diff --git a/Notebooks/05b_count_matrix.Rmd b/Notebooks/05b_count_matrix.Rmd index da1ae41..d8ff313 100644 --- a/Notebooks/05b_count_matrix.Rmd +++ b/Notebooks/05b_count_matrix.Rmd @@ -7,15 +7,15 @@ knit: (function(inputFile, encoding) { encoding=encoding, output_format='all', output_dir='./')}) -output: - html_document: - theme: yeti # nice theme for the webpage - toc: true # table of contents - toc_float: true # table of contents "floats" in the document - code_folding: show - collapse: false - df_print: paged # data frames are interactive - dev: png # what format do you want for the figures? +#output: +# html_document: +# theme: yeti # nice theme for the webpage +# toc: true # table of contents +# toc_float: true # table of contents "floats" in the document +# code_folding: show +# collapse: false +# df_print: paged # data frames are interactive +# dev: png # what format do you want for the figures? --- ```{r knitr, include = FALSE} @@ -43,7 +43,9 @@ Approximate time: 20 minutes For this analysis we will be using several R packages, some which have been installed from CRAN and others from Bioconductor. To use these packages (and the functions contained within them), we need to **load the libraries.** -```{r, echo=TRUE} +```{r} +#| echo: true + library(tidyverse) library(DESeq2) library(tximport) @@ -170,7 +172,7 @@ To determine the appropriate statistical model, we need information about the di pdata <- data %>% gather(key = Sample, value = Count) -pdata +head(pdata) ``` And we plot our count distribution using all our samples: