forked from gist-ailab/SleePyCo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mtcl.py
211 lines (164 loc) · 8.66 KB
/
train_mtcl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import json
import argparse
import warnings
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from utils import *
from loader import EEGDataLoader
from models.main_model import MainModel
class OneFoldTrainer:
def __init__(self, args, fold, config):
self.args = args
self.fold = fold
self.cfg = config
self.ds_cfg = config['dataset']
self.fp_cfg = config['feature_pyramid']
self.tp_cfg = config['training_params']
self.es_cfg = self.tp_cfg['early_stopping']
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('[INFO] Config name: {}'.format(config['name']))
self.train_iter = 0
self.model = self.build_model()
self.loader_dict = self.build_dataloader()
self.criterion = nn.CrossEntropyLoss()
self.activate_train_mode()
self.optimizer = optim.Adam([p for p in self.model.parameters() if p.requires_grad], lr=self.tp_cfg['lr'], weight_decay=self.tp_cfg['weight_decay'])
self.ckpt_path = os.path.join('checkpoints', config['name'])
self.ckpt_name = 'ckpt_fold-{0:02d}.pth'.format(self.fold)
self.early_stopping = EarlyStopping(patience=self.es_cfg['patience'], verbose=True, ckpt_path=self.ckpt_path, ckpt_name=self.ckpt_name, mode=self.es_cfg['mode'])
def build_model(self):
model = MainModel(self.cfg)
print('[INFO] Number of params of model: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
model = torch.nn.DataParallel(model, device_ids=list(range(len(self.args.gpu.split(",")))))
if self.tp_cfg['mode'] != 'scratch':
print('[INFO] Model loaded for finetune')
load_name = self.cfg['name'].replace('SL-{:02d}'.format(self.ds_cfg['seq_len']), 'SL-01')
load_name = load_name.replace('numScales-{}'.format(self.fp_cfg['num_scales']), 'numScales-1')
load_name = load_name.replace(self.tp_cfg['mode'], 'pretrain')
load_path = os.path.join('checkpoints', load_name, 'ckpt_fold-{0:02d}.pth'.format(self.fold))
model.load_state_dict(torch.load(load_path), strict=False)
model.to(self.device)
print('[INFO] Model prepared, Device used: {} GPU:{}'.format(self.device, self.args.gpu))
return model
def build_dataloader(self):
train_dataset = EEGDataLoader(self.cfg, self.fold, set='train')
train_loader = DataLoader(dataset=train_dataset, batch_size=self.tp_cfg['batch_size'], shuffle=True, num_workers=4*len(self.args.gpu.split(",")), pin_memory=True)
val_dataset = EEGDataLoader(self.cfg, self.fold, set='val')
val_loader = DataLoader(dataset=val_dataset, batch_size=self.tp_cfg['batch_size'], shuffle=False, num_workers=4*len(self.args.gpu.split(",")), pin_memory=True)
test_dataset = EEGDataLoader(self.cfg, self.fold, set='test')
test_loader = DataLoader(dataset=test_dataset, batch_size=self.tp_cfg['batch_size'], shuffle=False, num_workers=4*len(self.args.gpu.split(",")), pin_memory=True)
print('[INFO] Dataloader prepared')
return {'train': train_loader, 'val': val_loader, 'test': test_loader}
def activate_train_mode(self):
self.model.train()
if self.tp_cfg['mode'] == 'freezefinetune':
print('[INFO] Freeze backone')
self.model.module.feature.train(False)
for p in self.model.module.feature.parameters():
p.requires_grad = False
print('[INFO] Unfreeze conv_c5')
self.model.module.feature.conv_c5.train(True)
for p in self.model.module.feature.conv_c5.parameters(): p.requires_grad = True
if self.fp_cfg['num_scales'] > 1:
print('[INFO] Unfreeze conv_c4')
self.model.module.feature.conv_c4.train(True)
for p in self.model.module.feature.conv_c4.parameters(): p.requires_grad = True
if self.fp_cfg['num_scales'] > 2:
print('[INFO] Unfreeze conv_c3')
self.model.module.feature.conv_c3.train(True)
for p in self.model.module.feature.conv_c3.parameters(): p.requires_grad = True
def train_one_epoch(self, epoch):
correct, total, train_loss = 0, 0, 0
for i, (inputs, labels) in enumerate(self.loader_dict['train']):
loss = 0
total += labels.size(0)
inputs = inputs.to(self.device)
labels = labels.view(-1).to(self.device)
outputs = self.model(inputs)
outputs_sum = torch.zeros_like(outputs[0])
for j in range(len(outputs)):
loss += self.criterion(outputs[j], labels)
outputs_sum += outputs[j]
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss += loss.item()
predicted = torch.argmax(outputs_sum, 1)
correct += predicted.eq(labels).sum().item()
self.train_iter += 1
progress_bar(i, len(self.loader_dict['train']), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / (i + 1), 100. * correct / total, correct, total))
if self.train_iter % self.tp_cfg['val_period'] == 0:
print('')
val_acc, val_loss = self.evaluate(mode='val')
self.early_stopping(val_acc, val_loss, self.model)
self.activate_train_mode()
if self.early_stopping.early_stop:
break
@torch.no_grad()
def evaluate(self, mode):
self.model.eval()
correct, total, eval_loss = 0, 0, 0
y_true = np.zeros(0)
y_pred = np.zeros((0, self.cfg['classifier']['num_classes']))
for i, (inputs, labels) in enumerate(self.loader_dict[mode]):
loss = 0
total += labels.size(0)
inputs = inputs.to(self.device)
labels = labels.view(-1).to(self.device)
outputs = self.model(inputs)
outputs_sum = torch.zeros_like(outputs[0])
for j in range(len(outputs)):
loss += self.criterion(outputs[j], labels)
outputs_sum += outputs[j]
eval_loss += loss.item()
predicted = torch.argmax(outputs_sum, 1)
correct += predicted.eq(labels).sum().item()
y_true = np.concatenate([y_true, labels.cpu().numpy()])
y_pred = np.concatenate([y_pred, outputs_sum.cpu().numpy()])
progress_bar(i, len(self.loader_dict[mode]), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (eval_loss / (i + 1), 100. * correct / total, correct, total))
if mode == 'val':
return 100. * correct / total, eval_loss
elif mode == 'test':
return y_true, y_pred
else:
raise NotImplementedError
def run(self):
for epoch in range(self.tp_cfg['max_epochs']):
print('\n[INFO] Fold: {}, Epoch: {}'.format(self.fold, epoch))
self.train_one_epoch(epoch)
if self.early_stopping.early_stop:
break
self.model.load_state_dict(torch.load(os.path.join(self.ckpt_path, self.ckpt_name)))
y_true, y_pred = self.evaluate(mode='test')
print('')
return y_true, y_pred
def main():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--gpu', type=str, default="0", help='gpu id')
parser.add_argument('--config', type=str, help='config file path')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# For reproducibility
set_random_seed(args.seed, use_cuda=True)
with open(args.config) as config_file:
config = json.load(config_file)
config['name'] = os.path.basename(args.config).replace('.json', '')
Y_true = np.zeros(0)
Y_pred = np.zeros((0, config['classifier']['num_classes']))
for fold in range(1, config['dataset']['num_splits'] + 1):
trainer = OneFoldTrainer(args, fold, config)
y_true, y_pred = trainer.run()
Y_true = np.concatenate([Y_true, y_true])
Y_pred = np.concatenate([Y_pred, y_pred])
summarize_result(config, fold, Y_true, Y_pred)
if __name__ == "__main__":
main()