtTWwEe7YNFVIsZFRff5vaNDWpr8Ttq9U87BSEwsEJELJOaWkyfPi9sNV18r+9PZIetqa5P1b94I1acHr8vllFjl+UbZv+NHh96up7uk3GqVbYVDbCx8tKe/AAVyvqpPQ2OjCGC1NdItZjJdEh8OXOxcdleg0dHRXH311bzxxhs88cQTgy6iTpw4wYYNGwC49dZbP4tdvKgJx7kRREaCe9lb3cL68oZL6s2uQvHXIL7blRN0O0VZTTg8PjLiIvjxTZM5cLaNb/x+NwfPhXa13LlmJ1VN/T8RPFzTji+gc7SuPaQA1Zfny6opyU3k6kkpWC9yQcLh8fHvb5eTGmNjTm5SWELPd5ZP5L+/dAU+f4AfXltAfmoMXn+A+xfk8uBL+0bc5t2l2bxQVk1A7xUF71uQQ5fbxz/dUERshJkoqwm3z4+u69S3u9l3poWXdg9x8drN82XVlOQkMCs7np1VoaNNQWfVaASzKKtp2A/ogk650vFJHKlppzA9RvVDKcJGXT99QgJDvHEzGCEqUjppDh+UwuUgCYniEBiXeWm82Q1BX9HJEY6DRaEYCVuExMUSEiE1DawWsNkh0g4RdkAX4aD8iIhQwS6hvXtk8trV10ofUdP53nW2NEvXlMs1tADVl91lUo7t9QCaCDYXozCh63JMx8rFxfPuW0M7ybxe+GAdXHOd/M5Bh1tuk2iayyWOocIiKRAfjpRUSEiCDetgylQomgqN9TIhz+uR52higcQbAwG5zR+AadNFjD91MrTQde6suNZi44bediAgDrbx+fL7dCTiE8AeOfzEP6cDdmyDuaWynN9/cT7XlxiX5Rn80Y9+hKZp/P73v+eJJ55A737h1dbW8tWvfpVAIMDNN9+ssushCOW8GI52lxeb2cjzZdWsPVKP2xuGeq5QXCbERJj5lxsnsfl7i3n09hn8523TeOn+ufzrTZOpb3eTlxzFb1bN5JuLxxMbIW9AgiLLE5tP8cw9xT2398Xh8bH2SH1Y+/D4pgo8fp26NicOjw+Pz4/D46OuzUXV+U6aOt04vT58o7U3X0A8Pj/rjtTz4s4zrJqTxfphYmxBni+rZsPRBgwGsFlMVDU5+dLj21n0i41ckRnH7cWZwz5+VUkmxTmJPF9WTXaindcfKCUvOZKVT5VR+vMPWPE/W5j3sw189ckdfFjRRITFhN1iIjspkk3fvbLfcxaKxzefYuWcLAxDiEb+gM4LZdXcNS97pNMDwH0LcjFqGrnJUcMu9/S2KqJtZgrTYthR0fSZPq+KSw91/fQx0bTQEQ5Ng6goKdHdsrG/AAXy/eYPxH0wXJfURczWrVsBiIqKYuLEiSMsrVCEyXU3woR8cQ+OGSeums0b4ZU/wGuvQMVJETVu/AJEdv9dDAQk7vXhFrhq2eCScZ8vPAEKRJSproI9u8VZdLZaRBxHl/QRtbdJHM3jCc859Gnh84mwlDcBDh0cOcro94sryO+XvqiOdnjnTfjzq/D+2yJCTRjm5zg5Rc7t1k0ws1hifm/+GdavFXHpTLU4md74s6zP54V9e+HF38vvwexsWHG9iFGhKD8swuNw7tCj5bKfFuvwxwryGvF6RKAbjnNnRXgyGOS15r00fx9fTFyWItTs2bP55S9/CciUlqysLGbMmEFOTg579uxh4sSJPPnkk5/xXl6cxI2yTyU2wkx5t3PqyS2n8A9sVFYoLjOkTNtHe7egGxNh4Z//cgiDQWNnZTNffmIHc3+6gZv+bxtLfrmJ1b/f0yOCZCfae9bzfFk1u6qaWVkyWEyJsZk5VNMW1v4crmmnscPN3b/bxW2PbeedQ3W4vH7Q5IOp2jYXLV0eHB4/To9v5BVeYDxeKVf3+XWmj4vFbNDCjgT/cfcZDJqBn7xdzsMv7eNwTTttTi93rtnJ6kW5/OdtUynKiOn3mKKMGP7ztql8e/lE3jtUC8AL983hic2n+PYf9w9yJR2uaefBP+zjZ+8cxWTUuPn/PhzyORv4uODkvaF4bsdpinMSRhTMVpZkMj0zjv9ee4IfrCjsJ34ZDRqF6dHMzo6nMD2ao3UddDi9PL21kkkZsXiUCKUYBer66RMQqj/GapM3ZceGiZeAuBjOVMub6EuAQCBATU0Nv/vd77jrrrsA+NnPfkZU1PAiuUIxJH6fvPF3u+Xf99+WsuqkJHj9T7Bts8S13G5xrlScgLdel5Lta66DvhM7z1SLCyonr/82rDZoagx/n86fl+031IvrZ8eH8nOuIf+azSICeb3h9cFdKPx+2V4gIGLNwishMlLORTjUnpN/z1bD2vd6xfHOTnFSFU2G628SV1l0jAjpY8fJFMKlV8ty9kjIyID335HvQ9HYCO+9DTNnSySu5pxsr7YGli4PLTR1dMjzO1w/1flGqDoFy66WWF4oNA1K5sp5eePPchwzZ/fen5QsLq7pM6VPLDpGonnHj8rxKj4xl60P/6GHHmLKlCn813/9F2VlZTQ0NJCVlcWtt97KD37wA/WHcghibeZRxUNibGbePVQHyJuuNpcXu4rkKS5DPD4/Pr9Om8tLq8NLnN2M2WDgbIuDf7qhiN9srBgxXvbMPcXc+Mi2Hkfi09uqeOKOWTy2qaJnYl4wltW3x2jkfQuQGmNj47FGHvzDPlaVZPLwsnwirHIBcK7VRVJUgDi7BfAR8VeIcLm9fnwBnXanl1anl7l5iayYkkarI/xI8KzsBNaV1/PCgFhiVZODGx/ZxsqSTJ64YxYujx+X1090hBmDBi+UVfPy7j08eccsbp4+hg8rmsKKNk7PjGNlSSaPbqwY8jnrS7vLO2jyXl+Cgtnz985hTl4ij2+qGNR/dXdpNrOzE3qimVPGxvDA4jwe+aAi9IQ+s4GArrO7uoW0uAiWFKYwyuopxWWOun76GGiavBnq6uo/YcpikbLkcDh4QCIyF3EM5Fe/+hUPP/xwv9uKi4t55plnuOaaaz6jvVJc0ni98vNz7gw0dE9DS0yEZSvkZ+Evr4kzZSiOHJb43sxicecEOVYuAkNQmElMEtGoLbzrC0D2a8w4+VfXRfiKj5f9W/e+CFCRkSLWTMgX14/pU4zV+v2yH/V1EplrbJDvx4yFufOH76XrS1ycCGlbNw++r6NdXFFjxkp/1hUzxHHU0gwnjouj8yurYNZsmWA3kmOovV2EnYmFsHOH3LZnl/R35eRKGfhAfD6J5J0fRjDcvVNEpVu/Ius/eUJcamazuLMmFsq00rXvimC3bw/MKpF1j8uU39enq+S+qGjphHK7oLZWyuknTb5kI9IXC5e1GrBkyRKWLFnyWe/GJYXRoLF6YS7f+sO+EZddvSiPvdUt+Ppcb7U6vKTHRgz9IIXic0iX28f6IabU/fsXJvNRdUtY8bK+Igf0d9OUd5dR31Oag9vrZzSmwyibiUX5yWw8Jn/QnyurZlZ2Aq1OD//8+pGe5aaMieGhpfnMy0v8VIWoLrePdUfqeWJL//P1pVljuWNudljrMBo0bi/J5L5ndoe8v83p5dGNFTy2qYKJadFMGRPL3y+fSOnP1vf8zury+IgwG3l806mwtjlQFAz1nPUlOdo6aPLeQKqaHBw420J6rK1HMGtxeIjvFpReKKvmx2+W94hcj28+xR+/MZerJ6dTdqop5IS++xfm8m83T+GfXz/E8qLUsI5NoeiLun4aJcHpeNHR8qYLXT7l93igOXQv3CCam8Dt+XTfxH5CxowZQ2lpKT6fj+rqaurq6ti3bx/PPvssc+bMIS4u7rPeRcWlhMcj4tPOHf2npQHMmCXi0nACVJDDB+GWL/Uvq66rFcEoSNEUcdgkJoW3ThAXlNcrokWwUPvIIbj5VumA87hlG3Y7aAbw+aVXyWCQ3wkXcuCAzyeC0wfrxFHUl/PnR+einFgokbbhHnPurHyBdGwdPwqV3ddKwSjfmeGva3s4dlRik7t39m7zyCERuEKJUFabxOjOnB7aYaZp4l6qq5H9WbxEnn+fD+rqRJBsbOhdvvKUTMErLBLx7dyZ/j1Ru8sgdzzMKhahzabey35SLmsRSjF6rGYjSwpTWVWSyXPDOANWlWRx1cRkVvzPln63jzbOp1Bc6jjcPn76TjnP7Rj883K0roOkaBs/eO1QWOsK5Xxq6Z78BvJzV5yTgFfXR+VYjLSYuOmKDP53/YmeiX1PbjnFs18v5n/WnSCg089Vc7y+k9QYKzERZixGAybjhftk3unx8ULZaV7be47j9f0t3AfPtRFhDu+iLT81CpfHP6JrKqBDeW0H5bUdrF6Yx4TUXkGvzeElYNNHNYxhoCgY6jkDOe/xdgvFWfE9y4ZiZUkm8yckM//nH9Dh8jIxLZooq4lOt49jdR2DxMazLU70gHR9DTUZ8cE/7OuZlNfl8RFtU7+XFYpPHYNBOmhiY+UTeDR5kzoaPG5xVlyk3Hbbbdx222093x84cIAHHniAF198kfLycnbv3o3xIp/0p7hI8HpF2OnrXupLVg5s3hDeutxu6XrKzhUHFIjYoXVfuxQWSZxs1w75/+kwIv+2CBiXJVG8GbNEcNF16VxqboIv3CZiUGKSCCrbt/UKJnHxEmnLyRvcS/VxCAo3pypEaLFFyES5IC6nCF5RUUNH4/qSmiYupnCpPi1l5JWnenuT6mqGL/vui6NL4pYREeIWBRG45i+S2/oKkMkp4iA1GkXsKz8srq++20pMkuckPgFefam75yr0B5L9HqPr8NZfBk8OBFnHiWPiBFt0lbiw0jPCOz5FSJQIpRg1kVYTP7i2kOKchJDOjvsX5rKkIIXVv9/DmRZnv/ti1JsdxWWEx+dnXXl9SAEKwhdKgoQSOeLtFlJjbPznbVO5piiN9w7X0eHycf/CXB4Mw7F4T2kO1c1d5CVH8e5DC/ny49upanJwuKYdp8fPuw8txOsPsL0itKtm9aJclhamfuIpaz5/AI8vQLPDwxWZ8VxVkIrVbODFnWd4bsdp2pzeUU2Mi7KaRj1Ioa+gBxAdYaKuLfw3iUaDhsvrZ1aWfLp6vL4z5HMGsHphLm6fn+9eU8gXZ43lJ28dpayy1xERjNrNy0ui8nxXz7EMJ1iBiIXry+vDjg8uGJ8c9vEpFIpPSNABERMrbxzdYcZjgoRTtHsRMXXqVN566y1yc3PZt28ff/jDH1i5cuVnvVuKS4Ud24a+zx7R7SoMk/Y2cSQFiYsXcWPhlSK66DrU1kkka1zmyC6embNE9LFYpD+odEFvfK2jQ37WY2LgjT8NjqS1tojIU3FSuo8+rrvR6wV0EdMa6iVCl50Lc0pFxDmwT7YVCEhUML9gZDEG5PfMaAYh+Ly9YlpmtjjJRmXHj5YJfPkT5dydOyvPjdsl+9JXhJo8VabsHT8GeXkwZZq42BrqwOsTMclolD4riyX8UviiKRIDDCVA9aWuVvqm0tLDPz5FSJQIpfhYRFpNXF2UxtLC1N6Omwgz0TYzu083s+J/tvQToECmN5mGGgWlUHwO8fl1HhsmyhVlNdHsGF1ZZV+hpCgjhtQYGz+6vpBnt5/m1PkuFk9M4UhtO9PGygS44WJ+K0symZUdz42PbOOGqek8vCyf33+9mOt/LR1GjR1uMhPs/Hp9RUjn4+Gadr714j5Wzcnih9cWhCVE+fwBPP4ADrdM4YuymrCajUPGFe+al83rD5T2dB69UFbN1+fn8O0/7h92O51uHykxo3vDFm+39MTjijJiiI8w4/aObGGPjTD3OMU04ObpY7lrXk6PiDaw+2llSSbTxsWx+D83MTY+gq/Pz+G3d83G4fHR3Okh0moiymbiyc2neGnXGX52y9Sw9n+kCOJAnt5WxYrJ6kJKofirEpySZzTKG6yExMFT8UKRkChvqi4xoqOjWbRoEa+++ip79uxRIpRiZLxeiWH5homrBwKj60czGvuvb1KRuIYyxkB9vTgUly6T5RYsEudSZYjrN6MRZs8Rl827b4nIcfW1kJYBeeNFWLLbZX2vvjx8J1JdrZSZl8wNPbhg4PH6/fLl84LBKJ1EBw+Iu8vd5wMzi0Um2F19LWzaINs5Wg7X3ygT6lpbh95O0GVkj4S28AbcEBnVu/2iyXL84Tgek5IlVpecIs4pswUyxsr5rTknsTtvn2vk6TMl0rxlozyXx452C3lXiyh09qw8pxvWikB5y21yjkbqpbLbIS1N1hsOx8pl2qDiE3HxthsqLnqsZiN2q4l4u5kT9R38+K0jXPGv73HX07sGCVArSzJZNikVa5hRGoXi80C7a/gS7U63j4RRtkL3FUpWL8yl2eGh0+Xnq8WZpMfaCOg608bF0eH2sXpRLv/9pSuGnAB3/8Jc7lyzkzanl+fKqtl4rJEWh6dn4t7Y+Ag+ONY4bPQWZIrb+vIGfCNMWnN4fByrb6fd6aPN6aXZ4cVsMvDTt8v51h/2hZw8991XDvDE5lM8c08xsRFmXtxZzfJJaSNOjJuVFU9chGXQsQ9FUUYMVrOhp9D97tJstpw4T0q0bdh19J2Cd/+zu5n3sw188Tcf9ptsOD4lipgI06Dz3un2EdB1XtxZze+2VqEBZZVNmI0aHS4frQ4vH1W39ri/RiI/NQqPb3TOug6XGjOsUPzV0TT5Mhjkk/1wmDL1wnbI/BXxdb/59w0nKigUQQL+3gltQ9HUJAJSuKRn9Iq9MTGQmQWv/RHe7y6mjowSgWfvbqhvEEfUF78kBdRjxoo7anYJ3PZVETree7u3h2nnDvlZLiwS0SM5RUq6w4nbnqqQ/qTh8HolsqbrEhU8uF+2t2mDuJ3cA7bj8UgP1qYNEh2LjpYYWVs7XH3d0C6e6BgRrlpbYHz+yPsO8nssbzxUVUoEDqTs22yR8zYU4zJlml71aXj5Rdi4Qc7j5g/glT9I3M1oFJfUuEwpKh8zTtat65A+RlxfaekiHnm84mg7eVz6n+x2EbLCEYsSEqGpeXjRsy+treFHDRVDopxQik+MzWxiSWEqAR1Od8d4ghRlxHDfglyWTUolUk3FU1xmtI4QBxtNvAz6CyVBN80Nv95Km9PbE4VdPDGFf/rzQb5zTSHff/UAj66aydy8RLrcvmELrQHWbKtkzZ2zWTkni20nG4mwmFizNYxuBOCxTRUsKUwZsh/K6fHR6fJxpKaD3314kMM17Xxz8XhOJNpHFLn6Fnx/cKyB5i43qxflMiMrjqe3VQ05Me7Fnae5a142331l5OlTd5dm80JZNQFdRPPZ2Qnc+Mg2fv/12UM6r2IjzDx7TwmPbRp+suH+M2386svTaXd5eX5HNY+sP8ldpdmsmJKOw+PjfKdMrjMZDWQnRlJW2UxDu6vnGNcdqQvrOKKsJrrcYVrPu2l3+kiLHdVDFArFhcJolDdYEwvkU/2hmFh40U/GG4rm5mY2btwIwPTp0z/bnVFcGni9IxdpHy0XN1Mot9JAEpOkJ+ncWZmqtuxq2L1L+pscDti2WYq1l14t7p9p00WQ2PcRpKaLmBIIyAS4N/88uFepuUl63qKiYMoVsmyoQu1QBALi5imcFPp+r1fcQHV1UPahfD9jFlRWSM/VcNTVSmytcDLs3C59cnt2SXTQ7ZGIntMhglFWthStH9gvQs4Xvxxeh1RWtpyrqdNEyFv7rkzhO3tGJhLW1Q6OxMXFyz6sfQ+azoc+5sMHRQxbdg20tcqUQ68XrlwiLrT2NumPMhkhKUW+9/mkp2tnmYhpdTWyX9WnRcQbCnskIyuBAxhN0bsiJEoVUFwQIq0mVkxOY/mk1H4j6GNsZkwGTTmgFJclsSN0oPkDOi+UVY9KKFlXXs9/3DqV2dkJPS4m6C2cXlWSyXeuLuS1j85yd2kOzZ0elv33phELrYPr6HT7sJgM/ON1k2jp8ozKVdPu9IWM5Pn8Ady+AP+74QR7TrcQZTUxZUw0d87L4q41u8Jaf7Dge8/pZuo73Nz7zG5WlmQOOzEO4PUHSllZkjlsR1JQdHp591n+87b+5/Ynbx3lt3fO5vbiwRMMV83JoqyyacTJhs+VnWZ6Zhw1rQ7iIy28+a0FrD9azz2/2xWyU29WVgJGo8aKX23mq8WZrJqbRYzVzL4zrcMex8IJySREjs5ZFxOhevoUis8Us1kcFmnpEq3pG81LSBQH1LjMi3Yq3qZNm9iyZQurVq0iOzu7330fffQRq1evpq2tjTFjxvQrLVcohsTrE7FoOJHlzGnpZcovEAFpKEwmmDtfOoIWLhb31K4dg0Wixgb4cItEvs6cgZxcEYcqToa3z81NIohMKhKBwukI73EgAlYwXujzdZemIz/zgYBEy2w2cWGhSxTv9T+Ft+7j5TJ57qNdInqfqRaRacxY6W9KTZVtVp6SyXpBwWjvHlh+rUQOhxJwUlJFTPL65PfYn1/tdRPt2Aa3fUXcTps29HdrFU0RkSmUANWXc2dlX61WmHYFRNjFObZ1szi7glit4ty6YoYIYC4nvP6avDbSMuD6m2D9e+KeG0hiUrfoOApXuMl0SUajLzaUCKW4YASFJrvVRHqsGl2puLzx+QNE2Uwjupye23Ga1x8oHbG/aVVJJtcUpdHW7aYZ6GLqWV9ZNVdkxqHrOlPHxlLf7u6ZABcOLQ4PcRFmpo6J5UhdmGOKu2l3eUmKsuDxB2h3+nB5fSREWrGaNM61OPi7qybgDwQAjbgIE21O36hL2ROjrCTYLbQ5vTy6sYLHNlUMK7DduWYnb/zdfGZkxrNmW+XgYvWFuSyamEKbw8NTd87ilT1nufGRbT3ntqyymRaHh28tGc+c3N5hDKPtX1qzrZKX7p+L1x/g398uH9I5FZxc9/0VBYxPieo5xl/cNo3vXj1xyOMIur8MGqNy1kXbTPj8gQs64VChUIwSk1mmfY3LFIeCxy19UcF+lovYAdXS0sKPfvQjfvSjH5GWlsaYMWMwGo2cOXOG2tpaAMaMGcObb75JVFTUZ7y3iksCj0dKqg8fHHoZXYd178M114rD59CBwd0/CYlSPB5hl4jfqQoRmobqCDpdBTNni8soJ3f0+20wSjzN6xV30cCY3FBYLHI8nZ3S2ZSSKhE6Hfn5j4mVZTTk94PfLc6fcOjqkrLt+HgRZ6KjpfD73Fn5GoqjR+Qc3PQFcZ0dP9o7uS4hUZxbmdmwe6e4rb52d/84m9cLjY2QnCzi2ekqOTYQ99Srfwxv/4+Wi4jkdouQdrR88DJut7xWGurF5ZaTK51e+z6C/XvhhpvFGdXSImKb2yV9U7l54oLasxOmz5J9bWwceZ9y83pL043G3p4/xahQIpRCoVB8CgQCAXwBfUSXU5vTy51rdvKnvy1lTl4ij2+q6BE58lOjmDImluumpDMrO4FfvHeMZ7dXjTh0JOga+n9/PsiPb54yqv2Ot1uIsZlw+wMjOrkGEmMzsaPyPDXNTq6flkGC3URAl2urMfF2Wh1enF4/0TYTTm+Axs7RjSdvcXho6vL0izCOJLBFWk20u7ycauwc5JqymQ28f6Seh/6wl7p2Fz++aTJvH6wdJO51un3E2U0sm5TKVQWpNDs8+AMBDDAqEa3V6eFITfuwYqPRoPFRdQv7zrRyV2k2H1W34g/o/HHXGa6amEKU1Tis++s/vjiV1Qtz+VYYkxHvLs3m5T1nSIi0XJAJhwqF4hMQHG1uMsub6kuEefPm8ctf/pKNGzdy+PBhjh8/jsvlIj4+nsWLF3PDDTdw7733Eh0d/VnvquJSIBCAhASZsJaTO3zcrqNdhIbZc6QQu/q0CC5x8SIoWKyyvk0bhhdc+nLyBIzNFEdQuEMDQEq2rTYRX2rPidAynIjWl9zxIvpk5UDBJPk9EBTK2ttEYKupESFtXCZMnhbeeoN4vTJ9rvKUuIPOhyG0mEziRvtgg/Rn3XQL0N1l53ZJfPhPL4vzKIim9e9K6uqSXiZ0cT9ljBGhqqMj/Mmgba0iyre3hhagghiNEh9sbJTzmZIqUcu4eHmdtLTI8zNmrOyDxyPdWnW10i1lNosQ9f47I5+XSVPEjeV2SVzQYr2oPyi4WFFXnAqFQvEp4NPBbDQwLy9pRJfTjdMyMBsN5CXZefqu2WgaWE1GOt1S4B3bHZkaE2cj2mYO6YDqS9A1FGExEW0zj8oZE2k1YTYZeGrzKb5SkjW6viqTkZmZCczMlOm8LU4fERYjHxxt4IkBk++un5rO91cUjLjevsTbLbQ7vRw628b9C3N5MEyh5fkd1Ty6sYLfjOCa6lv63heL0cA9v9uNQdO4f2Eus7MT2HL8PFPHxo1q/zvdPtYeqR90u9GgMSMzji9MH8NVBal0dT/v41Oi2PujZbh9fjz+AK/sOcPVk9PZXnGejccaqW939RxHYXoMP7q+kBmZcURYjGFNRgz2XrU5vaOacKhQKBRBUlJSePjhh3n44Yc/611RfB4IToA7dxaK54pgcGaIv2VjuiepOR1SBJ6VLZ1AtTXymKDoMHsOODZIp9NIdHWJ0NPeLtG6rZtHfkxyisTldF1igsePiQPryKGRC6zT0kXAmFgox33ogOz7kuUisB0bILzU18PMUUbBIiNFpElIkOlz+z/qdTUNRUGhOIvqauRr53ZxYwUCgwu8Y2JEkBl4rBERcO6MuKAOH5K43ISJ4QtQQQI6VA7oJzUY5PnOLxCx0GiUeF/NOaivk9syxsj2t28TIS5vPBQUgc0qQtiUaVC6UOKQBgPExcHcUplYGOp5M5th8VIRxnw+caW99YbEHZUINWrU1aZCoVBcYDw+P+sO17NgYjIHz7UNW6J9/8JclhSk8NN3ytl28jzP3FPMrqoWng4Rubp/YS5v/N187vhtGVVNw/cNtDg8fHnWOLz+wKicMY0dLrISI3l2RzUBtLD7qlYvzMVmNuD163xwrIEXyqr5xa3T+J91J0KKIe8cquMH1xaOWiD7+vwcJmVEo2naiELLHXOyWDAhmTcP1FKYHs3x+s4hXVMDp+OFuj3aZuZ4fSel45NYNikN30iWtAHE2Mwcqum10CfYLXxr6QRumJaOzWRg/ZEGvv7M4J6ou0tzmJ0dz/Nl1TzyQQWr5mTyo+sn4fMH8PikOyLCbKKhw4nNYuQnbx/hG4vGD1vcPjc3iZ+9W05GnI1Ot4/ndpymJCeBFZPTVDRPoVAoFJ8NgYAUcU/IlxLtOfNkQt3RcmhqlIhaYqKINknJIgh8tFv6ng4dgBPd0+6CmMwwfgJcc51MYBtp6p7ZJPE3TYPYWCg/Mnx3kcEAs4pleZMJdpWJ4NHWBvPmw7YtQz/WHinT60wmiZS984ZE8hYuli6kgQIUiEPM6RRxLRx3V0qqOHUWXCnr3PcRLFshjp+hup7yxsMVM8UplDEGGhqkM6nvee1LfsHgjq2ICNn2lo3yfWycxCKtVjm/4aJpIvCd7XOtl5sHxXPkPGsGOY4tmwa71mwRcMV0WHG9dFudPy+CWkysPLfBXqfOTik+n5Av0/hu/qI4vapOydS9iIhuAavbpdbRLs95dDS0d8g6M8ZestNLPyuUCKVQKBQXGJ9f57HNpzjd4mBlSRb/t+EkVrMhZIyqoqGT94/U8+aBWt54YP6wk9aCfUHP3FPcr7coFMnRVlKirZxpdnBVYSqrSjKHnUK3siSThROSibSauPeZ3bQ5vTy34zRrH1444mNXzcliSWEqfh1+/u5Rni+r5puLxw9b2j3aUvbVC3OxmDRONXbx4zfLibebeeae4pBCS0lOAv94XQF5ydG0ODx8c/F4ErrP94s7z/DcjtODzl3f6Xihbs9MsPPMPcXsrGzmzjU7OVrXwebvLR6ViBZlNXGsroPYCDMPLM7jq8VZtDo9NLS7sVuMlOQl0Onx86e9Z3tieIdr2vnOy/tZWZLJs18v4S/7znHLjLF0unx0uL2kxdiIsprx+P1sPNaIPwAnG7q48ZFt3DE3iz+unsv5TjfNXR5iIszERZgxGDQcbh9/e+V4YmwmTEYD7xys5YWy08NOOFQoFAqF4lMjEBAHyr6PYNoMmQJ37KiIDBMLIKZElnM6waCB0SAiz9UrROyoCSEw+bwSdWtuEhfL22/0L7UeSM540ANw7pwUWV99LXywPrR4ZbOJYBQdI0LS+rUijETHiHiSmS1C0949/SNwRiNk54hDy2SUY17/voghEREiMO3YNvQ+Hj0i8bZwRKipV4izase2/lPqbvqCdGSVH5HzYTBILG3aFbLPbW0SaUzPkD6pUxUSLxw4LS8yUkrB3/xL/9sLJkFVpQhXY8bCgkUi9LzyElx7g7jHGhtG3v/MbNlvp1PcTfMXiph15LC4mawWid+tuF6idTu29bq8XE5xNc2YJXFCHRHiqirl9ZMxRqKXTqe4swIBme43IV8m+027QmKMvm6xq+KEvB5tNnkOnd0dW1OvkH3UNOWIGgVKhFIoFIoLTJvLy5Hads61Orll+hhWL8pl84lGvvH73fgCek8czGLUeOaeEm5/sizsSWvPl1UzPTOOlSWZPLqxIuQyRRkxJEZZae7ycNvjO1i9MJcfXFtISW4ij3V3TvVd9p7SHK4qSMFiNvDwH/ay/VRTT2l3pM3ED64tZHZOwqBIXa+TKxVNg1MNnbx5oDbs0u5wS9lXlmQyMyuBJf+1iRaHiEdtTi83PrKNBxbn8dL9c2l3eWl3eYm3W4iymlhfXs8PXjs0aH/vmpfN6w+UcueanT1uslUlmSzKT+HHb24atN3Z2Qn8z7oTPH/vnEEC4Wt7zvL1+Tl8+4/7hz1OgK+X5uDzB7huSjo/vK6QXZXNfPmJ7ZxtcbJqTha3l2Ti8PiZOjaWKycmo2nw3I7qHsHs+bJqSnISWDghifuf3R3yuG66YgzBesxVc7JYWZJFm9NLh8tHRqyNaJuJisYukqNtuLyB7teggUiDgVnZ8dw6cyw+vxo7rFAoFIrPAF2HmrMykS4pBVLTIDIKCotEiHI6RACwWaGzA72qEi03TwSSUAJUXxrqpVx7UhGUbQ+9TEyMRNbaWuHDreLemTYdFi0WkaL8iES3TCbpSRqbKfus69K3lJ4O02fIxLVgQXlsrIhkLpf0OxmMIqa0t4mYZDZLRG36TNi2WXqhqk8P7ToCOT95E8QlVrZ96MjfrGI5XxvX9xegqqtg8lQ5t9dcK8KXjixz/KgIPF19xCa7XUSla28UsSzoDIuKEofZgX3i0AqSnStCzttviGttwSJ5XGOjbMtokPO67r3hnzNNEyeT0SgiU2ysuLI2rpf9nTYdMjOhthZaToo4dfOtIs4d2NfrjNq7R87XhrX9XW0nT4gza848EQTPnZHX2uQp8tw1N8n5i0+Q18O4TBHQWlvkXEXHSF/VsaPyekhJldeGEqLCQolQCoVCcYFp7SOUrHyqjN9/vZiJqdE8deds3L4ADo+PGJuZGJuJDrePY/UdPHnnrLAnrQWLxx/bVBGypPz+hbl4fH7++fXD/NP1k7i6KJXbn9zOdVPSefG+OTg8PlqdXtmHCDNGTYautLu8fGd5Af960xRiIkxYuh0xHl+AqyelsrQwlXaXl5YuD5FWE1aTged2nOaf/nKYsfER3F2aw+sPlPKvbxzG5fGPWNodLGV/5p7ifpPnghRlxLB6UR4zM+NZ+dSOHgEK6Cluv3HaGJ7eVsm7h2tJjbHx01um8pO3hp4+991XDvS4yb73ygFumzWWublJ+HWdDpe3Z7vBaXN3rtnJjVeMGSQQZifauXl6BpFW87AiWmyEmf/44lRKxyfR4fLyt4vH4/EFmJEVz83Tx3B1URplp5qGFJb6CmaPbz7FE3fMonzAee17XD9YUcgvvzSNssqWnmhfbISZd761gA63n6N1HXz/tYMht5USbcNqMtDl9hFpVZcHCoVCofgrE+wbKvsQpkyFoqnS5dRQL1Eps6VbGEhEO3xIOn3eeSO8dR8rF0fMnt3ibumL2QxXLRNX0Ee7Ye586Rzav1diaWPGinATEyNCUnAqmsEgItCEfPm+76S0QEDEs4MHRDCxdHcRHSuHs2fkmEC2N/UKETjOnhneqRVc74a14uy67kYoPyzuHr+/tytp8lQ5V2/9pfecxidI11PeBCk5T0sTseXgQYks7twhEbSBOByyj+cbYenybkEmS7YDvY6sxCQRqzLGwNr3xDVVPAf2fiQClNEIS68W8SdjDMwukfhiKOITpPRb10VQammWc5uaJsesGSR++eof+08hDMYvl18jEb1zZ2UdR4+Im+7Drf2343bDpg+kgysnT879pg96n5trbxD3VMlceR2UbRfhKUj6GHFM+f3yvAT8SoQKE3WVqVAoFBeYOHvvVLmqJgfX/3obDy2dwG0zx+HxeUAHm8mAP6BzvsNDfmpUWKJNkGDx+MS06EEdR6tKslhSkEJTp5v/78Yi2hxezjY78AXg3985xs/ePcak9Gi+PDuTktwEEiLNmAwGTEYDNouJlJj+2/L5A+jA5hONzM5JxGY2khhlpcvtw+vX+UpxJjoaz+043RMb+8kXpnC2xRnWsVQ1ObjxkW288UApa+6aTafLR4vDQ0ZcBAYN7FYTHxxt6HEtxUaYe5xD/oBOY6eba6ek84UZY6ho7GJ7RXhuspKcBH6zagZPbankx2+W886DC1j37UXoOv2mzXW6fYNcXbERZn7/9RJ+s6mCD7t7vELFApcVpvAft05jy4lGvvzE9kGRwcdWzeS/3j8WMuo4UDC78ZFtwz7vPceVm4jVqPGdl3vdWfcuyCHCYuQX7x0bUZz7++UT2XPqPHPyklRJuUKhUCj+emha/76ggwfElXPrV8QZ5POJOyU9Q5w3Zkv35LTwrp1wOEQEio/vHwXLGCNuGFuEfCI3uwRaW8W9NGWqCB9ej+yf1SZiA/QKUaHwekUcOnpEHERmE/j8IpLExUscz+8XgaXylLh1QFxElSFc7pomIlZwOp3HI71OuXni4pm3APw+WX9drYhqVou4uRrqReQqmCT78+pLEiUDEXsKi8TB01dcCUX1aRFd5pTC0cMyHW/BlXDt9XJsgYAIbLvLRNyJjJRzt3mjPH78BHGz7d0jpe1XLYPrb5J9qqqU59diEeFxUpGIYieO9d+H893T77ZvDl1YH4xfNp2HJcvgnbfE2VZbA1nzhj627VvhC7dJHC84mTAhUdxOUdHSKdXWOvhxteekE2r+IokBRkfLPphGN136ckRdYSoUCsUFJnbARLo2p5d/e6uc66em8/N3j1Lf7uK6qRlkxNrIS44iymqi2TGM9ToE7S4vUX3cKsFY3ZzcRH7wp4OcbOhkZmY89y/K4y97z/K7u4vx+CSCFRth7nE6Ddf/4/MHcPsCPLGpgq/NzeZsi4PkKBtdbh/NDg8JdguRVhPLJ6Xwldlj+dpvd/J8WTVXTkxmYmrMoPUF3UvBOOLx+k78AZ02pxevX+dvnt9JQIcpY2L5++X53P/sbp66czZXjIvj9uJMPqw439PLFMo5FJxcl51oH7G4/fHNp5iZndDjJmvocDMmzsYda3b2m5pXmB49SCB8YHEeH1W38EK3eHTjI9tYWZLZr/MrMdJCcrSNn75TzvMhRKZZ2QmsK68ftmsLBscvWxyefs/7oOPaVMETd8zCoMlAGaNBY9WcLNaXN4Qlzs3IjOeqwhTWlzewrDAFmxKiFAqFQvHXwGCQsnG7XQQjEKGm4oQIN5s2yG3XXCeiid0O3sETbUdk/kIRszSDxO+8XnE8VZyU+ydMhJmzxWkzdpyIXqPp+/F6xYFz8jjc8AURvsxmEYk8bhFarDYRVGbOFuFt/175KpgkJdf7PpJ1RUaJg2fCxG7BS5f9PnVSytp1ZD0b1kLpAhFKqqrghptlCt5VS6GuTsSoN/7UKz4FaWmGD7fIvi5eCh+s63UBheLIIRHQjhyW58bjkedg726JRfaNBqZlyHkIOrEKi6SjCUSkevctcZhNLBTnGcjxeX0iCp0KIcblF4gYNtTExCCNDbKPkybLuvz+4YvDHQ6JdGbn9gpfY8bKc7ZzR2gBKkhUtMQYF10l++8PyPNiVkLUcKirS4VCobjAmIxayIl0u6ua+fKscfz7O+X877oT/Omb84i0mkiNsZFgH93I3bQYG//zlel0uLw90akXyqr51zePMDY+gr+9cjyLJ6bQ2OnitlmZRFqNxNvNjDFGhLV+h8dHZWMnJxu7+HJxJgFd52htB9//MHSUa1F+Ms/fW8K1/7uV/11/ghfvn9sjxPV1L7k8/h4BK1gUvruqGavZQHmtiD9fn5/DMx+e5usL8oiymtCBH1xbgC+g84t3h3bzjKa4faCrKNpqIqDTIwoGRbKBAmGC3cJXi7P40uO9nRJtTi+PbqzgsU0VTEyLJspq4rop6URaTSEFqHA7s4L0jV/G2y10uoe+6B54XAVpUZgNGmu2Vg75mOA+5adGUVbZxIrJaawrr2NhfjJ+Fc1TKBQKxV8Lj0dcO0GxIilZRJvkZLjuJuntObhf3vCnj4FIu4gzQ/UiDcRmE0fRuCgRJsoPi6gBIoZMnirL6LpE6Eymod1OofB6Zb0H98PyFfLY2nPwwdr+ApDFKhG+xETIn9gtHlWKkyi/oNeFM7dURLh33pQeKRDxLb9AxDivB3aW9Yple3bBVctl/6dOFyFk7DhxLQ0UoPrSUC/nfHYJvPX60Mt1tIubKS5e3EaxsRLhmzQFEpOl8LurS0Qys7m32yoqSvqg6mp716XrEj88e0a+NxohLV36sUIJUJomx7323bCeCk4ck46oPTslRukY/sNJGuohLq73+9hYEfxCCV6a1jsxz26X6KHHDZbo7lheQF4LSogaEnVlqVAoFBcYi8nIksJUvjYnk6N1HdwyfSzLJqXi9Prp8vh4/GuzMGrw9sFavjhzLEsLU7FZjKOatGazGPH4AmQl2vH4AnS4fNx0xRjumJvdz+UUZYsa9f47PD5+9k45qxeNx3G2jQhz+FGur8/P5pdrT+D0+Li7NIdHNpwY1r1017xsvj4/h1f3nCGg95aBH6vt4KqCFPwBnSPn2kiOtlLR2HVBituDBF1FJTkJxEea0YHvryigts3VI5KtK28gIbJXIPzW0gm0Oj0cqW0P6ewqr+3AaND41VemDykyfdz45bVT0rGaDZxs6KQwPXqQoyxIu8tLTIRc+BSmx9Dm8g25rVACYZvTy/93QxG6rvPa7rN8cdY47EqIUigUCsWnjcUinUUpafLmXusWNU6eEHdLWoZMpDvfKJ1G7W3iWAkKGcORkipCx7mzkJEhkanCInHLgGzrk4gGXo/sZ3IKJCWJ0LRtM5yuGrysxy3T5prOw5VLRPCqqpTjGjNORDaLGd5/G5qb+z/W4RCn1Inj0lk0fgKkpopj56plIvhomogq7W0iqgUnxg1HdZWUmScm9S/wHrTvHjlPKSkiLE2YKPvd2S4W7NhYcYB1dvRO00tN6xWkYmLF3ZWYJO4yh0NEqzPVIjIdLQ+93aho6VxqbRn5WEBEt9YWEfTyCyRiedUyiQnqOrS0wPFy6asCua2v2y3CLgJbX4HTaoPYGJhVIrfv3SMOquAykZEiTBVMknX5fCJkKgahzopCoVB8Cpg0+P6KQtpdXpo6PXS4vZiNBt7YX8tzO04zNj6Ce+fn4PT4WZifzK7KZu6al813Xzkw4rpXL8xl/5lWnF4/peMTMRkMpMbYGDNMtC5cfP4A647Us6uqhTvn+rlmSvqoolxfm5vNr9ad4GyLk9LxiSyckMSv1p0YVsBaVZLJ3y4eT0qMjVlZCRyuaeOhZfm4vX7+/uX9/O9XpxPQ4buvHAzrGEYqbg8Sb7cQE2HiF7dewcZjDfx2a+UgkezuedmkRtsoyojhaF0H101Jp6bVyTcXjx/S2bWzsmlYkenjxC9bHB6+PHscFQ2dbPzu4pDbDU7SS42x8b9fuYJnt1fT7vTQPsARFhTPxidH8YNrC/nw5Pkh4423zBpHQ4eLdEMEVvMwVnaFQqFQKD4Jui4OEr9PepFqzsn3sbEiIuTmwdbNsHsnzJkry0fYxb0ULKAejinTRCQKCgRG4/ARrdHi8YjTxx4pvUZVlaEFqL7U1faWZicnyzE4usQBtvmDwQJUX7o6RaS64WZoaxPXlI64kd74E1x/s8QNN30Q3v7ruriusnOGF6EiIsTlc9VS2b8PtwwWufbsEkfbpMkiLI4ZJ+f6qqWQnArHj4mQFgiIS6loqpR/BwK9UcSBmEy90b5w8Xn7T647dhTaWsThlJoGCxaDyykT95KSZAIeGpQfkmMKlp6nZ8jrJi1dusI0RJDKyZXHN3VP4uvqkmM/Uy0l7KqkfEiUCKVQKBQXmC63j7VH6nlyy+Bpb30nnj38x/2smpPFD68tYGZWHAaDYdhJayBOoWnj4nhuRzUPL5twwcujPb4Aj206RZTVhNPrDyvKFWTNtkquLkqjMD2aGJuZDyvOYzIYRhSwniurpjg3kcUTk9F1KMlN4B//dIDvXF3ApuONeP06bt+FKW4PIm4yAz+9ZSq/HKYc/DuvHCDaZub+hbk8tqkCnz9AbnIk2Yn2IZ1dK0syOd85dMFnp9s36vhlSoyNxEgzbx+s4z/eOzbk6+rf3jxCQNdZ/cwe7pibTen4TIJBgn6uJ68fjy+A1x9gTl4ilU0OzrY4eyKMfeON31k+EV9AJ+DxEaE6ohQKhULxaeDzSTxu30f9BaWWZhF0UlKlt2jrJhGjDAZx08QnwLz5MvlsKCGqeI44hFLTRh+xCwe3Gw4fkiieySRCTfnh8B577CgUTRFxxmwGvXuqXm3NyI9ta4P6ejmuQEAKwy2WPh1WpvBcUEG6usTJNRRJybKPS6+G1mZY917oc+7zyUS9tHSJOUZEyHlxOODlF3vL3UEcWydPiNCzeKlsoyWE+OZyieg4mvhlVAykpkvXVXCKX5DzjeJGmzIVVtwg5+3tNyArRxxmZ6plv2cWyyTAQ/thy8ZeIcxqhfH5MlnvwL7+Dq6Geilozx0vr9FP4zV3iaOuJhUKheIC4nD7+Mlb5cM6f742J5MX7pvDD/90kD2nm9lQ3kCH20uny8cPry1kTm4Cj28eLGDdtyCXBROS2H+m9VMRoECiXEdq2ylMjyY52jJslCvU8bW5vCwtTCXSamJOblLYvUePb6pgSUEKHS4v//fBSeZPSOaFsmoK02OItBqob3eN6jhGKvC+pzQHu8XIluPnRywH/96rB9j4nStpc3qItJr4+TtHR5xo9/0VBcRGmEP2Uh2v7xx1/DIx0sK/v1XO8yNEIn9+6zSe21HFwXO9r7XvryhkWWEK/+/6ScPGIoPiaN9S92C8MdpqZv6EJNweH1YlRCkUCoXiQuLpjrIFp8SFoqEedm6XqNrundLllJktPUqZWfCFW6WL6VRFbxF1Vg4UTZapZZrh0+3oaaiX+Flyiri5QgkpoXA6REyKiREXksEwtBsoFMfKwWAUJ1V+gRR+FxbJegKB0R2z2Ty822twVHgAAF/1SURBVGjqNHFbmYwiBI4kBm3dLE4tt1tEnWDXVyhqa0TUWrJcnHAD98PpkO6scZm9PV7DESy537BWXHVDcfCATFrMypGIXkuLCFZLlovjqaMD3vzL4OmB7u5I5elK6edyu2XSYZCKkzBjtohRM4tF5FL0oDxiCoVCcYFwe/28d6R+SOdPbISZby4ezzeuHE9A1/n7ZRN5dOVMinMTuPmKMTy34zQL/mMDTV0e1tw1mw++s4hXvjGX9d9exONfm0mr00OE2cjC/ORPRYDy+QO0Or3ERphZUpBKnN08KMo1HEaDhsfr59rJ6URbjRg0RiVg1bW50DSNaePimJ2dwPNl1XxjUR5GzUBsxOguHIcr8F5Vksk1k9MwoPHYplMhl+lLm9PL917Zz20zx/HBsYawJtp9cLSBh5dNCHm/P6DzQlk1d83LHnHbAPcvzKXyfGdIAWrgdreeaOx32+93VFPd1MV/3DaNxzed4ruvHBgkfAVFrCc2n+KZe4oHneunt1UxeWws68vrCSCvE4VCoVAoLhgGg0xzG4pxmfJGf1aJiBXp6TDlCnEN5ReISLB7F+Tkwco7e7/yxotLxWD89EuiDQYoKBTHy2im9tntYLVIt5XPBx2d0DVCiXZfurrElaMHYNcOce+Mz5f90TQR6MIlMwvqa0PfN226CGyH9kNdTXgOq/Y2EclsNnl+RqKhXrq/cseHvv9oubjGwnEVTb2id+rdSBzYJ/toj5TvGxtkWqHRBOvXDhag+tLZCR+sF6Gp7375/XDmNKDJ8zraKOHnHPVxpkKhUFwgfAGdJzeHFjWyE+3DFnSvXpjL63+3gFVPlfEvbxzhx28e6Zm01un2caxOJsddU5ROWqztU9l/XQ+QYLfw+gOl7K1upc3hI84+8kVb35iXAXD5ArS5vLS7RvcHt8PtJT3Wxry8JG5/cgc3TMtgSWEKJqOBmAjz6JxDURZMBm3Q7V+fn8PySWm8uucspeOTwhbJNhxrxB/QeTwM0Qrg8c2neP7eEv71jSMhe6me23Ga1x8oDSt+uaQglXt+F8bFW/d2n7hjFr9ad6Jnu/vOthLZ0PmxS92D8cb3j9SzMD8ZDTBdgP4xhUKhUCjw+6UU2z3EG/2pV4iosnunvKnv676Ji4eZs+CLXxZHS3ByWrA/KLhsifvTK4j2dnc8zl8o5ddeb28kbjinUFSUiGrp6XDmjHQVGU0iqo3WvWQxg7u7MHzJ8v5iyMRCEVkCI3yAFBcvJd6BQP99zxgjbrKkZHj9TyIC1dWFv39ut3RfOcMU1o4cguK5cPzo4PuqTkkR+7wF0kU11PmdVSyC2e6d4W3T55Ny9PET5FyBiHhnz4S3303nRZQbO67/ND2XW56T492RS0UPSoRSKBSKC0S70xtS1IiNMPPsPSU8tqliyJjet/6wj1UlWfzh/jk8/NJezrQ4+00/CwoK7S7vpyZCubwBIq0mfrXuBPGRFnz+AIsLU4YVf4YS1/75xiKWFg7TKxCC1Bgbmqbz7T/u48Gl+SyflNrj+DJqcHdpDt95ef+I61m9KI8TDZ089rVZuDx+Whwe4rsLvCsaulhXXs8bB2oozIgJe9/yU6NGHU10ef08tDSfX649Puj+NqeXO9fs5I+r5zInL5HHN1WEFCYXTEimucvNzqrwbP0D+7CMBo2F+SlhxyKHKnVvcXiob3fR5vRijbaGtS6FQqFQKEYk4O8tdh5I7niZlvf2G1IAPZDWFnGqzJsv3T65OdLNpOsSo2qol+UMn+JgDV0X0aa2VgQIm02igMNN7YuJhauvFZfQ1s1SoA2ynoJJ0kF0cvC1Q0iysqUkW9Ng6nTpP1p0leyD2Swi37z5sG0Y0cZildLw6ipxPM1fJOKR1SJOH4MBdu0UoUUzjCxo9cUe2fs8hENTkwh0ueNFGOqLrsOmDXDdjfCF2yR+GYzuGQxyLoqmyJQ6r0d6n8KlpUX6m4KMHQeHRh4W1EPlSRiX1V+EslllSqDbDehqWl4f1FlQKBSKC0SLI3R0bdWcLMoqm8Io6D7NrOx4/ucr0znf6aau3T1o+lmM7dOzk/sCOluO1fPS7jNs/t5i7ntmN7VtLu5fmMuDf9g3aPmhxDWjQWPZpFRMBm1U7iWzwYCua/zm9pkE0Nlx6jyL8sUJZTYaWFKQMqJzaFVJFldNTKH05xvocHn7uclOdk+Wu++Z3ejooyoHj7KaRhVNBGh1evny7HFkxNl4elvV4Ml7pdn4AjroOr+9czZdbl+PYBZpNRFhMeD16dR3DGMDD0HfPqz81KhhJ/UNZKhS92C8sbnLQ6TFpArKFQqFQnGB0GSiWyimTYdtm0MLUH3Zvg3Sx0B0rIgXTqdMhjMYoLLy033jH4zf7dgGc+ZJL5DHI9P4QolQBgMsXS79VwOFpjHjoKNdisajokQAGg6TWSKIG9fDlUuky6hoikzcmzxFnFUGg5R+L+neZt/Jd5omYkvJPImcbd0st9ts0pPk9YpA9pVVIvaAlKbHxYV/fqzW8F1QID1MPp+IilOvgOPl0NIqr5G0dHErNTXJucsdL+c8WAhfXwexcSKSBdyjKwPXNKTwqhuLRcrQw8Xl6t/7ZDRKjHT/vu5IpCom74u6ilQoFIoLRHyI6JrRoHF7SWbYTpQnt5xi/oQkAjrc+8xu2pzenuLot7+1gNiIT+/XtsVk5LFNp/oJF+danbz1rfmsKskc1IU0lLiWnxqF3x/AZjJx74JcHn5p34jbvrs0mzXbKilIj2H++ES2njhPi8ODxx/AZDRgMhqwmQ08tHQCM7LiQoo6987P5arCFE43d/UUgvcVUgrTo3F5/OjoxNhMRFpNYYtkqTE24kbZS2UxGnjghY+YnZ3AE3fMwuPz4/YFiLGZMWjw7PbT/PjNctqcXgwa/QSzv1mUx/wJSURajaSP0vnWtw8rymqi2eEZ1eMHlroXZcRgNRs4VtchPWEuL0nKDaVQKBSKC4HRKALSwQGuk/QxIoCE46LRdRFexowVgeSDdSKgpKRK5C3caWofl8MHZRvmbuHidCVMyIe5pVLG3Xf7mVniKArldEpOETHE5YRFS+C9t3tdUgMxGGDhItnWubNwtlrKze12mbgX3KTFIvpHXLyIXx6PuH5AysydLnFMtbb0rtvl6hVgIuxStD5zthyfDmRnSdQtnJ6juDgRosIlOUUKyN95U8S48flSGh4bJ8f81utyP8jURE2T/fd6oXCSOK+07v1OSel/XMORktrfOeX1jm6/LdbeaCaIQNbYKE6onFx5nY/GQfY5R5U6KBQKxQUi2FvUl4/jRGlzeDle38HKksye2777ygF+s/Ekn+ZlVEf3ZLy+wkWb08uqp8q4f1Ee//2lK3qOLyiuPb2tatB60mJsxNktPPpBBTMy41jVfRxDsbIks6eI/PFNFZiNBlodHpZNSqPd2XuBE2ExEWUzUZgWw5q7ZrP5e4t596EFfPj9q3jxvjlcWZCExaiFnIoXG2Hma3OySI628shXZ/CdqwswGqT0OxyWT0rtmWgXDkUZMVhMBvacbuHRjRUs+PkG/vb5j4i2mvD4/Dz4h708urGiRywL6CKY7apqYWZmAlcVpNLm8FJe20Gc3TKq7QYFI4BOt4+kqNFNZBlY6n53aXbPpEKL0UCE5VOMNSgUikuet99+G03T0DSN7Ozsz3p3FBc7BoMIAFFR/W9PS+sfbRqJ6ioRYerrJcIHImC9+yacb/gUi6G13mltXo8IF4GATGWLiYVrbxARwtD9tntioQhmoUhNFVfPX14TIeqGm0RYG0hKKixfIdsu2y63HTkknU4VJyWWZujzNt9skfNrNIk4k5YuXU8WK8REd287bbBjLFgI7/FIyXd9nXRX+XwwedrIpyYpGaKiJeY28PkdiomFvX1Q9XXihHvnze5ooa9XgAqi67J/WdkwYxZ0dcCJ43C6KvweJptNHGEVfeJ/Ned6X0fhkJMrYiCIkDZzlkw5jE+Q6YxerxKh+qCcUAqFQnGBMBm0Qc6fj+tEWXukngeX5vfr5nmurJqS3ERWTE77VIqhW7vjhJ1uX7+oWlWTgxt+vZWVJZm9jh5vAI3Q0+8W5SfzwbEGfrutkqrmTn715elckRnavXR3aTazsxO4c81O2pxe2pxeOt0+rpmcTqfLh9HY375st5iYmBaNxx/A6PbLh11mI2ajhs+jowNJUdZ+Dqdgb9Wuqha++uSOnttjI8y8/a0FrCzJ5PlhJt6tLMlkcUEKb+yv4a552Xz3lZE7AoLCTfC5C4pMtW0ushMjuXdBLp3uE0P2QD380l7WljcA8M3F48Puwxq43eP1ncR3i1jhxiL7ilhBgfDHb5bzzzcUsba8nttmjhtxPQqF4vKks7OTv/mbv/msd0NxqaEHYO58WPder2vIZBLhI1y83X07R4+IAyko9AQCsGEdfHnlhd9vECdO0K3UNw7n8cD774iQUzAJSheKSGWxilNrIEajiEivvyZCVF33lLrpMyVydr5RLiaCMcPyI9IpFTxf58/L8ZuMIuAFAv2FKOgfFwvi8YDRINvMzYPjx+T28RNg+izYsrF3X4JUVsD1N0nXUfmh0OclKVmEsr17xJ1VPFeOezhX2thxcnwDz4+mybEYjOJsO35UJu8Fo4ZFUyApCdavg9o+0/BuugXyJ/Ye01DMLpHS875T8Px+yMqCnTZwjxDLi4sXp9b5RrhihkxJ3LJJXFDX3SgClGaQ86AAlAilUCgUFwyr2cjySan9eosGCjrhEG+3cPBcW8hunsc2VfRMjLvQxHbHzY7Xd/a4foLCRZvTy6MbK3hsUwUT06KZlRXPzdMHfzpnNGgsK0rriR+2O32caOjkVGMXT9wxuCj8hbLqnkhakHanj4RIMy6vnzT74ChaMJ5nH9BLZDYaRJwywOqFuXzrD/uGLYVvc3pZ+dQOnrmnmFlZ8Ty1tTKkKDQzK4Eut49fvHeMP3+zNCzRanZ2Ai/tOsPs7Piecnl/QCcxykJA19lX3dr/fERaSI22sfVkI1f+58Z+52M0k/SCglGQr8weh64zZK/XQPq6nvoKhDdMzWBmdjwHz7YOmjqoUCgUQX74wx9SXV3NTTfdxF/+8pfPencUlwpmi7hHliyDrVvEBeRyje5Ne6RdppHV14kDqe+EN69XhJPc8SL2XEgCAdlPp1OcWyVzITFReot0XVxS1adFIDJb4ItfEoFjIDm50FDXvweqrQ3Wvy/iVGycHNOx8tARxWD/UVyCdEWFG0HsK0zNKhEnmcEAM4vFgdTeNvgxDoeUxS+5WiJwhw5Afa2ci9g4KJwsopCjC8oPyzn/4pfhyqukIN0T4sPZ3DwongP79sqEQE0TEefsGUhNF8Gr7EM5F9dcJ+4lkPPu6IKXXhh8Xjesk2VNZhEGBzqRLFYoLoHoGIk+BklJlU6vxvMSYXzvnaFjkRERsPRqcWndcDOcqpDzFhsPN3xBns/4eDkHA0XByxglQikUiosar086fFzeAE2dHmxmIzERZsxGDYvp4osFRVpN/ON1hZTkJvDE5lMcresYJOgMR18nysBuHpBoXrvTN0iAuRAE44SHa9p5oaw6pOsn6OgBuGtezqB1DIwfdrp9xNrM/QSsYO/RsbqOfhPYgkRajZgNBuIjzdit4T/HQXHK5w+wYEIytxdnEh9pGbYUvqrJwY2PbBNh6d4S2l0+GtpdxNstJERZ2H+mld2nm7ufDy+v7jnLD68tZEZmPGu2DRat7i7NZlF+Cn5d52e3TKXZ4ekpl19fXk+83cKTm0/xfxsr+E2f83Hd1AxibCa+/cfBbqfgJL1n7ikesg/rntIcZmXH9zjKijJiuH9hLgsnJHP373by3NfnhFXqvnxSGk2dbm4vyeSFsmpe3n2Wv18+kemZcfxx1xlWL8rDar74fu4UikudQADQwe/tHaBkMPcaAC4FduzYwf/93/9x0003cfPNNysR6rPE75cvXZcXl98vb9oDgdBumIsBi0UiYbd+WRxFTechbzzs2RVejGl8vvQjgSxvNPaP4FWegszsCy9CGQyQXwjbt8r53rNb+pzefbO/k8vnky+HQ0SylgFTb5NT4OzZ3u/b28RFBdDcJF/DkZgk6w/2GJlHOcjGZBKxbsX1sq0jh0ILUEE6O+Evr4pwNHmKuJFMRon8VZyULqhdZXJ+ShdIT5M9SsSo6tNQcxb8AYiNgQkTxSnk88vz2Fgv53Jcprja3G4RJStPidB36EB3Z5MNvnCrOM5CCXsd7fDOGzBvgRSdV5yE5mYpOc8YA2MzpVcq+PjISHkuJxWJsLVpA9xyK1x3gxSMV1f1vhZNJimFnz5DHFpulwh4MTGw4gbZRnu7OLv8/tE/H59zlAilUCguSjw+Pz6/TrvLS4vDS2yEmeRoGzo67x6qxWY2cuXEFCJD9P981kRaTVxTlMaywlTaXF4MaD3OnJHoG6ca2M0TpN3lJW2UZdXhYNB6HUQjuW9CuaVgcPxw4HJ9XV2hKMqIwWQwYDYZiDaaMX+Md199S8wtJgO3P1k27PJBl9eWE408dedsfvHeUeaPT+bGKzLYeuL/b+/O46Mqz76B/86cM2v2hCwkZIUASQhbgLAvsiiKUhUVRetSBcvburTVSq2tbam1jz5al1bBx2ptRXFrS4tiQUARIVT2JUBYQkLYQhKyzmS28/5xZ7KQSTIJmcxM8vt+PlEy58zknjNnJve5cl3XfRF3TUjGqrwivLxwJGZmxOLw2SoMiQ3GO98bB6vdifJaKwyKDJNehk7WYEvBRbyx5UTrxulT0qCVNThzyYyM/k3BOKvdge+MjG93nM2DZX++eyycUFFSYUZEkA7hRi00GgmXaq14/pYRjVlmn+w6DaRHI7N/GN77bxF+cvWQNoNYS6amYdqQGNgdKkx6GWU1Vtw1IRnfnz4QNocT20+UYcm0gX75fiMKdA4HUFUKlJ4CzM0+Io0hQHQyEBbt3RXmu4PNZsMDDzwAk8mEV199FRs2uCk36stUtaFsy94UVZQkcSHdXUEhp7Mp6GKzAbU1IuASEtoUjDpdDCQmisyQzqwc1lO0OjHWhAFA//6iCfbAdKCgg3Iqg1EEBNb8XTSmdjpa94Cy2byzQJmqAgMHirIzixk4cUwE/K6bD+zfIwIftoYsGo1GBNcyMoFvvm75OBpZZNO4nC4Gxk8SpV6eNNcemikCNUZj1yPX2obzIiYW+GqTZ/fZvVO8RvkHRRnaiWNAWhpw6KAIrE2dLgJMpwpFUMluF48f1U8cp5JioLpaBHX+m9eyOTggMqvGjRf733SLeH0ddnEO2+0i883WRpYSIIJl//lMPM6kKaJ8r6JcPM/qKmDAACDiWvFeMQWJ8X+1Wew75xrg7BkR2Bs+Epg4SQSWABFINNeJcZScFs3eh2WLXlLWenFOBoeI10JRAuevCT2Es0kialNjIKjeBlmSYNIpqLbYcMlsQ7hRi2CDFtVmG7SKhBC9Ao0kQXsF2Ul2hxNOpxM2J7Ah/zxWftX6Qv7eSamYOTQW9XYHVn55HIv99MLYlS1iahjbrMxYtyvMNde8nOry3jzNhRq889cUjSRh+pCYxnKz9rJvhsaFoKK2vlVw7fLyQ4dTbTOryp17J6XgnW2FuGtCMiJN2i6XHRp1CiABFbU2j5vC7y+pQp3VjvunpCGzfxgOn63ED2emo8psxet35cCgaGCzO/HOtlNYfuMwrD90HtuPl+FHcwbjX3vO4Oph/fHKF0fdBu0OnqnC02sOwqSVsfzGbFSZRXA1wqRFqFELm8OJkkvtL0HdvCRyy+Mz8P5/i3DwTFXjOeIuy2z/6Uq8uHAUthy9AJvDidmZsZiVEYuKOivKaprKIjfkn8emwxcwcWAUAOB/Pj+CRblJGJMSCZNOxsyhMdBr/e99RhTonA7gTAFQfrr1NnM1UHQAiBoAxKf7dyDqd7/7HQ4cOIAXX3wRAwa4aaTc19TXN1x0qg1lUQ1ZERJEUMhcJ24PDRNRSFeAqisBKVdpk6qKMq19e4DSC03bjUaRaZI1TASgDh4AMof5b0aUJDU0yG74nTNuvAgkNO/105zeIEqmDh8S2Sujclo2mHYxBcErUSitVrwG11wnyrDqLSKL6GIpkJElxlNZKX52eLh4nWRZvE7NS+8sZiC42SIkqipK78aMEyV57ZXXRceIwF3pBZHhcyXZXooigkKWDvogudhs4rinDxFZUClp4jVMHyxWh7Pbxe21NeI98c3XIqMIEFlMCYki46qtbCZJAsLCRHbUwQNN/al0OpE1lZklMp1cmWhtqbwkGoUPGw58/VXT7SGhIhjmcIhxuIKX9WNFVpNWK84xc524n9Uqfk5VlbhNqxWvc/YIUS54rAC44UbxGqhq62bvBIBBKCJqQ229HV8dvQCzzYE5mf3xxeGWQaEwoxY/mp2O+SMTYLY5UHJJlDAZG34BSJA8KtuxO5ywOpyorbfDoJVhd6p4bt2RNi/kf/LhXizKTcLDM9Nxy9hEfHn0AmZlxPplaV5zJp2CZddmYExKpNssmcsbdD81L6NFg+nm+4YavfPRrdfKcKiqGGdDjyRX9o2rIXldvQMRQTroFQ1MOhkp/YJb9EhylyHVlZ5G80cmoH+Y8Yqej1Gr4JS5E01NAVjtToxNjkCdzYGiCjP+lrcb56osOHKuGneMS8KyazPwq/lZ+N2nhxufS1ldPV5ZOBqfHzrf5vNzNUffcbIct67Y1ur1XzwlDWt+MAl3/3kHCsvaH7NTBc5WWnCqrK5FZpm7LLP1+RdQU2/D4NhgBOkVPPtpPlbtKGqzLPLO3CQ8OH0gdhddQml1PT5YMgHVFjuiQ7o/846or3M6gcpS9wGo5spOA0HhQFiMf/4xPT8/H8888wxGjx6NH/7wh74ejm/ZbKL5tKQRF+YajbjwPVXYVMYzcJAITLiWlQfEBausEQEMWfHswtVa33RCmOuA4mLgWzcZtWazCHicPQPMnCPKpr7dIVbv0nViCXpf0WqBmbOAU6dEcKfsorjdYBCBj6GZwPECcZyNRtFPaN3a1o+Tkem9wJtWK0q5broFOLhfNMK+cF58xSeIQElsnDgvFEWcC3OvF6VirkDUieOit9CenU3BlP17xWs2faZYJc5dL6X4BGDKdNFAPNuDFes80sm1mG02Mf7jBa2byQcFA9+5WQQ+87Y1BaAAEfgxKSLryl0AKjhYZCN9u0M8fnNWqzgfjh4Grpotmrdv29r+ON01a6+uEl+Xu3hRZObt3S2O69o17o+/zSbeX3W1wPBRYpwH94veYP74ge0nGIQiolbq6u1Y+eVxLBgzAMF6LZ5puHB1cV1Q7y66hM8OnMU1w/ojRK+g0mLHuSoLwk1ahBq0cFrt0Db06XH7c6x2bDh0Hu/mFeG5BSOw89QlVFts7QYqAODdvCKMSgrHkNgQXKiuh92hwgstkrpdkF7B1VmxmJzeD5V1tjYbdLtrMO3y4LSB0HmhKbmLSaegzmrH7KxYzBga05gxY7E6EGyQkX+2CpfMVoxKjBDZRoDogZUaiRUNQcrLM5886Wm0eGoaxqZE4o43tqPSbENYNwXaXM3WPaVTZPzsHwew7sC5VgHAv+UVYWxqJAZFB7U4R2ssdthVFW98daLNMbTVHB0QwdWHV+/Botwk/OW+cbjh1a0tGpO701appjuX6mw4caEWu4urGjPx2iqL/FteEUYmhWNRbhL+tPk4qiw21NuciA7x6EcRUWeowIVCz3YtPSXK8vyNqqp44IEHYLPZsGLFCsjd3W8nkNhtIuCjVUTWTkioyO5oXio0KqchY0QWSTnnz4sMnoul4ro/KkoEieL6tx2IsttFOdLunaLHUV2dyBRxF4BqrvSCuM/QTCA6Gm6bMvorRQskJQMJDVk+DqcI2p08CWz8j2gCbjIBs64RZWGVl1rePzxCrNbmLZLUFFQclg2MGCUCHpIkgiuyLL53ZRRrNCJg9p0Foo9V/iERCKmrFaVtx46K/VQV2LherCy34DagsFCUr9ntQEiIyMCRFdG7qLxcPMfueA8aTQ3H2U1gyN1zDw4RvZXcrWZYWyMyutIHiyBVc1qtKF9raxXEkTnAkcOtA1DN2e2iAfl3bm5qCN8WVxaiJ2SNeB8PGyGyt9wFoJo7ViAa3yenir5VE6d0f/+xXiQALtuIqCdZ7Q5sPnIBN+ck4uCZqlZBIdcF9YffFmPhuEQYdQq+yL+At9w0aV4yNQ0zM2LhdDqha/jF68p8cqrA7z7Nx7t5Rfh/MwZhx8kyTBjUr3FVtY68tbUQf757LGZnxqHSYmsse/N3Rp0CpwocqKjEp/vPYn9JZWMmSlZ8KJ6al9EiI6q5O8cne21lvOZMOgX1NgdkSUVsqAEhei2q621QVWDa4JhWTeFNOgXXDIvDrIxYVFlsqDLb0D/ciL3FlxqDHs17GrlWhauttyM6RI9ggwKbw4klf92JwrI6ke3VTSWHzZutdyQrPhRaWXIbgHJZ+dUJvHn3WGT2D0FQQyZRdIgeNRZ7m2V/d45Pbrc5uosruOoKALU3zrZKNd0JNWgxOjkC9739X4/2f2trIVZ+dwxe//I4LlbXIz78yjLSiMg9hw2w1HS8HyBK8xw2/yvJe+2117B161Y89NBDGDNmjK+H42OS6N1TXiaCA//4uGUAauAgEYAy14nskC83iQvw5s6eEV8xscDsa0SwwrUql6QRF8IaCfj3GtEEesRoEajIP+TZEI8XAKPHAEEp4t8ZWd3yzHuEtmHFN6tVBCZOnhDHxhQkmlenpAEH9gL7Lyv9DwkBrr62ZwICrubTjf2oGsqx3P1sjUZ8pQ4EEpPFv21WUX5oMYueUIAIXm3fKjK90geLTK/IKFHLq9UB//q7KJ8bNrz7noeqitX6jhV0vG9SctvZRC7Hjop+UXOvF8FCpxMovygCocXF7u+j14seUp980PEY7DYR6BqSCXyzpe39hmYAuzy7zkB0rMiyiowSfac8cfiQCCIXnmAWVAcC46qNiHqMzaGitLq+VVBI1kgYHBuM745PwblKMxZNSIIGEp7/vO3SuYfe34M7xydj2dyhKK80o7y2qQdOZZ0VXx0thayRcEduEp5Zm49RSREe9+85eKYKNfV2GLQaWOwerJriR4L0CsanRmJcSiQqLTZcqhM9tkKNWpworcHjH+1rUZLlyhSanRnrlVXx3GleSmnSKegX0n7Kvk6RoVPEnLje5sQjq3fjF/OyMDKpKfOpeQPwh2amIzshDE/+fT9+cFU6EiKM2HlKNN58cNpA6JTu+eWtlSU8MCUNj6ze0+G+zZvCuxNm1GL6kBgE62X8cdFoXKwRK9+FGhWU1bj/C5nr/O5McNUVAGprHEumpmFD/nmP/ogtAnoKzlfVd+q9ZbE6RMmeoXMrFBKR5y7vm+zJ/v60vlJJSQmWLVuGhIQELF++3NfD8S2HQ2QzxcaJEqzTxSKQkJQMDMkAIiJFMMJqFZHEbVtbB6Cau3BeZHdMmyFKlZxOkc2TlQ3IWhGkiowUQYKsYSJbxhN2u8ikSUoR/3Y1TA8UOp24uB+WLYIuqioCNzo9cPK4KHt0CQoWJXhDMhoyz3rweXamD5BG05QxtXqVyGa6apYoBzt8SARAVFUEb4KDgX79gB15wKB0kU1VXS3Ou5Gjuq//kFYrsvZOFbbf9FuWRcPuA+30/ExJFQ3Wz51rWHGvSmQZ9U8Q43a08UGYmCTeI/X1no352FHgxlvaDkIlDBDnRHvvO5f+8SJrTZI829/lTAkwdYYozXQ42A+qHTwyRNRClcWGWVlxjUGhkktm/L8Zg7BofBK0Gqmxb1NJhehH01F2x9+2n8KoxHAcL61pzO5wrRT26cNT8MzafFisDlyotrRYVc0TFXVWhBq1iAry0+aa7TDoFNgdTkSYtLhYXY+3vynERzuLcdvYJLxw20jRf8nqQKRJB11D/yVjANQcaiQNdFoNvsgvxbeFLTOfLi8//MmH+1BptuFX84dh7b6zcKrdn+2lU2TMzoztVD8qd5r3dLpt5fYWmVXzhvfHE3OHur3f4NhgWKyOLgWA3JXM3ZmbjEmD+mFLwUWPHm/JtIGwO5xdem9lJ4QhwtS1FQqJqGOdvT7xt+uZH/7wh6iqqsJbb72FkJA+XrNrtzeUU9WJUrqS06I/kNMpSpuKCkXJUukFkfVy6mTHj3m2RDRKlmVxcXvurAhKpKSJlbvKy4CCAvEzPCmbcqlv+H1gNAZWAMpFUQCnRjxvp1MEaIpOiUDf9d8RGWOu4JqqNmUn+TNXKV94hAhmfvKhyJAaPVY0M9doRFlbwVGRYWe3ix5I+/aI0r/s4aJksTvpDaLZ+n8+cx8I0mpFr6pLFSIrzZ3UNGBMLvCfT0W5YHOVlaKMNDi47Z9fV+v5eM1mcW64Xvfm4voD068SmVdR/VqvwNecooh+TlabeI90VIbXnMMhXqv0IU094MgtP/t1RkS+ZrY6xAIr1RbUWu1Y84NJOHSmCqoT2FxQine2FeL1u8agX7ABb23d79Fj/nnryRbZHQfPVOHRhh44T83LRP65qlarqnkiwqSDUSfDpAvMTA2loV/WoJhgLJ0xCIvGJ6Oi1gqr3QGTTvRfKqupR05yZEAEoADxnMIMTSVwrtXc2mqEnRUfinCjFp8fPIdXbh+FmRkx3Z7tFaRXRN+qtEi3Ky4umZqGEYnhbksggY57On124ByWXZvhtuwvWK90OgBksTmQnRDWIgiVFR+K+yenYnJ6NHYVVWBUUniHgbU7c5Mwc2gMJAD9gjv/3ro6Kw56pe2ebkR0ZWQtYAwRpXYdMYYAGj+7lt61axcAYOnSpVi6dGmLbWazWO2zuLgYcXFxAIBPPvkEEydO7NlB9iRJ09SfacQoEWjqnwD8+5+itGjOXHGhXHDE88c8ekT0mSlu9llfeEKUYk2aCqiOptXkPE2tMzYsNJGU7Pk4/I2rlM1qFeV4MbGiUfulS0BYuNjH1acpUEiSyGrbukW8lgVH2j5XhmaKc2DkKNFLzBsRakURQbFbbhdZZgVHxYp5ej2QNlCsTHfsKLBju/v763QiULbuU6Ci3P0+J0+I8/jyEkpAHIPOBNZcJY+JSU2rQ0Y29FiLjhFBvJoa0eh961dN5Y7NBQcDM2aLTCZJA0REdS4QFhom3uNDvdgEv5cIjKsaIuoxoUYtTl4UH7ip/YLwh/UFuHtiCv646RhWf1uMq7NioWhEU/Erze54N68IMzNiMCQ2xO2qau3Jig9FkF6BQauBrAnAv+Q1Y9Qp0Ngc0AXrYNLJqDLb4Gzov6RoPFtl0J8osoQlU9Pw0Pt7AIg/PLXVCHvJtIFwqir+fPdY6LwY8AjSK5g7LA6zM2JR2dC3KsyohUErQ5KAxe/sbHNVuo56Ojmcaqtm7C5dCa6GGLV4+vos/Gj2YFSabdArMvRaDQyKjJ1F5cjsH4b3dxRhybS0Nhu93z85FXOy4hCkV2Cx2RFh0nXqvRVm1GJ8WhS0DEAReY8ERCcDRQc63jU62X+TVs6fP9/mNqfT2bjd2pmMgkAjSSIootWKoMienaKcqeAocPVc0Ui7rlZkZJw45vnjVleJMqzLFZ0Cxtkasq6KRdaMJ8EtnQ5ISBTZK6Fhno/DX7ku9IOCmo6TK0AVaBRFvI4nT7RfAhYWLvp6aTSiKbk3uQI7aYNECacry0iWRQCw6FTrrCOXQYOB06fbDkABouzUYQeSU1qWUgKiDHH4SPeZTe4kJYsxjRsvVk50quI8l2UREE5MFu/Nykui0XvOOBFEq60VpXfJqeL91Dx7LjISCA8DDEZRXtuRwUPE/QPx/OthPEJE1EKQTka/YB1yU6Ow8fAFGHQydhVVICJIh68en4HHrh4Ks9UBi61zaaYVdVYEu2ke/uL6owg36TA0LqTxQt4T905KwcUaC/SKpkWT7ECl14pyu37BeqRFB6N/mBFBeiXgAlCAKIGbmRGLO8cntbufq/ROp2hg0itez7jRKTJMegX9w4wYEheKuDAjDFoNdLIGd+S6H6urp9NbWwvbfey/bT+FcamRuGNcy8dpHlz1RFZ8KHSyBlaHEzpZg5e/KMD3392JSc9uxNZjpZg8sB8ig7RYMm0gDp2pRE29HSu/OwZf/GgaPnpwAjb9ZBrevT8X1wwTASgAMGgV6BUNvjc51aMxLJ6SBqNOA40EZkEReZFGI1a8ixzQ/n5RA8R+/nZdU1hYCFVV3X699dZbAIDk5OTG26ZPn+7bAXuTLIsL1uRk0aMoPEJkqOh0wIb/iObKW7eIsqbONMjWtLNC2YF9DcGnhgbjnkQpBw8FVKcIZPSmTA1ZFkEcRfG/N0pnKAowY5Z4PS/PbpIkUYp53Q0NN/Tg6oayLDKgdDrxf42mIdNpUtvZSoPSRWPvjmzbKh4nNq7l7ZcqgJpqEfzyREaWCGjp9KJn1qp3RLNyvV6c74osxhzVT5TZabUiaDR6jCgZdK1I2Tx7TqMRwaxsD5q+m0zi/aXXB1YGno8E8LuUiLxB1kiIMOlw5/hkvPHVCdw1IRljUyKRGmXCS+uPYtvxMoQYtAgzdu4Dtq0l5feXVMHqcOK+yaltXshfblFuEqamRyO1X3DAlKn1NUF6BT+bm4FXbh/VKgCTFR+KV24fhSeuGQIJIkjiKwatWK1w6uBot4EoT3s6VZptuPvPO7BkWhpeXjiy8Tm7sqTuneRZAOjeSSkorbZAJ2sw/49bsXb/OeSfrcYd45IwY2gsDDoFRp2CYIOC2ZlxuHVMImRJgixLSO0XhLgwA4L1Sqv3hVGn4OqsOCxqI9jmcmduMmYMjQEg8b1F1AM0MpCQDiQNEyV3zRlDxO3x6f63Kh5dRpZF02OHQzQLH5guypT27RWr4i1YKPrnOOxAfAdRx+YSEkTvJ3fOnhElWQMGiCyrSVPaD0QlDBBlghqZF8n+TKsFRo4GblskGtPnjBWv7cI7xSqAgFghsbt7QHWGK9vMaASuux4IdfOHNlfWUUdKL4jm+zNni/dITGzTeXz8GDBholjhsD3ZI0TvLKcqMqhOnRTHcOx4cZwiIpuyxlwZi8HBIjgVGioCR+5KGl3BtsFD21990BQkVv4D+N7yEGeYRNSCTpHhVFXU1Nth1MkI0snYeqwMk9P7YeKgfiivtaLKYkN0iKFT5T3tLSl/odKCKYP64brs/rj7zzvwl/vGtVlmtGRqGqYMjoZB0fAi2c+Z9AquzorFzKExqLLYUGm2IdSoRahBC40kAp7+kMUWpFegsdrx2JwhGJcSiTe2NPWNCtYrbvtEuVNYVocbXt2Kzx6egpkZsSitrke93YEgvYIIkw57iivwt+3tN0efmh6NIL2CR1bvRnGFGVnxoXhw2kC3vbJcPcU87aEVpFfws2szMD4tCq9/edzte2tmRixkSTTOJ6KeoZGBsBiR7eSwNbRCUUQPKFeVFwUASRIXuhGR4iI4NU2UBhWeAPbvFYGqhAGin863eR03PJZlkU2ydk0bP6/hP/2igbKLQEioaCR9cL/oIeUqYQoLBzKHAQMHiv39rcM9taZvWJE4Mblp9TxXI3Z/CXK4AjRSCHDDTUBZmegdZbeJoIwsi75Knjh7BjicL8r+Jk0RpaKqKjIH7Q5g3neAHduAwpMtMwNDQoDskWIFPqDpnL/l9qZ/X+nxcgXcRowUJYYH9oqFB+x28Z4bmiEyErvjZ/Uh/BQiolYkADUWO747Phl2h4pqiw3f+8u3LS5af3VDJu6fkoZHV+/p8PHunZSCVXlFbS4pH2LU4o+bjzX2uHn8o33ISY5oXFVNBL30iDDpoJEAjRR4fZL6Kp0iQ6eIgFRcmNHXw2mTUadAKztxdVYsZmfGorzWitp6O4L0CpRO9ByrNNtgd6q47+0dqLLY8df7cvHXbYW4PTcJ358+CONSo7DCTQDovkmpuGpoDAxaDWqtdvx4zhD8ev4whBq03dorK0ivYE5mLGZmxKDKbMMlsw2hDZmNsgRo/CQwSNTXuAJNGhngZUwAczpFoMluF8GgzV+0vGg+dACYOl00Y978Rfu9bsaNFyviVbfRub5ftCitW7cWyJ0omjCXlYnyoklTRBNprU5cGMsyo5mBqHnAUJY7V8rZU1yBl379gIgIEVwtPCl6QcXFtb1y3uWiY4Bvd4igbVa2yLKKjhHvGbsdGDNOnOfnzjYEgEJEwFdVxXusvEyc4zGxLcfVbc9TB4TrRHbVeFkEBh2OwGuA7ycYhCKiVqotDoSatJiREYtn1ua7bcj8wvoCrPnBpA5X6FqUm4SxKZH4zb/z3W7Pig9FqFGLd7efwj92n8Gi3CS8vHAUbE4naiw2RJh0iA83NFwgc6Uu8h5XZhEg5jHhJi2e/Pt+/HSu+5Xv3MmKD4VGAv5bWAGnChSV12FUcjje2XYK7+YV4XuTU/DOfeNgdThRWefKDFOgkSTYnSosNgeC9QrCDVooXgoGuQK4Jp1/BwaJKHDdc889uOeee3w9jJ7ldIoGx04V2PWtaHrsztYtwKyrRflR3rbWQaagIGD0WFEm9Plnbf+8zGHAhQuAzQZ8/aUoL8oZJwIBkESWBgNP1FNcQTKNRvRiKj0vzlFPglBh4aKcrqhQfK/TiWbgIaFNzc9LTovvBw4S/ZdKS4F6KxATI8oTY+N6JlPMlaUG+GdQMEAwCEVErZTV1iM50oTPD51vM8Dk6oHzl/vGYVxqyxImQFyM3zspBWNTInH3n3e0WdL0wJQ0ACo2/mQG6qx2hBm0MOplGFUZ0SE6yBIDT9TzjFoFtU4bZmbEtrnynTuXZ/1FBeuQEmXCw+/vRaXZhhfWF+APGwowNC4EmQ19o1Ijg3DvlFSEdrLPGhER+RFX7WRVRdsBKEBkT6xfJzKd5t8sMjsuloptMbEi+6PgCPD51yLjw53UNHFBHhwiHkMjiRIo1SkaMxP5iqoCWcNEgDVnrCgpPVbQ9v4aDTB+IpB/SASRANGA3bXa4ZAM4HiBCLZWVwF7don3yYhR4r3SvME+g0IBg0EoImolJsQAhwqs+LL9v164euA8Ojsdq5dMwPlKCyrqrEiIMCLUoMWWglLc8OrWNgNQi3KTMCsjFo+8vxu3jU3EyMQInL1Uh3BTCPs9kR+QMCY5EvuKKxsb5ncm6y8rPhRRwXo4nU786oasxkCtUwUOna2GJEm4f3Iq5mTFedzXiYiI/JQsix42B/d3vK/TCWz/RgSSXJlQJpMoMXI4xIV5W6V6gwYDuRNEZkhQUMNKfCpLgsh/DEwXWXpf/Ae4+lpAbwAOH2q90mNwCDBxMlBvEX3TAKB/PGA0iDK8lDQgNhYYlQNcuiSCrEaj6L1mMLC/WQDjK0dErQTpNSirsXW4IhggMqKeXnMIUwZF43/XH0FpdT2evj4L//fVCTwye3CLi2+XrPhQLJ6ShlmZsbDZnXhp4SjYnU4oGg2G9g9lTxryC1pZwqGzlfjuxGQcO1+N/zdjEMamROL/vvYs6+/+yWnIO1GGwbHBKCqvxcrvjoHd4YTZ6oBeKyPCpIWeDfaJiHoHjUYEos6d9fw+58+JC2lXdkd4BPDZv8VKWwPTRUbUubMiaBUeIZahd/V46h8v/s2SO/InWq3IWho3XpTSbd0CDM0UmUvHj4kV8zQacf5GR4uG5Ht3i0BqUDAweRpw5LBYkW79OgCqCDqFh4uG+/EJQBADUIGOrx4RtaKRNLjk4YpgLhV1VpRW1+O/hRUwaGV8c6IM/3lpC37znWH4YMmExibI4UYtQo1aHC+thsPhREFpDdbsLsGy6zKYDUJ+RafImDiwH174z1FMHRyNYL2MKelRmJMVi4s19SitrkeESQe9VoNVeUX4zb/zGwNQd+YmYdqQaNTW23DXmzsQpFeQEhWEmRkxsDlU6LUaaNnjjIiod5Gk9puNX87pbAoiRccAlZVAXR3w8WpgQKJoxJw6UKwYI2lEs+eqSiA5Bfj0X8B181uWIxH5A60WgCr6k6WkAtZ6kfE3aJBomF9aKpqXuxr3y7JYNXL0WBHAGpIBVFQA02aIMlOpYYGY9CE833uJPjf7ffvttyFJUrtfTzzxhK+HSeRTiqxBuKlzad0RJh1q6u3Iig+FXqvBkXPVKK4w4563/osRv/ocekWDhHAD8k6WY+r/bMQNr36DsjorkiNNeHdHEdYfPA+r3dHxDyLqQUF6BT+aMxi19TbU1Duwakcxlv19HwxaGTX1Nry44Sim/s8m/GnzcVSabciKD8XLt4/CsmszoGgAi82J9xePx4dLJuDa7P4I0msRbtLBqFUYgKKAwvkTkQdUp2iy7KmwcKC2Vvx7SAZwtNkiLqeLga82in5PJ44Dn64RK+GVlIjttbVA3jeiBJDI32h14vzWaMSyn3abyIrKPwRE9QOGDRdBpjlzgYV3AmNzRTDKaBTnfL9+4v5arch6UhQGoHqRPpt2EBoaiuzsbLfbUlJSenYwRH4ozKDt1IpgrsDT/ywYjvWHziMnOQI19XYcPV8Du1PFqfI6PPtZPvJOVjTer6zGCl2YBkPiQrByywnMzowFk6HI3wTpFczKjIXDqeK+SanYePg8HnpvN3KSI7Ds2gw8Omswqiw2RIfoRWaU0pThFGrkhIl6F86fiNohK6L0yJOSPJ0OSEoGdu4QS9JLEIGo9KHApQrRjNnhFMGmHdub7qeqYgU+vUFkk+RO9NrTIboirqCRLItg0qQpgNks+jvpdaIkz2YTmU4yS0v7kj57uTdq1Chs3rzZ18Mg8luKLGHJ1DQ89P6eDvd1rQh2+7gkXJPVH6XVFgxLCENkQ6nSezuKEW7UosrScpWXCJMOl+psCNYr+G9hBSotNpj0ffZjifxY8z5l1wyLw6zMWFSabbhUZ0O/YB3iww1QNBK07GdGvRznT0TtkGVRRhcZCZSXt79v9gigpFgEnoYNB04cA0oviLK72DjRQ6f0gijPay48XFysOx2ilOlMiSh5IvJXktTUOF+SRO8nQJzDBiODT30Qr/aIyC2dImNWRizuHJ+Ev21vf0WwCWn9EKSTkZvWD4+u3o31+Rcat4umzamIDtGj3uZocbteK37p1NSL4NSlOhv6hxm99IyIuodOkaEDYNIpPF+JiKglWQauvg74/FOgvMz9PtkjxCp3sgyE1wD//BioqWnaXnAE0OuBCZOBsDCxn8MhLuCHZAAOu8goAQCb1fvPiai7KM3afcj8w11fxSAUEbXJpFewbG4GxqVEYsVXrVcEWzI1DTOGxkDT0A9kxvObGxszuxw8U4WffLgXu4uS8Na943DDq1tRabbh3kkp2JB/HrMyYnHknFieuLN9qIiIiIj8iiSJMqRrrxer3x06IJqJa2QgPl6U3smKKKs7uF+sDOZOfb1o3Dx1BjAmV/R/GjxU3O/woab9gkN65nkREXWTPhuEKioqwj333IPi4mIYjUZkZGTg5ptvxvjx4309NCK/EqRXRPlRRiwqLTZUme0I1ssI0ivQyRrsL6lEUXkdHvtoX7uP825eEUYlhWNRbhIqzTaMTYnEnuJLWJVXBKcqglqhBgahiIj8GedPRB6QJNFIOT5BrHonQfR3cgWQMoeJMru2AlDN/Xc7cOMtwKVyYFSOeIyjR8U2o1E8PhFRAOmzQaiTJ0/i5MmTjd+vXbsWzz//PBYuXIg333wTJpPJh6Mj8i86RYZOEZlR/cMAs82OepsTj6zejRduHYVf/etQxw8C4K2thVj1QC4u1dnw8c7TuDlnAH7xz4MAgMVT0qCVJW8+DSIiukKcPxF1gisrCgAkO1BXKwJPMbHAqUJxu0YjSu8cDsDqprTObBaNzkePFQGoL/4D1FvEtqxscRsRUQDpc0GoiIgIPP7447j++usxaNAgREZGorCwEO+88w5+//vf4/3334fD4cAHH3zQ4WOtWLECK1eu9Ojn5ufnd7wTUYAwahVU1plRXGHG+WoLDp2tgqyRMDg2GMF6pXFVPIez5cTo4Jkq1FkdKCqvxc05A3D3n3eg0mzDotwkzMqMbdH8mYiI/Ed3zZ84d6I+S1HEqmAAEBQk+jpNnQEkJgF2u+iPYzEDRw4DBUcBa33Tfc+cBqKjgXVrgcpKcdugwaI/lJZZ5EQUWPpcEGr+/PmYP39+i9sGDx6M5cuXY/jw4bjtttvw4Ycf4uuvv8bkyZPbfayzZ89i165d3hwukd+qNItV7SrNNvy/GYNwR24SLFYHyuusLVbF+9v2Uy36RJXXWhGs1+KGV7diQIQRL902ErMyYxHEVfGIiPxWd82fOHeiPk2SGrKj9MDI0cChg8D2rU0ZUPEJQMYwIHs48OUm4OwZcbuqip5SNhvQPwEYNgyIiWMAiogCUsBc9T3yyCN46aWXOn2/adOmebyU8K233ooXXngBeXl5+OSTTzoMQvXv3x+jR4/26LHz8/Nhdq1iQdQLhBl1CDUqSI8JxvELNVj8zreNjct1igb3TkzB1VmxuHtCMha9kYeCUrHqi0mnICVKh3WPTEGoQQutLDEDiojIS/xt/sS5E/Vp0THAuPFATTWwfp0IKgFAbJzo99QvGjDXAVYbMHMOUFsLHNgHRPYTWVI33ybK9rRaEcwiIgpAAROECg4ORlRUVKfvFxYW1qn9J06ciLy8PBQUFHS475IlS7BkyRKPHjcnJ4d/+aNeJdSo4Dfzs/H7zw7jb3lFAIDECCOW35iNnOQIVJltuFRnhd2p4h8/mIQ9xZfw5tcnER2sQ7XFjgiTFgZtwHwEEREFJH+bP3HuRH2aLAMpqcAnHzYFoEbliLK6fXuAjeubsqIUBUgbBIzOEavpOZ1NZXsMQBFRAAuYK8Dly5dj+fLlXv85uobmgXa73es/iyiQKRoJeSfLGwNQkwZG4fW7crAh/wJuW7GtMSsKECvf3T8lDa/cPgoHz1QiIy4UB0oqMTIxAoqs8dVTICLq9Th/IvIjkgQcPdIUgBqaJXo7rflErJbXnN0OHD0MnDoJXHu9uE94eI8PmYiou/Hq7zIHDhwAAAwYMMDHIyHyb3anije+OgFAZECtuGsMfvfpYTy6ek+LABQgGpI/unoPnvk0H5n9Q5F38iIMWhlWh9MXQyciom7G+RORhwqOiP9rNMDo0aIs7/IAVHP19cB/1gHhEUBVtSjXc3L+RESBi0GoZvbt24d169YBAObMmePj0RD5tyqzDYfOimDT8huzsT7/PFbtKGr3Pu/mFWFD/gWEmfRI6ReMqmYNy4mIKDBx/tS3Pf3005Akqd2v119/3dfD9A+y3BRwShsoVrq7VNHx/WprgJLTgEYCFC1g5/yJiAJXnwpCVVVV4bbbbsM333wDVW25dPznn3+OuXPnwuFwYMSIEbjpppt8NEqiwHCpTkyAdIoGOckRjVlRHXljywlk9A9FldkGh1Pt+A5ERORTnD+RJ2JiYjBp0iS3X/379/f18PyD09m0ot3AdFFu56njBYDRJEr6OH0iogAWMD2huoPT6cQHH3yADz74ACEhIUhLS4Ner8epU6dw/vx5AEBWVhbWrFkDWeZqXUTtCTeJSdSsjJgWWVEdOXimClVmG5xOFcGGPvURREQUkDh/8j7V6YSqOuC0WeG010Oj6KHR6iBJMiRNYPzNeO7cuXj77bd9PQz/5nAAicnAsaMiGGWxeH7fxn1VQAqMc4KIyJ0+dQUYFBSE5557Dtu2bcOBAwdw6tQp1NTUICwsDDNmzMCCBQtw3333wWAw+HqoRH4v1KhFVnwoooJ0uFRn7dR9K+ts6B9ugF7LSRQRkb/j/Mm7nA4b6kqLUHlqH6zVZY2360KiEJY8HKboJGhkrQ9HSN1GUYBhw0UQyuEA9HrP79u4rwQ0LARARBSI+lQQSqvV4ic/+Ymvh0HUK0gqsGRqGtYdPIdwU+cmQ+EmLQxaDVSmkxMR+T3On7zH6bChvCAP1adbl2VZq8tQemATQgZkIDJ9HANRvYEkASYTkDMOOF0MpA8BjhV4dt+0gaInlMRsQyIKbH0qCEVE3aeizopZmbHYeaq8MSvq8lXx3MmKD0WoUQvVCWgVZkIREVHfpDqdqCstchuAaq76dD4M4XEIikn169K8vXv34o477sC5c+cQEhKC4cOHY+HChcjKyvL10PyHqoqvwUOAkmIgMgoICxMNyttjMokyPlUVzc2JiAKY//4mIyK/ptFI0ErAY1dnoLLOivunpHl0v8VT0qBoAEiAIvMjiIiI+iZVdaCycK9H+1ae2gdVdXh5RFdmz549eO+997Bp0yasWbMGy5cvR3Z2Nh599FE4HP499h5jt4uSPEkCqqtFo/JZ1wAGY9v30emAmXMA1SkCUJLUc+MlIvICXgESUZeEGrQ4WV4HSQK2nSjDnMxY3DEuqd37LMpNwqzMWGgAGHVMxCQior7LabPCWlPu0b7W6jI4bZ3rv9hT4uPj8etf/xp5eXkoLS2FxWLBvn378OCDD0JVVfzhD3/AsmXLfD1M/6DRALW1IqOprAxY/S5QVwfMv0mU5inN5kayDKQNAq7/DhAaBkAS9yciCnC8CiSiLlFkCcVltUiKMEHWaPDgX7/Fa3eOwbjUSLyx5USL0rys+FA8MCUNszNjoUiAXQXY2YKIiPoyp72+C/sHeWcwV2Dx4sWtbsvOzsZrr72G1NRU/PSnP8WLL76IpUuXIiUlpecH6E8URZTWAcCo0cDpIuCzfwHZI4CRo4Fx44GqShGkCg1rKt+TgIb/EBEFPIbTiahLdIqM8QOjcaqsDnMyY5EYGYS5L32FcJMWq5dMwDdPXIXPHpqCb564CqsXT8DQuGAAwL/2n4WTDcmJiKiP0yidWBmtC/v7gx//+MeIj4+H3W7HmjVrfD0c/yDLAFQgKBiYMUt8v38v8OF7wMYNwLmzQGkpsHc3cP6ciD0dOgicOQ2u6EJEvQEzoYioy4L0ClL6meBQgZ9dl4ENhyLx3OdHcORcFeZkxSEqSAeTTkFG/1DMyoxFtcWG3/w7HxMH9kOQnh8/RETUd2m0OuhComCtLutwX11IFDTazq1E6w9kWUZubi7+/ve/o6DAw1XgejtJAhSt6AcVEwvccjtw6ABw4hhQekFkQqUNBIYNFwGo0ovA7p1A7oSGrChmRBFRYONVIBFdEb1WwbELNTBqJYxNicDszAmoNNtQWWdDmEmLUKMWlXVWVNbVY9H/7UCl2YYqiw3xaKcJJxERUS8nSTLCkoej9MCmDvcNSx4OSQrMVdF0OhE8s9vtPh6Jn5Ek4LN/A5OnAsOyRUmeRiOCUzYboMjAkcPAzv+K4JPB4OsRExF1CwahiOiKBellXPOHLViUm4RF45MhS4BJJ0MjAZfqrFiVV4R384pQabYBAMKN7AhFRER9m6TRwBSdhJABQ1F9+nCb+4UMyIApOglSgDalPnDgAABgwIABPh6Jn7Fagah+wL//CYSFiybkQSbA4QTKy0RmlE3MmyDLQEIiG5MTUa/AIBQRXbEwgxYDIoz40+bjeP3L4xgSF4JgvYKaejuOnKtu0QMqKz4UIQYGoYiIiDSyFpHpuTCE90flqX0tSvN0IVEISx4OU3QSNHJg/t5cu3YtDh48CACYM2eOj0fjZ/R6IHs4cLwAqLwE7P627X3TBgGqs8eGRkTkTQxCEdEVkzUSlkxNw0Pv74FTBfLPVre575JpA6Fo2M+AiIgIEIGooJhUmKKT4LRZ4bTXQ6PoodHqIEmyX2dAHTx4EC+//DKWLl2KESNGNN7udDqxevVqPPjggwCAefPmYezYsb4apv8yBYkV8XZsb3ufqH5iH4WXbUTUO/DTjIiumF4rY2ZGLO7MTcLf8ora3O/O3GTMHBoDvTYw+1oQERF5g6TRQIKmIeMpyNfD8ZjNZsPKlSuxcuVKREZGIjk5GYqi4NixY6ioqAAATJkyBX/96199PFI/pdMBgwaLcrw9u0Rjche9ARgyVPSKkmU2JCeiXoNBKCLqFkF6BcuuzcC41Eis+OoEDp6patyWFR+KJVPTMDMjlqviERER9RIpKSlYvnw5tm3bhvz8fBw7dgwWiwWRkZGYO3cu7rjjDtx+++2QZf7xqU06HRDXH5h9jegTVVcrsp5CwwCnA9AGZikmEVFbeDVIRN0mSK/g6qw4zMqIRaWl2Qp5Bi0UjcQMKCIiol4kPDwcTz75pK+HEfhkWXzpdEBwcLMNvFRzOgHJZgV0WrFKIADYHZAUmY3aiQIUP9mIqFu5Ak0mvYL+YUYfj8Z/2B1O2B1OOFSgrt6OWqsDQToZJr3CAB0RERHRZVSrDZK1HpLFLDLDLGZAVqDKGqj1dkBWIOmYKUYUaBiEIiLysnqrHXYVOHGxBtHBBtTW21FeZ4XDpINDBUprLEjrF8xSRSIiIiIAqs0G1NZAUp1A/iGg8ATgcAAApIhIYGgG1NSBUO12SGzaThRQ+I4lIvKiOqsdAFBTb8fhs9V44pv9rfpl3TMxBbEhBkgSYNLxY5mIiIj6LqfdAcligVRdBXy5sTH41KiiHNi2FVLRKajTZ4qaPZbmEQUMvluJiLzE7nDCZneg3ubESxsK8NhH+1oEoADg4JkqPPbRPrz0RQHqbU7U2xxtPBoRERFR7ydBFYsBugtANVdyGtLunSJriogCBoNQREReYnU4oVNkfHH4AlbtKGp333fzirDx8AU4XU03iYiIiPoiu12U4LUXgHI5egSQeUlLFEj4jiUi8hK7Q4VDBf789UmP9v/z1pNwMAZFREREfZmiACeOebav3QacLvbueIioWzEIRUTkJaqqospsw6GzVR3vDFGaV2VmSjkRERH1XZKiAGaz53eorfXeYIio2zEIRUTkJYqsQWUng0pVFgahiIiIqO9SnQ5Ap/P8DnqD9wZDRN2OQSgiIi/RaIBwk7ZT9wk3dm5/IiICJElq/LfT6fThSMjXmr/+zc8LCiA2B5Cc4tm+Gg2QlOTV4RBR92IQiojIS7QaDUINWmTFh3q0f1Z8KEIMDEIREXWWJElQFAUAYLFYfDwa8iXX668oCoNQAUrS66Bmj/Bs5+RUvs5EAYZBKCIiL1FkDTQSsGRqmkf7PzhtIPQKP5aJiLoiJCQEAFBRUQGVK432SaqqoqKiAkDT+UABymiCmjuh/X3Cw4EJkwBtJ0r3iMjnFF8PgIioNzPqFMzKiMWd45Pwt+1Fbe535/hkzMyIgcJlhomIuiQsLAwVFRWoqanB6dOnERERAYPBAI2Gn6u9ndPphMViaXz9AXE+UOCStFqogwZDDQmFtHsnUHaxaWPDNmlUDqBlBjlRoGEQiojIy0x6BT+7NgO5qVF4/cvjOHimabW8rPhQPDhtIGZmxMCk40cyEVFXGY1GJCQkoKSkBDU1NY3BCOp7EhISYDQafT0MukKSVgvEJwCxcVAtFqCmGlAUSBGRkFSVASiiAMUrHiKiHmDSKZg7LA4zM2JQZbajymJDqEGLUKMCnaxhBhQRUTcIDQ2FVqtFZWUlqqurYbfbfT0k6iGKoiAkJARhYWEMQPUmGg2g0YiAFEssiXoFBqGIiHqI0hBsMukUxIVxOWEiIm8wGo0wGo2Ii4uDqqrsD9UHSJLE5tRERAGCQSgiIiIi6pUYnCAiIvIvrP8gIiIiIiIiIiKvYxCKiIiIiIiIiIi8jkEoIiIiIiIiIiLyOgahiIiIiIiIiIjI6xiEIiIiIiIiIiIir2MQioiIiIiIiIiIvI5BKCIiIiIiIiIi8jpJVVXV14PoCyIjI1FRUQGj0YiMjAxfD4eIiIjakJ+fD7PZjIiICJSXl/t6OH0W505ERESBw9P5E4NQPcRkMsFsNvt6GEREROQho9GIuro6Xw+jz+LciYiIKPB0NH9SenAsfVpMTAwuXLgAg8GA1NRUXw/Hp1wRUv5ls/N47LqOx65reNy6jseu63x97E6ePAmLxYKYmJge/9nUhHOnlnz9vghkPHZdx2PXNTxuXcdj13W+Pnaezp8YhOohhYWFvh6C38jJycGuXbuQkZGBnTt3+no4AYXHrut47LqGx63reOy6jseOAM6dLsf3Rdfx2HUdj13X8Lh1HY9d1wXKsWNjciIiIiIiIiIi8joGoYiIiIiIiIiIyOsYhCIiIiIiIiIiIq9jEIqIiIiIiIiIiLyOQSgiIiIiIiIiIvI6BqGIiIiIiIiIiMjrGIQiIiIiIiIiIiKvYxCKiIiIiIiIiIi8jkEoIiIiIiIiIiLyOgahiIiIiIiIiIjI6xRfD4D6nsWLF+Ps2bPo37+/r4cScHjsuo7Hrmt43LqOx67reOyIWuP7out47LqOx65reNy6jseu6wLl2Emqqqq+HgQREREREREREfVuLMcjIiIiIiIiIiKvYxCKiIiIiIiIiIi8jkEoIiIiIiIiIiLyOgahiIiIiIiIiIjI6xiEIr/w9ttvQ5Kkdr+eeOIJXw/TZzZt2oR58+YhOjoaRqMRQ4cOxVNPPYXa2lpfD81vPf300x2eU6+//rqvh+kT586dw1//+lc89NBDmDBhAoxGIyRJwvTp0zu8r81mw3PPPYcRI0YgKCgIERERmDFjBj755BPvD9wPdPXYpaSkdHg+WiyWnnkSPqCqKr755hs88cQTmDx5MqKioqDVahEdHY05c+bg3XffRXvrpNTU1ODnP/85hg4dCqPRiOjoaMybNw+bN2/uuSdB5Ic4f2of50+dx/lT2zh/6jrOn7qmt86fFJ/+dKLLhIaGIjs72+22lJSUnh2Mn3jllVfw8MMPQ1VVDBgwAImJiTh06BCWL1+Ojz/+GF9//TUiIyN9PUy/FRMTg/T0dLfb/H35Um95//338eijj3b6fhaLBbNnz8bXX38NWZaRlZWF2tpabN68GZs3b8ZPf/pTPPvss14Ysf/o6rFzGTZsGMLCwtxu02h679+FNm7ciFmzZjV+n5aWhtTUVJw8eRLr16/H+vXr8d577+Hjjz+GXq9vcd+LFy9i8uTJOHLkCPR6PTIzM1FaWoq1a9fi008/xauvvoqlS5f29FMi8iucP7XG+dOV4fypNc6fuo7zp67ptfMnlcgPvPXWWyoAddq0ab4eil/59ttvVY1Go0qSpK5YsUJ1Op2qqqpqSUmJmpOTowJQb7rpJh+P0j/98pe/VAGod999t6+H4nfefPNNddasWeqyZcvUTz75RH3qqac8ev899NBDKgA1NTVVPXz4cOPt//znP1W9Xq8CUNesWePl0ftWV49dcnKyCkDdtGlTj4zT36xfv15NTU1VX3rpJfX8+fMttr3zzjuN58/jjz/e6r433HCDCkDNyclRS0pKVFVVVafTqa5YsUIFoMqyrO7evbsnngaR3+H8yT3On7qO86e2cf7UdZw/dU1vnT8xCEV+gZMo9+bPn68CUL/73e+22nb06FFVo9GoANS9e/f6YHT+jZMoz73yyisdvv/OnTun6nQ6FYC6cePGVttdk4nRo0d7caT+x5Njp6qcRFVWVqpWq7XN7b/97W9VAGpkZKTqcDgab9+1a5cKQNVoNGpBQUGr+9111128mKQ+jfMn9zh/6jrOnzzH+VPXcf7kmd46f+q9uWtEAa6mpgbr1q0DACxevLjV9vT0dFx11VUAgA8//LBHx0Z9z5o1a2C1WpGeno4ZM2a02r5kyRIAwK5du3D8+PGeHh75udDQUGi12ja3z507FwBQXl6O0tLSxts/+ugjAMBVV12FQYMGtbqf67z79NNP2eOFiABw/kT+hfMnuhK9df7EnlDkV4qKinDPPfeguLgYRqMRGRkZuPnmmzF+/HhfD63H7d69G/X19dDr9Rg3bpzbfaZMmYINGzZg+/btPTy6wLF3717ccccdOHfuHEJCQjB8+HAsXLgQWVlZvh5aQHGdY1OmTHG7PSEhobFGffv27Rg4cGBPDi9gvP7663j++edhNpsRFxeHKVOmYNGiRQgJCfH10HzKbDY3/ttoNDb+23XeTZ061e39xo0bB71eD4vFgj179mDSpEneHSiRn+L8qQnnT92D86fuwflT9+D8yb1AnT8xCEV+5eTJkzh58mTj92vXrsXzzz+PhQsX4s0334TJZPLh6HrW0aNHAQBJSUltRsBdv6iOHDnSY+MKNHv27MGePXsav1+zZg1++9vf4uGHH8bzzz8PWZZ9N7gA4jof25scDRw4ECdPnuT52I7Vq1e3+H7VqlV46qmnsGrVKsyePdtHo/K99957DwAwYsQIhIaGNt7e0Xmn1WqRmJiIY8eO4ciRIwxCUZ/F+VMTzp+6B+dP3YPzp+7B+ZN7gTp/Yjke+YWIiAg8/vjj2LJlC86ePYv6+nocOXIETz75JBRFwfvvv4977rnH18PsUeXl5QDQ7sotrm0VFRU9MqZAEh8fj1//+tfIy8tDaWkpLBYL9u3bhwcffBCqquIPf/gDli1b5uthBgyej1dm+vTpeOedd5Cfn4/a2lpUVFTgX//6F0aNGoWLFy/ihhtuwK5du3w9TJ/YuXNn43Lfly8lz/OOqH2cP7XGz40rw/lT9+L5eGU4f2pbIM+fmAlFfmH+/PmYP39+i9sGDx6M5cuXY/jw4bjtttvw4Ycf4uuvv8bkyZN9NMqeZbFYAAA6na7NfVxLcTZPxSTBXR+I7OxsvPbaa0hNTcVPf/pTvPjii1i6dGmfXb66M3g+Xpm33367xfcmkwnz5s3DzJkzMXnyZOzatQuPP/44NmzY4JsB+sj58+dx0003wW6348Ybb8TChQtbbOd5R9Q+zp9a4+fGleH8qXvxfLwynD+5F+jzJ2ZC0RV55JFHIElSp7+mT5/u8c+49dZbkZubCwD45JNPvPRM/I/BYAAAWK3WNvepr68H0LIGmDr24x//GPHx8bDb7VizZo2vhxMQeD56h9FoxG9/+1sAwKZNm/rUX0ErKysxd+5cFBUVIScnp9VEE+B5R70X50/ew88N7+H8qfN4PnoH50+BPX9iJhRdkeDgYERFRXX6fmFhYZ3af+LEicjLy0NBQUGnf1agioiIANCUTumOa5trX/KMLMvIzc3F3//+9z51Tl0Jno/eM3HiRACA0+nEiRMnkJOT4+MReV9NTQ2uueYa7N69G1lZWfj8889b9DJwiYiIQF1dHc876nU4f/Ie/r7yHs6fOo/no/dw/hS48ycGoeiKLF++HMuXL/f6z3GlEtrtdq//LH8xePBgAGLFG5vN5ra5pmspV9e+5Lm+eE5dicGDB2Pr1q04duxYm/vwfOya5qnSfeF8rKurw3XXXYft27cjPT0dGzZsaPNifPDgwSgpKWnzvLPZbCgqKmrclyhQcP7kPZw/eVdfPKeuBOdP3sP5U+DOn1iORwHhwIEDAIABAwb4eCQ9Z9SoUdDpdKivr8eOHTvc7rNlyxYAwIQJE3pyaL1CXzynroRrme+vv/7a7faSkpLGlZn64pLgV8J1LgK9/3y0WCy44YYb8NVXXyE5ORlffPEF4uLi2tzfdS65Pusut2PHDlitVhgMBowcOdIbQyYKaH3xdx3nT97VF8+pK8H5k/dw/hS48ycGocjv7du3D+vWrQMAzJkzx8ej6TkhISG4+uqrAQArV65stb2goAAbN24EACxYsKBHxxbo1q5di4MHDwLoW+fUlZg/fz60Wi0KCgqwadOmVttXrFgBQEz+Bw0a1NPDC2i///3vAQCZmZlISEjw8Wi8x2az4eabb8YXX3yBhIQEbNy4EYmJie3ex/XZtmnTJrd/zXOdd3PnzkVwcHD3D5oogHH+xPlTd+P8qfM4f/Iezp/a5vfzJ5XIxyorK9Vbb71V3bp1q+p0OltsW7dunRofH68CUEeMGKHa7XYfjdI3duzYoUqSpEqSpK5YsaLx+Jw5c0bNyclRAajf+c53fDxK/3PgwAF18eLF6p49e1rc7nA41FWrVqmhoaEqAHXevHk+GqF/eeWVV1QA6rRp09rd7wc/+IEKQE1NTVUPHz7cePuaNWtUvV6vAlD/8Y9/eHm0/sWTY/fcc8+pL7/8snrx4sUWt1+8eFFdvHixCkAFoH700UdeHq3v2O12dcGCBSoANS4uTj1y5IjH9503b54KQM3JyVHPnDmjqqqqOp1OdcWKFSoAVaPRqDt37vTW0In8FudPbeP8qWs4f+oczp+6jvMnz/TW+RODUORzFRUVjR8iISEh6ogRI9Rx48apsbGxjbdnZWWpp06d8vVQfeLFF19UJUlSAaiJiYnqqFGjGn9hDRkyRC0tLfX1EP3O7t27G8+dyMhIddSoUerYsWPViIiIxtunTJmiVlRU+HqoPlFUVKRGRUU1fgUFBakAVEVRWtz++9//vsX96urq1AkTJqgAVFmW1REjRqgDBw5sPKY//vGPffSMek5Xjt3DDz+sAlAlSVJTU1PVcePGqdnZ2aqiKI2TgMuPdW+zatWqxvMkJSVFnTRpUptfu3btanHfCxcuqOnp6SoAVa/Xq6NGjVITExMbj+nLL7/so2dF5FucP7WP86fO4/ypfZw/dR3nT13TW+dPbExOPhcUFITnnnsO27Ztw4EDB3Dq1CnU1NQgLCwMM2bMwIIFC3Dfffc1LjXZ1zzyyCPIzs7G//7v/yIvLw8XLlxAcnIyFixYgGXLlrEExY2UlBQsX74c27ZtQ35+Po4dOwaLxYLIyEjMnTsXd9xxB26//XbIsuzrofqEw+FAWVlZq9vtdnuL2+vq6lpsNxqN2Lx5M1588UW8++67OHr0KHQ6HaZNm4Yf/vCHuPnmm70+dl/ryrFbuHAhACAvLw9FRUXYu3cvZFlGWloapk2bhqVLl/b6fkauZYABoLCwEIWFhW3uW1lZ2eL76Oho7Ny5E88++yw++ugjHDp0CEFBQZg7dy4ee+wxzJgxw1vDJvJrnD+1j/OnzuP8qX2cP3Ud509d01vnT5KqqqrPfjoREREREREREfUJbExORERERERERERexyAUERERERERERF5HYNQRERERERERETkdQxCERERERERERGR1zEIRUREREREREREXscgFBEREREREREReR2DUERERERERERE5HUMQhERERERERERkdcxCEVERERERERERF7HIBQREREREREREXkdg1BEREREREREROR1DEIREREREREREZHXMQhFRERERERERERexyAUERERERERERF5HYNQREQNpk+fDkmS8PTTT8NqteLZZ5/F8OHDERQUhIiICMyePRufffZZq/t9//vfhyRJCA8PR2FhodvHfu211yBJEhRFwVdffeXlZ0JERETUMzh/IqLOYBCKiOgyVqsVs2bNwrJly5Cfnw+dTodLly5hw4YNuPbaa/H000+32P+FF15AVlYWKisrcccdd8But7fYfuDAAfzoRz8CADz55JOYOnVqTz0VIiIioh7B+RMReYJBKCKiy/zpT3/Cjh078Prrr6O6uhoVFRUoKirCggULAAC/+tWvsGbNmsb9jUYj3n//fRiNRmzbtg2//OUvG7eZzWYsXLgQFosFkyZNwi9+8Ysefz5ERERE3sb5ExF5gkEoIqLLVFZW4k9/+hOWLFkCg8EAAEhMTMTq1asb/wr3s5/9rMV9hg0bhhdeeAEA8Oyzz2LTpk0AgEcffRQHDx5EeHg4Vq1aBVmWe/CZEBEREfUMzp+IyBMMQhERXSYxMRH33ntvq9s1Gg1+/vOfAwAOHjyI/fv3t9j+4IMP4qabboLT6cSdd96JlStXYsWKFQCAN954A0lJSd4fPBEREZEPcP5ERJ5gEIqI6DKuBpvuTJkyBYqiAAC+/fbbVtv/7//+D0lJSThz5gyWLFkCALj//vsbU9GJiIiIeiPOn4jIEwxCERFdJiEhoc1tBoMBUVFRAIALFy602h4REYE//vGPjd+npaXhpZde6v5BEhEREfkRzp+IyBMMQhERdbM33nij8d8lJSU4duyYD0dDRERE5P84fyLqGxiEIiK6TElJSZvb6uvrUVZWBgCIiYlptf3VV1/FmjVrIMsyMjMzUV9fj4ULF6Kurs5r4yUiIiLyNc6fiMgTDEIREV3myy+/hKqqbrdt2bIFdrsdADBmzJgW2/bv34/HHnsMAPCLX/wCn376KcLDw5Gfn49HH33Uu4MmIiIi8iHOn4jIEwxCERFdpqioCH/5y19a3e50OvHMM88AADIzM5Gdnd24zWw2Y+HChbBYLJg8eTKefPJJJCcnY+XKlQCAlStX4uOPP+6ZJ0BERETUwzh/IiJPMAhFRHSZsLAwfP/738cbb7wBi8UCACguLsbtt9+OTZs2AQCWL1/e4j6PPvooDh06hPDwcLz77ruQZRkAcMstt+B73/seAOCBBx5AcXFxDz4TIiIiop7B+RMReYJBKCKiyyxduhRjxozB4sWLERoaisjISCQlJeGDDz4AAPz85z/HjTfe2Lj/J598ghUrVgAQTTWTkpJaPN7LL7+MoUOHoqKiAosWLYLD4ei5J0NERETUAzh/IiJPMAhFRHQZnU6HL774As888wyGDBmC+vp6hIWFYebMmVi7di1+85vfNO5bXFyM+++/HwDwve99DwsWLGj1eCaTCe+99x70ej22bNnS6q+ARERERIGO8yci8oTi6wEQEfkjnU6HZcuWYdmyZe3ul5iYiPLy8g4fb+TIkY2p6URERES9EedPRNQRZkIREREREREREZHXMQhFRERERERERERexyAUERERERERERF5HYNQRERERERERETkdZKqqqqvB0FERERERERERL0bM6GIiIiIiIiIiMjrGIQiIiIiIiIiIiKvYxCKiIiIiIiIiIi8jkEoIiIiIiIiIiLyOgahiIiIiIiIiIjI6xiEIiIiIiIiIiIir2MQioiIiIiIiIiIvI5BKCIiIiIiIiIi8joGoYiIiIiIiIiIyOv+P01OdKn6c0BkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reducer = umap.UMAP(min_dist=0.2, n_components=2, n_epochs=None, n_neighbors=4)\n", + "mapper = reducer.fit(embeddings)\n", + "\n", + "plot_df = pd.DataFrame(mapper.embedding_,columns=['px','py'])\n", + "labels = cell_types_test\n", + "plot_df['Cell Type'] = labels\n", + "\n", + "\n", + "# Create a matplotlib figure and axes\n", + "fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(14, 5))\n", + "\n", + "#plt.style.use(\"dark_background\")\n", + "\n", + "sns.scatterplot(data = plot_df,x='px',y='py',sizes=(50,200),ax=axs[0],palette=\"pastel\")\n", + "axs[0].set_title('UMAP of Reference Data without labels')\n", + "\n", + "sns.scatterplot(data = plot_df,x='px',y='py',hue='Cell Type',sizes=(50,200),ax=axs[1],palette=\"pastel\")\n", + "axs[1].set_title('UMAP of Reference Data with labels')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Print the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -392,15 +688,15 @@ "text": [ " precision recall f1-score support\n", "\n", - " 0 0.67 0.21 0.32 19\n", - " 1 0.99 1.00 1.00 3001\n", - " 2 0.98 0.99 0.98 938\n", - " 3 1.00 1.00 1.00 2321\n", - " 4 0.84 0.97 0.90 38\n", - " 5 0.78 0.74 0.76 19\n", + " 0 1.00 1.00 1.00 2321\n", + " 1 1.00 0.97 0.98 938\n", + " 2 0.67 0.32 0.43 19\n", + " 3 0.99 1.00 0.99 3001\n", + " 4 0.86 0.97 0.91 38\n", + " 5 0.69 0.95 0.80 19\n", "\n", " accuracy 0.99 6336\n", - " macro avg 0.88 0.82 0.83 6336\n", + " macro avg 0.87 0.87 0.85 6336\n", "weighted avg 0.99 0.99 0.99 6336\n", "\n" ] @@ -410,14 +706,21 @@ "print(classification_report(cell_types_test,outputs.argmax(axis=1)))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the confusion matrix of the test outputs vs the true labels" + ] + }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAV1CAYAAACmlabpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xkV3k//s+RtH29u7bXFfeGO8bGuGADppcAgQCBQIIpgeRHIIQkJJBQkwAh8IUAIWAINSGhhg6GUI0xxQVXbNz72t61vevtu9L5/XFH3lmtpJW0a0vXer9fr3mNZu655565OrqSnnnmOaXWGgAAAAAA2qdnsgcAAAAAAMDECPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALRU32QPAAAAAAAYu1LKfyU5dLLHMQVdXmt9wWQP4v4mwAsAAAAA7XJokmMnexBMDQK8AAAAANBCs1KyV2ZO9jAm3U1Zn3Wpkz2MSSPACwAAAAAttFdm5l/79p3sYUy6P994fa7OuskexqSxyBoAAAAAQEsJ8AIAAAAAtJQSDQAAAADQRiUpM8pkj2Ly9SfTuASvDF4AAAAAgLYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEALlZL09FlkrZRYZA0AAAAAgPYR4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEAblZIyQ/5ms8ra9GUGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtFTfZA8AAAAAAJiAkvT0lckexeSb5qdABi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lEXWAAAAAKCFSknKjGm+wlia8zCdyeAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlrLIGgAAAAC0UUl6+qb5CmNJMs1PgQxeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAluqb7AEAAAAAABNQSsqMMtmjmHxlep8DGbwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUhZZAwAAAIAWKkl6+qb3AmNJcx6mMxm8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FIWWQMAAACANipJ6Z3uS4xl2q+yJoMXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpfomewAAAAAAwASUpKe3TPYoJt80PwUyeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClLLIGAAAAAC1Veqb5CmPI4AUAAAAAaCsBXgAAAACAlhLgBQAAAABoKQFeAAAAAICWssgaAAAAALRQKSWlV/5mKdN7oTkzAAAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKX6JnsAAAAAAMDE9PSWyR4Ck0wGLwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoI1KUnosspZpfgpk8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLWWQNAAAAAFqoJOnpneYrjGXar7EmgxcAAAAAoK0EeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKCl+iZ7AAAAAADABJSS0lsmexSTr0zvcyCDFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFrKImsAAAAA0FKlR/7mdGcGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAA2qgkpadM9igm3zQ/BTJ4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUssgYAAAAALVSS9PRO8xXGMu3XWJPBCwAAAADQVgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FJ9kz0AAAAAAGACSknpKZM9islXpvc5kMELAAAAANBSArwAAAAAAC0lwAsAAAAA0FICvAAAAAAALWWRNQAAAABoqdIjf3O6MwMAAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpSyyBgAAAAAtVXrKZA+BSSaDFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKX6JnsAAAAAAMD4lZL09JbJHsakK9P8FMjgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFJJ6ZnmK4wlSab3OZDBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC1lkTUAAAAAaKOSlB75m9N8jTUZvAAAAAAAbSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC3VN9kDAAAAAAAmpvSUyR4Ck0wGLwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoI2KRdaSJNP8FMjgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFBJschamvMwncngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgDgPlVK2a+UUju3/ca6baoqpbylM94fTfZYJksp5ahSyudLKbeWUjZ2zsevJ3E8jx6cR5M1BoY3FX7GSymP7Rz/25Nx/Omg63v86Ckwlg93xvLSyR4LwP2l9PRM+9t05wwAwDC6gni1lLK6lLLnKG33m0r/3NIOpZTeUspzSymfLqX8tpRydyllfSnl9lLKT0sp7yilHDnZ4xyqlLJ/krOTPCfJ7kmWJ7ktydLJHFdbdV07ainlN2Nof/yQfT65ncdzTOf695rt2e9kKaX0JHlP5+Gbh9n+liHnc/C2rpRySynlzFLKy0opM+7fkbMN3p5kfZK3lVLmTvZgAOD+IMALAFs3J8MEBtguNiS5onPbMMljud+UUk5MclmSzyX5wyQHJ5mb5J4kOyd5RJK/TXJxKeVLpZSZkzXWYbwiyQ5JrkqyV61151rr7rXWx03imFZn0zxqs0NLKSdtpc1L7uMxHJPmevea7dTfZP+MvyjJQ5J8s9b6y620va3rtjHJHkmekOSjSX5WStnxvhxoyw1+j1dP9kBqrTck+USSPZP81SQPBwDuFwK8ADA2LymlHDLZg3igqbXeXGs9tHO7ebLHc38opTwtyY+SHJJkWZLXJzmk1jqz1rpzkplJjk/yziQrkjwrTfB3qjiqc//VqfI9q7X+cnAeTfZYtsF1nfsXj9SglDI7yfOS1CTX3w9j2mZT4Gf8dZ37f99aw84bFYO3eUn2TRPcTZKHJXn/fTTG1uv6Hm8tiH5/+XDn/tWllFmTOhIAuB8I8ALA6G5MclGSvjQf+4QJK6UcnOQ/k8xKk8F7TK31nbXWKwfb1Fr7a63n1lpfn2T/JF+dnNGOaDDYvHJSR/HA8+k0gdvfH+Vj5c9KsijJj7MpIMwIOiVzDk1yR5Izx7t/rfWGWuvLk/yg89RzSynzt9sAuc/UWn+d5NI0n4h49uSOBgDuewK8ADC6gTQZlknye6WUh0+kk0691ZeUUn5QSlnaqe94cynlC6PV7S2l/KhTD/ItpZQZpZS/LKWc26nXem/N31LKdZ3Hp5dS5nba/6ZTP/iWUspnOrVTB/tdXEr5507t1zWllCWllI+VUnYbYRwzSilPL6Wc0Tn+rV31Ys8spTy/lFImcF5GW4BtuLqYw90+OULfjyil/Gcp5fpSytpSyvJSyi9LKX+ztSBNKeXJpZTvdc7zylLKhaWU122HOpz/mGRBkrVJnllrvWm0xrXWO2utv5umzu3QMe5eSvmXUsqlpZRVndulpZR3jfJ93Ox8l1J2K6X8aynl2s45uq2U8j+llC0yYQfnWJJHd55685Dvw6M77ba6CF3ZyqJopZQTSin/1TWuVZ3v449LKW8spew1nv4m43xNwLVpArcLkvzeCG0GyzN8YrSOOteA55emvvOvSyl3lE01Zb9SSnnyCPvVrr73HeZn7S1dbT85+PNXGi8rTe3oZZ3nT++0G/ZnvJSycynlps7zXxlhPH2llLM7bS4qTQbzePxx5/4LtdaN49y323c69zPTlFPZQinlwFLKv5dSrizNNXVFKeX8UsqbSikLhmn/e53XdUcpW147S3NdHTxvW9TiLqW8vrPtrPG8kFLK1zv7vXuYbXt0HfPcEfa/ogyzgNnQ68CQbTuWUt7WOR8rSvO7Y0nne/rhUspjRxnvhK/jST7buX/5VtoBtFtJenrLtL9l3P+JPLD0TfYAAGCqq7V+q5Ty4ySPSvOx+ceMZ/9SysIkX8mmwFh/mlqre6TJLHp2KeXdtda/HqWb2Wk+1n9ymtqQ96TJ9htqYZKfp/kY/dpOmz2SvDDJY0spJ6d5g/f/0mSHru483i3JS5M8spTysFrriiH9PiKbZ5Ku6PS/S5oalU9I8sxSyvNqrQOjvI7xuG0r23fNMH/KlWZRpfcmeXXX0yuTzEtT+uD4JC8upTyx1rrFx9w7Qazumst3Jzk8yT8neWqaBcbGrRNEHMwk+69a62/Hum+tdbPvdSnlUWnm1KLOU6s694d3bi8rpTy91vrTUbo9IsnH05zHwbqZuyb5/SRPLqU8stZ6YVf7O9LMw52SzOgcszuLd/1YX89oSikvShNkHPzerksz5/fp3B6ZJrP+k+PoczLO10R8Is114sVJPjPkNeyb5tpzT5IvZvRavM/NpkBtTfPzOlhT9hlJnlFKeU+tdWh90tvS1BxfkObNrTuGbB8ua7sk+UKaoPRAmjcjtnoNqLUuK6W8IE127DNKKa+stf7bkGZvSXPNW5PkebXWtVvr995BNUHTJ3YejisIOlx3XV/3DnOs56bJwB4sBXBPmmDwQzu3l3WuN92L6P04zfdmcZrr9UVd/c1IckpX28ckuWTIYQd/D/0g4/PDJL+T4X+PdT/30FLKolrr3V3jelCa0jJjPm5p3ow5O83PbrJpjixO83vnqDRZ1t8fst82Xcc7ftK5f0QpZYda6z1jGTMAtJEMXgAYm7/t3J9WSnnSOPf9jzRBm/Vp/lldUGvdMc0CMB/vtPmrUsqfjNLHK5McnSbws6DWulOa4OpFQ9q9Jc0CWE9I84/w4Nd3pAnu/HOS/07zD/ZJnTqT89MEqVanyU57Xba0OslHkjw+ycJa68Ja64I0H3/98zQBpOck+bOtno0xGlIPc7NbkjdlU9DlW0N2fWua83x7mvO2c611hzSBq9OSXJDkwUm+3Aki3KuU8vRsCu5+Ick+ne/Vgk5fJyb50wm+pNOy6W+v/51gHyml7J1NwcrLkpxSa51fa52fJvh5RZIdk3y1E5AZyWeSXJnk+K558Pgkt6Z5vR/oblxrPb5z7n/WeerdQ74vP8s2Kk1pgg+k+d7+Z5KDaq2za60LO+N7WJJ/SfO9HWufk3K+JuiLaYKDjy5dGfcdp6c5L5+rtW5tIau7krw7TZBwfq11UWfMe6aZ3xuS/GVnvt+r8/39887DG4f52dsi6zNN2YhnpFnMasfOtWlhxlASodb64yT/1Hn47lLKYH3nwfIKg5+e+Ita62Vb62+Iw9Ncn5JkW+vCDgaKa5pM63uVUo7NprIrZyc5unNtnJvk6Wnmx95Jvt6dcVprXZrk4s7DocHWEzr7rxhue2kWXXxE5+EPx/laBts/pJSy05Btp3XuV6S5Vj16hO3X11qvzdi8JU1w97okj0syszNHZiXZL8319OfD7Dfh63iX89K8sdGbTecLAB6QBHgBYAxqrT/PpqDcO4b7SO1wSiknZNPHrV9Va/3AYHCm1rqk1vrSJF/qbP+HUT6CPD/JH9RaP1lrXdPZf1mt9c4h7WYleXyt9Xu11oFOPdfvZVOA+rlpFg56XOc1pda6odb6+STv6bR53jCv/5e11j+ptf5fd3Zvp4TA+9Nk/yabZ1vdJ0opj08ymOn3ls7YB7ftlyYotCbJE2qtHxo8R53X+aM0mdg3JTk2TQCm2zs69z9OkzF4Y2ffNbXWD6V5fYsmOPQjur6+YIJ9JMkbOmO4K8lja633ZhTXWs9KE0RZkSbT9vXDddBxW5q5cm5n34211v9L8orO9lPLkFII94Mj07wpsSrJi2utVw9uqLWuqrWeV2t9Xa11aFB/NK05X51rw+fSBHJPH3y+c70ZfDxqeYZOP1+ttf51rfXs7mBwrfXWWuvb0pyTZPv8vM5P8tpa63sGrw211pW11lvHuP9b0wRGZyf5n1LKnFLKzmmCpj1Jvlxr/cgExnVC5/6eWus1E9g/pZR9SilnZFOA9eu11mVDmv1Tmoz2q9Jccy5Oks719+tpsv43JjkwydA38QazYIcGeAcf/1uaYPyjhgQxT0wT6Fyb5JxxvqwLk9yZ4QO4g8d931bGNZ6g8smd+zfUWr9fa+1P7q01fn2t9cO11r/t3mE7XMfTabsmzRs4SXLSOMYMAK0jwAsAY/eGNOUVjkny/DHu8/ud+5uSfGyENm/s3C9OkxE4nEs7wYKt+VKt9aphnu/OpjtjmCBFd5sDSynzxnCsbt/s2nf3ce47ZqWUI9Jk1vYl+Wyt9a1DmpyeJlvrO3WEj8t3Pqb7lc7Dwcy8lFKOTpP1lyT/WIcvNfHRJDdPcPg7d309NDA/Jp1A33M7Dz9ca10ytE1t6voOriC/RbC+y3sG3ywY4tvZVG7hqGG235fu7tzPzObna0Jaer4Gs/pf1PVG0mlpsh2v2B6Z0tn083pSKWWLkgPjdFea7P4J6QT8/qDTz+FJ/jXNOXhQmlIcL5tg13t27peOdYdOXdjB26ok12dTHd/Lk/x/Q9ovyqZryL8Ml1lda70gyZc7D4f+3hgMlD5yyPdhMFP2G0l+keYNimOH2X5OrXXdGF5a93gG0ryBlXQFcDslQPZPk6X+6aHbhxx3PAHeuzv3e4xjn9Mzwev4MAa//3uO0gYAWk+AFwDGqNZ6eTZlz/1DGduCWw/r3P9whIBhalOX8eYh7Ycaa93XkT6K3F3P9ldjaLNo6MZSyg6llL8uzUJXt3cWyhlc2Ko7sHGfZH12ath+M83Hv3+W4WuQDn4M9wlDgjWb3dKUukiabOZBg+d+Y0ao2dn5Hv5oG1/Kttg/TaZp0tRRHsn3Ovc7D/NR/0G/GO7J2ixGNVh7dehHuO9rV6cJpM1I8ovOQkrHbEMQsnXnq9Z6TppzsG+SwcWnxrS4WrfSLAj31lLKOaVZ+Gxj18/rYLmDuWnKU2yLX9Vat6n+cq31hmwKpP5xmozM/iQvrLXeNcFud+ncj+fNlN26bnO7nv90kofWWoe+uXNsNpWKGcv8OnrI740fp3mdC5MclySdT3GclKbe7C+zKZjaHWydSCZtt+Eyh++t6dvJnL8hyRGllF0749o/zZsM4z3uNzr37yzNIp1PKsMsOjfEtlzHhxr8/u8yShuA1is9ZdrfpjsBXgAYn7ek+djoAdny47bD2bVzv7Wsz5uGtB9qrDVHh11Epm6+gvxIC810t9kseF1KOSRNUOhdaeqW7pLmo8N3pAkMdweHx5v9u1WllDlpFnnbN00NzN8dIXNtMEtrXjYP1gy9DY6xO4gzeO6XbiUr7qZRto2mO2t6ooHA7vkx2pzqHuNIc2q0BYcG58JY3sTYbjrZnM9L8z3eN82ihhckWVFK+V4p5U87dXrHqq3nazCQ++JOMOxZaQKBnx55l01KKSelCRK/Kc3H+XdKc926Pc3PandW67b+vI65HvJoaq1fyqZyNUlT4/knI7Ufg8FyN2POcK21llprSfM/0p5prvF3J/mjDF9ffLzzqy9dP/u11uXZVK5lMMB6cppSO2d1rtubBWM718ITO89tFmgtpXx5hGDo0Df1Bvc7rOsTF4PZuT8Y0uYxQ7ZfPVi6Zoz+Jcnn0/xs/HGajPe7SykXl1L+pZTy4GH22Zbr+FCDWfcjlT8CgAcEAV4AGIdOBtfgYkp/371ozn2s/346zkg+kSYz97o0i6ntXGudV2vdtTYLM3UvTrVd30LvfEz902lqai5P8ju11jtGaD6Y6fnPg8GardwevT3HuhWXdn390PvxuK3S+Uj2oWlqV5+R5JI09UYfl+RDSS7vXozrAeozaX7mn5kmyDgnzcfVt1rXtpTSl2YhxUVJfp3kKWkWZtyh1rpb5+f1xO5dtnGs2+Xa1Km7+riupx6xjeUjBt9QGXeGcm3c2qn9+8w0i6u9q5QytGTB9jA0m/YxQ54/J02t3VM62b+PSFPCZHW2zCrfKcMHQjfLXq21XppNb8p1B3BrNgV2RxrXuLKGOzVzfz9NaaO3dfpdnabe9l8lubSU8pdDdtue1/HBgPpwZYkA4AFDgBcAxu+daepF7ppk6D+mQw1mt22tbMHg9u2SDbc9lVL2zqaFcp5fa/1i3XJxt/us7m6Styd5dppA0u/XWi8bpe1gjdXRPrI7ksFzv7izSv1IHjTKttH8MMlgmY5nTrCP7vkx2pzq3nZ/z6nBbNbRMuYWjtZBrXV9rfXLtdZX1FqPShOg+pM0H7feO8mnxjiWNpyvLXQCud9JE9j9h87TYy3PcFKa+d+f5s2Qb3fqlXa7L39ex60rKL0wyW/TZN2ekk31ySdiu5TN6Czo9Zk0gfAPDAk6j3d+bcyWJSMGA6aP6Fx3Ngvwdj5N8LM02aondG3/aa11w5CxPnqEAOh+w4zpR537x3Q+obFXkku63jwbKYN3MPA7LrXWC2utb661PjbNmw+PS/KTNMHcfymlPKSr+bZcx4ca/P6P9KYgADwgCPACwDh1akK+s/PwLzN6bb9zO/enDVkF/V6llEOzKWg4Un3cybR319cXjNDmcSM8v01KKS9JMrjC+qtrrWeO1j6bahU/rlPLcjwGv1d9SU4dYTzDrTw/JrXW27LpI+h/0AmqjEnXYlvXZlOA6LEjNE82fT+W1VqvHddAt91gzdS9R2lzwng6rLUu62RT/k3nqYeWUsayCFsbztdIBhdbm5mmpMLXxrjf4Hm/Y5iasYNG+3kdfBPi/ixm99Y0WcWrk/xuNn2f/76UcsoE+xx8I2iX7fBJi7elCZgfnuRFXc+fn03nayzz68KhQdkkP01T7mZup93xaebsr7vadGfTTmShs+F0B3C3CN52yjBclWbhzMdnU9mEH23jcVNr3Vhr/X6Sp6YJ5pdsPie35To+1GBN7d9sYz8AMKUJ8ALAxHwgTV3FHTJ6ltn/dO4flJFXg39b535pRl+oZ7Is7/r6IUM3llJ2SPL32/ugnY9Df7jz8P211g+NYbePp8mSW5wmaDRa/zO7Az+11ouyKQjwdyME5F+SbVtE7u/TLJ40J8mXSymjZgOXUnYspXwpnYzXWmtN8rnO5ld01c/s3mfPJK/oPPzvbRjrRA2uer9nKWWLQG5n0aY/Hvp8Z9usrfS9puvrYRct7NaS8zWSr6epX/qeJK8ZJjA4ksGf1906CxNuppSyV5JXj7L/is79ojEeb5uUUk7Lpjdx/qLW+pta67+mWVCxN8l/lVImshDcz9IEZXsy8uKVY9JZdGxwHr1xcKG0WuvdSQbfdPrr4epDdzJTf6/zcIv5VWtdmU1v7L0pzRtMPx6yKOdgMPbp6Vq4c0IvZpPBYO7+2bRY2dDs3MFjDGaRXz6WMiHdtvIzvS6bSnx0v94JX8eHbNs/m96A/fGYBgwALSXACwATUGtdk2bBtSR52ijtfplNWZsfKKX82WAQoJSyeynlo2lq2ibJG2uta++jIW+L36RZUT1JPl5KOW5wQ2cxpx9lAnUuR1NKOTjNeZuR5FtJXjuW/TqBmMFgxOtKKZ8upRzZ1W9fKeWYUsqb0mSnHTOki7/r3J+W5LOdYFhKKbNLKX+S5INpFl2akFrrb5P8YZL1SY5I8utSyt+UUg7qGmNvKeWhpZS3JbkmzQJb3d7eGcNOSf6vlHJy176PSPMmwaI0WYDvzP3vZ0mu73z9qVLKw0qjp5Ty6DTzZaS/QZ9XSjm7lPKKUsoBg092zskTs+n1nNPJpB+LqX6+htWpXfq6Wutf1Vr/axy7/jTJqjRZkZ8fzBTvOoc/SlNrdSSXdO4XlFKeO4Ghj1knC/szaebDl2utZ3RtfnGSW5Psk+Sj4+27U5bivM7DcWWMj+Adac7bfkle2vX836fJwD0oyZmD9aE78/0paa5ffUmuTvKREfoeDKQOjnNooPWXad4YOq7TV/drm5Ba65XZtPjbCWkCrUODoD/o2t49zvG4vpTyjlLKid3B3s4177/SZC4PZFOgfHtcxwcNjvu2WuvlExg7QCuUUlJ6etzK/fnho6lHgBcAJu6TaVaq35qXpvnHeWaazN/lpZQ7k9ySTVm97661fniE/SdVJ5PslWkyqo5Icm4pZVUpZVWaYN6Dk/z+dj7sI7Ipg/CkJDeX4VeHX1JK+dch+/5D51bTBFMvLqWsLqUsTbNY0QVpssL2zpBAV631f5P8U+fh7ye5sfO9uifJv6cJtPz7trywWutX0nws+qo0GWrvTHJlKWVdKWVZmuDv+Wkywxemyfpb1bX/TWk+xr48zffj7FLKylLKyjTBvcPSBDR/d5SP6N9nOvPlFWmCXg9Ok524Ms1r+GGaANUrR9i9pKn3/OEkV5dS1na+b+vT1KTdK83PzUvGMZ4pfb62t1rr8jSLVyXJI5NcUUq5J8334Dtp5tSLR9g9tdarkny/8/BzpZQVpZTrOrfXbOfhfjzNpxtuzJBPOHRqwf5Rmp/R3yulDJv1vRWDGbNP35ZBdsZzSTaVyfi7wWBlrfX8bHrT5pQkF5VSlqeZ799MU9rgxiRP62TrDmdoQHezx7XWjWnm6qCzOs9tq+6A7fmduTPS9uEej8VuaTK0z0myupRyZyllTZIr07y5WZP85TC11Sd8He8y+H2fSpn5AHCfEOAFgAmqtfYnecMY2i1PU5/xpWmy5+5JMj/NQjJfSnJarfWv77uRbrta6zfSBIu+mSYY1pempMQnkhzXqad4X9kxw68MP3jbbMGu2nhTkqOTfChNBnJ/p91daYLS/5Lk5Frr2Rmi1vr3SX4nTZBlRZJZnT7+Ns33cf22vqDOcQ9N8vw0WWxXpQla7JAmk/SnaQLNh9Va/2CYxZR+nCYw+Z7O2HrSBEd/k+Tdnf3O2tZxTlSnVvKpSb6R5pz3pglyvTNNFuKSEXb9Wpqg3ifSlHpYnub7dk+a4Pobkxwx3my8qX6+trfOm0VPTXO9WZnm5/XmNG8wPSTJxVvp4tlJ3ptmwbMZaRa72jfbsWxDKeWVaQJwA0leOFxGdq31/9L8rCbJ+0oph43zMJ9K83N1cufj+ttq8M2fvbKprEdqrZ9L8+bBR9Jk6s5K84bYr5O8OcmRtdbRasD+LE25giRZMsJCkt1B320tzzBcP1ssntapGz44lpqJ1d99Qprs57PSXAPmdJ6/Ks3P+fG11vcNc+xtuo53yjY8o/NwpMxpAHjAKE1pMgAAgAeWUsrH02Qsv7nW+ratteeBoZTyR2kC/D+stT5msscDcF8opZyX5Ngjd16Yrz39kZM9nEn39K/9JJcsW540n0o5bmvtH2hk8AIAAA9Ub0uTHftnpZR5kz0Y7nudBTJf13m41U/ZAMADQd9kDwAAAOC+UGu9rpTygTR1iV+Z5F2TPCTue89JUzLjC7XWn0/2YADuD6Vnei8whgAvAADwwPZP2bTQHw98M9IswPaJyR4IANxfBHgBAIAHrFrr3WkCfkwDtdb/nOwxAMD9TQ1eAAAAAICWEuAFAAAAAGgpJRpggkop1ybZNcnaJNdN7mgAAABg2tkvyewkt9da95/ksUyOYpG1JMk0PwUCvDBxuyaZ27ntNMljAQAAgOlq18keAEwmAV6YuLVJ5vbNnJNd9jx0sscC95o1c5q/dcmUtbF/skcAW7pr6crJHgJAayzYcd5kDwE2c8ctl2fj+jVJ8/85TFsCvDBx1yXZaZc9D83L3/aLyR4L3Ovg/VzamZqWLZ/sEcCWPveRn0z2EABa4/HPPXmyhwCbOeNNJ+TW6y5IlE1kmrPIGgAAAABAS0nzAgAAAIBWKik98jen+yprZgAAAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBL9U32AAAAAACAiSk9ZbKHwCSTwQsAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZE1AAAAAGihUpLSI3+zTPN15swAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmLrAEAAABAW033FcaQwQsAAAAA0FYCvAAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSfZM9AAAAAABgIkpKT5nsQUwB0/scyOAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlrLIGgAAAAC0UUlKj/zNab7GmgxeAAAAAIC2EuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmLrAEAAABAS5Weab7CGDJ4AQAAAADaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpvsgcAAAAAAExAKSk98jdTymSPYFKZAQAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgBYqSUrP9F5gLGnOw3QmgxcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiJrAAAAANBSFllDBi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBL9U32AAAAAACACShJeuRvpkz2ACaXGQAAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZE1AAAAAGilklKm+QpjSab7KmsyeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClLLIGAAAAAC1VeuRvTndmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLqcELjFnPmlXZ/cxPZsfz/i+zlt6U2tObdbvtm2UPf3Juf9wLUvtmjLvPGXfdlkUX/DALLv9l5t7wm8y86/YkyYaFi7PygKNzx6OenXsOO2HE/XtXr8gOV5ybudddlnnXX5a511+WmcuXJkmueck/Ztkpvzuh10rLrF6Z2Z//RGac9d303Hpz0tuT/r32y4bTnpJ1z3xhMmPmuLvsvfCXmXHu2em94pL03HpTyvK7UtasTt1hQfr3OygbTnlc1j/1ucms2cPu33Pz9Zlx9vfT9+tfpvea36bcdUfS25eBxbtm41EPy/pnPD/9hxy5ra+cKaysWZlFX/1E5p3z3cy4/ebUnp5s2HO/rDzlKVn+lAnOy2W3Zd4vv585F/8is679TXrvvC1J0r9ocdYe8pDc8/jnZs3RJ46tr7vuyIJvfzbzzvtx+m6/OWX92vQv3Dkb9joga454eO5+xouTCVzXmdpmblybE679bh582/lZtGZZBkrJnXN3y2V7HJ9z931MBnom/u/BvHUrcuK1Z+ag2y/KgrV3ZmPvjCydv2cu2vOkXLjXKUkpo+6/aPXtOemaM7P/sssyf93yrO+dnSUL9skFe5+aK3Y/bsLjoh3MTaYi//8AbVFqrZM9BmilUsp5SY7dY7+H5uVv+8VkD+c+N3PpLTn0XS/OrKU3J0n6Z85JGehPz8b1SZJV+xyWK/76Y+mft3Dsfd55a47+6yekdF2H+mfOSVLTu37tvc/dccozc93pb0l6erfoY+effiUHfPzvh+1/uv6Bc/B+0+u9u7Lk5sx/7R+ld0kzN+vsOUl/f8qGZm5uPOjwrHrPJ1J3GPvcTJJ5b3hFZvz8x/c+rrPnNsdbu/re5/r32Cur3vnRDOy9/2b79l5yfnZ49R9s9lydOy/ZsD5lw4bmcU9P1r3gT7L2xa8e17jabNnyyR7B/afv9puz5xv/KDNub+blwKw5yUB/ejrzct0Bh+eWt34iA/PHPi97l96afV/+mM2umQOz5iS1pqfrmrnisb+XO/70bUnvltfMQfN++q3s8u9vSu/qlU0/M2el9s2493GSXPufv8zAvAVjHl9bfe4jP5nsIdxvFqxZlhf+8t1ZtGZZkmR978z01IH0DWxMkixZsHc+e/xrs3bGvHH3vfvy6/O8c9+XuRtWJUnW9c5K38CG9NaBJMnVi4/IF4595YhBugPvuDjP/PVHMrO/+RlZ2zc7MzeuS0+a+X7hg07ON4980VYDcbSTudkej3/uyZM9hPuN/3/a4Yw3nZBbr7sgSc6vtU6rd1wGYxJH775zvv/Hz5js4Uy6x370q7loybJkGs6FRAYvMBb9G3Pw+1+ZWUtvzvqFu+Tal709K444KRkYyE7nnpn9PvmWzLvhNzngo3+bK1/z72Pvd2AgpdYsP+zELDv5aVlx+EnZsOOuycBAZt96bfb68r9mxwt+kF1++r/ZsGjX3PysVw3bzfqFi7N6n8Oyet/Dsmrfw3Pwv71m+7xupr7+jZn/93+a3iU3Z2DnXbL6b/85G487ORkYyIwffydz3/PG9F11Wea+/XVZ9Y6PjKvrjceenA0POyX9Rx2X/gftk8ydnyQpy+/KjO9/I3M++p703npT5r3pVbnnP76WdK1cWzZuSO3pzYaTTsuGx/1ONh5zQurCHZP+/vReeVnm/Ps703fxeZn9mQ9lYLc9s/4pz96up4VJ1r8xu7/9TzPj9puzccddcvuf/3PWPKSZl/N+9p3s+qE3ZtY1l2XX970uS/5+7POyDPSn1JrVR5+Uex79jKx5yEnp32m3Zr7ffE12/s/3Zt4vv58F3/9SNu60a+76gz8ftp95Z38nu733r1IGBrL8Cc/N8t/5o2zY+6DmGGtWZta1l2fez7+X2uvPxAeSMtCf5573wSxasyz3zFqYrx/14ly3+PCkDuSwJeflKZd8JruvuDFPv+g/8vnjxvfG06wNq/Pc8z+QuRtWZem83fO1o1+SJQv3S8/Axjz0xrPyuMs/nwOXXprH/+ZzOfOIF2yx/8LVS/PMX5+Rmf3rc+OiA/PNo07PnfN2y4yNa3Pitd/NqVd/Iw+5+WdZNm/3/PyAJ22vU8IUYW4yJfn/hzYpSemZHm8yjWqan4LW1OAtpfyolFKH3DaWUu4opfxfKeX0UkrPkH2Gtq+llHWllJtKKV8ppTx1jMeeXUp5ZSnle6WUW0sp6zvHPbuU8vpSypjesiulzOiM84ullOtKKStLKWs7ff5fKeVNpZQHj7DvJ0d4PUNvdw/Zb7+ubf2llMNGGd8XO+3eMsy2wT4e3Xn8ljGOZ+jtk9vz/JZSHj3CcVaVUn5bSvlYKeWokfZnbBaf/dXMvenKJMlVr3xv88dNkvT05M6HPznX/dGbkySLLjorO1z28zH32z93QS598+fz27/+WJY94hnNHzedftc+6MBc9Wf/mruPPCVJstv3PpOyYd0WfSw7+Wm58L0/ypV/8e+5+Vmvzt3HPW4bXiltM/PMr6T3mt8mSVa95f1NcDdJenqy4bSnZPVfvDVJMuMXP07f+eeMq+91z35R1j/rD9N/8OH3BneTpC7cMeuf9YdZ88rXJ0l6r78qvZf9erN9+x+0b+755Dez+h8+mA2PelIT3E2S3t70H3pUVr77E+k/oLncz/rsGeN92UxxO/zwK5l1fTMvl7zu/U1wN0l6erLqlKfkjj9t5uW8836cOReNfV4OzFuYG9/9pdz61k9k5Wm/2wR3O/1u2PugLPnbD2b1Q09Nkiz6+qdS1m95zey98/bs8uE3pwwMZOnpf5Olf/q2e4O7SVLnzM/awx+WZS95/b1Z6zwwHH3LOdl1ZZOF9uVj/qQJoCVJ6clv9jg+3z7ihUmSg+64JPst+824+j7huu9l/roV2dAzI5877tVZsnC/JMlAT1/O2/e0/OSgpydJHnrTWdlp1W1b7P/Iq76amf3rsnLWgnz+uFflznnN3N7QNztnHfz0XLBXM69PvuZbmd3JwuSBw9xkKvL/D9A2rQnwdrkxydmd26+TzEzy2CSfSPKNUspwRXAu6drnt0l2SvKMTvv3jXawUsrDklyR5INJHpdkY+e4K5KcnOTtSa4upTx5K/2clOTKzjh/L8mOSa5JcnGS9Z3X8NYkvyml/McoXd3e9VqGu432n2JPkn8YbZzjcMMIx799K+P8bXcn2+v8dnQf55Yk+yd5aZLzSinPmdjLJEkW/+xrSZIVhz48qw46Zovtd57w5KxdvNdmbceif+4OWb3v4SM3KCVLT31mkqR33erMueWaLdsM87Elpo+ZZ34lSbLhmBPSf8RDt9i+4TFPTf8ezdyc+d2vbNdjbzzsmHu/7rljyWbb6i67Z2Cv/UbeecbMrH9c809l7y03pNwzjWoXTAM7/PArSZI1R56QdYduOS9XnvLUbNhtr83ajsXAvB2y/sAjRm5QSlY89veSJD1rV2fGTVdv0WThNz+T3pXLs+6Aw7P86aeP+di031E3N38iXrfTg3Pzjgdusf2yPY7PXXMWJ0mOvHnswYruvi/b4/gsn7t4i+3n7nta1vXOSk8dyBG3bF7WasbGdTl0yflJkvP3fnTWzdjyjYWfHdD8GTh749occtuvxzU2pj5zk6nI/z9A27QxwPvxWuspndvDkuyc5O86256cZLjPI76qa5+jkuya5KOdbX8+mJU6VCnl2CQ/SrJPmsDpw2qte9daH15rPTDJwUm+0RnD10opTxmhn9OS/DDJvkl+kuRRSXaqtR5daz2+1rpvkgcleU2Sm9IEe0fy7a7XMtxttEBof5JndV7XNqm1fny44yf59lbG+fbBPrbX+e0aU/dxDu7sf06SGUk+WkpZtK2vezrqWbcm86+8IEmy/KhThm9USlYc9YgkyYJLf7Zdjz8wY1bXg/7t2jctt3ZNei9t/vHa+PBHDt+mlGw8vsmu6Tt3+87NvovPvffrgT33Hvf+dWbXAlsDA9tjSEwBZd2azL68mZerjx15Xg5m2s65cPvOy+55VYa5Zu7wo68mSe555NOmTb1Ikr7+ddnrrquSJFfvMsLijqXkmsXNGwgHLLt0zH3vtHJJFq69c9S+N/TNzo07Hpwk2X/pZZtt2+uuqzJjYMOo+y+fuzhL5+0x7P60m7nJVOT/H6CN2hjg3UytdWMnaPjNzlMvHMM+K5O8Mk0WapI8d2ibUsrMJP+TZF6SnyZ5TK31vCH9XJUmE/jzaeoZf6qUsvOQfnZK8rkkszr9PabW+pNaa/+Qvm6ptf5rkgcn+fDWXsME/WeaqiRv31rD+9r2Or+jqbVel+T0zsOFSZ6wzQOfhmbfek1KZxGKNQ86eMR2qzvbZi5fmt6V2y8bccHlv0qSDPTNyNrd99tu/dJ+vTdcndIJjPbvP/LcHNzWc+cdKSvu3raDrlubnpuuy6z/+nDm/Ps/J0k2Hv2w9D94/JVg+i78ZZJkYOddUhcs2rZxMWXMuGnTvFy/z8jzcnBb3113pOeeu7fb8edc0syr2jcj6/fcfPG/vttuSt+dzQdt1h14RGZef0V2/X9/mX1fcmoOeM5R2fdlj8pu7/6LzP7N+dttPEwNi1cuuXdBqDvm7zliuzt2eFCSZP66FZm9fmwfN9+l89H6pu8HjdJ3c9zFq24ZZf/RxrZnp/0tI7ahfcxNpiL//wBt1PoAb5cfdu4PGUvjWuuGJIP/wew/TJM/SJMBujHJ6bXWtcO0Sa11IMmfJLkryeI0geNur0qyS5I7krx8aGB3mP7W1FrfOZbXMAH/mGR1kieWUk69j44xVtvr/I6q1vrbJHd3Hg73fWYrZtx9x71frx+sETWMDV3bZt59+4jtxmPmHTdllx99Pkly5/FPysCc+VvZg+mkLN00zwYW7zZiu+5tZdn452a5844sesyhze3Jx2TBHz0pc/7jfSkb1mfDSadl1ds+OO4+ey+9IDPO/n6SZP1TniOT8gFkMICaJBt3Hnlebtxp07bufbbp2LfdlAVnfi5JsvKUp6TO3fyaOeOWa+/9evbl52evv3p2djjrm+lZdU8GZs5K37LbMv/sb2fPv3tBdvz8h7bLmJga5q+7+96v75m944jt7pm16N6vd+jaZzQ7rNsU1Lhn9qIR262c1Rx39sa1mbFx0599g/uvmTE3G3tnDrtv99jmj3FctIO5yVTk/x/apzQLPk/32324ylop5bRSyjc660WtKaVcXkr5h1LKvAn2t08p5f2dflZ31ue6tpTyiYmuI/VACvBO5LUMFlJaPcy253Xuv1Nr3bKIXZda611J/qvz8Pkj9PPpWus9Exjj9rQkyQc6X092Fu/2Or+j6iy8N/gZl+G+z2xF79pNWRIDM+eM2G5g5ux7v+5ZO7bMitGU9Wtz0Idem971a7Jh/o656dl/sc198sBS1nTNs9mzR244a9O2snoCc7OnNwM7Ls7AjotTZ276yNz6Rz0pa17x1+POvi1335l5//iXKQMD6d9r36x93kvHPyamrJ6ueTkwa+R5Wbvn5ZrtcM1ctza7/cufp2fdmvQv2DHL/vC1W7TpXbni3q93+u/3Z+NOu+aWt3w81/73+bnuv87NDe//RtYc+fCUWrPTf78/88757jaPi6lhZlfQamPPyIGqDV1BrO59xtr3hgn0Pfj1aPt27z9z45YLDtFe5iZTkf9/gG6llFcl+X6SpyZZm+Q3SfZL8vdJftX55P54+jspzVphr0pyQJrqAr9NsluaT6GfP5F1pB5IAd5Hd+5/O1qjQaWUXZI8vPPwgmGadJa8vjczeGt+1Lk/dPCb2ykncGjn+bPG2M997Z+TLE9yytZq2t7Htvn8jtFjkwz+Vh7u+8xU1L8xB37kdZl3/WUZ6O3LNS9/52bvkMP9qS7aKSu+9NOs+NJPs/zbv87yz/0oa1/wJ5lxzg+zw8uekZnf+NzYO1uzKvP+/k/Tc9stqXPnZdWb/zWZM6E3fWGT/o3Z9b1/ldlXX5raNyO3/cW/pH+nYbKHa1et51qz5HXvz5qHnNzJeEg27H1Qbn3Dv2fjjrskSXb8/L/dH6MHAPz/A1NSKeW4JO/rPHxFkn1qrcemCcyel+SwbFrjayz9lSSfTrJDmjWjDqq1HlprPTrJHkk+m6ZE6cdKKQvHM9bWB3hLKX2llNcnGQxWfnYr7ReUUh6VZvGuRWlKJ3xkSJuFaU52koyaXdrlqq6vHzTkPkmuzfbxolJKHeX2vtF27mTDvqfz8B87k+t+tR3P72jH2K2U8vwkn+o89eNa60/HsN8rSinnjeWWTcH7B7T+2ZuCTz3r14zYrmf9poyHgdnbELAa6M+BZ/xNdrzgB80fN694V1Yc+YiJ98cDVu0OjK4dJZtn3aZtde42BlNLSd1l96x96Wuy+g3/krJxQ+a8763pufryre+7ZnXmv/4V6bvswtQ5c7PyHWdk4MBpcRmZVga65mXPupHnZemel9sS5O/vz27v/evM/8X/pfb25ba/+JesOWb4BWG6x7bm6JOy/sAjtmhT58zL8if/QZJk1nVXpPfupRMfG1PG+r5NWWZ9A+tHbDejf9O27n3G2veMCfQ9+PVo+3bvv75v1qjtaBdzk6nI/z9AlzemiZ1+ptZ6Rq21Js06Wmk+YT6Q5FmllKPH2N/hSQ7qfP2ntdbBtcFSa12e5CVJViVZkGRcpVXbGOB9SSnlp53buUmWZVO5ge9mU2S92w8HA6Bpsld/lCZ798dJHl1rvWNI+x26vl45xnF1fyZjwTD9DPuZjVLKB0cI1P7OCMe5PcnZo9yuGcNY35smsP3QJONO+94Ottf53Uz3+UtTjuKzaeoffzrJ08d4nD2SHDvG29wR+nhA2bBol3u/nnnXyLWlZnRtW79ogu82D/TngDP+Njv96szUnt5c+8fvyF0PszYew6uLN82znqW3jdiue1vdeftlQmx45BMysOueKQMDmfWtL47eeM3qzH/DK9J30bmps+dm5ds/kv6jjttuY2Hq2LjTpjnWt2zkedl356Zt3fuMS39/dn3fX2f+2d9O7enNba95V1ad/KRRxrYpq3f9XgeM2G7DXgduGuftFg16IFjZXb907V0jtuuubdpd83Q098zalFyyw9q7R2w3f11z3LV9s7OhK4g2uP+cDavT1z9yIG1wbCvHOC7awdxkKvL/D5AkpZT5SQb/uD5j6PZa65VJftB5ONbYWnfdly0SHmut65Lc1Hk4Y4x9JmnSfttm784tSfrTLKD1gzTBvE90FuUa6pI0gd2SpqbFgUlqkisyfEmH7lq5Y61q3v2W3WCRu3tG2N7t6jSB2UEPy6aascP5dq319DGOaVi11pWllHck+X9J3lZK+dLWFn/bzrbX+R1q8Dz2Jdk3ye5J1iU5p9Y60j5D3ZpNi+9tzaGZBkHetXsckFp6UupA5tx8ZZYfPfybSHNvvjJJsn7h4vTPH9cnCRoD/TngjL/Jzr/8TmpPb67543fkzoc/eVuGzgNc/z4Hpvb0pAwMpPfaK7PxhEcO26732mZuDuy0y7jr5W7NwOJd03P7Lem5+YaRGw0Gdy/8VersOVn5jg+n/yHHb9dxMHVs2GvTvJx5w5VZfdzw83LmDc283LjjLhnYYdH4D9QJ7u7w02+l9vTm9te8K6tOGb3y0oa9D0rt6U0Z2Nqv/LrpSwsAPiAsnb97BlLSk5pdVt6Sa3YZfu2OXe65OUmyctaCrJ05tmy0O+Zv+mDVLitvzrL5e4zQd/NmwdJ5e46y/y25deF+o+5/x/w9h91OO5mbTEX+/6FtSklKj7/Z7oM/Wx+aJj63LskvR2hzVpLHJTlxjH1ekWRNmkDvyWkSVe9VStkjTfmH/ow9NpWknRm8b621ls6tr9a6uNb62Frrf4wQ3E2SV9VaT6m1PqLWelCa7Msbkrw8TZBzM5206MEg5IFDt4/goK6vbx5ynzQFmLdQa31vZ2yn1FpPSZN5en/4UJp3BR6c5I/up2Mm2a7nd2i/g+fxxCR7plnIbUaSfy+l/N4Yx/aRWutxY7klGcNnsttvYNacrDz4oUmShZecPXyjWrOgs23FEScP32bUg/TnwI+8bvM/bk6YzBLRtMLsOek/4tgkSd+vRihzXmv6ftVUZ9n4sAnMzdHUmp4lzeVoxNIPa1Zn/utf3gnuzs3Kd3wk/Q95+PBteUCos+Zk7aHNvJxzwcjzcu4Fzbxc85AJzMv+/uz23r/aLLi78tSnbn1sM2dl7eEPS5LMvGnkD/zMvLFJJqilZMOuW62KRAts7J2Vm3Zs/pQ68I5Lh29Uaw5Y2my7Zucty3eM5M55u2X57GZ5hANG6HvGxnXZ+64mEHLt4sM323bTjgdlQ8+Mzv6XDLv/gjXLsnjVrcPuT7uZm0xF/v+B1jt0rKU3O7dXjNDPIZ37G2qtG0ZoM5iF++CxDKzWek+Sf+g8/EQp5dmllJ1LKTuUUk5L8q00cax31FqvH0ufg9oY4N1mtdYL0qRPDyR5VSlluEj7zzr3p42x20d37i+vtd7ZOc6ybAoCPmpio71vdNK+39Z5+OZSyujLw25/23x+R1Mbn0vyhs5THyql7DDaPoxs6clNhYsdLv9l5l190Rbbd/zVmZl9x02btR2zzjvXO/3qzHsXFPDHDWO1/om/myTp+/Uv0vubC7fYPuPH30nvrTc2bZ/wu2PvuH/jVpvM/M6X03NnU+Fn43BB28Hg7mBZBsHdaeOe0343STLnkl9k1m+3nJfzfvadzLjtxs3ajll3WYZOzd2xBHcHrXjss5qxXXROZl69ZcCjrFmVBd/57yTJuoOPzsDCcS0KzBR28YNOSpLse+cV2fPuLQP8hy05LzuuaWouX/KgsSahJCnl3r4PX/KrLFy9Zd3m4274YWb1r8tA6cmle56w2bYNfbNy+e7NmyLH3vjjzNqweov9T7rmO0mSdb2z89vdjhn72GgFc5OpyP8/0GpzM/bSm8emKdU5nME/hEeLQQ1u23Gsg6u1viPJi9NUJPhCkqVpPqn+g87Yn1drfeNY+xs0LQO8SVJr/VU2Lcj2zmGa/E/n/kmllFGzTEspOyZ5wZD9hvbzR1MwwPiJJFemKWcw0jsW95XtdX635v1pFrjbNclfjnNfOpY+4hlZvdfBKbXmoA/9RXa47OfNhoGB7PirM7Pfp96SJLn7qFNzz+Gb/+G951f+Lce/5Mgc/5IjM3PpkOTrTs2pnX/5nc4fN/88oY8l9d1z12a3Qb3rVm/2fM+6kRdJoJ3WP/F303/AISm1Zt6bX52+889pNgwMZMaPvpO572l+L254+COz8diTNtt39ic/kEWPOTSLHnNoepbctNm2vovPy/w/f2FmfPerKXds/sGKnpuuy+wz3pM5/+/NSZL+PffJ+ic9c/OBrV2TeX/3J01wd87crHznGcoyTCP3nPa7WbdvMy93f9erM+eiTfNy3tnfyS4faublqmMfmTVHbz4vd/yfD+TAZx6aA595aPpu33xeblaWobcvt/3Fu7dalmGolY98WtYefPTmYxtoPgA148ars8fb/7/03XVHak9P7nzBX0zsBDAlXbTnSbl9/oNSUvOsCz6c/Zb9ptlQB3LoknPz5Es/nSS5avGRuW7nwzbb99Qrv5Y3fOflecN3Xj5skOwX+z0+K2ctyMz+9Xnu+R/I7subhJOegY059oYf5ZFXfi1JcsFep+bOebttsf9PDnpG1vfOyg7rluc55/9bdlzV1KiesXFdTrnqGzn2xp8kSc4+8ClZO2MbF8tkyjE3mYr8/wOttjpNeYOx3m4doZ/Bwuyjrba5rnM/Z5Q2mymlzEhThmGnJBvTxOUu7fR1cJKXllL2Gmt/g9pYg3d7+qckf5DkUaWUR9Vaf9y17bNJ/i5NaYBPlFKeUGvdYjnsUkpPkg+nidYvS/JvQ5p8IMmfJVmc5D9KKX9Qa916atj9oNa6sZTy5mx6reOq77GNttf5HVWtdUMp5Z1JPpLkz0sp7+2UiGA8evty5as/mEPf9ZLMWnpzDn33y9I/c05KHUjPhuZ6tmqfw3LNy4d7r2Rk86+8IDv/8tv3Pt73v96eff/r7SO2v+EP/nbYP4Ae+ufD18Ua2t/NT//T3PK7rxzXGJnievuy6h8/lHmvfVF6l9yc+X/14tTZc5KBgZT1zdzceNDhWf13/zLurvsuPjd9F5+bpPloe50zN2XtmpR1my5V/QcemlX/8MFk1uYres/4yZmZ8etOmab+/sx762tGPdaqt74//UceO+4xMkX19mXJGz6UPd/4osy4/ebs+eYXZ2DWnKQOpKczL9cdcHhu/4vxzcvZl5+fHX76reZBKVn8sX/M4o/944jtl770DVsGgHt6suT1/5Y93/zizLzxqnvHVnv70ru6qZ5U+2bkjj9+Y9YcPY5MOaa82tObLxz7yrzgV+/JojXL8ge/em/W985MqTUzBppPHS5ZsHe+9pCXjrvvdTPm5vPHvirPO/d92WXlrXnJOf+Udb2z0zewIb2dZR6u2fnw/N9hzx12/+VzF+d/j3l5nvnrj2Sfu67Mn571xqztm5OZ/evS06nAduGDTs7P93/iBF89U5m5yZTk/x9os8s7ZTW31eA/fqN94n1wDa3xvJvyv0memuTbSV5Wa70luTe58f1JXpjknFLK4Z2SDmMyrQO8tdbLSylfSlOu4U1JHtu1bX0p5flJfpzk1CQ/KKX8Wa313iBoKeWgNDV8n5amAPLptdalQ45xZ6efb3WOs2cp5Y1JftK9sFlndb7nJdn5vnm1I/qfJH+b5Ogk99tyndvr/I7RJ5O8McleSV6dTfVOGIf1ix+US9765ex+5iey43nfz6ylN6X29GXVngdm2QlPye2Pe0Fq37gWeUzpKpvd078xPSuWjd5+/bpRtzM9Dey+V+752Fcz+/Mfz4yzvpeeW29O+vqycb+DsuExT826Z74wmTG+KjQbDzkiq17/rvRd+Mv0XXFJyp1LU1bcncyYmf4990n/wYdnwyOfkA2PfGLS27vF/mVg09wu69dtde6WjSOVdKKtNu66V25831ez6Csfz7yffy8zbr856enL2gMPyspTn5rlTxn/vEzXNbNs3JC+u0f/ldizfov3TZMk/Tvukhvf8+Us/NZ/Zv5Pv50Zt1yXnvVrs2HXB2XNUSdm+dNelPX7HjLsvrTb8rmL87FHvDknXPvdPPi287NozbIMlJ7cumDPXLrH8Tl338dkoGdi/x4sWbhvPnrKW3PiNd/JQXdclAVr78r63llZusOeuWjPk3LhXo9IysgfHrx6l6PysUe8KSddc2b2X3ZZ5q9bnrV9c7Nkwd65YO9H5ordt8f/aUxV5iZTkf9/aJMyynWMCRtMjx+tZtngtrtGaXOvUsrT0gR3lyZ5fncCYq31rlLKS5I8LMmhSV6Z4SsODN93rXXrraaAUsqP0tSxfWut9S1j3GfwxZ1Wa/3RCG0ekuSCJCXJI2qtPxuy/eFJvphk785TN6VJ3945TUp10tTceFGt9RujjOWUNFmrg/3ck+S6JKuSLOz0NRj5/0KaheFu69r/k0lelOT2NOnbo3l2rXVJZ7/90pQoSJIdaq0rhxnb05J8reupLc7xWM7lkHF+qtZ6+lbGuc3nt5Ty6CQ/TJJa64hrJpZSXp3kXzt97Teed0FG6fO8JMfusd9D8/K3/WJbu4Pt5uD9pvV7d0xhy3x+ginocx/5yWQPAaA1Hv/c7bxoLWyjM950Qm697oIkOX87ZW22xmBM4iF7Ls4P/79nT/ZwJt1pH/piLrxlabKd5kIp5ZFpkhLXpYmnbZGVU0p5U5K3Jvl+rfVxY+jzXUn+Osm3aq3DLqRRSvlQkj9N8qVa65i/sdM+ClBrvbCU8o00WaJvTvLEIdt/WUo5JMnLkjwzyZFJjklTAPmcJN9I8qFa691bOc5POxmpL+gc67gkBybpTRPpPzvJT5J8ttY6WgB3185tNLO3sn3o2L5eSjknyUlbbbydba/zOwYfTbPg2m5pSma8Yxv7AwAAAOCB6YI09XdnJXl4mrjdUIP1Us4ZY5/jWZtrXLG91gR4a62PnsA+I2Z0Dmk36rKXndqwH+zcJqzWuj7NwmafmMC+pyc5fQL7XZcmO3lr7UZ9K3Yc5/L0jHOc23J+O9nEY3l9a5LsPt7+AQAAAJheaq33lFLOTJOk+fIMCfCWUg5O8pjOwy+Osdvfdu4fXkpZOHSNqM4CbKd1Hl4xnvEq0gEAAAAAsLl/SFKT/GEp5eWllJIkpZQ9kvx3mrjqV2qtF3bvVEq5rnMbWmLhC2lKPixO8t+llD279tkxycfT1N+tSf5zPAMV4AUAAAAA6FJr/VWS13YefiTJ9aWU89OsdXVcmizbPx5m1307t/lD+rspTTbwxiRP7vR3RSnlkjTrUb0wTXD3b2qtF4xnrK0p0QAAAAAADNEzpqqaTECt9X2llIuT/GWSE9Ksi3V9mrIM76i1rhxnf58upVyY5M+TPDJNILgkWZLkZ0k+WGsdrt7vqAR4AQAAAACGUWv9fpLvj6P9qBH3TkmHl2zruLop0QAAAAAA0FICvAAAAAAALSXACwAAAADQUmrwAgAAAEAblZLSI38zZXovNGcGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAAWqr0TO8FxpDBCwAAAADQWgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC0lwAsAAAAA0FJ9kz0AAAAAAGCCivzN6c4MAAAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFEpKT1lskcx+cr0PgcyeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClLLIGAAAAAG3VI39zujMDAAAAAABaSoAXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWqpvsgcAAAAAAIxfSVJKmexhTLrpfgZk8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBLWWQNAAAAAFqpJD3yN6f7MmtmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoI1KUnqm9wJjSab7GmsyeAEAAAAA2kqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClBHgBAAAAAFqqb7IHAAAAAABMUJG/Od2ZAQAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgLbqKZM9AiaZDF4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEAblZJS5G+mTO+F5swAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAluqb7AEAAAAAABPUUyZ7BEwyGbwAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUhZZAwAAAICWKj3yN6c7AV7YRivuWpXvff5nkz0MuNfDvv3yyR4CDOtDTz5jsocAAGwD//cw1ay4a9VkDwGmBCF+AAAAAICWEuAFAAAAAGgpAV4AAAAAgJZSgxcAAAAA2qiU5jbdTfNzIIMXAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpfomewAAAAAAwAT1yN+c7swAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmLrAEAAABAW5Uy2SNgksngBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJayyBoAAAAAtFEpKT3yN6f7QnNmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoK2K/M3pzgwAAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoqb7JHgAAAAAAMEE9ZbJHwCSTwQsAAAAA0FICvAAAAAAALSXACwAAAADQUgK8AAAAAAAtZZE1AAAAAGihkpJS5G+WTO+F5swAAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCmLrAEAAABAG5UkPdN7gbEkmeZrrMngBQAAAABoKwFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJYS4AUAAAAAaKm+yR4AAAAAADBBRf7mdGcGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAA2qqUyR4Bk0wGLwAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoI1KSXrkb073hebMAAAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJbqm+wBAAAAAAATVORvTndmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoK16ymSPgEkmgxcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiJrAAAAANBKJSnyN5PpvdCcAC8wZjM3rs0J1343D77t/CxasywDpeTOubvlsj2Oz7n7PiYDPRO/pMxbtyInXntmDrr9oixYe2c29s7I0vl75qI9T8qFe52SlNEv1otW356Trjkz+y+7LPPXLc/63tlZsmCfXLD3qbli9+MmPC6mtg09M3PDTodkycJ9ctuCfbJk4b5ZMWfnJMkjrvx6Tr3q69t8jFUzd8jPD3hirt7l6KyYs1P6+jdk8cpbctTN5+Tom3661T8j7pq7S36x/xNz7eLDs3LWwszsX5vdl9+Qh9x4Vg697fxtHh9Tl2smU5F5yVRlbjIVmZdAW5Ra62SPAVqplHJekmPnLTwkDzn1jMkezn1uwZpleeEv351Fa5YlSdb3zkxPHUjfwMYkyZIFe+ezx782a2fMG3ffuy+/Ps87932Zu2FVkmRd76z0DWxIbx1Ikly9+Ih84dhXjvgH1IF3XJxn/vojmdm/Pkmytm92Zm5cl54017cLH3Ryvnnki7b6R9IDxeu//fLJHsL95vqdDsl/n/BXw27bHgHeJQv2yeeOf03WzJyfpPkjf2PPjAz09CZJ9r/jkjz7vH9Lb+0fdv+rdzkyXznmFdnQNytJMmvDmqzvm5XaeYf9qJvOzlMu/tS0ea/5HU9+4F8rB7lmMhWZl0xV5iZTkXnZDhee9fKsWv7bJDm/1jqtItuDMYmHHrB3fvb/XjfZw5l0J7/2XbngmhuTaTgXEhm8wBiUgf4897wPZtGaZbln1sJ8/agX57rFhyd1IIctOS9PueQz2X3FjXn6Rf+Rzx/36nH1PWvD6jz3/A9k7oZVWTpv93zt6JdkycL90jOwMQ+98aw87vLP58Cll+bxv/lczjziBVvsv3D10jzz12dkZv/63LjowHzzqNNz57zdMmPj2px47Xdz6tXfyENu/lmWzds9Pz/gSdvrlDCFzF6/KrutuCG7r7ghu624Id8/9LlZNXvhNve7tm9OvnDcq7Jm5vzsvPLW/M6FH88eK65Pf+nNr/c+Nd8/7Lm5dpcj83+H/X6eeNlnt9j/7jk75yvHvDwb+mZlrzuvylMu/mR2Wn171vfOyi/2f0LOPvhpuXivR2TnlUty4rVnbvN4mTpcM5mKzEumKnOTqci8BNpGkY4poJSyeynln0op55dSVpRS1pdSbi2l/LqU8rFSyh+WUuaXUt5SSqkTuH2yc5z9Rti+ppRyXSnls6WUR4xxzAtLKX9TSvlpKeX2Usq6UsqSUsr3Syl/VkqZPcq+pw85/oO3cqz/7Gp73RjG9o9d7V85ltfD6I6+5ZzsuvLmJMmXj/mT5o+bJCk9+c0ex+fbR7wwSXLQHZdkv2W/GVffJ1z3vcxftyIbembkc8e9OksW7pckGejpy3n7npafHPT0JMlDbzorO626bYv9H3nVVzOzf11WzlqQzx/3qtw5b7ckyYa+2Tnr4Kfngr1OTZKcfM23MrvzDjkPHHvfeWVe8/2/yPN/9d6cdsWXcvitv0rvwIbt0vcv9398Vs1emL7+9XnOue/PHiuuT5L01v4cd8OPcuqVX0uS/HrvU3Pn3F232P+sg5+RDX2zM2/t8jz7vA9kp9W3J0lm9q/LqVd9Pcfc8JMkyTkHPiVr++ZulzEzNbhmMhWZl0xV5iZTkXkJtI0A7yQrpZyS5DdJ3pDkmCTLk/w6yZ1JDkvy0iSf7my7IcnZw9xu73R3+wjbfzvMoc/t2n5dkj2SPD/JWaWUv9jKmJ+c5Ook70zyiCQrk1yYZH2SxyT5QJIrSikPG+Np+KNRjrVDkmeOsZ+UUnqS/GHXU6ePdV9GdtTN5yRJrtvpwbl5xwO32H7ZHsfnrjmLkyRH3vzzCfV92R7HZ/ncxVtsP3ff07Kud1Z66kCOuOUXm22bsXFdDl3S1DA9f+9HZ92MLYNkPzvgyUmS2RvX5pDbfj2usTH1DX4M7b5wyYNOSpIcduuv7v1oXrfjrv9hZm5cm9rTm0v3PGGzbet7Z+aK3Y9Nkjz0xh9l9sY1W+x/4jXfTpKsmzEnv93tmO07eCaVayZTkXnJVGVuMhWZl0DbCPBOolLK/CRfTLIoyfeSHFpr3bvW+vBa6xFJFiR5cpLPJdlQa/14rfWUobck3+50+e3httda3z7M4Z/Ttf2wJHsl+VqaZQffVUo5aIQxP6XTbuck30jy4FrrAZ0x75Pk2CQ/S7JPkh+VUh46yim4Nk1Q+IWljFgc6DlJ5ia5fJR+uj2mc+x7kgwkeVgp5fAx7ssw+vrXZa+7rkrS1BMdVim5ZvERSZIDll065r53WrkkC9feOWrfG/pm58YdD06S7L/0ss227XXXVZnRydYcaf/lcxdn6bw9ht0fRrJs3m73LtZ24B2XDNtmZv+67HXnlUmSaxdvfpm5aceDsrF35qj7L1qzLDuvvGXY/Wkv10ymIvOSqcrcZCoyL2mdkqbe8rS/TfY3YnIJ8E6upybZLU0G7DNrrZtl2tZa19Vav1NrfV6t9RfD9rCd1FrvSPKiJKvT1GZ+1tA2pZTFabKJ+5J8PskzhhnzBUkem+SnSeYl+Z9SyowRDntnmiDxPklOG6HNizr3nxrjSzm9c/8/Sb4/5DkmYPHKJfdmSd4xf88R292xw4OSJPPXrcjs9WP7KNAunY89NX0/aJS+m+MuXnXLKPuPNrY9O+1vGbENdOuej4vvuXnEdoNzatmQ+bf5/iPPu10625aOMn9pF9dMpiLzkqnK3GQqMi+BNhLgnVwHdO6vqLVOenGcWuvd2VTOYf9hmvxZmszdu5L8Sa2dJT637GdtmqBqf5JD0pR+GMmnO/cvGrqhlLJ/klOTXJBk+BS4zdt3l3P4TFffLyyl9G5tf4Y3f93d9359z+wdR2x3z6xF9369Q9c+o9lh3fKuvheN2G7lrOa4szeuzYyNa7fYf82MufdmS442tvljHBes7FqkbbT5PH/tXUmaMgvre2dtsf/s9avuzbIYfv+7O+0XTXywTCmumUxF5iVTlbnJVGReAm0kwDu5VnTuDy6l7DSpI9lksIjP6mG2Pa9z/1+11rtG66TWenU2lY4YLcD7rSRLk/xeKWXekG1/lCbJfqzZu89NM/7r0mQQ/2+a7Og9kjxhjH0wxMyuPyg29oz8R8SGrj8wuvcZa98bJtD34Nej7du9/8yN68Y0Lljfu2mdyBn960ds171tfd+mfQb3nzEw8r7d+6/vmzVqO9rDNZOpyLxkqjI3mYrMS6CNBHgn15lp6sQuSPL9UsrzO2UQJkUp5bAkgxXkLxiybeckD+48/OEYu/xR5/7kkRrUWjck+Wyacg6/13W8kibAO7h9LE7v3P9XbaxK8uXOc1tkCA+nlPKKUsp5Y7klOXSM4wIAAACA+0TfZA9gOqu1XlVK+Zsk70pyTDqBzFLKdUnOTRMg/XynPu59phO8PTHJ/0vSm6ZMw+eHNNur6+urx9j1VZ37BaWUHWqt94zQ7tNJXp0mCDtYVuGUNCUsvl5rvWPkNdjufQ0HdvZJmvIM6fr6j5I8o5SyqFOGYjR7pFkojo7urMS+UbIRR8pkHGvfMwbWZ33PnHH1Pfi1LEm2t5n9XdkVvTMza4SsjBGzK/plV0xXrplMReYlU5W5yVRkXtJKPfI3pzszYJLVWt+dJjD55SRrOk/vl+TZST6Y5PpSyt/eB4e+tpRSSyk1TYmEbyQ5OMnXkjym1jr0N8YOXV+vHOMxuusKLxipUa31vCSXJjmtlLJ35+nxLq422P7cWusVXc//IMnNSWYn+f0x9HNrkvPHeBuujMUDzsru2lJrR67M0V13qrse1WjumdVV53Tt3SO2m7+uOe7avtnZ0PUHzuD+czasTt8oH6MfHNvKMY4L5q/tqo82yrxZ2anLNmvDmszs3xSkHdx/7cx52dAz0jqTm2rvzh9l/tMurplMReYlU5W5yVRkXgJtJMA7BdRaf1Zr/b0kC5OckOT/S/KVJGuTzEnyjlLK67bzYc9NcnaSc5Lc2HluY5Jf11qHWzK+O/t2/hiP0V1Td8WIrRqfSlNv9w9LKXOSPCfJnUm+vrWDdJVzSDbP3k1nIbj/6jw8fWt91Vo/Ums9biy3JJdvrb8HgqXzd89Amgzq0VZh3eWeZtqsnLUga2cOLac8vO6VY7tXhN2y7+a4S+dtvlLs5vuPNrZbOu1HXmkWunXPx6U7jLLCcWdO7Txk/m2+/9ZXOF5sheMHDNdMpiLzkqnK3GQqMi+BNhLgnUJqrRtqrb+stf57rfWZSQ5Lk9maJH9fShn9s77j85xa6ym11pNrrfskeVyazNw3lVJeO0z77t8+Bw6zfTgHde5XjFKeYdB/JulPk4n7zDQZv/8zTCbxcE5Lsm+aAPX/DLN9sOzDiaWUQ8bQH1029s7KTTs238oD77h0+Ea15oClzbZrdj5izH3fOW+3LJ/drC94wAh9z9i4LnvfdWWS5NrFh2+27aYdD7o3O/KAOy4Zdv8Fa5Zl8apbh90fRrLTqtuyYM2yJMk1i4ef0+t7Z+amnQ5Okuy/9LLNtu1111X3ZlVcs/jIYfdfPnunLOv80T10f9rLNZOpyLxkqjI3mYrMS6CNBHinsFrrdUn+pvNwhyT32dW51vr9JH/cefj2Usq+Q7YvTTJY+uC0MXb76M79z8Zw/FuT/F+SQ5K8vfP0p0feYzOnd+77ktw2WHqiqwTFJcO0ZRwuftBJSZJ977wie959zRbbD1tyXnZcszRJcsmDThx7x6Xc2/fhS36VhauXbtHkuBt+mFn96zJQenLpnidstm1D36xcvntTMvnYG3+cWRu2rJpx0jXfSZKs652d3+52zNjHxrRWkhx58zlJkt/scXzunrPzFm3O3+e0rO+bnTLQnyNu+cVm22b2r8+Dl5yfJLlgn0dlbd+W9dV+fsCTmrYb1+SQ2369fV8Ak8o1k6nIvGSqMjeZisxLoG0EeKe+7gXN7tMK6bXWLyX5aec4bx2myWB27AtKKTuO1ldn0bMnD9lvawbr7e6b5Ipa6y9Ga9w5zvwkz+o8XJbkthFug8WT/rCUYt6P00V7npTb5z8oJTXPuuDD2W/Zb5oNdSCHLjk3T760icVftfjIXLfzYZvte+qVX8sbvvPyvOE7Lx/2D5hf7Pf4rJy1IDP71+e5538guy+/PknSM7Axx97wozzyyq8lSS7Y69TcOW+3Lfb/yUHPyPreWdlh3fI85/x/y46rbkvSvPN9ylXfyLE3/iRJcvaBT8naGWP76BTtsrZvblbPmH/vLZ0f8Y29Mzd7fn3v5pfQsw56Wt755DPyziefMWwA9+HXfi/z1i7Phr5Z+eJxr8qSBfskSfpLb87f51E565CnJ0mOufGs7LT69i32P/XKr2bGxrVZOXtRvnjcK3Pn3F2TNJm/Pz3oqblgn0cmSU6+6luZvXFalPSeNlwzmYrMS6Yqc5OpyLykdUpxm+ZKrXWyxzBtlVJ2SbK0jvJNKKW8NMnHkgwk2a2TSTu0zSfTlDb4VK319FH62i/JtZ2H+3cyhIe2eUKSM9OUO3hwrfWarm27pKk7u1OSzyd5fqfG7dA+Zif5bpJTk1yV5IjuUgullNOTfCLJebXWh3U9PyfNYnMzkny21vrxrm2/k6Ye7/W11v26nn9xko+nqfG7e611cKG6oWPaJU2ZiRlJnlBr/d5w7cajlHJekmPnLTwkDzn1jG3tbspbuHppXvCr92RR52Pr63tnptSaGQMbkiRLFuydzx7/2i3+iDj1yq/l1Ku/kST5t0e+PcvnLt6i792XX5/nnfu+zN3QrMu3rnd2+gY2pLf2J0mu2fnwfOG4V6Z/hMWqDrzj4jzz1x/JzM5H4tf2zcnM/nXp6UzPCx90cr555IumzUX/9d9++WQP4X71oUe9PSuGmVdDHXnTz/I7F3/y3sdnHfS0nH3w05Ikf/Kj1987t7stWbBPPnf8a7JmZlN6fObGNdnYMyMDPX1Jkv3vuDS/d/6/pW9g47DHvHqXI/OVY16RDZ0VjGdtWJ31vbNSe3qTJEfddHaecvGnMj1mZvKOJz/wr5WDXDOZisxLpipzk6nIvGyHC896eVYt/22SnN9ZK2faGIxJPPTAvfOzf33DZA9n0p3852/PBVffmEzDuZA0H2ln8rwgyUtLKR9K8uVa622DGzr1dv8gyXs6T31luODu9lZr/W4p5ZdJHp7k75K8tGvbHZ3g7P8meW6SuaWU19Zar+wa90OTfDDJyUlWJ3neGOvophOcffJWG27u9M79F0YK7naN/dtJnp4mGL7NAd7pZvncxfnYI96cE679bh582/lZtGZZBkpPbl2wZy7d4/icu+9j7g16jdeShfvmo6e8NSde850cdMdFWbD2rqzvnZWlO+yZi/Y8KRfu9Yh7szKHc/UuR+Vjj3hTTrrmzOy/7LLMX7c8a/vmZsmCvXPB3o/MFbtPu2s728nuK27Iy856c35+wJNy1a5H557ZO2ZG/7rscve1Oermc3L0TWenZOQ3Sg+845K85Oy35ef7PzHXLT48K2ctzOyNq7PbihtzzA0/yaG3nX8/vhruT66ZTEXmJVOVuclUZF4CbSKDdxKVUv48yfu6nroxyZIk85Psk2TwrcDzkjy51nrHCP18Mtspg7fT7ulJvppkQ5KDa63XD9n+O2nKKezUeeraJEuT7J5k785zNyV59nBlFkbK4B3NcBm8pZQD0mQIlySPrLWetZU+npXkS2kCz3vUWleM5dij9DetMnhpj+mWwUt7TKcMXgAA7nsyeGXwDpruGbxqkU6uD6VZiOztSc5OU/v2oUkOSFMz9htJXpzkxJGCu/eRrye5KE05gy2uErXWbyQ5sLPtZ0kWJDkmyewkP0zy50kOGUsN3W30R2mCu9emqR28Nd9IcmeSuWkykAEAAACg1ZRomES11g1Jfty5bUs/p2dTqYLR2l2XbL3UY6cm8EO20ubuJO/o3Mal1vrJJJ8c5z7fyJCx11rfkuQt4+hjfZItV1ICAAAAgJYS4AUAAACAViqj1myePh74iwqOxgwAAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlrLIGgAAAAC0UUnSI39zmq+xJoMXAAAAAKCtBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWsoiawAAAADQVmWarzCGDF4AAAAAgLYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoKYusAQAAAEArlaTI30ym90JzZgAAAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBL9U32AAAAAACACSplskfAJJPBCwAAAADQUgK8AAAAAAAtJcALAAAAANBSArwAAAAAAC1lkTUAAAAAaKOSpEf+Zqb5OnNmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoIVqSmqZ5iuMpTkP05kMXgAAAACAlhLgBQAAAABoKQFeAAAAAICWEuAFAAAAAGgpAV4AAAAAgJbqm+wBAAAAAAATVORvTndmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoK0ssjbtmQEAAAAAAC0lwAsAAAAA0FICvAAAAAAALSXACwAAAADQUhZZAwAAAIA2KiW1lMkexeSb5udABi8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0lAAvAAAAAEBL9U32AAAAAACACSryN6c7MwAAAAAAoKUEeAEAAAAAWkqAFwAAAACgpQR4AQAAAABayiJrAAAAANBWpUz2CJhkMngBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWkqAFwAAAACgpSyyBgAAAACtVJIe+ZvJ9F5ozgwAAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoqb7JHgAAAAAAMAElqaVM9igm3zQ/BTJ4AQAAAABaSoAXAAAAAKCllGgAeID559/5j8keAgzr73/wx5M9BNjCPz7qw5M9BAAA2CYyeAEAAAAAWkoGLwAAAAC0VZG/Od2ZAQAAAAAALSXACwAAAADQUgK8AAAAAAAtJcALAAAAANBSFlkDAAAAgFYqqRZZS1ImewCTygwAAAAAAGgpAV4AAAAAgJYS4AUAAAAAaCkBXgAAAACAlhLgBQAAAABoqb7JHgAAAAAAMEGlTPYImGQyeAEAAAAAWkqAFwAAAACgpQR4AQAAAABaSoAXAAAAAKClLLIGAAAAAC1Vi/zN6c4MAAAAAABoKQFeAAAAAIBhlFJOK6V8o5RyRyllTSnl8lLKP5RS5m1Dn6WU8vxSyndKKbeVUtaVUm4ppXy/lPJX4+1PgBcAAAAAYIhSyquSfD/JU5OsTfKbJPsl+fskvyql7DSBPucn+W6SzyZ5YpKVSS5MsiHJo5L87Xj7FOAFAAAAAOhSSjkuyfs6D1+RZJ9a67FJDkhyXpLDknx0nH2WJF9O8rgk30lyUK31wFrrw2ut+yZZnOQl4x2rRdYAAAAAoI1KklImexST7745BW9Mkxz76VrrGYNP1lpvKaU8P8nlSZ5VSjm61nrRGPs8Pcnjk/wiydNqrRu7N9Za707ytfEOVAYvAAAAAEBHp4zCkzoPzxi6vdZ6ZZIfdB4+Zxxdv7Zz/49Dg7vbQgYvAAAAAMAmD00yK8m6JL8coc1ZaUotnDiWDkspByY5MslAkh+WUk5I8uIkB6Wpw/vzJB+rtS4d72AFeAEAAACAB4JDSynnjaP9GbXWjwzz/CGd+xtqrRtG2Pfqzv2Dx3ish3XulyV5ZZJ3ZvPiEs9I8jellGfVWn84xj6TCPACAAAAAA8Mc5McO472e4zw/E6d+ztH2Xdw247jPNaOSf45yTeTvC7JVWmCxO9L8pgkXy6lHFVrvWmM/QrwAgAAAEA7laRYYqsrEXZ1msXPxurWEZ6f3blfP8q+6zr3c8Z4rPmd+7402b/P7MoOvriU8rTO87sneU2SvxpjvwK8AAAAAMADwuW11uO2Qz9rO/czR2kzq3O/Zpx9JskHh5Z+qLWuLqX8e5K3plngbcwBXiF+AAAAAIBN7urc7zRKm8Ftd43SZrg+k+Q3I7QZfH7/MfaZRIAXAAAAAKDbbzv3+5RSZozQ5sAhbbemu3TESKUfBrN8xxWzFeAFAAAAANjkgjRB2FlJHj5Cm1M79+eMo8/Bcg4HjNBmMGg85gXWEgFeAAAAAIB71VrvSXJm5+HLh24vpRyc5DGdh18cY5+rk3y98/BFw/RZkpzeefj9cQxXgBcAAAAA2qgmqaW43Ten9x86p/gPSykv7wRgU0rZI8l/p4mrfqXWemH3TqWU6zq3Zw/T51uTbExyainljaWU3s4+fUn+OclD0pRpeO94BirACwAAAADQpdb6qySv7Tz8SJLrSynnJ7k2yXFJrkjyx8Psum/nNn+YPi9L8rIk/UneluTWUsovkixJ8tdJNiR5Sa31ivGMVYAXAAAAAGCIWuv7kjw+ybeTzEtyeJLrk7w9ycNqrUsn0OenkpyY5AtJBpI8NE1g97+THF9r/e/x9tk33h0AAAAAAKaDWuv3M46auLXWMoY25yZ57raMq5sMXgAAAACAlpLBCwAAAABtVeRvTndmAAAAAABASwnwAgAAAAC0lAAvAAAAAEBLCfACAAAAALSURdYAAAAAoJVKaspkD2IKmN7nQAYvAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABAS/VN9gAAAAAAgImpRf7mdGcGAAAAAAC0lAAvAAAAAEBLCfACAAAAALSUAC8AAAAAQEtZZA0AAAAA2qgkschacx6mMTMAAAAAAKClBHgBAAAAAFpKgBcAAAAAoKUEeAEAAAAAWsoiawAAAADQSiW1TPMVxpJM91XWZPACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJQALwAAAABASwnwAgAAAAC0VN9kDwAAAAAAmJha5G9Od2YAAAAAAEBLCfACAAAAALSUAC8AAAAAQEsJ8AIAAAAAtJRF1gAAAACgrUqZ7BEwyWTwAgAAAAC0lAxeYMxmblybE679bh582/lZtGZZBkrJnXN3y2V7HJ9z931MBnomfkmZt25FTrz2zBx0+0VZsPbObOydkaXz98xFe56UC/c6ZavvSC5afXtOuubM7L/sssxftzzre2dnyYJ9csHep+aK3Y+b8Lhoh5kb1+Th13w3hyw5L4tWL81A6cld83bLb/Z8eM7d77HbNDfnrlueE6/+Tg68/cIsWDM4Nx+Ui/c6ORftfeqIc3Pe2uXZ+87fZrcV12f35c1tzoZVSZLPnvjXuWHnQyc8JtphXe+s/GKvx+fyxQ/N3XN2Tk+t2Wn1bTn8jnNz/M0/TG/tn3Dfv9356Fywxym5dYd9s6ZvXuZsWJU977kux976kxx056Wj7juQkkt3fXgu3v3ELJm/d9b3zsrcDSuz9/KrcvzNP8heK66d8LiY+vwuZ6oyN5mKzEugLUqtdbLHAK1USjkvybHzFh6Sh5x6xmQP5z63YM2yvPCX786iNcuSJOt7Z6anDqRvYGOSZMmCvfPZ41+btTPmjbvv3Zdfn+ed+77M7QS/1vXOSt/AhvTWgSTJ1YuPyBeOfeWIf0AdeMfFeeavP5KZ/euTJGv7ZmfmxnXpSXN9u/BBJ+ebR75o2nxspae3d7KHcL9asHpp/uDn/5JFa5YmGW5u7pP/PvGvsm4Cc3O35dfl93/x3szdsDLJ4NzceG9g7ppdjswXH/aqYefmKb/9ak658mvD9jtdA7xv+MEfT/YQ7jfLZ+2UzzzktVk+Z3GSZEb/ugyUnvT3zEiS7HbPDXnBRe/LnI2rx9XvQEq+fujpuWS3E5on6kBmb1yTdX2zU0vzs/+wm36QJ179+WH3X98zK1888k9y7Y6HJUlK7c+sjWuzrm9OaulJqQM57Zr/zUk3fW8iL7uV/vFRH57sIdxv/C5nqjI3mYrMy3a48KyXZ9Xy3ybJ+bXWaRXZHoxJPOSwQ/KDz/3HZA9n0j3m91+aC38zPedCIoMXGIMy0J/nnvfBLFqzLPfMWpivH/XiXLf48KQO5LAl5+Upl3wmu6+4MU+/6D/y+eNePa6+Z21Yneee/4HM3bAqS+ftnq8d/ZIsWbhfegY25qE3npXHXf75HLj00jz+N5/LmUe8YIv9F65emmf++ozM7F+fGxcdmG8edXrunLdbZmxcmxOv/W5OvfobecjNP8uyebvn5wc8aXudEqaIMtCfZ5/7gSxaszT3zFqYbxzzslzfmZuH3npunnzxp7L7ihvytAs+mi8+/DXj6nvWhtV5zq/en7kbVmbpvD3yjWNeliWLmrl5zA0/yWMv+58ccMcledyl/53vHvWHW+xfkyyfvVNuW7hPlizcLytnLcxTLv7U9nnhTGkD6cnnj/z/snzO4sxfd3eefvkns//dl6em5De7HJtvHvLC3LbDPvnqoS/O8y75t3H1/eP9n3FvcPf4m76fU67/VuZuXJX1PTNz/p6PzA/3f+b/z959h8d5lQkbv4+6JVlykXsvcWKn2+mJU4AACUsJJR+9LgGWDSzssp0l7C4L35YPlp5QlsAuuyQsJRCSkEp6cUnixGmOe7dlWbZs9TnfHzOyR9ZIHhWjea37d11zTTnlPSMfvxo9c97nsGz6KxjXsouzt9zbo/2tJ76bdWMXEmKKS9b9krO23kd5ZyvNJZU8MuM1PDLzNdwz7y2Mb97Bgvqnh+TnocLg73IVKuemCpHzUlLSmIP39yiEcF8IIWZujxylbk0I4UBW/etCCLUhhM2Z5397lPbjQgjbM3U/mfV6zPP2lSP6uy7z+n0DeN9nhhC+GUJ4PoSwP4RwMISwNoRwYwjhsqO07fqZXZej7Mgxp0II+0IIm0II94YQ/iWEcE5/x6ueTtv6CBObtgDwszM+mv5wAxCKeG7K2dx28rsBmL/rGWbXP9evvs9dfyfVrftoLyrlJ0s+wfba2QCkikpYPusy7p//BgDO3PwA4w7s6NH+4jW/pKyzlabyGm5aci17qiYB0F5SwQMnvIGV05cCcMHa31CR+YZcx49TNz/MxP2bAfj5kj9KB3cBQhHPTz2H2095LwDzd61i1u7V/er7nLV3UN3aSHtRGTef80m2j5kNpOfmitmv4IEFbwTgjE33M7Zpe4/2D5/wer71yn/hZ2ddy8MnvP7w2HTce3ryeeysng7AW1Zfz5y9zwMQiCzatZwrX/wvAF4efyrrxpyYd78HS6p4bPorAViw+0le/fLNVHakz2tlqTbO23wX52ZW3t4/6w9oLa7o1n5n1VRWTzwbgLO33MuFm+6gvLMVgFEdB3nFup+zaOcTANw1961Ejv9VPyOJv8tVqJybKkTOSyVJJBBDkbcR/tnVAO/wOS+EsKCP8rcBldkvxBgbgWsyTz8bQji5j/ZfBSYBDwJfy1H+DPBQH7e1ebyHPoUQikMIXwOWAx8DZgHrgBeAOuC9wD0hhJtDCJW993RUXe/lYeAloBO4FPgz4LEQwoMhhPmD6H/EO3VL+vuI9eNOZMvYeT3KV085m4bMZcinbHl0QH2vnnI2jZV1PcqXzbqM1uJyimKKk7c+1q2stKOVk7avAGDFjEtpLe05jR6eewUAFR0tLNjxZL/GpsJ36paHANgw/iS2ju353/y5qeewt2tubu7ze7UeTtnycKaPs2msnNCjfPnsV2bNzZ7zPgZ/xY5UT086H4BZDc/nzGe7aNcyxjTvAmDVpPPy7nf92JMOpXg4f9Nvc9bper2ltIoX6k7vVrZm3CmHHp/XS/uu1xsqJ7Kptuf5Xsnl73IVKuemCpHzUlLS+Nfn8Hg+c//ePuq874i6AMQYfwPcCJQB3w8h9Ei2GUJ4HfAuoBn4YIyZRD7dXRtjvKiP21f7+6Zy+BHwx0Ab8OfAhBjjaTHGM0kHeD8I7AXeCtwWQhhoypDs97Ikxjg70//HgW3AhcCyEMLCQb2bEaqks5XpDWsAeHnCKbkrhcDauvT3DXPr+97cJ9u4pu3Utuzps+/2kgo2jT0BgDlHrMCc3rCG0lR7n+0bK+vYXTUlZ3slW0lnK9P2dM3NU3NXCoG1mbkxZ3c/52ZzZm5OzN13e0kFm8elv6ebsyv/vnV8ay8qZXMmMDqvl83OAjB3T/p8tHZs/iu7GyvGH3pcd2BbzjqjOg5S1bYPgHVH9N1Ynm5f3nGQ0W2NOdvXHdwOmY8N/RmbCpu/y1WonJsqRM5LSUlkgHd4/A/poOe7Q+iZ9TyEMBe4iPTK11y/Lf4E2AqcA/zpEW1rgeszTz8bY3xp6IadvxDC+4F3kE5D+dYY47/EGJu6ymOMbTHG/wAuB1qAi4G/GarjxxjrY4zfBM4EXgRqgZtDcEldf9U1bT+UrH9X9dRe6+0aPQ2A6tZ9VLTldynQhMxlT+m+p/XRd/q4dQe29tG+r7FNzdTf2msdJc/4pm2H5ubu0X3Nn6652UhFW1Ov9bJNyKR9ANjd59ycdmgsEsDuyimHVm9PONj7Oaer7EB5Lc0l/b+IJdXHr7Ousp1VueduX5evRYrgKO2VPP4uV6FybqoQOS8lJZHBruFRD/yGdMqCS3OUv5f0Ap8f5mocY9wLfCTz9PMhhOwEfv8GTAMeAb48NMPtn0wQ9bOZpzfGGH/dW90Y4zLg/2aefiqEMHooxxJj3MHhldInA1cNZf8jQXXr3kOP91eM7bXe/vIxhx6PzmrTl9Gth1eQ7a8Y02u9pvL0cSs6WijtaOnRvrm0ko7isqOOrTrPcSkZRrfsPfS4z/mTNW/znQPVLdlzs/d535Q5bkVHc7e5qZFrf3ntocd9nQuzy/aXjcmr79qW+kOPd1Xl/qOuqbSG5tLq9OOy2m5lY1ozu4CXjKKxfFzO9tn9HtleyeXvchUq56YKkfNSUhIZ4B0+XVupvy/7xcyK3vcC7cCPe2ucCZr+J1BBOlVDUQjhVcCHgFZ6T83w+3AOMDfz+Ot51P8m6by5tcCVQz2YGONjwLLM09cPdf/Hu7KsDxQdRb1/iGjP+oBRlmegK7te+wD67nrcV9vs9mUdrXmNS8nQbf708QF3QHOz89j1reNbW9bGZqWdbb3WK00dLmsrKc+r79kNz1OcuSzzoZlX5Kzz0KzDr7eWdN9kbd6eZw49fnBW7l+3D/bRXsnl73IVKuemCpHzUlISGeAdPrcCu4G3hBCqsl5fCswBfhNj3H2UPj4BbAcuIJ3e4IbM65+LMT7fa6tj78LMfSOw4miVY4w7ga6tRy84RmN6IHN/bl+VQggfCSEsz+cGnHSMxipJUg+VHQc4e8u9AKwbt4hfnvQBdo+aRGcoorF8LPfMeRPLpl5CUaoDgBBjt/YTD2xl4c7lADw55SLunPdW9paPpzMUUT9qIr9a8B7WjD+t1/aSJEkqTJEw4m8j3UA3tdIgxRjbQwj/Q3oTsjeT3pAMDq/ozZme4Yg+GkIIHwV+Afx95uUngH/NYwj35kj/m+3MGOOTefSTy/TM/boY8/7rcA1wSlbbobYxcz/pKPWmAIuP0RgSqS1rBVdJqo/VaJ3Zq9HyW/WVXa801UZb0ah+9d31uLSPcWW3z3eVnJKh2/zpa6XkQObmEasw+zs3NXLlvfq7KHtlTv6ray5b+wv2lY9l9cSzeWbSuTwzqfv3ltP2rWVS0yZWTL2Eio6DPdq/7sUf0lxaxfqxJ/H49Ffx+PRXdStfsPtJAF6sOyNneyWTv8tVqJybKkTOS0lJZIB3eN1IOsD7PuBHIYRK4G3AHqDXvLXZYoy/DCH8GHgn6bQOH4gxdubR9BnSK2x7k99ORLl15dHtTx9dWelrBnHcvnSN5Wg5freRx6rjjJOA/u+MkzBN2bmlWhrYNTp3DL5bPsmsNn3plquyZS/11bk/4FS3NgDQUlJBe9YHnK72o9oPUtLZ1mseqq6xNeU5LiVDdt6y0S172VUzI2e96paGQ4/znQNNFdlzs4H60l7mZiYPcEvJqG5zUyNXt9x65WOYdGBLznrd8va17c27/yJSXPXc9zh1x2OsmnQuO6qm01FcRk3LHhbuWs7ibfdz64L3ADCueWeP9uWdrbzz6X9n9YQlrJ54Frsrp9AZihnXsotTdjzKqTse4z9P/zQA43O0VzL5u1yFyrmpQuS8lJREBniHUYxxWQhhNXBZCGE6cAnpAOQ3Yox9fyXX3Z2kA7xbY4zP5tnm2hjjff0acP72Z+6r+9GmK03FviEeS5euwG6f/ccYrweuz6fDTJqG43617+7qyaQIFBGZ0LSVtRNOzVlvwv50EKOpvIaWsqqcdY6UvXPshKYt1FdP6aXv9O6vu4/YVKh7+61sq53dZ/u+dppV8tRXTzk0N+v2b2HtxKPNzVpayvI7LWV/kK9r2kL96Nxzp6vv3uauRp66g9sIMUUMReyqnMr8Pbl/Le+qTM+pqtZGRg1gpez8Pc8wPyunbrZto2cBMH3fyznLA5GTdy3j5F3LepSlKGJHdXr+T+ulvZLH3+UqVM5NFSLnpaQkMgfv8LuR9L/DezicnuHG3qsnwubM/ZxwlDwQWeYf0Xaozcrc7zhG/R+3OorL2Tw2/c8zb1cv3x/EyNzd6bK140/Ou+89VZNorEjv5D63l75LO1qZ0fASAOvqFnUr2zx2Pu1FpZn2uQMdNc311B3YlrO9kq2juJwt49Jzc+6uVbkrxciczNxcV9fPuTkqMzd35p5bpR2tTN/zYrrvCfn3reNbaaqd6Y3pwOjacbnnRQTWjkufj+Y2rB7S42+vnnHoj8FTtz/a7/Yvjj+N1pJKSjrbWLgr3wtaVOj8Xa5C5dxUIXJeSkoiA7zD7z+BFPBHwCuB52KMTwzvkAbtocx9LXmscA0hTAQWZp4+fIzGtDRz/9gx6v+4tmra+QDM2vMCU/eu7VG+cPtyxjan9wR8Ztp5+XccwqG+F21/gtqDPfcVXLLxXso7W0mFIp6d2j3XZHtJOc9PTk+xxZt+R3l7z1Vw56+9HYDW4gpenHRG/mNTIqyalt7TcVb9C0xp6Dk3T9q2jLEHdwHwzPTz8+84BJ6Zlt7zceG2x3POzcUb7smam/2Y9zrunbbjEQDWj1nAltGze5Q/N2EJe0dNAODUHf0PwvamvaiU2054BwAn7VpOXXP/vtM8UFrN3fPeAsBZW+8b0MpiFS5/l6tQOTdViJyXSpQAMRSN+NtI32fNAO8wizFuBe4ivblYEXlsrpYAjwNdvwX/OI/6HwOKSadPuG2oBxNCOJ/DgeZbhrr/keDpqeezs3oagcibV36b2fXPpQtiipO2L+OKZ9PTdk3dKawfv7Bb26Uv3cJf334Nf337NTk/wDw2+3Kaymso62zj6hVfY3LjBgCKUh0s3ngfF7+U/idbOX0pe6p67pF3//w30lZczujWRt624huMPZAOaJR2tHLRml+zeNP9ADw070paSvO7dErJsWr6BewcPZ1A5KoV32TW7sxqyJjixG1P8NpV6QsiXp5wKhuOWMFw0Yu/5C9v/RB/eeuHcs7Nx+e+hqbyWso623jrE//OpMb1QHpunrnhXpa++AsAnpxxMQ3Vk3sOLqYY1bb/0K2i/cChovL25m5lxZ3tg/9hqGCctv1RJjZthlDE/578EdaNORFI7278XN1ifrPg3QDMq3+GOXtf6Nb2/ll/wBcu+TZfuOTb7C0f36PvLaNn89DM17IrkzsXoDMU8/LYRdx4xmfYWjOXmpY9vPal/8k5tpfGncLj015BQ0Udqcyn4PaiUp6rW8yNZ/45e0dNYGLTJi5e/6sh+3moMPi7XIXKualC5LyUlDTm4C0MXyUd4IT0it5EizGmQghfAL4HvC+E8L8xxpybxoUQzgL+MvP0KzHGIc3BG0KYBPwg83QV8Iuh7H+kiEXF3Lz447zriX9jTHM973ziy7QVlxFipDSVDkxtr5nBLad/qN99t5ZWctPia3n7sq8woWkbH3zkC7QWV1CSaqc4s1/g2vGLuGvh1TnbN1bW8fMzruGqJ69nZsNLfOyBz9JSMoqyzlaKYgqAp6ZdwKNzXjPAd69CFouK+d+zruUdj/4LY5p3847H/i3H3JzJLWd+uN99t5ZWcvPZn+D/PPZlJjRt5QMP/gOtJRWUdGbNzbqTuXvR23O2r23ew8fu/YucZW9Z/vVuz2897QOsmnFRv8eowlREirc98y3+8/RP0Tiqjh+f/ilKO1uJhEOboUzav5E3Pv/9fvfdVFbLfXPexH1z3pT+EqHjIC0lo4iZYO+Epi1c/cw3qWrfn7N9w6iJ3Dn/au6cfzUhdlLe0UJryaj0qgdg5t4Xeeuz3z70/0fHD3+Xq1A5N1WInJeSksYAbwGIMd4K3Drc4xhKMcbvhxBeA1wN/DSE8LfAt2OMTQAhhDLSG8N9GaggndbhH4fq+CGE8ZljfxaYAjQAb4sxxqE6xkjTWFnHdy/8HOeu+y0n7ljBmOZ6UqGIbTVTeXbK2Syb9QpSRQM7pWyvncV3Lvo85629nfm7nqampYG24nJ2j57K01PP56npF0Lo/YKDlyecyncv/DvOX3sHc+pXU93aSEtJJdtrZrByxsW8MHnJQN+2EqCxso7vX3wd56y9gwXbVzDm4G5SRUVsGz2V56aey7LZrxzw3NxRO5vvXvL3nPfybczf+TSjm/fQXlzO1tHTWDX9Ap6ecVGfc1Mj15jWej68/B94dPrlvFB3JntHjacoppi8fwMn73yCs7fce+iPuP6Y0rSR8zb9lo2182msGE9zSRWV7QeYeGALC3cu5/TtD1NEqtf2cxqe46zN97Cpdj77y8fSWlJBVds+puzfwCk7H2fhruUj/eq245q/y1WonJsqRM5LSUkSjHf9/oQQ7gMuAa6NMX79KNW72vwUeAvw+Rjjdb3UeT/wH8CGGOPso/TX9Q/+DNDYR9WVMcZrs9pdB3wO6DhKu40xxsWZNiXA14CPkM6G0gK8CHSS3lRtdKbNz4H3xBgPHNlZ1s+sx/vv5b1UAHUc3lQN4AHgAzHGId0OPISwHFhcVbuA05feMJRdS4NSVFx89ErSMPjre/q/klo61v7xkm8P9xAkSdIAPfXANRxofBFgRYxxREW2u2ISpy06kbtuunG4hzPsXnX1+3h69QswAucCuIJ3JDvlKOUdvbxeAvRMCnhYU9eDGGMH8LEQwneBDwOXAfNI5xreAfwS+EGM8e58B92L7PfSRDrYex+wDLg5xvj4IPuXJEmSJEkqTMFrsEY6A7y/RzHGSwfQ5q151PkBh/PMHq3ugP7XZ1bPXjfAtsuB5QNse2kfZZ7BJEmSJEmSNKKZOFCSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooA7ySJEmSJEmSlFBusiZJkiRJkiQlUiC6fhMIwz2AYeUMkCRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQkVw8jeYEyu4JUkSZIkSZKkxDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZSbrEmSJEmSJEkJFIEYXL8Zh3sAwyyvAG8I4e+G6oAxxr8fqr4kSZIkSZIkaSTLdwXvdQxdMNwAryRJkiRJkiQNgXwDvPfjamdJkiRJkiRJKih5BXhjjJce43FIkiRJkiRJkvrJTdYkSZIkSZKkRApEwnAPogCM7J+B2+xJkiRJkiRJUkINyQreEEIdcBkwC6iMMbqRmiRJkiRJkiQdY4MK8IYQSoD/C/wRUJZV9PdZdcYCa4FRwEkxxvWDOaYkSZIkSZIkKW2wKRpuBv6EdHD3WaDjyAoxxgbgx5k6Vw/yeJIkSZIkSZKkjAEHeEMIbwfeCOwEzooxngbs6aX6zZn7ywZ6PEmSJEmSJElSd4NJ0fABIAKfiTGuPErdxzN1Fw3ieJIkSZIkSZKyxDDYC/SVdIOZAWdm7v/3aBVjjAeBRmDiII4nSZIkSZIkScoymABvLdAYY2zux7HiII4nSZIkSZIkScoymABvA1AbQqg4WsUQwhSgBtgxiONJkiRJkiRJkrIMJsC7InOfz8ZpH8zcPzKI40mSJEmSJEmSsgxmk7X/Al4L/EMI4YEYY1OuSiGE1wKfJZ2e4cZBHE+SJEmSJElSlwAxhOEexfAb4T+CwQR4fwxcAywFHg0hfBsoAwghXA7MBl4PXEl6pfCvYox3DGq0kiRJkiRJkqRDBhzgjTHGEMKbgJ8DFwP/nlV8e9bjANwFvGugx5IkSZIkSZIk9TSYHLzEGBuAVwDvAx4A2kgHdAPQSTrn7vuB1/aWwkGSJEmSJEmSNDCDSdEAQIwxBfwI+FEIoQgYBxQD9THGjsH2L0mSJEmSJEnKbdAB3myZYO/uoexTkiRJkiRJUm5xpO8wpqEN8IYQikmv4AXYE2PsHMr+JUmSJEmSJEmHDSoHL0AIoSqE8KchhCeAg8D2zO1gCOGJTFn1YI8jSZIkSZIkSepuUCt4QwhnAD8HZkKP9eClwBJgMfDHIYQ3xxhXDuZ4kiRJkiRJkqTDBhzgDSFMAe4inZKhDfgpcA+wJVNlGnAZ8FZgFnBnCOG0GOPWQY1YkiRJkiRJkgQMbgXv35EO7m4ArogxPp+jzvdDCP8I3E56le9ngY8N4piSJEmSJEmSpIzBBHivBCLw4V6CuwDEGF8IIXwY+C3wukEcT5IkSZIkSVJGJBDDoLfYSrzYI3PsyDKYGTAJaI4x3nW0ipk6B4EJgzieJEmSJEmSJCnLYAK8u4DOftRPZdpIkiRJkiRJkobAYAK8dwPVIYQlR6sYQjgLqM60kSRJkiRJkiQNgcEEeP8ROAB8J4QwvrdKIYRxwA3APuALgzieJEmSJEmSJClLXpushRBm5ni5DfhD4HrguRDCt4B7gS2Z8mnAZcBHgVLgw5k2kiRJkiRJkobASN9gTHkGeIF1edT528ytN/8DxH4cU5IkSZIkSZLUh3yDrUP1VYBfKUiSJEmSJEnSEMk3wDvnmI5CkiRJkiRJktRveQV4Y4wbjvVAJEmSJEmSJEn9Yz5cSZIkSZIkKaFiKBruIWiYOQMkSZIkSZIkKaGGZAVvCKEMOAOYDlTRx2ZqMcYfDsUxJUmSJEmSJGmkG1SAN4RQDnwBuIZ0YPdoImCAV5IkSZIkSZKGwIADvCGEEuAOYCnpFbs7gYlACtgK1AEVmepNQP2gRipJkiRJkiRJ6mYwOXg/BFxMOph7Voxxcub1nTHGmUA1cBnwMOlA8t/GGOcMZrCSJEmSJEmSpMMGk6LhHaRTLvxNjHHFkYUxxhTwuxDCJcBtwPdDCM/lqitJkiRJkiSpvwKx962wRpCR/TMYzAreUzL3Pz3i9eLsJzHGTuDTQCnwZ4M4niRJkiRJkiQpy2ACvKOBxhjjwazX2kinZugmxvgMsJ90vl5JkiRJkiRJ0hAYTIB3J0es1iW9kVpFCGFi9oshhACUARMGcTxJkiRJkiRJUpbBBHg3A9UhhDFZrz2TuX/tEXUvBcqBxkEcT5IkSZIkSZKUZTCbrD0BnANcAPwm89rPgcuBfw0hNANPAqcD/4/0hmz3DOJ4kiRJkiRJkrLEMJj1mzoeDGYG/IL0FnVvz3rte6RX8dYB/wM8D/wEmA4cAD4/iONJkiRJkiRJkrIMJsB7LzAH+KuuF2KM7cArgf8GWkkHgAEeBC6NMT4/iONJkiRJkiRJkrIMOEVDjDECG3K8vgt4VwihhPSmavtijAcGPkRJkiRJkiRJUi6DycHbpxhjB7DtWPUvSZIkSZIkSSPdMQvwSpIkSZIkSTp2IhAPZUgdueJwD2CYuc2eJEmSJEmSJCVUXit4QwidQ3S8GGN01bAkSZIkSZIkDYF8g62u9ZYkSZIkSZKkApNvgPeyYzoKSZIkSZIkSVK/5RXgjTH+7lgPRJI0NFKdQ5VVRxpa/3jJt4d7CFIPf3XbNcM9BCmnL15xw3APQZIkJYT5cCVJkiRJkqSEisHMqiNd0XAPQJIkSZIkSZI0MAZ4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhHKTNUmSJEmSJCmRAjG6yRqM7J+BK3glSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQk16E3WQgjTgU8DrwFmARUxxpKs8rHAx4AI/EuMsWOwx5QkSZIkSZIE0fWbI96gArwhhMuBm4AaDm9XF7PrxBgbQghvApYAzwK3DOaYkiRJkiRJkqS0AYf4QwgzgJ8CtcCvgLcCDb1U/z7pAPDrBno8SZIkSZIkSVJ3g1nD/afAaOCmGOObYow/A9p6qXtH5v7sQRxPkiRJkiRJkpRlMAHe15BOx/DZo1WMMa4DWoE5gzieJEmSJEmSJCnLYAK8M4HmGONLedZvAqoGcTxJkiRJkiRJUpbBbLKWAorzqRhCKCG9Edu+QRxPkiRJkiRJUpZIGO4haJgNZgXvBqA8hDAzj7oXA6VAvqt9JUmSJEmSJElHMZgA712Z+4/2VSmEUAp8gXS+3tsGcTxJkiRJkiRJUpbBBHi/DLQBfxpC+FCuCiGExaQDwecC+4FvDuJ4kiRJkiRJkqQsAw7wxhg3AH9IOg/vDSGEHcBYgBDCwyGELcATwFKgA3hvjHH34IcsSZIkSZIkSYLBbbJGjPG/Qgg7gW8A87OKzst6vAb4aIzxnsEcS5IkSZIkSdJhETdZg/TPYSQbVIAXIMZ4ZwjhRNIbqV0ITCW9qnc78BBwb4yxc7DHkSRJkiRJkiR1N+gAL0CMMQK/y9wkSZIkSZIkSb8Hg9lkTZIkSZIkSZI0jAzwSpIkSZIkSVJCDThFQwhhIJumxRjjKwd6TEmSJEmSJEldgpusAYzwn8FgcvBemme9ro3sAm5qJ0mSJEmSJElDZjAB3s8fpbwWOBc4H6gHvgV0DuJ4kiRJkiRJkqQsAw7wxhiPFuAFIITwCuBnwKIY41sHejxJkiRJkiRJUnfHfJO1GOM9wCeBq0IIf3isjydJkiRJkiRJI8UxD/Bm/IR0egYDvJIkSZIkSZI0RAaTgzdvMcaWEMIBYOHv43iSJEmSJEnSSBAJwz0EDbPfywreEMI00puuOeMkSZIkSZIkaYgc8wBvCGEU8M3M01XH+niSJEmSJEmSNFIMOEVDCOHvjlKlApgBvAYYD0TgGwM9niRJkiRJkiSpu8Hk4L2OdND2aAKQAv4xxvjjQRxPkiRJkiRJkpRlMAHe++k7wNsBNABPATfFGF8axLEkSZIkSZIkHSFGt7wa6QYc4I0xXjqE45AkSZIkSZIk9dMx32RNkiRJkiRJknRsDDjAG0JIhRA6Qgjzh3JAkiRJkiRJkqT8DCYHbzPQHmNcM1SDkSRJkiRJkiTlbzAB3s3A9KEaiCRJkiRJkqT+ibjJ2kg3mBy8twIVIYRLhmowkiRJkiRJkqT8DSbA+0VgF/CtEMKUIRqPJEmSJEmSJClPg0nRsBD4G+DLwOoQwo+Ah4CdQGdvjWKM9w/imJIkSZIkSZKkjLwDvCGE9wLNMcabMy/dB8SsKh/P3PoS+3NMSZIkSZIkSVLv+hNs/QGwDbg567X+ZnE267MkSZIkSZI0BCJusgbdV6CORP1dTXtoxsQYB5O/V5IkSZIkSZI0SAZpJUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJ1d9N1iaFEDoHcbwYY+zvMSVJkiRJkiT1EIiE4R5EARjZP4OBBFtH9k9MkiRJkiRJkgpEfwO8B4B/OxYDkSRJkiRJkiT1T38DvE0xxs8fk5FIkiRJkiRJkvrFTdYkSZIkSZIkKaHc8EySJEmSJElKqBjdLmukcwWvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUHnn4I0xGgyWJEmSJEmSpALiJmuSJEmSJElSQqVwk7WRzlW5kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQlVMtwDkCRJkiRJktR/EYiE4R7GsIvDPYBh5gpeSZIkSZIkSUooA7ySJEmSJEmSlFCmaJCUt7KOFs5d91tO3LGCMc31pEJgT+UkVk85m2WzXkGqaOCnlKrWfZy37g7m73yampY9dBSXsrt6Kk9PPZ+npl8Eoe9LTsYc3Mn5a+9gTv1qqlsbaSuuYHvNTFbOWMoLk5cMeFxKBuemCpHzUoWkvaiMjeMWsL12JjtqZrK9dhb7Ro0H4MKXfsXSNb8a9DEOlI3m0bmv4eUJp7Fv1DhKOtupa9rKqVse4bTNDx714tGGygk8Nuc1rKtbRFN5LWWdLUxu3Mjpmx7gpB0rBj0+FTbPmSpEzktJSRFiHOlZKqSBCSEsBxZX1S7g9KU3DPdwjrma5nre/fi/Mqa5HoC24jKKYoqSVAcA22tm8OOzP01LaVW/+57cuIG3L/sKle0HAGgtLqck1U5xTAHwct3J3Lz4471+gJq3axVXPXk9ZZ1tALSUVFDW0UpRJgvPU9Mu4NZT3nfUD0lKJuemCpHzMjn+6rZrhnsIvxcbxi3gv8/9s5xlQxHg3V4zk5+c/Sc0l1UD6aBIR1EpqaJiAObseoa3Lv8GxbEzZ/uXJ5zCL874CO0l5QCUtzfTVlJODOkLDk/d/BBXrrpxRGUY/OIVx//nyy6eM1WInJfJ8NQD13Cg8UWAFTHGERXZ7opJnHTyafz453cP93CG3TuveiXPP/s0jMC5AK7glZSHkOrk6uVfZ0xzPfvLa/nVqR9gfd0iiCkWbl/Olc/8iMn7NvGGp7/HTUs+0a++y9sPcvWKr1HZfoDdVZO55bQPsr12NkWpDs7c9ACvev4m5u1+lsuf+wl3nPyuHu1rD+7mqidvoKyzjU1j5nHrqe9nT9UkSjtaOG/db1n68q85fcvD1FdN5tG5rx2qH4kKhHNThch5qUJV0XaASfs2MnnfRibt28jdJ13NgYraQffbUjKKm5dcS3NZNeObtvEHT32fKfs20BmKeXLGUu5eeDXrJpzCXQv/D69Z/eMe7feOGs8vzriG9pJypu9Zw5WrfsC4gztpKy7nsTmv5qETXs+q6Rcyvmk75627Y9DjVWHxnKlC5LxU0sR4/Afz1bcRmYM3hHBfCCHmcXsyq82lvdQ5EEJ4MYTw3RDCqVn1S0IIKzJ1vnuU8ZSFEJ7N1P15nmPrccvx/q47ynEvPbJtVtl1OY6RCiE0Zt7XF0IIE/L8eZ8ZQvhmCOH5EML+EMLBEMLaEMKNIYTLjtK21/fSy/j2hRA2hRDuDSH8SwjhnHzGqL6dtvURJjZtAeBnZ3w0/eEGIBTx3JSzue3kdwMwf9czzK5/rl99n7v+Tqpb99FeVMpPlnyC7bWzAUgVlbB81mXcP/8NAJy5+QHGHdjRo/3Fa35JWWcrTeU13LTkWvZUTQKgvaSCB054AyunLwXggrW/oSLzDbmOH85NFSLnpQrRjD0v8Sd3f4p3PPFlLnvhf1m07QmKU+1D0vfjcy7nQEUtJZ1tvG3ZV5mybwMAxbGTJRvvY+lLtwDw5Iyl7Kmc2KP9Aye8kfaSCqpaGnnr8q8x7uBOAMo6W1m65lecsfF+AB6ZdyUtJZVDMmYVDs+ZKkTOS0lJMyIDvFk2AQ/1cVvZS7vsOluBOcCHgOUhhLcBxBg7gA8A7cCHQgiX9zGOvwMWAWuAP+plLM/0cvzs27GwL6v/x4D9wJnAXwOrQggn9tYwhFAcQvgasBz4GDALWAe8ANQB7wXuCSHcHEIYzKf1ZzLjexh4CegELgX+DHgshPBgCGH+IPof8U7d8ggA68edyJax83qUr55yNg2j6gA4ZcujA+p79ZSzaays61G+bNZltBaXUxRTnLz1sW5lpR2tnLQ9nZNvxYxLaS3tOY0ennsFABUdLSzY8WS/xqbC59xUIXJeqhB1XbZ7LDwz7XwAFm574tClzNmWbLiXso4WYlExz049t1tZW3EZL0xeDMCZm+6joqO5R/vz1t4GQGvpKF6cdMbQDl7DznOmCpHzUlLSjPQA7/djjBf1cftArkZH1DkBOAF4BCgFvhNCGJOp9xTwT5lm3wkhVB/ZVwjhDOAvgAh8KMa4LddYgGt7OX52nWNhZdYxzo8xTgcuBnYCk4Dr+2j7I+CPgTbgz4EJMcbTYoxnkg7wfhDYC7wVuC2EMNCUIddmjXFJjHF2pv+PA9uAC4FlIYSFA+x/RCvpbGV6wxognR8vpxBYW3cyAHPrn82773FN26lt2dNn3+0lFWwaewIAc3av7lY2vWENpZnVR721b6ysY3fVlJztlWzOTRUi56VGmvqqSYc2a5u365mcdco6W5m+5yUA1nWtgsvYPHY+HcVlfbYf01zP+KatOdsr2TxnqhA5LyUl0UgP8A6JGON64P2Zp7XAq7OKvwA8RXr16j9nt8sENP+DdC7kb8QY7z/WYx0KMcYHgM9mnl4SQuhxrV0I4f3AO0gHrt8aY/yXGGNTVh9tMcb/AC4HWkgHjf9mCMdYH2P8JunVxi+S/ne5OYTgnO+nuqbth1b97Kqe2mu9XaOnAVDduo+KtvwuBZqQuewp3fe0PvpOH7fuwNY+2vc1tqmZ+lt7raPkcW6qEDkvNdJkz8W6/Vt6rdc1n+qPmHvd2/c+5yZkynb3MXeVPJ4zVYicl5KSyGDXEIkxvkh6NSqkUzZ0vd5OOlVDB/DREMKlWc3+EjiDdNqCv/w9DHMoZV8rMie7IBNE7QoA3xhj/HVvncQYlwH/N/P0UyGE0UM5yBjjDtKpIABOBq4ayv5HgurWvYce768Y22u9/eVjDj0endWmL6NbG7P6HtNrvaby9HErOloo7Wjp0b65tPLQ6p++xlad57iUDM5NFSLnpUaapqxN2vqay9UtDUA6zUJbcXmP9hVtBw6tSsvdfm+m/piBD1YFx3OmCpHzUskTiN6Akb3RnAHeIZIJanZ9Wj2YXRZjXAl8ifRs+14IoTKEsIh0ELQrNUPSsp9nJ/s5eETZOcDczOOv59HXN0nnza0Frhz80LqLMT4GLMs8ff1Q93+8K8v6QNFR1PuHiPasDxjZbfLtu30AfXc97qttdvuyjta8xqVkcG6qEDkvNdK0FVccelza2dZrveyytpLDbbral6Z6b5vdvq2kvM96ShbPmSpEzktJSWSAd+i8EhiVeZxrc7Z/AFaRDnz+M/A9oAy4PsZ47+9lhEPrDzL3+0lvDpftwsx9I7DiaB3FGHcCXVuPXjAko+vpgcz9uX3WkiRJkiRJkhJkoJtaHS8+F0L4XB/ln4oxfqWvDkIIk4BXAP+Weel3McYHj6wXY2wLIXwAeJT05l8AG4DP9HvU+Tva++uXzCrlmcA7OTzu/xdjPHK74+mZ+3Uxxny3bF4DnJLVdqhtzNxP6qtSCOEjwDV59nnSoEaUENmrbEr6WF3T28qcfPsuTbXRVjQqZ71eV/2UuOpnJHNuqhA5LzXSlHVmrUYrLqO8l1Vsva5G63Q12kjmOVOFyHkpKYlGeoB3E4cDf7nk3CkihJAraNkB/BC4trfOYozLQwj/DPx15qUPZ288dgwc7f3Vkg6q9uWSXt5vA/CvMcZ/ylHWlUe3P++tK0VFTT/a9EfXWI6W43cKsPgYjSGRmrJzS7U0sGt07hh8dt6p7HxUfdlfnpW3r2Uv9dW5P+BUt6bz9rWUVNCe9QGnq/2o9oOUdLb1moeqa2xNeY5LyeDcVCFyXmqkqW7JyidZPobyju056zVl8liWtzdT1nk4SNvVvqWsivai0l7z8Hbl3u3Kxavjg+dMFSLnpaQkGukpGr4fY7yoj9vNvbR7KHN7DOj6FNsKPBJj3HeUY97Z9SDGeGdfFYdAn++PPoLRWfZx+P2uyDyHdGqG3/XSZn/mvrofY63KOt6x0BXYPVr/20i/z3xuR+YePi7trp5MKpOsvK9dWCdkds5uKq+hpayq13rZsneOzd4RtmffmZ2zq3rfebvvsW3N1Hfn7eOJc1OFyHmpkSZ7Lu4e3ceO8Jn5NP6Iude9/dF3hK9zR/jjiudMFSLnpaQkGukB3gHJCpKeB0wF3g6UAt8KIbxleEc35FZmvd8lwGTg/5JO1fCbEMKcHG02Z+7nhBDy3cZw/hFth9qszP2OvirFGK+PMS7J5wY8f4zGWlA6isvZPDb9zzNv17O5K8XI3N3psrXjT8677z1Vk2isGAfA3F76Lu1oZUbDSwCsq1vUrWzz2Pm0F5Vm2j+Ts31Ncz11B7blbK9kc26qEDkvNdKMO7CDmuZ6ANbW5Z7PbcVlbB53AgBzdq/uVja9YQ0lmUuJ19blvrCssWIc9ZkgxZHtlWyeM1WInJdKnAgxhhF/I98EoccpA7yDFNN+wuG0C98MIRwtDUBixRibY4x/CfyKdDqFb+ao9lDmvpY80h2EECYCCzNPHx6KceawNHP/2DHq/7i2atr5AMza8wJT967tUb5w+3LGNu8G4Jlp5+XfcQiH+l60/QlqD+7uUWXJxnsp72wlFYp4dmr3PfLaS8p5fnJ6ii3e9DvK23suqj5/7e0AtBZX8OKkM/IfmxLBualC5LzUSBKAU7Y8AsBzU85m76jxPeqsmHkZbSUVhFQnJ2/t/lGsrLONE7en9+RdOfMSWkp6Xq786NzXput2NLNgx5ND+wY07DxnqhA5LyUljQHeofNVYB0wEfjTYR7L78NngE7gtSGES48oexzo+i34x3n09TGgmHT6hNuGaHyHhBDO53Cg+Zah7n8keHrq+eysnkYg8uaV32Z2/XPpgpjipO3LuOLZHwKwpu4U1o9f2K3t0pdu4a9vv4a/vv2anB9gHpt9OU3lNZR1tnH1iq8xuXEDAEWpDhZvvI+LX0r/k62cvpQ9VT33yLt//htpKy5ndGsjb1vxDcYeSC/SLu1o5aI1v2bxpvsBeGjelbSU5nfplJLDualC5LxUoWopqeRgafWhGyH9p0BHcVm319uKu2/K88D81/OlK27gS1fckDOAe866O6lqaaS9pJyfLrmW7TUzAegMxayYeQkPLHgDAGdseoBxB3f2aL/0pV9S2tFCU8UYfrrk4+ypnAikV/4+OP91rJx5MQAXrPkNFR0jIkPWiOI5U4XIeSkpaUb6JmtDJsbYHkL4EnA98MkQwpdjjI1Ha5dUMcYXQgg3Ae8APgfcl1WWCiF8Afge8L4Qwv/GGH+dq58QwlnAX2aefiWPHMb9EkKYBPwg83QV8Iuh7H+kiEXF3Lz447zriX9jTHM973ziy7QVlxFiPLQZyvaaGdxy+of63XdraSU3Lb6Wty/7ChOatvHBR75Aa3EFJal2imMnAGvHL+KuhVfnbN9YWcfPz7iGq568npkNL/GxBz5LS8koyjpbKYopAJ6adgGPznnNAN+9CplzU4XIealC9f0L/5Z9lXU9Xn9s7mt4bO7hf/NTNj/MH6z6Qd79VnQ087blX+MnZ/8Ju0dP5QcX/i1lHc10FJWSKkr/uTFn17O88vmbcrYf01zPm568gV+c8RE2j1vADZf8I+XtB2krLicWFQNw6uaHOHfdHf14t0oKz5kqRM5LSUljgHdo/QD4LDAd+ATwD8M6mmPvC6TzD18aQrgoxvhgV0GM8fshhNcAVwM/DSH8LfDtGGMTQAihDHgn8GWggnRah38cqoGFEMZnjv1ZYArQALwtxjjCs7IMXGNlHd+98HOcu+63nLhjBWOa60mFIrbVTOXZKWezbNYrDv0R11/ba2fxnYs+z3lrb2f+rqepaWmgrbic3aOn8vTU83lq+oWHVhnl8vKEU/nuhX/H+WvvYE79aqpbG2kpqWR7zQxWzriYFyYvGejbVgI4N1WInJcaaSbv28gfPvA5Hp37WtZMPI39FWMp7Wxlwt51nLrlEU7b/BChj+R483Y9wwcf+nsenfMa1tctoqm8loqOg0zat4kzNt7PSTtW/B7fjX7fPGeqEDkvJSVJGInxrhDCfcAlwCZgY191Y4wXZdpcCtybea3XjcNCCJ8A/h3YA8yOMe4/ojyvfnL0m3e7rPf3+RjjdQPpM4RwHemVub+LMV7aRx8/A64C7ooxXn5EWQnwNeAjpFO0tQAvkk7tMB/oylX8c+A9McYD/XkvIYSuyfsM0LVaugKo4/CmagAPAB+IMb7c2/sYiBDCcmBxVe0CTl96w1B2LUmSfk/+6rZrhnsIUk5fvMLPl5J0NE89cA0HGl8EWJHZDH3E6IpJnLTodH74s/uGezjD7r1vvpTnVz8FI3AugCt4Z2RuQ+k7pDdcm0Q6/+wXh7j/QvOPpAO8rwohnBdjfLSrIMbYAXwshPBd4MPAZcA80rmfdwC/BH4QY7x7kGPI3nK5iXSw9z5gGXBzjPHxQfYvSZIkSZIkFaQRGeDta0VqH23uI70K9Wj1moHJg+1nMO3yfX999ZlZLXtdHn2sONq4YozLgeX5jClH20v7KOv3z1GSJEmSJEk6nvSe1EWSJEmSJEmSVNAM8EqSJEmSJElSQo3IFA2SJEmSJElS0kXADJbpn8NI5gpeSZIkSZIkSUooA7ySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQqGe4BSJIkSZIkSRqY1HAPQMPOFbySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIRykzVJkiRJkiQpoWIMwz0EDTNX8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEspN1iRJkiRJkqRECkTcZI0R/jNwBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQpUM9wAkSZIkSZIk9V8EYgzDPYxhF4d7AMPMFbySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIRykzVJkiRJkiQpoSJusjbSuYJXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRDCOGyEMKvQwi7QgjNIYTnQwj/EEKoGqL+/yiEEDO3+wbSh5usSZIkSZIkSQmVisM9guNXCOFa4N+BAGwGNgGLgL8F3hJCuCjGuGcQ/U8DvjjYcbqCV5IkSZIkSZKyhBCWAF/JPP0IMDPGuBiYCywHFgLfGeRhvglUAb8eTCcGeCVJkiRJkiSpu8+Sjp3+KMZ4Q4wxAsQYtwLvAFLAm0MIpw2k8xDC1cAbgK+TDhgPmAFeSZIkSZIkScoIIVQDr808veHI8hjjS8A9madvG0D/Y4Gvkk778LcDHOYhBnglSZIkSZIk6bAzgXKgFXi8lzoPZO7PG0D//wZMAq6NMTYNoH03brImSZIkSZIkJVQkDPcQjkcLMvcbY4ztvdR5OXN/Yn86DiG8AvgAcEuM8RcDG153BnglSZIkSZIkHQ9OCiH0J5/tDTHG63O8Pi5zv6ePtl1lY/M9WAhhFOmUD03AH+fb7mgM8EqSJEmSJEk6HlQCi/tRf0ovr1dk7tv6aNuauR/Vj+N9HpgHfDrGuKkf7fpkgFeSJEmSJEnS8eAg8Hw/6m/r5fWWzH1ZH23LM/fN+RwohHAm8ClgJekN1oaMAV5JkiRJkiRJx4PnY4xLhqCfhsz9uD7qdJU19FEn2/eAIuCaGGPnQAeWiwFeSZIkSZIkSTrsxcz9zBBCaS8brc07ou7RnAl0Ar8OocfGeNWZ+wtCCNszj8/ON42DAV5JkiRJkiQpgWKEGHsEC0ecGIe8y5Wk8++WA+cAD+WoszRz/0g/+i0GJvVRXppVXpxvp0X9GIAkSZIkSZIkHddijPuBOzJPrzmyPIRwAvCKzNOf5tln6O1GevM1gN9lvb4+3/Ea4JUkSZIkSZKk7v4BiMB7QgjXhExehRDCFOC/ScdVfxFjfCq7UQhhfeb21t/XQA3wSpIkSZIkSVKWGOMTwKczT68HNoQQVgDrgCXAC8CHczSdlblV5yg7JgzwSpIkSZIkSdIRYoxfAS4HbgOqgEXABuCfgLNijLuHb3SHucmaJEmSJEmSlFDHYIMxZYkx3g3c3Y/6/d71LsZ4HXBdf9t1cQWvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUAZ4JUmSJEmSJCmh3GRNkiRJkiRJSqRAin7v6XUcGtk/A1fwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCVUyXAPQJIkSZIkSdLAxBiGewgaZq7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQkUgRiHexTDb6T/CFzBK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKDdZkyRJkiRJkhIqEoZ7CBpmruCVJEmSJEmSpIRyBa8kHWfKK0cN9xCknFoPNg/3EKQevnjFDcM9BCmnz6/4+HAPQerhc4u/MdxDkCTl4ApeSZIkSZIkSUooA7ySJEmSJEmSlFAGeCVJkiRJkiQpoczBK0mSJEmSJCVUKg73CDTcXMErSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooN1mTJEmSJEmSkihCjGG4RzH8RvhGc67glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQkUgTjCNxiDEb/Hmit4JUmSJEmSJCmpDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhKqZLgHIEmSJEmSJGlgUoThHoKGmSt4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJ5SZrkiRJkiRJUkLFONwj0HBzBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKpECMYbgHUQBG9s/AFbySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCVUy3AOQJEmSJEmS1H8RSMXhHsXwG+k/AlfwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISyk3WJEmSJEmSpCSKEEf6DmMw4ndZcwWvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUAZ4JUmSJEmSJCmh3GRNkiRJkiRJSqhIGO4haJi5gleSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooA7ySJEmSJEmSlFBusiZJkiRJkiQlUARScbhHMfxG+o/AFbySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCVUy3AOQJEmSJEmSNDAxDvcINNxcwStJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSig3WZMkSZIkSZISyk3W5ApeSZIkSZIkSUooA7ySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCucmaJEmSJEmSlFCpGIZ7CBpmruCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSqiS4R6ApOQo62jh3HW/5cQdKxjTXE8qBPZUTmL1lLNZNusVpIoGfkqpat3HeevuYP7Op6lp2UNHcSm7q6fy9NTzeWr6RRD63hV0zMGdnL/2DubUr6a6tZG24gq218xk5YylvDB5yYDHpWQobW/mrJdu44StT1B7YBcxFNFQPZnnZ5zHynmvHtTcrGxp5OwXb2Xu9pWMPlhPR3EZ9TXTWD1zKatmX9Lr3Jy7bQUzdj/PxIb11DTXM6p1HyWd7TSXj2ZX7UxemHYuq2deSCwqHvDYVNg8Z6oQOS9VqFqLynl40it5bswZNJTVUUSK8S07OaVhOefsuo+S2Dngvp+vPZUVdReypXIWzcWVVHYeYNqBDZy1+wFO2Lc6Z5t11Sdw44I/yfsYl269lUu3/2bAY1Rh8pypJIgxfRvpRvrPIMSR/hOQBiiEsBxYXFW7gNOX3jDcwznmaprreffj/8qY5noA2orLKIopSlIdAGyvmcGPz/40LaVV/e57cuMG3r7sK1S2HwCgtbicklQ7xTEFwMt1J3Pz4o/3+gFq3q5VXPXk9ZR1tgHQUlJBWUcrRaTPb09Nu4BbT3nfUT8kHS/KK0cN9xB+r0Yf3M3/uf8L1B7cDUB7cRkhRkpS7QDsqJ3FzUv/itay/s/NiQ3reOtD/8yotiYA2koqKO5spzjzR+a6iafyiws+nXNuvu+uv6Ru35ZDz1tLKihKdVKaGRfAjjGz+dkFf8bBitp+jy2JWg82D/cQfm88Z6oQOS+T5fMrPj7cQ/i92Vs2jh+c8En2ltcBUNrZSioU0VlUCsDkgxt530tfZVRn/36PpAj8fPZ7WTXunPQLMUVFZzOtxRXEkP6C9Zyd93Hl5pt7tN1YNYefzL2mz/7bi8poK64A4J1rvsmCfc/2a3xJ9LnF3xjuIfzeeM5MhqceuIYDjS8CrIgxjqjIdldMYvaCxfzT95cN93CG3V9/8CzWv7gCRuBcAFfwSspDSHVy9fKvM6a5nv3ltfzq1A+wvm4RxBQLty/nymd+xOR9m3jD09/jpiWf6Fff5e0HuXrF16hsP8DuqsncctoH2V47m6JUB2dueoBXPX8T83Y/y+XP/YQ7Tn5Xj/a1B3dz1ZM3UNbZxqYx87j11Pezp2oSpR0tnLfutyx9+decvuVh6qsm8+jc1w7Vj0QFIqQ6uerh/0ftwd00VYzhtrM+wsaJp0BMceKWx7l8xfeY1LiBK5/4Fj+/8M/61XdZ+0GuevjfGNXWRP3oqdx21kfYMXYuRakOTlt3L5c+/V/M2bmKy576T+4+8/092r849RxWzBvLlvEL2Fc1gY7iMgCqmhs4df19nP/cz5m0dz2vXXY9P7voz4fix6EC4TlThch5qULVSRE/nvdR9pbXUd22l6s2/JB5+18gRWD12DO5ZeY72V45k5/Nfj/vevlb/er7nqmvPxTcPXfnPVyy7XYqOw/QVlTGsrql3DXtjTw+8VLGte7ivF33dWs788A6PrPqr/rs/8fzPsqLtadS09bA/F5WAiuZPGdKShpz8GpYhBDuCyHEzO2Ro9StCSEcyKp/3RHlXa9f2kv7qhDC3Zk6u0IIi4fsjYwQp219hIlN6ZWIPzvjo+kPNwChiOemnM1tJ78bgPm7nmF2/XP96vvc9XdS3bqP9qJSfrLkE2yvnQ1AqqiE5bMu4/75bwDgzM0PMO7Ajh7tL17zS8o6W2kqr+GmJdeyp2oSAO0lFTxwwhtYOX0pABes/Q0VmW/Idfw4eeMDTNi3CYBbzv1EOrgLEIp4Yfp53HXmBwGYu+MpZu7s36qas178DdWtjbQXl/GzC/6UHWPnAum5+eS8y3l40ZsBOG39vYzdv61H+0cWvZlVcy5jT820Q8FdgAOjxvLowqt4YsEfADBn5yqqD+7p3xtXQfOcqULkvFShemr8uewcNQ2A/7Puu8zb/wIARUROaVjB6zf+NwAv1Z7C2tEn5t3vgeIqHpn4CgBO2vskV2z+Xyo70/OnLNXGBTvv5vwddwNw35TX0VJU0a9x7yut5aWa9P+jM+ofPbRyUscHz5mSksYArwrBeSGEBX2Uvw2oHEjHIYRa4LfAK4DtwKUxxhUD6WskO3VLOga/ftyJbBk7r0f56iln0zAqfUndKVseHVDfq6ecTWNlXY/yZbMuo7W4nKKY4uStj3UrK+1o5aTt6X/OFTMupbW05zR5eO4VAFR0tLBgx5P9GpsK38kbHgRg44SFbBt/Qo/y56efx97KCQAs2vhg//rO1H9h+nnsq5rYo3zlvFfTVlJBUUyxcNPD/R0628bNP/S4usUA7/HEc6YKkfNSherJcecBMHv/C8w4sK5H+SkNyxnTmk7D9FRXqoU8rKs58VCKhwt23JWzzoU77gSgpaSS58ec1u9xx1AMMcWZ9f3/HKDC5jlTUtIY4NVwez5z/94+6rzviLp5CSGMA+4GLgA2AktjjMd/YqwhVtLZyvSGNQC8POGU3JVCYG3dyQDMrc//RzyuaTu1mcBWb323l1SwaWw6cDdnd/dL36Y3rDmUz7S39o2VdeyumpKzvZKtpKOVqfUvArBu0um5K4XA+knpP9hm7ViVd99j92+jJpNvbd2k3H/wtZdUsHl8+rupWTufybvvLtPq0yuUIoHGHAFkJZPnTBUi56UKVVsoZVN1+gqZExpz/9sGOJT+4OWahXn3vbds3KHHE1q256xT2XmQqvZ9/e47AivHnw/A3P0vMLbNL2qPJ54zlURdG62N5NtIZ4BXw+1/gDbg3SH0zAAfQpgLXAQsB/L+zRlCmAjcBywBXgYujjGuGYoBjzR1TdsPXXK2q3pqr/V2jU5fWlfduo+KtvwuBZrQdHgDql3V0/roO33cugNb+2jf19imZupv7bWOkmfc/q2H5ubumum91usqq25tpCKzWdrR1O3b3KN9LvWZsvFZm6n1pbSjhfGNm7h41X9z1ku3AbB65oU0l9fk1V6Fz3OmCpHzUoVqd8VkYkj/STqxpfd/24nN6bKm0loOFvf/wr7Yx5+9qczxd1b0Pv+OtL76BBoq0lcILXb17nHHc6akJHKTNQ23euA3wJuAS4F7jyh/L+kv7n8IXJxPhyGEaaRX7p4IrAZeFWPsmSBTealu3Xvo8f6Ksb3W218+5tDj0a17aSk7+m6yo1sbs/oe02u9pvL0cSs6WijtaKG9pKJb++bSym45TnsbW/Z7UfJVtzQcetw0qve5mV1W1dxAS1l1P/se12u9/Zmy8o7mbnMz25Q9a3jnfZ/v8XoqFPHMzKXcc8b7epQpuTxnqhA5L1Wo9pfVHno8un1vr/Vq2rPmWWktlZ0Hj9r3mNbDq2p3jprC7Kaeaz32l9TQXFJ9qN98rai7AIBRHU2ctPepvNspGTxnSkoiV/CqENyYue8W5cis6H0v0A78OJ+OQgizgftJB3dXApcY3B2cso6WQ487inr/ENGe9QEju02+fbcPoO+ux321zW5f1tGa17iUDN3mZnF5r/U6BjA3S9uz5mYfH5679d2eu+/OUMKB8loOlNfSUXT4e9Wn51zGIwuv6vPDuZLHc6YKkfNShao1a2OzrsvOcylNtR163Fac32Zoc/a/QHGmz/snvzZnnQcmv+bwWPLst7l4FM+NOQOA0/Y8TknszKudksNzpqQkcgWvCsGtwG7gLSGEj8cYu65vWQrMAX4ZY9ydI4PDkRYAPwKmA48CV8QY9/ZnICGEjwDX5Fn9pP70LWlk2jl2Nt9+3dfTT2KKMQd2sXjN7Zy+9m4WbXyI35z1MV6eunh4BylJ0nGmqvMA5+66j4cnXc7amoX87+z3cfG22xnXuov9pbU8MeFiHp9wMUWpDlJFJQTyS+C4auzZh4J+i3ebnkGSVBgM8GrYxRjbQwj/A/wx8GbSQVo4vKL3h3l29Q3Sc/p+4HUxxvySbXY3BTDSkqUt65LzkqzVE0cq7cxaWZHjMvWj9V2aaqOtaFS/+u56XNrHuLLbt5X0vspTydNtbnb2vjqhZABzs700a2529j43u/VdmkffoYi91ZO454z30Vg1kUtX/Zgrl32L71/+LxwYNSavsamwec5UIXJeqlCVp7JXM5b2Wi97tWJZZ34rJQFeueUW9pWO5ZlxZ7Fq3DmsGndOt/LpTWuZ3LyFZROWUtFx9LQPACvq0purTTuwjkktXih4PPKcqSRKucnYiGeKBhWKbmkaQgiVwNuAPcCv+9lXHZD7N+XRbQNW5HnL71NgwjVl55bKykt6pNHZuaqy2vRlf3lW3rWWvb3Wq25NH7elpKJbjtOu9qPaD3YLtPU2tqY8x6VkaMrKiVbd3PvczC470Eeu3t777n1n7NGZstaSUTnz7/blybmvpKOolLKOFk7a/Ei/2qpwec5UIXJeqlCNbsvOrTum13r7SrNz9Tb2Wu9IxaR46/r/4J1rvsnJe5ZR17Kd2tZ6Zu5fwxWbbuIDL375UGB5fOvOo/a3ddQMtlfOBFy9ezzznCkpiVzBq4IQY1wWQlgNXBZCmA5cAowGvhFj7PvrycM+CVwHLALuDiFcFmOs7+c4rgeuz6duCGE5I2C17+7qyaQIFBGZ0LSVtRNOzVlvwv70jq5N5TV5bTAA3XeOndC0hfrqKb30nd79dXdV951iu7ffyrba2X2272unWSXPntFTD83Nun2bWT/59Jz16vZtBqCpvDavDdYAdtdM79Z+T03uXY7HZ/qu76W8L53FZbSUVVHdspcxTTv63V6FyXOmCpHzUoWqrmU7IaaIoYidFVM5Yd/qnPV2jkr/u1e3N+a1wdqRFux7lgX7ns1ZtrVyFgAzDqw7aj8rM6t3yzpbOKVheb/HoWTwnCkpiVzBq0JyI+k5+R4Op2e4sffqPawGXgnUA6cCd4UQ8luup151FJezeex8AObtyv3BmBiZuztdtnb8yXn3vadqEo0V4wCY20vfpR2tzGh4CYB1dYu6lW0eO//Qqou5u57J2b6muZ66A9tytleydZSUs3X8AgBm73g6d6UYmb1zFQAbJuX+cJ5LQ/Vk9o0a32ffJR0tTK9/Md33xFPy7rtLaXszo1r3A3mmd1AieM5UIXJeqlCVxXZmNK0FYE1N7n/bCLxcsxCAefueG9Ljbxs1nV2j0gG20+sf67Nueyhl1dizATi5YQXlKTevOl55zpSURAZ4VUj+E0gBf0Q6UPtcjPGJ/nQQY1wFvApoAM4AfhtCqO2zkY5q1bT0aoVZe15g6t61PcoXbl/O2ObdADwz7bz8Ow7hUN+Ltj9B7cHdPaos2Xgv5Z2tpEIRz049t1tZe0k5z09OL6JevOl3lLf3XNFx/trbgfTOyC9OOiP/sSkRnp11EQAzdz3H5D1repQv2PI4Yw6kL7lcPfOi/DsOgWcz9U/a/Cg1B3b1qHLm2rso62ghFYp4bsYF3Zunjr6j9tkv/YbizM7bm+oW5j82FTzPmSpEzksVqjP2PArAutEnsLlydo/yZ8cspqF8AgCn73l8yI7bFkr59cy3A7CoYQUTWvu+mmb12DNoKakEYHG96RmOd54zJSWNAV4VjBjjVuAuYDrpuZnv5mpH9vMk8GqgETgLuD2EMHqIhjkiPT31fHZWTyMQefPKbzO7PrN6IqY4afsyrng2/U+1pu4U1o/vHqha+tIt/PXt1/DXt1+T8wPMY7Mvp6m8hrLONq5e8TUmN24AoCjVweKN93HxS7cAsHL6UvZUTerR/v75b6StuJzRrY28bcU3GHsg/eG8tKOVi9b8msWb7gfgoXlX0lKa36VTSo5nZy5lV80MApE3PPpVZu7MrISIKRZsfoxXr/geAGsnncbGid1XV5y/+mf86c/ew5/+7D05A7jLFlxJU3ktpZ1tXPXwvzGxIX3pZlGqg9PX3sUFq/8XgKdnX0bD6O6X1y3c9DBvevj/MX/LE4xqycoVGFPUNW7k8hXf4/znfwHAlvELWD/ptKH4cahAeM5UIXJeqlCdXv8YE5u3QCjiJ3P/kLWjTwQgReDZMWfyq1nvBGB+47PM3f9Ct7b3TrmS6xZ/g+sWf4OGsnE9+t5cOZv7J72GnRWT6QjFAHSEYl6qWcT3T/w0W6rmUNO2hys3/eSo41wxPv1l7oTmrXmlc1Cyec6UlDTm4FWh+SpQnHn8nwPtJJPT9zXAncB5wG9CCK+NMR4YgjGOOLGomJsXf5x3PfFvjGmu551PfJm24jJCjJSm2gHYXjODW07/UL/7bi2t5KbF1/L2ZV9hQtM2PvjIF2gtrqAk1X5odePa8Yu4a+HVOds3Vtbx8zOu4aonr2dmw0t87IHP0lIyirLOVopiCoCnpl3Ao3NeM8B3r0IWi4r5xfmf4uoH/onag7t524Nfor24DLLm5o7aWfzm7D/qd99tpZX8/II/5a0P/TN1+7fwnnv/jtaSCko6D8/N9RNP5b7T3tWjbSAyb/tK5m1fme6ruJyO4jLKOpopSXUcqrdhwiJ+fe61EMJA3r4KlOdMFSLnpQpVMSne8fK3ufGET7K3vI4fnvAJSjtbiSHQUVQGwOSDG3nL+v/od9/7S2u4Z9obuGfaGyCmGNV5kJbiUcRMsHdi8xbe8fK3qe5o6rOf+vIJbKhOX7Lv6t2RwXOmkiZG/54Y6QzwqqDEGG8Fbh2ivh4LIVwB3A5cBPw6hHBljLF5KPofaRor6/juhZ/j3HW/5cQdKxjTXE8qFLGtZirPTjmbZbNeQapoYKeU7bWz+M5Fn+e8tbczf9fT1LQ00FZczu7RU3l66vk8Nf1CCL1fcPDyhFP57oV/x/lr72BO/WqqWxtpKalke80MVs64mBcmLxno21YC7KuawI2v/CfOfuk3zN+6jNoDu4hFRWyvmc7zM85j5bxXD3hu7hw7hx+86kuc/eKvmbv9SUYfrKe9pJxtNdNZPXMpq2ZfnHNurp18Br8980NM3/0cExs3UNmyj4r2A3QUl1FfNZHtY+fwwvTzWDf5jEG+exUqz5kqRM5LFaqxbXv42HP/xMOTXsVzY06noayOotjJlAMbOLVhOefsuo+SePT0R0eaenAjF+y4kw3V89lbNp7m4koqOw4wqXkLJzes4Iz6RykmddR+Vo4/H0IRxal2TqsfujQRKmyeMyUlSYgxDvcYNAKFEO4DLgGujTF+Pc82PwXeAnw+xnhd1utdk/iyGON9OdpdAvwGqCSdAuL1McaWwYw/0+9yYHFV7QJOX3rDYLuThkx55ajhHoKUU+tBv1+TpHx9fsXHh3sIUg+fW/yN4R6C1M1TD1zDgcYXAVbEGEdUZLsrJjF7wWL+/jvLh3s4w+7vPryE9S+ugBE4F8AcvBoBYoy/A14PNJPegO3nIYTy4R2VJEmSJEmSNHimaNCwiDFeOoA2b+3l9aMmm4kx3kN6Ba8kSZIkSZJ03DDAK0mSJEmSJCVQBMy+mv45jGSmaJAkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZSbrEmSJEmSJElJFCE10ncYgxG/y5oreCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISqmS4ByBJkiRJkiRpYGIc7hFouLmCV5IkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUG6yJkmSJEmSJCWUm6zJFbySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIRykzVJkiRJkiQpgSKQcpM1RvqPwBW8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQlVMtwDkCRJkiRJkjQwMQ73CDTcXMErSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooN1mTJEmSJEmSkihCKjXcgygAI3yjOVfwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISyk3WJEmSJEmSpASKQBzhG4zBiN9jzRW8kiRJkiRJkpRUBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEcpM1SZIkSZIkKaHcZE2u4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKqJLhHoAkSZIkSZKkgUnF4R6BhpsreCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCeUma5IkSZIkSVISRYjRXdYY4T8CV/BKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKTdYkSZIkSZKkBIqAe6yN+D3WXMErSZIkSZIkSUllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooA7ySJEmSJEmSlFAlwz0ASZIkSZIkSQOTSg33CDTcXMErSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooN1mTJEmSJEmSEirG4R6BhpsreCVJkiRJkiQpoQzwSpIkSZIkSVJCmaJBGqTikmJqJ44f7mFIhzTurB/uIUg5XX71BcM9BKmHO296eLiHIOX0ucXfGO4hSD389qp7hnsIUjcXrdrPk43DPQpp+LmCV5IkSZIkSZISyhW8kiRJkiRJUhJFSLnJGozwn4EreCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISqmS4ByBJkiRJkiSp/yIQ43CPYviN9B+BK3glSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQnlJmuSJEmSJElSQsXUSN9iTK7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQnlHmtyBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQpUM9wAkSZIkSZIkDUCEGId7EAVghP8MXMErSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooN1mTJEmSJEmSEigCqdQI32GMEb/Hmit4JUmSJEmSJCmpDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJ5SZrkiRJkiRJUkLFkb7DmFzBK0mSJEmSJElJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQJcM9AEmSJEmSJEkDE+Nwj0DDzRW8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEcpM1SZIkSZIkKYFijKTcZY04wn8GruCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCWUm6xJkiRJkiRJCRVTwz0CDTdX8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEspN1iRJkiRJkqSEijEO9xA0zFzBK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQJcM9AEmSJEmSJEkDECGVGu5BFIA43AMYXq7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQkUgRhH+A5jjPg91lzBK0mSJEmSJEm5hBAuCyH8OoSwK4TQHEJ4PoTwDyGEqn72UxxCuDyE8JUQwuMhhL0hhLYQwrYQwi9DCK8b6BgN8EqSJEmSJEnSEUII1wJ3A68DWoDngNnA3wJPhBDG9aO79wO/BT4JLAF2AKuASuANwK9DCNeHEEJ/x2mAV5IkSZIkSZKyhBCWAF/JPP0IMDPGuBiYCywHFgLf6U+XwNPAHwLjYownxhiXAOOBz5DONHEN8NH+jtUAryRJkiRJkiR191nSsdMfxRhviJlkxzHGrcA7gBTw5hDCaXn29zPgjBjj92KMjV0vxhg7Yoz/Cnw389JH+jtQA7ySJEmSJElSQqWit6EWQqgGXpt5esOR5THGl4B7Mk/flk+fMcY9se8d8W7L3J+Y7zi7GOCVJEmSJEmSpMPOBMqBVuDxXuo8kLk/b4iOOSpzf7C/DUuGaACSRoDS9mbOePYW5m18lJqmnaRCEXtrprBm9kU8fdIVpIpLB9z3qOa9LH72F8zavJzRB3bTUVzGnjEzeH7epTw3/5XQS47xVzz0NRa+fN9R+//mu28iFhUPeHwqbGUdLZy77recuGMFY5rrSYXAnspJrJ5yNstmvYJU0cB/3VW17uO8dXcwf+fT1LTsoaO4lN3VU3l66vk8Nf2iXudmlzEHd3L+2juYU7+a6tZG2oor2F4zk5UzlvLC5CUDHpcKX1HzASbf8QPGLr+L8t2biUXFtE6aRf05V7DzVe8ilvT/nFnasIMxK++l5vnHqdz4HGUNOwFor62jae5p7LrkrexfeG6v7YsP7mP0C8uoXL+aqg2rqdywmrLG3QCs/eA/Un/Rmwb0XpUcni9VqJybKkQH24v53zUzeXDrBLYfqKAowPTqg1wyfQdvnLeZ0qL+LRvcfqCC9/32grzrXz5zG3+25Lm86v7Nw6ezbMd4AE6ra+Bflq7s19gk9bAgc78xxtjeS52XM/f9XnHbi3dk7h/os1YOBngl5WV0007e9NvPUdOUCSaUlFPc2c6k+peZVP8yC9bdzy8vv47W8up+9z2h/mVef9c/MKp1PwBtJRWUtjczdedzTN35HPM2PMJvLvvLPgPIHcVltJVWDuzNKdFqmut59+P/ypjmegDaissoSXUydd8Gpu7bwCnbHuPHZ3+altKqfvc9uXEDb1/2FSrbDwDQWlxOWUcLMxrWMKNhDSftWMHNiz/e6x+d83at4qonr6essw2AlpIKKtoPMLd+NXPrV/PUtAu49ZT3HfUPSyVP2e6tnPTPH6B89xYAOstGUdTeRtX6Z6la/yzjH72VFz7zXTqravPvc882TvvMqwlZV3V1lo0CIuW7t1C+ewvjH7+NXRddxfr3Xwc5vtQas+Ie5n7/bwf79pRQni9VqJybKkQ7DlbwmQfOZMfB9IK68uJO2lPw4t4aXtxbw72bJvOli1Yyuqwj7z6LQmRseWufddpSRRxoT//dc+LYfXn1+9sNkw8FdyVxUghheT/q3xBjvD7H6+My93v6aNtVNrYfx8sphPBG4A9Ib7T2z/1tb4BX0lGFVCdX3vNFapp2cmDUWO668Fo2Tz0dYor56x/hske/xYQ963jVg//Ora/8m371XdZ2gNfd80+Mat3Pntpp3HXhJ9hVN5+iznYWvXQXFy37AbO2PslFT/wH9593Ta/9vDT7Au658NrBvlUlTEh1cvXyrzOmuZ795bX86tQPsL5uEcQUC7cv58pnfsTkfZt4w9Pf46Yln+hX3+XtB7l6xdeobD/A7qrJ3HLaB9leO5uiVAdnbnqAVz1/E/N2P8vlz/2EO05+V4/2tQd3c9WTN1DW2camMfO49dT3s6dqEqUdLZy37rcsffnXnL7lYeqrJvPo3NfmGIESq7ODE776ccp3b6GtdgLr/vCf2Hfy+ZBKMW7ZHcz+wXVUbXyOud/5S176k2/l328qRYiRxoXnUX/B69m36Hzax06EVIqKbeuY/rN/Z+zKe5jw4M9pHzORLW/OfU5sq63j4MyFHJy1kAOzFnHCN/5kaN63CprnSxUq56YKUWcq8LlHTmPHwVGMq2jlM0tWs3hiA6kI92+ZyL+vPIk1jaP552WL+IcLns6734mVrfzPlQ/1WecbT53ALWtnUF7cyWXTdxy1zz0tZVy/6gSqS9sZV9HGxv39/yJEOs5UAov7UX9KL69XZO7b+mjb9Y3NqD7qHFUI4STgxszTr8QYH+5vH+bg7acQwn0hhBhCuO6I12tDCJszZX0ujQkhjAshbM/U/WTW6zHr9sWj9PGqI+pfekT5pUeUd90OhBCeCyF8I4QwP0e/12Xq3ZfHzyLnsY+oUxtC+IsQwoMhhJ0hhNbMe787hPDHIYSKPtq+P9P/+hxlP8jx3lpCCDtCCE+FEP4jhPDuvvpX/k56+V7q9m4E4LZLP5MO7gKEItbMuZD7zktv8Dh7ywqmb8v/Aw7AGc/eQlXzXtqLy/j1K/6GXXXpaZkqLuWZk67g8dP/DwAnv3Qntfu2DtE70vHitK2PMLEpvULyZ2d8NP0HIUAo4rkpZ3Pbye8GYP6uZ5hdn9/lbV3OXX8n1a37aC8q5SdLPsH22tkApIpKWD7rMu6f/wYAztz8AOMO9PzwffGaX1LW2UpTeQ03LbmWPVWTAGgvqeCBE97AyulLAbhg7W+oyKwq0vGh7qFfUrn5JQDWfPzL6eAuQFERe865gvXv/RwAY55+gNGrH827387KGp793E28+JnvUn/hG9PB3Uy/LdPmseaP/529p1wEwKQ7f0Ro77lCqP6C1/PUl+/jpU99iy1v/gR7l7xqEO9USeL5UoXKualCdOfGyazbl74y8bPnrGLxxAYAigJcOn0nnzjjBQAe31HHyp2DXrh3SFtnEfdsmgzARVN3UZ3H6uCvP7mApvZS/vCUNYwp7ysOJY0YB4EV/bht66Wflsx9WR/HKs/cNw90sCGEGcAdQC3wG+AvBtKPAd4hEmNsBLqWF342hHByH9W/CkwCHgS+1kudd4cQ+vr3eV8/hvdQ1m0H6TwifwQ8FUJ4dT/66ZcQwhWk85F8CbgQaAKeIv3txytIv/cXQghnDeIwOzn83lYC9aTf3/uBHwGbQwjvHkT/Ak7K5LjdPPkUdkzomVrmpdkX0VidDjSc+PLv+tf32nTfa2ZfxP7Rk3qUrzrpCtpKKiiKKU5ce3//Bq7j3qlbHgFg/bgT2TJ2Xo/y1VPOpmFUHQCnbMk/kJbd9+opZ9NYWdejfNmsy2gtLqcopjh562Pdyko7Wjlp+woAVsy4lNYc6UMennsFABUdLSzY8WS/xqbCVvfwLQDsO+kcDsw/o0f5nnOvoKVuere6+eisHM3BWYt6rxACu5deBUBx60FGbV3bs465yEcsz5cqVM5NFaI7N6YX9J1e18Ci8T3TJFw6fQeTK9PxnLs2Th6y4z64dQJNmfQMr5199MUtv9s8kYe2TeS0ugZeO6u3GJVGgpiKI/6W5fkY45J+3HKlZwBoyNyP66U8u6yhjzq9CiFMBu4GZgL3AW/pI99vnwzwDqEY429IL6kuA74fQujxV1QI4XXAu0hH9z8YY0zl6Op5YDrpIGgPIYTRwJuB7cDePMZ1UdZtLnAq8AzpZes/CiEM+TUcIYQrgVuA8cCvgRNjjHNjjOfEGGeSXi7/MJlJHEI4c4CHui3rvZ0fY1wE1ACvBO7KHP9HIYS/Gux7GqlKOlqZvCv9DfXGqb38M4VwqGzGtifz7ntM4xZGH0hv7rNhWu6+20tHsW3SwnTfW5/Ku28d/0o6W5nesAaAlyeckrtSCKytS3/fNrf+2bz7Hte0ndqWPX323V5SwaaxJwAwZ/fqbmXTG9ZQmmrvs31jZR27q6bkbK/kKmptpvql9KYmjadelLtSCOw79UIAap7t99VXfUqVlmc96RzSvpVcni9VqJybKkQtHUWsrk/nyD97Un3OOiHAWZmyFTv7iv30zx0b0vNpWtVBTqvb22fdfa0lfPPpBZQWdfLJM543DbQ09F7M3M8MIfS2IdC8I+rmLYQwEbgHOAF4BHh9jLGl71a9M8A79P4E2AqcA/xpdkEIoRbo+mbgszHGl3rp44eZ+/f2Uv5W0sHZ/wL6/ddbjHE18IHM04nA5f3toy8hhDrS76EEuAl4Y4yx22SPMa4kHYR9EKgC/qeP/zD9EmNsjzHeA7wa+PfMy18IIZw3FP2PNGMbN1OU+R6ifuzMXuvtGZMuq2reS3lms7SjGZdJ+5DdPpf6TNnYxs291pm+bRXv+vkf85H/fDsf/u938/ZbPsVFT3zftA7Hsbqm7RSR/qZ2V/XUXuvtGj0NgOrWfVS05Xf55ITMpaLpvqf10Xf6uHUHus+z7u37GtvUTH3n6fGiYttaQuac2TzthF7rHcyUlTXupripcciOX/P8EwCkSkppmTx7yPpVsnm+VKFybqoQbdpfRYp0tHR2TVOv9WbXpOfintZy9rUNfnujbQcqeGpXOt3Da/JYvfvNpxewt7WMd560numjB3x1uKTerSR9BXo56RhfLksz94/0p+MQwjjgTmAh6TQRV8QYez/h5MEA7xCLMe4FPpJ5+vkQQvb17P8GTCP9D//lPrq5DdgFvDmEUJ2jvCs9ww9zlOU7zmVAVxRuwUD76cUfk1452wB8tJdVymS+mXg/6SD1AuAdQzmIGGMkHWR/BghA/3b/EgBVBw9vGHmgsvdvp7PLqg7md3VCdr2mPPoubz9IaXvuDy+jD9ZT07SDjpJySjpaGb93I6c/dyvvuOVTnPzC7XmNR8lS3br30OP9Fb3nPttfPubQ49FZbfoyuvVwwG1/xZhe6zWVp49b0dFCacfhL1u72jeXVtJR3HvKpq6xVec5LhW+0r27Dj1u68qRm0N7VlnZ3p1DcuyyXZuZcN9NAOw5+7WkRuX6CKGRyPOlCpVzU4WovuXwv/f4UT3z2R8qqzhctqelvNd6+bpjw1QigeKQ4vKZ2/us++i28dy7eTKza5q4+oSNfdaVNDAxxv2kc+PC4ZSsh4QQTuDwlfc/zbffEEIN8FvgNNLxqldn0r4OyuC/ZlIPMcZfhxD+E3g36VQNS0n/o3+I9A57vaVm6NIB/Bj4JOnVuj/oKgghzAYuBp6MMT4dBngdRkg3PFYXcbw9c/9fMcY+I30xxpdDCLcBf0A6wDvgoHUv/XeGEL4NfB24PIRQHmPs/be0eihtP/xBt6O49w8u7SWHy0o78vsGuSyrXkdJ731nH7e0vYX20sMbVO4eN5ffjZ/PhulLaKocTywqpqSjlZlbVnLBih9Ru387lz72HZoralk76/y8xqVkKMv6I6yjqPc/vNqz/ijLbpNv3+396Lu9pKJb+77aZrcv6/C0dLwobjm8sixV1vtmuqmyw3uAFrUMfmOe0NbC/G9+muK2Ztqrx7L5rZ8adJ86fni+VKFybqoQHew4HCYpL+79z/byksMX0x5sH1yO+84Id25I5/I9Z3I94yp63yztQHsxX33yJIqI/MmZz1NSFHutK2nQ/oF0vOo9IYSHgO/EGGMIYQrw36QXzv4ixtgtn2QIYX3m4Z/FGH+a9XolcCuwhHR61lfGGHPnguknV/AeO58gnSP3AtIrR2/IvP65GOPzebS/MXN/ZJqG95IOzN7I4JwFdC3t6XeukN6EEMYDXauW782z2X2Z+wuGahxHeCBzXw6ccYyOoWHy9MLX8cxJV7C/eiIxs3lQR0k5a2edx81XfOnQ5m8XLrsRoh9+JB2HOjuYd/2fU7VhNaniEtZe86VuK4QlSVJhW7ZjPLtb0l8uvHZW3+kZblh1AvUt5fzB3M0sHNdzAziNQDH9p+5Iv3EM/tyPMT4BfDrz9HpgQwhhBbCOdJD2BeDDOZrOytyOvKTuk0D2Rh0/CyE82MutXzs4uoL3GIkxNoQQPgr8Avj7zMtPAP+aZ/uVIYRngEtDCLNijBsyRe/l8ArfAQkhLAK+n3m6i3TejyNdEkIYyH+P6VmPX86zzZrMfU0IYXRmGfxQyr5mZVJfFUMIHyHH0vtenDTgESVIe+nhVWYlnb2vTCjNWrXQXtL7qrVsbVn1SjpaaS/ruTvxkcfNHs/RtFaMZvmpb+EVj3yLmgO7qNuzjt3j5+bdXoWtrSRrbqZ6X+VQ2nm4LLtNvn2XptpoK8o9p3vru+txaR/jym7f1scKdiVLZ8XhfUuL2nq/mqGo7fDKslTFIPY6TXUy74a/YOzKe9LB3Y/8M/tOuXDg/em45PlShcq5qUJUWdJx6HFrZ+9r4lo7Dq/arSwd3Mamt6/P5IKuaOHsyb0v5luxcyy3b5hK3agWPrBo7aCOKSk/McavhBBWkU4Bei7pvaw2kE7L8MV+5s7N/mVxtJhS/sEPDPAeUzHGX4YQfgy8E2gHPhBj7M+Z/0bgX4D3AP8YQriI9A59v44x5p2wL4TwYNbTKcBs0qu3m4H3xRhzXRu6D1h1lK5z/QU5OutxvpM8+/g1HM4NPFSyxzG611ppU4DFQ3z8ROueW3cP9WNn56zXPVdv7znUuvd9uF71wT009BLg7eq7tbSyW3qGfOyYcDjFdG3TDgO8x5Gm7Hx8LQ3sGj09Z73sXH3ZOfz6sr+8NqvvvdRX55531a3pLDQtJRWHLunMbj+q/SAlnW295u7rGltTnuNS4WsfM+HQ47KGnTTPODFnvdKGw7/G28YMcLVtqpO5N/wl4564g1hUzLoPf5GGs149sL50XPN8qULl3FQhGp+VHqG+uZy5tblTKdVn5d0dVzHwFB0NLaU8tn08AJfP2k5xH4kUv7IyHQ/6w5NfJgRo7uieGqIzhkP3XWVlxZ199inp6GKMdwN396N+zv91McbrgOuGZlTdGeA99u4kHeDdGmN8tp9t/wv4EpkAL4c3V+tveobsQGwz8BLp9AlfjjH2lp5hZYzx0r467WWFb3ZwNt/dXbKXLh2La0yyg7pH638b6R0M83ESkDsieRxpqJ1OKhRRFFOMb9jIxmm549/j9qYXSh8YNYbW8qPF0dP2jJnZrX3DmNwf6sdn+m6ozV2ukWl39WRSBIqITGjaytoJp+asN2F/ehfspvIaWsryWymZvdv2hKYt1FdP6aXv9CV0u6u6767dvf1WttXO7rN9X7tzK1lapswlhiJCTDFqy0s0nrY0Z73KLS8B0FZbR2d1bc46fUp1MveGv2D847cTi4pZ++EvsuecKwYzdB3HPF+qUDk3VYhmjD5AEZEUgfX7qjl78p6c9dbvS8/FceWt1JR15KyTj7s2TqEzFhGIvOYo6Rl2HEx/UfGlZSf3We/Z+jG86VeXAPC5c5/mgqm7Bzw+SclgDt4CFmPcRnpnvQUhhFcAVwMNwK/62U/IulXGGE+KMX6sj+DuYGzJejwvzzbzM/f7jkF6BkjnPemyo6+KMcbrY4xL8rmRToh93OsoKWf7hPQKtJlbn8xdKcZDZZumnJF333trprK/qi7T98qcdUraW5iy47l031NPz7vvLpN2HZ7m+6rNSXk86SguZ/PY9Olj3q5evj+Lkbm702Vrx/f9QTjbnqpJNFakV6/P7aXv0o5WZjSkg3Tr6hZ1K9s8dj7tRaWZ9s/kbF/TXE/dgW052yu5UuWjaDrhTABqn3kod6UYqcmU7Tt5AOnnU53Mu/7Puwd3z71yoEPWCOD5UoXKualCVFGSYtH49Ib2y3aOy1knRli+M73qdvHE3AHgfN2+If3lw+kTGphSld8mgpJ0JAO8he+Hmfvvk05f8JMYY8Fu0Rpj3E06yTTAZXk2uzRz//CQDyita/lUC/BUXxWV2/PzLgVg2vZnugVMu8zf8DC1TenY+QvzLsm/4xB4fm667xPWP8Topp6ZR0594XbKOlpIhSJemHtx98KjbJpW3rqfJat+BsD+yjp2jZuT/9iUCKum/f/27jtMrrLu//j7mwChht4RiKEKSrXQQ1NAsVGkKAQ7D2L/ySPyKBZQUHn0sTeaUqyIgvQOFjoISkcQpAZIIIEkZL+/P+6zZLPsbnY3O3Nmdt6v6zrX7Mw598lnlsPsnO+5z31vBcBaT93Jas+8fByyDR+9gWWfLz0Wblv9DYPfccRL+37Vo9ex9IyX93rY4sHLGDdnJl0xhttXe/0862YvNI47Vim93Tf/9xWMmz3jZe23uu98AGaOXZS7Vt508NnU8p7c+q0ALHXHtSxx760vW7/sdRew6BMPzbPtoFU9d5e77oKXJlSzuKvB8PNSrcpjU61o1zVL4f6WJ5bljqfGv2z9lQ+vxCPTS2/aXdZ8dNj/zm1PLs1Dz5WewLut9ch8t7/gHZcOuLxmhTLkyGtWePql1+y9O/ol0NWVHb90+pTqFnhb3++BqczthTrU4RnqcGb1eGBEDDgYa0RMBLrvKT1zoG2HIyLGAh+unl7YysXxVnbHxB15cpk1CZLdrvg6azxSFSyyi4n/+jOT/vJDAB5YfTMeWvU187R97c2/5LBT9+KwU/fqs4B780ZvZfpiy7DwizN5yyXHsOKUMjffmDmz2ejO83n9zWcAcPu6uzJ1/Ly3vq133xXsdvnxvPKBv7DY81Nfen3sizOZ8ODf2Ou8I18qPP95i4Mg/MgbbW5dbSseX3J1guSdN/2QtaeU3t5kFxs8ej27316ukd2zwsb8a/kN52m73d1/4MjzP8iR53+wz5O+v629K8+NG88ic2ax743fYZWpZa7LMV0vsvmDl7P93X8A4KY1tuOpJV4+f+OV67yNWWPHsdTMqexz4/dYdno5Fhd+cSbb3nMOm//7SgCumbgHLyy8AJNsqeU8uc3bmLHGukQm63z/Eyz1j7+WFV1dLHvdBax9ytEAPPPq7Xj2VfMWK1b7/fd47Xs35rXv3ZhFnnx43h1XY+4uf+35VXH3uGENy7DQs0/Ps3QbO3PGPK+Pmdn/JHFqP35eqlV5bKoV7brmo0wY/xxJ8OW/bcxNj5fT2q6EKx9e8aWxcF+78pNsttLT87T9+T8n8KazduJNZ+3Eo9MHniPp/AfK+c1SC89mm9UGPc2OJL2MY/C2uMx8ISKOB3YCnszMv9adaRC+BxwOLAf8MCL2z8yu3htFxKLAScBY4B7gjJEMEREBfBN4FeWi1jEjuf9OkmPG8qedPsvbL/wC4597nLdd9EVmLzSOyGShaubgJ5abwEXbfnzI+561yBKcu9OR7Hnxl1lu6kPse+5nmLXwYoydM5uxXWUsqwdX3YSrX3vIy9qOyS4mPvg3Jj74NwBmL7QoL45dmHGzpjOmOuReHLMw12w5mXsmOKv8aJRjxvLrzQ/jwOu+yTLPT+GA6/6XWWMXITJZuGs2AI+OfwV/2OR9Q973zIUX51ebH85+13+LFZ97hPf+5Rhmjl2UhbpmM7aaL/O+5V/FxRvu22f7qYuvwFmbfpB33Pwj1nz6bg696n94YaHFWGTOzJeOz1tW35q/TnjTMN+9WtbYhbj7o99lg+Pfy7gnH2aDb7yfOYssRmQXY2aX64zT19yQ+z74tSHtdsm7b2L5a8976flapx3LWqcd2+/2Dx7w330WgDf7WN/jAvfe38NvPZT/vP2wIWVU6/LzUq3KY1OtaOyY5Og33Mpnrt6Mx2Ysxn9fsxnjxs4hE2Z1lcnL1ln6WY7Y8h/D/jemzx7LlQ+XIeR2XvNRFhnb6f0PJS0IC7xtIDOPBfo/g2sxmflEREwGzqKMG7x4RHwyM+/u3iYiNgO+C2wNzAD2y8xZfe1vqCJiYWBb4Ehgl+rl/87Ma0di/53q2SVX4sw9T2Cz28/mlQ/+jfHPPU7XmDE8vsxE7l57W27dYHe6xi48rH0/sfxEznjrt9j8trNY+6EbWHLGFGYvNI7HllmXOyZO4p/r7NRn79uHV9mYv252ACs/cSfLTX2YcTOfZZFZM5i18OJMXWoVHlplY25f7408u9TLe2Ro9Ji6+Ar8dJsv8Pr7L2T9x25kmeen0BVjeGT8aty+6mu5fq2d6BozvD93jy69Fj/Z9ou84b7zWeeJWxn/wtPMGjuOJ5dajVtX24pb1thmwJ7h9674an66zefZ6r4LmDDlHyw5cyovLLQ4j45/BTe9YnvuXGWL4b5ttbhZK6zObV/8HatccBLL3nAJ4558iByzENNXm8iU1+/B47scSC40tM/M6HGtdMycFxkzbcrA28/yphXNy89LtSqPTbWiVZZ4gR/udC2/uWdNrvnPijw6fVHGjoG1xk9j0hqP8baJD7HwmOEXZa94aGVmzinF4t3mM7maJM1P5HzGsNS8IuJyYAfgeUphsj9nZObhVaHzJOCBzFx7Pvvu/o/x6szseyT/l7d5Elge2DEzL+/x+iTgMiiTrA1mX1W7o4EvAFdk5qRB5p3n3+6x/i2UISW6R6a/H3gSWAV4RfXaQ8Demfm3PtpPpp/fXUScDBwMPA50F47HAksDE4Due2GmAB/NzNMHei/DERE3AJuPX35Dtnnbr0Z699KwTX184KKPVJdd9x3GhGJSg130q0ZNASBJo8+F77i07gjSPLb90k+4+YFHAG6sJkPvGN01iZXX3IzJR/l95uSvbM1jD94EHXgsgD14F8Ri1dKfpZoVpFVl5jnVGLuHAm8B1gfWAJ6hFJ9/D/wkMxdkkL+VqgVgFmW84ruAG4GLgd9mplORSpIkSZIkaVSywDtE8+vV2sf2JwMnD3LbQfe07dFmhX5evxwYzv6OBo4e5Lbz3X9mPgN8tVqGmuVk+vndZeZkYPJQ9ylJkiRJkjR6JN6dD2Xqpc7llPKSJEmSJEmS1KYs8EqSJEmSJElSm7LAK0mSJEmSJEltygKvJEmSJEmSJLUpJ1mTJEmSJEmS2lFCdtUdogV09hxr9uCVJEmSJEmSpHZlgVeSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlNOcmaJEmSJEmS1IYS6MoOn2GMjp9jzR68kiRJkiRJktSuLPBKkiRJkiRJUpuywCtJkiRJkiRJbcoCryRJkiRJkiS1KQu8kiRJkiRJktSmFqo7gCRJkiRJkqThycy6I6hm9uCVJEmSJEmSpDZlgVeSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlNOcmaJEmSJEmS1Ka6upxkrdPZg1eSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlNWeCVJEmSJEmSpDblJGuSJEmSJElSO0pI51iDDv8d2INXkiRJkiRJktqUBV5JkiRJkiRJalMWeCVJkiRJkiSpTVnglSRJkiRJkqQ2ZYFXkiRJkiRJktrUQnUHkCRJkiRJkjR0CWRX1h2jdp3+G7AHryRJkiRJkiS1KQu8kiRJkiRJktSmLPBKkiRJkiRJUpuywCtJkiRJkiRJbcpJ1iRJkiRJkqS2lHRlp08xBp0+zZo9eCVJkiRJkiSpTVnglSRJkiRJkqQ2ZYFXkiRJkiRJktqUBV5JkiRJkiRJalNOsiZJkiRJkiS1qezq7AnGZA9eSZIkSZIkSWpbFnglSZIkSZIkqU1Z4JUkSZIkSZKkNmWBV5IkSZIkSZLalAVeSZIkSZIkSWpTC9UdQJIkSZIkSdIwJGRX1p2ifh3+K7AHryRJkiRJkiS1KQu8kiRJkiRJktSmLPBKkiRJkiRJUpuywCtJkiRJkiRJbcpJ1iRJkiRJkqQ2lIBzrHX8HGv24JUkSZIkSZKkdmWBV5IkSZIkSZLalAVeSZIkSZIkSWpTFnglSZIkSZIkqU05yZokSZIkSZLUptJZ1jqePXglSZIkSZIkqU1Z4JUkSZIkSZKkNmWBV5IkSZIkSZLalAVeSZIkSZIkSWpTTrImSZIkSZIktaOETCdZo8N/BfbglSRJkiRJkqQ2ZYFXkiRJkiRJktqUBV5JkiRJkiRJalMWeCVJkiRJkiSpTVnglSRJkiRJkqQ2tVDdASRJkiRJkiQNXZJ0dWXdMWqXdPbvwB68kiRJkiRJktSmLPBKkiRJkiRJUpuywCtJkiRJkiRJbcoxeKXhWxvguWfu55qz9605ijTXnBfn1B1B6tP9ty1RdwTpZaY9Pb3uCJLUNrb9+7N1R5DmcecjT3T/uHaNMaTaWeCVhm9RgK45LzBtyj/rziJJLW/61LoTSJKkBXGzf8vVuhatO0CdMjt7gjFZ4JUWxOPASsALwL/qjdL2NgAWB2YAd9ScRerJY1OtyONSrcpjU63I41KtyONy5KxNKe4+XnMOqVYWeKVhyswJdWcYLSLiBmBz4I7M3KLuPFI3j021Io9LtSqPTbUij0u1Io9LSSPNSdYkSZIkSZIkqU1Z4JUkSZIkSZKkNuUQDZIkSZIkSVI7SsguJ1mjw38F9uCVJEmSJEmSpDZlgVeSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlNWeCVJEmSJEmSpDa1UN0BJEmSJEmSJA1PdmXdEVQze/BKkiRJkiRJUpuyB6+kVvBjYFXgkbqDSL14bKoVeVyqVXlsqhV5XKoVeVxKGlEWeCXVLjN/VHcGqS8em2pFHpdqVR6bakUel2pFHpeSRppDNEiSJEmSJElSm7IHryRJkiRJktSGEuhKJ1nr9N+APXglSZIkSZIkqU1Z4JUkSZIkSZKkNmWBV5IkSZIkSZLalAVeSZKGKCKWjIj31p1DkiQtmIhYuO4MkiQtKCdZkyRpkCJiZ+Bg4B3AYsCJ9SaSJKmzRcSmmXnzMNuOA34HvHlEQ0lSM2WSXZ0+xRjQ4RPNWeCV1NIiYgngI5l5XN1Z1JkiYh1gMvAeYI3ul4Gn6sokSZJeckFE7JCZdwylUVXc/SOwc2NiSfOqeotvCqwMLAVMAx4DbsnM2TVGkzQKWOCV1JIiYingo8DHgeUAC7xqmogYD7yLUth9Q/fLwGzgPOAU4JxawqnjRMQ7gD2B1/Pyk8K/AX/IzLPrS6hO5HGpFrIicHFEbJeZ9w+mQUQsRvk7viMwo5HhpIh4HfA5YFdgXB+bvBARFwDHZOYNTQ0nadSwwCupaaqi2RuBCZQv0zdl5p97bbME8CngY8AylKLaY81Nqk4UEUE5Pg8G3gYsSjn+uj0FbJCZT9YQTx0oItYHfg1s1P1Sj9XLV8uGwOSIuBXYJzPvaW5KdRqPS7WgyyiF2ksiYvvMfGigjavvmn8CtgOmA29tfER1qog4AjiG8lkZ/Wy2GOW751sj4ojM/Gaz8kkaPSzwSmqKiNgL+AmwdK/XLwfelpnPVb2Bvg+sRPkC9BDw9aqd1BARsQGlp+67gVWZ++X7YeA04FTgNmCWxV01S0RMBP5C+cwM4HrgKuBB4DlKb8m1KAWKzYFNgL9ExOsG24NNGiqPS7WoPYGLgK2YW+Tts3NAdYfY+dW2zwJ7ZuaVTUuqjhIRBwJfrZ7eBvyQ/j8zPwy8Cjg+Ih7KzF82P7GkdmaBV1LDRcTGwOlA9yzFz1BuT1oMmAT8X0T8FfgB5YTxfuBrwMmOR6VGiYhDKYXdLbtfonzZ/h3wc+DSzDJSf+ncKzXVyZS7GO4CDsrMa/vbMCK2qrZflzLx346Nj6cOdTIel2oxmTkjInYHLqVcWLgoIiZl5jxj5UfE0sCFwGspw4ns0ftOMmmkVGM8fwtI4NvApzOzq9dmz1TLLRHxfeAEyhB1/xcRZ2XmrKYFltT2xtQdQFJH+BiluPtnYP3MXA5YEngT8ChwIPANyvimn662+YnFXTXY9yjF3QQupkyitkpmTs7MS7qLu1KzRcRrgW2A/wDbDVREA8jMvwDbA48A20fElgNtLw2Hx6VaWWZOo4xvehuwMWXitfHd6yNiOUoB+LWUgtobLe6qwfamDFlzcWZ+so/i7jwysyszPw5cAqwA7NX4iBpNMrPjl05ngVdSM2xPKd4ekJl3A2RxEaWguzCwBPCezDwhM1+sL6o60HOUXuP/ykwnWlEr2Idy4eErmfnEYBpUtyN/hdITfZ8GZlPn8rhUS8vMp4GdKT3MNwf+FBGLR8QKlOLuZpTx9Hed3wUKaQTsTPnM/Or8NuzlWMpn5i4jnkjSqGaBV1IzrE4pnj3Yx7pLqsdHM/PXTcwkHQv8GxgPfAC4MiLujYgvRsS69UZTh+vu6TjU8fe6t7enpBrB41Itr7r4sDPwL8o4u+dSJmF7DTAF2Dkzb6gtoDrJ5sALlDF3h+Kqqt3mI55I0qhmgVdSMywO9DnZRWY+Xv34QPPiSJCZRwETKLd0ngE8Xz0/CrgjIv4WEYdVPX+kZloHeKDqjTZo1XiTD1DGPJVGmsel2kJmPkwp8j5MuYtsI+BxYFJm3lJnNnWUVYD7M3POUBpVdzLeT5n4V5IGzUnWJLUKh2VQ01Xj7F5CmXV7SeBdlInXtqGM07clZcILgIUiYhEnvFATLE25xXg4ngTWG8EsUjePS7WkiNi+n1Vfpoy3n8DRwPL9bZuZVzYmnTrY0sC9w2w7FXjlCGaR1AEs8EqSBGTmc8DPgJ9FxCsphd73AGtVmywPPBYRvwJOzcxragmqTrAkpUf5cLxQtZdGmselWtXllCLuQL43wLrE82KNvHHAkHrv9jAHWGQEs6gDdHU5yVinc4gGSc2yTUTM6WuhfLHud31E2LtXTZWZ92Xm5zNzAuU2z18AMyi9Md5PGa/37jozalSLugNIffC4VCuLBVg8J5YktT2vVEpqFk8M1ZYy8zLgsohYAtgXOBjYDm+dU2MtPcBtxwO2G/Ek0lwel2o5mWmBVq1q3Yg4cTjtRjyJpFHPAq+kZtix7gDSgsrM6cBJwEnVEA7vqTmSRreNKTO/S63E41KSBm8lypBfQ5GUjjHeby9pSCzwSmq4zLyi7gzSSMrM+4Av1p1Do9qC3PXgSaEaxeNSkgbnlLoDSOosFnglSZJaiLcbqxV5XKpVRcTnF3QfmfmlkcgidcvMQ+rOoM6RCekka2SH/wos8EqqTUQsA6wOjAemAQ9n5jN1ZlLniIj7FnAXmZkTRySMJEkarqMZfg/x7lvhLfBKktqaBV5JTRURywKHAfsDG/Sx/g7gDOD7mflUk+Ops6zN3HHOhqPDrxFLktRS7gD+UXcISZLqYIFXUtNExG6U8ahWoP+i2oaUsU0Pj4jJmXles/KpY/2TclzeXncQSZI0ZM8Di1E6DkwHTgVOt6OAJKmTWOCV1BRVcfdsYGHgaeA04HLgHsqX8SWAdYBJwIHAisDZEfE2i7xqkNOBt1MuKnwVuAk4GTgjM6fUF0udzvEk1Yo8LtXCVgH2BQ4CtgW2AL4REedSir3nZuaLNeZTB3IoMEnNFtnpoxBLariIGA/cCywP/Ar48EBj7VZj8/4I2Ad4ElgnM6c1Pqk6TUQsSTkpPJhyUggwGziP0qv3HE8K1WwR0cUCDgGSmWNHKI4EeFyqPUTEBMrf9IOYOxTTU5SLuqdm5g31pVMnqT4zF0T6man5iYgbgM2XXfnV7H6IfaLOO2l3nn7s7wA3ZuYWdedpNnvwSmqG/6IUd/+YmfvNb+PMfCYi9qPcbvdm4FDguMZGVCfKzOeAE4ETI2Jt5p4Uvg14K/BURJwB/Dwzr6stqDrNlTjGs1qPx6VaXmbeT5l07eiI2A6YDOwNHA58JCK6h2U6LTP/U1dOdYRD6g6gzmLnTdmDV1LDRcTVwFbAupk56NuVImId4C7gz5m57fy2l0ZKRGzL3JPC8ZSixp3A8Zl5cn3JJEnSUETEYsA7KRdwd6bMA3FxZr6p1mCStIB69uDdbfKf6o5Tu/NP3qOje/COqTuApI6wHnDfUIq7AJl5D3Bf1V5qmsy8OjPfTxnX70DgQWB94IBag0mSpCHJzOeBy6rlP5QCb3+T/UqS1JYcokFSMyxNKdQOxxRgjRHMIg1KRKwOvIcybMNa1cuz60skSZIGq0fP3YOBHSmdmxK4EPi/GqOpw0XEEpQ7xKZl5vS680gaHSzwSmqGKcCqw2y7KvD0CGaR+lWdDO7FvCeDc4ALKGP2/b62cOpY1YngHsDWlAte44FpwEPAn4HzqvGkpabxuFSriogdKH/H9wKWpPTW/Qfl7/gvMvORGuOpA0XEWGD/atma8nnZvW4a5TPzDOBMJ/eVNFwWeCU1w23AzhGxaWbePNhGEbEZ5aTxkkYFkwAiYhJzTwaXoJwM3s7ck8FHawunjhURY4DPAZ+g3AkB895WnMBHgWkR8b/AMZk5p7kp1Wk8LtWKqnkbDgLeTbnrJoAnKX/HT8nMG2qMpw4WEZsAZ1KGnOtraJClgd2B3YCjImK/oZwvSUWSXV11h2gBnT3HmAVeSc1wNrAL8J2I2DkzZ82vQUSMA75L+ZQ+q8H51IEiYl3mngyuydyTwROBUzPzxhrjqcNVvcn/BGxPOTbnAP8E7gGmUy5ErANsSDk5/ALlQtpu1XiT0ojzuFQriohrgDdUT2dTvneeApxrb0jVKSK2oIz9vCTl8/I84HJe/pk5iVLkXQ+4KiJ2zMzra4gsqY1Z4JXUDD8FPkO5JenCiJicmf/qb+OImACcBGxFmdzqp80IqY5zJ+UCwmzgd8CpwJ/saaYWcQqwA/ACcBzw/cx8ovdGEbEi8F/AEcC2lON4nybmVGfxuFQr2ory9/wOSk/JKcDqwAcjBjeXWmZ+v2Hp1JGqziq/pRR3rwYmDzDh9AkRMZFy/rMt8JuIWD8zZzYnraTRIDI7uwuzpOaIiC0pV7AXB14Ezq+e3ws8R/nyM5Ey7uluwMLADGCSV7DVCBHRRTkhvB94ahi7yMx8/cimkl4aMuRSyvjjbxzMrcXVZ+yFlF6Tu2TmZY3MqM7jcalW1ePv+bBl5tgRiiMBEBGHAd8BrqF8/s23WFsVhS+l9Ej/aGZ+r7Ep1e4i4gZg82VX3pg3HXRu3XFqd8Gpb+bpx24DuDEzt6g7T7PZg1dSU2Tm9dWkF2dSbkV6S7X01t3V4h5gf8dMU4MF8MpqGSqvkKpRJlOOr08O9jOw+oz9JGWIkYMpF9CkkTQZj0u1pivxb7Jazzsox+VHBtsTNzNnRsRHgBuq9hZ4JQ2aBV5JTZOZN0bERsABwH6UIRuW6rHJs5RZZM8ETs/M2c1PqQ5ySN0BpH5sR/k8PG2I7U4Dvl21l0aax6VaUmZOqjuD1IeNgH9n5i1DaZSZN0XEv4GNGxNLo1JCV5fXuTr9Up8FXklNVRVtT6kWImI8pcj7bGZOqzObOktmnlJ3BqkfqwB3DHVyoMycHRH3AOs3JpY6nMelJA3essDNw2z7KLDJyEWR1AnG1B1A0ugXESdGxH/3tS4zp2XmwxZ3Jeklc4Dhjgc5FugawSxSN49LSRq8qcAKw2y7AuC5kaQhscArqRkmA3vUHUIarIhYIiJWjYgl6s6ijvQwsG5ELD6URtXxul7VXhppHpeSNHh3ARMiYuJQGkXEOsAE4M6GpJI0alnglSR1vIgYGxHvjohzI+JpSq+Jh4BpEfF09fq7I8KhjdQMlwGLAh8eYrsPV+2cyEqN4HEpSYN3DmUy328OtkFEBHACZSTRcxqUS9IoZYFXktTRImIT4DbKuNC7A0tTvpB3L0tXr58C3BYRm9aTVB3kx9XjVyJi98E0iIg9gK9QboP/SaOCqaN5XErS4P0AeArYtjykQQAAKJVJREFUMyJOj4ilB9q4Wn868Jaq3Q8aH1HSaGJPJElSx4qILSi9ypakjC95HnA5cA8wHVgCWAeYRCnyrgdcFRE7Zub1NURWB8jMmyPi+8BhwB8j4mTge5l5U+9tI2Iz4CPAwZQLEj/saztpQXlcStLgZea0iHgPcDbwLuCNEXEa5XvnvcBzlO+fE4EdgQMpE7PNAQ52fhINRQKZWXeM2nX6b8ACrySpI0XEOOC3lC/XVwOTM/O+fjY/oRpD7SRgW+A3EbF+Zs5sTlp1oI8BywP7AYcAh0TEVOB+5p4UTqD0MIdSRPslcHjzo6qDeFxK0iBl5nkR8XbKXWDLUy58faSfzYPSc3dyZv6pOQkljSYWeCU1y7oRceIw22Zmvm9E00jwfmBN4Bpg1/kVazPz3ojYFbgUeEPV/nsNT6mOlJldwAERcSFwFPBKYBlgsz42vw84JjNPal5CdSKPS0kamsz8U0RsQLnQ9S5g/T42uxM4k3JXxJPNzCdp9Ai7cUtqtIjootwxEUNs2t0mM3PsiAdTR4uIiym3xG2embcMod1mwA3ApZm5S6PySd2qSVdeB2wDrAEsBTxLmQjwGuDa9AudmszjUpKGLiKWY97PzIczc0q9qdSuIuIGYPNlVtqYXd/9x7rj1O6iX+zJM4/fBnBjZm5Rd55mswevpGZ5HDi/7hBSDxsB/x5KcRcgM2+KiH8DGzcmljSvqkj2t2oZUPVFf5nMnNjwYOpoQzkuJUlFZj5FGYpBkkaUBV5JzXJ3Zh5Sdwiph2WBm4fZ9lFgk5GLIo2YNYHl6g4h9RYRr8vMa+vOIUnSaJRd3jTT6SzwSpI61VRghWG2XQFwdmNJmo+I2Br4ArAznntI6hARsf2C7iMzrxyJLJI6g1+yJEmd6i5g64iYmJn3DrZRRKxDmSX+moYlk6QWFhErUD4HZwD39DVJZVXc+AIwiWo8/WZmlKSaXc6Cfe4l1mskDcGYugNIklSTcyhFh28OtkE1qdAJlC/d5zQolyS1pIhYNyIuBR4D/grcCjwWEf/TY5u1IuJc4DLKRJYAZwFbNjuvJNUsFmCxViNpSPzQkCR1qh9QJrnYMyJOj4ilB9q4Wn868Jaq3Q8aH1GSWkPVa/dKYAfmLUKMB46OiCMiYivK2Oa7A13AGcCrM3OvzLypluCSVIPMHNPfUm1y9UDb9NhOkgbFLv+SmuGLwIN1h5B6ysxpEfEe4GzgXcAbI+I0Sq+ze4HngCWBiZReaAdSJmabAxycmY7BK6mTfBxYGXgc+B/gb8DiwJ7Ap4H/B3wYWBr4I/D/MvOuWpJKktRJMp1kDSA7+3dggVdSw2XmF+vOIPUlM8+LiLcDpwDLAx+plr4Epefu5Mz8U3MSSlLL2J0yPM1emdlzDPK/RsR04CuUi2Bfy8wj6wgoSZLUqSzwSmo4Z5FVK8vMP0XEBsDhlJ686/ex2Z3AmcD3MvPJZuZT56nGOB2uAYcakRbARODhXsXdbqdRCrzTKHftSJIkqYks8EpqhstxFlm1sMycAhxNGUdyOWANYCngWUpBY0qN8dR5Ji1g+86+P02NshRwez/ruodhuiczZzYpjyRJkioWTCQ1S9TUVhqSzHyKMhSDVBd7QKoVBWUM8pfJzIwIgOebmkiSJEmABV5JTeAssBptIuIVwJGZeWjdWTT6OG65JEmShqIru+qOoJpZ4JUkaZAiYm3gc8B7gIUBC7ySOsmr5zNG9EDrMzN3bkQoSZKkTmeBV5LU0SLilcA7gQnADOAm4FeZ+WKPbV5BuW3+QMrfzgBubX5aSarV0gw8RvRA6x0bWlLHGMSEqfO7YOZFMUlDYoFXktSxIuJjwPG8/O/hURGxc2Y+EhEfB44FxlEKu9cCx2TmH5saVh0jIk4A7svM7/ax7jXAc5l5Xz9t/w/YyJNCNYBDh0jS4E2az/r5XTDzopikIbHAK6nhIuLzC7qPzPzSSGSRukXE1sAJlKLtDOAuYHFgIrA+8P2IuBn4QtXkauDLmXlR89Oqw3yccry9rMAL3AxcBezQT9vNgK0bkkodzbGhJWlI/MyU1FQWeCU1w9Es+FVoC7waaYdRirtnA5MzcypARGwInAXsCewOPA18IDN/V1dQqZeoO4AkSeqfF8UkNZsFXknN8DuGXuBdHHgjMHYYbaXB2BqYCby/u7gLkJn/jIhPAX+kTKS2d2ZeVlNGSZIkSepXAtnlKXOn/wYs8EpquMzce7DbRsTCwIeAI4Ex1ct/aUQudbyVKeOcTuljXfcx92+Lu5IkSRqOiFgM2BVYr3rpLuCizHy+vlSSRiMLvJJaQkQEcBBlvNO1KLcg3woclZnn1JlNo9aiQF/FXTLzqXJI8lBTE0lSi4qIOQu4i8xMzz0kdYyI2AX4ObBSr1WPR8TBmXlhDbEkjVJj5r+JJDVWROwN3A6cCKwN3AMckJmbWtxVzbrqDiBJLSJGYJGkjhARE4HfU+4YC+A5YHr188rA7yJindoCShp1vIouqTYRsRvwFcqs70HpLfkl4KTMXNCeQtJgjIuINYe7PjMfbEAmSWpFO/bzegCXAn8HPtq8OJLU0j5BmVPk78B7M/MGgIh4LfAzYCPg48BH6gooaXSxwCup6SJiG+BYYFvKieETwFeB72fmrDqzqeNsCdzfz7ocxHr/jqpRlo6I7YezrlGB1Nky84r+1lVD2kwdaBtJ6jA7AXOAd2XmHd0vZuZ1EbEfZSi6neoKp1EmnWQN6PhZ1jwxldQ0EbEppbD7JkphdyrwTeB/M3N6jdHUuRbklmFvN1YjbQz0NcFfDrBOkiS1hjWBB3oWd7tl5j8i4l/VNpI0IizwSmq4iFgf+DLwTsrY3zOA7wDHZeYzNUZTZ5tQdwBpAAtyAaHD+y9IklS7xYH/DLD+EfwuKmkEWeCV1Ay3U4oVc4BTKePuPgoQEYsPZgeZOaNh6dSRMvOBujNIfclMJ8GVJEmSNGgWeCU1wxhKj7KxwMHVMhSOdaoRFxEnAndl5tfqziJJkiRJ0nBZMJHULI51qlYzGbgasMCrlhIRh2fmd+rOIUmSFsg2ETFnoA0GWJ+Zab1Gg5RkOkJXp49S5geGpGZwfClJGrxvR8RewHsz8766w0iSpGGxk4qkprHAK6nhHOtUkobkcWB74NaIOCozv1VzHomI+Px8Nllzfttk5pdGMJIktbId6w4gqbNY4JUkSWotGwLfAQ4AvtmjN+/d9cZShzuage99XBP4wnz2YYFXUkfIzCvqziCps1jgldTSImIlYNHMfLDuLJLUDJn5NPDuiDgD+BGwDXBL1Tvym+kga6rHlXT64HaSJEktygKvpIaLiKeAP2fmW/pYdwJwX2Z+t5/mvwW2ws8rNca6EXHiMNtmZr5vRNNIPWTmuRHxKuAE4L3AccBeEXFIZt5Rbzp1msycVHcGSZIk9c2CiaRmWAYY38+6jwNXA/0VeMEJCtQ4KwGTh9gmKcdkAhZ41VCZOQ14f0ScSenN+3rg5oj4z8DNcmJTAkqSpJeJiO0XdB+ZeeVIZFFn6OrqqjuCamaBV5LUyR4Hzq87hDQ/mXlxRJxEGcN0EWDtgTZvSih1lIiYA1ydmTvUnUWS2sDlLNjf48R6jaQh8ANDktTJ7s7MQ+oOIQ0kItYFTgS2rl46HbiovkTqUIF31EjSUE0F5tQdQtLoZ4FXkiSpBUVEAJ8CvggsBjwKfDgz/1BrMEmSNFjPA6cBp2bmbXWHkTR6jak7gCRJkuYVERsCf6ZMrLYY8AvgVRZ3JUlqC7tS7rhZmnKx9paIuD4iDo+IFeqNJmk0sgevJElSC4mII4H/AcYB/wE+lJnn1ptKkiQNVmZeAlwSEUsC+wAHA9sBmwHfiIjzgFOAczJzdn1JNRpkQnY5BUN2+K/AHrySJEmt5SuU4u4pwEYWdyVJak+Z+VxmnpSZk4BXUoZd+jfwVuA3wCMR8d2IeF2NMSWNAvbgldQs60bEicNZ16hA6nhfBB6c30YRsRDwKkrB7d7MfKrRwdTxHgY+mJnn1R1E6mWbiBjuZEGZmZ57SOpYmfkA8CXgSxGxLaVX7z7AocChEXFmZh5YZ0ZJ7csvWZKaZSVgcj/rVu5nXVJm7O7wmy3UIN8ANomI12bmdX1tEBGfBo4Clqpe6oqIs4BDM3NKk3Kq82yUmdPqDiH1IeoOIEmjQWZeDVwdEacDJwJrASvWm0pSO7PAK6kZTqk7gNSHd1COzV8CB/ReGRFHAMcyb0FjLLAXsFZEbJWZXc0Iqo7z8YgFq6Nl5pdGKIvU09+Bj9YdQpLaWUS8AnhPtaxH+a45Fbi0zlyS2psFXkkNl5mH1J1B6sMO1ePJvVdUsxt/vnp6O3AEcC+wLaXn75bAgcDPG55Snehohn/nQvddDxZ41QhTM/OKukNIUruJiMWBvYGDgEmU+ZDmAOcDpwK/z8yZtQVUm0vsdwKdfuOvBV5JUqfaEpgFXNbHun2BxYDngTdnZvdYvXdW40+eSPmSboFXjXQH8I+6Q0iSpOGJiJ0oRd13AktQLsTeRrmL7LTMfLTGeJJGEQu8kqROtTJwT2bO7mPdpOrx/B7F3W6nAd8BNm1cNHW45ykXGDYAplN69pzuBH+SJLWHiDgGeDewBqWo+wTwM+CUzLy5xmiSRikLvJJqFxF7DLD6usx8omlh1EmWB3oXb7ttSbnH58LeKzJzdkQ8CExoYDZ1tlUovcgPogwLsgXwjYg4l1LsPTczX6wxnyRJGthnKd8l76D87T4PeBEgIl41mB1kpnfxSBo0C7ySmiIifgLsDPwwM4/vtfoc+h8w51fA/o3Mpo71ArBq7xcjYnlgbcoxeUM/bZ+jTLgmjbjMfJbSy+dnETEBOJhS7H0H8HbgqWrW7VMzs79jVJIk1W8DyqS9xw6xXWK9RtIQjKk7gKTRLyLWA95L+cz5dj+bzaL0puy5TAf2jYiJzcipjnMPsHofx9eu1ePzwE39tF0F8HZ5NVxm3p+ZR2fmKykTA54MLAIcDlwbEbdFxP+LiNXqzKmO8Htgn7pDSFIbiQVYrNVIGhI/NCQ1w7uqx28OMDvsdZk5oecCfJLyBccevGqE8yl/B78bEYsBRMQywGcovSbOy8w5vRtFxErAK4C7mxdVgsy8KjPfR7nA8B7gYkrPoK8BJ9WZTR3h7cAVEbFN3UEkqdVl5pgFXep+D2ov2ZUdv3Q6PzQkNcP21eOvh9juDGAmpdeaNNL+D3gGeCPwaERcC9wPbEIp8H6zn3bvrB6vaHRAqS+Z+TxwWbX8h7m9faRG+iewHqXI+63uC2OSJEmqnwVeSc2wEfBgZj46lEaZOR24DxjURATSUGTmY8BbKbMaL0WZWG1pSnH3iMz8az9N/4t+JmCTGikiFouIAyPiQuAB4BhgNcqx+K06s6kjbEoZQ7KLMkTIrRGx/YAtJKlDRcThdWeQ1FkctFtSMywL3DrA+u8B9/azbiowYcQTSUBmXl2Nwftm4JXANOCCzOzzeIyIFSiTXyXw56YFVUeLiB0oE63tBSxJ6a37D+AU4BeZ+UiN8dQhMnM2cFRE/IYyJMgmwKUR8UPgM5k5o9aAktRavh0RewHvzcz76g4jafSzwCupGV4ExvW3MjMHusK9BPCycVClkVL1FP/VILd9kv4nCpRGTESsAxwEvBtYi1LUfZJS1D0lM2+oMZ46WGbeHBFbAp8FjgIOBXaPiA9k5qX1ppOklvE4ZZi6WyPiqMz8Vs15JI1yFnglNcOTwFoREZk56NHPI2IMsHbVXpI6QkRcA7yhejobOJtS2D03M1+sLZhUqSag/EpE/A74KeV4vShiwKGgMzM995DUKTYEvgMcAHyzR29eJ+nVyEucZAzKPZYdzC9ZkprhesrEVFsD1wyh3faUsVEvakQoSWpRW1G+ot4BnAlMAVYHPjifAtpLMvP7DUsnzXUfcAOlwOtEf5JUycyngXdHxBnAj4BtgFsi4vPAN4fS6UWSBsMCr6RmOJcyduSXI2LnwXyhiYixwJcpRY4/NjifJLWiDYCjh9nWAq8aqppg7WeU8ctfBI7HC7KSNI/MPDciXgWcALwXOA7YKyIOycw76k0naTSxwCupGX5BKVLsAPw8Ij5UjXvap4hYgnLSuA3wIHBaM0JKUou4ko6/yUytKiIWpxRzPwyMAf4OHJKZN9YaTJJaVGZOA94fEWdSevO+Hrg5Iv4zcLOc2JSAkkYFC7ySGi4zX4yI/YFLgf2BXSLiVOAq4H5gOmUytbUpReCDgBWAWcABjjkpqZNk5qS6M0h9iYidgZ9QJv6bAxwLfDkzZ9caTJLaQGZeHBEnAV8CFqGc+/S7eVNCSRo1LPBKaorM/EtE7AH8ElgJ+FS19KV7tvj9M/PPTYooSZL6ERE/Bt5H+Rt9C6XX7s21hpKkNhER6wInUuYkATgdh7XRCEmgK7vqjlG7Tr8qYoFXUtNk5mURsT7wUeBdlPEle+ueVOg71eQEkiSpfu8HZlN67R7j3TWSNH9RZkf9FPBFYDHgUeDDmfmHWoNJGnUs8Epqqqpo+0XgixGxHGVm+KWAZ4GHM/OpOvNJkqQ+3QRMzsy/D7VhNbb+RzLzuJGPJUmtKSI2pPTafR3l7odfAB/NzGfm0+7bwJKZ+b6Gh5Q0aljglVSbqphrQVeSpNb3usycM5QGEbEU5a6djwPLUWaPl6RRLyKOBP4HGAf8B/hQZp47yOYHUD4zLfBKGjQLvJJqExHLUHrwjgemUXrwPlNnJkmS9HLdxd2IGA+8EZgAzABu6j1eftVj91PAx4BlKD3XHmtmXkmq2Veqx1OAj2fm1DrDSBr9LPBKaqqIWBY4DNifPsbgjYg7gDOA7ztcgyRJrSMi9gJ+Aizd6/XLgbdl5nMR8Q7g+5QJVQN4CPh61U6SOsXDwAcy8/y6g0jqDBZ4JTVNROxGuYq9AuWkry8bUsboPTwiJmfmec3KJ0mS+hYRG1NmfV+4eukZyq3HiwGTgP+LiL8CP6D8jb8f+BpwcmbObnZeSarZRpk5re4Q6hRJdmXdIVpAZ/8OxtQdQFJnqIq7ZwMrUk4KvwvsDWwKrFs97l29/ky13dkRsXvTw0qSpN4+Rinu/hlYPzOXA5YE3kSZFf5A4BvAbODT1TY/sbgrqRNZ3JXUbPbgldRw1Xh9P6ecGP4K+HA/Y+3eCvwuIj4P/AjYBzglItbxS5IkSbXanlK8PSAzHwTIzAQuiohPA6dRzi32y8xf1xdTkiSp89iDV1Iz/BewPPDHzNxvfhOpVev3A86p2h3a6ICSJGlAqwP/6i7u9nJJ9fioxV1JkqTmswevpGZ4C2VAnE8MtkFmZkR8smq7J3Bcg7JJkqT5Wxx4rK8Vmfl4RAA80NREktSiqjsSh2vxEQsiqWNY4JXUDOsB92XmfUNplJn3RMR9VXtJktTaXqw7gCS1iKMZ/oxPsQBt1YkSsqur7hT16/D/ayzwSmqGpYEhFXd7mAKsMYJZJEmSJKmRrqTjy02SmskCr6RmmAKsOsy2qwJPj2AWSZI0PNtExJx+1uX81mem5x6SOkJmTqo7g6TO4iRrkprhNmCNiNh0KI0iYjNK793bGhFKkiQNSSzgIkmSpAbwKrqkZjgb2AX4TkTsnJmz5tcgIsYB36X0CDqrwfkkSdLAdqw7gCRJkvpmgVdSM/wU+AywNXBhREzOzH/1t3FETABOArYCHqzaS5KkmmTmFXVnkCRJfcsuh3zudBZ4JTVcZs6MiL2Ay4DtgDsj4vzq+b3Ac8CSwERKD6HdgIWBGcDeg+nxK0mSJEmS1Iks8Epqisy8PiJ2AM4E1gHeUi29dY/Rdw+wf2be0KSIkiSpHxFxI3BjZr6/j3UfBR7OzN/20/YqYCsnWZMkSWoMJ1mT1DSZeSOwEXAIcCGl527PyVeeAy6o1m9kcVeSpJaxKbBeP+u+BXxsPu2dZE2SJKlBvIouqakyczZwSrUQEeOBpYBnM3NandkkSZIkSZLajQVeSbWqiroWdiVJkiRJkobBAq+klhYRbwC+kJm7151FkiRJkqTWkmR21R2iBWTdAWplgVdSS4qI7YDPAzvVnUWSJEmSJKlVWeCV1DQRsT2wLzABmAHcBPwoM6f02OZ1wNeAHSgTsiRwTvPTSpIkSZIktT4LvJKaIiJOYO4M292F23cCh0fEJOBu4ATg8Gp9F/Ab4JjMvLXZeSVJkiRJktqBBV5JDRcRewAfr54+CNwILA68DlgZ+AFwJ/AhSmH3NEph986mh5UkSf1ZMyI+P5x1jQokSZIkC7ySmuMD1eOPgY9k5osAEbEi8EfKcAzbAw8A+2Tm9bWklCRJA3kF8IV+1q05wLruO3ckSdIIy4SuLv/MZof/CizwSmqGLSlj7n6yu7gLkJlPRMQRwGXVS2/PzFvqCChJkgZ0JRZpJUmSWpIFXknNsCJwZ2bO6GPdjdXjvRZ3JUlqTZk5qe4MkiRJ6tuYugNI6giLAFP7WpGZz1Y/Pta8OJIkSZIkSaODBV5JrcLbPiVJkiRJkobIIRokNcvSEbH9cNdn5pUNyCRJkiRJUlvLrq66I6hmFnglNcvGzJ1MrbccxHo/ryRJkiRJknqxYCKpWaKmtpIkSZIkSaOWBV5JDZeZjvctSZIkSZLUABZdJEmSJEmSJKlN2YNXUlNExFjgY8C7gfWql+8CTgO+nZkv1pVNkiRJkqR2lV1ZdwTVzAKvpIaLiADOBnZn3vF0NwU2AXYG9mh+MkmSJEmSpPZmgVdSMxzE3ALuucBllCFiJlWvvykiJmfmybWkkyRJkiRJalOOwSupGd4NJHBkZu6ZmSdk5jcy8y3A5yi9eg+sNaEkSZIkSVIbssArqRk2AaYBx/ex7vhq3SZNTSRJkiRJkjQKWOCV1AzLAndnZlfvFZk5B7gbWKbZoSRJkiRJktqdY/BKaoaxwAsDrH+h2kaSJEmSJA1WJn30peo8mXUnqJU9eCVJkiRJkiSpTdmDV1KzrBkRn+9vHcAA68nMLzUklSRJkiRJUhuzwCupWV4BfKGfdVE99rcewAKvJEmSJElSLxZ4JTXDlUBnD4gjSZIkSZLUABZ4JTVcZk6qO4MkSZIkSaNNAtllf6pO/w04yZokSZIkSZIktSkLvJIkSZIkSZLUpizwSpIkSZIkSVIfImLHiDgnIp6IiOcj4o6I+HJELLEA+9wrIi6LiKcjYnpE3BwRn46IhYezPwu8kiRJGnERcXlEZEQc3ce6f1XrJjc/WWNV7ysjYtIQ263do+3arZBphP7tk6t/++Rm/9uSJEkLKiIOBy4B3gy8APwTWBs4CrguIpYbxj6/AfwGmARMAe4BNga+DlwcEeOGuk8LvJIkSS0mIo7uUZTrubwQEQ9FxB8iYt+IiLqztoKqOHp0X8VkSZKk0S67ujp+aYSI2AL4VvX0Q8Cambk58ErgBmBD4CdD3Oc7gE8BM4G3ZeY6mbkJpcB7P7A9cOxQs1rglSRJam2P9VgSWB3YE/glcO5wrvC3gHuBO4GpI7S/tYEvVIskSZI0Ev6HUjv9eWb+ODMTIDP/A+wPdAHvjIjXDGGf3d9Xj8vMP3S/mJl3AO+vnh4WESsOJagFXkmSpBaWmat0L8ASlKv7F1Wrdwe+Ulu4YcrMnTNzg8w8q+4skiRJUm8RsSSwW/X0x73XZ+bdwKXV030Guc91gU0G2OellOEaxgFvHUpeC7ySJEltIjO7MvN2yhe+e6qXPxQRC9UYS5IkSRptNqMUWmcC1/azzVXV4xsGuc/u7e7LzIdHaJ+ABV5JkqS2k5kvAL+uni4FbAAvn6grIiZGxI8j4v6ImBkR/+q5n4gYExEHRsSfIuKxiJhVzQ58YUTsP9AYvxExNiIOj4gbq5l/n6omVtt7fvkHM8laRLw+Ik6KiHsiYkZETIuIf0TEiRHxpp77Ai7r8bz3uMUn97HvpSLivyPiL1XumRHx74g4MyK2mk/2ZSPi6xFxbzUm8iMR8etqjLaGiYg3RMRxEXFVRDxQ/dvPRMRfI+KIqpfJYPazSkR8tzomXoiIRyPitIjYYBBt3xwRv42Ih6vf2dMRcWVEHBoRiyz4u5QkSWoZ61WPD2bm7H62ubd6XH+I+7x3gG2Guk8A7O0hSZLUnh7q8fP4PtZvDfwIWBKYAczzxbSa8fcsykQO3aYCKwC7Vst+EbFPZs7q1XYccDbQXWjtAmZV+9ohIo4b5nsiIsYCJwAf7fHydOBFSiF7Q+CdwDLVuico73/Z6vljvXY5zzi/EbEp8EdgjeqlOZTfzxrAu4B9I+JzmfnVPrKtDVwOrFW9NAtYHNgbeGtEDOr2vGH6S4+fZ1TLssDrq+WgiNgxMx8fYB8TgDOAVYDnKcfEysABlPHj3pGZ5/duFBGLAadS3me3acDSwHbVclBE7JGZTw/z/UmSpGF4/tkHuPmqD9Ydo3bPP/tA948bRMQNQ2j648z8UR+vL1c9PjVA2+51yw6wTaP3CVjglSRJaldr9/i5ry+JPwJuBz6SmdcDRMR61eNY4HeUguzNlAkkLs3MGRGxBLAX8HXKUBDHAZ/ote+vUoq7WbX9TmZOi4iVgKOBIxj+BGrHMre4eyJlAoq7qtxLA5Mok1oAkJmvjYhJVL14q7GK+xQRqwIXACtR3v+xwK2ZObvK/hHgs8CxEfHPzPx9j7ZjKb2m1wKepsykfFZmvhgRrwJ+CJwyzPc8GH8EfgFcmZmPVpkWo4wN91WgO8M7B9jH/1L+u7wRuDgzMyJeB/wUeDXwy4jYKDMf6tXux5Ti7n2U/97nVP+9F6329b+U2whPBN4xEm9WkiQNTlfXTKZPvavuGK1kcWDzIWy/aj+vL1o9zupnPZThGwAWG+S/1Yh9AhZ4JUmS2k5EjAcOrJ4+BfT1rX4KsEtmPtf9QnehlNJjcwfgDmBSZk7tsc104NSIuB24DviviPhqd8/QiFgNOLza/CuZeUyPto9X2y9DjyLsEN7XesCnq6fHZ+YRPddXOc+uluH4CqW4e3pmHthzRZX98xHxNKUH8dHA73tsshewZfXzPpl5SY+2/4iI3YBbmduzeERl5ssm2sjM54GzIuJayu18b4+INTPzwX52sxiwVWb+s8c+ro2IXYB/UnqVfBY4rHt9RGwHvBt4nHKs/LtH2xeAP0TEjZRj6e0RsWlm3rxg71aSJA3CHXUHaEErUO5e+9cQ2jzSz+svVI8DDUM1rnp8fpD/ViP2CVjglSRJahtV4XQLSq/a1aqXv52ZXX1s/t2exd1e3lc9/qBncbenzLyhKvJuDOwI/LJatTflO+TzwDf62f/RDKPACxxMmSNiCvCFYbTvV9Xb9IDq6UBDSJxKKfBuEhErZ2b3kA/7VY/X9Czudqt6Px9P6TndVJn5cETcAryOMjRHfwXeX/cs7vZo/3hE/BA4kjJMxWE9VncfK6f1LO72av9QRFwGvIXSs/vmYb0RSZI0aL0vVmvEdQ87tdwA23SvG+wQVY3YJ2CBV5IkqaVFRA6w+hfAMf2su6af/Y1l7qy8R0fEkQPsv/sL5lo9XuvuxXp9Zk7rq1Fm3hURDwOrD7DvvmxdPV5U9Q4dSVsw97a4CweYP66ntZg7pm/3+750gO0HWrdAImIMpci8H7ApsCJz309Pa/TxWrf5ZT8SWD4iJmTm/dXr21SP74uIA/puCpTxeGHeY0WSJKlddd/5tmZELNzPRGsTe2072H2uM8A2Q90nYIFXkiSp1fWcNGwm8CRwE6VH5WUDtOtvsq3lmHvr12Anb1i8x88rVY8Pz6fNQwy9wNs9fu4DA241PKv1+HnlQbYZ6vvuPXbtiIiIxYFzKD2pu82iDM/RfbKxHLAwsMQAuxooe891KwHdBd7u39t4+p7Mr7fF57+JJElSy7uJ8n1rHOUuqb46T2xXPf6lj3V9+Wv1OCEiVs/Mvr6bDXWfgAVeSZKkljbQpGHzMaef18f2+Hn3zDx/mPtvhIF6Ky+onu97sQb0EG6kz1GKu89Tetn+Dvh3Zr70+4qIq4BtgUF1TR6C7t/boZn5wxHetyRJUkvKzGcj4gJgT+CD9CrwRsS6wE7V098Mcp93RcTfKZPbfpBeQ5JFxE6U3r2zgD8MJe+YoWwsSZKktjcFeLH6eTi303f3DJ5f79yh9t4FeLR6bMRt/o/2+LlR73s473kwusf//VJmfiszH+xZ3K0M5kLAYLP37P3dyP8mkiRJrezLlA4I74mID0Y1xldErAqcQamr/j4zb+nZKCL+VS1797HPL1aPR0TEnj3arA/8tHr6/cx8YihBLfBKkiR1kGr8sGurp3sOtG0/rq8et4yIJfvaoOrRMNBYsP35c/W4azUp2mC9NMlc9D+47nWU3hCwYO97xwG22WmAdQviFdXjTX2tjIi1GXgst24DZe9e91SP8Xdhbm+Vtwxi/5IkSaNGZl4HfLJ6+iPggYi4kTKU1RbAncAH+mi6VrW87LtyZv4W+BZl6Ic/RMQ9EXEzcDswAbga+OxQs1rglSRJ6jw/rh73iIg9BtowInrP8vtbyvAPiwGf7qfZ54eZ6+Rq38szt3fDYPSc7G2ZvjbIzOnA6dXTIyJizYF22Mf7/mX1uG1ETOpj+8WA/zeIrMMxtXrcpJ/1XxvkfvapeofMIyJWAD5UPf1lr9Xdx8rGEXHoQDuPiCUiYpFBZpEkSWp5mfktYFfgPMpcB6+izBdxLLBlZj45jH1+AtgXuAJYAVgP+AdwBLDTcIYSs8ArSZLUeX4BXEwZr/WsiDgqIl6ahKwq1O0YEd8D7uvZsJoM4nvV0/+JiM9GxFJVuxUj4rvAu5lblBy0zLwH+Hr19DMR8dOqN3B3rvER8a6IOKtX07uY2zv3/QP04j0S+A/li/RfIuI93dl75N+r2v8Zvdr+Frix++dqu7FVuw0pX/pXHNIbHrzucZKPioh3RsRC1b87ISJOp5wgPD2I/bwAnB8Ru/S4xfC1lGNhBeBZehWLM/MK4KTq6fci4n8j4pXd6yNiXES8ISKOp5zsrIQkSdIokpmXZOYembl8Zi6ametn5ucy87l+to9qOXmAff46Mydl5jKZuXhmviYzj6/uthsyC7ySJEkdJjPnAHsB5wCLUMYXezgipkbE05RC36XAf1F6KvR2BKUoOIbSe+HpiHgKeAw4DDgOuHmY8Y5ibgH5fcBdEfFstf9ngDPpNdRAZs4Afl49PR54LiIeqMY++0aP7R4BdqEUhFcDTgWeiYgpEfEcZezZ3wBvp9f35Mx8EdgH+DewXLXd9Ih4htLjYivg4GG+5/k5ivK7XYpSaH6++nfvA/anTMJ26yD28wlgUeAiyu/oWcpwHZsAM4H9M/PBPtp9mDImXAAfB+7t8d9kBmWW5/9H6XndyInyJEmS1AcLvJIkSR0oM6dl5p7AHpTb8h+kjAW2OPAwcCFl/K+X3dJf3Ta2O/AxSiF3FqX4dxWwb2b+9wLkmpOZHwG2BU6rci1c7f8fwM8oxeneDgOOBv5ePV+TMvbZCr32/0/gNZQhCS4EngTGV/u/B/g1ZVbjffvIdh+wKXACZey1oPSK/Q2wdWYOabbjwcrMB4AtKe/9P9XLL1AK9G/KzK8Oclf3A5tRCuhPUIr7j1N6K2+Wmef28+/PyswPAFtThtG4FxhLGVfuceBy4EvAa6oe3pIkSWqiePkEvJIkSZIkSZKkdmAPXkmSJEmSJElqUxZ4JUmSJEmSJKlNWeCVJEmSJEmSpDZlgVeSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlNWeCVJEmSJEmSpDZlgVeSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlNWeCVJEmSJEmSpDZlgVeSJEmSJEmS2pQFXkmSJEmSJElqUxZ4JUmSJEmSJKlN/X9DqSGkImPXaAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAV1CAYAAACmlabpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hcV2E3/u/ZXRWr2pbce8HgigsGV7BpCSSQEEpCQkILEF4CL7/0AoEUAgmQEEgIJfSUF5wAoUMgGAw2BvfecC+yrWLJ6lrt+f1xZ6XRane1u5K9e72fz/PMMztz7zlz5s7Zq9V3zj2n1FoDAAAAAED79Ex2AwAAAAAAmBgBLwAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAt1TfZDQAAAAAAxq6U8m9JnjDZ7ZiCbqi1/tpkN+LRJuAFAAAAgHZ5QpKTJ7sRTA0CXgAAAABooVkpOTAzJ7sZk+7ubMyG1MluxqQR8AIAAABACx2YmfmHvkMmuxmT7v/235GfZsNkN2PSWGQNAAAAAKClBLwAAAAAAC1ligYAAAAAaKOSlBllslsx+TYn03gKXiN4AQAAAADaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtJRF1gAAAACghUpJevosslZKLLIGAAAAAED7CHgBAAAAAFpKwAsAAAAA0FICXgAAAACAlrLIGgAAAAC0USkpM4zfbFZZm770AAAAAACAlhLwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC0l4AUAAAAAaKm+yW4AAAAAADABJenpK5Pdisk3zQ+BEbwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABayiJrAAAAANBCpSRlxjRfYSzNcZjOjOAFAAAAAGgpAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUhZZAwAAAIA2KklP3zRfYSxJpvkhMIIXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABaqm+yGwAAAAAATEApKTPKZLdi8pXpfQyM4AUAAAAAaCkBLwAAAABASwl4AQAAAABaSsALAAAAANBSFlkDAAAAgBYqSXr6pvcCY0lzHKYzI3gBAAAAAFpKwAsAAAAA0FICXgAAAACAlhLwAgAAAAC0lEXWAAAAAKCNSlJ6p/sSY5n2q6wZwQsAAAAA0FICXgAAAACAlhLwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC3VN9kNAAAAAAAmoCQ9vWWyWzH5pvkhMIIXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABAS1lkDQAAAABaqvRM8xXGMIIXAAAAAKCtBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABAS1lkDQAAAABaqJSS0mv8ZinTe6E5PQAAAAAAoKUEvAAAAAAALSXgBQAAAABoKQEvAAAAAEBLCXgBAAAAAFqqb7IbAAAAAABMTE9vmewmMMmM4AUAAAAAaCkBLwAAAABASwl4AQAAAABaSsALAAAAANBSFlkDAAAAgDYqSemxyFqm+SEwghcAAAAAoKUEvAAAAAAALSXgBQAAAABoKQEvAAAAAEBLWWQNAAAAAFqoJOnpneYrjGXar7FmBC8AAAAAQFsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICWEvACAAAAALRU32Q3AAAAAACYgFJSestkt2Lylel9DIzgBQAAAABoKQEvAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FIWWQMAAACAlio9xm9Od3oAAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FICXgAAAACAlrLIGgAAAAC0UUlKT5nsVky+aX4IjOAFAAAAAGgpAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUhZZAwAAAIAWKkl6eqf5CmOZ9musGcELAAAAANBWAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAt1TfZDQAAAAAAJqCUlJ4y2a2YfGV6HwMjeAEAAAAAWkrACwAAAADQUgJeAAAAAICWEvACAAAAALSURdYAAAAAoKVKj/Gb050eAAAAAADQUgJeAAAAAICWEvACAAAAALSUgBcAAAAAoKUssgYAAAAALVV6ymQ3gUlmBC8AAAAAQEsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICWEvACAAAAALRU32Q3AAAAAAAYv1KSnt4y2c2YdGWaHwIjeAEAAAAAWkrACwAAAADQUgJeAAAAAICWEvACAAAAALSURdYAAAAAoJVKSs80X2EsSTK9j4ERvAAAAAAALSXgBQAAAABoKQEvAAAAAEBLCXgBAAAAAFrKImsAAAAA0EYlKT3Gb07zNdaM4AUAAAAAaCsBLwAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJbqm+wGAAAAAAATU3rKZDeBSWYELwAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJayyBoAAAAAtFGxyFqSZJofAiN4AQAAAABaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtJRF1gAAAACghUqKRdbSHIfpzAheAAAAAICWEvACAAAAALSUgBcAAAAAoKUEvAAAAAAALSXgBQAAAABoKQEvAPCIKqUcWkqpnduhY902VZVS3t5p7/mT3ZbJUko5vpTyuVLKfaWU/s7xuGIS23POYD+arDYwvKnwO15KeUbn9b8+Ga8/HXR9xudMgbZ8qNOWV092WwAeLaWnZ9rfpjtHAACG0RXi1VLK2lLK/qPse+hU+s8t7VBK6S2lvKSU8ulSyk2llIdKKRtLKQ+UUn5QSnlnKeW4yW7nUKWUw5L8MMmLk+ybZGWS+5Msncx2tVXXuaOWUq4fw/6nDinzyV3cnhM7578378p6J0sppSfJezsP3zbM9rcPOZ6Dtw2llHtLKd8spfxmKWXGo9tydsJfJ9mY5C9KKXMmuzEA8GgQ8ALAju2WYYIBdolNSW7s3DZNclseNaWU05Jcl+SzSX49yeOSzEnycJJFSc5M8kdJri6l/FcpZeZktXUYr0syP8ktSQ6stS6qte5ba33mJLZpbbb2ozZ7Qinl9B3s86pHuA0npjnfvXkX1TfZv+MvT/LEJF+ttf54B/ve33XrT7Jfkmcn+WiSC0spezySDW25wc947WQ3pNZ6Z5JPJNk/ye9NcnMA4FEh4AWAsXlVKeWoyW7EY02t9Z5a6xM6t3smuz2PhlLK85Kcn+SoJMuS/HGSo2qtM2uti5LMTHJqknclWZXkl9KEv1PF8Z37/54qn1mt9ceD/Wiy27ITbu/cv3KkHUops5P8SpKa5I5HoU07bQr8jv9B5/6fd7Rj54uKwdvcJIekCXeT5ElJ3v8ItbH1uj7jHYXoj5YPde7fVEqZNaktAYBHgYAXAEZ3V5KrkvSluewTJqyU8rgk/5pkVpoRvCfWWt9Va715cJ9a6+Za6yW11j9OcliS/56c1o5oMGxePamteOz5dJrg9pdHuaz8l5LsnuR72RoIM4LOlDlPSPJgkm+Ot3yt9c5a62uT/G/nqZeUUubtsgbyiKm1XpHk2jRXRLxoclsDAI88AS8AjG4gzQjLJHlhKeXJE6mkM9/qq0op/1tKWdqZ3/GeUsp5o83bW0o5vzMf5NtLKTNKKb9bSrmkM1/rljl/Sym3dx6/opQyp7P/9Z35g+8tpXymM3fqYL2LSyl/05n7dV0pZUkp5V9KKfuM0I4ZpZTnl1I+0nn9+7rmi/1mKeWlpZQygeMy2gJsw82LOdztkyPUfWYp5V9LKXeUUtaXUlaWUn5cSvnDHYU0pZTnlFL+p3OcV5dSriyl/MEumIfzr5IsSLI+yQtqrXePtnOtdXmt9RfTzHM7tI37llLeXUq5tpSypnO7tpTyt6N8jtsc71LKPqWUfyil3NY5RveXUv5fKWW7kbCDfSzJOZ2n3jbkczins98OF6ErO1gUrZTylFLKv3W1a03nc/xeKeWtpZQDx1PfZByvCbgtTXC7IMkLR9hncHqGT4xWUecc8NLSzO98RSnlwbJ1TtkvllKeM0K52lX3IcP8rr29a99PDv7+lcZvlmbu6GWd51/R2W/Y3/FSyqJSyt2d5784Qnv6Sik/7OxzVWlGMI/Hazr359Va+8dZtts3Ovcz00ynsp1SyhGllH8updxcmnPqqlLKZaWUPyulLBhm/xd23teDpWx/7izNeXXwuG03F3cp5Y872y4YzxsppXy5U+49w2zbr+s1Lxmh/I1lmAXMhp4Hhmzbo5TyF53jsao0/3Ys6XymHyqlPGOU9k74PJ7k3zv3r93BfgDtVpKe3jLtbxn3/0QeW/omuwEAMNXVWr9WSvlekqeluWz+6eMpX0pZmOSL2RqMbU4z1+p+aUYWvaiU8p5a6++PUs3sNJf1n5FmbsiH04z2G2phkh+luYx+fWef/ZK8LMkzSilnpPmC99tpRoeu7TzeJ8mrkzy1lPKkWuuqIfWemW1Hkq7q1L9Xmjkqn53kBaWUX6m1DozyPsbj/h1s3zvD/ClXmkWV/j7Jm7qeXp1kbpqpD05N8spSys/UWre7zL0TYnXPufxQkmOS/E2Sn0uzwNi4dULEwZFk/1ZrvWmsZWut23zWpZSnpelTu3eeWtO5P6Zz+81SyvNrrT8Ypdpjk3w8zXEcnDdz7yS/nOQ5pZSn1lqv7Nr/wTT9cM8kMzqv2T2Kd+NY389oSikvTxMyDn62G9L0+YM7t6emGVn/yXHUORnHayI+keY88coknxnyHg5Jc+55OMl/ZvS5eF+SrUFtTfP7Ojin7C8k+YVSyntrrUPnJ70/zZzjC9J8ufXgkO3DjdouSc5LE0oPpPkyYofngFrrslLKr6UZHfsLpZQ31Fr/achub09zzluX5Fdqret3VO+WRjWh6c90Ho4rBB2uuq6fe4d5rZekGYE9OBXAw2nC4JM6t9/snG+6F9H7XprPZnGa8/VVXfXNSHJW175PT3LNkJcd/HfofzM+303y8xn+37Hu504qpexea32oq10HpJlaZsyvW5ovY36Y5nc32dpHFqf5d+f4NKOsvzOk3E6dxzu+37k/s5Qyv9b68FjaDABtZAQvAIzNH3Xuzy2l/Ow4y34sTWizMc1/VhfUWvdIswDMxzv7/F4p5bdGqeMNSU5IE/wsqLXumSZcvWrIfm9PswDWs9P8R3jw5wfThDt/k+Q/0vwH+/TOPJPz0oRUa9OMTvuDbG9tkg8neVaShbXWhbXWBWkuf/2/aQKkFyf57R0ejTEaMh/mNrckf5atocvXhhT98zTH+YE0x21RrXV+muDq3CSXJ3l8ks93QoQtSinPz9Zw97wkB3c+qwWduk5L8voJvqVzs/Vvry9MsI6UUg7K1rDyuiRn1Vrn1VrnpQk/b0yyR5L/7gQyI/lMkpuTnNrVD56V5L407/cD3TvXWk/tHPsLO0+9Z8jncmF2UmmmJvhAms/2X5McWWudXWtd2Gnfk5K8O81nO9Y6J+V4TdB/pgkHzyldI+47XpHmuHy21rqjhaxWJHlPmpBwXq11906b90/Tvzcl+d1Of9+i8/n+387Du4b53dtu1GeaaSN+Ic1iVnt0zk0LM4YpEWqt30vyjs7D95RSBud3HpxeYfDqif+v1nrdjuob4pg056ck2dl5YQeD4ppmpPUWpZSTs3XalR8mOaFzbpyT5Plp+sdBSb7cPeK01ro0ydWdh0PD1qd0yq8abntpFl08s/Pwu+N8L4P7P7GUsueQbed27lelOVedM8L2O2qtt2Vs3p4m3L09yTOTzOz0kVlJDk1zPv3RMOUmfB7vcmmaLzZ6s/V4AcBjkoAXAMag1vqjbA3l3jncJbXDKaU8JVsvt35jrfUDg+FMrXVJrfXVSf6rs/0vR7kEeV6SX621frLWuq5TflmtdfmQ/WYleVat9X9qrQOd+Vz/J1sD6pekWTjomZ33lFrrplrr55K8t7PPrwzz/n9ca/2tWuu3u0f3dqYQeH+a0b/JtqOtHhGllGclGRzp9/ZO2we3HZomFFqX5Nm11g8OHqPO+zw/zUjsu5OcnCaA6fbOzv330owYvKtTdl2t9YNp3t/uE2z6sV0/Xz7BOpLkTzptWJHkGbXWLSOKa60XpAlRVqUZafvHw1XQcX+avnJJp2x/rfXbSV7X2X52GTIVwqPguDRfSqxJ8spa608HN9Ra19RaL621/kGtdWioP5rWHK/OueGzaYLcVww+3znfDD4edXqGTj3/XWv9/VrrD7vD4FrrfbXWv0hzTJJd8/s6L8nv1FrfO3huqLWurrXeN8byf54mGJ2d5P+VUnYrpSxKE5r2JPl8rfXDE2jXUzr3D9dab51A+ZRSDi6lfCRbA9Yv11qXDdntHWlGtN+S5pxzdZJ0zr9fTjPqvz/JEUmGfok3OAp2aMA7+Pif0oTxTxsSYp6WJuhcn+Sicb6tK5Msz/AB7uDrvm8H7RpPqHxG5/5Paq3fqbVuTrbMNX5HrfVDtdY/6i6wC87j6ey7Ls0XOEly+jjaDACtI+AFgLH7kzTTK5yY5KVjLPPLnfu7k/zLCPu8tXO/OM2IwOFc2wkLduS/aq23DPN892i6jwwTUnTvc0QpZe4YXqvbV7vK7jvOsmNWSjk2zcjaviT/Xmv98yG7vCLNaK1v1BEul+9cpvvFzsPBkXkppZyQZtRfkvxVHX6qiY8muWeCzV/U9fPQYH5MOkHfSzoPP1RrXTJ0n9rM6zu4gvx2YX2X9w5+WTDE17N1uoXjh9n+SHqocz8z2x6vCWnp8Roc1f/yri+Szk0z2vHGXTFSOlt/X08vpWw35cA4rUgzun9COoHfr3bqOSbJP6Q5BgekmYrjNydY9f6d+6VjLdCZF3bwtibJHdk6j+8NSf7PkP13z9ZzyLuHG1lda708yec7D4f+uzEYlD51yOcwOFL2K0kuTvMFxcnDbL+o1rphDG+tuz0Dab7ASroC3M4UIIelGaX+6aHbh7zueALehzr3+42jzCsywfP4MAY///1H2QcAWk/ACwBjVGu9IVtHz/1lGduCW0/q3H93hMAwtZmX8Z4h+w811nlfR7oUuXs+25+MYZ/dh24spcwvpfx+aRa6eqCzUM7gwlbdwcYjMuqzM4ftV9Nc/n1hhp+DdPAy3GcPCWu2uaWZ6iJpRjMPGjz2/Rlhzs7OZ3j+Tr6VnXFYmpGmSTOP8kj+p3O/aJhL/QddPNyTtVmManDu1aGXcD/SfpomSJuR5OLOQkon7kQI2brjVWu9KM0xOCTJ4OJTY1pcrVtpFoT781LKRaVZ+Ky/6/d1cLqDOWmmp9gZP6m17tT8y7XWO7M1SH1NmhGZm5O8rNa6YoLV7tW5H8+XKft03eZ0Pf/pJCfVWod+uXNytk4VM5b+dcKQfze+l+Z9LkxySpJ0ruI4Pc18sz/O1jC1O2ydyEjabsONHN4yp29n5PydSY4tpezdaddhab5kGO/rfqVz/67SLNL5s2WYReeG2Jnz+FCDn/9eo+wD0Hqlp0z723Qn4AWA8Xl7mstGD8/2l9sOZ+/O/Y5Gfd49ZP+hxjrn6LCLyNRtV5AfaaGZ7n22Ca9LKUelCYX+Ns28pXuluXT4wTTBcHc4PN7RvztUStktzSJvh6SZA/MXRxi5NjhKa262DWuG3gbb2B3iDB77pTsYFXf3KNtG0z1qeqJBYHf/GK1PdbdxpD412oJDg31hLF9i7DKd0Zy/kuYzPiTNooaXJ1lVSvmfUsrrO/P0jlVbj9dgkPvKThj2S2mCwE+PXGSrUsrpaULiP0tzOf+eac5bD6T5Xe0e1bqzv69jng95NLXW/8rW6WqSZo7n74+0/xgMTncz5hGutdZSay1p/o+0f5pz/ENJfiPDzy8+3v7Vl67f/VrrymydrmUwYD0jzVQ7F3TO29uEsZ1z4Wmd57YJWkspnx8hDB36pd5guaO7rrgYHJ37v0P2efqQ7T8dnLpmjN6d5HNpfjdek2bE+0OllKtLKe8upTx+mDI7cx4fanDU/UjTHwHAY4KAFwDGoTOCa3Axpbd0L5rzCNv8KL3OSD6RZmTu7WkWU1tUa51ba927NgszdS9OtUu/Qu9cpv7pNHNqrkzy87XWB0fYfXCk598MhjU7uJ2zK9u6A9d2/XzSo/i6rdK5JPsJaeau/kiSa9LMN/rMJB9MckP3YlyPUZ9J8zv/gjQh425pLlff4by2pZS+NAsp7p7kiiTPTbMw4/xa6z6d39fTuovsZFt3ybmpM+/qM7ueOnMnp48Y/EJl3COUa+O+zty/L0izuNrfllKGTlmwKwwdTfv0Ic9flGau3bM6o3/PTDOFydpsP6p8zwwfhG4zerXWem22finXHeDWbA12R2rXuEYNd+bM/eU0Uxv9RafetWnm2/69JNeWUn53SLFdeR4fDNSHm5YIAB4zBLwAMH7vSjNf5N5Jhv7HdKjB0W07mrZgcPsuGQ23K5VSDsrWhXJeWmv9z7r94m6P2Ly7Sf46yYvSBEm/XGu9bpR9B+dYHe2S3ZEMHvvFnVXqR3LAKNtG890kg9N0vGCCdXT3j9H6VPe2R7tPDY5mHW3E3MLRKqi1bqy1fr7W+rpa6/FpAqrfSnO59UFJPjXGtrTheG2nE+R+I02w+5edp8c6PcPpafr/5jRfhny9M19pt0fy93XcukLphUluSjPq9qxsnZ98InbJtBmdBb0+kyYI/8CQ0Hm8/as/208ZMRiYntk572wT8HauJrgwzWjVp3Rt/0GtddOQtp4zQgB66DBtOr9z//TOFRoHJrmm68uzkUbwDga/41JrvbLW+rZa6zPSfPnwzCTfTxPmvruU8sSu3XfmPD7U4Oc/0peCAPCYIOAFgHHqzAn5rs7D383oc/td0rk/d8gq6FuUUp6QraHhSPPjTqaDun6+fIR9njnC8zullPKqJIMrrL+p1vrN0fbP1rmKn9mZy3I8Bj+rviRnj9Ce4VaeH5Na6/3Zegn6r3ZClTHpWmzrtmwNiJ4xwu7J1s9jWa31tnE1dOcNzpl60Cj7PGU8FdZal3VGU/5h56mTSiljWYStDcdrJIOLrc1MM6XCl8ZYbvC4PzjMnLGDRvt9HfwS4tGczO7P04wqXpvkF7P1c35LKeWsCdY5+EXQXrvgSou/SBOYH5Pk5V3PX5atx2ss/evKoaFskh+kme5mTme/U9P02Su69ukeTTuRhc6G0x3gbhfedqZhuCXNwpnPytZpE87fyddNrbW/1vqdJD+XJswv2bZP7sx5fKjBObWv38l6AGBKE/ACwMR8IM28ivMz+iiz/9e5PyAjrwb/F537pRl9oZ7JsrLr5ycO3VhKmZ/kLbv6RTuXQ3+o8/D9tdYPjqHYx9OMklucJjQarf6Z3cFPrfWqbA0B/nSEQP5V2blF5N6SZvGk3ZJ8vpQy6mjgUsoepZT/SmfEa621JvlsZ/PruubP7C6zf5LXdR7+x060daIGV73fv5SyXZDbWbTpNUOf72ybtYO613X9POyihd1acrxG8uU085e+N8mbhwkGRzL4+7pPZ2HCbZRSDkzyplHKr+rc7z7G19sppZRzs/VLnP+v1np9rfUf0iyo2Jvk30opE1kI7sI0oWxPRl68ckw6i44N9qO3Di6UVmt9KMngl06/P9z80J2RqS/sPNyuf9VaV2frF3t/luYLpu8NWZRzMIx9froW7pzQm9lqMMw9LFsXKxs6OnfwNQZHkd8wlmlCuu3gd3pDtk7x0f1+J3weH7LtsGz9AvZ7Y2owALSUgBcAJqDWui7NgmtJ8rxR9vtxto7a/EAp5bcHQ4BSyr6llI+mmdM2Sd5aa13/CDV5Z1yfZkX1JPl4KeWUwQ2dxZzOzwTmuRxNKeVxaY7bjCRfS/I7YynXCWIGw4g/KKV8upRyXFe9faWUE0spf5ZmdNqJQ6r40879uUn+vROGpZQyu5TyW0n+Mc2iSxNSa70pya8n2Zjk2CRXlFL+sJRyZFcbe0spJ5VS/iLJrWkW2Or215027Jnk26WUM7rKnpnmS4Ld04wCfFcefRcmuaPz86dKKU8qjZ5Syjlp+stIf4P+Sinlh6WU15VSDh98snNMfiZb389FnZH0YzHVj9ewOnOX/kGt9fdqrf82jqI/SLImzajIzw2OFO86huenmWt1JNd07heUUl4ygaaPWWcU9mfS9IfP11o/0rX5lUnuS3Jwko+Ot+7OtBSXdh6Oa8T4CN6Z5rgdmuTVXc+/Jc0I3COTfHNwfuhOf39umvNXX5KfJvnwCHUPBqmD7RwatP44zRdDp3Tq6n5vE1JrvTlbF397SpqgdWgI+r9d27vbOR53lFLeWUo5rTvs7Zzz/i3NyOWBbA3Kd8V5fNBgu++vtd4wgbYDtEIpJaWnx608mhcfTT0CXgCYuE+mWal+R16d5j/OM9OM/F1ZSlme5N5sHdX7nlrrh0YoP6k6I8nekGZE1bFJLimlrCmlrEkT5j0+yS/v4pc9M1tHEJ6e5J4y/OrwS0op/zCk7F92bjVNmHp1KWVtKWVpmsWKLk8zKuygDAm6aq1fSPKOzsNfTnJX57N6OMk/pwla/nln3lit9YtpLou+Jc0ItXclubmUsqGUsixN+HtZmpHhC9OM+lvTVf7uNJexr0zzefywlLK6lLI6Tbh3dJpA8xdHuUT/EdPpL69LE3o9Ps3oxNVp3sN30wRUbxiheEkz3/OHkvy0lLK+87ltTDMn7YFpfm9eNY72TOnjtavVWlemWbwqSZ6a5MZSysNpPoNvpOlTrxyheGqttyT5TufhZ0spq0opt3dub97Fzf14mqsb7sqQKxw6c8H+Rprf0ReWUoYd9b0DgyNmn78zjey055psnSbjTwfDylrrZdn6pc1ZSa4qpaxM09+/mmZqg7uSPK8zWnc4QwPdbR7XWvvT9NVBF3Se21ndge1lnb4z0vbhHo/FPmlGaF+UZG0pZXkpZV2Sm9N8uVmT/O4wc6tP+DzeZfBzn0oj8wHgESHgBYAJqrVuTvInY9hvZZr5GV+dZvTcw0nmpVlI5r+SnFtr/f1HrqU7r9b6lTRh0VfThGF9aaaU+ESSUzrzKT5S9sjwK8MP3rZZsKs2/izJCUk+mGYE8ubOfivShNLvTnJGrfWHGaLW+pYkP58mZFmVZFanjj9K8zlu3Nk31HndJyR5aZpRbLekCS3mpxlJ+oM0QfPRtdZfHWYxpe+lCSbf22lbT5pw9Pok7+mUu2Bn2zlRnbmSz07ylTTHvDdNyPWuNKMQl4xQ9EtpQr1PpJnqYWWaz+3hNOH6W5McO97ReFP9eO1qnS+Lfi7N+WZ1mt/Xe9J8wfTEJFfvoIoXJfn7NAuezUiz2NUh2YXTNpRS3pAmgBtI8rLhRmTXWr+d5nc1Sd5XSjl6nC/zqTS/V2d0LtffWYNf/hyYrdN6pNb62TRfHnw4zUjdWWm+ELsiyduSHFdrHW0O2AvTTFeQJEtGWEiyO/Td2ekZhqtnu8XTOvOGD7alZmLz7z47zejnC9KcA3brPH9Lmt/zU2ut7xvmtXfqPN6ZtuEXOg9HGjkNAI8ZpZmaDAAA4LGllPLxNCOW31Zr/Ysd7c9jQynlN9IE/N+ttT59stsD8EgopVya5OTjFi3Ml57/1MluzqR7/pe+n2uWrUyaq1JO2dH+jzVG8AIAAI9Vf5FmdOxvl1LmTnZjeOR1Fsj8g87DHV5lAwCPBX2T3QAAAIBHQq319lLKB9LMS/yGJH87yU3ikffiNFNmnFdr/dFkNwbg0VB6pvcCYwh4AQCAx7Z3ZOtCfzz2zUizANsnJrshAPBoEfACAACPWbXWh9IEfkwDtdZ/new2AMCjzRy8AAAAAAAtJeAFAAAAAGgpUzTABJVSbkuyd5L1SW6f3NYAAADAtHNoktlJHqi1HjbJbZkcxSJrSZJpfggEvDBxeyeZ07ntOcltAQAAgOlq78luAEwmAS9M3Pokc2am5KDMnOy2wBZLFh4y2U0AAAB4xK17+I4MDGxImv+fw7Ql4IWJuz3JngdlZt7XK1Bj6njn2R+Z7CYAAAA84q684LVZs/KmxLSJTHMWWQMAAAAAaCkjeAEAAACglUpKj/Gb032VNT0AAAAAAKClBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABaqm+yGwAAAAAATEzpKZPdBCaZEbwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABayiJrAAAAANBCpSSlx/jNMs3XmdMDAAAAAABaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtJRF1gAAAACgrab7CmMYwQsAAAAA0FYCXgAAAACAlhLwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC3VN9kNAAAAAAAmoqT0lMluxBQwvY+BEbwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABayiJrAAAAANBGJSk9xm9O8zXWjOAFAAAAAGgrAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUhZZAwAAAICWKj3TfIUxjOAFAAAAAGgrAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICW6pvsBgAAAAAAE1BKSo/xmyllslswqfQAAAAAAICWEvACAAAAALSUgBcAAAAAoKUEvAAAAAAALWWRNQAAAABooZKk9EzvBcaS5jhMZ0bwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCmLrAEAAABAS1lkDSN4AQAAAABaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpfomuwEAAAAAwASUJD3Gb6ZMdgMmlx4AAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpSyyBgAAAACtVFLKNF9hLMl0X2XNCF4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAtZZE1AAAAAGip0mP85nSnBwAAAAAAtJSAFwAAAACgpQS8AAAAAAAtZQ5eYIc29czMnXselSULD879Cw7OkoWHZNVui5IkZ9785Zx9y5d3+jXWzJyfHx3+M/npXidk1W57pm/zpixefW+Ov+einHD3D1J2UH7FnL1y8WE/k9sWH5PVsxZm5ub12XflnXniXRfkCfdfttPtY2qb2b8+T7ntW3n8/Zdl93XLMlBKls/ZJ9ftd2ouOeTpGeiZ+D93czesymm3fTNHPnBVFqxfnv7eGVk6b/9ctf/pufLAs5Iyeu/cfe0DOf3Wb+awZddl3oaV2dg7O0sWHJzLDzo7N+57yoTbxdSnXzIV6ZdMVfomU5F+CbRFqbVOdhuglUoplyY5+YjMyvt6D5ns5jyi7tjzqPzHU35v2G27IuBdsuDgfPbUN2fdzHlJmj+k+ntmZKCnN0ly2IPX5EWX/lN66+Zhy/90r+PyxRNfl019s5Ikszaty8a+WamluUjh+Lt/mOde/akdhsSPFe98zkcmuwmPqgXrluVlP35Pdl+3LEmysXdmeupA+gb6kyRLFhyUfz/1d7J+xtxx173vyjvyK5e8L3M2rUmSbOidlb6BTemtA0mSny4+Nued/IYR/7g/4sGr84IrPpyZmzcmSdb3zc7M/g3pSfNv75UHnJGvHvfyHf4BT/vol0xF+iVTlb7JVKRftsOVF7w2a1belCSX1VqnVbI9mEmcsO+ifOc1vzDZzZl0z/jof+eqJcuSadgXEiN4gTGavXFN9ll1Z/ZddWf2WXVnvvOEl2TN7IU7Xe/6vt1y3ilvzLqZ87Jo9X35+Ss/nv1W3ZHNpTdXHHR2vnP0S3LbXsfl20f/cn7mun/frvxDuy3KF098bTb1zcqBy2/Jc6/+ZPZc+0A29s7KxYc9Oz983PNy9YFnZtHqJTnttm/udHuZWsrA5rzk0n/M7uuW5eFZC/Pl41+Z2xcfk9SBHL3k0jz3ms9k31V35flXfSyfO+VN46p71qa1ecllH8icTWuydO6++dIJr8qShYemZ6A/J911QZ55w+dyxNJr86zrP5tvHvtr25VfuHZpXnDFRzJz88bctfsR+erxr8jyuftkRv/6nHbbt3L2T7+SJ95zYZbN3Tc/Ovxnd9UhYQrQL5mK9EumKn2TqUi/pFVKUnoe+2H+Dk3zQzAt5+AtpZxfSqljuF3RVeacEfZZU0q5qZTyL6WU47v27yulXNbZ51920J6ZpZRrO/t+YYxt2+42zPt7+w5e95yhZbu2vX2Y1xgopazsvK93lFL2GuPxPqmU8sFSyg2llIdLKWtLKbeWUj5VSjl3B2VHfC8jtG9VKeWuUsp3SynvLqU8eSxtZHQHLb85b/7O/5eX/uTvc+6N/5Vj7vtJegc27ZK6f3zYs7Jm9sL0bd6YF1/y/uy36o4kSW/dnFPuPD9n3/ylJMkVB52d5XP23q78BY/7hWzqm52561fmRZd+IHuufSBJMnPzhpx9y5dz4p3fT5JcdMRzs75vzi5pM1PHCfdelL1X35Mk+fyJv9X84Z0kpSfX73dqvn7sy5IkRz54TQ5ddv246n7K7f+TeRtWZVPPjHz2lDdlycJDkyQDPX259JBz8/0jn58kOenuC7Lnmvu3K//UW/47MzdvyOpZC/K5U96Y5XP3SZJs6pudCx73/Fx+4NlJkjNu/Vpmd0Zv8NigXzIV6ZdMVfomU5F+CbTNtAx4u9yV5Iej3C4foVz3PvcmOSzJq5NcWkp5cZLUWvuTvDLJpiSvLqU8a5R2/FmSY5LckuT/jNCWa0Z4/e7bI2FVV/0XJ3k4yUlJ/iTJ1aWUx49UsJTSW0r5QJJLk7w+ySFJbktyY5LFSX4jyf+WUs4rpexM8nZNp30XJrk5yeYk5yT5vSQXl1J+UEo5cifqn/YGL/V5JFxzwOlJkqPv+8mWy5+6nXLHdzOzf31qT2+u3f8p22zb2DszN+57cpLkpLvOz+z+dduVP+3WrydJNszYLTftc+KubTyT7vh7LkqS3L7n43PPHkdst/26/U7Nit0WJ0mOu+dHE6r7uv1Ozco5i7fbfskh52ZD76z01IEce+/F22yb0b8hT1jSzP182UHnZMOM7U9xFx7+nCTJ7P71Oer+K8bVNqY2/ZKpSL9kqtI3mYr0S6BtpnvA+/Fa61mj3F45XKEh+zwuyeOSXJRkRpKPllJ27+x3ZZK/7hT7aCll3tC6SiknJvnDJDXJq2ut9w3XliRvHOH1u/d5JFze9Rqn11oPTPLUJA8k2SfJh0cp+5kkv51kY5I/SLJXrfWEWutJaQLeVyV5KMmLkny9lDLRKUPe2NXGU2qth3bqf0OS+5KcmeSSUsrRE6yfR8iyuftsWaztiAevGXafmZs35MDlNydJbhv85rzj7j2OTH/vzFHL775uWRatvnfY8rRb3+YNOXDFLUmaeZiHVUpuXXxskuTwZdeOue49Vy/JwvXLR617U9/s3LXH45Ikhy29bpttB664JTM6o9xHKr9yzuIsnbvfsOVpL/2SqUi/ZKrSN5mK9EugjaZ7wLtL1FpvT/KKzsOFSZ7dtfkdSa5MM3r1b7vLdQLNT6SZC/mfaq3ff6TbuivUWi9I8tbOw6eVUra7br6U8ookL00TXL+o1vruWuvqrjo21lo/keRZSdanCY3/dBe2cVmt9YNpRhvflOZzOa+Uos9PIQ/OO2DLz4sfvmfE/fbqBLTL5u0/Svl7Ry7f2bZ0SHnabfHqJVtGlz84ymf74Pymn8zbsCqzN47tMrW9Vm/tj939bPu6m9ddvGbb/rdt+dHatn9n/5H7L+2iXzIV6ZdMVfomU5F+CbSRsGsXqbXelGY0atJM2TD4/KY0UzX0J/mtUso5XcX+KMmJaaYt+KNHoZm7Uve1Iod1b+iEqIMB8KdqrV8ZqZJa6yVJ/qbz8P8rpczflY2std6fZiqIJDk2yQt2Zf3snNVdi7TN3/DQiPvNW78iSTPNwsbeWduVn71xzZZvsocv/1Bn/90n3limnHldfebh2XuMuN/Ds3bf8vNo/azb/A0ru+refcT9Vs9qXnd2//rM6F+/Xfl1M+ZsGWU+WtvmjbFdTH36JVORfslUpW8yFemXtE9JenrcpvkqawLeXaQTag4mT2u7t9VaL0/yrjS97WOllDmllGPShKCDUzO0bfbz7sl+1g7Z9uQkh3d+/scx1PXBNPPmLkzy3J1v2rZqrRcnuaTz8Hm7un4mbmPv7C0/z9i8ccT9urdt7NtaZrD8jIGRy3aX39g3a9T9aJeZXX/s9veM/Afupq4/frvLjLXuTROoe/Dn0cp2l5/Zv2FM7WLq0y+ZivRLpip9k6lIvwTaSMC76zwjyW6dn4dbnO0vk1ydJvj82yQfSzIzyYdrrd99VFq4a/185/7hNIvDdTuzc78yyWU7qqjW+kCSwaVHz9glrdveBZ37p4y6FwAAAAB0lFLOLaV8pZTyYCllXSnlhlLKX5ZS5k6wvoNLKe/v1LO2lLK+lHJbKeUTpZTjJ1LndA9431ZKqaPc3ryjCkop+5RSXprkU52nvldr/cHQ/WqtG7N1qoY3JDktyR1Jfn+XvZvtjfr+kowrWC6l9JRSDi2l/Em2tvvvaq3rhux6YOf+tlprHWP1gyHxgaPuNXF3du73GW2nUsrrSimXjuWW5AmPUFunjZmbu77BHuUSoxG/wd7sG+zprHs0d98oo7hHGgE+1rpHGyE+4ujyPqPLpyv9kqlIv2Sq0jeZivRLoFsp5Y1JvpPk59KsIXV9kkOTvCXJT0ope46zvtOTXJPkjWkGgd6ZZu2ofdKs73VZKeXF421n33gLPMbcla3B33CGXfWpE44O1Z/k02k+oGHVWi8tpfxtkj/pPPWa7oXHHgE7en8Lk4ywLOgWTxvh/a5I8p5a618Ps21wHt3xvLfBKSoWjKPMeAy2ZUdz/O6X5ORHqA0MMW991xxUs3bPrP4lw+63ujP31axN6zJz89aQdrD8+plzs6lnxojz8A7OvTs4Fy+PDau75z1bvyIPzh/++6HuOdG650obzcOzuuaHXv9Qls3bbdj95m1o5ode3zc7m7r++B4sv9umtenbvHHEOdIG27Z6jO1i6tMvmYr0S6YqfZOpSL8EBpVSTknyvs7D1yX5aK21llL2T/KlJKck+WiSF46xvpImO5yf5KIkv1JrvbOzbWGaKUx/Ncm/lFK+VWtdOWJlQ0z3Ebwfr7WeNcrtvBHK/bBzuzjJYCK1IclFtdZVO3jN/xn8odb6P6PtuAuM+v4yShjdZVW2vt/LOo+TZmqG741Q5uHO/bxxtHVwWPuOjt9EDQa7O6r/vjTvcyy3oXMPM07dq8AunT/KKrKdFWIXDVkFdtvyO15FdrFVZB9Tls7bNwOdifRHWyF4r4ebfrJ61oKsnzm2K2i6VzXu7mfb19287tK52/a/bcuP1rZ7O/uP3H9pF/2SqUi/ZKrSN5mK9EvappSk9BS3R2aNtbemyU4/U2v9yOBV6rXWe5O8NMlAkl8qpZwwxvqOSXJk5+fXD4a7nTpXJnlVmgGQC5KcPZ6GTveAd0K6QtLTkuyf5FeSzEjyz6WUMaX2LXJ51/s9Jcm+Sf4mycFJvlZKOWyYMnd37g/rfDsxFoMd/O5R95q4Qzr394+2U631w7XWU8ZyS3LDI9TWaWPPNfdnwbplSZJbFx877D4be2fm7j0flyQ5bOl122w7cMUt6etcfnTr4uEHo6+cvWeWdf6wGVqeduvvnZW792hOHUc8eO3wO9Waw5c2225dNHwfG87yuftk5ezmSpvDR6h7Rv+GHLTi5iTJbYuP2Wbb3XscmU09Mzrlrxm2/IJ1y7J4zX3Dlqe99EumIv2SqUrfZCrSL4EkKaXMS/KznYcfGbq91npzkv/tPBzrlArdw/Z/OkydG7I1F5sxxjqTCHh3Wm18NlunXfhgKWVH0wC0Vq11Xa31j5J8Oc03Ch8cZrcfdu4XZgzTHZRS9k5ydOfhhbuincMY/Obj4keofiagJDnunouSJNfvd2oe2m3RdvtcdvC52dg3O2Vgc469d9uPb+bmjXn8kmYdv8sPflrW921/idOPDm/OxzP71+Wo+6/YtW+ASXf1AacnSQ5ZfmP2f+jW7bYfveTS7LFuaZLkmgNOG3vFpWyp+5glP8nCtUu32+WUO7+bWZs3ZKD05Nr9t12/cVPfrNywb3P6O/mu72XWpu0H/J9+6zeSJBt6Z+emfU4ce9uY8vRLpiL9kqlK32Qq0i+BJCclmZXmiv0fj7DPBZ37sZ4IbkwyuI7VGUM3llL2SzMv7+Y0V46PmYB313l/ktuS7J3kdye5LY+G30/T4X62lHLOkG0/TjL4r+Bvj6Gu1yfpTTN9wtd3Ufu26ExgPRg0f2lX1z9drO+bk7Uz5m25pTSnj/7emds8v7F324n8LzjyeXnXcz6Sdz3nI8MGuE++7X8yd/3KbOqblf885Y1ZsuDgJMnm0pvLDn5aLjjq+UmSE++6IHuufWC78mff/N+Z0b8+q2fvnv885Q1ZPmfvJM3I3x8c+XO5/OCnJknOuOVrmd1vVo3Hmqv2Pz0PzDsgJTW/dPmHcuiy65sNdSBPWHJJnnPtp5Mktyw+LrcvOnqbsmff/KX8yTdemz/5xmuH/eP64kOfldWzFmTm5o15yWUfyL4r70iS9Az05+Q7z89Tb25OJ5cfeHaWz91+/cbvH/kL2dg7K/M3rMyLL/un7LGmuYBgRv+GnHXLV3LyXd9PkvzwiOdm/YwJLb7KFKVfMhXpl0xV+iZTkX4JJDmqc39nrXX4BX+2jsJ9/FgqrLU+nOQvOw8/UUp5USllUSllfinl3CRfSzNy95211jvG09jpvsjaLlNr3VRKeVeSDyf5v6WUvx/PZMhtU2u9sZTyuTRzjrwtyfld2wZKKe9I8rEkLy+l/Fet9SvD1VNKeVKSP+o8fN8Y5jAel1LKPkk+2Xl4dZIv7sr6p5OPn/mWrJqzeLvnLz78Z3Lx4T+z5fFxd1+Yn7/6k2Oud3b/urz40g/ks6e+OUvn759PnvmWzOxfl/6eGRnoaU5Rhz14bZ5xw+eGLb/7umX5xSs+ki+e+LrcvedR+cjT/iqzNq3Nxt5ZqT29SZLj7/5hnnLbN8fxbmmL2tOb805+Q37tJ+/N7uuW5Vd/8vfZ2DszpdYti+4tWXBQvvTEV4+77g0z5uRzJ78xv3LJ+7LX6vvyqovekQ29s9M3sCm9dXOS5NZFx+TbR79k2PIr5yzOF058bV5wxYdz8Iqb8/oL3pr1fbtl5uYN6akDSZIrDzgjPzrsZ4YtT3vpl0xF+iVTlb7JVKRfQqs9oZRy6Tj2/0it9cPDPL9n5375KGUHt+0x1hertb6zlHJfmoGTQ9f+uinNwmufHWt9gwS8u9Yn00zAfGCSN2VrKv9Y9Y408w+fU0o5q9b6g8ENtdaPl1J+JslLkvxnKeUtST5Ua12dJKWUmWlWBvz7JLPTTOvwV7uqYaWURZ3XfmuS/ZKsSPLiwQmxmVr2XXVnfvOCt+VHh/9sbtn7hDw8e4/M2Lwhez10W46/56KccPcPUzLyR3fEg9fkVT/8i/zosJ/J7YuPyepZCzO7f232WXVXTrzz+3nC/eO6soGWWTlncf7lzLflKbd9K4+//7Lsvm5ZBkpP7luwf67d79RccsjTt3xZMF5LFh6Sj5715znt1m/kyAevyoL1K7Kxd1aWzt8/V+1/eq488Mwto9mH89O9js+/nPlnOf3Wb+awZddl3oaVWd83J0sWHJTLD3pqbtz3lIm+baY4/ZKpSL9kqtI3mYr0S9qkjNJfpqE5GcN0oV32G+H52Z37jaOU3dC5336+yBGUUmakmYZhzyT9aWYD2JhmbarHJXl1KeWHtdZxrVFVpmPeVUo5P8nTktyV5M7R9q21ntUpc06S73aeG3HhsFLKm5L8Q5oU/9DO8Ovu7WOqZ5h6x1yu6/39ea317ROps5Ty9jQjc79Xaz1nlDo+n+QFSb5da33WkG19ST6Q5HVppltdn+bbiM1pOu7gXMVfSPLrtdY143kvpZTBzntNksHR0rOTLM7WRdWSZk6UV9Zat5vAemd0vhE6+YjMyvt6D9nh/vBoeedztpv/HQAA4DHnygtemzUrb0qSyzqLoU8bg5nEE/dfnO/+nxdNdnMm3bkf/M9cee/SJFmb5IZxFB12BG8p5feT/G2Si2utw86xW0p5TpppFVbXWse0Hlcp5StJfi7NFKW/WWu9t/P8Hmmmf31ZmoXWjhmaKY5muo/gPahz25U+mmbBtX3SzD/7zl1c/1TzV2kC3meWUk6rtf5ocEOttT/J60sp/5LkNUnOTXJEmrmf70/y30k+WWv9zk624biun1enCXvPT3JJkvNqrSNNhg0AAADAY8cNuyjsX9G533OUfQa3rRhlny1KKc9LE+4uTfLS7qlda60rSimvSvKkJE9I8oYk7xprY6dlwDvaiNRRypyfZhTqjvZbl2Tfna1nZ8qN9f2NVmdntOzbx1DHZTtqV6310iTjmf+ku+w5o2wb93EEAAAAgB24qXN/cCllxggLrR0xZN8dObtz/+Ph1u3qrO/13TQB75PG01iTdAAAAAAAbHV5mrlxZyV58gj7DAa2F42xzjFN49Axe8e7bCXgBQAAAADo6Mx/+83Ow9cO3V5KeVySp3ce/ucYqx0c6fvkUsrCYeqckWZ60yS5ceytFfACAAAAQHv1FLdHxl8mqUl+vZTy2lJKSZJSyn5J/iNNrvrFWuuV3YVKKbd3bkNXvzsvyYYki5P8Ryll/64yeyT5eJrpGWqSfx1PQwW8AAAAAABdaq0/SfI7nYcfTnJHKeWyJLclOSXNKNvXDFP0kM5t3pD67k4zGrg/yXM69d1YSrkmyX1JXpYm3P3DWuvl42mrgBcAAAAAYIha6/uSPCvJ15PMTXJMkjuS/HWSJ9Val46zvk+nWUDtE516DknyuCT3J/l/Sc6utb57vO3sG28BAAAAAIDpoNb6nSTfGcf+o84Z0ZnS4VU7265uRvACAAAAALSUEbwAAAAA0EalpPQYv5nyiC201gp6AAAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJayyBoAAAAAtFTpmd4LjGEELwAAAABAawl4AQAAAABaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtFTfZDcAAAAAAJigYvzmdKcHAAAAAAC0lIAXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCmLrAEAAABAG5WS0lMmuxWTr0zvY2AELwAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJayyBoAAAAAtFWP8ZvTnR4AAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAt1TfZDQAAAAAAxq8kKaVMdjMm3XQ/AkbwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCmLrAEAAABAK5Wkx/jN6b7Mmh4AAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpSyyBgAAAABtVJLSM70XGEsy3ddYM4IXAAAAAKCtBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABaqm+yGwAAAAAATFAxfnO60wMAAAAAAFpKwAsAAAAA0FICXgAAAACAlhLwAgAAAAC0lEXWAAAAAKCtespkt4BJZgQvAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FICXgAAAACAlrLIGgAAAAC0USkpxfjNlOm90JweAAAAAADQUgJeAAAAAICWEvACAAAAALSUgBcAAAAAoKUEvAAAAAAALdU32Q0AAAAAACaop0x2C5hkRvACAAAAALSUgBcAAAAAoKUEvAAAAAAALSXgBQAAAABoKYusAQAAAEBLlR7jN6c7AS/spCULD8k7z/7IZDcDtnjHLW+a7CbAsP70yPdPdhNgO7Pm7DbZTYBhbVi7brKbANsppUx2EwAYhogfAAAAAKClBLwAAAAAAC0l4AUAAAAAaClz8AIAAABAG5XS3Ka7aX4MjOAFAAAAAGgpAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICW6pvsBgAAAAAAE9Rj/OZ0pwcAAAAAALSUgBcAAAAAoKUEvAAAAAAALSXgBQAAAABoKYusAQAAAEBblTLZLWCSGcELAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpSyyBgAAAABtVEpKj/Gb032hOT0AAAAAAKClBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABAS1lkDQAAAADaqhi/Od3pAQAAAAAALSXgBQAAAABoKQEvAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FJ9k90AAAAAAGCCespkt4BJZgQvAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FICXgAAAACAlrLIGgAAAAC0UElJKcZvlkzvheb0AAAAAACAlhLwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC1lkTUAAAAAaKOSpGd6LzCWJNN8jTUjeAEAAAAA2krACwAAAADQUgJeAAAAAICWEvACAAAAALSUgBcAAAAAoKX6JrsBAAAAAMAEFeM3pzs9AAAAAACgpQS8AAAAAAAtJeAFAAAAAGgpAS8AAAAAQEtZZA0AAAAA2qqUyW4Bk8wIXgAAAACAlhLwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC1lkTUAAAAAaKNSkh7jN6f7QnN6AAAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJYS8AIAAAAAtFTfZDcAAAAAAJigYvzmdKcHAAAAAAC0lIAXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCmLrAEAAABAW/WUyW4Bk8wIXgAAAACAlhLwAgAAAAC0lIAXAAAAAKClBLwAAAAAAC1lkTUAAAAAaKWSFOM3k+m90JyAFxizmf3r85TbvpXH339Zdl+3LAOlZPmcfXLdfqfmkkOenoGeiZ9S5m5YldNu+2aOfOCqLFi/PP29M7J03v65av/Tc+WBZyVl9JP17msfyOm3fjOHLbsu8zaszMbe2Vmy4OBcftDZuXHfUybcLtphQ5mVH+zx9Fw394lZMWNRSh3I4k0P5PjVl+W0h76fvmyecN3Xzzkulyw8I/fMOjjreudkt81rcuD6O/PkVT/IUWuvH7bMrbsdmY8f8KYxv8bTl30tT1/xjQm3kanJOZOpaMamdXnSzV/P4+79SRaueTC19GTFvH1zw0Gn5fIjnr1T/XLO+pU59aav5vAll2f+2mXp752ZZQsOyHUHn52rD33aiP1y99X354j7Ls1BD16fvVbelTkbVqaWnjy82565Z9FRueLwZ+aBPQ6bcLtoB+dMpqKZ/evz5Nu+lccvuSy7r1uagdKTFXP3znX7PXmn++WcDaty2q3fyJEPXpUF67b2y6sPOGNs/XLNAznttm/msKXXbu2XCw/OFQc9Vb+EaajUWie7DdBKpZRLk5w8d+FReeLZH5ns5jziFqxblpf9+D3Zfd2yJMnG3pnpqQPpG+hPkixZcFD+/dTfyfoZc8dd974r78ivXPK+zNm0JkmyoXdW+gY2pbcOJEl+uvjYnHfyG0b8A+qIB6/OC674cGZu3pgkWd83OzP7N6QnzfntygPOyFePe/kO/0h6rHjHLWMPFh8LVvTtkY8d8KY8NGNRkmTGwIbU9KS/Z0aSZL/1d+VV9/5jdhtYN656B1LyX/u8LFfOPzVJUupAZg+sy4ae2RkovUmS0x76Xn5+6X9tV/bO2Yfl3/d99aj1b+yZmY09s5Mkv37vh/L4tdeNq31t9KdHvn+ym/Cocc5sj1lzdpvsJjxq5q9dml/+/juycO3SJMmm3pkptaZvYFOS5P6Fh+S8s/84G2aOv1/uveK2vOiHf5vdNq5Okmzsm53ezZvSW5sv2G7b+/h88Yzf2a5f7r/sprz0e3+5zXMb+mand6B/y+/LQEoufsIv5MJjXjjudrXZhrXj+3erzZwz26NMk/eZNP3y1y5+9yj98uD8x5Mn3i9/+Sfvy5xNzTmz6Zf9W86Zty4+Nued8tsj98sHrs4vXvGhrn65W2b2r+/ql2fma8dPj355xfdfkzUrb0qSy2qt0yrZHswkTjr8oFz4d38w2c2ZdGf8zt/m8lvvSqZhX0iM4AXGoAxszksu/cfsvm5ZHp61MF8+/pW5ffExSR3I0UsuzXOv+Uz2XXVXnn/Vx/K5U8YXLs7atDYvuewDmbNpTZbO3TdfOuFVWbLw0PQM9Oekuy7IM2/4XI5Yem2edf1n881jf2278gvXLs0LrvhIZm7emLt2PyJfPf4VWT53n8zoX5/TbvtWzv7pV/LEey7Msrn75keH/+yuOiRMEZvTk3/d77V5aMaizO9fmRfe/5kcue6mDKTk2nkn5ot7vzT3zT4o5+3zG/mN+z48rrq/vejnt4S7pz90fs5d/o3MGVibjWVmfrzwzHxr0fPzo92flkWbHszpK7+/TdmD19+WP7r9LaPW/5n9Xpsb5x6XBZtW5HEjjASmnZwzmYrKwOa84MK/y8K1S7N69u75+pNelzv3Pi6pA3n8PT/Osy77WPZZeUee+5N/zhfO/L1x1T1z09q84ML3ZreNq7Ns/v75+pNel/v3ODw9A/054bbv5pyr/i2HPXB1zr3yX/Odk16xTdmegc0ZKD356b4n5fqDz8hdi4/O+lnzU+pA9l5xe865+t9y4LKbcvoNX8yqOYtyzaHn7LqDwpTgnMlUVAY258WXfmBLv/zKCa/apl8+5+pPZ99Vd+Z5V34s5z1p/P3yxZd+IHM2rc7Sufvmy0989ZZ+eeJdF+SZ1382h4/aLx/ML3a+dLhrjyPzteNfnuVz9+30y2/mrFu+kife88Msm7dvLtYvYdowScejqJRyfimldm4X7WDfBaWUNV37v72UsrCUcnfn8ajJQSllz1LKks6+/7fr+TrG2/uG1Pf2zvPnT+B9n1RK+WAp5YZSysOllLWllFtLKZ8qpZy7g7KDx+ztw2wb2uaBUsqqUspdpZTvllLeXUp58njby/ZOuPei7L36niTJ50/8reaPmyQpPbl+v1Pz9WNfliQ58sFrcuiy8QVVT7n9fzJvw6ps6pmRz57ypixZeGiSZKCnL5cecm6+f+TzkyQn3X1B9lxz/3bln3rLf2fm5g1ZPWtBPnfKG7N87j5Jkk19s3PB456fyw88O0lyxq1fy+zOyA0eOy6f/+TcP+uAJMlLl3wsR667KUnSk5rjV1+e5z/w/5IkN809Nj/d7agx17umZ24uXHhOkuTo1Vfm55Z+PnMG1iZJZtaNOeuh7+bMh/43SfKdPZ+b9WX2uNq9qndBbp5zdJLk5Icv3jLagscG50ymomPvvCB7rborSfKlp7ypCXeTpPTkxgNPy7dPelWS5PD7r8zBD1w7rrqfdNPXMm/DymzqnZnPn/G7uX+Pw5M0/fKKI56VC4/5pSTJCbd/N3s8fN82ZR+au08+8ay/yZdOf3NuPuDJWT9rfpKklp7cv+fhOe/sP84DCw9Kkjz5xi9P7M0zpTlnMhUdf8+F2fvhpl9+4aTXb9cvv3HcYL+8OocsHWe/vO1bzTmzZ2Y+96Rt++Vlh5ybCx7X9MsT7/p+9lyzZLvyT735S51+uTDnnfLGLJ+7b5LBfvkLufygpyZJzvipfgnTiYB38pxWShktbXhxkjndT9RaVyZ5befhW0spx45S/v1J9knygyQfGGb7NUl+OMrt1jG8h1GVUnpLKR9IcmmS1yc5JMltSW5MsjjJbyT531LKeaWUOSPXtEOD7+XCJDcn2ZzknCS/l+TiUsoPSilH7kT9097x9zTfR9y+5+Nzzx5HbLf9uv1OzYrdFidJjrvnRxOq+7r9Ts3KOYu3237JIedmQ++s9NSBHHvvxdtsm9G/IU9YclmS5LKDzsmGGdt3owsPf06SZHb/+hx1/xXjahtT3+ULmu9wDlt7Uw5ef/t2209YfVn22NRcinx5ZzTuWNw656gtUzyc3Qlyhzp7xXeSJOt75+T6ecePp9m5bMFTMlB6U+pATlk1vt8Zpj7nTKaiY+/4QZLkzr2Ozn2LHrfd9hsOPC0PzdkrSXLMnT8YX92d/W888LSsmrv3dtsvP+LZ2dg3Oz11IEffdeE221bP2TMPzdt3xLoHevpy/UFnJkn2WPNAZm0UVjzWOGcyFe24Xz55S788/t5Rx25t57ht+uVe222/5JCnj9ovH7+lXz5t2H550ZZ+uS6P0y9h2hDwTo4bOve/Mco+Lx+yb5Kk1vq1JJ9KMjPJx0vpTATZpZTyc0l+Lcm6JK+qtTPB1LbeWGs9a5Tbrpgo8TNJfjvJxiR/kGSvWusJtdaT0gS8r0ryUJIXJfl6KWWiU4Z0v5dTaq2Hdup/Q5L7kpyZ5JJSytE79W6mqb7NG3LgiluSJD/d67jhdyolty5uvm84fNnYR/3suXpJFq5fPmrdm/pm5649mv+IHrZ02zlKD1xxS2Z05g0cqfzKOYuzdO5+w5an3TaWGblzdjNK7KgR5q8tyZbpD26Z84Qx1/1Q355bft5r4/YjJ5JkzsDazO1fNe66a5LL5p+WJDl83U3Zo3/5mMsy9TlnMhX19W/I/suaKxxu2+eJw+9USm7f54QkySH3Xz3muvd4+L4s6MxPeVun/FCb+mbn7kXNuIZDHrhmzHUP2tw7Y8vPPcP+WUtbOWcyFXX3y1v3GuFL/FJyW6dfjOez7+6Xt47SL+/ec6R+eXNmDGwctXx3vzx86fiuyKClSpr5lqf9bbI/iMkl4J0c/y9N6PmyMsws9aWUw5OclWbk63Bn5DcnuTfJk5P87pCyC5MMTjT51lrrzbuu2WNXSnlFkpemyTJeVGt9d6119eD2WuvGWusnkjwryfokT03yp7vq9Wuty2qtH0xyUpKbkixMcl4pRZ8fp8Wrl2y5fPzBefuPuN+D85vL5OdtWJXZYxxds1fncrym7gNGqbt53cVr7h2l/Ght27+z/70j7kP7PDhz39TOr/Q+G+8bcb99NjTbVvctzNqe8V8sUEf5S2Hw9e+fOXL/G+q23R6X5TOb0RpPWjW+ER9Mfc6ZTEV7Pnzvln65dMGBI+43uG3ehpWZvXH1iPt1W7zq7u3KD2dZZ9uiVfeMuM9IDnyw+aJu9ezds27mvHGXZ+pyzmQq2qZfzh/ls+/0i+acOYF+OX+Uftnps4tWb/s3bnc/G7X8YL/WL2HaEHZNjmVJvpZmyoJzhtn+G2m+e/j0cIVrrQ8leV3n4Z+XUh7ftfm9SQ5IclGSv981zR2fToj61s7DT9VavzLSvrXWS5L8Tefh/1dKmb8r21JrvT9bR0ofm+QFu7L+6WDehoe2/Pzw7D1G3O/hWbtv+Xl+V5nRzN+wsqvu3Ufcb/Ws5nVn96/PjP7125VfN2NO+ntn7rBt88bYLtrh4d6FW35e0L9yxP0WbO7qZ30LR9yv2+5do2pHCm8f7p2ftb1N0LBqjPUmyaULmtG7czavztGrrxpzOdrBOZOpaN76FVt+Xr3byP2ye9vcdStG3G/kuvcccb+HO9tm9a/bpl/uyH7Lbs6R916aJLn60HOmxYrw04lzJlPRvPUPbfn54Vmj9MuuPjvWz3/buncfpe5m2+wh58zB8jvsl522zVs/8t/IwGOLgHfyfKpz//LuJzsjen8jyaYk/z5S4U5o+q9JZqeZqqGnlPLMJK9OsiEjT83waHhyksM7P//jGPb/YJp5cxcmee6ubkyt9eIkl3QePm9X1/9YN7PrD4r+npH/iNjU9QfGzDH+x617v00TqHvw59HKdpef2b9hTO2iHTb0zNry84y6ccT9Bi9jG1pmNIevvSl9ncsyz9/z2cPu8709tj6/oWdsi6yt69kt185tLo9+4sOXpC+bx1SO9nDOZCrapl/2jnwe7J9Av5yxqatfjhI2bFP3prHVvduGVfm5n3wwPalZPm/f/OSonxtTOdrDOZOpaObm7nPm2PrOrLH2y81jO2eO2C83j7dfjv0LNaDdBLyT56tJliZ5YSllbtfzZyc5LMnXaq1Ld1DHm5IsSXJGmukNPtJ5/m211htGLPXIO7NzvzLJZTvaudb6QJLBpUfPeITadEHn/imj7VRKeV0p5dKx3JKMfdJNoFXmDqzJaSu/lyT56Zwn5Lx9fj0Pztg7m9OTh/r2yDcXPS8XLzw7vbU/SVLG+H3alfOftOU/sKZnABjZjP71+cWL/j4L1y7Nhr7Z+cqTfzub+sb2ZRoAwHQz0UWt2Em11k2llP+XZhGyX0qzIFmydUTvsNMzDKljRSnlt5J8MclfdJ7+SZL3jKEJ3x1m+t9uJ9VarxhDPcMZnIDttlprHWOZW5Ic11V2V7uzc7/PDvbbL8nJj1AbWmlj13+m+gZGGSW5eeu2jWP8D1j3fjMGNmZjz27jqnvw5xmjtKu7/Ma+sY3epB1mDWwdKbOpjDIComuEQ3eZHXnWsq9kZd8euXr+Kbly/qm5cv6p22w/aP1t2W/DPfnxwrOy28C6MdV5aWdxtQPX3z7qvMG0l3MmU9E2/XLzyOfBvgn0y00zuvrl5pH75TZ1zxi97r7+9XnBhe/J/stvyca+2fnCGb+XB3c/ZEztoV2cM5mKNvZ2nzPH1i83jLVf9o7tnDliv+wdb7/0xdi00WP85nQn4J1cn0oT8L48yWdKKXOSvDjJ8iQjzlvbrdb636WUf0/yq2mmdXhlrXUs1/xek2aE7UjGtrLG8Abn0R1PHYOz0i/YidcdzWBbdjTH730Zw6jjjickGf+KTS2zunvOs/Ur8uD84TP47vnQRptPqtvDs7bOWzp//UNZNm/4P3DmbWjm91vfN3ub0TuD5XfbtDZ9mzeOeAnVYNtWj7FdtMP8rrl1V/UtzL4bh19EYlXXXL3zR5mrd6jeDOSX7/9UTnz4J7li/qlZMuuAbCozsrB/RY5bfUWevPIH+cLeL02SLNr0wA7ru3fWgblv9kFJjN59LHPOZCpa3T1P5LoVWbrw4GH3m9c17+6aUebqHbnu5Vk+Y/hFf+ava+Y239C326gjcfv61+eXLnxvDlp6Yzb2zsrnz/jd3LP48SPuT7s5ZzIVre6as3n+hhV5cIQxSPO75yAf4+e/bd0PZdmM4fvl/M5cu+uHnDMHy++wX3batnr22NeJANpNwDuJaq2XlFKuS3JuKeXAJE9LE0D+U62jTCi5vf9JE/DeW2u9doxl3lhrPX9cDR67hzv341nmeHCailW7uC2DBoPdUeuvtX44yYfHUmFnmobH/GjfpfP2zUBKelKz1+p7c+texw+7314PNyvCrp61IOtnzh12n6G6VzTea/U9WTZvvxHqboK7pXO3Xexq2/L35r6Fh45afrQVkGmfvTYuSakDqaUn98/cL0etvX7Y/e6f1fSref0rM2dg7bhf5/Frr8vj11437LZ7ZzUhycHrbtthPZfOPz1JMnNgfY5/+NJxt4N2cM5kKlo+f/8t/XLxqrtz+75PHHa/xavuTpKsnrUw62eO7c+4pQu2Bh+LV92d5QuGD3gXdepeNsL2pDvcvSGbemfmC2f8bu5ZbEasxzLnTKaibfrlw6P0y9XNZ9+cMyfQLx8epV+ubvr80O3d/Wyvh+/JfbsfNnz5wX6tX8K0YQz35PtUms/h17N1eoZPjbx7K9zduT+s7GAeiC5HDim7qw1e13f/I1T/Y1Z/76zcvUfz8Rzx4AjfH9Saw5c2225ddOyY614+d5+snN2sqn34CHXP6N+Qg1bcnCS5bfEx22y7e48js6lnRqf8NcOWX7BuWRavuW/Y8rTbzLopB6+/NUly85yjh92ndm07cu2unZr83pkH5oFOeHzSwz8edd9NZUaunH9KkuS41Zdn1ri+w6NNnDOZivr7ZuXeRUclSQ69/6rhd6o1hz5wdZLkjn2GDzOGs2Levlm126JR6+7rX58Dl93U1L33cSPu80sXvicHLb2hM3L393L3XsOf23nscM5kKurul4cvHf6zT605rNOvxvPZb9MvR6h7Rv+GHLh8pH75uC3Tjw3+XgzV3S9vXTz23xmg3QS8k+9fkwwk+T9JnpHk+lrrTya3STvth537hRnDCNdSyt5JBv+Cv/ARatPZnfuLH6H6H9OuPqAZeXjI8huz/0O3brf96CWXZo91zZqA1xxw2tgrLmVL3ccs+UkWrt1+XcFT7vxuZm3ekIHSk2v333aNvE19s3LDvk0XO/mu72XWpu1HZ55+6zeSJBt6Z+emfU4ce9tohZNWNcHqbbs9LnfN2n5+xmvmnZQVMxY3+z68606tG8uMfGnvlyRJjl19efbawRQN1859Ytb3NjO6mJ7hsc85k6no2kPOSpIc/OD12Xf5LdttP+qeH2f3Nc257LqDzxp7xaXk2s7+T7j7R1mw5sHtdjnp1m9nZv/6DJSeXH/Q9uvpbg13O9MynCncnU6cM5mKtvTLZcP3yycsuSR7rGvOd1fvf/rYKy4l13TqPvq+4fvlyTvolzd2+uVJd56/w355s34J04aAd5LVWu9N8u00i4v1ZAyLq7XAj5MM/iv422PY//VJetNMn/D1Xd2YUsrp2Ro0f2lX1z8dXLX/6Xlg3gEpqfmlyz+UQ5d1LoWvA3nCkkvynGubbnvL4uNy+6Jt/0N29s1fyp9847X5k2+8dtg/YC4+9FlZPWtBZm7emJdc9oHsu/KOJEnPQH9OvvP8PPXm5iO7/MCzs3zu9mvkff/IX8jG3lmZv2FlXnzZP2WPNc0g7Rn9G3LWLV/JyXd9P0nywyOem/UzxnbpFO1x0sM/zj4b7kktPfmP/V6dn+7WjFAbSMk1c0/MF/f6lSTJUWuuzRHrbtqm7Hf2fE7ecuT785Yj358VfXtuV/ddsw7J+Xs8Kw/M2Df96U2S9Kc3N805Oh894M25e/ahWbhpeZ734Hk7bOclC5s/5PfecG8OXn/7zrxlWsA5k6no2oPPzoMLDkpJzfN/9P4c/EBn5FcdyFF3X5xnX/axJMmt+5yQO/fedsTX6dd9Pr/7+V/P737+14cNcC856rlZPWthZmzemBdc+N7svaKZtqZnoD9PvPXbOeO6/0qSXHXouVkxf9vLjfv6N+QFF/5dE+72zc7nz/x90zJMM86ZTEVXH3BGHpjf9MsXXPbPOWRpV7+875I855pmjfSf7nVc7li8bb886+Yv5Y+//pr88ddfM3y/POzZWT1rYWZu3pgXX/r+bfrlSXecn6fe9N9JkisOemqWz913u/Lff9zzt/TLF136j9v0yzNv/nJOuvN7SZIfHvlz+uV0UorbNGcO3qnh/UknPWhG9LZarXWglPKOJB9L8vJSyn/VWoddNK6U8qQkf9R5+L5a6y6dg7eUsk+ST3YeXp3ki7uy/umi9vTmvJPfkF/7yXuz+7pl+dWf/H029s5MqTUzBjYlSZYsOChfeuKrx133hhlz8rmT35hfueR92Wv1fXnVRe/Iht7Z6RvYlN7OeoG3Ljom3z76JcOWXzlncb5w4mvzgis+nINX3JzXX/DWrO/bLTM3b0hPHUiSXHnAGfnRYT8zwXfPVNabgbzsvo/mYwe8MQ/NWJRPHPDbmTGwITUl/Z3L1/Zbf1defP/4vzt7uG9Bvr3oefn2ouel1IHMHliXDT2zM1Ca0/U+G+7Ny+77SOZtHn09yWUzFueO2UckSU5Z9aNxt4P2cc5kKqo9vfni6f9fXnLBX2fh2qV58Q/elU29M5Oufnn/wkPytVP/z7jr3jhjTr5wxu/mRT/82yx++J78+nf/LBv6Zqdv89Z+efvex+f8E35tu7JH3fOTHNwJTsrA5jzv4g+M+lpfOu1NW6ab4LHBOZOpqPb05j9P/u386o/f0+mXfzdMvzw4X3rib4677g0z5uS8U96YX/5J0y9feeFfbd8vFx+Tbz9hpH65V7544uvyi1d8KAevuDm/9f23DNMvz8zF+iVMKwLeKaDW+tUkX53sduxKtdaPl1J+JslLkvxnKeUtST5Ua12dJKWUmWkWhvv7JLPTTOvwV7vq9Uspizqv/dYk+yVZkeTFtda6q15julk5Z3H+5cy35Sm3fSuPv/+y7L5uWQZKT+5bsH+u3e/UXHLI0zPQM7FTypKFh+SjZ/15Trv1GznywauyYP2KbOydlaXz989V+5+eKw88MykjX3Dw072Oz7+c+Wc5/dZv5rBl12XehpVZ3zcnSxYclMsPempu3PeUib5tWmCP/uV5453vyg/2eHqum/vErJixKD0ZyN7r78wJqy/NaQ99P33ZPO56999wV85a8e3cvtuReahvz6zrnZPdNq/JvhvvzXGrL8/Jqy5ObwZ2WM+l809LLT3prf05cRdOE8HU5pzJVLRq7l751DP+Oqfe/LUcee8lWbjmwdSenixZcGBuOOi0XH7EsyfcLx/Y47B88pnvyqk3fSWHL7ki89cuy6a+WblvwYG57uCzc/WhTx22X5au8+iMgU2ZsWHlqK/TMzD+8zlTn3MmU9HKOYvzsbPenqfc9s0cteTy7L5u6ZZ+ed3+T975fnn2n+f0W7+eIx+4KvO7+uXVB5yx43659/H52Jlvy2m3fSOHLd3aL+9fcHAuP1i/hOmoyLsePaWU85M8Lckba63/OMYy/5nkhUn+vNb69hH2eUWSTyS5o9Z66A7qG/zAr0ky2l/Ql9da39hV7u1J3pakfwfl7qy1ntwp05fkA0lel6QkWZ/kpiSb0yyqNr9T5gtJfr3WumaY9p6f5pht9/5HeC+zkyzO1kXVkuSCJK+stf50lHaPWynl0iQnz114VJ549kd2ZdWwU95xy5smuwkwrD898v2T3QTYzqw5u012E2BYG9aum+wmwHbGvoY2PDqu+P5rsmblTUlyWa11WiXbg5nESUcclAv/4U8muzmT7oz/+9e5/Kd3JdOwLyRG8E5nwy9hvFX/CM/3JVk0Srkt1yrXWvuTvL6U8i9JXpPk3CRHpJlr+P4k/53kk7XW74y10SPofi+r04S95ye5JMl5tdbRl7cHAAAAgJYS8D6Kaq3nTKDMi8awzyezdZ7ZHe07oa9cO6Nn3z7BspcmuXSCZc8ZZZuvjwEAAACY1gS8AAAAANBKZdQ5m6eP6T0GUA8AAAAAAGgpAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUhZZAwAAAIA2Kkl6jN+c5musGcELAAAAANBWAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpSyyBgAAAABtVab5CmMYwQsAAAAA0FYCXgAAAACAlhLwAgAAAAC0lIAXAAAAAKClLLIGAAAAAK1UkmL8ZjK9F5rTAwAAAAAAWkrACwAAAADQUgJeAAAAAICWEvACAAAAALSUgBcAAAAAoKX6JrsBAAAAAMAElTLZLWCSGcELAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpSyyBgAAAABtVJL0GL+Zab7OnB4AAAAAANBSAl4AAAAAgJYS8AIAAAAAtJSAFwAAAACgpSyyBgAAAAAtVFNSyzRfYSzNcZjOjOAFAAAAAGgpAS8AAAAAQEsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICW6pvsBgAAAAAAE1SM35zu9AAAAAAAgJYS8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAtZZE1AAAAAGgri6xNe3oAAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FICXgAAAACAlrLIGgAAAAC0USmppUx2KybfND8GRvACAAAAALSUgBcAAAAAoKUEvAAAAAAALSXgBQAAAABoKQEvAAAAAEBL9U12AwAAAACACSrGb053egAAAAAAQEsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICWssgaAAAAALRVKZPdAiaZEbwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABayiJrAAAAANBKJekxfjOZ3gvN6QEAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABaSsALAAAAANBSfZPdAAAAAABgAkpSS5nsVky+aX4IjOAFAAAAAGgpAS8AAAAAQEuZogHgMeajv/jVyW4CDOv1zzlgspsA21k0f9NkNwGG9Vd/dtFkNwG284wXnTbZTYBt3HrV3KxZOdmtgMlnBC8AAAAAQEsZwQsAAAAAbVWM35zu9AAAAAAAgJYS8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAtZZE1AAAAAGilkmqRtSRlshswqfQAAAAAAICWEvACAAAAALSUgBcAAAAAoKUEvAAAAAAALSXgBQAAAABoqb7JbgAAAAAAMEGlTHYLmGRG8AIAAAAAtJSAFwAAAACgpQS8AAAAAAAtJeAFAAAAAGgpi6wBAAAAQEvVYvzmdKcHAAAAAAC0lIAXAAAAAKClBLwAAAAAAC0l4AUAAAAAGEYp5dxSyldKKQ+WUtaVUm4opfxlKWXuTtRZSikvLaV8o5RyfyllQynl3lLKd0opvzfe+iyyBgAAAABtVJKUMtmtmHyP0CEopbwxyT90XuHuJHclOSbJW5K8sJRyVq11+TjrnJfkC0me2Xnq1iR3JNknydOSPDHJe8ZTpxG8AAAAAABdSimnJHlf5+Hrkhxcaz05yeFJLk1ydJKPjrPOkuTzacLdbyQ5stZ6RK31ybXWQ5IsTvKq8bZVwAsAAAAAsK23pslOP1Nr/UittSZJrfXeJC9NMpDkl0opJ4yjzlckeVaSi5M8r9b60+6NtdaHaq1fGm9DBbwAAAAAAB2daRR+tvPwI0O311pvTvK/nYcvHkfVv9O5/6taa//EW7gtc/ACAAAAAGx1UpJZSTYk+fEI+1yQZqqF08ZSYSnliCTHpRn5+91SylOSvDLJkUlWJ/lRkn+ptS4db2MFvAAAAADQSiUpLtDvWmXtCaWUS8dR8CO11g8P8/xRnfs7a62bRig7OL3C48f4Wk/q3C9L8oYk78q2y8P9QpI/LKX8Uq31u2OsM4mAFwAAAAB4bJiT5ORx7L/fCM/v2blfPkrZwW17jPO19kjyN0m+muQPktySJiR+X5KnJ/l8KeX4WuvdY6xXwAsAAAAAPCasTXLDOPa/b4TnZ3fuN45SdkPnfrcxvta8zn1fmtG/L+gaHXx1KeV5nef3TfLmJL83xnoFvAAAAADAY8INtdZTdkE96zv3M0fZZ1bnft0460ySfxw69UOtdW0p5Z+T/HmaBd7GHPCapAMAAAAAYKsVnfs9R9lncNuKUfYZrs4kuX6EfQafP2yMdSYR8AIAAAAAdLupc39wKWXGCPscMWTfHemeOmKkqR8GR/mOK7M1RQMAAAAAtFBNUkuZ7GZMurrrq7w8TQg7K8mTk/xwmH3O7txfNI4616WZs/fwJN8dZp/B0HjMC6wlRvACAAAAAGxRa304yTc7D187dHsp5XFJnt55+J9jrHNtki93Hr58mDpLkld0Hn5nHM0V8AIAAAAADPGXaQYH/3op5bWdADallP2S/EeaXPWLtdYruwuVUm7v3F40TJ1/nqQ/ydmllLeWUno7ZfqS/E2SJ6aZpuHvx9NQAS8AAAAAQJda60+S/E7n4YeT3FFKuSzJbUlOSXJjktcMU/SQzm3eMHVel+Q3k2xO8hdJ7iulXJxkSZLfT7IpyatqrTeOp60CXgAAAACAIWqt70vyrCRfTzI3yTFJ7kjy10meVGtdOoE6P5XktCTnJRlIclKaYPc/kpxaa/2P8dZpkTUAAAAAaKti/OYjqdb6nYxjTtxa6w5Xvau1XpLkJTvTrm56AAAAAABASwl4AQAAAABaSsALAAAAANBSAl4AAAAAgJayyBoAAAAAtFJJzQ7X9JoGpvcxMIIXAAAAAKClBLwAAAAAAC0l4AUAAAAAaCkBLwAAAABASwl4AQAAAABaqm+yGwAAAAAATEwtxm9Od3oAAAAAAEBLCXgBAAAAAFpKwAsAAAAA0FICXgAAAACAlrLIGgAAAAC0UUlikbXmOExjegAAAAAAQEsJeAEAAAAAWkrACwAAAADQUgJeAAAAAICWssgaAAAAALRSSS3TfIWxJNN9lTUjeAEAAAAAWkrACwAAAADQUgJeAAAAAICWEvACAAAAALSUgBcAAAAAoKX6JrsBAAAAAMDE1GL85nSnBwAAAAAAtJSAFwAAAACgpQS8AAAAAAAtJeAFAAAAAGgpi6wBAAAAQFuVMtktYJIZwQsAAAAA0FJG8AJjNrN/fZ5y27fy+Psvy+7rlmWglCyfs0+u2+/UXHLI0zPQM/FTytwNq3Labd/MkQ9clQXrl6e/d0aWzts/V+1/eq488KwdfiO5+9oHcvqt38xhy67LvA0rs7F3dpYsODiXH3R2btz3lAm3i3bo27g2R//kvBx08wWZu/K+1NKbh/c4MHc84ZzcdPILMtA7Y9x1zli/OnvffWX2XHJT9nzg5ux5/83Zbc3yJMlFP/v7ue24nx21/Ow1y7P3XVdljwduzp7335Q97785s9Y/nCT59kvemwcOPnHcbaJl1q7O7PM+kZkXfCs9992T9PZk84GHZuM5z82GF7wsmTFz3FX2Xfnj9F3yw/TddE167rs7ZeWKlHVrU+cvyOZDjsyms56ZDT/3kmTW7GHL99xzR2b88Dvpu/LH6b31pvSseDDp7cvAor3Tf/yTsuEXXprNRx23s++cKayuWZP6b59Kvvs/yb33JD29ycGHpDz7OclLfjVlxvjPl/Wyn6T+6KLk+muTe+9OHlqRrF2XLFiQHH5EyjnPSH7hhSmzt++X9dKfpL7+VWN+rfKa/5PymtePu41Mff7OZCrqWbcm+33rU9nj0v/JrKX3pPb0Zv0+h2T5k5+T+5/xq6l9E/gbc8X92ePy72bBDT/OnLtuyMwVDyRJNi1cnNWHn5AHnvrCPHz0U0Ys37t2VebfeEnm3nFd5t5xfebccV1mrlyaJLn1lX+ZpWf94oTeK9BuAl5gTBasW5aX/fg92X3dsiTJxt6Z6RvYnP1X3ZH9V92R4+67OP9+6u9k/Yy5465735V35FcueV/mbFqTJNnQOysz+9fnoBW35KAVt+QJ91+W805+w4h/2B/x4NV5wRUfzszNG5Mk6/tmZ/amNTl82XU5fNl1ufKAM/LV417uspXHqDkr788zP/s7mbdqSZKkv292egY2ZtH9N2bR/Tfm0Ou/k++85D3ZNHv+uOo98JYf5PRvvHvC7XrcFV/O8Rd9esLlabee++/JvN/5jfQuuSdJUmfvlmzcmL4br0nfjddk5ne+ktXv+UTq/IXjqnfWZz+WmRd/b8vjOntOMmNmeh5anp6HfpwZV/44sz7/6ax+50czcNBh25TtveayLPi/v7rNc3XO3GTTxvTec0d677kjM7/1haz/1d/K+le+aYLvnKms3ndv6m+9Krmv6ZeZvVuyaWNy/bWp11+bfOOryT99NGXB+Ppl/cwnkx9+f+sTu+2WzJyRrFieXLo89dKfJP/xmeQfPpRyyKHbFp4xI9lz0egvsH5dsnZt8/Mxx46rbbSDvzOZimYuvTdHv/tVmbW0OWdunrlbejZtzLzbr82826/Noh99NTf83kezee7Yz5kzly/JE//g2Sm1bnlu88zdktTMWnpPZi29J4t+/PU8eNYLctvL39Z8CTfEHpf9bw7/xFt3+v0Bjy0CXmCHysDmvOTSf8zu65bl4VkL8+XjX5nbFx+T1IEcveTSPPeaz2TfVXfl+Vd9LJ87ZXyhwKxNa/OSyz6QOZvWZOncffOlE16VJQsPTc9Af06664I884bP5Yil1+ZZ13823zz217Yrv3Dt0rzgio9k5uaNuWv3I/LV41+R5XP3yYz+9Tnttm/l7J9+JU+858Ism7tvfnT46CMuaZ8ysDlP+8KfZt6qJVk7d1Eueu4f5v5DTknqQA6+8Xt5yrf+Lns+cEvO+Oo7870X/vW46183d8+s2PvILN/ncVm+z1F56n+/bcxlaylZM3/vLN/nyKzY56ism7tnnvKtvxt3G2ihzf2Z+6evT++SezKwaK+s+cO/Sf8pZyQDA5nxvW9k7t+9NX23XJe57/yDrP7rD4+r6v5Tzkj/qWel/7hTsvmAg5M585IkZeWKzPzfr2S3j743vffdnXlve2NW/cuXkp6ts3GV/k2pPb3ZdPq52fiMn0//iU9JXbhHsnlzem++Lrv987sy45pLs9u/fjAD++yfjc990S49LEyu2t+f+ru/3YS7i/dKefs7Up58eurAQPKdb6X+9duTG69Pfdsfp/z9B8dVd3nyaclpZyQnnpwceHDK3CaEqw89lHzzq6n/+L7k3ntS/+DNyX98PqW7X55wYso3zh+1/oHf+e3kB99L9t4nOe3McbWNqc/fmUxJm/tz1Ad+O7OW3pONC/fKrb/5jqw65vRkYCB7XvKtHPapt2fundfniI/+cW568zjOmQObU2rNyqOfkqVnPD+rjj4tm/bYOxkYyOwlt+Wg//qH7HHFd7PXD76QjbvvlXte8MZhq9m4cHHWHvyErDn46Kw99Ng87p/evGveN9BarQl4SynnJ3nakKc3J1mR5Mok/5rk07XWga4yNdvbmOTBJJck+Wit9atjeO3ZSV6d5BeTHJdkUZKVSW5K8pUkH6y1rhxDPTOS/FqSn0/ypCSL03wGK5Jcm+T7ST5ba71xmLKfTPLyHb1GkpW11t27yh2a5LbOw4Ekx9Varx+hff+Z5IVJ/rzW+vYh2waP5bm11vNLKW9PMvakY6tP1VpfMaTuCR/fUso5Sb47zKa1Se5Jc0z/odZ69QTaSscJ916UvVc331x//sTfyj17HNFsKD25fr9TU2rNL171LznywWty6LLrc/uio8dc91Nu/5/M27Aqm3pm5LOnvCkr5yxOkgz09OXSQ87NzP71OffmL+Skuy/ITw59ZpbP3Web8k+95b8zc/OGrJ61IJ875Y35/9m77zA5r/Jw//fZrt3Vqq2s3mVb7rLkbsu4YMAGTEwL3QaCIaElkPySkFBDyzcQCB0TenDAEIoxbrj3JslVLpLVrC6tpJVW2j7n98fMSrPamd3ZYu+82vtzXXNNOeU9Mzp6d/bZ8z6ntbwagPayKu4+8lJqWxs5ecPdnLX6eh6dsWRAKz9UvOY8dRPjdqRPcfe87tPsmJpZ2RVKWL/gfEKMnP2nLzBtzYNMWreMrbMWFdz32mMv6jMNQ2+eOuPtPHnWuw48r2ncMuC+lCwVN/2esjXPAdD06W/QedzJ6YKSEtrPv4R9MUXtF/6e8gfvpGzZ/XQsOrPgvlvfkPurQBwzjtbL3kksr6Dma5+mdN0qSlc8SufxB+d857RZ7Pnxn0hNn929cWkpnQtOoOkrP2b037yJstXPUvW/VxngPdz86VpYtRKA8OX/JJy4MP24pAQuehWkUsRP/iPcezfxoQfSQdsChbe+M/frY8fCX74dKiqIX/ocrHkenngMTjq54L7j9m1w/z3pJ695HaG052o2JZvfM1WM6u+7luoN6XPmqr/5T5rmL0wXlJSw87RXQUwx/6p/ZOwTd1O34gH2HFvYObOzuo4nP/Ur9s86tntBSQktU+ex8kP/xVFf/2vGPnkvk//8P2x6zZXE8spuVXec9VrTMKibSCAGt9iKjOwrKZI4A14A7s3cHgUqgAuBHwPXZYKoh3oyq81zwHjgdZn6X+/tYCGEU4BngW8BLwc6MsfdA5wFfBF4PoRwcR/9nAmszIzzDcA4YDXwBOmg84XAZ4GnQwg/7KWrbVnvJdft/l7algD/1ts4+2F9nuNv62Ocz2V3MlSfb0b2cTYBc0gHjpeGEN40sLcpgBM2pqfV2vFHH/zSnWXFlFPZNSr9hfn4jQ8MqO8VU0498KU72yOzzqe1tJKSmOK4TQ92KyvvaGXBlmUALJtx3oEv3dnum5ueOlUdLRy19dF+jU3Fb+5TNwOwZcbCg8HdLOsWnE/TmCkAzMnULVTMcUncS9leyVVx8+8BaF94+sHgbpb2819N55Tp3eoOlc5jFh54XLK9+x8V4sTJPYO72coraHv5pQCUblpP2Nvn366VIPFPf0g/WHzageBuN6+4GKZOS9e9/o9De/DjTzz4eNvW/rW97g/Q2QkhEC59/dCOS0XB75kqRvX3ps+ZexacdjC4m2XnaRfTUp8+Z9bfX/g5s7N6dM/gbrYQ2H7OZQCUtu5n1KbVPev4HVNSDkkM8P4oxnhO5nYK6dWe/5Ipuxj4aI42H85qcwJwBPCDTNlHM6tAewghLALuAGaSDpyeEmOcEWM8LcY4DziS9ArTCcC1IYRL8vRzPulVprNIryh9GTA+xnhijPHUGOMsYBrwt8AG0sHefG7Iei+5br0FQjuB12fe16DEGH+U6/jADX2M88A10kP1+WaNKfs4R2ba3w+UAz8IIYwd7Pseico6W5m+axUAz0/Ms/FOCKyuTwfX5jY8VXDf45u2MKZlZ699t5dV8cK4IwGYs2NFt7Lpu1ZRnmrvtX1jdT07aqbkbK9kK21voX5jer5tnnNa7kohsGn2qQBMWbf0pRqaRrKWZsqeSgcE2k87N3edEGg/dQkA5UvvG9LDlz3xyIHHqakz+t9BRdbGb6lU/npKlNjSDI8/CkA465ycdUIIcGam7MGhnZc8uuzg42mFz8sYI/GPv0s/OfV0QiYArcOH3zNVjEpamxm96lEAdp+Q+5xJCDQeny6re2poz5nZK3ZD9GexpMIkMcDbTYyxIxM07Eq18I4C2jQBHyS9ChXgzYfWCSFUAL8EaoB7gAtijN2iAzHGVaRXAl9DOtXCT0MIEw7pZzzwK6Ay098FMca7Yoydh/S1Kcb4X8DRwPf6eg8D9D9AIL0qdlgN1efbmxjjWuCKzNMxwCsGPfARqL5pCyWkM3Rsr52at9720elfumpb91DVtq+gvidmLsdL953/l7bto9PHrd+3qZf2vY1taqb+prx1lDx1DespyXzp3V0/O2+9xkzZqH07qWje8xKMTCNZ6frnCZnAaOfsI/PWS2XKSnZuJ+zZPbiDtrZQsmEtVb/4HqO+9+8AtJ94Cp1Hn9Dvrsoeeyg9vgkTiXVjBzcuFY81qw8G7OfNz1stdJU17CA2Dm4Fd2xpIa5fR/zxD4j/9ZX0iycvJvRnk7SlD8OGF9Jje90bBjUeFSe/Z6oYVW1efSCw2jwt/zmzq6yicQelTUN31cvoZx8GIFVWTvOkWUPWr6TDW2Jy8BbgduDVwFGFVI4xtocQlpFePTonR5W3kV4B2gFcEWNsydNPKoTwAeAi0jl1Pwh8LqvKh4GJpPP+XnloYDdHf83Alwt5DwPweeBNwCtDCEtijHe/SMcpxFB9vr2KMT4XQtgNjCX3v7P6UNu6+8DjvVXj8tbbWzn2wOPRrbtpqeg7B9no1oNfhPZWjc1br6kyfdyqjhbKO1poL6vq1r65vJqO0oq87bvGlv1elHzV+3YceNw8uudll132Z5WNamqgbVTdizoujWwlO7YdeBzrJ+Wtl8oqCw3b+h1MDTu3M/ZNS3KWtZ15Pvv/vy/1qz+A0qeWU37vrQC0Xvwmd4Q/nOzYfvDxxCPy18su27ENxhS+MzxA3LGDeMn5uQuXnEf41Of719+1v00/GDMWzuvtAjclld8zVYwqdh88Z7aNzX/ObBt3sKxi9zaaa/t3zsx57O0bOOKOXwOw89RXkRpVO+g+JY0MiV/Bm2Ug76UrkdL+HGVvydzfGGN8vrdOYoy7gF9knr41Tz8/izHuHcAYh9IW4JuZx8O9ineoPt9ehRBKSK+ehtz/zupDRcfB2HtHSf4vt+1ZX3yz2xTad/sA+u563Fvb7PYVHa0FjUvJUNbWfOBxR+aXsVw6yw5e5lbe7mlAL7LmgyvLYlX+eRkrD5aF/YWtRuumpJTUuHpS4+qJFQfneNvLXkXzlf/Q/4Dx7p3UfOHjhFSKzmmzaHnLe/s/JhWvfVlzrGpU/nrZc3bfAOZlaQmMn5C+VWZtCnThKwgf/jtCPwLGce8euP2W9JOLX0Moz7XNhpLO75kqRqUtB89/qYr858xUxcFzZnabgQptLRz53Y9T2tZMe+04XnjD3w66T0kjx+G0gve8zP1zvVXqEkKYCHQlbVyeo8pZmfvbCzz+HcCHgAUhhPExxp2ZdAILMuXDuVo2278DHwDOCSFcEmO8fpjGMejPt8B2FwJdP5Vz/Tt3E0J4P3BlgX0v6LuKJElDL44dT+Nv7sk8iYQdW6n84y+p+vWPKb/3VvZ/+F9pe81fFtZZ8z5q//WvKd26iVhdw75P/xeMcid49V8YN55w4x1AOn8u27YSf3sNXP0z4p23wT98gnBZgfve3vgnaE0HzMLr3FxN0mGus4N5V/0jNetWkCot4/n3fZn2cb1ccSEdIuKVVyNd4lfwhhDKQgj/DHRtwHV1H/XrQggvI71511jSqRO+f0idMcDozNNeV5dmWZX1eNoh9wBrCuynL5eHEGIvt6/31jizGvarmaefD+Glv/5yCD/f3o4xKYTwVuCnmZfujDHeU8BxpgCLCrz13Er3MNSWtTKyLNWWt15558Gytl5WU+bru3wAfXc97q1tdvu2rJWcSr6OrBUVZb2s5inNWlHTnmMHbGlIZQVGQ0v+eRlaD5bF6kEGU0MgTpxMy3v+ln2f+A9CRzvV//VZSp9/pu+2zfup/cT7KXv6MeKoavZ+8So65/n3y8NOTdYca2nOXy97ztYMbl6GEAiTJlPy1x8hfO7L0NFB/PfPE597tqD28drM5mrHn0iYlz+ftZLN75kqRp1VB89/JW35z5klbQfPmdlt+i3Vybwf/BPjl9+WDu5e+e/sOf6svttJUpYkBnjfE0K4J3N7BGjgYLqBm4Gv52hze1cAFGgkvRr0NOBO4LwY4/ZD6o/OetxU4Liyr8noSvA4Ok/5ASGEb+UJ1L4mz3G2Aff2cltdwFi/RjqwfTLpnLwvtaH6fLvJ/vxIp6O4mnT+458BlxZ4nM3AsgJvI+Ja76bsnGctu/LWG52dQy2rTW/2Vh68VHN0y+689Wpb08dtKas6kBctu/2o9v2Udeb/8t01tqYCx6Vk2F+TlVt374689aqzypprC96nURqQVP3B1TZhx9a89UqyyuKEoVuh077kFXQeMZWQSlFxw296r9y8n9p/eT/ljz9CrKqm6Yvfp/OExUM2FhWR+okHH2/flr9edln90M3LcP7LYfIUSKUO5tXtRXxmBTz7dLrtpa7ePZz5PVPFqG3swXNmxe7858yKXQfLesvV26tUJ/N+8M9MePgmYkkpq//qS+w6xb3BJfVfEgO8M4CzM7eFQDtwG/BXwMUxxlw/fZ8kHfy8j4MrRiPwLLlTOmTnyi00q3n2n+y6tmnfm6c82/N0D9D2lbzphhjjOb3cvtHXQGOMTUDX7iufCyGU9tVmiA3V53uors/wQdIBXkh/nvfHGPO16SbG+P0Y4+JCbkABS6OSb0ftZFKZyz162x144t70TsNNlXUFbXwB3Xc0zt6puGff6ePuqOm+g3H39r2NbVOmfv4dkJU8eybMJBXSP8bG7libt96YTFlzzXg3WNOLrnPmPGJJel6Wrl2Zt15Jpiw1fmK/8+X2JWYCc6Ub1+ev1BXcfexhYtUomr74PTpOPHVIx6EiMmcuZOYlz6/KWy12lU2o71e+3IJ0beC2oZd52TWOriBwdTW84uKhHYeKit8zVYxapswlZr5jjtqY/5zZVdY2pp7OgWywlupk3lX/xISHbiCWlPL8X32Jnae9akBjlqQkBng/G2MMmVtZjLE+xnhhjPGHMcZUnjYfzgQ/z44xzid9ef160rlW//PQyjHGRg4GIecVOK75WY83HnIPMDtXoxjj17IDtBwMTL7YvgNsAI4G3vUSHRMY0s/30H67PsczgKmkN3IrB74bQnjDQMc70nWUVrJhXPrjn7f9qdyVYmTujnTZ6gnHFdz3zppJNFaNB2Bunr7LO1qZsSsdCFlTf2y3sg3j5tNeUp5p/2TO9nXNDdTv25yzvZKts7yKHdPS823K2odzV4rxQNnmWa5M1EugahQdxy0CoPzhPOn3Y6T84XTWoPbFQ3wJZoyUbEn/mMyb+qF5P7WfuDIT3E2v3O046bTcdXVYCFWj4MSFAMT7781ZJ8YID2TKTh/aeRljhE2Zr299pCSJLS1wU2aLiAtfSag2tc7hzO+ZKkapylHsnb8QgDFP5D5nEiNjnkqX7TluAOfMVCfzrvpHJjx848Hg7un+QUvSwCUxwDtoMcblpFMTpIAPhxDOyFHtvsz9+QV2e17m/pmuDcBijA0cXOX5soGN9sURY2wFPpd5+ukQQu/bww69QX++vYlpvwI+kXnpOyGE0b21UX5PTDsTgFk7n2Xq7p5ZQI7ZspRxzenL4J+cluu/Ux4hHOj72C0PM2Z/z8vsF6+/ncrOVlKhhKemnt6trL2skmcmpwMpi164k8r2nlkzzlx9IwCtpVU8N2lh4WNTIqw+Ln0J26T1jzJh89M9ymc+eyejGzO/eB3n5W56abS94i8AKHv0QUqffqxHefmdN1K6+YVudQvS2dFnlYobf0vJznTmqfZcQduu4G5XWoYvGdwdKcKrX5d+sPQh4pOP96xwy02wcUO67iWvLbjf2NH3vOSPv4eG9M/4sKiPleK3/xn2ptcBuLnayOD3TBWjHWenz5l1zz5Ezeqe58zxj9xE1fb0OXPHmYWfM4GDK3cfvunAhmoGdzUoAWIoGfG3kb7P3IgM8ALEGB/m4IZsX85R5ZeZ+1eFEHpdZRpCGAe8/ZB2h/bzriIMMP4YWAnMAt7/Eh97qD7fvnyD9AZ3RwAf72dbZTw+9Uy21U4jEHn98u8xuyETSIspFmx5hIuf+hkAq+qPZ+2EY7q1XbLyWj5x45V84sYrc36xfnD2RTRV1lHR2cabl32TyY3rAChJdbBo/R2cu/JaAJZPX8LOmkk92t81/3W0lVYyurWRNy37NuP2pfNalne0cs6q61j0wl0A3DvvElrK3RX+cLPmuFeyq34OgciSP3yGSeuWpQtiihnP3slpN6cv0tg05zS2zlrUre0J9/6Ut33lQt72lQupacx98UTl/sZuty7lbS3dXi9tz7GZVkx1q1PRsjer/b5uZSUdvW/gomRpe+Vf0DHnKEKM1H7mI5Qtuz9dkEpRfueN1PznJwFoP+1cOhad2a1t1U+/ybgLFzDuwgWUbNnQrazsiaXU/u07qPjzHwjbu8/Zkg1rGfWDr1L9tU8D0Dl1Jm2vvKz7wFqaqf2XD6SDu6OqafrSVaZlGElefSnMPxJiJP7T3xEfegCAmEoRb7mJ+MXPpuuddQ7htO5BtNRV3yF12gmkTjuBuOmQC6keW07qysuJ1/+RuLX7vIzr15H61teIX8qsKZg+A17zul6HGf+QSc8wdz4hs+pYhze/Z6oY7TjrUvZPP5IQI0d+5++oW5E+Z5JKMe7hm5j90/Q5c/cJ57Dn2O7nzGl/+A6nvfcETnvvCVTsOOSceSDn7o0Hg7sDSMtQtndXt1uXktb93V4vae1lY01Jh5Wy4R7AMPsC8DbgZSGEl8UY78wquxr4F9KpAX4cQnhFjLHHb/AhhBLge8A40hu+ffuQKt8EPgTUAz8MIbwtxljAUocXX4yxI4TwaQ6+12Uv4eGH6vPtVYyxPYTwZeD7wEdDCF/LpIhQP8SSUn696IO8/eGvMra5gbc9/DXaSisIMVKeagdgS90Mrj3pvf3uu7W8mmsWfZi3PPJ1JjZt5j33f4HW0irKUu2Uxk4AVk84lluOeXPO9o3V9fxu4ZVc9uj3mblrJX999ydpKRtFRWcrJZmsLY9NO4sH5rxygO9exSyWlHLXZZ/nwl99nNo9W7jw1/9AR1kVkKIsEzTdecR87n31J3rvKI83fCf36rFTbvsmp9z2zQPPnzjzXTxx9uXd6tTs2cbrfvD2Q5sC8LLff6rb8/tf9Q+sOd6ca4eN0jL2ff471H78ckq3bGT0P7ybWDUKUilCWzrVfsf8Y9n3if/od9flTzxC+ROPABArKomjqgktzYTWgz9CO+YtYN/nvgWV3Xear7jrJsofeyj9pLOTms/9ba/HavrsN+g8blGvdZQcoawMvvJN4l+/FzZvJH7ofel5GVPQmtkC4uhjCJ/Lte6hD48uIz6a/hoZKythVDU0N0PWvOTIown/8V+Eqqo8nUB8YT0sX5oe76WX5a2nw4vfM1WUSst47sPf5Jj/eC+VOzay4Kvvo7NiFCGmKGlPnzP3zTyG59/Xv3Pm6JXLmfDQDQeez7r6S8y6+kt5669/6z/lDAAv+ttzc9afffWXmJ3V38ZL/5qNr/ubfo1RUjKN6ABvjPGZEML/kU7X8CngwqyythDCW4E7gSXAbSGED8UYDwRBQwjzSefwfS3QCVwRY9xxyDF2Zvq5PnOcqSGETwJ3xZj5VpHuq5Z0ztiXeov3XwL/BJwIvGTXLw/V51ugnwCfBKYDHwH+bZDDH5Eaq+v577M/zelrbuborcsY29xAKpSwuW4qT005lUdmXUCqZGCnlC1jZvGDcz7LGatvZP72x6lr2UVbaSU7Rk/l8aln8tj0syHkv+Dg+Ykn8N9nf4ozV9/EnIYV1LY20lJWzZa6GSyfcS7PTjb36uFs35jJXH/FDzjm4WuYsfIeaho3QyijYdJs1i04n+cWXUaqtHy4h6kRJjV5Ont+8AeqrvkRFff8mZLNG6GsjI7Z82k7/9W0XvYOKO9fdqSOo45j3z/9P8oee4jS556kZOcOwp7dUF5B59SZdB55LG1LXkH7ua+E0hz7p6YOblUQ2loPBJvzCe3t/Rqfil+YOg2u/j/iL34Ct9+SzotbWgZz5hFeeQm8+W2E8n6eLxccS/jsF4lLH4Gnn0qnYmhshIry9Irdo48hXHARXHARIde8zBL/+DuIEcrLoR9pIpR8fs9UMWqrn8YTn/k/ptz0E8Ytu4XKHRuJJWXsmzqPhtMvYeuFbyOW9fOcGeOBhyWdHVTsaei1eklbjqvEJCmHELNOMMUshHAH6Ty2n40xfqbANl1v7vwY4x156pwELCedrePsGON9h5SfBvwGmJF5aQOwmXQgdm7mtZ3A5THG63oZyzmkV6129bMXWAvsA8Zk+qrMlP2a9MZwW7Pa/wS4HNhGOq1Cb94YY9ySaTebdIoCgNExxqYcY3stcG3WSz0+40I+y0PG+dMY4xV9jHPQn28I4TzgdoAYY96MKyGEjwD/lelrdoxxb766hQohLAUW1Yw5ipOWXDXY7qQhM/v4QvculF5aF188re9K0ktswmgD2SpOn//U/cM9BKmHl7/pzL4rSS+hH3zqDDavWw6wLMY4ov7i0hWTOPHYo7nlmp8O93CG3cvffDmPr3gWRuBcgBG+ghcgxvhYCOE60qtEPw288pDyh0IIRwF/BVwGHA8sBPYA9wPXAd+JMe7u4zj3ZFakvj1zrMXAPKAU2AXcC9wFXB1j7C2Ae0Tm1pv8177lHtsfQwj3Ay/5T+uh+nwL8APSG65NIp0yI/91MJIkSZIkSUkRRvgOY0pOgDfGeN4A2hQ0w2OMl/ZR3gJ8K3MbsBhjG+mNzX48gLZXAFcMoN1aCthLMMZ4Vh/lhX6WV9DPcQ7m882sJi7k/TUDk/vbvyRJkiRJklTM8icbkiRJkiRJkiQVNQO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQiVmkzVJkiRJkiRJ2QLR9ZtAGO4BDCtngCRJkiRJkiQllAFeSZIkSZIkSUooA7ySJEmSJEmSlFAGeCVJkiRJkiQpodxkTZIkSZIkSUqoGEb2BmNyBa8kSZIkSZIkJZYBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKoAjE4PrNONwDGGYFBXhDCJ8aqgPGGD83VH1JkiRJkiRJ0khW6ArezzB0wXADvJIkSZIkSZI0BAoN8N6Fq50lSZIkSZIkqagUFOCNMZ73Io9DkiRJkiRJktRPbrImSZIkSZIkJVIgEoZ7EEVgZH8GbrMnSZIkSZIkSQk1JCt4Qwj1wPnALKA6xuhGapIkSZIkSZL0IhtUgDeEUAb8O/A3QEVW0eey6owDVgOjgAUxxrWDOaYkSZIkSZIkKW2wKRp+Dfwt6eDuU0DHoRVijLuAqzN13jzI40mSJEmSJEmSMgYc4A0hvAV4HbANOCXGeCKwM0/1X2fuzx/o8SRJkiRJkiRJ3Q0mRcO7gQj8Q4xxeR91H8rUPXYQx5MkSZIkSZKUJYbBXqCvpBvMDDg5c/9/fVWMMe4HGoEjBnE8SZIkSZIkSVKWwQR4xwCNMcbmfhwrDuJ4kiRJkiRJkqQsgwnw7gLGhBCq+qoYQpgC1AFbB3E8SZIkSZIkSVKWwQR4l2XuC9k47T2Z+/sHcTxJkiRJkiRJUpbBbLL2C+BVwL+FEO6OMTblqhRCeBXwSdLpGX46iONJkiRJkiRJ6hIghjDcoxh+I/wjGEyA92rgSmAJ8EAI4XtABUAI4SJgNvBa4BLSK4X/GGO8aVCjlSRJkiRJkiQdMOAAb4wxhhD+AvgdcC7wX1nFN2Y9DsAtwNsHeixJkiRJkiRJUk+DycFLjHEXcAFwOXA30EY6oBuATtI5d68AXpUvhYMkSZIkSZIkaWAGk6IBgBhjCvg58PMQQgkwHigFGmKMHYPtX5IkSZIkSZKU26ADvNkywd4dQ9mnJEmSJEmSpNziSN9hTEMb4A0hlJJewQuwM8bYOZT9S5IkSZIkSZIOGlQOXoAQQk0I4eMhhIeB/cCWzG1/COHhTFntYI8jSZIkSZIkSepuUCt4QwgLgd8BM6HHevByYDGwCPhQCOH1McblgzmeJEmSJEmSJOmgAQd4QwhTgFtIp2RoA34D3AZszFSZBpwPvBGYBfw5hHBijHHToEYsSZIkSZIkSQIGt4L3U6SDu+uAi2OMz+So86MQwueBG0mv8v0k8NeDOKYkSZIkSZIkKWMwAd5LgAi8L09wF4AY47MhhPcBNwOvHsTxJEmSJEmSJGVEAjEMeoutxIs9MseOLIOZAZOA5hjjLX1VzNTZD0wcxPEkSZIkSZIkSVkGE+DdDnT2o34q00aSJEmSJEmSNAQGE+C9FagNISzuq2II4RSgNtNGkiRJkiRJkjQEBhPg/TywD/hBCGFCvkohhPHAVcAe4AuDOJ4kSZIkSZIkKUtBm6yFEGbmeLkN+Cvg+8DTIYTvArcDGzPl04DzgQ8A5cD7Mm0kSZIkSZIkDYGRvsGYCgzwAmsKqPOvmVs+vwRiP44pSZIkSZIkSepFocHWofpTgH9SkCRJkiRJkqQhUmiAd86LOgpJkiRJkiRJUr8VFOCNMa57sQciSZIkSZIkSeof8+FKkiRJkiRJCRVDyXAPQcPMGSBJkiRJkiRJCTUkK3hDCBXAQmA6UEMvm6nFGH82FMeUJEmSJEmSpJFuUAHeEEIl8AXgStKB3b5EwACvJEmSJEmSJA2BAQd4QwhlwE3AEtIrdrcBRwApYBNQD1RlqjcBDYMaqSRJkiRJkiSpm8Hk4H0vcC7pYO4pMcbJmde3xRhnArXA+cB9pAPJ/xpjnDOYwUqSJEmSJEmSDhpMioa3kk658C8xxmWHFsYYU8CdIYSXATcAPwohPJ2rriRJkiRJkqT+CsT8W2GNICP7MxjMCt7jM/e/OeT10uwnMcZO4GNAOfD3gzieJEmSJEmSJCnLYAK8o4HGGOP+rNfaSKdm6CbG+CSwl3S+XkmSJEmSJEnSEBhMgHcbh6zWJb2RWlUI4YjsF0MIAagAJg7ieJIkSZIkSZKkLIMJ8G4AakMIY7NeezJz/6pD6p4HVAKNgzieJEmSJEmSJCnLYDZZexg4DTgLuD7z2u+Ai4CvhBCagUeBk4D/JL0h222DOJ4kSZIkSZKkLDEMZv2mDgeDmQG/J71F3VuyXvsh6VW89cAvgWeAXwHTgX3AZwdxPEmSJEmSJElSlsEEeG8H5gD/3PVCjLEduBD4X6CVdAAY4B7gvBjjM4M4niRJkiRJkiQpy4BTNMQYI7Aux+vbgbeHEMpIb6q2J8a4b+BDlCRJkiRJkiTlMpgcvL2KMXYAm1+s/iVJkiRJkiRppHvRArySJEmSJEmSXjwRiAcypI5ccbgHMMzcZk+SJEmSJEmSEqqgFbwhhM4hOl6MMbpqWJIkSZIkSZKGQKHBVtd6S5IkSZIkSVKRKTTAe/6LOgpJkiRJkiRJUr8VFOCNMd75Yg9EkjQ01j75/HAPQcrpu85NFaF/vuHK4R6ClNvFVw33CKQebvn1/cM9BKmbPbv3DfcQpKJgPlxJkiRJkiQpoWIws+pIVzLcA5AkSZIkSZIkDYwBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKpECMbrIGI/szcAWvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUAZ4JUmSJEmSJCmhBr3JWghhOvAx4JXALKAqxliWVT4O+GsgAv8RY+wY7DElSZIkSZIkQXT95og3qABvCOEi4BqgjoPb1cXsOjHGXSGEvwAWA08B1w7mmJIkSZIkSZKktAGH+EMIM4DfAGOAPwJvBHblqf4j0gHgVw/0eJIkSZIkSZKk7gazhvvjwGjgmhjjX8QYfwu05al7U+b+1EEcT5IkSZIkSZKUZTAB3leSTsfwyb4qxhjXAK3AnEEcT5IkSZIkSZKUZTAB3plAc4xxZYH1m4CaQRxPkiRJkiRJkpRlMJuspYDSQiqGEMpIb8S2ZxDHkyRJkiRJkpQlEoZ7CBpmg1nBuw6oDCHMLKDuuUA5UOhqX0mSJEmSJElSHwYT4L0lc/+B3iqFEMqBL5DO13vDII4nSZIkSZIkScoymADv14A24OMhhPfmqhBCWEQ6EHw6sBf4ziCOJ0mSJEmSJEnKMuAAb4xxHfBXpPPwXhVC2AqMAwgh3BdC2Ag8DCwBOoB3xRh3DH7IkiRJkiRJkiQY3CZrxBh/EULYBnwbmJ9VdEbW41XAB2KMtw3mWJIkSZIkSZIOirjJGqQ/h5FsUAFegBjjn0MIR5PeSO1sYCrpVb1bgHuB22OMnYM9jiRJkiRJkiSpu0EHeAFijBG4M3OTJEmSJEmSJL0EBrPJmiRJkiRJkiRpGBnglSRJkiRJkqSEGnCKhhDCQDZNizHGCwd6TEmSJEmSJEldgpusAYzwz2AwOXjPK7Be10Z2ATe1kyRJkiRJkqQhM5gA72f7KB8DnA6cCTQA3wU6B3E8SZIkSZIkSVKWAQd4Y4x9BXgBCCFcAPwWODbG+MaBHk+SJEmSJEmS1N2LvslajPE24KPAZSGEv3qxjydJkiRJkiRJI8WLHuDN+BXp9AwGeCVJkiRJkiRpiAwmB2/BYowtIYR9wDEvxfEkSZIkSZKkkSAShnsIGmYvyQreEMI00puuOeMkSZIkSZIkaYi86AHeEMIo4DuZp0+82MeTJEmSJEmSpJFiwCkaQgif6qNKFTADeCUwAYjAtwd6PEmSJEmSJElSd4PJwfsZ0kHbvgQgBXw+xnj1II4nSZIkSZIkScoymADvXfQe4O0AdgGPAdfEGFcO4liSJEmSJEmSDhGjW16NdAMO8MYYzxvCcUiSJEmSJEmS+ulF32RNkiRJkiRJkvTiGHCAN4SQCiF0hBDmD+WAJEmSJEmSJEmFGUwO3magPca4aqgGI0mSJEmSJEkq3GACvBuA6UM1EEmSJEmSJEn9E3GTtZFuMDl4/wRUhRBeNlSDkSRJkiRJkiQVbjAB3i8B24HvhhCmDNF4JEmSJEmSJEkFGkyKhmOAfwG+BqwIIfwcuBfYBnTmaxRjvGsQx5QkSZIkSZIkZRQc4A0hvAtojjH+OvPSHUDMqvLBzK03sT/HlCRJkiRJkiTl159g60+AzcCvs17rbxZnsz5LkiRJkiRJQyDiJmvQfQXqSNTf1bQHZkyMcTD5eyVJkiRJkiRJg2SQVpIkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUP3dZG1SCKFzEMeLMcb+HlOSJEmSJElSD4FIGO5BFIGR/RkMJNg6sj8xSZIkSZIkSSoS/Q3w7gO++mIMRJIkSZIkSZLUP/0N8DbFGD/7ooxEkiRJkiRJktQvbrImSZIkSZIkSQnlhmeSJEmSJElSQsXodlkjnSt4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhCo4B2+M0WCwJEmSJEmSJBURN1mTJEmSJEmSEiqFm6yNdK7KlSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUqosuEegCRJkiRJkqT+i0AkDPcwhl0c7gEMM1fwSpIkSZIkSVJCGeCVJEmSJEmSpIQyRYOkglV0tHD6mps5eusyxjY3kAqBndWTWDHlVB6ZdQGpkoGfUmpa93DGmpuYv+1x6lp20lFazo7aqTw+9Uwem34OhN4vORm7fxtnrr6JOQ0rqG1tpK20ii11M1k+YwnPTl484HEpGZybKkbOSxWT9pIK1o8/ii1jZrK1biZbxsxiz6gJAJy98o8sWfXHQR9jX8VoHpj7Sp6feCJ7Ro2nrLOd+qZNnLDxfk7ccE+fF4/uqp7Ig3NeyZr6Y2mqHENFZwuTG9dz0gt3s2DrskGPT8XNc6aKkfNSUlKEGEd6lgppYEIIS4FFNWOO4qQlVw33cF50dc0NvOOhrzC2uQGAttIKSmKKslQHAFvqZnD1qR+jpbym331PblzHWx75OtXt+wBoLa2kLNVOaUwB8Hz9cfx60QfzfoGat/0JLnv0+1R0tgHQUlZFRUcrJZksPI9NO4s/HX95n1+SlEzOTRUj52Vy/PMNVw73EF4S68Yfxf+e/vc5y4YiwLulbia/OvVvaa6oBdJBkY6SclIlpQDM2f4kb1z6bUpjZ872z088nt8vfD/tZZUAVLY301ZWSQzpCw5P2HAvlzzx0xGVYfBLFx/+3y+7eM5UMXJeJsNjd1/JvsbnAJbFGEdUZLsrJrHguBO5+ne3Dvdwht3bLruQZ556HEbgXABX8EoqQEh18ual32JscwN7K8fwxxPezdr6YyGmOGbLUi558udM3vMClz7+Q65Z/JF+9V3Zvp83L/sm1e372FEzmWtPfA9bxsymJNXByS/czcufuYZ5O57ioqd/xU3Hvb1H+zH7d3DZo1dR0dnGC2Pn8acTrmBnzSTKO1o4Y83NLHn+Ok7aeB8NNZN5YO6rhuojUZFwbqoYOS9VrKra9jFpz3om71nPpD3ruXXBm9lXNWbQ/baUjeLXiz9Mc0UtE5o285rHfsSUPevoDKU8OmMJtx7zZtZMPJ5bjvlLXrni6h7td4+awO8XXkl7WSXTd67ikid+wvj922grreTBOa/g3iNfyxPTz2ZC0xbOWHPToMer4uI5U8XIeamkifHwD+ard+bgLQIhhMkhhC+EEJaFEPaEENpCCJtDCI+GEP47hPDOEEJtCOEzIYQ4gNtPMseZnae8OYSwNoRwdQjh7ALHPCaE8I8hhHtCCNtCCK0hhC0hhFtDCB8KIVT10vaKQ45/dB/H+p+sumsLGNvns+p/sJD3o96duOl+jmjaCMBvF34g/eUGIJTw9JRTueG4dwAwf/uTzG54ul99n772z9S27qG9pJxfLf4IW8bMBiBVUsbSWedz1/xLATh5w92M37e1R/tzV/2Bis5WmirruGbxh9lZMwmA9rIq7j7yUpZPXwLAWauvpyrzF3IdPpybKkbOSxWjGTtX8re3/h1vffhrnP/s/3Hs5ocpTbUPSd8PzbmIfVVjKOts402PfIMpe9YBUBo7Wbz+DpasvBaAR2csYWf1ET3a333k62gvq6KmpZE3Lv0m4/dvA6Cis5Ulq/7IwvV3AXD/vEtoKasekjGreHjOVDFyXkpKGgO8wyyEcA7wNPAJYCHQCDwK7ASOAd4L/CxTth64N8dtW6a7bXnKn8tx6EeyytcCU4C3AneHEP6ujzFfDDwPfBk4G2gCHgPagAuAbwLPhhBOKfBjeFcvxxoNXFZgP4QQSoB3Zr10RaFtld8JG+8HYO34o9k4bl6P8hVTTmXXqHoAjt/4wID6XjHlVBqr63uUPzLrfFpLKymJKY7b9GC3svKOVhZsSefkWzbjPFrLe/7Sd9/ciwGo6mjhqK2P9mtsKn7OTRUj56WKUddluy+GJ6edCcAxmx8+cClztsXrbqeio4VYUspTU0/vVtZWWsGzkxcBcPILd1DV0dyj/RmrbwCgtXwUz01aOLSD17DznKli5LyUlDQGeIdRCKEW+A0wFvgzsCDGOCPGeFqM8TigDrgY+BXQHmP8UYzxnENvwA2ZLm/IVR5j/GKOw78pq/wYYDpwLRCA/xdCmJ9nzJdk6k0ArgOOjjHOzYx5JrAIuA+YCdwRQji5l49gDemg8DtCyJsc6E1ANfBML/1kuyBz7L1ACjglhHBsgW2VQ1lnK9N3rQLS+fFyCoHV9ccBMLfhqYL7Ht+0hTEtO3vtu72sihfGHQnAnB0rupVN37WK8szqo3ztG6vr2VEzJWd7JZtzU8XIeamRpqFm0oHN2uZtfzJnnYrOVqbvXAnAmvruX8s2jJtPR2lFr+3HNjcwoWlTzvZKNs+ZKkbOS0lJZIB3eL0amER6BexlMcZuK21jjK0xxhtjjG+JMT6Ys4chEmPcDlwO7Cedm/n1h9YJIdSTXk1cBlwDvC7HmJcDFwL3ADXAL0MI5XkOu5N0kHgmcH6eOpdn7n9a4Fu5InP/S+DWQ17TANQ3bTmw6md77dS89baPngZAbeseqtoKuxRoYuayp3Tf03rpO33c+n2bemnf29imZupvyltHyePcVDFyXmqkyZ6L9Xs35q3XNZ8aDpl73dvnn3MTM2U7epm7Sh7PmSpGzktJSWSAd3jNzdw/G2Mc9uQ4McbdHEznMCdHlQ+RXrm7C/hAjJktPnv200I6qNoJHEU69UM+P8vcX35oQQhhDrAEWA7kXtLRvX52OoefZ/X9jhBCaV/tlVtt6+4Dj/dWjctbb2/l2AOPR2e16c3o1sasvsfmrddUmT5uVUcL5R0tPdo3l1cfWP3T29hqCxyXksG5qWLkvNRI05S1SVtvc7m2ZReQTrPQVlrZo31V274Dq9Jyt9+dqT924INV0fGcqWLkvFTyBKI30hekj1wGeIfXnsz9kSGE8cM6koO6kvjsz1H2lsz9L2KMu3rrJMb4PAdTR/QW4L0e2AG8IYRQc0jZu0j/Dy109e6bSY9/LekVxL8jvTp6CvCKAvvQISqyvlB0lOT/EtGe9QUju02hfbcPoO+ux721zW5f0dFa0LiUDM5NFSPnpUaattKD++qWd7blrZdd1lZ2sE1X+/JU/rbZ7dvKKnutp2TxnKli5LyUlEQGeIfXTaTzxNYBt4YQ3ppJgzAsQgjHAF0Z5JcfUjYBODrz9PYCu7wjc39WvgoxxnbgatLpHN6QdbxAOsDbVV6IKzL3v4hp+4DfZl7rsUJYkiRJkiRJSjoDvMMoxrgK+EcgAgtJBzK3hxDWhBB+HUL4YAhh4os9jhDChBDCq4HfA6Wk0zRcc0i16VmPny+w61WZ+7pM+oR8cqVpOId0CosbM/mBexVCmJdpA+n0DBzy+HUhhLEF9PP+EMLSQm7Agr76Oxxkr7Ip62V1Tb6VOYX23dvKnbyrfspc9TOSOTdVjJyXGmkqOrNWo/VyuXDe1WidrkYbyTxnqhg5LyUlkQHeYRZj/ArpwORvgebMy7OBNwLfAtaFEP7pRTj0mhBCDCFE0ikSrgOOBK4FLogxHvoTIztA21TgMbLzCtflqxRjXAo8BZwfQpiRebm/m6t11X8kxvhs1uu3ARuBKuAvC+hnCrCowFt1nj4OK03ZuaVa8mfmyM47lZ2Pqjd7K7Py9rXszluvtjV93JayKtqzvuB0tR/Vvp+yXi4L7RpbU4HjUjI4N1WMnJcaaWpbsvJJ9jJnmjJ5LCvbm6noPBik7WrfUlFDe0m+fXkP5t6t7WXuK3k8Z6oYOS8lJZEB3iIQY7wvxvgGYAxwOvA3pFfTtgCjgC+FEP6/IT7sI8C9wP3AC5nXOoBHY4y5tkDem/W4tsBjZOfU3ZO3VtpPSefbfWcIYRTwJmAn8Me+DpKVzgG6r94lsxHcLzJPr+h7yGwGlhV4y5Wn+LCzo3YyqUyy8t52YZ2Y2Tm7qbKOlopD0ynnlr1zbPaOsD37zuycXZN/5+3ex7YpU9+dtw8nzk0VI+elRprsubhjdC87wmfm04RD5l739n3vCF/vjvCHFc+ZKkbOS0lJZIC3iMQY22OMD8UYvxtjvAw4hvTKVoB/DSH0fu1a/7wpxnhOjPGsGONM4OWkV+Z+KoTwsRz1s3/6zMtRnsv8zP2eGOPeXmvC/wCdpFfiXkZ6xe8vc6wkzuV8YBbpAPUvc5R3pYA4I4RwVG8dxRi/H2NcXMgNeKaAsSVeR2klG8al/ynnbX8qd6UYmbsjXbZ6wnEF972zZhKNVen9Befm6bu8o5UZu1YCsKb+2G5lG8bNP7DaZ+72J3O2r2tuoH7f5pztlWzOTRUj56VGmvH7tlLX3ADA6vrc87mttIIN448EYM6OFd3Kpu9adWAV2ur643O2b6waT0MmSHFoeyWb50wVI+elEidCjGHE34jD/Q8xvAzwFrEY41rSOXohnSLhRTs7xxhvBd6XefrFEMKsQ8p3AF2pD84vsNvzMvf3FXD8zcAtwFHAFzMv/yx/i26uyNyXAVu7Uk9kpaB4Mkdd9cMT084EYNbOZ5m6e3WP8mO2LGVc8w4Anpx2RuEdh3Cg72O3PMyY/Tt6VFm8/nYqO1tJhRKemnp6t7L2skqembwIgEUv3Elle89F1WeuvhGA1tIqnpu0sPCxKRGcmypGzkuNJAE4fuP9ADw95VR2j5rQo86ymefTVlZFSHVy3KYHu5VVdLZx9JZlACyf+TJaykb1aP/A3Fel63Y0c9TWR4f2DWjYec5UMXJeSkoaA7zFL3tDsxc1Q3qM8f+AezLH+WyOKl2rY98eQhjXW1+ZTc8uPqRdX7ry7c4Cno0xPthb5cxxaoHXZ542AFvz3LqSJ70zhOC876fHp57JttppBCKvX/49Zjc8nS6IKRZseYSLn0rH4lfVH8/aCcd0a7tk5bV84sYr+cSNV+b8AvPg7ItoqqyjorONNy/7JpMb1wFQkupg0fo7OHfltQAsn76EnTWTerS/a/7raCutZHRrI29a9m3G7dsKpP/yfc6q61j0wl0A3DvvElrKC7t0Ssnh3FQxcl6qWLWUVbO/vPbAjcxXoo7Sim6vt5V2/8p59/zX8uWLr+LLF1+VM4B72po/U9PSSHtZJb9Z/GG21M0EoDOUsmzmy7j7qEsBWPjC3Yzfv61H+yUr/0B5RwtNVWP5zeIPsrP6CCC98vee+a9m+cxzAThr1fVUdYyIDFkjiudMFSPnpaSkCTGO8DXMwyiEMBHYEXv5RwghvBf4byAFTMqspD20zk9Ipzb4aYzxil76mg2syTydk1khfGidVwA3kU53cHSMcXVW2UTSaQnGA9cAb83kuD20jyrgZmAJsAo4LjvVQgjhCuDHwNIY4ylZr48ivdlcOXB1jPFHWWWvIZ2Pd12McXbW6+8GfkQ6x+/kGGPXRnWHjmki6TQT5cArYox/zlWvP0IIS4FFNWOO4qQlVw22u6I3Zv8O3v7wVxmbuQyzrbSCECPlqXYAttTN4OpTP9bjS8SSldey5PnrAPj2uV+ksbq+R9+TG9fxlke+TnV7el++1tIqylLtlMZOAFZPOJZfL/4gnXk2X5m3/Qkue/T7VGQu8WwpG0VFZyslmen52LSz+NPxl0MIg/0YVIScmypGzsvk+OcbrhzuIbxkvvOyL7Inx5w61PEb7uM1T/zkwPO757+We498LQAfuOOfD8zrbFvqZvKrU/+W5or0Vg0VHc10lJSTKikDYM72p3jDsm9TlurIecznJx7P7xe+n/bMju+V7ftpK60klpQCcMKGe7nkiZ8yMmZl2pcuPvy/X3bxnKli5LxMhsfuvpJ9jc8BLMukUhwxumISC449iZ//9vbhHs6we+frz+eZFY/BCJwLkL6kXcPn7cB7QwjfAX4bY9zaVZDJt/s24KuZl36fK7g71GKMN4cQHgJOA/4FeG9W2fZMcPZ3wJuB6hDCx2KMK7PGfTLwLeAs0puQvaXAPLpkgrMX91mxuysy97/OF9zNGvsNwKWkg+GDDvCONI3V9fz32Z/m9DU3c/TWZYxtbiAVSthcN5WnppzKI7MuOPBLXH9tGTOLH5zzWc5YfSPztz9OXcsu2kor2TF6Ko9PPZPHpp99YJVRLs9PPIH/PvtTnLn6JuY0rKC2tZGWsmq21M1g+YxzeXbyiDu3jyjOTRUj56VGmsl71vNXd3+aB+a+ilVHnMjeqnGUd7YycfcaTth4PyduuJfQS3K8eduf5D33fo4H5ryStfXH0lQ5hqqO/Uza8wIL19/Fgq3LXsJ3o5ea50wVI+elpCRxBe8wCiF8FPh61ksvAFuAWmAm0PWnwKXAxTHG7Xn6+QlDtII3U+9S4A9AO3BkjHHdIeWvIZ1OYXzmpTXADmAyMCPz2gbgjbnSLORbwdubXCt4QwhzSa8QDsC5Mca7++jj9cD/kQ48T4kx7ink2L30N6JW8EqSdDgaSSt4lSwjaQWvJA2UK3jTK3h/9ts7hns4w+5drz9vRK/gNRfp8PoO6Y3IvgjcSzr37cnAXNI5Y68D3g2ckS+4+yL5I/A46XQGnzi0MMZ4HTAvU3YfUAcsBKqA24GPAkcVkkN3kN5FOri7hnTu4L5cB+wEqkmvQJYkSZIkSZISzRQNwyjG2A7cmbkNpp8rOJiqoLd6a6Hv1GWZnMAn9VFnN/ClzK1fYow/AX7SzzbXccjYY4yfAT7Tjz7agJ47g0iSJEmSJEkJ5QpeSZIkSZIkSUooA7ySJEmSJEmSlFCmaJAkSZIkSZISKAIx9pmN87AXh3sAw8wVvJIkSZIkSZKUUAZ4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJVTbcA5AkSZIkSZI0MKnhHoCGnSt4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJ5SZrkiRJkiRJUkLFGIZ7CBpmruCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCWUm6xJkiRJkiRJiRSIuMkaI/wzcAWvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUAZ4JUmSJEmSJCmhDPBKkiRJkiRJUkKVDfcAJEmSJEmSJPVfBGIMwz2MYReHewDDzBW8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEcpM1SZIkSZIkKaEibrI20rmCV5IkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUAZ4JUmSJEmSpIRKRW8vphDC+SGE60II20MIzSGEZ0II/xZCqBmi/v8mhBAztzsG0ocBXkmSJEmSJEk6RAjhw8CtwKuBFuBpYDbwr8DDIYTxg+x/GvClQQ7TAK8kSZIkSZIkZQshLAa+nnn6fmBmjHERMBdYChwD/GCQh/kOUANcN5hODPBKkiRJkiRJUnefJB07/XmM8aoYYwSIMW4C3gqkgNeHEE4cSOchhDcDlwLfIh0wHjADvJIkSZIkSZKUEUKoBV6VeXrVoeUxxpXAbZmnbxpA/+OAbwAbSKd7GJSywXYgSZIkSZIkaXhEwnAP4XB0MlAJtAIP5alzN/By4IwB9P9VYBJwWYyxKYTB/Ru6gleSJEmSJEmSDjoqc78+xtiep87zmfuj+9NxCOEC4N3AtTHG3w9seN25gleSJEmSJEnS4WBBCKE/+WyvijF+P8fr4zP3O3tp21U2rtCDhRBGkU750AR8qNB2fTHAK0mSJEmSJOlwUA0s6kf9KXler8rct/XStjVzP6ofx/ssMA/4WIzxhX6065UBXkmSJEmSJEmHg/3AM/2ovznP6y2Z+4pe2lZm7psLOVAI4WTg74DlpDdYGzIGeCVJkiRJkiQdDp6JMS4egn52Ze7H91Knq2xXL3Wy/ZD0fmhXxhg7BzqwXAzwSpIkSZIkSQkUI8QYhnsYwy7GIe/yucz9zBBCeZ6N1uYdUrcvJwOdwHUh9Pg3q83cnxVC2JJ5fGqhaRwM8EqSJEmSJEnSQctJ59+tBE4D7s1RZ0nm/v5+9FsKTOqlvDyrvLTQTkv6MQBJkiRJkiRJOqzFGPcCN2WeXnloeQjhSOCCzNPfFNhnyHcjvfkawJ1Zr68tdLwGeCVJkiRJkiSpu38DIvDOEMKVIZNXIYQwBfhf0nHV38cYH8tuFEJYm7m98aUaqAFeSZIkSZIkScoSY3wY+Fjm6feBdSGEZcAaYDHwLPC+HE1nZW61OcpeFObglSRJkiRJkhLqRdhgTBkxxq+HEJ4APg6cDhwBrCOdluFLMcam4RxfFwO8kiRJkiRJkpRDjPFW4NZ+1A8DOMZngM/0t10XUzRIkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZQ5eSZIkSZIkKZECKfqd8vUwNLI/A1fwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCVU2XAPQJIkSZIkSdLAxBiGewgaZq7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQkUgRiHexTDb6R/BK7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQkVCcM9BA0zV/BKkiRJkiRJUkK5gleSJL0kKqtHDfcQpB6+dPFVwz0EKafPPfGh4R6C1MOnTvjWcA9BkpSDK3glSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEMgevJEmSJEmSlFCpONwj0HBzBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKoggxhuEexfAb4RvNuYJXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQbrImSZIkSZIkJVAE4gjfYAxG/B5rruCVJEmSJEmSpKQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSqiy4R6AJEmSJEmSpIFJEYZ7CBpmruCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISygCvJEmSJEmSJCWUm6xJkiRJkiRJCRXjcI9Aw80VvJIkSZIkSZKUUAZ4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhHKTNUmSJEmSJCmRAjGG4R5EERjZn4EreCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISqmy4ByBJkiRJkiSp/yKQisM9iuE30j8CV/BKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKTdYkSZIkSZKkJIoQR/oOYzDid1lzBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKqEgY7iFomLmCV5IkSZIkSZISygCvJEmSJEmSJCWUAV5JkiRJkiRJSigDvJIkSZIkSZKUUG6yJkmSJEmSJCVQBFJxuEcx/Eb6R+AKXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEKhvuAUiSJEmSJEkamBiHewQabq7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllJusSZIkSZIkSQnlJmtyBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKqFQMwz0EDTNX8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQlVNlwD0BSclR0tHD6mps5eusyxjY3kAqBndWTWDHlVB6ZdQGpkoGfUmpa93DGmpuYv+1x6lp20lFazo7aqTw+9Uwem34OhN53BR27fxtnrr6JOQ0rqG1tpK20ii11M1k+YwnPTl484HEpGZybKkbl7c2csvIGjtz0MGP2bSeGEnbVTuaZGWewfN4rBjUvq1saOfW5PzF3y3JG72+go7SChrpprJi5hCdmvyzvvJy7eRkzdjzDEbvWUtfcwKjWPZR1ttNcOZrtY2by7LTTWTHzbGJJ6YDHpuLm+VLFqrWkkvvqL2TFmIXsLp9AIMWE1m0c37iU0xvupCx2DrjvZ0afwNLxZ7Fp1CyaS6sZ1bmPac3rOLXhHo5sWpGzzZqaI/nJ3I8WfIzztv6J87fdMOAxqjh5zlQSxJi+jXQj/TMIcaR/AtIAhRCWAotqxhzFSUuuGu7hvOjqmht4x0NfYWxzAwBtpRWUxBRlqQ4AttTN4OpTP0ZLeU2/+57cuI63PPJ1qtv3AdBaWklZqp3SmALg+frj+PWiD+b9AjVv+xNc9uj3qehsA6ClrIqKjlZKSJ/fHpt2Fn86/vI+vyQpmZybyVFZPWq4h/CSGb1/B3951xcYs38HAO2lFYQYKUu1A7B1zCx+veSfaa3o/7w8Ytca3njv/2NUWxMAbWVVlHa2U5oJfqw54gR+f9bHcs7Ly2/5J+r3bDzwvLWsipJUJ+WZcQFsHTub35719+yvGtPvsSVR6/7m4R7CS8bzZbJ87okPDfcQXjK7y8fx47kfZXdFPQDlqVYiJXSUlAMwpfkFLl/9DUal+vf/NUXgd9PfyePjTgMgxBRVnc20llaRCuk/ZJ2+4w4u2fybHm3XV8/hVzPf12v/bSUVtJVWAfD2td/hqL25g8WHk0+d8K3hHsJLxnNmMjx295Xsa3wOYFmMcURFtrtiErOPWsQXf/TIcA9n2H3iPaew9rllMALnAriCV1IBQqqTNy/9FmObG9hbOYY/nvBu1tYfCzHFMVuWcsmTP2fynhe49PEfcs3ij/Sr78r2/bx52Tepbt/HjprJXHvie9gyZjYlqQ5OfuFuXv7MNczb8RQXPf0rbjru7T3aj9m/g8sevYqKzjZeGDuPP51wBTtrJlHe0cIZa25myfPXcdLG+2iomcwDc181VB+JioRzU8UopDq57L7/ZMz+HTRVjeWGU97P+iOOh5ji6I0PcdGyHzKpcR2XPPxdfnf23/er74r2/Vx231cZ1dZEw+ip3HDK+9k6bi4lqQ5OXHM75z3+C+Zse4LzH/sfbj35ih7tn5t6GsvmjWPjhKPYUzORjtIKAGqad3HC2js48+nfMWn3Wl71yPf57Tn/31B8HCoSni9VrDop4epZH2B3RT2j2xu57IWfMW/fs6QIrBhzMtdOeyubR83g/2ZczjvWfa9ffd866bUHgrtn7Lidl227kerOfbSFCh6ecA63TH4dD9afx/i27ZzRcGe3tjP3r+EfnvlEr/3/Ytb7ea7uBOradjF/79P9e+Mqap4zJSWNOXg1LEIId4QQYuZ2fx9160II+7Lqf+aQ8q7Xz8vTviaEcGumzvYQwqIheyMjxImb7ueIpvSKr98u/ED6yw1AKOHpKadyw3HvAGD+9ieZ3dC/L7enr/0zta17aC8p51eLP8KWMbMBSJWUsXTW+dw1/1IATt5wN+P3be3R/txVf6Cis5WmyjquWfxhdtZMAqC9rIq7j7yU5dOXAHDW6uupyvyFXIcP56aK0XHr72binhcAuPb0j6SDuwChhGenn8EtJ78HgLlbH2Pmtqf61fcpz11PbWsj7aUV/Pasj7N13FwgPS8fnXcR9x37egBOXHs74/Zu7tH+/mNfzxNzzmdn3bQDwV2AfaPG8cAxl/HwUa8BYM62J6jdv7N/b1xFzfOlitWj405n66hpAPzl+v9m3r5nASghcnzjMl678ZcArKw7ntU1RxXc777SGh6oPx+ABY2PcfHm/6O6Mz1/KmIbZ++4jbO23wrA7ZNeTUtJVb/GvadsDKtGp/8fLdz9wIGVkzo8eM6UlDQGeFUMzggh9PZt7U1A9UA6DiGMAW4GLgC2AOfFGJcNpK+R7ISN6Rj82vFHs3HcvB7lK6acyq5R6Uvqjt/4wID6XjHlVBqr63uUPzLrfFpLKymJKY7b9GC3svKOVhZsSf9zLptxHq3lPafJfXMvBqCqo4Wjtj7ar7Gp+Dk3VYyOW3cPAOsnHsPmCUf2KH9m+hnsrp4IwLHr7+lf35n6z04/gz01R/QoXz7vFbSVVVESUxzzwn39HTqbx88/8Li2xQDv4cTzpYrVY+NOB2BO07PM2L+mR/nxjUsZ15ZOd/Nopm4h1tQefSDFw9k7bslZp+v1ltJqnqk7sV/jfnTc6aRCKSGmWLSz1/UqSiDPmZKSxgCvhtszmft39VLn8kPqFiSEMB64FTgLWA8siTH2b6mUKOtsZfquVQA8P/H43JVCYHX9cQDMbSj8Ix7ftIUxmQBCvr7by6p4YVw6QDJnR/e8ZtN3rTqQNzJf+8bqenbUTMnZXsnm3FQxKutoZWrDcwCsmXRS7kohsHZSOpAwa+sTBfc9bu9m6jJ5ANdMyh2IaC+rYsOE9N9MZ217suC+u0xrSK+ciwQacwSQlUyeL1Ws2kI566vTVyLMz5O/NmSVPV+7oOC+d5ePP/B4YsuWnHWqO/dT076n331HYPm4MwGY0/Qc49r9g9jhxHOmkqhro7WRfBvpDPBquP0SaAPeEULPDPAhhLnAOcBSoOCfnCGEI4A7gMXA88C5McZVQzHgkaa+acuBS862107NW2/76PSldbWte6hqK+xSoIlNBzf62V47rZe+08et37epl/a9jW1qpv6mvHWUPM5NFaPxezcdmJc76qbnrddVVtvaSFVms7S+1O/Z0KN9Lg2ZsglZm6n1pryjhQmNL3DuE//LKSvTO8CvmHk2zZV1BbVX8fN8qWK1o3IyMaR/JZ3U0jOtTJcjMmVN5WPYX9r/C/u6jtFb2daq/PPvUGtrjmRnZfpKjMW7+n+1hIqb50xJSeQmaxpuDcD1wF8A5wG3H1L+LtJ/uP8ZcG4hHYYQppFeuXs0sAJ4eYwx/zdG9aq2dfeBx3urxuWtt7dy7IHHo1t301LAzvCjWxuz+h6bt15TZfq4VR0tlHe00F5W1a19c3l1t1yS+caW/V6UfM5NFaPall0HHjeNyj8vs8tqmnfRUlHbz77H5623N1NW2dHcbV5mm7JzFW+747M9Xk+FEp6cuYTbFl7eo0zJ5flSxWpv+ZgDj0d37M5br679YNnesjFUd+7vs++x7Q0HHm+rmsLsfT3XeuwtG83+stoeY+nLsszq3eqOJhbseazgdkoGz5mSksgVvCoGP83cd/ttMrOi911AO3B1IR2FEGYDd5EO7i4HXmZwd3AqOloOPO4oyf8loj3rC0Z2m0L7bh9A312Pe2ub3b6io7WgcSkZnJsqRt3mZWll3nodA5iX5e1Z87KXX+q69d2eu+/OUMa+yjHsqxxDR8nBv/c/Pud87j/msl5/aVTyeL5UsWrN2tisPNWWt155bD/wuK20sM3Q5jQ9R1nmUva7Jr4yZ527Jr4q51h601wyihVjFgJw4u6HKYudBbVTcnjOlJREruBVMfgTsAN4QwjhgzHGrutblgBzgD/EGHfkyOBwqKOAnwPTgQeAi2OMu/szkBDC+4ErC6xeeKIuSZKKyLZxs/neq7+VfhJTjN23nUWrbuSk1bdy7Pp7uf6Uv+b5qYuGd5CSNAg1nfs4veEO7p14Ec+PPob/m/4uzt1+E+Nbt7O3fAwPj1/CwxOWUJrqoLOkjEBhCRwfH3vqgaDfop2mZ5AkFQcDvBp2Mcb2EMIvgQ8BrycdpIWDK3p/VmBX3yY9p+8CXh1jLCypYXdTAH+jzdKWdWlvWW8rKzoPlrXluBy4r77LU220lYzqV99dj3tb8ZHdvq0s/2o6JY9zU8Wo27zszL9qpmwA87K9PGteduafl936Li+g71DC7tpJ3LbwchprjuC8J67mkke+y48u+g/2jRpb0NhU3DxfqlhVpgpczRjKDzyu6CxspSTAhVv+SGP5OJ4cewqPjzuNx8ed1q18+v41TG7ewCMTljCqs7mgPpePP/NA20mtXih4OPKcqSRKucnYiGeKBhWLbmkaQgjVwJuAncB1/eyrHsj9k7Jvm4FlBd76Tv51GGjKzi2Vlf/xUKOzc1VltenN3sqsvGstu/PWq21NH7elrKpbLsmu9qPa93cLaOQbW1OB41IyODdVjJqycvXVNuefl9ll+3rJ1Zu/7/w7to/OlLWWjcqZf7c3j869kI6Scio6Wliw4f5+tVXx8nypYjW6PSsfadnYvPX2lB8sG93RmLfeoUpJ8aYXfsLb136H43cvpb5lC2PbGpi1bxUXb/o173n+awcCyxNat/XZ36aq6WweNQNw9e7hzHOmpCRyBa+KQozxkRDCCuD8EMJ04GXAaODbMcbe/zx50EeBzwDHAreGEM6PMTb03qTHOL4PfL+QuiGEpYyA1b47aieTIlBCZGLTJlZPPCFnvYl70zu6NlXWFbTBAHTfOXZi00Yaaqfk6Tu9++uOmu47xXZvv4nNY2b32r63nWaVPM5NFaOdo6cemJf1ezawdvJJOevV79kAQFPlmII2WAPYUTe9W/uddbl3356Q6bshT3lvOksraKmoobZlN2Obtva7vYqT50sVq/rWLYSYIoYStlZN4cimFTnrbatKz6va9saCNlg71FF7V3DU3tx9bxo1E4AZ+1f32c+y8WcB6VXExzcu7fc4lAyeMyUlkSt4VUx+SnpOvpOD6Rl+mr96DyuAC4EG4ATglhBCYcuilFdHaSUbxs0HYN72p3JXipG5O9JlqyccV3DfO2sm0ViV3u19bp6+yztambFrJQBr6o/tVrZh3HzaS8oz7Z/M2b6uuYH6fZtztleyOTdVjDrKKtk04SgAZm99PHelGJm97QkA1k3K/UtjLrtqJ7Nn1IRe+y7raGF6w3Ppvo84vuC+u5S3NzOqdS9QYHoHJYLnSxWritjOzExgddXo3P+2EVhVewwA85qeGdLjb66azvZM8Pik3Q/1Wrc9lPPE2FMAOK5xGZV9XCKv5PKcKSmJDPCqmPwPkAL+hnSg9ukY48P96SDG+ATwcmAXsBC4OYQwptdG6tMT09K5xmbtfJapu3uubjhmy1LGNe8A4MlpZxTecQgH+j52y8OM2b+jR5XF62+nsrOVVCjhqamndytrL6vkmcnpRdSLXriTyvaeKzrOXH0jAK2lVTw3aWHhY1MiODdVjJ6adQ4AM7c/zeSdq3qUH7XxIcbuS18KvGLmOYV3HAJPZeov2PAAdfu296hy8upbqOhoIRVKeHrGWd2bp/re6f3UlddTmtkR/oX6Ywofm4qe50sVq5N2PQjA2poj2TBqVo/yp8aczK7KiQAszNQdCm2hnOum/SUAxzYuY2Jr71ctrBizkJbSagAW7zKFzeHOc6akpDHAq6IRY9wE3AJMJz03C91c7dB+HgVeATQCpwA3hhBGD9EwR6THp57JttppBCKvX/49Zjc8nS6IKRZseYSLn0r/U62qP561E7oHBJasvJZP3Hgln7jxypxfYB6cfRFNlXVUdLbx5mXfZHLjOgBKUh0sWn8H5668FoDl05ews2ZSj/Z3zX8dbaWVjG5t5E3Lvs24fekv5+UdrZyz6joWvXAXAPfOu4SW8sIunVJyODdVjJ6auYTtdTMIRC594BvM3JZZoRNTHLXhQV6x7IcArJ50IuuP6L7q58wVv+Xjv30nH//tO3MGcB856hKaKsdQ3tnGZfd9lSN2rQHS8/Kk1bdw1or/A+Dx2eeza3T3yz6PeeE+/uK+/2T+xocZ1ZKVwzKmqG9cz0XLfsiZz/wegI0TjmLtpBOH4uNQkfB8qWK1cNeDTGreSAwl/GrWX7G6Jn0VRIrAU3Unc+20twFw5N6nmLvvuW5tbz/iEj59wrf49AnfYlf5+B59bxg1i7smvoJtlZPpCKUAdIRSVtYew4/mfYwN1XMY07aTV2+8ps9xLhuX/qPZES2bmLF/zaDes4qf50xJSWMOXhWbbwClmcf/M9BOMjl9Xwn8GTgDuD6E8KoY474hGOOIE0tK+fWiD/L2h7/K2OYG3vbw12grrSDESHmqHYAtdTO49qT39rvv1vJqrln0Yd7yyNeZ2LSZ99z/BVpLqyhLtR9YRbZ6wrHccsybc7ZvrK7ndwuv5LJHv8/MXSv567s/SUvZKCo6WymJKQAem3YWD8x55QDfvYqZc1PFKJaU8vsz/4433/1FxuzfwZvu+TLtpRWQNS+3jpnF9af+Tb/7biuv5ndnfZw33vv/qN+7kXfe/ilay6oo6zw4L9cecQJ3nPj2Hm0DkXlbljNvy/J0X6WVdJRWUNHRTFmq40C9dROP5brTPwwhDOTtq0h5vlSxKiXFW9d9n5/M/Qi7K+r56dyPUJ5qJRLoyGyANqX5Bd6w/if97ntv+RhunXwpt06+lBBTVHU201paRSoT7D2iZRNvW/s9ajubeu2noaKedTXzADh5p6t3RwLPmUqaGP3eNtIZ4FVRiTH+CfjTEPX1YAjhYuBG4BzguhDCJTHG5qHof6RprK7nv8/+NKevuZmjty5jbHMDqVDC5rqpPDXlVB6ZdQGpkoGdUraMmcUPzvksZ6y+kfnbH6euZRdtpZXsGD2Vx6eeyWPTz4aQ/4KD5yeewH+f/SnOXH0TcxpWUNvaSEtZNVvqZrB8xrk8O3nxQN+2EsC5qWK0p2YiP73wi5y68nrmb3qEMfu2E0tK2FI3nWdmnMHyea8Y8LzcNm4OP3n5lzn1ueuYu+VRRu9voL2sks1101kxcwlPzD4357xcPXkhN5/8XqbveJojGtdR3bKHqvZ9dJRW0FBzBFvGzeHZ6WewZvLCQb57FSvPlypW49p38jcrv8S99Rfy9JiF7C6fQAmdHLF/Pcc3PsLpDXdSFvtOM3Ooqc3rOXv7n1lXM5/d5RNoLq1mVMc+JrVs4rjGZZy86wFKSfXZz/JxZxJDCaWp9j5z9erw4TlTUpKEGONwj0EjUAjhDuBlwIdjjN8qsM1vgDcAn40xfibr9a5JfH6M8Y4c7V4GXA9Uk04B8doYY8tgxp/pdymwqGbMUZy05KrBdidJh73K6lHDPQSph9b9/t1XxelzT3xouIcg9fCpEwr61U16yTx295Xsa3wOYFmMcURFtrtiErOPWsTnfrB0uIcz7D71vsWsfW4ZjMC5AObg1QgQY7wTeC3QTHoDtt+FECqHd1SSJEmSJEnS4JmiQcMixnjeANq8Mc/rfSabiTHeRnoFryRJkiRJknTYMMArSZIkSZIkJVAEzL6a/hxGMlM0SJIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISyk3WJEmSJEmSpCSKkBrpO4zBiN9lzRW8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQlVNtwDkCRJkiRJkjQwMQ73CDTcXMErSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooN1mTJEmSJEmSEspN1uQKXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQrnJmiRJkiRJkpRAEUi5yRoj/SNwBa8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQpUN9wAkSZIkSZIkDUyMwz0CDTdX8EqSJEmSJElSQhnglSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEspN1iRJkiRJkqQkipBKDfcgisAI32jOFbySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIRykzVJkiRJkiQpgSIQR/gGYzDi91hzBa8kSZIkSZIkJZUBXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaHcZE2SJEmSJElKKDdZkyt4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhKqbLgHIEmSJEmSJGlgUnG4R6Dh5gpeSZIkSZIkSUooA7ySJEmSJEmSlFAGeCVJkiRJkiQpoQzwSpIkSZIkSVJCucmaJEmSJEmSlEQRYnSXNUb4R+AKXkmSJEmSJElKKAO8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQrnJmiRJkiRJkpRAEXCPtRG/x5oreCVJkiRJkiQpqQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISqmy4ByBJkiRJkiRpYFKp4R6BhpsreCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCeUma5IkSZIkSVJCxTjcI9BwcwWvJEmSJEmSJCWUAV5JkiRJkiRJSihTNEiSpJdEVW31cA9B6qF1f/NwD0HK6VMnfGu4hyD18JWtfz/cQ5C6eXf7Bp4d7kFIRcAVvJIkSZIkSZKUUK7glSRJkiRJkpIoQspN1mCEfwau4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKqLLhHoAkSZIkSZKk/otAjMM9iuE30j8CV/BKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKTdYkSZIkSZKkhIqpkb7FmFzBK0mSJEmSJEkJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKDdZkyRJkiRJkhLKPdbkCl5JkiRJkiRJSigDvJIkSZIkSZKUUAZ4JUmSJEmSJCmhDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhCob7gFIkiRJkiRJGoAIMQ73IIrACP8MXMErSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUooN1mTJEmSJEmSEigCqdQI32GMEb/Hmit4JUmSJEmSJCmpDPBKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJ5SZrkiRJkiRJUkLFkb7DmFzBK0mSJEmSJElJZYBXkiRJkiRJkhLKAK8kSZIkSZIkJZQBXkmSJEmSJElKKAO8kiRJkiRJkpRQZcM9AEmSJEmSJEkDE+Nwj0DDzRW8kiRJkiRJkpRQBnglSZIkSZIkKaEM8EqSJEmSJElSQhnglSRJkiRJkqSEcpM1SZIkSZIkKYFijKTcZY04wj8DV/BKkiRJkiRJUkIZ4JUkSZIkSZKkhDLAK0mSJEmSJEkJZYBXkiRJkiRJkhLKTdYkSZIkSZKkhIqp4R6BhpsreCVJkiRJkiQpoQzwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCeUma5IkSZIkSVJCxRiHewgaZq7glSRJkiRJkqSEMsArSZIkSZIkSQllgFeSJEmSJEmSEsoAryRJkiRJkiQllAFeSZIkSZIkSUqosuEegCRJkiRJkqQBiJBKDfcgikAc7gEML1fwSpIkSZIkSVJCGeCVJEmSJEmSpIQywCtJkiRJkiRJCWWAV5IkSZIkSZISyk3WJEmSJEmSpASKQIwjfIcxRvwea67glSRJkiRJkqSkMsArSZIkSZIkSTmEEM4PIVwXQtgeQmgOITwTQvi3EEJNP/spDSFcFEL4egjhoRDC7hBCWwhhcwjhDyGEVw90jAZ4JUmSJEmSJOkQIYQPA7cCrwZagKeB2cC/Ag+HEMb3o7srgJuBjwKLga3AE0A1cClwXQjh+yGE0N9xGuCVJEmSJEmSpCwhhMXA1zNP3w/MjDEuAuYCS4FjgB/0p0vgceCvgPExxqNjjIuBCcA/kE4lfCXwgf6O1U3WJEmSJEmSpIRKjfQdxl48nyS9OPZnMcarul6MMW4KIbwVeAZ4fQjhxBjj4wX091vgh/GQXfFijB3AV0IIRwHvIx1M/m5/BuoKXkmSJEmSJEnKCCHUAq/KPL3q0PIY40rgtszTNxXSZ4xx56HB3UPckLk/utBxdnEFr6SCVXS0cPqamzl66zLGNjeQCoGd1ZNYMeVUHpl1AamSgZ9Salr3cMaam5i/7XHqWnbSUVrOjtqpPD71TB6bfg70kYJm7P5tnLn6JuY0rKC2tZG20iq21M1k+YwlPDt58YDHpWRwbqoYlbc3s/Cpa5m3/gHqmraRCiXsrpvCqtnn8PiCi0mVlg+471HNu1n01O+ZtWEpo/ftoKO0gp1jZ/DMvPN4ev6FeeflBfd+k2Oev6PP/r/zjmuIJaUDHp+Kl+dLFSvnpopRS6jkruqX8UTlCewsHU8JKeo7d7Cw5VHO3n8PZXQOuO+nKo/lwVFn8ELZdJpLqqlO7WdG+3rObH6ABW3P5G33y7q/ZOmoU/vs/8tb/z9KSQ14fJI4GagEWoGH8tS5G3g5cMYQHXNU5n5/fxsa4JVUkLrmBt7x0FcY29wAQFtpBWWpTqbuWcfUPes4fvODXH3qx2gp79cmkgBMblzHWx75OtXt+wBoLa2koqOFGbtWMWPXKhZsXcavF30w7xf7eduf4LJHv09FZxsALWVVVLXvY27DCuY2rOCxaWfxp+Mv7/PLu5LJualiNLppG39x86epa9oGQHtZJaWd7UxqeJ5JDc9z1Jq7+MNFn6G1srbffU9seJ7X3vJvjGrdC0BbWRXl7c1M3fY0U7c9zbx193P9+f/UawC5o7SCtvLqgb05JZbnSxUr56aK0a6ScXx3/F+zqzS9f1J5bKODMjaUz2BD+QyWV53Mlbu+T3Vs7le/KQK/rHsLy0el/zgQYoqq2MK+khpWVB3PiqrjOXv/3fzF3j/02k9ZbKcqlf/YAa/Z14i1IISwtB/1r4oxfj/H60dl7tfHGNvztH0+c9/vFbd5vDVzf3d/GxrgldSnkOrkzUu/xdjmBvZWjuGPJ7ybtfXHQkxxzJalXPLkz5m85wUuffyHXLP4I/3qu7J9P29e9k2q2/exo2Yy1574HraMmU1JqoOTX7iblz9zDfN2PMVFT/+Km457e4/2Y/bv4LJHr6Kis40Xxs7jTydcwc6aSZR3tHDGmptZ8vx1nLTxPhpqJvPA3FflGIGSzLmpYhRSnVxy25eoa9rGvlHjuOXsD7Nh6kkQU8xfez/nP/BdJu5cw8vv+S/+dOG/9KvvirZ9vPq2LzKqdS87x0zjlrM/wvb6+ZR0tnPsyls455GfMGvTo5zz8I+564wr8/azcvZZ3Hb2hwf7VpUgni9VrJybKkadlPCjse9mV+l46job+cs9v+SotpWkCDxeeSK/qXsTG8un879j3sZ7d/+wX33fWPuqA8Hdc/bdxcv33UJN3E8bFdxffSbX117CvdVLqO9o4Jzme/L2c1LLo7xlz68G9T6lw1Q1sKgf9afkeX185n5nL227ysb143g5hRBeB7yG9EZr/6+/7c3B208hhDtCCDGE8JlDXh8TQtiQKfvXPvoYH0LYkqn70azXY9btS3308fJD6p93SPl5h5R33faFEJ4OIXw7hDA/R7+fydS7o4DPIuexD6kzJoTwjyGEe0II20IIrZn3fmsI4UMhhKpe2l6R6X9tjrKf5HhvLSGErSGEx0IIPw4hvKO3/lW4EzfdzxFNGwH47cIPpL90A4QSnp5yKjcc9w4A5m9/ktkNT/er79PX/pna1j20l5Tzq8UfYcuY2QCkSspYOut87pp/KQAnb7ib8fu29mh/7qo/UNHZSlNlHdcs/jA7ayYB0F5Wxd1HXsry6UsAOGv19VRlVm7o8OHcVDFa8Pzt1O9eD8AN5/1DOrgLEEpYNeds7jjj/QDM3riM6ZsL2YvhoIVPXUtN827aSyu47oJ/YXt9+kd5qrScJxdczEMn/SUAx638M2P2bBqid6TDgedLFSvnporR0qpT2FI+FYB3Nv6Mo9pWAlBCZGHrY7xh728AeKbyGFZW9Pi1Oq99oZq7q88F4LiWJ3hd07XUxPSV2BW08bL9d/Ky/XcCcHPtK2gJlUP2nqQRZD+wrB+3zXn66YontfVyrNbM/ahe6vQphLAA+Gnm6ddjjPf1tw8DvEMkxtgIdC2V+WQI4bheqn8DmATcA3wzT513hBB6+/e5vB/DuzfrtpX0MvO/AR4LIbyiH/30SwjhYtLL1b8MnA00AY+R/s9xAen3/mwI4ZRBHGYbB9/bcqCB9Pu7Avg5sCGE8I5B9C/ghI33A7B2/NFsHDevR/mKKaeya1Q9AMdvfGBAfa+YciqN1fU9yh+ZdT6tpZWUxBTHbXqwW1l5RysLtiwDYNmM82jNcbnxfXMvBqCqo4Wjtj7ar7Gp+Dk3VYwWZHLcbph8PFsn9rxaa+Xsc2isPQKAo5+/s399r073vWr2OewdPalH+RMLLqatrIqSmOLo1Xf1b+A6rHm+VLFybqoYPTIq/SvqvLZVzG5f16N8YcujjO9IpxRZWlX4r7MrK46kI6RTKJ23/46cdc7bdzsAzSXVPFl5fH+GrREspuKIv2V5Jsa4uB+3XOkZAFoy9xW9fPRdf4XpX66WLCGEGcBNwBjgeuAfB9KPAd4hFGO8nnTEvQL4UQihx+4kIYRXA28n/Y//nhhjrqznzwDTSQdBewghjAZeD2wBdhcwrnOybnOBE4AnSS9b/3kIof/JrPoQQrgEuBaYAFwHHB1jnBtjPC3GOJP0cvn7gJnAHSGEkwd4qBuy3tuZMcZjgTrgQuCWzPF/HkL458G+p5GqrLOV6btWAfD8xDxfMEJgdX36bxpzG54quO/xTVsY07Kz177by6p4YdyRAMzZsaJb2fRdqyhPtffavrG6nh01U3K2V7I5N1WMyjpambz9WQDWT83zoy2EA2UzNj9acN9jGzcyet8OANZNy913e/koNk86Jt33pscK7luHN8+XKlbOTRWjNspZWz4bgAWtuTc7C8DRbemf989VHJWzTi67Sg9exT2po+eqcYDq2Ext595+9y1pyO3K3I/vpU5X2a5e6uQVQpgM3EomNga8oZd8v70ywDv0/hbYBJwGfDy7IIQwBuj6y8AnY4wr8/Txs8z9u/KUv5F0cPYX0P9tO2OMK4B3Z54eAVzU3z56E0KoJ/0eyoBrgNfFGJ87ZAzLSQdh7wFqgF+GEAa+nXj3vttjjLcBrwD+K/PyF0IIQ7Wr4YhS37SFkkyC/u21U/PW2z56GgC1rXuoaivsErWJmcvx0n1P66Xv9HHr93W/3Lh7+97GNjVT38uVDyfOTRWjcY0bKMn87bZh3My89XaOTZfVNO+mMrNZWl/GZ9I+ZLfPpSFTNq5xQ9460zc/wdt/9yHe/z9v4X3/+w7ecu3fcc7DPzKtw2HK86WKlXNTxWhb2RHEzMW0kzu25K3XVba3tI79of9XZ6d6CcekMsffUpYvNSisqjiSf5/wj/zzEV/iXyd+nq+O/zh/qL2U7aU9V6tLGpCuONbMXuJV8w6pW7AQwhHAbcCRwP3Aa2OMLb23ys8A7xCLMe4G3p95+tkQQva1mV8FppH+h/taL93cAGwHXh9CyLW9dld6hp/lKCt0nI8AXb9RDvWfBT9EeuXsLuADeVYpk5m4V5AOUh/Fwd0Ch0SMMZIOsj9J+o+s/dvJRgDUtu4+8HhvVf684Xsrxx54PDqrTW9GtzZm9T02b72myvRxqzpaKO84eL7rat9cXk1Haf6rJrrGVlvguJQMzk0Vo5r9B/dg2Fed/4/92WU1+wv7g392vaYC+q5s3095e+6rxUbvb6CuaSsdZZWUdbQyYfd6Tnr6T7z12r/juGdvLGg8Sg7PlypWzk0Voz0lYw48rks15q2XXZbdpjfjOw/+LN9SNjnP8UezvyR9ke2e0rq8fTWWjmVn6XjKYzvtoZwt5VO4p+Zcvjrh77lv1JkFjUdSr5aTTjFaSXoRZy5LMvf396fjEMJ44M/AMaTzAF8cY2wa4DiB9ApLDbEY43UhhP8B3kE6VcMS0ukW3ks6AXO+1AxdOoCrgY+SXq37k66CEMJs4Fzg0Rjj4yGEAY0xpBsOrHHf3pK5/0WMsdffWmOMz4cQbiC9U+BbGUTQOk//nSGE7wHfAi4KIVTGGFv7aqeDKrK+6HaU5P9y2571xTe7TaF9t/ej7/ayqm7te2ub3b6iw3/6w4lzU8WovD1rXpbm3xilvexgWXlHYSm7KrLqdZTl7zv7uOXtLbSXH1xVtGP8XO6cMJ910xfTVD2BWFJKWUcrMzcu56xlP2fM3i2c9+APaK4aw+pZ/nJ4uPB8qWLl3FQxai05+HO0IubfWym7rKWksqBra+e3raQsttMRyrm15kLm7V7do85tNRce7DfHnuHT2zcyo/0Fjm19mjGp3ZQQaaOcZyuP5k+1r6GhrJ7f1b2B2lQTJ7Y+0fegJOUUY9wbQrgJeC3pPbfuzS4PIRzJwdSqvym03xBCHXAzcCLpBYmvyOzrNSiu4H3xfIR0jtyzSK8cvSrz+qdjjLkT+XTXtXveoWka3kU6MPtTBucUoGt1cL+XkucTQpgAdK1avr3AZndk7s8aqnEc4u7MfSWw8EU6hiRJRe/xY17NkwsuZm/tEcSS9FYBHWWVrJ51Br+++MsHNn87+5GfQoy9dSVJkvqpJu7n7P33ALCy8miurnsr20on0kkJu0rGcn3tJdw36ixKYwcAgZ4/i89pvoezm+9jXGrXgRQnFbRzQuuTfHjnNw5s/nbd6NfmaK3DUkx/bRvptxdpwv9bpud3hhCuzCyWJIQwBfhf0nHV38cYu21+EUJYm7m98ZDXq4E/AYtJ7791YYyxYSgG6greF0mMcVcI4QPA74HPZV5+GPhKge2XhxCeBM4LIcyKMXZt3fkuDq7wHZAQwrHAjzJPt5NeFn6ol4UQBvLfY3rW4+cLbLMqc18XQhgdYywsGWHh1mc97rnleJYQwvtJ/2WmEAsGPKIEaSs7+FfjslT+v2CXdx4sy25TaN/lqTbaSnLnrsrXd9fj8l7Gld2+rZcVb0oe56aKUXt51rzszL+aqzxrpVd7WWF5+9qy6pV1tNJe0XNH90OPmz2evrRWjWbpCW/ggvu/S92+7dTvXMOOCXMLbq/i5flSxcq5qWJUmTr4c7Qt5F/BnV1WlSp8BffFTTfQWDqWR6tOZvmoxSwftbhb+cy2tUzt2MQD1WdRndrfj5GnA8gX7L+V39S9mV2l49lYNo3pHRv7bigppxjjwyGEjwH/SXpPrX8NIewAjiW9iPBZ4H05ms7K3B+advWjwDlZz3/by5X5b4wx5k8EfggDvC+iGOMfQghXA28D2oF3xxj7synaT4H/AN4JfD6EcA7pBM7XxRi3FdpJCOGerKdTgNmk/8rQDFweY8y1U8EeoK/rOc7O8drorMeF5g/JPn4dB3MDD5XscYzOWyttCrBoiI+faE3ZOc9adrF99PSc9bLzoWXnSevN3sqDuapGt+ymoTb3F+/a1nSmj5ayqgOXzWW3H9W+n7LOtrz50brG1lTguJQM/3979x1nV13nf/z1SSEkQAKhF4EQqqBUCz2ADRQbRQGlqKuyiLquu/zWZRV7Z3XtZWkK6FoQBUGQImCnC0ovkQ5JSAjpmc/vj+8ZMwkzk5nJ3Hvunft6Ph73cefec75nPjMcbu687/d8vp6bakXL99adyYx1tux1v+V79fbdd3L5Yy/bb815M5nVR8DbfeyFYycs155hIB5ff1lb/klzHzfgHSF8vVSr8txUK1qxt+4mPNrrfgPt1bui0XRxzOxz2W3+DdwwfnceHbMJi2Msay99mhcuuIU95/+eH008EoD1lj416Pq3WPTgP76eOXpdA15pFWXmlyLiL5Q1nl4CbAA8SGnL8OlB9s7t+WngyiYNDnymBga8zXA5JeB9JDNvH+TYc4HPUAW8LFtcbbDtGXoGsfOBuyntE/47M/tqz3BTZk7r76B9zPDtGc72tkBcb9bo8fWcAY4ZjJ6h7sqO/yilwfVAbA/0/tf1CPLUmhvRRTCKZP25j3Df+i/odb/1nylvHOaOm8iC1dbodZ8V9VzReP25DzNjzd5XiV3/mbIq8VNrLL+C8fLjH+HRSVv2O76/FZDVfjw31YpmTdqMrhjFqOxi3VnTmb5p758ZTn66XFzy7Pi1WThuZZ89FjPX3ny58bPW7j0IWbc69qxJvW9X5/H1Uq3Kc1OtaIMlTxDZRcYoHhuzEdsv6r3DYvciaWstncOEHFg//Z52WHQHO/Rx7IfGln/Dt1z8wKCPK2n4ZeYVwBWD2L/XabmZeRpw2vBUtTx78LawzHyU0nh524g4EDgSmAX8YpDHiR63CZm5fWae2E+4uyp6fjw4dYBjtq7u5zSgPQMsmxoP8Hh/O2bmtzJz94HcKP1SRrwlo8fx0DrlP9HUJ/v4jCKTrZ4q2+5bd8cBH3vmGhsye/Uy222rPo49dslCnjfrbgDuX+/5y217aJ2tWTxqbDX+tl7HT5w/g/WefbTX8WpvnptqRUvGjOOx9Usr+s0fubn3nTL/se3vG+8y4GM/PXETnlljverYN/W6z5jFC9j48b+VY2+y84CP3W3DJ5e9NZhT9eNV+/P1Uq3Kc1OtaDUW/yNYvXO17XrdJ4E7VytXvWy7aHj/rH54zCY8XoXHu8+/ftDjp49d9ufv5KXD0tpTUhsw4G1951T3Z1DaF/wwM1t2idbMfIrSgwTggAEOm1bd/27YCyr2re4XALf0t6N695dNy0rqW8y8k016Wel1h8duYJ355fKh2zZ96cAPHPGPYz//sT8zad5zL0HaffpVjFu6kK4Yxe2bvGS5bYvHjOOOjcrsuN3+/hvGLX5uj6o977sUgIWjV+euDXcZeG1qC56bakV3TJ0GwKaP3bZcYNpt6wd/x6S55fPGO6fuP/ADR3DHVuXY2zzwW9aa+9xuTS+481JWW7KArhjFnVvtt/zGlSyaNm7hM+z+l58C8MyE9Xhy8pSB16aW5+ulWpXnplrRHlWweu9qU5k+ZvPnbL913M7MHFM+dN19weBD2L4sYiw/XeswAF644BY2WPrkcttXtkjOvBjPFWscCMDaS2exyZJHhq02ta4Eurqy42+dvqigAW/r+xkwm2WzUAfbnqEOP6juj4mIfhsLRsRU4OAVxg2biBgNvLt6eFkrh+Ot7NZN9uSJNTclSN540zfZckaZHUZ2sf1j13Pw7eVziHvW24kH1t1hubH73v1zPnTpO/nQpe/s9Y31H7d8OXPHTWS1pYs48savsNHs0jNqVNcSdpt+Nfvd/XMAbtpsX2au8dw18q7Z+nUsGj2OtRbO5ogbv8Y6z5bQZOyShexzz0Xs9vdrAPjt1ENYMHZgl/SpfXhuqhXdMfUAnlp7c4LkVb/5PJs9emvZkF1MfeB3TPv9NwF4cNNdeWjjFy439kU3/5CTzjmMk845rNcA9+YdX8uz49dm7JKFvOaKT7L+jLKe6aili9nxzkt5yc3nA3D7Ni9n9sTlLxfe9r7f8KqrP8dWD/6e8fOX9QocvWQhU6b/kcMu+dA/guff7X4shG8TRxJfL9WqPDfVinZfcD0bLX6EjFGcs/ax3L1amWneRXDLuBfy44mHA7D9wr+xzaJ7lht72Rqv4N82/AL/tuEXmDnquX8OTx+zOVdMOJDHR2/IEkYDsITR3LHadnx98klMX20L1l46izfMueA5Y29cfTfOnnQct457AXNjWUfExYzhtnE78tXJJ/8jeH71MxcxquMjL6lz2IO3xWXmgoj4HHAg8FRm/qHumgbga8DJwGTgmxFxVGZ2rbhTRKwOnAmMBu4Bzh/OIqIsRfhFyuqGCXxyOI/fSXLUaH6020kc8+cvsvb8GRz95/9m0ejViEzGdi0G4LGJz+PnO7990MdeOHYC/7fbybz5+i+x/txHedvvP8nC0aszpmsxo6s1Ce9b9/n8eocjex0/e8J6XLDLO3nDzd9i81l3c+K1/8WCMeNZbelCRlWn3S2b7sUfprxyiD+9WpnnplpRjhrNLw/8D15/2UeYOPcJXnf5R1k8ZhyRyZhqtfUnJ0/h8n3eP+hjL1ptDS4+8EMc+uuPM3n2Qxx58b+zaOx4Ri9dzOiuJQBM33hnrnvRCc8ZOyq7mDr9j0yd/kcAFo9ZnSWjxzJu0bP/OCeXjBrLb/c4nnum9LaOqtqZr5dqVZ6bakWj6eKEp8/km5NPZNboyXx7nXczNheRBEuitO7YdPFDHDX7vEEfe87otbh0rUO4dK1DiOxifM5nQaxOV5Swd6PFj3LC02ewZi/rNnUxittWfwG3rV76Va/WtZAxLFlu/JhczKHP/IJdFnrxqtRJDHjbQGZ+CvhU3XUMVGY+GRHHAxdQ+gZPiIgPZObd3ftExK7AV4G9gHnAmzNz0XB8/4gYC+wDfAh4WfX0/8vMPw3H8TvV7Anr8d29P8JL7r+M7R6/kbXnz6ArRvHoxE24feMXcf0WB9I1amgvKY9N2oLv7PNRXnrfpWz95K1MXDCLRaPH8dRam3DrJntyy2Z79zuT7N71X8B39/4we973K6bM+CtrLpzNgjETeGzi87jpeftx50a7D/XHVhvw3FQrembNDfjBoaez6+0XstX0PzJx7hN0jRrFE2tP5e4t9+HW7Q+ma/TYIR37yXWncv5rv8Rut13Alg/dwJrzZrB4zDgeX3sb7pg6jb9tfWCv5+XDG+3EH3Y9mg2fvJPJsx9m3MJnWG3RPBaNncDstTbioY124vZtX8Ezaz13FptGBl8v1ao8N9WKJnfN4gMzvshvJuzPbeNewMzRkxlFFxsteYxdFtzM3vOuYwxLB33czRY/xP7PXsX9Y7di5uh1mD9qAhO65rHxkkfZeeEt7DH/z4zmOfOjANh60b286plf8uBqW/LE6A2YN2oCC2J1xuVC1lvyFFsvuoeXzvsDk7tmruqPL6nNRK6kH5uWFxFXA/sD8ynBZF/Oz8yTq6DzTODBzNxyJcfu/o/xgszsvZP/c8c8BawLHJCZV/d4fhpwFfS9el8fxzsN+Ajwm8ycNsB6l/vePba/htJSYnL11P3AU8BGwPOq5x4CDs/MP/Yy/nj6+N1FxFnAccATQHdwPBqYBEwBVq+emwG8NzMH/9HqSkTEDcBua0zalp33/fZwH16SRpxJG6xbdwnSc8x+wgVoJGmgvvD4B+suQVrOCbf/lTvnzQO4sVoMvWN0ZxIbbr4rx5/aqCWN2sdZn9iLx6ffBB14LoAzeFfF+OrWl7WaVUirysyLqh67JwKvAbYDNgOepoTPPwO+k5nzV+HbbFDdABZR+hXfBdwI/Br4SWYuWIXjS5IkSZIkSS3LgHeQVjartZf9zwLOGuC+A55p22PMen08fzUwlOOdBpw2wH1XevzMfBr4dHUbbC1n0cfvLjOPB44f7DElSZIkSZJGjsSr84EOX1TQ5ZElSZIkSZIkqU0Z8EqSJEmSJElSmzLglSRJkiRJkqQ2ZcArSZIkSZIkSW3KRdYkSZIkSZKkdpSQXXUX0QI6e401Z/BKkiRJkiRJUrsy4JUkSZIkSZKkNmXAK0mSJEmSJEltyoBXkiRJkiRJktqUi6xJkiRJkiRJbSiBruzwFcbo+DXWnMErSZIkSZIkSe3KgFeSJEmSJEmS2pQBryRJkiRJkiS1KQNeSZIkSZIkSWpTBrySJEmSJEmS1KbG1F2AJEmSJEmSpKHJzLpLUM2cwStJkiRJkiRJbcqAV5IkSZIkSZLalAGvJEmSJEmSJLUpA15JkiRJkiRJalMusiZJkiRJkiS1qa4uF1nrdM7glSRJkiRJkqQ2ZcArSZIkSZIkSW3KgFeSJEmSJEmS2pQBryRJkiRJkiS1KRdZkyRJkiRJktpRQrrGGnT478AZvJIkSZIkSZLUpgx4JUmSJEmSJKlNGfBKkiRJkiRJUpsy4JUkSZIkSZKkNmXAK0mSJEmSJEltakzdBUiSJEmSJEkavASyK+suo3ad/htwBq8kSZIkSZIktSkDXkmSJEmSJElqUwa8kiRJkiRJktSmDHglSZIkSZIkqU25yJokSZIkSZLUlpKu7PQlxqDTl1lzBq8kSZIkSZIktSkDXkmSJEmSJElqUwa8kiRJkiRJktSmDHglSZIkSZIkqU25yJokSZIkSZLUprKrsxcYkzN4JUmSJEmSJKltGfBKkiRJkiRJUpsy4JUkSZIkSZKkNmXAK0mSJEmSJEltyoBXkiRJkiRJktrUmLoLkCRJkiRJkjQECdmVdVdRvw7/FTiDV5IkSZIkSZLalAGvJEmSJEmSJLUpA15JkiRJkiRJalMGvJIkSZIkSZLUplxkTZIkSZIkSWpDCbjGWsevseYMXkmSJEmSJElqVwa8kiRJkiRJktSmDHglSZIkSZIkqU0Z8EqSJEmSJElSm3KRNUmSJEmSJKlNpausdTxn8EqSJEmSJElSmzLglSRJkiRJkqQ2ZcArSZIkSZIkSW3KgFeSJEmSJEmS2pSLrEmSJEmSJEntKCHTRdbo8F+BM3glSZIkSZIkqU0Z8EqSJEmSJElSmzLglSRJkiRJkqQ2ZcArSZIkSZIkSW3KgFeSJEmSJEmS2tSYuguQJEmSJEmSNHhJ0tWVdZdRu6SzfwfO4JUkSZIkSZKkNmXAK0mSJEmSJEltyoBXkiRJkiRJktqUPXilodsSYP4zD3LLte+suRRJan2jx4yuuwTpOZYuWVp3CZLUNk5Y/FDdJUjLeWD+/O4vt6yxDKl2BrzS0K0O0NW1kGdn31V3LZIkSZLUUHfWXYDUt9XrLqBOmZ29wJgMeKVV8QSwAbAAeKDeUtre9sAEYB5wR821SD15bqoVeV6qVXluqhV5XqoVeV4Ony0p4e4TNdch1cqAVxqizJxSdw0jRUTcAOwG3JGZu9ddj9TNc1OtyPNSrcpzU63I81KtyPNS0nBzkTVJkiRJkiRJalMGvJIkSZIkSZLUpmzRIEmSJEmSJLWjhOxykTU6/FfgDF5JkiRJkiRJalMGvJIkSZIkSZLUpgx4JUmSJEmSJKlNGfBKkiRJkiRJUpsy4JUkSZIkSZKkNjWm7gIkSZIkSZIkDU12Zd0lqGbO4JUkSZIkSZKkNuUMXkmt4NvAxsCjdRcircBzU63I81KtynNTrcjzUq3I81LSsDLglVS7zPxW3TVIvfHcVCvyvFSr8txUK/K8VCvyvJQ03GzRIEmSJEmSJEltyhm8kiRJkiRJUhtKoCtdZK3TfwPO4JUkSZIkSZKkNmXAK0mSJEmSJEltyoBXkiRJkiRJktqUAa8kSZKkhomINSPibXXXIfUmIsbWXYMkSavKRdYkSZIkDbuIOAg4DngDMB44o96KNBJFxC6ZefMQx44Dfgq8eliLkqRmyiS7On2JMaDDF5oz4JUkSRohImIN4D2Z+dm6a1FnioitgeOBtwKbdT8NzKyrJo14v4qI/TPzjsEMqsLdXwAHNaYsaXnVbPFdgA2BtYA5wOPALZm5uMbSJI0ABrySmi4i3gAcCryE577B+SPw88y8sL4K1ak8N9WuImIt4L3A+4HJgAGvmiYiJgJvogS7L+1+GlgMXAKcDVxUS3HqBOsDv46IfTPz/oEMiIjxlHPyAGBeI4uTIuLFwH8CLwfG9bLLgoj4FfDJzLyhqcVJGjEMeCU1TURsB/wI2LH7qR6b161uOwDHR8StwBGZeU9zq1Qn8txUK6pCs1cAUygBxE2Z+bsV9lkD+FfgfcDalHP38eZWqk4UEUE5P48DXgeszvKvnTOB7TPzqRrKU2e5ihLUXhER+2XmQ/3tXL1u/hLYF3gWeG3jS1SniohTgE9SXh+jj93GU15HXxsRp2TmF5tVn6SRw4BXUlNExFTg98Akypub64FrgenAXMpMyS0ob7Z3A3YGfh8RLx7obAxpKDw31Yoi4jDgO5TzsufzVwOvy8y51YzzrwMbUM7dh4DPV+OkhoiI7Skzdd8CbMyywOJh4FzgHOA2YJHhrprkUOByYE+Whby9ftBVXe1wabXvM8ChmXlN0ypVR4mIY4BPVw9vA75J3+8x3w08H/hcRDyUmT9sfsWS2pkBr6RmOYsyu+wu4NjM/FNfO0bEntX+21AWZDmg8eWpg52F56ZaSETsBJwHdK/s/jTlks7xwDTgfyLiD8A3KOHa/cBngLPs4adGiYgTKcHuHt1PUQKKnwLfA67MLKublMm9UnNk5ryIOBi4kvJB7OURMS0zl+v7HBGTgMuAF1HaLx2y4lUR0nCpejx/CUjgy8AHM7Nrhd2erm63RMTXgdMp7Zb+JyIuyMxFTStYUtsbVXcBkka+iHgRsDfwCLBvfwEaQGb+HtgPeBTYLyL26G9/aag8N9Wi3kcJd38HbJeZk4E1gVcCjwHHAF+g9Df9YLXPdwx31WBfo4S7CfyasojaRpl5fGZe0R3uSnXIzDmU/qa3ATtRFl6b2L09IiZTAuAXUQK1VxjuqsEOp7T4+nVmfqCXcHc5mdmVme8HrgDWAw5rfIkaSTKz42+dzoBXUjMcQfmD8BOZ+eRABlSX1n2CMkPoiAbWps7mualWtB8lvD06M+8GyOJySqA7FlgDeGtmnp6ZS+orVR1oLmXW+AOZ6eJUahmZOQs4iHJFzm7ALyNiQkSsRwl3d6X0hn75yj7QlYbBQZT3mJ9e2Y4r+BTlPebLhr0iSSOaAa+kZuie5TjYXlLd+ztLUo3iualWtCklPJvey7YrqvvHMvNHTaxJ+hTwd2Ai8E/ANRFxb0R8NCK2qbc0qag+rD0IeIDSZ/diyiJsLwRmAAdl5g21FahOshuwgNJzdzCurcbtNuwVSRrRDHglNcPWwIPVzIoBq3qnPUjpdyo1guemWtEEoNcFgjLzierLB5tXjgSZeSowhXIZ/PnA/OrxqcAdEfHHiDipmi0p1SYzH6aEvA9TrojYEXgCmJaZt9RZmzrKRsD9mbl0MIOqq3LupyxiKUkD5iJrkpphEuVyuaF4Cth2GGuRevLcVLuyLYOaruqzewVwRUSsCbyJsvDa3pTepntQFgkCGBMRq7lIkBotIvbrY9PHKb2jEzgNWLevfTPzmsZUpw42Cbh3iGNnA1sNYy2SOoABr6RmWJMy02coFlTjpUbw3JSkIcjMucD/Av8bEVtRgt63AltUu6wLPB4R/weck5m/raVQdYKrKSFuf77Wz7bEv4s1/MYBg5q928NSYLVhrEUdoKvLRcY6nS0aJDVD1F2A1AfPTbWqvSNiaW83ShjR5/aIcHavmioz78vMD2fmFMql8d8H5lFmsL2D0q/37jpr1IgXq3Dzb2JJUtvzk0pJzTKpn0vo+h037JVIy/PcVCvywwe1pcy8CrgqItYAjgSOA/bFy43VIJlpQKtWtU1EnDGUccNeiaQRz4BXUrPsRFnFWGo1nptqNQfUXYC0qjLzWeBM4MyqhcNbay5JkpptA0r7msFIyoe8Xm8vaVAMeCU1y6rMRvMNjhrJc1MtJTN/U3cN0nDKzPuAj9ZdhyQ10dl1FyCpsxjwSmo4L51Tq/LclCSpvUXEh1f1GJn5seGoReqWmSfUXYM6Ryaki6yRHf4rMOCVJElqAxGxNrApMBGYAzycmU/XWZM6R0Tct4qHyMycOizFSMs7jaFfUdN9KbwBrySprRnwSpIktaiIWAc4CTgK2L6X7XcA5wNfz8yZTS5PnWVLlvWGHIoOn1ejJrgD+GvdRUiSVAcDXkmSpBYUEa+i9PBbj75DtR0ovU1PjojjM/OSZtWnjvU3ynl5e92FSJX5wHjKh2DPAucA5/mhlySpkxjwSmo4e6OpVXluqlVV4e6FwFhgFnAucDVwDyXAWAPYGpgGHAOsD1wYEa8z5FWDnAe8nvKhwqeBm4CzgPMzc0Z9ZUlsBBwJHAvsA+wOfCEiLqaEvRdn5pIa61MHsq2NpGaL7PQuxJIaLiK6WMVLMzNz9DCVI/2D56ZaUURMBO4F1gX+D3h3f712q9683wKOAJ4Cts7MOY2vVJ0mItakBGnHUYI0gMXAJZRZvRcZpKlOETGFcn4ey7K2IjMpH1Cck5k31FedOkn1HnNVpO8xtTIRcQOw2zobvoCDT/Dz/UvOPJhZj/8F4MbM3L3ueprNGbySmuEa7L2n1uS5qVb0z5Rw9xeZ+eaV7ZyZT0fEmymXKL8aOBH4bGNLVCfKzLnAGcAZEbEly4K01wGvBWZGxPnA9zLzz7UVqo6VmfdTFl07LSL2BY4HDgdOBt4TEd0tRs7NzEfqqlMd4YS6C1BncfKmnMErSZLUQiLiOmBPYJvMHPAlnhGxNXAX8LvM3Gdl+0vDJSL2YVmQNpHywdmdwOcy86z6KpMgIsYDb6R8GHEQpaf5rzPzlbUWJkmrqOcM3lcd/8u6y6ndpWcd0tEzeEfVXYAkSZKWsy1w32DCXYDMvAe4rxovNU1mXpeZ76D0Qj0GmA5sBxxda2ESkJnzgauq2yOUgLevhSslSWpLtmiQJElqLZMoQe1QzAA2G8ZapAGJiE2Bt1LaNmxRPb24vorU6XrM3D0OOIAyuSmBy4D/qbE0dbiIWINytcOczHy27nokjQwGvJKarnpTcwiwFyWImAjMAR4CfgdcUvX5k5rKc1MtYgaw8RDHbgzMGsZapD5VAdphLB+gLQV+Relz+rPailPHioj9KefkYcCalNm6f6Wck9/PzEdrLE8dKCJGA0dVt70o7y+7t82hvMc8H/iBC1VKGioDXklNExGjgP8E/oUyQw2Wv0QugfcCcyLiv4FPZubS5lapTuS5qRZzG3BQROySmTcPdFBE7Er5YOKKRhUmAUTENJYFaGtQXi9vZ1mA9lhtxakjVT3IjwXeQplBHsBTlHPy7My8ocby1MEiYmfgB5T2Sb21BpkEHAy8Cjg1It48mH/7pSLJrq66i2gBnb3GmAGvpKaoZvn8EtiP8uZmKfA34B7gWcofiFsDO1De6HyEEnC8quqdJjWE56Za0IXAy4CvRMRBmbloZQMiYhzwVco72wsaXJ86UERsw7IAbXOWBWhnAOdk5o01lqcOFhG/BV5aPVxMeQ09G7jY2ZCqU0TsTun9vCbl/eUlwNU89z3mNErIuy1wbUQckJnX11CypDZmwCupWc4G9gcWAJ8Fvp6ZT664U0SsD/wzcAqwD3AOcEQT61Tn8dxUq/ku8O+Uyzgvi4jjM/OBvnaOiCnAmcCelMWtvtuMItVx7qR8gLAY+CnlNfCXXs2gFrAn5dy8gzJTcgawKfDOiIGtpZaZX29YdepI1QevP6GEu9cBx/ezeOrpETGV8m/5PsCPI2K7zFzYnGoljQSR2dlT5tnt6AAAK1JJREFUmCU1XnUp55WUvpCvGMhlchGxB2URjEnAyzLzqkbWqM7kualWVZ1nVwETgCXApdXje4G5lD8Yp1L6nr4KGAvMA6Y560eNEBFdlBDtfmDmEA6RmfmS4a1KWu7cHLLMHD1M5UgARMRJwFeA31LeL640rK1C4SspM9Lfm5lfa2yVancRcQOw2zob7sQrj7247nJq96tzXs2sx28DuDEzd6+7nmZzBq+kZjie8sb7AwPtgZaZ10fEByiXfh5HCTak4XY8nptqQdV5tj9lNtrWwGuq24q6p6fdAxxln0k1WABbVbfBclaJGuUaPL/Uet5AOS/fM9CZuJm5MCLeA9xQjTfglTRgBrySmmFf4Bng3EGOOxf4cjVeagTPTbWszLwxInYEjgbeTGnZsFaPXZ6hrLz9A+C8zFzc/CrVQU6ouwCpN5k5re4apF7sCPw9M28ZzKDMvCki/g7s1JiyNCIldHX5OVenf9RnwCupGTYC7hjsQheZuTgi7gG2a0xZkuemWlsV2p5d3YiIiZSQ95nMnFNnbeosmXl23TVIUhtZB7h5iGMfA3YevlIkdYJRdRcgqSMsBYba22w00DWMtUg9eW6q5UTEGRHx/3rblplzMvNhw11JklrabGC9IY5dD/DfeUmDYsArqRkeBraJiAmDGRQRawDbVuOlRvDcVCs6Hjik7iKkgYqINSJi4+q1UZIEdwFTImLqYAZFxNbAFODOhlQlacQy4JXUDFcBqwPvHuS4d1fjXMRKjeK5KUmDFBGjI+ItEXFxRMyizDR7CJgTEbOq598SEbaDk9SpLqIsTPnFgQ6IiABOp3QSvahBdUkaoQx4JTXDt6v7T0TEwQMZEBGHAJ+gXAL/nUYVpo7nuSlJgxAROwO3UfpCHwxMooQY3bdJ1fNnA7dFxC71VCpJtfoGMBM4NCLOi4hJ/e1cbT8PeE017huNL1HSSOKn6pIaLjNvjoivAycBv4iIs4CvZeZNK+4bEbsC7wGOo/yh+M3e9pOGg+emJA1cROxOuXJhTUoP80uAq4F7gGeBNYCtgWmUkHdb4NqIOCAzr6+hZEmqRWbOiYi3AhcCbwJeERHnUl5D7wXmUl5LpwIHAMdQFmZbChxnr30NRgKZWXcZtev034ABr6RmeR+wLvBm4ATghIiYDdzPsjc4Uygzf6AEaD8ETm5+qeownpuStBIRMQ74CeU18Trg+My8r4/dT6/6Tp4J7AP8OCK2y8yFzalWkuqXmZdExOspVzSsS5ko8J4+dg/KzN3jM/OXzalQ0khiwCupKTKzCzg6Ii4DTgW2AtYGdu1l9/uAT2bmmc2rUJ3Kc1MtapuIOGOIYzMz3z6s1UjwDmBz4LfAy1cW1mbmvRHxcuBK4KXV+K81vEpJaiGZ+cuI2J4yMeBNwHa97HYn8APKVWRPNbM+SSNHOI1bUrNVCwi8GNgb2AxYC3iGskDLb4E/pS9OqoHnplpBRHRRrjKLQQ7tHpOZOXrYC1NHi4hfUy4j3i0zbxnEuF2BG4ArM/NljapPktpBRExm+feYD2fmjHqrUruKiBuA3dbeYCde/pZf1F1O7S7//qE8/cRtADdm5u5119NszuCV1HRVQPbH6ia1jMGcm9UbqrUzc2rDC1MnegK4tO4ipB52BP4+mHAXIDNvioi/Azs1pixJah+ZOZPSikGShpUBr6SWFxEvzsw/1V2HtILNgcl1F6ER6+7MPKHuIqQe1gFuHuLYx4Cdh68USZLUU3Z5kWGnM+CV1LIiYi/gI8BB+HolSVKdZgPrDXHseoArwkvqGBGx36oeIzOvGY5aJHUGAxNJTRUR6wFTgHnAPb0t0lK9IfoIMI2qn2Qza5QkSc9xF7BXREzNzHsHOigitqb8u//bhlUmSa3nalbtb5jEvEbSIIyquwBJnSEitomIK4HHgT8AtwKPR8R/9dhni4i4GLiKspALwAXAHs2uV5IkLeciyoeuXxzogGrhytMpQcVFDapLklpVrMLNrEbSoPiiIanhqlm71wD7s/wbl4nAaRFxSkTsSentdzDQBZwPvCAzD8vMm2opXJIkdfsGZWGgQyPivIiY1N/O1fbzgNdU477R+BIlqTVk5qi+btUu1/W3T4/9JGlAnPIvqRneD2xIWRX+v4A/AhOAQ4EPAv8GvBuYBPwC+LfMvKuWSiWpfh8FptddhNRTZs6JiLcCFwJvAl4REedSrrq5F5gLrAlMpVyFcwxlYbalwHGZaQ9eSZIaIdNF1gCys38HBrySmuFgyuWZh2Vmzx58f4iIZ4FPUP4I/ExmfqiOAiWpVWTmR+uuQepNZl4SEa8HzgbWBd5T3XoTlJm7x2fmL5tToSRJUmcy4JXUDFOBh1cId7udSwl451BmrUlNU/WFHqp+L0+WhsqVt9XKMvOXEbE9cDJlJu92vex2J/AD4GuZ+VQz65MkSepEBrySmmEt4PY+tnVfhnxPZi5sUj1St2mrOL6zrwNSo1yNK2+rhWXmDOA0Sh/9ycBmlH/rn6F8oDujxvIkSZI6jm/+JTVDUHrwPUdmZllkm/lNrUgqnDWuVhU1jZUGJTNnUloxSJIkqSYGvJKkjmWvU7UiV87WSBMRzwM+lJkn1l2LJEkjUVd21V2CambAK6lZXrCSfqf9bc/MPKgRRUmSpMaIiC2B/wTeCowFDHglSZIawIBXUrNMov9+p/1tt8+pJEktICK2At4ITAHmATcB/5eZS3rs8zxKC5xjKH9vBHBr86uVpHoMYCHflU1+cYKLpEEx4JXUDF4Gr5YUEacD92XmV3vZ9kJgbmbe18fY/wF29M23pE4REe8DPsdz/4Y4NSIOysxHI+L9wKeAcZRg90/AJzPzF00tVpLqNW0l21c2+cUJLpIGxYBXUsPZ51Qt7P3AdcBzAl7gZuBaYP8+xu4K7NWQqtTRIuLDq3qMzPzYcNQidYuIvYDTKaHtPOAuYAIwFdgO+HpE3Ax8pBpyHfDxzLy8+dVKUu38+0dSUxnwSpLUt6i7AHWk01j1mTsGvBpuJ1FeEy8Ejs/M2QARsQNwAXAocDAwC/inzPxpXYVKUt2c4CKp2Qx4JUmSWstPGXzAOwF4BTB6CGOlgdgLWAi8ozvcBcjMv0XEvwK/oCykdnhmXlVTjZIkdZwEssu3f53+GzDglSRJaiGZefhA942IscC7gA8Bo6qnf9+IutTxNqT0LJ/Ry7buc+7vhruStExEjAdeDmxbPXUXcHlmzq+vKkkjkQGvpIaLiKWreIjMTF+vJKkSEQEcS+l3ugXl0vlbgVMz86I6a9OItTrQW7hLZs4spyQPNbUiSWphEfEy4HvABitseiIijsvMy2ooS9IINWrlu0jSKothuEmSgIg4HLgdOAPYErgHODozdzHcVc266i5AklpBREwFfka5+iGAucCz1dcbAj+NiK1rK1DSiOOMOEnNcEAfzwdwJfAX4L3NK0eS2k9EvAr4BLAr5fXzIcpiamdm5qpeKSENxLiI2Hyo2zNzegNqkqRW9C+U/vh/Ad6WmTcARMSLgP8FdgTeD7ynrgIljSwGvJIaLjN/09e26pLO2f3tIzXYpIjYbyjbGlWQ1FNE7A18CtiHEuw+CXwa+HpmLqqzNnWcPYD7+9iWA9ju3x6SOsWBwFLgTZl5R/eTmfnniHgzpa3SgXUVpxEmXWQN6PhV1nyTJUnqdDsBvS0KlP1skxouInahBLuvpAS7s4EvAv+dmc/WWJo616q0TLLdkqROsjnwYM9wt1tm/jUiHqj2kaRhYcArSep0qxI6dPjnxGqEiNgO+DjwRsp6CfOArwCfzcynayxNnW1K3QVIUhuZADzSz/ZH8XVV0jAy4JUkdazMdLFRtaLbKR88LAXOofTdfQwgIiYM5ACZOa9h1akjZeaDddcgSZKk3hnwSpIktZZRlNnho4Hjqttg2OtUwy4izgDuyszP1F2LJEmSluebf0lSx4qIkzPzK3XXIfXCXqdqNccD1wEGvJI0MHtHxNL+duhne2ameY0GKMm0c1ynd8/zBUOS1Mm+HBGHAW/LzPvqLkaq2JNPkqT25weukprGgFdSw0XEh1eyy+Yr2yczPzaMJUndngD2A26NiFMz80s11yPZ61SSpPZ3QN0FSOosBrySmuE0+r9eYnPgIys5hgGvGmEH4CvA0cAXe8zmvbvesiRJktSuMvM3ddcgqbMY8Epqhmvo9IY4akmZOQt4S0ScD3wL2Bu4pZpR/sW0mZXaTERsAKyemdPrrkWSJElScxjwSmq4zJxWdw1SfzLz4oh4PnA68Dbgs8BhEXFCZt5Rb3XqNBExE/hdZr6ml22nA/dl5lf7GP4TYE98j6fG2CYizhji2MzMtw9rNZIkSQJ88y9JEgCZOQd4R0T8gDKb9yXAzRHxSP/DcmpTClQnWRuY2Me29wPXAX0FvOCiLmqcDYDjBzkmKedkAga8kjpCROy3qsfIzGuGoxZ1hq6urrpLUM0MeCU1XEQsBa7LzP3rrkVamcz8dUScSen7vBqwZX+7N6UoSWoNTwCX1l2EJLWBq1m194mJeY2kQfAFQ1IzBM4oUxuIiG2AM4C9qqfOAy6vryJJail3Z+YJdRchSW1kNrC07iIkjXwGvJKkjhcRAfwr8FFgPPAY8O7M/HmthUmSJKmdzQfOBc7JzNvqLkbSyDWq7gIkSapTROwA/I6ysNp44PvA8w13JUmSNEQvp1wJNokyieCWiLg+Ik6OiPXqLU3SSOQMXklSx4qIDwH/BYwDHgHelZkX11uVJEmS2llmXgFcERFrAkcAxwH7ArsCX4iIS4CzgYsyc3F9lWokyITscmmQ7PBfgTN4JUmd7BOUcPdsYEfDXUmSJA2XzJybmWdm5jRgK0o7sL8DrwV+DDwaEV+NiBfXWKakEcAZvJKaZe+IGOoCA5mZvl6pER4G3pmZl9RdiLSCbSLijKFsa1RB6ngfBaavbKeIGAM8n/Lh2b2ZObPRhUlSO8jMB4GPAR+LiH0os3qPAE4EToyIH2TmMXXWKKl9GZhIapaouwCpFztm5py6i5B6sQFwfB/bNuxjW1Jeazv8AjU1yBeAnSPiRZn55952iIgPAqcCa1VPdUXEBcCJmTmjSXVKUsvLzOuA6yLiPOAMYAtg/XqrktTODHglNctfgPfWXYS0gvdHrNpnD5n5sWGqRep2dt0FSL14A+Xc/CFw9IobI+IU4FMs/4HuaOAwYIuI2DMzu5pRqCS1soh4HvDW6rYt5XVzNnBlnXVJam8GvJKaZXZm/qbuIqQVnMbQZzt2z5Q04NWwyswT6q5B6sX+1f1ZK26oVoT/cPXwduAU4F5gH8rM3z2AY4DvNbxKSWpBETEBOBw4FphGWQ9pKXApcA7ws8xcWFuBanOJn6FCp1/EZsArSRLcAfy17iIkqYXtASwCrupl25HAeGA+8OrM7O7Ve2fVf/8MSrBhwCupo0TEgZRQ943AGpQJArdRrog4NzMfq7E8SSOIAa8kqZPNp4QS2wPPUmZQnOeiQJL0HBsC92Tm4l62TavuL+0R7nY7F/gKsEvjSpOk1hIRnwTeAmxGCXWfBP4XODszb66xNEkjlAGvJKmTbUSZeXYs5VLi3YEvRMTFlLD34sxcUmN90nNExCH9bP5zZj7ZtGLUSdYFVgxvu+1BuS7yshU3ZObiiJgOTGlgbZLUav6D8rp4B+U95SXAEoCIeP5ADpCZXl0macAMeCVJHSszn6HMpvjfiJgCHEcJe98AvB6YWa1ufE5m3lBboeo4EfEd4CDgm5n5uRU2X0TfTcb+DziqkbWpYy0ANl7xyYhYF9iSck729To5l7LgmiR1mu0pC1B+apDjEvMaSYMwqu4CJHWEnwFH1F2E1J/MvD8zT8vMrSiLCZ0FrAacDPwpIm6LiH+LiE3qrFMjX0RsC7yN8j7ty33stogym7Ln7VngyIiY2ow61XHuATbt5fx6eXU/H7ipj7EbAba+kdRpYhVuZjWSBsUXDUnN8HrgNxGxd92FSAORmddm5tspocRbgV9TZmB8BjizztrUEd5U3X+xnxW1/5yZU3regA9Q/ih0Bq8a4VLK3w5fjYjxABGxNvDvlJlml2Tm0hUHRcQGwPOAu5tXqiTVKzNHreqt7p9B7SW7suNvnc4XDUnN8DdgW0rI+6XuPwylVpeZ8ykrxl8FPMKyWRVSI+1X3f9okOPOBxZSZqBLw+1/gKeBVwCPRcSfgPuBnSkB7xf7GPfG6v43jS5QkiSpUxnwSmqGXSh9p7ool7vfGhH79TtCqlFEjI+IYyLiMuBB4JPAJpQFhL5UZ23qCDsC0zPzscEMysxngfuAAS3eIg1GZj4OvJayEvxalIXVJlHC3VMy8w99DP1n+liATZJGqog4ue4aJHUWm3ZLarjMXAycGhE/plzevjNwZUR8E/j3zJxXa4FSJSL2pyy0dhiwJmW27l+Bs4HvZ+ajNZanzrEOcGs/278G3NvHttnAlGGvSAIy87qqB++rga2AOcCvMrPX8zEi1qMsZJnA75pWqCTV78sRcRjwtsy8r+5iJI18BrySmiYzb46IPYD/AE4FTgQOjoh/yswr661OnSoitgaOBd4CbEEJdZ+ihLpnZ2Zfq8JLjbIEGNfXxszsb1bQGsBz+qBKw6WaKf5/A9z3KfpeKFCSRrInKC2Xbo2IUzPzSzXXI2mEM+CV1FTVAiyfiIifAt8FXgpcHtFvW9PMTF+vNOwi4reUcxBgMXAhJdi9ODOX1FaYOt1TwBYREZk54BUjImIUsGU1XpIk1WcH4CvA0cAXe8zmdcFJDb/ERcagXC/UwQxMJNXlPuAGSrjmolWqy56UtwJ3AD8AZgCbAu9cyYcO/5CZX29YdepU11MWptoL+O0gxu1H6Y16eSOKkiRJA5OZs4C3RMT5wLeAvYFbIuLDwBcH8wGuJA2EAa+kpqsWWPtfSv++JcDnMJBQvbYHThviWANeDbeLKX2gPx4RBw3kj8CIGA18nPKBxS8aXJ8kSRqAzLw4Ip4PnA68DfgscFhEnJCZd9RbnaSRxIBXUtNExARKmPtuYBTwF+CEzLyx1sLUya6h4y/mUQv6PuUDh/2B70XEu6q+p72KiDUoH5rtDUwHzm1GkZIkaeUycw7wjoj4AWU270uAmyPikf6H5dSmFChpRDDgldQUEXEQ8B3KIlZLgU8BH8/MxbUWpo6WmdPqrkFaUWYuiYijgCuBo4CXRcQ5wLXA/cCzlMXUtqSEwMcC6wGLgKPtHy1JUuvJzF9HxJnAx4DVKP+O97l7U4qSNGIY8EpquIj4NvB2Sq/dWyizdm+utShJamGZ+fuIOAT4IbAB8K/VrTdBWVjtqMz8XZNKlCRJAxQR2wBnUPrrA5yHLeo0TBLoyq66y6hdp38qYsArqRneASymzNr9pLPLJGnlMvOqiNgOeC/wJkqv6BV1LxD4lWpBF0mS1CKirNr7r8BHgfHAY8C7M/PntRYmacQx4JXUDDcBx2fmXwY7sOot+Z7M/OzwlyVJra0KbT8KfDQiJgObAmsBzwAPZ+bMOuuTJEm9i4gdKLN2X0y52ub7wHsz8+mVjPsysGZmvr3hRUoaMQx4JTXDizNz6WAGRMRalFlr7wcmU1aclaSOVYW5BrqSJLW4iPgQ8F/AOOAR4F2ZefEAhx9N+fvHgFfSgBnwSmq47nA3IiYCrwCmAPOAm1bsF1nN2P1X4H3A2pRPux9vZr2S1IoiYm3KDN6JwBzKDN6n66xJkiT16hPV/dnA+zNzdp3FSBr5DHglNUVEHAZ8B5i0wvNXA6/LzLkR8Qbg65QFhQJ4CPh8NU6SOk5ErAOcBBxFLz14I+IO4Hzg67ZrkCSpZTwM/FNmXlp3IZI6gwGvpIaLiJ0oK8WOrZ56mnK50nhgGvA/EfEH4BuUYPd+4DPAWZm5uNn1SlIriIhXUWb+rEd5bezNDpQevSdHxPGZeUmz6pMkSX3aMTPn1F2EOkWSXVl3ES2gs38Ho+ouQFJHeB8l3P0dsF1mTgbWBF5JWUn2GOALwGLgg9U+3zHcldSpqnD3QmB9yodiXwUOB3YBtqnuD6+ef7ra78KIOLjpxUqSpOUY7kpqNmfwSmqG/Sjh7dGZOR0gMxO4PCI+CJxLeT16c2b+qL4yJal+Vb/y71E+GPs/4N199Nq9FfhpRHwY+BZwBHB2RGztH5aSJElS53AGr6Rm2BR4oDvcXcEV1f1jhruSBMA/A+sCv8jMN69sIbVq+5uBi6pxJza6QEmSJEmtwxm8kpphAvB4bxsy84mIAHiwqRVJUut6DaWJ2L8MdEBmZkR8oBp7KPDZBtUmSZJWorq6ZqgmDFshkjqGAa+kVrGk7gIkqUVsC9yXmfcNZlBm3hMR91XjJUlSfU5j6Cs+xSqMVSdKyK6uuquoX4f/X2PAK0mS1FomAYMKd3uYAWw2jLVIkqTBu4aOj5skNZMBr6Rm2TsilvaxLVe2PTN9vZLUKWYAGw9x7MbArGGsRZIkDVJmTqu7BkmdxUXWJDVLrOJNkjrFbcBmEbHLYAZFxK6U2bu3NaIoSZIkSa3JGXGSmuGAuguQpDZyIfAy4CsRcVBmLlrZgIgYB3yVckXEBQ2uT5IkSVILMeCV1HCZ+Zu6a5CkNvJd4N+BvYDLIuL4zHygr50jYgpwJrAnML0aL0mSpA6RXbZ87nQGvJIkSS0kMxdGxGHAVcC+wJ0RcWn1+F5gLrAmMJVyhcSrgLHAPODwgcz4lSRJkjRyGPBKariIuBG4MTPf0cu29wIPZ+ZP+hh7LbCni6xJ6iSZeX1E7A/8ANgaeE11W1F3j/J7gKMy84YmlShJkiSpRbjImqRm2AXYto9tXwLet5LxLrImqeNk5o3AjsAJwGWUmbs9F5+cC/yq2r6j4a4kSZLUmZwRJ0mS1KIyczFwdnUjIiYCawHPZOacOmuTJEmS1BoMeCVJktpEFeoa7EqSJEn6BwNeSZKkESIiXgp8JDMPrrsWSZIkNUOS2VV3ES0g6y6gVga8kiRJbS4i9gU+DBxYdy2SJEmSmsuAV5IkqQVFxH7AkcAUYB5wE/CtzJzRY58XA58B9qcsvJbARc2vVpIkSVJdDHglSZJaTEScDryv+yEluH0jcHJETAPuBk4HTq62dwE/Bj6Zmbc2u15JkiRJ9THgldQsm0fEh4eyrVEFSVIriohDgPdXD6cDNwITgBcDGwLfAO4E3kUJds+lBLt3Nr1YSZIkSbUz4JXULM8DPtLHts372dY9c02SOsU/VfffBt6TmUsAImJ94BeUdgz7AQ8CR2Tm9bVUKUmSpNplQleXfzJnh/8KDHglNcM1GNJK0kDtQem5+4HucBcgM5+MiFOAq6qnXp+Zt9RRoCRJkqTWYcArqeEyc1rdNUhSG1kfuDMz5/Wy7cbq/l7DXUmSJEkAo+ouQJIkSctZDZjd24bMfKb68vHmlSNJkiSplRnwSpIktR/b3kiSJEkCbNEgSZLUiiZFxH5D3Z6Z1zSgJkmSJLWg7OqquwTVzIBXkiSp9ezEssXUVpQD2O57PEmSJKlD+OZfkiSp9URNYyVJkiS1GQNeSZKkFpKZrpEgSZIkacD8A0KSJEmSJEmS2pQzeCVJklpMRIwG3ge8Bdi2evou4Fzgy5m5pK7aJEmS1FqyK+suQTUz4JUkSWohERHAhcDBLN9PdxdgZ+Ag4JDmVyZJkiSpFRnwSpIktZZjWRbgXgxcRWmrNa16/pURcXxmnlVLdZIkSZJaij14JUmSWstbgAQ+lJmHZubpmfmFzHwN8J+UWb3H1FqhJEmSpJZhwCtJktRadgbmAJ/rZdvnqm07N7UiSZIkSS3LgFeSJKm1rAPcnZldK27IzKXA3cDazS5KkiRJUmuyB68kSVJrGQ0s6Gf7gmofSZIkdbpMepkX0Hky666gVs7glSRJkiRJkqQ25QxeSZKk1rN5RHy4r20A/WwnMz/WkKokSZIktRwDXkmSpNbzPOAjfWyL6r6v7QAGvJIkSVKHMOCVJElqLdcAnd1ETJIkSdKAGfBKkiS1kMycVncNkiRJag8JZJdzAzr9N+Aia5IkSZIkSZLUpgx4JUmSJEmSJKlNGfBKkiRJkiRJUi8i4oCIuCginoyI+RFxR0R8PCLWWIVjHhYRV0XErIh4NiJujogPRsTYoRzPgFeSJEnDLiKujoiMiNN62fZAte345lfWWNXPlRExbZDjtuwxdstWqGmYvvdZ1fc+q9nfW5IkaVVFxMnAFcCrgQXA34AtgVOBP0fE5CEc8wvAj4FpwAzgHmAn4PPAryNi3GCPacArSZLUYiLitB6hXM/bgoh4KCJ+HhFHRkTUXWsrqMLR03oLkyVJkka67Orq+FsjRMTuwJeqh+8CNs/M3YCtgBuAHYDvDPKYbwD+FVgIvC4zt87MnSkB7/3AfsCnBlurAa8kSVJre7zHLYFNgUOBHwIXD+UT/hZwL3AnMHuYjrcl8JHqJkmSJA2H/6Jkp9/LzG9nZgJk5iPAUUAX8MaIeOEgjtn9fvWzmfnz7icz8w7gHdXDkyJi/cEUasArSZLUwjJzo+4bsAbl0/3Lq80HA5+orbghysyDMnP7zLyg7lokSZKkFUXEmsCrqoffXnF7Zt4NXFk9PGKAx9wG2LmfY15JadcwDnjtYOo14JUkSWoTmdmVmbdT3vDdUz39rogYU2NZkiRJ0kizKyVoXQj8qY99rq3uXzrAY3bvd19mPjxMxwQMeCVJktpOZi4AflQ9XAvYHp67UFdETI2Ib0fE/RGxMCIe6HmciBgVEcdExC8j4vGIWFStDnxZRBzVX4/fiBgdESdHxI3Vyr8zq4XVDl9Z/QNZZC0iXhIRZ0bEPRExLyLmRMRfI+KMiHhlz2MBV/V4vGLf4rN6OfZaEfH/IuL3Vd0LI+LvEfGDiNhzJbWvExGfj4h7q57Ij0bEj6oebQ0TES+NiM9GxLUR8WD1vZ+OiD9ExCnVLJOBHGejiPhqdU4siIjHIuLciNh+AGNfHRE/iYiHq9/ZrIi4JiJOjIjVVv2nlCRJahnbVvfTM3NxH/vcW91vN8hj3tvPPoM9JgDO9pAkSWpPD/X4emIv2/cCvgWsCcwDlntjWq34ewFlIYdus4H1gJdXtzdHxBGZuWiFseOAC4HuoLULWFQda/+I+OwQfyYiYjRwOvDeHk8/CyyhBNk7AG8E1q62PUn5+depHj++wiGX6/MbEbsAvwA2q55aSvn9bAa8CTgyIv4zMz/dS21bAlcDW1RPLQImAIcDr42IAV2eN0S/7/H1vOq2DvCS6nZsRByQmU/0c4wpwPnARsB8yjmxIXA0pX/cGzLz0hUHRcR44BzKz9ltDjAJ2Le6HRsRh2TmrCH+fJIkaQjmP/MgN1/7zrrLqN38Zx7s/nL7iLhhEEO/nZnf6uX5ydX9zH7Gdm9bp599Gn1MwIBXkiSpXW3Z4+ve3iR+C7gdeE9mXg8QEdtW96OBn1IC2ZspC0hcmZnzImIN4DDg85RWEJ8F/mWFY3+aEu5mNfYrmTknIjYATgNOYegLqH2KZeHuGZQFKO6q6p4ETKMsagFAZr4oIqZRzeKtehX3KiI2Bn4FbED5+T8F3JqZi6va3wP8B/CpiPhbZv6sx9jRlFnTWwCzKCspX5CZSyLi+cA3gbOH+DMPxC+A7wPXZOZjVU3jKb3hPg101/DGfo7x35T/Lq8Afp2ZGREvBr4LvAD4YUTsmJkPrTDu25Rw9z7Kf++Lqv/eq1fH+m/KZYRnAG8Yjh9WkiQNTFfXQp6dfVfdZbSSCcBug9h/4z6eX726X9THdijtGwDGD/B7NeKYgAGvJElS24mIicAx1cOZQG/v6mcAL8vMud1PdAellBmb+wN3ANMyc3aPfZ4FzomI24E/A/8cEZ/unhkaEZsAJ1e7fyIzP9lj7BPV/mvTI4QdxM+1LfDB6uHnMvOUnturOi+sbkPxCUq4e15mHtNzQ1X7hyNiFmUG8WnAz3rschiwR/X1EZl5RY+xf42IVwG3smxm8bDKzOcstJGZ84ELIuJPlMv5Xh8Rm2fm9D4OMx7YMzP/1uMYf4qIlwF/o8wq+Q/gpO7tEbEv8BbgCcq58vceYxcAP4+IGynn0usjYpfMvHnVflpJkjQAd9RdQAtaj3L12gODGPNoH88vqO77a0M1rrqfP8Dv1YhjAga8kiRJbaMKTnenzKrdpHr6y5nZ1cvuX+0Z7q7g7dX9N3qGuz1l5g1VyLsTcADww2rT4ZT3kPOBL/Rx/NMYQsALHEdZI2IG8JEhjO9TNdv06Ophfy0kzqEEvDtHxIaZ2d3y4c3V/W97hrvdqtnPn6PMnG6qzHw4Im4BXkxpzdFXwPujnuFuj/FPRMQ3gQ9R2lSc1GNz97lybs9wd4XxD0XEVcBrKDO7bx7SDyJJkgZsxQ+rNey6205N7mef7m0DbVHViGMCBrySJEktLSKyn83fBz7Zx7bf9nG80Sxblfe0iPhQP8fvfoO5RY/numexXp+Zc3oblJl3RcTDwKb9HLs3e1X3l1ezQ4fT7iy7LO6yftaP62kLlvX07f65r+xn//62rZKIGEUJmd8M7AKsz7Kfp6fNenmu28pq/xCwbkRMycz7q+f3ru7fHhFH9z4UKP14YflzRZIkqV11X/m2eUSM7WOhtakr7DvQY27dzz6DPSZgwCtJktTqei4athB4CriJMqPyqn7G9bXY1mSWXfo10MUbJvT4eoPq/uGVjHmIwQe83f1zH+x3r6HZpMfXGw5wzGB/7hV71w6LiJgAXESZSd1tEaU9R/cfG5OBscAa/Ryqv9p7btsA6A54u39vE+l9Mb8VTVj5LpIkSS3vJsr7rXGUq6R6mzyxb3X/+1629eYP1f2UiNg0M3t7bzbYYwIGvJIkSS2tv0XDVmJpH8+P7vH1wZl56RCP3wj9zVZeVT1/7vENmCHcSP9JCXfnU2bZ/hT4e2b+4/cVEdcC+wADmpo8CN2/txMz85vDfGxJkqSWlJnPRMSvgEOBd7JCwBsR2wAHVg9/PMBj3hURf6EsbvtOVmhJFhEHUmb3LgJ+Pph6Rw1mZ0mSJLW9GcCS6uuhXE7fPTN4ZbNzBzt7F+Cx6r4Rl/k/1uPrRv3cQ/mZB6K7/+/HMvNLmTm9Z7hbGcgHAQOtvefs70b+N5EkSWplH6dMQHhrRLwzqh5fEbExcD4lV/1ZZt7Sc1BEPFDdDu/lmB+t7k+JiEN7jNkO+G718OuZ+eRgCjXglSRJ6iBV/7A/VQ8P7W/fPlxf3e8REWv2tkM1o6G/XrB9+V11//JqUbSB+scic9F3c90/U2ZDwKr93Af0s8+B/WxbFc+r7m/qbWNEbEn/vdy69Vd797aZPfrvwrLZKq8ZwPElSZJGjMz8M/CB6uG3gAcj4kZKK6vdgTuBf+pl6BbV7TnvlTPzJ8CXKK0ffh4R90TEzcDtwBTgOuA/BlurAa8kSVLn+XZ1f0hEHNLfjhGx4iq/P6G0fxgPfLCPYR8eYl1nVcdel2WzGwai52Jva/e2Q2Y+C5xXPTwlIjbv74C9/Nw/rO73iYhpvew/Hvi3AdQ6FLOr+5372P6ZAR7niGp2yHIiYj3gXdXDH66wuftc2SkiTuzv4BGxRkSsNsBaJEmSWl5mfgl4OXAJZa2D51PWi/gUsEdmPjWEY/4LcCTwG2A9YFvgr8ApwIFDaSVmwCtJktR5vg/8mtKv9YKIODUi/rEIWRXUHRARXwPu6zmwWgzia9XD/4qI/4iItapx60fEV4G3sCyUHLDMvAf4fPXw3yPiu9Vs4O66JkbEmyLighWG3sWy2bnv6GcW74eARyhvpH8fEW/trr1H/YdVxz9/hbE/AW7s/rrab3Q1bgfKm/71B/UDD1x3n+RTI+KNETGm+r5TIuI8yh8IswZwnAXApRHxsh6XGL6Ici6sBzzDCmFxZv4GOLN6+LWI+O+I2Kp7e0SMi4iXRsTnKH/sbIAkSdIIkplXZOYhmbluZq6emdtl5n9m5tw+9o/qdlY/x/xRZk7LzLUzc0JmvjAzP1ddbTdoBrySJEkdJjOXAocBFwGrUfqLPRwRsyNiFiXouxL4Z8pMhRWdQgkFR1FmL8yKiJnA48BJwGeBm4dY3qksC5DfDtwVEc9Ux38a+AErtBrIzHnA96qHnwPmRsSDVe+zL/TY71HgZZRAeBPgHODpiJgREXMpvWd/DLyeFd4nZ+YS4Ajg78Dkar9nI+JpyoyLPYHjhvgzr8yplN/tWpSgeX71fe8DjqIswnbrAI7zL8DqwOWU39EzlHYdOwMLgaMyc3ov495N6QkXwPuBe3v8N5lHWeX53ygzrxu5UJ4kSZJ6YcArSZLUgTJzTmYeChxCuSx/OqUX2ATgYeAySv+v51zSX102djDwPkqQu4gS/l0LHJmZ/28V6lqame8B9gHOreoaWx3/r8D/UsLpFZ0EnAb8pXq8OaX32XorHP9vwAspLQkuA54CJlbHvwf4EWVV4yN7qe0+YBfgdErvtaDMiv0xsFdmDmq144HKzAeBPSg/+yPV0wsoAf0rM/PTAzzU/cCulAD9SUq4/wRltvKumXlxH99/UWb+E7AXpY3GvcBoSl+5J4CrgY8BL6xmeEuSJKmJ4rkL8EqSJEmSJEmS2oEzeCVJkiRJkiSpTRnwSpIkSZIkSVKbMuCVJEmSJEmSpDZlwCtJkiRJkiRJbcqAV5IkSZIkSZLalAGvJEmSJEmSJLUpA15JkiRJkiRJalMGvJIkSZIkSZLUpgx4JUmSJEmSJKlNGfBKkiRJkiRJUpsy4JUkSZIkSZKkNmXAK0mSJEmSJEltyoBXkiRJkiRJktqUAa8kSZIkSZIktan/D7tCNsbOxxFNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/helical/models/scgpt/fine_tuning_model.py b/helical/models/scgpt/fine_tuning_model.py index 22081501..a6b6c261 100644 --- a/helical/models/scgpt/fine_tuning_model.py +++ b/helical/models/scgpt/fine_tuning_model.py @@ -43,7 +43,7 @@ def __init__(self, output_size: Optional[int]=None): HelicalBaseFineTuningModel.__init__(self, fine_tuning_head, output_size) scGPT.__init__(self, scGPT_config) - + self.fine_tuning_head.set_dim_size(self.config["embsize"]) def _forward(self, @@ -193,25 +193,25 @@ def train( training_loop.set_postfix({"loss": batch_loss/batches_processed}) training_loop.set_description(f"Fine-Tuning: epoch {j+1}/{epochs}") - if lr_scheduler is not None: - lr_scheduler.step() + if lr_scheduler is not None: + lr_scheduler.step() - if validation_input_data is not None: - testing_loop = tqdm(validation_data_loader, desc="Fine-Tuning Validation") - val_loss = 0.0 - count = 0.0 - validation_batch_count = 0 - for validation_data_dict in testing_loop: - input_gene_ids = validation_data_dict["gene"].to(device) - src_key_padding_mask = input_gene_ids.eq( - self.vocab[self.config["pad_token"]] - ) - output = self._forward(input_gene_ids, validation_data_dict, src_key_padding_mask, use_batch_labels, device) - val_labels = torch.tensor(validation_labels[validation_batch_count: validation_batch_count + self.config["batch_size"]], device=device) - val_loss += loss_function(output, val_labels).item() - validation_batch_count += self.config["batch_size"] - count += 1.0 - testing_loop.set_postfix({"val_loss": val_loss/count}) + if validation_input_data is not None: + testing_loop = tqdm(validation_data_loader, desc="Fine-Tuning Validation") + val_loss = 0.0 + count = 0.0 + validation_batch_count = 0 + for validation_data_dict in testing_loop: + input_gene_ids = validation_data_dict["gene"].to(device) + src_key_padding_mask = input_gene_ids.eq( + self.vocab[self.config["pad_token"]] + ) + output = self._forward(input_gene_ids, validation_data_dict, src_key_padding_mask, use_batch_labels, device) + val_labels = torch.tensor(validation_labels[validation_batch_count: validation_batch_count + self.config["batch_size"]], device=device) + val_loss += loss_function(output, val_labels).item() + validation_batch_count += self.config["batch_size"] + count += 1.0 + testing_loop.set_postfix({"val_loss": val_loss/count}) logger.info(f"Fine-Tuning Complete. Epochs: {epochs}") def get_outputs( From 12953831a9494394c64227ee02801325eb27747f Mon Sep 17 00:00:00 2001 From: Matthew Wood Date: Mon, 7 Oct 2024 16:30:36 +0200 Subject: [PATCH 09/10] Update workflow --- .github/workflows/main.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index f724a809..6e210005 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -91,10 +91,10 @@ jobs: run: | sed -i 's/train\[:65%\]/train\[:5%\]/g' ./examples/notebooks/Cell-Type-Annotation.ipynb sed -i 's/train\[70%:\]/train\[5%:7%\]/g' ./examples/notebooks/Cell-Type-Annotation.ipynb - sed -i 's/get_anndata_from_hf_dataset(ds\[\\"train\\"\])/get_anndata_from_hf_dataset(ds\[\\"train\\"\])[:10]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb - sed -i 's/get_anndata_from_hf_dataset(ds\[\\"test\\"\])/get_anndata_from_hf_dataset(ds\[\\"test\\"\])[:2]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb - sed -i 's/list(np.array(train_dataset.obs\[\\"LVL1\\"].tolist()))/list(np.array(train_dataset.obs\[\\"LVL1\\"].tolist()))[:10]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb - sed -i 's/list(np.array(test_dataset.obs\[\\"LVL1\\"].tolist()))/list(np.array(test_dataset.obs\[\\"LVL1\\"].tolist()))[:2]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb + sed -i 's/get_anndata_from_hf_dataset(ds\[\\"train\\"\])/get_anndata_from_hf_dataset(ds\[\\"train\\"\])[:100]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb + sed -i 's/get_anndata_from_hf_dataset(ds\[\\"test\\"\])/get_anndata_from_hf_dataset(ds\[\\"test\\"\])[:10]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb + sed -i 's/list(np.array(train_dataset.obs\[\\"LVL1\\"].tolist()))/list(np.array(train_dataset.obs\[\\"LVL1\\"].tolist()))[:100]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb + sed -i 's/list(np.array(test_dataset.obs\[\\"LVL1\\"].tolist()))/list(np.array(test_dataset.obs\[\\"LVL1\\"].tolist()))[:10]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb - name: Run Notebooks run: | From 0fa73c7f4e746541d73c0ff88c818917311ae899 Mon Sep 17 00:00:00 2001 From: Benoit Putzeys Date: Tue, 8 Oct 2024 10:57:32 +0200 Subject: [PATCH 10/10] Remove unused import --- examples/fine_tune_models/fine_tune_scgpt.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/fine_tune_models/fine_tune_scgpt.py b/examples/fine_tune_models/fine_tune_scgpt.py index b7791b7e..ae27fd6c 100644 --- a/examples/fine_tune_models/fine_tune_scgpt.py +++ b/examples/fine_tune_models/fine_tune_scgpt.py @@ -1,4 +1,4 @@ -from helical import scGPTConfig, scGPT, scGPTFineTuningModel +from helical import scGPTConfig, scGPTFineTuningModel from helical.utils import get_anndata_from_hf_dataset from datasets import load_dataset from omegaconf import DictConfig