-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlemmas-freshness.agda
58 lines (54 loc) · 3.2 KB
/
lemmas-freshness.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
open import Prelude
open import Nat
open import core
open import contexts
open import lemmas-disjointness
module lemmas-freshness where
-- if x is fresh in an hexp, it's fresh in its expansion
mutual
fresh-elab-synth1 : ∀{x e τ d Γ Δ} →
x # Γ →
freshh x e →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
fresh x d
fresh-elab-synth1 _ FRHConst ESConst = FConst
fresh-elab-synth1 apt (FRHAsc frsh) (ESAsc x₁) = FCast (fresh-elab-ana1 apt frsh x₁)
fresh-elab-synth1 _ (FRHVar x₂) (ESVar x₃) = FVar x₂
fresh-elab-synth1 {Γ = Γ} apt (FRHLam2 x₂ frsh) (ESLam x₃ exp) = FLam x₂ (fresh-elab-synth1 (apart-extend1 Γ x₂ apt) frsh exp)
fresh-elab-synth1 apt FRHEHole ESEHole = FHole (EFId apt)
fresh-elab-synth1 apt (FRHNEHole frsh) (ESNEHole x₁ exp) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh exp)
fresh-elab-synth1 apt (FRHAp frsh frsh₁) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) =
FAp (FCast (fresh-elab-ana1 apt frsh x₅))
(FCast (fresh-elab-ana1 apt frsh₁ x₆))
fresh-elab-ana1 : ∀{ x e τ d τ' Γ Δ} →
x # Γ →
freshh x e →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
fresh x d
fresh-elab-ana1 {Γ = Γ} apt (FRHLam1 x₁ frsh) (EALam x₂ x₃ exp) = FLam x₁ (fresh-elab-ana1 (apart-extend1 Γ x₁ apt) frsh exp )
fresh-elab-ana1 apt frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth1 apt frsh x₃
fresh-elab-ana1 apt FRHEHole EAEHole = FHole (EFId apt)
fresh-elab-ana1 apt (FRHNEHole frsh) (EANEHole x₁ x₂) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh x₂)
-- if x is fresh in the expansion of an hexp, it's fresh in that hexp
mutual
fresh-elab-synth2 : ∀{x e τ d Γ Δ} →
fresh x d →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
freshh x e
fresh-elab-synth2 FConst ESConst = FRHConst
fresh-elab-synth2 (FVar x₂) (ESVar x₃) = FRHVar x₂
fresh-elab-synth2 (FLam x₂ frsh) (ESLam x₃ exp) = FRHLam2 x₂ (fresh-elab-synth2 frsh exp)
fresh-elab-synth2 (FHole x₁) ESEHole = FRHEHole
fresh-elab-synth2 (FNEHole x₁ frsh) (ESNEHole x₂ exp) = FRHNEHole (fresh-elab-synth2 frsh exp)
fresh-elab-synth2 (FAp (FCast frsh) (FCast frsh₁)) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) =
FRHAp (fresh-elab-ana2 frsh x₅)
(fresh-elab-ana2 frsh₁ x₆)
fresh-elab-synth2 (FCast frsh) (ESAsc x₁) = FRHAsc (fresh-elab-ana2 frsh x₁)
fresh-elab-ana2 : ∀{ x e τ d τ' Γ Δ} →
fresh x d →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
freshh x e
fresh-elab-ana2 (FLam x₁ frsh) (EALam x₂ x₃ exp) = FRHLam1 x₁ (fresh-elab-ana2 frsh exp)
fresh-elab-ana2 frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth2 frsh x₃
fresh-elab-ana2 (FHole x₁) EAEHole = FRHEHole
fresh-elab-ana2 (FNEHole x₁ frsh) (EANEHole x₂ x₃) = FRHNEHole (fresh-elab-synth2 frsh x₃)