title | description | category | subcategory | tags | ||
---|---|---|---|---|---|---|
How to run intron retention analysis |
This code helps to run IRFinder in the cluster. |
research |
rnaseq |
|
To run any of these commands, need to activate the bioconda IRFinder environment prior to running script.
-
First script creates reference build required for IRFinder
#SBATCH -t 24:00:00 # Runtime in minutes #SBATCH -n 4 #SBATCH -p medium # Partition (queue) to submit to #SBATCH --mem=128G # 128 GB memory needed (memory PER CORE) #SBATCH -o %j.out # Standard out goes to this file #SBATCH -e %j.err # Standard err goes to this file #SBATCH --mail-type=END # Mail when the job ends IRFinder -m BuildRefProcess -r reference_data/
NOTE: The files in the
reference_data
folder are sym links to the bcbio ref files and need to be named specificallygenome.fa
andtranscripts.gtf
:genome.fa -> /n/app/bcbio/biodata/genomes/Hsapiens/hg19/seq/hg19.fa
transcripts.gtf -> /n/app/bcbio/biodata/genomes/Hsapiens/hg19/rnaseq/ref-transcripts.gtf
-
Second script (.sh) runs IRFinder and STAR on input file
#!/bin/bash module load star/2.5.4a IRFinder -r /path/to/irfinder/reference_data \ -t 4 -d results \ $1
-
Third script (.sh) runs a batch job for each input file in directory
#!/bin/bash for fq in /path/to/*fastq do sbatch -p medium -t 0-48:00 -n 4 --job-name irfinder --mem=128G -o %j.out -e %j.err --wrap="sh /path/to/irfinder/irfinder_input_file.sh $fq" sleep 1 # wait 1 second between each job submission done
-
Fourth script takes output (IRFinder-IR-dir.txt) and uses the replicates to determine differential expression using the Audic and Claverie test (# replicates < 4). analysisWithLowReplicates.pl script comes with the IRFinder github repo clone, so I cloned the repo at https://github.com/williamritchie/IRFinder/. Notes on the Audic and Claverie test can be found at: https://github.com/williamritchie/IRFinder/wiki/Small-Amounts-of-Replicates-via-Audic-and-Claverie-Test.
#!/bin/bash #SBATCH -t 24:00:00 # Runtime in minutes #SBATCH -n 4 #SBATCH -p medium # Partition (queue) to submit to #SBATCH --mem=128G # 8 GB memory needed (memory PER CORE) #SBATCH -o %j.out # Standard out goes to this file #SBATCH -e %j.err # Standard err goes to this file #SBATCH --mail-type=END # Mail when the job ends analysisWithLowReplicates.pl \ -A A_ctrl/Pooled/IRFinder-IR-dir.txt A_ctrl/AJ_1/IRFinder-IR-dir.txt A_ctrl/AJ_2/IRFinder-IR-dir.txt A_ctrl/AJ_3/IRFinder-IR-dir.txt \ -B B_nrde2/Pooled/IRFinder-IR-dir.txt B_nrde2/AJ_4/IRFinder-IR-dir.txt B_nrde2/AJ_5/IRFinder-IR-dir.txt B_nrde2/AJ_6/IRFinder-IR-dir.txt \ > KD_ctrl-v-nrde2.tab
-
Output
KD_ctrl-v-nrde2.tab
file can be read directly into R for filtering and results exploration. -
Rmarkdown workflow (included in report): IRFinder_report.md