-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathpreprocess_outcomes.py
283 lines (238 loc) · 11.8 KB
/
preprocess_outcomes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
'''
Lrasmy@Zhilab Jan 2021
# This script processes originally extracted data on a distributed platform
# This code version create data with multiple labels for both survival and Binary classification can create files for a predefined split of patients or can randomly split
# also it can build upon existing typoes dictionary or creates its own
# and builds pickled lists including a full list that includes all information for case and controls
## it outputs pickled list of the following shape
#[[pt1_id,label,[
# [[delta_time 0],[list of Medical codes in Visit0]],
# [[delta_time between V0 and V1],[list of Medical codes in Visit2]],
# ......]],
# [pt2_id,label,[[[delta_time 0],[list of Medical codes in Visit0 ]],[[delta_time between V0 and V1],[list of Medical codes in Visit2]],......]]]
#
# for survival the label is a list [event_label,time_to_event]
#
# Usage: feed this script with Case file and Control files each is just a three columns like pt_id | medical_code | visit_date and execute like:
#
# python data_preprocessing_v4.py <data File> <Label File> <types dictionary if available,otherwise use 'NA' to build new one> <output Files Prefix> <path and prefix to pts file if available,otherwise use 'NA' to build new one>
# you can optionally activate <case_samplesize> <control_samplesize> based on your cohort definition
# This file will later split the data to training , validation and Test sets of ratio
# Output files include
# <output file>.pts: List of unique Patient ids. Created for validation and comparison purposes
# <output file>.types: Python dictionary that maps string diagnosis codes to integer diagnosis codes.
# Main output files for the baseline RNN models are <output file>.combined
'''
import sys
from optparse import OptionParser
try:
import cPickle as pickle
except:
import pickle
import numpy as np
import random
import pandas as pd
from datetime import datetime as dt
from datetime import timedelta
import glob
#import timeit ( for time tracking if required)
def load_data( dataFile, labelFile , typeFile , dist=False, exclude=[]):
## loading Case
print('loading data')
if dist:
all_files1 = glob.glob(dataFile + "/*.csv")
li1 = []
for filename in all_files1:
df = pd.read_csv(filename)
li1.append(df)
data_dat = pd.concat(li1).drop_duplicates()
else: data_dat=pd.read_table(dataFile)
data_dat.columns = ["Pt_id", "ICD", "Time"]
if len(exclude)>0:
data_dat=data_dat[~(data_dat["ICD"].str.startswith(tuple(exclude)))]
print('loaded data for: ',data_dat["Pt_id"].nunique())
print('loading labels')
if dist:
all_files = glob.glob(labelFile + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename)
li.append(df)
data_lbl_v1 = pd.concat(li).drop_duplicates()
else: data_lbl_v1=pd.read_table(labelFile)
data_lbl_v1.columns = ["Pt_id", "mort_label","LOS"]#,"vent_label","time_to_intub","Readmission_label","plos_label"]
data_lbl=pd.merge(data_dat["Pt_id"].drop_duplicates(),data_lbl_v1, how='inner').drop_duplicates()
print('loaded labels for: ',data_lbl_v1["Pt_id"].nunique() , ' after primary cleaning ',data_lbl["Pt_id"].nunique())
print('Mortality Case counts: ',data_lbl[data_lbl["mort_label"]==1]["Pt_id"].nunique())
#print('Intubation Case counts: ',data_lbl[data_lbl["vent_label"]==1]["Pt_id"].nunique())
#print('Intubation Case with tti >=1 : ',data_lbl[(data_lbl["vent_label"]==1)& (data_lbl["time_to_intub"]>=1)]["Pt_id"].nunique())
print('LOS>7 : ',data_lbl[data_lbl["LOS"]>7]["Pt_id"].nunique())
#print('pLOS>7 : ',data_lbl[data_lbl["plos_label"]==1]["Pt_id"].nunique())
#print('Readmission case counts : ',data_lbl[data_lbl["Readmission_label"]==1]["Pt_id"].nunique())
### An example of sampling code: Control Sampling
#print('pt sampling')
#data_sk=data_dat["Pt_id"]
#data_sk=data_sk.drop_duplicates()
#data_sk_samp=data_sk.sample(n=samplesize_pts) ## that is an input arg 7
#data_dat=data_dat[data_dat["Pt_id"].isin(data_sk_samp.values.tolist())]
#data_lbl=data_lbl[data_lbl["Pt_id"].isin(data_sk_samp.values.tolist())]
## loading the types
if typeFile=='NA':
types={"zero_pad":0}
print('new types dictionary')
else:
with open(typeFile, 'rb') as t2:
types=pickle.load(t2)
print('types dictionary loaded')
#end_time = timeit.timeit()
#print ("consumed time for data loading",(_start -end_time)/1000.0 )
return data_dat, data_lbl, types
def pickle_data (data_dat, data_lbl, types, reverse=True):
full_list=[]
index_date = {}
time_list = []
dates_list =[]
label_list = []
pt_list = []
dur_list=[]
newVisit_list = []
count=0
for Pt, group in data_dat.groupby('Pt_id'):
data_i_c = []
data_dt_c = []
for Time, subgroup in group.sort_values(['Time'], ascending= not reverse).groupby('Time', sort=False): ### ascending=True normal order ascending=False reveresed order
data_i_c.append(np.array(subgroup['ICD']).tolist())# get ICD codes for each admission separately
data_dt_c.append(dt.strptime(Time, '%Y-%m-%d'))#concat dischargetime of each admission
if len(data_i_c) > 0:
# creating the duration in days between visits list, first visit marked with 0 (last in reversed order)
v_dur_c=[]
if len(data_dt_c)<=1:
v_dur_c=[0]
else:
for jx in range (len(data_dt_c)):
if jx==0:
v_dur_c.append(jx)
else:
#xx = ((dt.strptime(data_dt_c[jx-1], '%d-%b-%y'))-(dt.strptime(data_dt_c[jx], '%d-%b-%y'))).days ## use if original data have time information or different date format
if reverse: xx = (data_dt_c[jx-1] - data_dt_c[jx]).days ## reversed order
else: xx = (data_dt_c[jx]- data_dt_c[jx-1]).days ### normal order
v_dur_c.append(xx)
#print(data_i_c)
#print(data_dt_c)
#print(v_dur_c)
#print(types)
### Diagnosis recoding
newPatient_c = []
for visit in data_i_c:
newVisit_c = []
for code in visit:
if code in types: newVisit_c.append(types[code])
else:
types[code] = max(types.values())+1
newVisit_c.append(types[code])
newPatient_c.append(newVisit_c)
#print(newPatient_c)
if len(data_i_c) > 0: ## only save non-empty entries
label_list.append(data_lbl.loc[data_lbl.Pt_id == Pt, ['mort_label','LOS']#,'vent_label','time_to_intub','Readmission_label','plos_label']
].values.squeeze().tolist()) #### LR ammended for multilabel
pt_list.append(Pt)
newVisit_list.append(newPatient_c)
dur_list.append(v_dur_c)
print(label_list)
print(pt_list)
print(dur_list)
print(newVisit_list)
count=count+1
if count % 1000 == 0: print ('processed %d pts' % count)
return types,pt_list,label_list,newVisit_list,dur_list
def reparsing(pt_list,label_list,newVisit_list,dur_list):
### Create the combined list for the Pytorch RNN
fset=[]
print ('Reparsing')
for pt_idx in range(len(pt_list)):
pt_sk= pt_list[pt_idx]
pt_lbl= label_list[pt_idx]
pt_vis= newVisit_list[pt_idx]
pt_td= dur_list[pt_idx]
d_gr=[]
n_seq=[]
d_a_v=[]
for v in range(len(pt_vis)):
nv=[]
nv.append([pt_td[v]])
nv.append(pt_vis[v])
n_seq.append(nv)
n_pt= [pt_sk,pt_lbl,n_seq]
print("n_pt",n_pt)
fset.append(n_pt)
return fset
def split_data(fset, pt_list, pts_file_pre,outFile):
### Random split to train ,test and validation sets
print ("Splitting")
if pts_file_pre=='NA':
print('random split')
dataSize = len(pt_list)
#np.random.seed(0)
ind = np.random.permutation(dataSize)
nTest = int(0.2 * dataSize)
nValid = int(0.1 * dataSize)
test_indices = ind[:nTest]
valid_indices = ind[nTest:nTest+nValid]
train_indices = ind[nTest+nValid:]
else:
print ('loading previous splits')
pt_train=pickle.load(open(pts_file_pre+'.train', 'rb'))
pt_valid=pickle.load(open(pts_file_pre+'.valid', 'rb'))
pt_test=pickle.load(open(pts_file_pre+'.test', 'rb'))
test_indices = np.intersect1d(pt_list, pt_test,assume_unique=True, return_indices=True)[1]
valid_indices= np.intersect1d(pt_list, pt_valid,assume_unique=True, return_indices=True)[1]
train_indices= np.intersect1d(pt_list, pt_train,assume_unique=True, return_indices=True)[1]
for subset in ['train','valid','test']:
if subset =='train':
indices = train_indices
elif subset =='valid':
indices = valid_indices
elif subset =='test':
indices = test_indices
else:
print ('error')
break
#### below comments are mainly because I'm no longer need those theano RETAIN needed data, so comment for now
#### only using Pts file , so keeping them for now
#subset_x = [newVisit_list[i] for i in indices]
#subset_y = [label_list[i] for i in indices]
#subset_t = [dur_list[i] for i in indices]
subset_p = [pt_list[i] for i in indices]
#nseqfile = outFile +'.visits.'+subset
#nlabfile = outFile +'.labels.'+subset
#ntimefile = outFile +'.days.'+subset
nptfile = outFile +'.pts.'+subset
#pickle.dump(subset_x, open(nseqfile, 'wb'),protocol=2)
#pickle.dump(subset_y, open(nlabfile, 'wb'),protocol=2)
#pickle.dump(subset_t, open(ntimefile, 'wb'),protocol=2)
pickle.dump(subset_p, open(nptfile, 'wb'),protocol=2)
subset_full= [fset[i] for i in indices]
ncombfile = outFile +'.combined.'+subset
pickle.dump(subset_full, open(ncombfile, 'wb'), -1)
def dump_split_process_data(dataFile, labelFile , typeFile ,outFile , pts_file_pre , dist=False, exclude=[],reverse=True):
data_dat, data_lbl, types = load_data( dataFile, labelFile , typeFile , dist=dist, exclude=exclude)
types, pt_list , label_list,newVisit_list,dur_list = pickle_data (data_dat, data_lbl, types, reverse=reverse)
fset= reparsing(pt_list , label_list , newVisit_list , dur_list)
split_data(fset, pt_list , pts_file_pre,outFile)
pickle.dump(types, open(outFile+'.types', 'wb'), -1)
### Creating the full pickled lists ### uncomment if you need to dump the all data before splitting
#pickle.dump(label_list, open(outFile+'.labels', 'wb'), -1)
#pickle.dump(newVisit_list, open(outFile+'.visits', 'wb'), -1)
#pickle.dump(pt_list, open(outFile+'.pts', 'wb'), -1)
#pickle.dump(dur_list, open(outFile+'.days', 'wb'), -1)
if __name__ == '__main__':
dataFile= sys.argv[1]
labelFile= sys.argv[2]
typeFile= sys.argv[3]
outFile = sys.argv[4]
pts_file_pre = sys.argv[5]
#cls_type= sys.argv[6]
#samplesize_pts = int(sys.argv[7])
parser = OptionParser()
(options, args) = parser.parse_args()
dump_split_process_data(dataFile, labelFile , typeFile ,outFile , pts_file_pre , dist=False, exclude=[])