From 3a633b01576a826ee1f54753e1f7f768fa071400 Mon Sep 17 00:00:00 2001 From: disconcision Date: Thu, 3 Oct 2024 18:42:00 -0400 Subject: [PATCH] dev merge into haz3l-modules, not compiling --- .gitattributes | 13 + .github/workflows/deploy_branches.yml | 72 +- .gitignore | 3 + INSTALL.md | 6 +- Makefile | 19 +- README.md | 17 +- docs/Change-OCaml-Dependencies.md | 12 + docs/Updating-OCaml-Version.md | 21 +- docs/hazel-architecture-july-2024.png | Bin 0 -> 403192 bytes docs/hazel-architecture-july-2024.tldr | 1 + docs/hazel-palette-august-2024.png | Bin 0 -> 212730 bytes docs/hazel-syntax-data-types.png | Bin 0 -> 97031 bytes dune-project | 43 +- dune-workspace | 9 + hazel.opam | 43 + hazel.opam.locked | 251 + opam.export | 204 - src/haz3lcore/CodeString.re | 2 +- src/haz3lcore/Measured.re | 214 +- src/haz3lcore/TermMap.re | 4 +- src/haz3lcore/TermRanges.re | 4 +- src/haz3lcore/Unicode.re | 1 + src/haz3lcore/VarMap.re | 2 +- src/haz3lcore/assistant/AssistantCtx.re | 33 +- src/haz3lcore/assistant/AssistantExpander.re | 24 +- src/haz3lcore/assistant/AssistantForms.re | 40 +- src/haz3lcore/assistant/Suggestion.re | 2 +- src/haz3lcore/assistant/TyDi.re | 16 +- src/haz3lcore/dune | 25 +- src/haz3lcore/dynamics/Builtins.re | 312 +- src/haz3lcore/dynamics/Casts.re | 252 + src/haz3lcore/dynamics/ClosureEnvironment.re | 2 +- src/haz3lcore/dynamics/ClosureEnvironment.rei | 4 +- src/haz3lcore/dynamics/Constraint.re | 8 +- src/haz3lcore/dynamics/DH.re | 1245 +- src/haz3lcore/dynamics/DHExp.re | 154 +- src/haz3lcore/dynamics/DHPat.re | 92 +- src/haz3lcore/dynamics/Delta.re | 8 +- src/haz3lcore/dynamics/Delta.rei | 5 +- src/haz3lcore/dynamics/Elaborator.re | 1105 +- src/haz3lcore/dynamics/Environment.re | 2 +- src/haz3lcore/dynamics/Environment.rei | 3 +- src/haz3lcore/dynamics/EnvironmentId.re | 1 - src/haz3lcore/dynamics/EnvironmentId.rei | 1 - src/haz3lcore/dynamics/EnvironmentIdMap.re | 1 - src/haz3lcore/dynamics/EnvironmentIdMap.rei | 5 - src/haz3lcore/dynamics/ErrStatus.re | 15 - src/haz3lcore/dynamics/EvalCtx.re | 415 +- src/haz3lcore/dynamics/Evaluator.re | 108 +- src/haz3lcore/dynamics/Evaluator.rei | 34 - src/haz3lcore/dynamics/EvaluatorError.re | 4 +- src/haz3lcore/dynamics/EvaluatorError.rei | 22 - src/haz3lcore/dynamics/EvaluatorPost.re | 646 - src/haz3lcore/dynamics/EvaluatorPost.rei | 71 - src/haz3lcore/dynamics/EvaluatorResult.re | 16 - src/haz3lcore/dynamics/EvaluatorResult.rei | 22 - src/haz3lcore/dynamics/EvaluatorState.rei | 2 +- src/haz3lcore/dynamics/EvaluatorStats.re | 2 +- src/haz3lcore/dynamics/EvaluatorStep.re | 488 +- src/haz3lcore/dynamics/ExpandingKeyword.re | 31 - src/haz3lcore/dynamics/Filter.re | 1 - src/haz3lcore/dynamics/FilterEnvironment.re | 3 +- src/haz3lcore/dynamics/FilterMatcher.re | 483 +- src/haz3lcore/dynamics/HoleInstance.re | 7 - src/haz3lcore/dynamics/HoleInstance.rei | 23 - src/haz3lcore/dynamics/HoleInstanceId.re | 4 - src/haz3lcore/dynamics/HoleInstanceId.rei | 6 - src/haz3lcore/dynamics/HoleInstanceInfo.re | 38 - src/haz3lcore/dynamics/HoleInstanceInfo.rei | 33 - src/haz3lcore/dynamics/HoleInstanceInfo_.re | 61 - src/haz3lcore/dynamics/HoleInstanceInfo_.rei | 29 - src/haz3lcore/dynamics/HoleInstanceParents.re | 13 - .../dynamics/HoleInstanceParents.rei | 13 - src/haz3lcore/dynamics/InjSide.re | 15 - src/haz3lcore/dynamics/InstancePath.re | 4 - src/haz3lcore/dynamics/InstancePath.rei | 2 - src/haz3lcore/dynamics/KeywordID.re | 2 - src/haz3lcore/dynamics/MetaVar.re | 2 - src/haz3lcore/dynamics/MetaVar.rei | 2 - src/haz3lcore/dynamics/MetaVarInst.re | 7 - src/haz3lcore/dynamics/MetaVarInst.rei | 5 - src/haz3lcore/dynamics/MetaVarMap.re | 1 - src/haz3lcore/dynamics/PatternMatch.re | 572 +- src/haz3lcore/dynamics/PatternMatch.rei | 6 - src/haz3lcore/dynamics/Stepper.re | 634 +- src/haz3lcore/dynamics/Substitution.re | 239 +- src/haz3lcore/dynamics/Substitution.rei | 4 +- src/haz3lcore/dynamics/TestMap.re | 6 +- src/haz3lcore/dynamics/TestResults.re | 2 +- src/haz3lcore/dynamics/Transition.re | 1096 +- src/haz3lcore/dynamics/TypeAssignment.re | 358 + src/haz3lcore/dynamics/Unboxing.re | 198 + src/haz3lcore/dynamics/ValueChecker.re | 39 +- src/haz3lcore/dynamics/VarBstMap.re | 3 +- src/haz3lcore/dynamics/VarErrStatus.re | 2 +- src/haz3lcore/lang/Form.re | 95 +- src/haz3lcore/lang/Molds.re | 2 - src/haz3lcore/lang/Operators.re | 177 + src/haz3lcore/lang/Precedence.re | 12 +- src/haz3lcore/lang/term/Any.re | 1 + src/haz3lcore/lang/term/Cls.re | 18 + src/haz3lcore/lang/term/Exp.re | 1 + src/haz3lcore/lang/term/IdTagged.re | 32 + src/haz3lcore/lang/term/Pat.re | 1 + src/haz3lcore/lang/term/Rul.re | 1 + src/haz3lcore/lang/term/TPat.re | 31 + src/haz3lcore/lang/term/Typ.re | 661 + src/haz3lcore/prog/CachedStatics.re | 6 +- src/haz3lcore/prog/CoreSettings.re | 2 +- src/haz3lcore/prog/Interface.re | 54 +- src/haz3lcore/prog/ModelResult.re | 16 +- src/haz3lcore/prog/ModelResults.re | 9 +- src/haz3lcore/prog/ProgramResult.re | 8 +- src/haz3lcore/statics/CoCtx.re | 8 +- src/haz3lcore/statics/Constructor.re | 2 +- src/haz3lcore/statics/ConstructorMap.re | 272 +- src/haz3lcore/statics/Ctx.re | 240 +- src/haz3lcore/statics/Info.re | 147 +- src/haz3lcore/statics/Kind.re | 1 - src/haz3lcore/statics/MakeTerm.re | 172 +- src/haz3lcore/statics/Mode.re | 36 +- src/haz3lcore/statics/Self.re | 22 +- src/haz3lcore/statics/Statics.re | 391 +- src/haz3lcore/statics/Term.re | 1002 +- src/haz3lcore/statics/TermBase.re | 1450 +- src/haz3lcore/statics/Typ.re | 4 - src/haz3lcore/statics/TypBase.re | 981 - src/haz3lcore/statics/TypVar.re | 6 - src/haz3lcore/statics/Var.re | 14 +- src/haz3lcore/statics/uterm/UExp.re | 1 + src/haz3lcore/statics/uterm/UPat.re | 1 + src/haz3lcore/statics/uterm/UTyp.re | 1 + src/haz3lcore/tiles/Base.re | 21 +- src/haz3lcore/tiles/Id.re | 2 + src/haz3lcore/tiles/Label.re | 12 +- src/haz3lcore/tiles/Mold.re | 18 - src/haz3lcore/tiles/Nib.re | 36 +- src/haz3lcore/tiles/Nibs.re | 4 - src/haz3lcore/tiles/Piece.re | 135 +- src/haz3lcore/tiles/Secondary.re | 2 +- src/haz3lcore/tiles/Segment.re | 162 +- src/haz3lcore/tiles/Shard.re | 42 - src/haz3lcore/tiles/Skel.re | 40 +- src/haz3lcore/tiles/Tile.re | 55 - src/haz3lcore/tiles/Token.re | 2 +- src/haz3lcore/zipper/Ancestor.re | 56 - src/haz3lcore/zipper/Ancestors.re | 50 - src/haz3lcore/zipper/Backpack.re | 1 - src/haz3lcore/zipper/Editor.re | 203 +- src/haz3lcore/zipper/EditorUtil.re | 137 +- src/haz3lcore/zipper/IncompleteBidelim.re | 32 - src/haz3lcore/zipper/Orientation.re | 15 - src/haz3lcore/zipper/PersistentZipper.re | 2 +- src/haz3lcore/zipper/Printer.re | 84 +- src/haz3lcore/zipper/Projector.re | 49 + src/haz3lcore/zipper/ProjectorBase.re | 153 + src/haz3lcore/zipper/Relatives.re | 76 - src/haz3lcore/zipper/Selection.re | 14 +- src/haz3lcore/zipper/Siblings.re | 31 - src/haz3lcore/zipper/Time.re | 15 - src/haz3lcore/zipper/Touched.re | 24 - src/haz3lcore/zipper/Zipper.re | 85 +- src/haz3lcore/zipper/ZipperBase.re | 162 + src/haz3lcore/zipper/action/Action.re | 125 +- src/haz3lcore/zipper/action/Effect.re | 12 - src/haz3lcore/zipper/action/Indicated.re | 39 +- src/haz3lcore/zipper/action/Move.re | 196 +- src/haz3lcore/zipper/action/Perform.re | 235 +- .../zipper/action/ProjectorPerform.re | 129 + src/haz3lcore/zipper/action/Select.re | 173 +- .../zipper/projectors/CheckboxProj.re | 53 + src/haz3lcore/zipper/projectors/FoldProj.re | 22 + src/haz3lcore/zipper/projectors/InfoProj.re | 94 + .../zipper/projectors/SliderFProj.re | 36 + src/haz3lcore/zipper/projectors/SliderProj.re | 33 + .../zipper/projectors/TextAreaProj.re | 121 + src/haz3lschool/Exercise.re | 293 +- src/haz3lschool/Gradescope.re | 12 +- src/haz3lschool/Grading.re | 5 +- src/haz3lschool/SyntaxTest.re | 123 +- src/haz3lschool/dune | 8 + src/haz3lweb/Benchmark.re | 3 +- src/haz3lweb/ColorSteps.re | 2 +- src/haz3lweb/DebugConsole.re | 37 +- src/haz3lweb/Editors.re | 106 +- src/haz3lweb/ExerciseUtil.re | 5 +- src/haz3lweb/Export.re | 17 +- src/haz3lweb/FailedInput.re | 2 +- src/haz3lweb/FontMetrics.re | 2 +- src/haz3lweb/Grading.re | 88 +- src/haz3lweb/Init.ml | 18941 ++++++++-------- src/haz3lweb/Keyboard.re | 264 +- src/haz3lweb/Log.re | 13 +- src/haz3lweb/LogEntry.re | 2 +- src/haz3lweb/Main.re | 136 +- src/haz3lweb/Model.re | 29 +- src/haz3lweb/NinjaKeys.re | 57 + src/haz3lweb/PersistentData.re | 3 +- src/haz3lweb/ScratchSlide.re | 40 +- src/haz3lweb/SerializedExamples.ml | 6602 ------ src/haz3lweb/Settings.re | 2 +- src/haz3lweb/SlideContent.re | 22 +- src/haz3lweb/Store.re | 142 +- src/haz3lweb/Update.re | 286 +- src/haz3lweb/UpdateAction.re | 88 +- src/haz3lweb/dune | 33 +- src/haz3lweb/exercises/Ex_OddlyRecursive.ml | 101 +- .../exercises/Ex_RecursiveFibonacci.ml | 92 +- src/haz3lweb/explainthis/Example.re | 12 +- src/haz3lweb/explainthis/ExplainThisForm.re | 21 +- src/haz3lweb/explainthis/ExplainThisModel.re | 1 - src/haz3lweb/explainthis/ExplainThisUpdate.re | 3 +- src/haz3lweb/explainthis/data/FixFExp.re | 54 + src/haz3lweb/explainthis/data/UndefinedExp.re | 33 + src/haz3lweb/util/AttrUtil.re | 21 - src/haz3lweb/util/Memo.re | 11 - src/haz3lweb/util/NodeUtil.re | 6 - src/haz3lweb/util/SvgUtil.re | 3 +- src/haz3lweb/util/WorkerServer.re | 2 +- src/haz3lweb/view/BackpackView.re | 121 +- src/haz3lweb/view/Cell.re | 234 +- src/haz3lweb/view/Code.re | 94 +- .../{CtxInspector.re => ContextInspector.re} | 38 +- src/haz3lweb/view/CursorInspector.re | 108 +- src/haz3lweb/view/DebugMode.re | 45 +- src/haz3lweb/view/Deco.re | 485 +- src/haz3lweb/view/EditorModeView.re | 25 +- src/haz3lweb/view/ExerciseMode.re | 96 +- src/haz3lweb/view/ExplainThis.re | 353 +- src/haz3lweb/view/FontSpecimen.re | 3 +- src/haz3lweb/view/Icons.re | 56 +- src/haz3lweb/view/Kind.re | 2 +- src/haz3lweb/view/NutMenu.re | 295 +- src/haz3lweb/view/Page.re | 199 +- src/haz3lweb/view/ProjectorView.re | 313 + src/haz3lweb/view/ScratchMode.re | 17 +- src/haz3lweb/view/StepperView.re | 242 +- src/haz3lweb/view/TestView.re | 67 +- src/haz3lweb/view/Type.re | 75 +- src/haz3lweb/view/Widgets.re | 59 +- .../view/assistant/UpdateAssistant.re | 97 - src/haz3lweb/view/dec/CaretDec.re | 38 +- src/haz3lweb/view/dec/CaretPosDec.re | 47 +- src/haz3lweb/view/dec/DecUtil.re | 235 +- src/haz3lweb/view/dec/Diag.re | 58 +- src/haz3lweb/view/dec/PieceDec.re | 226 +- src/haz3lweb/view/dhcode/DHCode.re | 80 +- src/haz3lweb/view/dhcode/Decoration_common.re | 78 +- src/haz3lweb/view/dhcode/layout/DHAnnot.re | 12 +- src/haz3lweb/view/dhcode/layout/DHDoc_Exp.re | 605 +- src/haz3lweb/view/dhcode/layout/DHDoc_Pat.re | 77 +- src/haz3lweb/view/dhcode/layout/DHDoc_Pat.rei | 5 - src/haz3lweb/view/dhcode/layout/DHDoc_Typ.rei | 3 - src/haz3lweb/view/dhcode/layout/DHDoc_Util.re | 10 +- .../view/dhcode/layout/DHDoc_common.re | 21 +- .../view/dhcode/layout/DHDoc_common.rei | 12 +- src/haz3lweb/view/dhcode/layout/HTypDoc.re | 78 +- src/haz3lweb/www/fonts/FiraCode-Bold.woff2 | Bin 107384 -> 0 bytes src/haz3lweb/www/fonts/FiraCode-Regular.woff2 | Bin 103168 -> 0 bytes src/haz3lweb/www/img/noun-brochure-16464.svg | 4 + src/haz3lweb/www/img/noun-brochure-26888.svg | 4 + src/haz3lweb/www/img/noun-fold-1593402.svg | 15 + src/haz3lweb/www/img/noun-fold-1593409.svg | 15 + src/haz3lweb/www/img/noun-map-24173.svg | 4 + src/haz3lweb/www/img/noun-map-6188938.svg | 4 + src/haz3lweb/www/img/noun-pa-5383544.svg | 8 + src/haz3lweb/www/index.html | 17 + src/haz3lweb/www/ninja_module.js | 25 + src/haz3lweb/www/style.css | 2396 +- src/haz3lweb/www/style/animations.css | 68 + src/haz3lweb/www/style/cell.css | 94 + src/haz3lweb/www/style/cursor-inspector.css | 240 + src/haz3lweb/www/style/dynamics.css | 305 + src/haz3lweb/www/style/editor.css | 309 + src/haz3lweb/www/style/exercise-mode.css | 237 + src/haz3lweb/www/style/explainthis.css | 181 + src/haz3lweb/www/style/fonts.css | 37 + .../fonts/HelveticaNeue-Bold.woff2 | Bin .../fonts/HelveticaNeue-Regular.woff2 | Bin .../fonts/SourceCodePro-Black.otf.woff2 | Bin .../fonts/SourceCodePro-Bold.otf.woff2 | Bin .../fonts/SourceCodePro-Regular.otf.woff2 | Bin src/haz3lweb/www/style/loading.css | 35 + src/haz3lweb/www/style/nut-menu.css | 276 + src/haz3lweb/www/style/palette.html | 237 + src/haz3lweb/www/style/projectors-panel.css | 29 + src/haz3lweb/www/style/projectors.css | 165 + src/haz3lweb/www/style/toggle.css | 61 + src/haz3lweb/www/style/type-display.css | 20 + src/haz3lweb/www/style/variables.css | 224 + src/pretty/Box.re | 2 +- src/pretty/Doc.re | 2 +- src/pretty/Layout.re | 2 +- src/pretty/MeasuredLayout.re | 2 +- src/pretty/MeasuredPosition.re | 2 +- src/pretty/dune | 10 +- src/util/Aba.re | 19 +- src/util/IntMap.re | 2 + src/{haz3lweb => }/util/JsUtil.re | 16 +- src/{haz3lweb => }/util/Key.re | 21 +- src/util/ListUtil.re | 46 + src/util/MapUtil.re | 1 + src/{haz3lweb => util}/Os.re | 0 src/util/Point.re | 40 + src/util/StringUtil.re | 39 + src/util/Util.re | 25 + src/util/Web.re | 133 +- src/util/dune | 27 +- test/Test_Elaboration.re | 393 +- test/Test_Evaluator.re | 44 + test/Test_Statics.re | 126 + test/haz3ltest.re | 6 +- 312 files changed, 27200 insertions(+), 30036 deletions(-) create mode 100644 docs/Change-OCaml-Dependencies.md create mode 100644 docs/hazel-architecture-july-2024.png create mode 100644 docs/hazel-architecture-july-2024.tldr create mode 100644 docs/hazel-palette-august-2024.png create mode 100644 docs/hazel-syntax-data-types.png create mode 100644 dune-workspace create mode 100644 hazel.opam create mode 100644 hazel.opam.locked delete mode 100644 opam.export create mode 100644 src/haz3lcore/dynamics/Casts.re delete mode 100644 src/haz3lcore/dynamics/EnvironmentId.re delete mode 100644 src/haz3lcore/dynamics/EnvironmentId.rei delete mode 100644 src/haz3lcore/dynamics/EnvironmentIdMap.re delete mode 100644 src/haz3lcore/dynamics/EnvironmentIdMap.rei delete mode 100644 src/haz3lcore/dynamics/ErrStatus.re delete mode 100644 src/haz3lcore/dynamics/Evaluator.rei delete mode 100644 src/haz3lcore/dynamics/EvaluatorError.rei delete mode 100644 src/haz3lcore/dynamics/EvaluatorPost.re delete mode 100644 src/haz3lcore/dynamics/EvaluatorPost.rei delete mode 100644 src/haz3lcore/dynamics/EvaluatorResult.re delete mode 100644 src/haz3lcore/dynamics/EvaluatorResult.rei delete mode 100644 src/haz3lcore/dynamics/ExpandingKeyword.re delete mode 100644 src/haz3lcore/dynamics/Filter.re delete mode 100644 src/haz3lcore/dynamics/HoleInstance.re delete mode 100644 src/haz3lcore/dynamics/HoleInstance.rei delete mode 100644 src/haz3lcore/dynamics/HoleInstanceId.re delete mode 100644 src/haz3lcore/dynamics/HoleInstanceId.rei delete mode 100644 src/haz3lcore/dynamics/HoleInstanceInfo.re delete mode 100644 src/haz3lcore/dynamics/HoleInstanceInfo.rei delete mode 100644 src/haz3lcore/dynamics/HoleInstanceInfo_.re delete mode 100644 src/haz3lcore/dynamics/HoleInstanceInfo_.rei delete mode 100644 src/haz3lcore/dynamics/HoleInstanceParents.re delete mode 100644 src/haz3lcore/dynamics/HoleInstanceParents.rei delete mode 100644 src/haz3lcore/dynamics/InjSide.re delete mode 100644 src/haz3lcore/dynamics/InstancePath.re delete mode 100644 src/haz3lcore/dynamics/InstancePath.rei delete mode 100644 src/haz3lcore/dynamics/KeywordID.re delete mode 100644 src/haz3lcore/dynamics/MetaVar.re delete mode 100644 src/haz3lcore/dynamics/MetaVar.rei delete mode 100644 src/haz3lcore/dynamics/MetaVarInst.re delete mode 100644 src/haz3lcore/dynamics/MetaVarInst.rei delete mode 100644 src/haz3lcore/dynamics/MetaVarMap.re delete mode 100644 src/haz3lcore/dynamics/PatternMatch.rei create mode 100644 src/haz3lcore/dynamics/TypeAssignment.re create mode 100644 src/haz3lcore/dynamics/Unboxing.re create mode 100644 src/haz3lcore/lang/Operators.re create mode 100644 src/haz3lcore/lang/term/Any.re create mode 100644 src/haz3lcore/lang/term/Cls.re create mode 100644 src/haz3lcore/lang/term/Exp.re create mode 100644 src/haz3lcore/lang/term/IdTagged.re create mode 100644 src/haz3lcore/lang/term/Pat.re create mode 100644 src/haz3lcore/lang/term/Rul.re create mode 100644 src/haz3lcore/lang/term/TPat.re create mode 100644 src/haz3lcore/lang/term/Typ.re delete mode 100644 src/haz3lcore/statics/Kind.re delete mode 100644 src/haz3lcore/statics/Typ.re delete mode 100644 src/haz3lcore/statics/TypBase.re delete mode 100644 src/haz3lcore/statics/TypVar.re create mode 100644 src/haz3lcore/statics/uterm/UExp.re create mode 100644 src/haz3lcore/statics/uterm/UPat.re create mode 100644 src/haz3lcore/statics/uterm/UTyp.re delete mode 100644 src/haz3lcore/tiles/Shard.re delete mode 100644 src/haz3lcore/zipper/IncompleteBidelim.re delete mode 100644 src/haz3lcore/zipper/Orientation.re create mode 100644 src/haz3lcore/zipper/Projector.re create mode 100644 src/haz3lcore/zipper/ProjectorBase.re delete mode 100644 src/haz3lcore/zipper/Time.re delete mode 100644 src/haz3lcore/zipper/Touched.re create mode 100644 src/haz3lcore/zipper/ZipperBase.re delete mode 100644 src/haz3lcore/zipper/action/Effect.re create mode 100644 src/haz3lcore/zipper/action/ProjectorPerform.re create mode 100644 src/haz3lcore/zipper/projectors/CheckboxProj.re create mode 100644 src/haz3lcore/zipper/projectors/FoldProj.re create mode 100644 src/haz3lcore/zipper/projectors/InfoProj.re create mode 100644 src/haz3lcore/zipper/projectors/SliderFProj.re create mode 100644 src/haz3lcore/zipper/projectors/SliderProj.re create mode 100644 src/haz3lcore/zipper/projectors/TextAreaProj.re create mode 100644 src/haz3lweb/NinjaKeys.re delete mode 100644 src/haz3lweb/SerializedExamples.ml create mode 100644 src/haz3lweb/explainthis/data/FixFExp.re create mode 100644 src/haz3lweb/explainthis/data/UndefinedExp.re delete mode 100644 src/haz3lweb/util/AttrUtil.re delete mode 100644 src/haz3lweb/util/Memo.re delete mode 100644 src/haz3lweb/util/NodeUtil.re rename src/haz3lweb/view/{CtxInspector.re => ContextInspector.re} (60%) create mode 100644 src/haz3lweb/view/ProjectorView.re delete mode 100644 src/haz3lweb/view/assistant/UpdateAssistant.re delete mode 100644 src/haz3lweb/view/dhcode/layout/DHDoc_Pat.rei delete mode 100644 src/haz3lweb/view/dhcode/layout/DHDoc_Typ.rei delete mode 100644 src/haz3lweb/www/fonts/FiraCode-Bold.woff2 delete mode 100644 src/haz3lweb/www/fonts/FiraCode-Regular.woff2 create mode 100644 src/haz3lweb/www/img/noun-brochure-16464.svg create mode 100644 src/haz3lweb/www/img/noun-brochure-26888.svg create mode 100644 src/haz3lweb/www/img/noun-fold-1593402.svg create mode 100644 src/haz3lweb/www/img/noun-fold-1593409.svg create mode 100644 src/haz3lweb/www/img/noun-map-24173.svg create mode 100644 src/haz3lweb/www/img/noun-map-6188938.svg create mode 100644 src/haz3lweb/www/img/noun-pa-5383544.svg create mode 100644 src/haz3lweb/www/ninja_module.js create mode 100644 src/haz3lweb/www/style/animations.css create mode 100644 src/haz3lweb/www/style/cell.css create mode 100644 src/haz3lweb/www/style/cursor-inspector.css create mode 100644 src/haz3lweb/www/style/dynamics.css create mode 100644 src/haz3lweb/www/style/editor.css create mode 100644 src/haz3lweb/www/style/exercise-mode.css create mode 100644 src/haz3lweb/www/style/explainthis.css create mode 100644 src/haz3lweb/www/style/fonts.css rename src/haz3lweb/www/{ => style}/fonts/HelveticaNeue-Bold.woff2 (100%) rename src/haz3lweb/www/{ => style}/fonts/HelveticaNeue-Regular.woff2 (100%) rename src/haz3lweb/www/{ => style}/fonts/SourceCodePro-Black.otf.woff2 (100%) rename src/haz3lweb/www/{ => style}/fonts/SourceCodePro-Bold.otf.woff2 (100%) rename src/haz3lweb/www/{ => style}/fonts/SourceCodePro-Regular.otf.woff2 (100%) create mode 100644 src/haz3lweb/www/style/loading.css create mode 100644 src/haz3lweb/www/style/nut-menu.css create mode 100644 src/haz3lweb/www/style/palette.html create mode 100644 src/haz3lweb/www/style/projectors-panel.css create mode 100644 src/haz3lweb/www/style/projectors.css create mode 100644 src/haz3lweb/www/style/toggle.css create mode 100644 src/haz3lweb/www/style/type-display.css create mode 100644 src/haz3lweb/www/style/variables.css rename src/{haz3lweb => }/util/JsUtil.re (91%) rename src/{haz3lweb => }/util/Key.re (69%) rename src/{haz3lweb => util}/Os.re (100%) create mode 100644 src/util/Point.re create mode 100644 src/util/Util.re create mode 100644 test/Test_Evaluator.re create mode 100644 test/Test_Statics.re diff --git a/.gitattributes b/.gitattributes index ad70a23062..bac26af878 100644 --- a/.gitattributes +++ b/.gitattributes @@ -2,3 +2,16 @@ # decides that the content is text, its line endings are converted to LF on # checkin. When the file has been committed with CRLF, no conversion is done. * text=auto + + +# Mark generated code and documentation as such to exclude them from PR diffs and stats. +# More information: https://github.com/github-linguist/linguist/blob/master/docs/overrides.md#generated-code +src/haz3lweb/Init.ml linguist-generated +src/haz3lweb/exercises/**/*.ml linguist-generated + +hazel.opam linguist-generated +hazel.opam.locked linguist-generated + +*.md linguist-documentation +docs/** linguist-documentation + diff --git a/.github/workflows/deploy_branches.yml b/.github/workflows/deploy_branches.yml index ef58967931..e97dabb62b 100644 --- a/.github/workflows/deploy_branches.yml +++ b/.github/workflows/deploy_branches.yml @@ -16,55 +16,42 @@ jobs: path: source - name: Add the name of the current branch to the environment as BRANCH_NAME uses: nelonoel/branch-name@v1.0.1 - - name: Retrieve the build environment if cached - id: opam-cache - uses: actions/cache@v2 - with: - path: '/home/runner/.opam/' - key: ${{ runner.os }}-modules-${{ hashFiles('./source/opam.export') }} - name: Set-up OCaml - run: | - sudo apt --assume-yes install curl m4 opam - export OPAMYES=1 - opam init --compiler=ocaml-base-compiler.5.0.0 + uses: ocaml/setup-ocaml@v3 + with: + ocaml-compiler: 5.2.0 + dune-cache: true + - name: Retrieve the switch environment if cached + id: opam-cache-switch + uses: actions/cache@v4 + with: + path: '_opam' + key: ${{ runner.os }}-modules-${{ hashFiles('./source/hazel.opam.locked') }} - name: Install dependencies run: | eval $(opam env) export OPAMYES=1 - make deps + export DUNE_CACHE=enabled + opam install . --deps-only --with-test --locked working-directory: ./source - - name: Build Hazel + - name: Clean opam switch run: | eval $(opam env) - make release - working-directory: ./source - - name: Run Tests - id: test - continue-on-error: true + export OPAMYES=1 + opam clean --all-switches --download-cache --logs --repo-cache --unused-repositories + - name: Build Release run: | - eval $(opam env) - make test > test_output - if [ $? -eq 0 ]; then - echo "::set-output name=tests_passed::true" - else - echo "::set-output name=tests_passed::false" - fi + export DUNE_CACHE=enabled + opam exec -- dune build @src/fmt --auto-promote src --profile release working-directory: ./source - - name: Test Report - uses: dorny/test-reporter@v1 - continue-on-error: true - with: - name: Test Report - path: junit_tests*.xml - reporter: java-junit - fail-on-error: true - working-directory: ./source - name: Checkout the website build artifacts repo - uses: actions/checkout@v2 + uses: actions/checkout@v4 with: repository: hazelgrove/build token: ${{ secrets.ACCESS_TOKEN }} path: server + sparse-checkout: | + ${{ env.BRANCH_NAME }} - name: Clear any old build of this branch run: if [ -d "${BRANCH_NAME}" ] ; then rm -rf "${BRANCH_NAME}" ; fi working-directory: ./server @@ -78,4 +65,19 @@ jobs: git pull --no-edit git status git diff-index --quiet HEAD || (git commit -m "github-deploy-action-${BRANCH_NAME}"; git push) - working-directory: ./server \ No newline at end of file + working-directory: ./server + - name: Run Tests + id: test + run: | + eval $(opam env) + make test + working-directory: ./source + - name: Test Report + uses: dorny/test-reporter@v1 + with: + name: Test Report + path: junit_tests*.xml + reporter: java-junit + fail-on-error: true + fail-on-empty: true # Use an empty test report to detect when something failed with the test runner + working-directory: ./source \ No newline at end of file diff --git a/.gitignore b/.gitignore index 7916107af5..ec464113b6 100644 --- a/.gitignore +++ b/.gitignore @@ -53,3 +53,6 @@ setup.log # unit tests *.xml + +# Backup of opam lock file +hazel.opam.locked.old diff --git a/INSTALL.md b/INSTALL.md index e237ae6721..76142d0a29 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -119,16 +119,16 @@ follow these instructions instead of the shorter instructions in the opam update ``` -- Install OCaml 5.0.0 (some older versions may also work; see the +- Install OCaml 5.2.0 (some older versions may also work; see the ["Current version" section of `Updating.md`](docs/Updating-OCaml-Version.md) for why we may not use the newest version of OCaml). ```sh - opam switch create 5.0.0 ocaml-base-compiler.5.0.0 + opam switch create 5.2.0 ocaml-base-compiler.5.2.0 ``` - Update the current switch environment ```sh - eval $(opam env --switch=5.0.0) + eval $(opam env --switch=5.2.0) ``` ## Clone the Source Code diff --git a/Makefile b/Makefile index 48e813a625..c1f5943d07 100644 --- a/Makefile +++ b/Makefile @@ -8,10 +8,14 @@ all: dev deps: opam update - opam switch import opam.export + opam install ./hazel.opam.locked --deps-only --with-test --with-doc change-deps: - opam switch export opam.export + opam update + dune build hazel.opam + opam install ./hazel.opam --deps-only --with-test --with-doc + opam lock . + sed -i'.old' '/host-/d' hazel.opam.locked # remove host- lines which are arch-specific. Not using -i '' because of portability issues https://stackoverflow.com/questions/4247068/sed-command-with-i-option-failing-on-mac-but-works-on-linux setup-instructor: cp src/haz3lweb/ExerciseSettings_instructor.re src/haz3lweb/ExerciseSettings.re @@ -19,12 +23,13 @@ setup-instructor: setup-student: cp src/haz3lweb/ExerciseSettings_student.re src/haz3lweb/ExerciseSettings.re -dev-helper: +dev-helper: + dune fmt --auto-promote || true dune build @src/fmt --auto-promote src --profile dev dev: setup-instructor dev-helper -dev-student: setup-student dev +dev-student: setup-student dev-helper fmt: dune fmt --auto-promote @@ -39,7 +44,7 @@ release: setup-instructor dune build @src/fmt --auto-promote src --profile release release-student: setup-student - dune build @src/fmt --auto-promote src --profile dev + dune build @src/fmt --auto-promote src --profile dev # Uses dev profile for performance reasons. It may be worth it to retest since the ocaml upgrade echo-html-dir: @echo $(HTML_DIR) @@ -54,8 +59,12 @@ repl: dune utop src/haz3lcore test: + dune fmt --auto-promote || true dune build @src/fmt @test/fmt --auto-promote src test --profile dev node $(TEST_DIR)/haz3ltest.bc.js +watch-test: + dune build @fmt @runtest --auto-promote --watch + clean: dune clean diff --git a/README.md b/README.md index 7547518e8a..a15bdd424e 100644 --- a/README.md +++ b/README.md @@ -17,7 +17,7 @@ can also be accessed at: ### Short version -If you already have `ocaml` version 5.0.0 and least version 2.0 of `opam` +If you already have `ocaml` version 5.2.0 and at least version 2.0 of `opam` installed, you can build Hazel by running the following commands. - `git clone git@github.com:hazelgrove/hazel.git` @@ -155,7 +155,7 @@ To obtain an clean build, you may need to: ```sh # opam switch remove ./ - opam switch create ./ 5.0.0 + opam switch create ./ 5.2.0 eval $(opam env) make deps make @@ -185,7 +185,9 @@ helper functions for printing and serializing this data. For a type named `t`, t for a type named something else like `q`, it will be `show_q`. #### Source Maps -`js_of_ocaml` does support source maps and has some other flags that might be useful. If you experiment with those and get them to work, please update this README with some notes. +Source maps for `js_of_ocaml` should be configured when making locally with the dev profile (`make`). This is configured using the env stanzas present in the `dune` files for each top-level directory. + +Since source maps are generated browser developer tools should show reason code in the debugger and source tree. Stack traces should also include reason line numbers. #### Debug Mode If Hazel is hanging on load or when you perform certain actions, you can load into Debug Mode by appending `#debug` to the URL and reloading. From there, you have some buttons that will change settings or reset local storage. Refresh without the `#debug` flag and hopefully you can resolve the situation from there. @@ -205,3 +207,12 @@ that will build that branch (in `release` mode) and deploy it to the URL It usually takes about 2 minutes if the build environment cache hits, or 20+ minutes if not. You can view the status of the build in the [Actions tab on Github](https://github.com/hazelgrove/hazel/actions). + +Builds prior to July 2024 are archived at `https://hazel.org/build/`. + +Note: If another archive needs to be performed, make sure to redeploy the following +branches manually since we refer to them in various public material (websites and +published papers): + + dev + livelits diff --git a/docs/Change-OCaml-Dependencies.md b/docs/Change-OCaml-Dependencies.md new file mode 100644 index 0000000000..34a1d51369 --- /dev/null +++ b/docs/Change-OCaml-Dependencies.md @@ -0,0 +1,12 @@ +# Instructions for Changing Ocaml Dependencies + +## How to update dependencies + +- Update the dune-project file to reflect the new dependency constraints +- `make change-deps` + - This should generate the hazel.opam file from dune. + - Depending on your installed dependencies you may need to make a new clean switch +- Interrogate the `hazel.opam.locked` file to see what dependencies have changed +- `make release` +- Test in Firefox and Chrome. +- Commit changed files and push \ No newline at end of file diff --git a/docs/Updating-OCaml-Version.md b/docs/Updating-OCaml-Version.md index dd63385991..72c324a0c9 100644 --- a/docs/Updating-OCaml-Version.md +++ b/docs/Updating-OCaml-Version.md @@ -2,7 +2,7 @@ ## Current version -The most recent version that we use is Ocaml 5.0.0. +The most recent version that we use is Ocaml 5.2.0. If there are known issues with more recent version of OCaml, we will list them here. ## How to update Hazel to use a new version of ocaml @@ -16,7 +16,7 @@ To update do the following: - `opam switch list-available` - Choose the most recent version, but no later than the public release on - ocaml.org (e.g., `5.0.0`). + ocaml.org (e.g., `5.2.0`). - Create a new branch called `update_ocaml_VERSION` where VERSION is the version of OCaml you intend to upgrade to. @@ -24,7 +24,7 @@ To update do the following: `git checkout -b update_ocaml_VERSION` - `opam switch create VERSION`, where `VERSION` is the most recent OCaml version - that does not contain a `+` character (e.g., `4.12.1`). + that does not contain a `+` character (e.g., `5.2.0`). - `make deps` @@ -59,10 +59,23 @@ To update do the following: - Merge your branch with either `dev` or `update_ocaml_VERSION` if that is tricky. - - Update your OCaml installation by running the following: + - Update your `opam`. ``` opam update + ``` + + If you get the following warning: + + ``` + [WARNING] opam is out-of-date. Please consider updating it (https://opam.ocaml.org/doc/Install.html) + ``` + + You may want to update opam by following the instructions for your platform at that link. + + - Update your OCaml installation by running the following: + + ``` opam switch create VERSION eval $(opam env) make deps diff --git a/docs/hazel-architecture-july-2024.png b/docs/hazel-architecture-july-2024.png new file mode 100644 index 0000000000000000000000000000000000000000..38a8a11377a59df6c89b5dbaeff2af10f1a094fa GIT binary patch literal 403192 zcmeEucUTi!w?0KssVYdXdQcJR0@6Xm0#XF&1O%i85_&HpO{q3|SE`gqhlD1fs6gnQ z5CYOe=ruro<2mQM_j}~KzvtfnPo5{tWM=l1wfA1@UGI8_*V>v7XsOt!NJvO%A3eOM zLqbBeO+rHHdyW#=a(%W&YSj*(gh7qoKC;aNA3e z&wDaBUH~JDk=i@i%M>R{yWuCrND9(_zPjgAAVYG{a@WPwjz^wPB1UtW^p6)LY|fN$ z4oL7TRtARiS+way$QtCXx!njyjxiBOgynsmWp*Z2vgAQcUv}Q&RX9Up)^_iX8BS60fCR4?99MO;OZDeX}GTvDC9RggVS zU-tgZ^$TQK_ajDy6@xC(&$z#G%8EN@S*UPz_H24_lf4ZM*!7MP(olgpnV;f3)jgjy zd!nuMNzL5Cqi{>ZuX*nT>7w4FScg~j@j2)C^@D4*k}h7RExXpreMT->vGoR@$)$uF zdk<*qC~g^wXOWjN#4#|Emhraow$v9qq{w{Bf6hXM#^9Wcp7uA*7l!mRVMi~gy~BEJ zHgfK$-l|m4?XtYNzr|5@tMv9T`6I{`-E5*vYLEV+)#tXc^WQJ%@>Jir^oOc)F;$tB zGQ>Z$#n#%k!}S=rv+TDjO_C3k}|=x*y-3gj%Ab%Ve5nFAQI_-K(t z%(_9f{9@fSf9nAc+0U=w*Nz{Y?-*b5CS(1o_|fgzY>WTav-i71zra_=C=p(U!e@V| zTwHQc$!L9Mc|kOq*m3{z`Mg3o^w`vY)}i z!6CPqPOV7V9H_OwFBP!h$g)0=P1AgEt@NJh9}CV)!6cYV4(pEw&bBvmj5Z(ClF(0+ zlPQUuJKM)Yn)C9!2*I%y)%J`kiFE#@jy7FF@X#~)(KFRA)1T4bAz^EN;!KrBk=T6M znS3&=D4)HasH>vhcfTN&Rsk&MxGq; z;i|x!oo`Gzlw)zXdGp^;KRoNo?(=H<3hb@cjquM|#swE0!eZ~T-e8DPV(8tlW0GMN zyua{Cy|>Cv0?uCYKr1`3m)(x}kc_jLBrkgDSzZ!(d$Xb8?Syb^OG`&4{cyc!Lx!Bg zG;3QD#ndZEg_(P4;R7ybYhNPQ@1;d)wcBE&Hg@(k>$#w9Ff9E>;1PSUn#doc4E5(7 z?^5wbiG*pZ74SG-=eU*@+@m9f<$U{akk^<&9$S&5*2SxNUFaHw2hW%Bhvx-uhO-a< zc&G3^y`B6Z&c_6J)_rT{9xOZ_YmbL%I`kQ)B2!e8~^p^b+GjW0<^2o|i?kJYam<|^?l33SqMl3M*^wQxLsyrUA~F2X6mS*@9Y(n%+mk@8Sj zVp|gPIDkjFueigO8%Nl)nX@`Z1O_IGyj0fSD}WRY6%B&w0z*y$$S0doJj2f-zupfK zrwq7Sd4E58I`#&;%d=KamBC(=2+A3b)kjJqNv~Rc(!Tn(Pv+CW{eX6vcG7m~_M+%G z_Pvze$48IPTq}C4nIxAF9!TDnJ2dtcXuu5i-tKy832&=JZ&xH&8GST*J!V!xm}hhg z_sKiBxy7^$|QcvK@e~FPLMTWECGD0$EdNUyjrc=_}S32A*&MG?rNdx(yB&V zm8y-JWJg^mH*|ts=a=p(^fSLUx+=Gt&g!B{gk#*e-zYUsYSb(GkLYbSehwq~@&V^Vm>`Jb25Y+P{BP}=v%SJCgY9f#=iGjwu&%` zqx>$`lQr1*aqb*0u3|xp0nG$q?z5SunIHxEPbCkw9zfZTM@PC6XAx~RopJa?e9aiF z6Em1OYraan(Jc3Z`HTEC>p(&>ab&>G~ogBx0#$0#GcNx}DiZIG}imJ0<%IlOc z`oIg8Oz$r1u=jH>bIHhWKWE{+b;Z%g@cP87ZtIaR1f)FDHoWG3!M)Z8#c|$@_RRdT zj$9$J=ea9fyBcnE-mrM8a{HCd16Xt;w-u+j^!&qHqLSCD#dht}+$N)I-8L%sUvD60 zFnnjO-O{K{wR?Z#k>evBb+*K(@3$4CZ}_OX8vH2ukj$T`L#snk7-OGPnNzuHPi_^` zQOY$Tj|wnds!g3O>CoZ~vUvG5wEld@wa*$qAIl|aKGf30#GiyQbQjLkJpUs8S?sXx z7M=}HZAJpU3`<<=H2)fuu#{SNrQ&+06xdoHS{>x6>Y4e1&rsMqo*|)ve<1+kj*p%E zTK}`Y;Xv(R=|JPIhDGTYk9Qk6h3{qV?S9mGGV*-wd(rj1sH?3L)NfvHP{f28uRmzi zu)KPpy7}cBte|`m`5}k@Y`(+e%bHH9Hd0P~m9}lXZA}^-`EL0&T_WkCUhT-_u4EG% z-U>0BsxHY)`5@1|v|ef11)ceM)Nw;=;d9mR6F%R!QWn^|0VuU0oZU2-@Hrt;U6y(O z)@bDg^Babvjo&=_;HsD(-qy^W=|2R1G~JpPYTPf{f`NlLP2bh!1Qd4k$8^5x4DEyn z?U^^ag|$b{T#hq{H8N_7Z2asvG%>_rU|!%{G+G&6e!n~q?DTWI-GgZ*p@dMb;CCGJ zqxnaJUbtS==PBs4Q!QNdnHBolCylvO1t%uQ#wtE{^?)ipk2d|8;g2O+HGEF8d+f6{ zDXWwdoi#yd-pRfyafmHA##W(!lJ*EcR-@Ned_KO-xV);kZ6D-Tb?ap9%ygYB_->v;(_ne)g89C5fi4!)I} zNxNma9sC^&+}v_c{4J+*7N27Zi*@5nu2oOUr@J2df*rwxhBc0kJ;#Rv*mP z17UA-JNUQSQRnZoIsvJE6Icv7NO2P1XBITJRyso^%T^)p5-CUH}6vJ0!oqPBHZVvpCzhdX^?kpoL?B(Sp zD)(!vjJCbEwWHBJ zdndqVz%>*^B_;02{n_BuuK&K|zcn@d@1|mRL~j3k(|_Cbds96(YgZMh6L3*?h5zob zzZ?Ji&c7SV3IBTbf3wA3hW>LaU}*&^IpP26H3h0;4ln`eNDljZT2Fx`FwA~^$mM}Q zH~v}z>tx|fQCCXoNl27P9^F%Z>P?D6d(~R&`6#ZpZ7X>BuBFGaF)&I?>Qhp( ze>&(_$N$qo=l+>Nf4Yu;X3#$_?oZ$TPYn7e2K^a){{adAfP_E6=szIgACT}@w(t)~ z_y;8X0}}ppivNIwe?Y=tPVpZm;U6a9PpA0*VG?@T&cv>c3D$qqf{B!wB#IR1=8M>_ zRIhi2FmU8!niSc8vLN>pob%Of)j>y9y-Al*l44&j}F)1 zTPxzD+{O1Q)K`|;vW(@rEiw?Bgt%5_R%Kh(q#WtgXS7tOwJ$Atk6KtfT!^(WT+pIoD*=#P2v!k&g{F`wzFQl=U1SDc=>+{BinmoY&8}zs?>mYL7eD zvAsC_Q@LcSP9W`Yu=tCW*6i0|uGNVM+5G79e#^EbmndomP+9lI8fCMFf!rnJDv zKU$wyIF6vYA)X8GE@OkOi&8mlNrJ0yh{$ zF!2aF$L-@oXbviaJ5@sQ_S=i4O^@0FiJPHsv9+VGD?h05&ezCGSJ+@@b%v8<=L=Y- z1Fdk6wE7>*;yK=gl z-U#sYrV7}|{r-^C7Z?{A8M1WY9_Wc+iLmNN)GmP{a7d%Em@qFLy;q~wlN)-qxmF}>`G zC?m!|&Jd`ek?``6ys3EL^WhKNk?7FO*x-?nY|YnSR|XQ<{2kP+NHG_Vkw3( zkO|qa#I*p^w$d@Xe(Ko^gn4>R%v;w^7c+t`vhV?IrA_9b}~?Tzs6^=;QZNr zDVhB`sX%UIAa`a}R-MJ=0HS)C>>9Ni4uycu2rLNE0R!Fw19RH7UGDNbZhg{Ss_3!U za3dpedrbQ2O^?FWf$V@$7Q|-=Om$+BDO59iwSswXIBl0RDGV1Doix7@e%}?W@{}h`U-3fI zy9RZ{!dagcw;avT#8ya=;25n`SRaZ-<{31p=EJjbZYc=eh@hdq=R)5_kW85ReR^sJ zxJO~nm%Y7Jzuiz-t8WLg0>iiW153;~*vNam9&@=V-9dctXjs}r8QvUcARD2os%8uP&$cZX*8{KvpuQI&)n@ zBw?hj9T&&DQMKChLtZAbc4rV`vht7(TAIBSR4extl=fgUYaR#uW zRy;1`RMlphhv~wi{41?em8-vxM8=B`1E>{mTWWiEzG&owp4j2~33C+c>Rjfi=0X1b z3abcPFJldmyW$-uvr$HbGgBcWN25SER;Qq*?$DEFdkSvn(=Ed+RoTdBSnt!HBvSZR z#8qViM;xEXM~$<)P7UazQ`D zaHaBL*U@6qBO`TRqPQDfS5KVNw7T2IueI68)jV~UUm3RYxOSD`)ydSbkn0F{q z?1`keOOq=wj}nGD(QKKqaUXi$q-+B}fh|wSrpa15FPgzR{ncS}LBmiQ^OPn>s23q2 zW5WOU5kyMnqyiMyoYJlroeCzENlJaaBl)(%R76g4^`YWe(Wids)+fKF6}85D8K*$k z;g-9~6S|ap)N66(LuL+W_9n>5in>99O#Sk#W~8}9(C)f&*!&p7#8TsYnSG3>MdRKp z7YlEi$MgE?lwYA~w`Dk|*qUoUuzKjzo?OaHB^J@nDtZ=ac$3<=?EYKVi7L)}=WfFVncqdZ>*%taqM> zRa-63InLo(OSP&w7}hD=a`XL?Gt3!f5*6Wbx)La7u9UTRz!i9EjBxam!EgftreZdR zydlYDA=b+_Y!#V$MR9Gg$3X#2M?yse;l(0#{ZOcoNdr-x@0hsz-Kr%t8ejdLH!MQ; zRqb#*d?9dky(}Ay@C-{R_wPWhqpsUZz*nmn?uS|Vd4ji(+o!x;2Zo*T(LON^puUkN zzwK7-L{^)}yseCjPAfa%qsjX(Ssc0xtvAv#`&*@Z#tcf@J!3}*@w4F(%)2R58m3Zu9U`Q^hoTqFTR7NW z>;5^IE&|yS7n{telh~Oy&JqH)l@q^S9O*V(UivD#J!lbKv3^NsVQw(Et_&_hSz>O$ zV~5rW9{UAkxH-hj%I2gFeW|9>rK|!!t<}U!O-Vgh^4@!MV$_K)_tWy8ogJvCw$}(j zR6&_bxunE6#y%NJt?9(^q0JQ)p&L^K$HIxq?b`2UDqH!pA#5r$m{4Pb!^Z))!i~Ia zCWE4ieN2!165u*sv3vMo!$Ra1Ep=j5d#(|~DQo?Yd9o58h1qD4U#)-F`kR-Iv_nC~ zV;3N1m2$-s9?xnk4REHuCO9S8+OFmiqDhUYsbv1fw5`g@&ABSZAL^iIZsb)ltFk4c zB~^oJ=}z48o;rodOeuUmcsQbHLC|LkEO?+!wV9^`mEHk-7xEJThTu_Nw0Le!ZkepU zy;R@X60I)B^%O^k)XBYT9xH5+bU7KXiglzO80kSh9=M1<8cpAeDN~1P=4Mn7k2-8W zkGsg)%GX&5bIZydS%Ee#_@Vsy(|iqZN5|`%5+y$b(85|#%6MJM9r_afk;5%-tt0=- zYp>C>nC8JJ0d@-ExS7oCdjW;DbMs}zYV>tCU_XEhGrnPc%<*wb0<`cM{ zkDMtOM%ishY`X7+aW1~t>oF^XFN6m3$I-QnHYy!G~t!_u<-{k~$9%MlyhzI*ewHNtH zRsf)id|=Z>>@>)TTN;<11fpeI3$zXmO*Pq;MxG60IJ@fvF&rlFKlfXHU(r&|nS1up zTIBujpC8IsyQtp@nm@Xdno!j})`!m#TWzec?4ClQGz5S0Z5$FzUyqm{AJ-EK$1FB> zId{xU7uR4h!Lw0RXJUoZ>UfSUX6GYIbD3lj_Wg@@zoHm2k}gW($3anii4qI8mTz{f z1qah>PVP1}xjNMbS~wwO@(E85{X`0)d4gn0x9g5DJE?ag-Q)26($TSmlEIM62rGlx zJwLFqu27$bYKym7T9%5Ud}&%``s9_)gaIiJ~UHf~v`DW)cw1~zkM z;@|TpzP`(=16CS@dD9=WvbO(jEUJZAj4>q6eLhymHc50|$=SqJw`q3rJDW6paywSl ziUlb_UuXAS@i3kwe!O|s7bBJh-CuvDJk|+*U1cr&xtVg0Te@)!kKXZ0B}@E;H}(6R zs!zsK4&}o-VbMT-ibo-cDUBCpdjbVLvr1GOz8LH|A0%OUJtT$mZJ=l-R1|%nW8p}) zv`ub>Fmi z)D6+$S!;ipu9`Z&*0>i~Z4*%IV7ByimRIzfr#a1iCR!??$?B_VCtYc8UcMVDt!y{B z78kov12)n{H+rjjJ0C3D?7el=v8#O8u(vd3p8 zJm)nQ>L=lXfxFxeGZmR!EDy0`pZwefz@ODTzv5Y7!BB1q-fdiOW3fc8))66g}wmVY+>q2T_-W&tnqMK?m^BM{a;x-B^0iz~&3_0>-vVn0`5;S^P?%cgkI(Tv~6 zoKlt;z#_!ERGyBN8WfT4JjV_+jtw87us85&eYnnrFLkA*-Q5T6Cmz_Nw<;;@`uoR> zy?}?MOVzcPw+E@NMAk(ig-0Ma;6C3c8hn&8o$;@}^2I^zrqh7j?rdJSApZ-~k!+QH z0F<+hYgE7*ggx`q%;)eQY+La|`Rzi((p4^dc;}W`aaT$Ecq`ok!Y~USRWg{p(`7q9 z57B?Wft2;4N{r>ykM}d`BUj7r?ddXNJi)*dmVTtatTKOv9+s^UfQhd)&dN80mX`5L z`EM**VB-UPS0`=}Y~ej=tlaJe_Z$^UX5Wb-%SXNtDVtt{Le`ASujF{d>pW216Q4zr zJ!p4^_8DJBZe6d*Uia^tt>ipC9=8Cyb+facc6U2usxKcSEb~VPhsxRXAkJ0lG`Rud zp8l&KoBX!CSV4+!X56x0AU%uC#>^vbn2WR2LFvbX8Ya7eF#)Ib}or=(r8M zW9(0!yWzKeu!Y?w>c*OJyQ@h0*kr^0(ZdkbD~rZDzVL-*sLAqL;rqqc!7!CFXawJu+ zC;gtfa4%Z($n;@^{*A8GfpqCGUquB6J8wPA6kkbIwlaXkZy$N@z{970_zJS-2(_s? z%qKWu+f_ST-lwV|7KSosb3Np(YJKb;1|cG!`g&g}QNDO8dUA{dMvK@z@Y?>jkopVM zHY;CoHl+~_kPc5aRu6#AjXNV-X3Tj{c9oA?&W6(#A7UBLKS}2p@ziGptAn(3_XZq> ztjkp9Hmu#d9dE~Yo=HhG6Iii*|RYY=Fs6Bek?U`ivyMOk&=8J~0Z7h17gAnGkY ziJ0us5qd_oj*;|v{7_LquPFxPAe_9EWHB-Xv&OZ4cTv5fT%!2e7qq1vm0?5-Llui-|4I!)1GF-nQ z*XcKmi`+<4dQOS#Ar69gS;dNU84~<BE_`?8E&!yuUG5B`uDgY8#7kWzE1BFul z3gVL*>>NSuy`|S?Xa~t4C}=%X}x;I<7_~!QkEQR+WLNUaa|PS+mTh&Q3{C@rXI z#}~v50nz{5LM#hoI1|l!{&60p$5t!VU@>rX6yCq0iV&8n>IpJ$P%ss5GPIp%-dS$k ztG``EY@bpO9;deYQf=38i?Uvk0U@z4eB7xY1|(Zu=;FQ&{?VgveGC;L^Gg}2_=d>e zEu=Kv`-_06>}mS+I~7KEC3s?Xq*QBhICqGn&wfK-khu+3)>F7Enw1FO%8Nw`KEcFT zG^VDU+mfgXXTKIp_h9$int#f!&&13eHhV7q*mp-ff|h2DV-QxzCq@;1|Zb2!;h@)!su27#Cqz)=fkc`IXStS7n?D6kUt1M@oER99oU5+$aT4o*DoqjT_k~k_V zR|EMo11TR3p<|8#9La>R@Wc8$3eKDO{pm-!0v<_P>GN(5X7vi1u-=`w;;^#c!U8ZR zOVk0D$0MD-i1!o=#&pN4b$WfCG=K_<84X|PPU04dwkX6Vn@ba8a*J9<66OQqecqzN z?a}t7Ui3?tQQq5!zRO+7GVV+zMOGsy=Dp=7c3X^ib>1ddfwm;*E8dQ)mQus6%RgAm zj#X*OmKl=p zI`k-r8&MhPKm5{k{&TF>h!54^iPM^8W=%L#BD~M+gG(BJvF`%bs^vv2C;K?40v2F* zSiinKpNAloLcG5-{psr22&o-mPnZ_(yjH7K;AgTGJI4}kF3}tH)=Fks5~~7Ze|);) z5#V1tQ_%Irqe@}6P}g~xB~3S;#($v;eCsqwS-Ax8ub>5_!zt7pMgip6JoRAbz=Ep6 z^F$WeJAnXizP|B91qnXffjBIZt{uyGHZ|P-L~vS$A5@Kch}HDV{VD_D29ds$e9YFh=FLSLqTd<qYOs^vztkSn}PSlV6yew07*~f0Q+E}g7|&--W2Ef8m(A9Dq9t- zjvGzB+b!TVAF;UG?X#KHh%L4V**!Mi>;YTVZafhEX}Ef`|54o~Y^MXafi8iYN!B6g zlhQZ&)h&h!rf`hY=-?pUWV->rP`brM0oxjkuU4s-aEFXQ*5J%en2Qj@+FLnv4XU3X zo*lleby%FvxF$8Ri{lqtoqB;=)ol;m03n`3Gs(IZTJbeQbX$0nQQMh-4QmQ~lzEKu zCbV722ZCmX?PMo|ehNop=M@?2DN~FwdK5B`i2Mq2Zp!}N_y3P>Pq-{(?!nE`uVNJG zI@A0^i=*;;_%3`Mz;m#h?TuExxm(k%*TK?yjOt^!3wgGd2$l*Jm=~Ht5C*foylt|; zel)`k__C#LLD=^_^U0zI4}<%z?0f}q&bAobnrZ2bQBb;+kSQ0Jk&#*AkBSI-s_V2k zlc16AlPR6Aec<*u8la}sFt&qJoIWcs5)NzawKXXjd?M>Hj4DBk?jH!p^_(-I4%c*B z5U@V#xKDc?wq{`PqnErrC+qNm<@G7+39oQQ*D0yYnlhzO0Nd zJsZcyP3hjX!gMqsv4R}h8uxs#t|mLq{rmKu)&^c-k!S3ITmAlS37uLngJsrUJr$*| zA|pat;dpYSFTb${qiAF4Ilardu`*!rVSQ(*V{ZuvEaJCT>T|Nz2^krjOs)9(Lda`# z6-DVl&HzZmq1M3NWizA7cikZmG|nB%dVZT~LvE~0L1WAbW;utg2VAds=L0|wqHwdx z-hl%?LV?>s89V*ncr&gZ3rISbEP1{rYN%9LgN4sNu`fU|J3?;e!wukfkW2lvev9+HFwePU^h-UTTC+Ke_h`eZ8E4U|W zyqGO`3Qot_;x&upuk#?5>tRdz1l**=Pbb9FJV4D#{+nh2^7n{C2MT7eiWqdW%pX)6 zT$6O9D)d`EiHG;*K`N!=?>-N@l}$dgU^Vi+DGGhv?ehs+R5*I-ur>M%WCWj9NYCPT z2tZa)2!VUu*G)L584J`}ZZTG>FUX{CeT=``W!pyg)vY>#yP&~hX3_b1+>yvmDpw|# z)bkVo zg9$Yhnm{$3qSE6qEHJ|8jXOoxJXbD3Qsu6JQ*V3E;?dY+tsX&yfXi;HOUPdl4Pm>R z_uW=~J^;IGC(g?@_f&$c!IqAbWlFl%93{3J+aTweLe#_Eft`vaXXu;&oUKAQlJ)(~ zbx!kKy5pnW_MPUj zpFR+`qipuLMHSo~44$_u_N@OMLDZ5<$3&M#BUD4u)PfrrC&91bfinfpPvh!Qd6;Mg z^O84O>KwBtZrjVf3UaR7t#?Oe!$d=g5tr`n6M76vh};(uTT?8Et$F<)Kg>kj0=*rr zrWS5`WdMbU^RQKeM1;|e{^Y}VqZEXA3ivZ~){u`)1y8iMHI50Paj_g}t8PGP1p8g1 zhe#Nh)QohugSltb*o|zvH)I$FpH)v0-&FX0PQOrEVFp6>@xnK%Q|Te!dB*dTl9jWJ zFJ%?OvCAXsE56}9v7Bbaxobhfxt&Xo$~tjl$?0KRJyw;*O`F{A{wc#REuc z@51UFtm$Yy=~1?yO@2ScglFiUf;<5xTR206L}vFQt?t~;$D35&oNRb*jk;E1<49GV z|H2QFTiRU+-rS`EG1qO4a0h+;#*3vr-XgESn3Y|dEH5}j$4AMS%R?XSFQx44(AV@~ z{8}N+aUAlzgzSjztQNl+a%uwRI(vE!6_jRq&;`moI|)kM8=MF&#5In$6j^1wdq^ zAmRjRYgyJX%Ap&>M5Vt$RDwqazmQK6AT%794;Sw!C@2&-8~H!ut%1bteLuSbc%r>0 z`296*anbGQ;Gb!S%14B)_4t8f z>x7D}5T0~inyjf6onOQ$&9!1lM;SxWO{mwPK&@zWAW(^CSw7UGxC`>&lxZcI3B4d5 zIJWcJh#Cnv+MD)>Evu1!DW*kZICO#75NNf(jZ-BA3KDFaVmVuo8?|mL*Na9XguBcE zJ|}y_s}1bltfIu!3W%=+vTy0)CbGI$B zlbmPzf6_^u@dc6pp8Euc+?zgp{i)@N{H6@!u;TWTNp(2AW~u>kuIVUa!bvpjhZ$kC z@=N~P`3ml6-pLy4aOWVVrq3sz_v3eVR<^UrTM(3cFrsTkQ;^Ts{`JMr9^J75)=F=M z-r6@Q#&o!Qkas){LVX2vA`RB=3mOZv+xZKjsuNy=7!NE)*K2OjTDnH(jS$7M@yB;# z>!|edJO^5|Mg>znW}5Mfrt-?9+Mng8VeOGz}ztO)4ISU>E@ORPjOUecha+Wsz=xx^c`{pD`S%KJ|d;RZY1)K_7zu)|)h zZ@`-AfC|8S>xF`JYACeBuUF7|Dx@EI*&hFqb3lE`GSfqwlHnAySZNPLAjyEkTc-m0 zx6ZANRB$+V<|L1|) zt4GOONGo=F8qP*5?WT1Yl2WoZJkPB7x${;i%MDrKaD*$k6EBZ#EfjCrZGYF(v%22$ zM5SfraA*#HB0Sr~K<+4&$oh=XiOL}KQ2Tn)o2Q7BpLBMg1bWpEinK}MxwGrrVT2GAEE#bdsj&d1I_*nPO!pK2{Yg2Zzah@2;%I-Ho2Z_%5*&#~^SD|{;^ogH&oR!VYkeb3x7 zY4<8cOC^7E+RLu^g2u8ao8{OPxWoK#yr|)B6pIMBn6jN@>{zrCee&gsA3Z?Ips}Db zzom9Gf<5(P?+PqBxLuv<3>(b6_LhIp-1uF$dB`@J#knL(c_a=Zc;M6%fS2RH(}|g#_8p694%1B@1q zHDAjxAvXGgYHd#XC%f4=gMJaMNnB{QfTl7joki)e%wj?T-M{`90DF;mINiB?Iy`1{ zqPx+oB(?%b+XoC#3;J%P^OMIC5+|4$+fQybqsMTH&K7!us>jo{g;fiUUY0a$8Shz1 zG~6Z`6b<%Tdknw@S9p8#rJ%IjDGIQ*L`+El?wbGOlZL%P76ncE8@CPq<}ony;qq(8 zJ{#H51G7lhl58{M5pjP{+r6`&x~&3`5w)eW?!xXIhOXo2Q_a231aJ@LoHsp>GEhBmQHnz!LBOd?Q_byFsh5^rX%FE}_AXl3Z&in5NLI9c}!17D+!`v^PRQs!u zpvM9r)za6M;Ze52G)cQ_PB+UT$@+A8`g7KHcwn={A#M;&Vz5(;ej4w zohN^>$)AH1)Qm>`B52O#(|)Ih5goe^ormiAa&e6xtz_DJ=Cxu|(;9l_;n`~w*ab`G zEkH&$FTJw@NI`SmnC2XHs>+DH2-{jqQ?o27biUbfzP%B6dC$~qyEtZr2>J@W1|(RUC-@cvOGCmU%eatEoYUkb zRHk&(w>&nXZ(x1{l{uvZtmDtVr1y%C5Sd`bRA|+1v5=n`BL4#>1 zOp}$N-DCA#Rq8yR-bl8SBTYtWVScYCT~t`Eu5jt>jefB}_pY4Yk^n^U<$%A?#&919 zZkHwHvDm$OBanD;7WoFnSy624yAB(6I+vMVQ9IUDCDts3+3+NuCkh0r5^UA>BX=2%{kBIRWve6VUyQvLy;Uz69(4esCV` z*8(8(&{a|Y3B&lU_!Vdj`q4-m%n0_hAv*|E`|Nq($oOsISefo-<*^K3T&(gOg8EGS zK;ye%BR)?ujoGNd4UdKvYpX59*`PaI3%UeO+qZS_w;$ zbnH&V=50l91nJRq)g;`!WGR@7^p=Q)Ds{wSzkb@}a(%dR2ikrl;-Nbby!*EhOw?~o z@N$B%wS{oe3af&+r#HV!rqsMgoJQOpLB7YYq|W>=q+T%^Lf^fLxU`l}KvQfehi_ka z{U7Any>DJ9K~-*=ozeqViUzw`ChfJdEDIWY2^+EEP4ve{hA;{~kCS=@VSe-ZHh^O? zYO-J3RA5EaHQw~}=q}_gHD)h0`BMB{Lx#(9bP8q)b=AHK&Ffu>7Mx)7ks{7zh-x3C zk6y0+HqtagZ;<&nZaav2WpYGV-od6E4AD9;tu`O@vDo?7Co5THhm_XziHa%(f^1&M zt$vgUyRyQm^QkFsW%YW81`5war~-nSR6@e;0n~kys&QkMjGoqCBrrVRU|rmF8C!pw zQeV-8=Zmiz&baZGr!e$$q(YAKxNe2YGJKM48U2eSqGf$k^_Fsx;V+Uhmh; z4J8Melwaqs{W{~VptI;7K*7zyU(1;KA4Z-fF!J>MU2mPz=4gLbT7Hov!^>0>Wi`E9 z(?bDCop|t83Ev=kYk!A@4aX|0slX9Znm#@kpd4^qS`|}L_Ry=p5~gnDHDlf()D~Y{ z)Dd@17(aB?FR{>T)-QwlXRhWqOspAte8Jz)_5-eZ*a2U%)O#~)9N1xXB{Kibudg6D-}uxlPeAk+4# zDECFd+*zmgOKM!ce^XA0atgGMGdD(#?2Siv90$^k37)twds~@RTX*&Yw0h2O)j0K_ zi*L>j*a`*@yf)cJGx^lxh@J2m}#7?HJN~yM4U#8b3jsPGBp|f zJIV=;q@I-VaZeg70b`FF0Ts-J3w)&$+Ai7)*AmcuRU38VqYhzB%3#%^~- zeXSg@QY!gyvtRzs>K-7FL3-&I^IJ#0>&OvmOL#vwmWvoYCxU`P3^h@NbOp< zB^^=dVu#tNGro#kao9bHJK@5uA_PpUwx4G1n*jKNq=84-z@ArJ#^@xFVk-h>u-F~` z;lZK!>}51_W8i+RNV$4`wBX%+)p}u5);0RNopA4_`mE_=F|Sgc_I$!OsYKYgA2&p( z9`xfR`gc0<+=V;)fZga%+;Hc93$ei}N<1De8fcEFK_Jy^G0C)3Fs+7SR2wZ70=oB2 z0O1-wO-wR+b=(J2s&?oDrkPMMwH)33;eteB_E2k2(^~5J2Ti^&b099{Lt5p5&^S5H zD(lrK?)gds6xiXl`VQe^c$qw;P}x6+a*;{^o8HNUM0%l*x2mX=~q z5QA(%BKE(ypdeoVEc12XKh2@>225blr`MQKUJ3#s_3!cM1>BD?0@t*wO6Oqfw-!_h~2 z=I2_2U6gU{bSpKje(S?b-dP`$bG=hfPso__fLN}K!KUuij65VmPt;H=%Gu}~C#s(u zr-~XL3`IY)UcP@YYjxe)EBCRvc;n~s<4ooZ{xY|fzlwJrT`5;QZfm7?gF!W#T%6ZDI;m~)B{De!^5PdOh@y0B zll+r@_fC-42y36xh>CUg;QjXUcmuo5JSW?Dsc~+(Qa8 z*bJK!HT6@Y8Jll~$3~JOR<6h1{D18IXH=6}_dgCRiUm|G6h#3Q73m^Xx;hM_RDn=L znp6o8BAo;nR79yZKpXd1P30yQIo;IJkfaQ*m3w(8?`(TKn>flD{r9HZ3#~-E^io$x9 z?MH6PO^kzWyJfWTAU&^xy{1a)vYE- z$byJ-vly3a-XolP@qy z-U?D#iMD0zQd!uOQrX%?MR`ybc3JCdzP#prg zte!b2cQ#1b(TYBWqW7MlqCl+6)&aCa4mNU|W~))y{B<6|st(1cB}nE<@vRSx-#D{T zp9ZT&RO{eM<5@$r9jFD8KoRkjkXEYqUSu|tmcJ$P%2TZ*tWPsupp|lpB75h~9G+Ue zc~CgthIg9u5_iEjNXRit(?<&d{D(8O|{gfQK^9dJcRhbah;t zv|h_g7S6stdtM*~RZ&zqw;GR8t(6_EB1lIrf1O61a#%TTCifPR4-$6iaXO@BliLTN zWXtJ2k?a?&Q0Y$%VvMw6ryPo22}GA(TF0-csLaTcN)6e%eS<3-hXwJP()Fb8p{dW| zh&hK2c>AC5xo%gsB#^*^x+t{^Wh$+S5_Z1qRR`sZk;g+lK%Z6Z?OD)v@@iwQk}Ji& z^p(?Lv90-E04>a@(4tEdU%tgadOuVcfMlK=;-YuHzHWY?-2h0Fm;zlr`ShM74c!dZ zCI5nSUiwttw2`>ZgW^tl^=S#2yKu=uJ9GkX?i|mk+Tr*-7M?tHV`nv^a*D!IkO@XH zC|cKQvZ+D;6xp=l@wFbY+%JVfNFu1q31@8?K!6ON*qwZ1y@&W*9~OM@nb9*syTkQk z0%P(SbJDa90&N|6#m3n69&#X->?Fte*j;m6%qQt&O2={vJt!J#>FiNKN3-uMxZsQ; z6T_EOf_Rr2Iu@tc8d=3IzMCqEl>En`Y7Lz>K;l4;mhNJGnr~>v{(OGJ=wiJ=Lh|*+ zrDKXLAs&Dh8~R9?N+R_>(n&G}m%f5u~t zZEL%${iS`t$7~Q_70qdmdpD;=cZ(@muu336aJ;MZb7F&?rpRij^Lhw~-hatdGP6sN z4TX6k|LiL!O^etFA)F%_6->Q(!{D{)?p|H>df}o&}OP;!Y+VQm{T~gzxkZDfI zWc?2Ny5TQ-ci&LDvPvJ1HjhUBr)+aGt^%S`-h<3MqSa z50DX38c9K2fe;6VV~*A?x~_Ad_xoJWnQ&jj)`||ERMM$Z?I*@eM*~mUFfVRfISQ89eM0~M#zr6ZKNwil#O^3teIVA4gmpCJDU+$yVie^>atlP1T zpU%gLTprgKYL>ku-0az~etxiDN9V$N-{-6n<=|EYm|oNO~aw+R=0o2knqMT>Jp-p`ObwdsiJgN!Vw8K+Z{3_e3WO&pyF#X;*YatLlEm`y zuDhms#7!WPhVLA$66m9>)%Si# zp}D&Dy|#va5lijpxMaAnz3%mI`81$Ap&onc)wVM7Ma|gAL!}&G^ni4(8#IpTon0uk zBs(=dV2MlByV#{NJt{fH;>*pQrM|c#KP|eosMX2t*jj4~^Y{yd>33g{gmfcq&!XZ3{JAdL1`b zZ2Hk>eV@zvgR)-nsF!v^)7_%Z@~R|Nlb-ui;Y6j1vJAtHVY?Q$jcW()v6P|0dp+9v z`BrxNc+e}eJrq1CY}237C8w#oj7>;cb~Y27Cw6;%Iz$lmL>_?09NV?d-D#kjP`=>y zPuVOJNlMFW7SAqo2B9)x@?=r{(KhKld|Dj}1p9W(&V_A!Sj*^Ye!$&8s&k4QUH5yiFvk=^We;w2gz!3>_?la z^2=RQQ<+}RR?QLT}?ohwk^U6fX1;N(Bpf^&CdNLE_vuN<(v z5>oU!TEeLso1Qi@og`|5Fgzd@b6Djz!r+wDB02Brp;A)2m-B(3Xhtb{5OC+(V};kd zZP+p4fjQ;SJ^1)({PoEIL)ElEwlI8fpOqJD@vWr27w=OWc2NMg)!{6qoyOAsNN6JF z(uZo_)j_NfDoii<%o5PgG=bS+XTOcUV0p}Ri{Yi>8!ZJOv^=TKTgwO!TV3%ko9g34 zdiFk<-mhs{NsZL#899)L3}rsG;TFd1tTL$uaaiKl)Mqr7Bke>^-$&xh8N4|WHy_Wj z-Y%y{fDB{grL4Goy3*wkACRfhPUp|DO%Rt%RLr*r86c*fnfc>lY836+PA2Wy-V++* zVzm3GhRQw)eULf7=YVE@^Ube;^kKe=+U%#|&`9-~Q>XzGekn;#hD%Dfx0Bp5 zMRA@UZoZNbBRpxmHf?z-FK)YaPNPm%W{PH1+Qyf|`%W=kf7QXV?^gO#6V%JZ#`-st ze`j(l6HDW{s(0uTcV>SJZK}W7acA#h_2v2NSv%iSqaKQ74+B78vi#>7sIDd>NZPfdz`wTDWB( zi9g6a_E;1Om!&w&Jhrdutvb)4-^kj3m_w`JwCsoGcIfp3hrG-{7#O%Le(beP!4XF< zFO(oCv+v5}{vXxRX{TGrx%Y%F#Emo6**u5ul)5f9&w)H(XI(Pmq*9+GOIUMS_E)#> znFP(`3d&`Hw2?|Ki%Po?HzP$#7~8A4n6imB8Keo4XyEPz>dgy~jYCH*YzohCzehS8 z;2T@|Y*V<@7Q-Ed&&G|NrY&Sh3_pCmjaveXzQz{7YwOStYUyUr^JY7fP_8kBAbI8I zWZoEFQu%R0m{?e-R6B{p_G-oWvvnCAmCDX<>pm)FYjnxs>UzCx+Ugm`{fmaeUiVg4 z+NO9wS=+Ww{==vLuX!V}A^YDA3Gb>*(ysJkB{K z(#|=lW~C1HW%i@Z-agL6AN3?Tw#g?w?tS_^2RiSR*sucy-_mkMeNJK$aA84D(Ca;y zNcIRn(I$x{V{3Ba2{y?P?}&Lsgud4ycoJ0(O}9yBZjXS?Efj z6!W#=x^lso`>k(BOs+E(yLZSne~lA&nzU8QC3RU+^N~LNT7)x?9Gf_>S2Bc2mP6rW zXkT^SANSI>i}&7S0KTuf-(_Ro;u_jp?WZ>ANWhKzQy-#j3G;K!^P+k^B4QFgPw`LU zhQ9Jk!roQx71lY9E3Z<*~*qn6wyx~BG?M&8r{ZPI-(yWBp&f9dhapw1K zUwrf^>%5QHc@dv;@;9v_j)vBunOJEaX@q`wr5@W%<9)4;-yVUW7ok0Bxxk7~F{=qp z^B~9w-@a?L`r(*YmMqa_URN^w4Zi+L*>l+mxA_>Cp|$h;Tn^)EY%d|udXyM*ap`@y zgLKlw*YuvwNZEoZ`E|{yi9%0P)9A*gl$Mps258uyON$dp4xO!H+RTqU7xWGfL(?w? zucY2S>Yt*@KkV8a>tzuum>9dRs9{Wgo_B&fbv?^xVaP3M6}|FT6Jls8o3289rq`<) zWhN(FS_baz@HG24Q-jT#LoP?J;TAoO>X!!@jpdT^)?TUJ3OIRF^&ZWk?VjW5OFUq% ztiJcwpyDOk-JS_{7A4TOWC*mxt~IED)H#8eChBX1V7X)icuF(6N`$l2VM4c=9qLd6 z(bhgKt$L*e%|+H0%E7@I`bQQt$LF=WGvnf12mAEjTDsoX32i_N_M`9LG8?R``MO6V zp*i*Dw2PD^S8I-+SeTx<@DN*a_*A^A(73B4mq_H%uN>W_a_AR44`Ujahp#xnm)^R4 z(ekvGyB=(I$YWw`_N1*ZuH7TevZQFCa3b7-sbx%c$hwo#=Eg^Hlak)a6p-EjunUy) z<@n>fj~i&_++0bPkl0@PGEh&yZ!ww(HQuw8C%qNH-BmO%y~5Z zqv}^YZkITBeOe9lJyJwbFlFhEDXmyX(5ZS^8|hDv&+s~qS75_7rlmdXJnqPr3Eftm zmzf)kv{5tiGBcsT*d&kYz4y$@dCWNK(K@dH$JT46DCn<8=1vVe}aNtQ{h4s;I^guckg3_0FCs%WY5<2uzkvr<-((lL2^dj_cgfc zY3|{>GFRRO$%H)g^dk4J;%FCCC(rA>UPT>bs7%L_UrLgnpK=_m57+wWdc!QP+URSR z+XlH*|E-M7SEcL?V3?hneDlG0vMGIr#UsimJj3AYsjzqQQ)X6OqD`I{GtXmP zJS`F9w!ycZS~|!P6V*@3Zi@e9wUtkRzPj)bC@-@Dy3ws&ONS*6(&%Z4(l5%&&?4w_ zuXDd&dqHBqc+;oG=8#vR&DA?!)s3v^gkJH8qY2)9gbl_Q5$~7loO0a~I;&~oTF~I| zHg**cDMlF_6HOy5nC+~CGK*1qc_Q=*=Ag-vR@#ItOIO!*r-YW8-u@3rlgOA)ZI*9s zRX={}NVIM~cH*n-u_@^;2eLa|iD5L&>Qu`Ls2M7Z>3v^1L7FdXZBo^CBaygw_Xv5% zt;R%|o30GVg61*lHFy-p(%h)$O z`|*E?vjU1fO??36&Yj+%gexrE9St~PY1VyGW1N_`;X5P;Dt%1{$Hp3=pDP-;cFkoS z>^X~oHUEael=lGVqQ;)7ew#9~58s`2Sf9BCfh{Q%DxUV*Q!c6HtR zI(+QQtgqqM-L@NTYj4~>--kmKM8d)_A4T%{j8|hOy3I`rHDG$8LvlADk@`G!TxQ&Q zt3;)}-8g(}ZUaqHw;Fx@O}Y5s8)v4BZhEg^-c6SBGmSil6m2NXj5n*Vp{IjqCdRIi z$n`u~*uFM4J)bEJt1h~1^U%+ZYEMPz`7Ptxr~6a)(=A)zBl2fp{v2#kt1C+}RorSU z%S`?exS{G#ZGL5~UrxYyGp)zuinWclIbHjd`2oq2on+D;Z`I$==*>R1(Ob4xuQP_% z(-YvFGNvbQZ%CJ5@e!NHsNDB*6yB6ME392esLZttesA;)nKc>N z)tmG5*yrh(J`pZYamX=)=REJ3NL@ryeB;w>EXY)O;eFvV-hz+MSdaJ-u>+d0@kkt{N-8A13BH zG_42UcoFJbQaDn#w+B~I%%JSouaJ~DYqdQGn9O&&St=wWJ$HL1|M2T!8l@B-95=W9 z>N`fXe(0yt;B$_zAp;v%QD%{}2fRAn_|_8d65DQg%BaBZ)72}5gk{HMViF_xv=d{p zr>8V+XC|tB`N~Q0S_U#CbZ@?yI11lcVOeDE)ux$$! zoK~lf`4~DWwQCD{`9~peop}ZcHPnWL>^+oSTk23(_f`^eB25Ky7n-QnMB3nf*As=R za88)B)8=+ogL&D^OsG)S?&=sBeV&WnopZg>-8=O@Vp%v80_PwR!{2ze*S0npThbLf zzw=Vu^H^if=@LVkMNII%kI_s0;ybpBmLHhnr+>#NemevGCe-vZ-*NFG_|-Fv>b8^k z-4=f;#VSzf$e*6^;o`v>nKFeHSzqhoyQ7ytVybktuB zXTIDjGTU_bPfCCf@^BC(@}Gh_{=ZR!7W|5SzH=Lj-~8xp?-5%7vLsbYqLTl6A6w4Z z`vLeBt=sf(ysH1PGxa-EzFlLD+V&P(qhXt0S^g^c)dOkg?Guy!#~B~Km=2P!aF0OM z|Mlo??-3gdesz^y>i?0Ur~%Ug^qVM+3iN*dC zugzNOKk?e6`TnzBo6XXH)@w7cVEoT|Z8E|Cfx}JM>pyU~$-K({2M#ym<^O!I&D8kM z_u7QL{`0*y8I;5Sg*G-}um3_Do6PIq|AjU-JM;gAHa1h^ztF}e?Db!0W0QIP|B=X{ z0Q~~w$1H&Ve+$xI(2Y&VI$N8lFg-a#NfypXOIGb!dy8;&MUqla2;cQIce9zDW$O=h z3f0l69{d+|HHt3|5LJ6K zw&#Ps+1F}tGX>@x@;7A{^060b=rzlo-C5mq`XBD>vFXWZiaxQzKJ^q)%zofA+VQF; zpOQ(p{z_hTUi9<7r+tK>L;SofRdI~zrSs^$)nl$8ZMK^BxM=m0_wwo@x*bV+f%04Z zTFARVP7#}Vf(UX7UStu+B&Zzx5?);}J=*}6w&hpa*_Uyr;DU9cTCmy-)W0bp2!89j z2dFZ5u>N{1!4z|?R6IkEbu6iHJ$6C2x4>LS){dDSJ#&k541wEKjFUUW(U5QSrRBIz zj!4x4xmqHg7RvJ4%bLT=l!uAgiIEvJV^?zHy|H|+*IgKnj5mC$ZnBPK+l2|n;MdKr zd!nZ+T-b{R@Lp+YoY*o4FRYiR!}U9*AFkkyicJu`a@I0==)QZUUa#Aua+$cN*9lI% z^JF7@FN+cEN>V;EYtcdt@0lJ{HChRN*H7P}cse+N$&GRkq2 z)}~h#6xJP3ha+fJvqNnWjU|s)@tg*P;ItWHo}bpoWoWSB$*!^B8JXi=WnSmrkv=iX zdvsatSn>hq2L-9{8UL}2AU-~K7nC2u02LIGi)lm!t|X#z^bkeS52-Z@(;VGYVNnx>z zjf1qu?DTtO2eLM4aQq}YD7jT|lXh!N?QCv4=@O_t(_r|F_I@_1*tG3FW{=x_R8TP& zgi#jW%V)oSGTU+lI?l?c==jfyhgZOpTDaJ{yX zx@v}!kEDH@9SR|OxX}%>vz=0%^1NhBnm1dYPV6GIwO8N=PQ>DLaaUj2Nf&eU15KTzLggp|eB6;3$~In#*Z?awRYmlGpha;Oe?9f98K z{0^G%n+!TQ#_}3!DO5=a=WkMN%D26f!2Atn1GbdEB2*T$MhgkP+>S(|*37an>Gncl zjE+7V$6s+>sZqKgm)W>4ksfJ9<;u|_V`OjN%5$z>EZF$;Tz)+4P~I5CFuOzMf{$Z= z*tH_IT@T@IbU2HQnr>lDg>J6I@+oo6^PR^k(z=!>g!swlX`f(%8iI@>uEiCT)`lwW zZSo9w`P5&gD=|;oDv`PJ>WLV|VpAi!v%$H%x5HmJK-h~KKIQA_hoSdkL8;j(rJX}i z4f_>c)Qia6GS!a7FB9F^=RAwp59aTN;LA>VGElvc{%O)_s8?prc?MO>jU@6ad0G>T zj=a{V2N{ddTpG+s5B)U>)5BVkk+KCEEKBK_1e4%6^(FWepipepkWwv$)t7O%#c>qQk%bi zmR-prdhgvHE2pnL?75dS$VItH;^{!AqUBQdMA$ZUPl1{-JjaRT2M9PSlr+y+wBEhH z%{bdMtG2W*g%{V~Ern~|zq2KE$X5HHb1IFUbE1>&Q2z|gYaK{R=O zmcMveacX>}+##HGC-Ge>$z)w)s8`CBll1wxCQKDJync8}{LIa`K?VuY) z&&4ia))C2Eus#~!RFm(KA1{n8vQ@)U0=1Y{RCt+3HtIC0dLPD{u4`ZSxbup<0YwFn zU=ypEp%CS?n@ooJ!F#+gc_iflt=*wokazfzy(v2_Gd!;K)$4}R3{bi~CA#RGAI?+G5>Pzu)= zK$pL+umG>&t|5x zP7s!kJ$UR@WacR?1^HB(pTcEW2uH}SK$6c+Dt7QUk@9D41Dj@HbtF@WO7_iUmi}C! zJ&%LOdITfn#08WgDrNSuGPBB8KWFBh^|@I5_%UYJN7EjU3zzh0+uO7;@vSTKUhjCm z6#x0~BfSRg1VdtNsUE@{wO%X^dEeNL&=GtJbaDglvaB#|Z+82u2NOmTFbI}nMMw1X zq{NlP_>5Alu9_k#bD1S;Ftm`z>k!m|CZ&uT9&PCFnZO1x!OI!H*9_Z8QvQzVJ%B8= zT3vZgIW%@+Uoc62@0#9-bD_K4CD1Vso|^Vx3$5YUGI(A3>eaE#5=wf`j7|%|ch4Ri z(FN9+Z_Xhb3T{p1{=7Q6*BQeW#qijX3QaaV9>QJi?bmhLXe{H)Gm>tWG^s+|Dfq!g z!ZW0Yp58i+HpTQd4Kalcfs63{6Gg;+$T{z6IXfLWvCrx1ysh$->OC48y}C>9~8 znCC$aCS#V2gsoe{bIEyvYt-}^VsLhE>~$4+`|4wL*0w8|f$ z7REe*{-$87M$rBS-QtWAlM4l!<7X#^;|nO3_PI|foUt!)8ABtFG{Nkiq_BvMZOHZI zaJDC@+qI{I63ix>NHz|vhjGb$t2~dZr~>`x*B!;Gk z>AlAFwJE?Q^;B}A$Hbb-mn#xSzfv?%>pjnScJzlmSjjkkkk+!zgK`1VD*NKox>uf? zqGJGiM4F9(ic_zgfij_=Z_BquV@XQ(G&(p>z(v^`5?b| zZEc~$s4$k>P`XSAUp5!b|0VoEsb2BMr`%gorta%?aTSDFHcoGB>e2BOX7MDt=neQ3 zwtZcK12pw{c=I9UE=iwCi*GB)W-2{bDt@P3T3j}B#TZGDN1#9R9aw)nLcc(k%EJdz z`aI9!%Vcd4*6fV3tQkE;QvIPGR;q0!NlEGyG`K;Hz$Uq!xxoLp?gOmnE1&uF#}0nx zpkp0rJ##&^dkbu?uDe+3l(_Z$Rgf;^121zWPa?nfKAMGU=*Jg)ERzjJ{@UzNyF#WNUZ=+{C>} z;+fsP0_ncv&vFwWA%q$So#73+o)XZ8mcxs0QajVn2kzYrJ{8zEF}maT=-(8ahUrn+ z-zY_E@5fnL<2MGor~7q_uh33}LUgK)?7Em%T$Y9-`m^rdl7=s*mQWUBY@U#DoM-x` zJF6f}gv7nem20Mbrq?Sc8GHL)K5%+aj5`OY7x|!kdJ(($f;JG|@nv>ZRnd}M>m=F+ zue(w=Pk!2l>@PsxqT)q~%M!<%^vc}U`O2PSvnOjUDmz+LcK=qTTPA_Z;4ZhmwD7Iu zzjTk5wbt?v=4Xi5Bp5P?Mf58M8k$#`7mY1&uUJNsY9~>vokb&V6irh15EWy2YH!Ss zB>RnW0iQ7c(0)oIB>BonJ z^B>alBxzj`@i5nSes)Uc3dplQjwvniGqBDq;o0$1Zps@{I{ZPHj)r=cm9HHAa_G+h zhvmnW@Y!|c%1Q3=t-9Ey)q#)-OAl81(2%iLS7$0^g*LN zM)^n+Y5u<0<_OdaBlnI(f;CP@z^b-i7}nDt$}#raf=f-%J>z11M=@oa%2KxWu4dFt zQ8CG7D`n7rQ{s6;Nje4Y-0P7lmEM!X8AEXcj`l8S=;%g-^NfFwz9P?bbWC2EtEcI@ z5~@II`7hFqQsb9k-c~vHzOPBvC0(T9cE^Vmy2Wo3gwn0<`FVJ35Ws+d(TFjfR~Ufr zLssOx2Go&`O&?3j-WFXJP{Ti`JVTM}CTCBa{A9T~=l??w-TVt+fJXwM$=f{Ln^$AG zX&WW??!~0c3M8YR1gGgA8EH+dN&yHrnsK1vhj9*UUmPd01j)L~_Cy26RlVnFaB@=~ z)%r^G>~2g3S0fUg84ivqWvI5*$+=)_Khu|@|Y4!rSNF`*oIOE>?Zyr zCsQ4Vj?PJcUS8aCUeIv~S&jW0Ho`fEzj^b7v!Gs-N2gYLoBMG7wEaEJ>m}B3hu$w; zOyV|OZ<!2sZ6o!&draCF*g3JIvM0JET zJdxolfuTPXo-xe(aAg)h83+}(tJ{0;ueg3egAbB;$_Dv5A+waT4LSDiW_ekkI?Gh> z(mNbvVWVm&Xd4#*xe)?7!Gq=04x7F3Sn&G+^CP__4qix6nMN6CoyPHLHRcAu z%?y|o#R^m6Az*xf@O`4qvPLgW>L{9<8 zLYi6|l48;1z3RJbhIp2I5u!t>2u-v)c|3rncf+`C>B@+?&}&q>Wf_ae*0-Q4U)5ls ziYMSAbX##|?7Q7rm)eC{Eii0~!GUsbH*_W~s*APx8#~~4W2bIpPYs#VM+{AYz!t<^ z$vW-cXombZp<75|45hJI?JFKrxh1Lfvv5pNJS&BOb(7I+@qg#^{N}PJ43*xh( z>#n~$*WK)B@J1E+3pcmEuKbOCB8hXe8SPDeJw1}uW29M#(h%G!_sesXfUHZ-?LW+U5?0e^5I7^?{`AE3_a4>}v?BQxXTJJ+Wg$sq{O3We(N(ydB z;|^~LF_BkI%S&}E)tX~pM>asK)@zDDE&8)(he(2{TnWM}Cn4gm-<~G>ZEzKGoPo`@ zAv3Q)JJLx@U`un}-SjIZfPRyCqU9NsU}QcIzCQ~@z=+1A)gtWpts;tOUN4zy3;)O_QhihBh6=Q;rRc7G3q_o;Ba9 zJ9g4&ssO`-GPpIhHGtMg=N*GJrc)(Xu(l#{G8oU{qN}6H z2DMHZN=akG^*H`xY2`C%QAujSDpNF@7|0O0jlw*QWcWAGlHn+l;eB8d z@71ea?cdngg)^dB)qhPmmEb_@M}RPNQ(}tk*0xLen*CqvU$ZyaMIJk;(bgvw>^!ny z6#bwiMps;eFy{|?T{sbkhI_L8d^7HRJta3S&D?J#b>}`*)a0MXO6@i*HS@d^>6s6@ zCjwJuInpi~88RD5csZS7Jsxl}Z#rPF`n1KY3c2Kx8^Xgj>I+gj5V=tG6x{x&Ju z_$lV5V5RWUVI!j=Pff=|hekH^8}*p|d3c8o>bqb7hQndL?buu6uP^cv(g?y;g!e2!g(U+9?xrb2eHQ5tmXfQz${F_qZAdig=T$>v;(D4su()WZV8_^kYTmh-E)mh(pIJh~%`T>IvI+$fLv zrEo!w>B)`89@|;m(irfS&|Q1VcGp9< zSRL1VGr^3fRJ~Sy;;8N&$dO$Y7*oo4!{sg!^g^c-(Pmbu?RCGFA)peea<5FxHDnml%RcQ|h?E>Tp;v^wV=eCDyOo36NiWy8H5 zBEXr^>Cvuj)idYw1&)1FzX@mOijyVru*P)Yb;JCN6;t|u_?AYWm_Yu)pmf8nEZyc$ zWhDyRiBo(bBX731%#<^NJ4K>~SUTtbQ6m4Il6R}%B`%-8J@etJ>jR%NJG)yWVg`~O zCWnCj9o;DF&J;(#;n``yPk&(JW?%hk6Q^Q4!b+ll^v6L7(Wu2pNs;f~QzA>PW+C$a z&}J&L0Q}bLmh$%QT8?WSh$G+^p1ujp{*4k^C4$qE>#yE=*X7^k*Xc?SZ7*E!7}(|{ zp*)-P%dW^JN<&6HROk+ePecaX=AVmM+21OU?BNWIZJd!<|d$`;YLKT4CIYQV09;u&(%cd1(Y zf^jj*2iolg&!TK|D~lJBvWrW|@A|hVde@wrtFP|L%uAG%%^E9rrQL{V=L@9Qe4h_n zb(O|79>lfUCZ|5hBYPj0@I)db4sBVCnoDWr2e*tBDFiBRQP;2D$t$2fAmFW$ooziF z)P828iXp}U;$pn^=!TcIZ7>k@OXxgB5UXov9G_uhXYc>vzP(B>KR<#0o2oQn`5aGO z?D``F&Gb;C2qaE>FH&qAD(}xc+w3y~)F9XM> z8jXHl-pG+Bl0fGflKi0mqx7`?eR^S&Z+t)Sjy9a9HeM8hV*{WRIJ9B>pUaRyd0zH=2tlHlmYU{N8f|zwlB|J8fRF@bm2hgfjwKbS zW8on##o{5+2$$%-zqGe!Z|!dbi>XE*e{~B3dDrkXYv=)|Ybc5Rxd+Jy8V^z%B}217 zG}&U-CPAwp$MJyc6ES~&Khsq=8V-YeX>Ev3)r>70ytQ$IXu{H%`ZPb|&M7H(60SS2 z#}lh$`*E*QnK?^W#UGBzJBB z5Wy=tU}lRAkiW6NK3s@1{Z1!iPZ6p5deM|M3K!}SIx@976-64Fvh`K6R`~{!ckg=@ zR6ew*^*2=W{R%l9`%j{J$UlW=sC6v8o`hEmLH7NnCE3xcyv?UL2E;?^%TVK1Hegg3 z2n2BPC4h^jKS4p#J6pX@oxc+=PVf1S2kG|lsX>r(nRW`EmA)<<@=nsXTl=+0p%_0Lh`mWK3?+Kjm@=&OS@~^mLM?LRXc&#v!UfD$H?{*~8 zgc>A9?u^`K==q+>pxrOAWdYbI_rV&d+%d(B29n&kG_$x}m#AzxNP%{K=@BRA{!lc= zm+8#J&zOsIdVpa8NDCvVY?Y{J8zI`URf9BOTyht;JkHJ<9iS<`)nEa|bQVmLW!~TZ zVau_XbFxTyS*Y}uSlp9shOEH+(_~8BC_^Bhd2(q9#55nmy_Sq-oUjZ6gyaA zyj+|E_v%KgiwlD^UYq$0e~&X}MKUP#Yq;`{(GK=mH2f3EyE_EJS)>qaxcG_0gj7+; zD-6p&!I&H{io+C&z^-g-GM6`=1RGZ^g<328y7Sm`wB(L?1ww>_MHO|P#q3&xko~$V zIw&dW8LTVkNk%@KK#kKIk?$`(Fi6Ljj(VaNQ+(Nrn1;~DWs`d5$%1Wdm3Wc*pr#o) z#vTNTeRgh}f&-xVDUdj>FIAVAeuWYCdHYIY3(t7oYp-8*MakwD7K1TI%$EFdtj(rY4J`8I>naonrlIfDWIYYo&qd zqAx{*7`>A!{VFQgD0Vd4%Z^a1 zM8q?6U$4M!h78%UVEIFo?nQrFRsQMzfAoTF)!WW59V{JoowBkdhI9jFY7TY@cq*XO zM}B=cIOU_%_V6$CmfgR8GoVa|ME3dVK4k)cXaK?lX4GdR?|P4rn*e@gtx>%q9(JU{Yoem@XZTW9@u8kG(lX~h0Z`(X^Sh9 zq;GtKZpM?x$0d9D_I^E zuN3({UZ?`8?a`jL4wjQe?n*9ji)}sD{}+>AxE71-&T(}HaI;7JaKGGr5xJ3dzj-RC zpC^-?XZ>M0Y|&4WC4OG8Q@)%2YgkBCRbVzw5nw3tBIDy!ne=oqYLyYT%%rXn1iX0h zq@TXg&kw+V2B4}e`N*%Nk-tHACzQQ-or`{K#Gwq-w%tX*jIdtFzWVj&b#khMhkoXS z2Bwd=)&d{3V%~@Nz$n|za@}kZ|IrB)o^|Tw!V&t4AV3f$b6R`byuFKWsZ+n<2UUKR zz6&Yxrfzz7K=KZxqNK<<3>5`mOOHB(AB&2LB&El<|Yz0}TJI$OPzbm6{5sdO@RcoCF=IWz}Zo$SuMQ6nie%deZVzuH>(J51>4la!7l0 zBu}~%0|O>|wpYTleyG;(xU$jAu~9bhFF$$3RXz4@cg`w_aXd;>jMJ{CpE;(pCmbIc zcCCyGw98x^i-e}H3T(g3_y)D6M8@J^JoqQFRO>qw9j758+*x z6Lms~Yg-~4F_T((lg&C-*~mCw8lRmqFg3H)W!V=wLq%{Tm%o>OD2sm}3CL$rLqzMh zH&P4S#>mvrW5$d}N?4_-MO*dvEQDI}((MC3&`0_35m(2x2nR4xDQB5s_+@SMQFz-Y zH#Z8kuLpI*@!HTI8-Tj>iB+q zs9FTG3e!lYxDW59Am_33a}P!zyAnT*j>~yU3zR}Nfeji8A*yMI0E^6T{LhMLz;ojU%6B7qcHb$} zjPLGlOiK%jjvMT3?+J^Ud+qWq5EY;#>% zS_+1>{>wA!)-(sr%?WQ7wEt{aoPaMhZV=k?f{^=_TKbEFQEAL`{JHej=wB%cJYPQgJNxCH#SA9^-(6whBru5=11pTEq#t zE8R?BFrC9DY_!8WTgA9N-~=J(@!G1PqU9;}Q}tn9K#bvT3%#qV-PEexMzNz)Tk{Bs zA3&Is5nT}a!%C?kdm)QO#Qf9%V(LQ@~~FL`&< zm+Q;~T@Wp6go(ML9TPA6H-ZTbr@agFpj{fC9#f-p7 zt%MceT;noaWLNhM5_Wyd5qw*1mD@YfZ@$3#s^&UrFrL6MVbsnpl_G}Cxoa{#b@Is+ zs0cR{uikj|MsUlidba=x;t!lM3;lV_)DP;PXmW)UF?%}%{DEY^aiIo;hmEF0>u3pt zc4}(6pCG%$J670!BO}e9u?rCX^~y3fyd&miC;Rjtw76$))AXarEvg^52$z7D!?7nk z>{n3gt$E}#>WRl-352L5TbM6Ow)5&qF6qtO^j?gI-``X#b?tiVmdPb^5T~@aXMuC< zRaliT2)?Dsco2eS5Re)E0n4pdTwJz^WS z<4?w67Qzfb<@Z_;114>v=ESxd6XVNNr!_IfL|_x0!1>*$5mfU28>Ht}>(S5U%j|5cR|K#)239&Msp=I)8jX^Y-G!w|Dm{ z*u0OuxXPk4>{>^WQ*sN3o1At)MQnd3c=vh;$2nym`@Y@9@fZhc|X! zee~3pS7PT<@7e8?JD(nJV8nadE|tj~GFW<_=w5TKd@6SE*pCf^tp_tV3r;xE(LcXO z@o{syY#J{5to@_+Wq0UX<^JrZ_%Tcs=P$1b7W&(A-{JA408%C7?5|(FiZ6#`iVlYs zgwKz8Kb#+5vu%HqdrhZ*{4b)+$Z1GXEy2*9=R2*bR9AgmK7EKkwY9M~;w)$WxyS&e zfygZz*>_sKYB#tpD)VHcC2HVD#PFpFHzoNUWL6slN#;-@S!&hvj2I@#UBI2A1_p+G;TMIMr&Ek|>PI&7zq|so zYaHBQ;uP~)#39SNzs;w3<`eGQZrKPp$B(q&9Oq6}j-1)THPPkgGz0U|$<@I3U4OL~{hNf8k*eCMk-<{8<)KJA}ZW8?z5M&eA~ z7S`2b^%f5oeKq=V=jA@FAvRl{`IcW!-}~5+xfE@c+mCnG96E;WvqddhPw8YA9Y{XL z>95&3jCRsj8=jl?-zJ8TzkmW@D(X^Z+9X(jmN#i|;o=`qgrLq6&C$enw>5(oR$dAW zo&hIyAM(~XeKU>JgJ_yWP@D#w*Urmu>9`B(X$D!2YHj|DfA%?012{#7I18WI@|7K} zg^QJmElJ3&%<6sEud3peulzwHj>2NQ)OxIoyr-yK_hh&r%b@`O(3lqtpVv3sj3oGi zp@UnM$iCA9SE#Fv8Nw5`uD079NWz;$n)Y$qr}s}wVOT{AoC7LXiM5?GPqXl4I{igm zQFg!Zd8{%mdnyN4sr4iMu>vasYt82d{?-M!{V#t+m7O_oV@qkYOH;w!EnjhY-%f04 zd!4Wi!u7c=PrKVROQ^dPizKZi`FefI~G^Sp6 z=AhrQ55Sh9RJLp&HKzV5Bf-q?ZLgI`kx6@DUK!Sxb8R*E&(FU|60-{{D!BkA9^Ue|PyJT^x`9c*p5!9PUpqYzD zt5p&lEwyZScMZ>d+&5COW4Uu+o z?`qxWYNxbD-mr{(@nzHzfvJ{kGmk$L`!F<{wd_B?(-HuT88YR0`Q+w9kS{l-r70;n z*V3VQl$;{ZG&IA{k>|%^1enHk=|WfZ4RfC0(!x6un;&;7U%umsx?AEcHYjCE$8G@s zCx*W!=obQj-D%l?^_WOxd#7K%kqn&;*z<)+sm5lQM~$z z!ombNYmoPr^V>ngbqn}rH!8=z{<=vBQvpxjtPPv<|Bw>i_lrWNvIx&RAbxai`UMw%ImFm`x=2=L zK0&c`OO?5hwEgq{A75V`7uD9bEeI+is34$78K9C%Hz*WoxQ3d+(9OxOsLSV#97#@OlNhupJRw!R7%+F` z-%leweHvb@67CnMs4#RY2e>sJ`r5^Wl#f-|`C4?eL&zwWR~Q?ZhN{us)44K@H8{TP z^NM1D@&>a4U!DQ&)}Tr}@QSxNbjiNIC+7cg!QqR5b!zDaJQ7pI7uUR$^~xi)U?Oqx%7=kXkUnBI8Q>pze-Sd(3R&$Qd93Ae(* zz*Vhs70Rs4$RlZiv%mZ3UlT|Z4XkD6jln$}V>ts3xZ62nd+V_P~C`kC~4XR zasOI;n7E&4{cCv~Uj%STqlLJR@T9NiiQJu&3gMTH1CaOT$O9$r z6#VUkYQpmR0>@g3$zAM=NlOTCs}=cj#=q9GzJ&_tV4G`rYPhJ%FEC3d)k?OkVjXLSWwDyk{HlheFmftv>axbiujsKtg$)q>WJ^z=70`JR!+*{o$liIVtk zs+^Y}hnO38|+|U?Yj3Xd?9zVqpTP9SQr_iRY@;&oA)T&20+g+PW;nBLf&^(%a&7SO&%ViRvn(|*bkxkeq*1&` z5c~rN&j0nDii*JI9$y{AnF}B0yEc9p#1M;tS+kIka~q%gtL0ce;)@YHi#K)!{{>Km zM;PQgA#_%cxA%=H82%maKY@5Jd-baXt}7=ot!u@V0Rl4pF9z~|fS{D;KK^*eMGv^z z=C942;ZhV_1D zd~~VqJK&Bi^5sbc$lwo))bghyxhRI`0P04ZxlCiRuIHurYo~6j8sxm zt;@4#i_qQr=2@N7x9q%jY%mPAAr`It2T?KMv|%s*TrOoffap}VYPrmRk3!kA_>XmU z?eZ~*KFJ)@A`nn{MhBVN-Q}S7V-pHSa}$(Xh+^n)4DemOG}(TUB{|XFMi}aRA1c38 zOTJeHbh`a9i^8(+#9_wc9Ql+uqrV?k-$#OeUf!%YtpB|R2^~^Q^Su56XBvPjnqCkd zPAN-J5_usiKf*%pw9NcP!tTtBQnRowi?yKuwrsW;665`*Hy4eaYSr=+P8 zF8}%PYaF}SvRvU?asX-I>9=R2J#$VM=5q3_=-+tS=@0>h=JD{H-QtzYdjK>pg=f}s z+p~){e-i2o5rJS}ocgE~oK+OZ5b@`3EZyMHEm8%%C}Ofjfc*D?pN1L6D-|$Zwngfz zw-qdh*xULxnYaD1`_Flbt!12?h=S{{{A&)&!J}F|y<=&A|0-p?(^!paIIx{l$-H5Q zi0e>!-Spxr&Ps~c_Yr04>=jg>`y$FKjSQO z1WY_7I{H$+lF}|sYt&`(y`g*704ES>1Tb>(Ay*A>=lfLAV(z|sUwp!BqPwc5XOzt7 zVAYdi=T#;9pF?Vu1hKF3p*;=E5XEZa z_#y(}r^v$5@Vhg09NEvX2hXcCK{v0R!Gj4s^zOxEx86^|fTk^$f? zUDHJBCJ=Gc`NAzmi{mxBMqY z7AK@ypu52wU@v(ZfMF#dSPmz|K7jOP51FSI{FR#i`A2c_R9~&qYW?tg>_{oPK;Z7) z(k8bgof2IRGMsd;eS4h=u3iSFAo~dbMt5c>s!H>2=+yyQ(Iu?x_qI#<4^Phx2L_(& zP#(+j`${XD_#mi%v^+>{*xdKGEMia0m7q9yYio<+aKIRDcMCB;S%pMXEx-*IHBW_m z_IcFZKkm8^aq2{yl=B`q7v2${hKSgavYb+*kyS%iPp$Bvmw)6GKnQjS*n>Ys?A(Yg z;$&-#^8nmTTk($ev1llhP*L`f){fVmm`A_AI)kFXsczJXZO!|A+Um~|P@g+!%lyoW zmBGe%rz~HiWKAz)l96#L`)@IghT=NFU+h8oRx0R$TsSwbtpT#?dm0yPsA6%LiAzHL z>AD1TzsB4(h1I|fq7gb`RJeW(T%v`{hQQ64UXWFdRnNPK-FFLD{Q-l{J;e@@U;m(V zjN~qLMm4A0#Rz1U)lw~)GV=7_2lOR8m)+1e-?A#)pHJqD^a!_l+MKHiT#fbyi#sSowAG#+3_-|$CdQ3|082>_ zY_HAfm07;gSwTp<8+{Mfp|eA2GvN+QT;(*lsjLZa{T_CFIIo)AB)bdafpVA%RND2m zk`!TWoMICKeE&44ckkTsCd~$BS13s`fNptdv_i*AR@zZ4h7HFhK>|_+byPUT6q60n z?^hIE396+0Ta-x5waBa7S12`{9>Oa!aZQedLhYQX=<~UbEDAu_syv+`Y(cCLS&g!7`2Ce_I0>oG?YCvNvtr3Q1227Dsufk9FO~e) z8r0hp{IB*e`_?L7yVfDmFh+qI*Z6=EC;^nf7R7m-8sJnI{^foMBh@p>=5XIdyR{KE zI)U@-)VMAWB2w_h?ZDtrcl2Pm<6WB%}Jj2eH#p zr)Zx-17fawe_r?lLY%=sI3K#Pn>@H zX(duN?Z@?hz1bgkW|QI94&+KV)}PUcPtxxyw|Dut@2>I{P|20rmvT!%{%)l^`^J&~ zCF>yo@7iG73rQ)}8L_|c9_4VQ#dwbCX5Vf{L%oZaX z8??70o`{02oBi%{T}#bLYHmB(_w8fxZ`dXkLD4&#!iY^len=v6BJIZTCmhtvp!gXi z);I5l{!E&G+$BKhw!LsGQ81Ais#zL72-T8RR@UY38@DL88fPA_a*R$$pmBdb)AS|7 z`^0N=2gzml^Am-W7;&UjN>xZm%_Ot#`x^M{^p2L%v`>2K>M*V55P60SOs?S%dQ)!; zoLPjF+v)$mrr9z0si~>GsS@WGhYHh6ti3-GP0qFUX2=?S|3DNT7iXro9ePV*HcX1H z3@KZb@_3?8UP#AjZNl<$vfvIe`Nh?{Qo%G~Cr4|-8s%1r@Q(5C-Ki2r_3w^1d!*=F z_BX66Z$9%TB>T9#6?vb0Stl|{Ur%K%`+_OWH3ljvNlj1X#ZuEheVZRNuEP;NP3*tN zh0{=$V1XwlCf1{NMo9NO&DE>ypf7(A{f?ZR9JM#;9j#OClo-*ry}3zt)Y920`e1(k z+dp5RqL!kNEXrv&djTx_gAWBZ(@!c7H@%!rNcgllxt|Dn^X}k5Q$I=Q4 zzK_$&_c1|V*gAGZ4nSs33a1S>K)E5H$BBJ`J>38^YYA@h? zpeySs6$(jJu&t;>rSz~dMEQk8aPr1WbLd)0GlUJHiGN~zf{v6F~NFRa`kOixcW zi*;Zo*D{{hvYjPaOD2ettpk1`(x@$}?VI%1yerZ zFAZ%dS6AhG5kcMetTqqOGcV5Y4~?w(UKS1Io220YYm-@IEgy#H{c<2I?7qwDJ|=Nl zYW03yqVB_MT}_ z$w%sTRd{PN;>@?=)l+=^qxw4!Zic;}tcgc5O-jSBSmh+r_rYFE*1{r>2WdH4){-W9 z()=Tk9E!vfI=cXQpCuQsY4{H5T4R9O9SvwMpY$?^n$=IgC+>{)BR=U=J7T$izxkr5 zwim|8N#zmZ_&~s7$i{VV+<7G*0;?VQOwXjLl6P0mmxx;Ner}GBD)(rur~AvsJWI{6 z{dTUdPdia2mA+4Cbn$Rz`O6ZYQ6m#R`bJ@79P&luTMGYQoo|*UU-X{3Bl}M zhx%jt6vRf*ox~te6*7OO<+rKNor;T!V#n?>#$Rc8;(BtlCn-TR^6c}zSkJ@!b2sTc zw_ifc)WJ)?Kp~x>xiy^#2i?I9%?&41tBUHL`_U!>bj$~{#RVBDfXw9R1l=fz>8jM}+C)^B3{82{`HtU(@hbPdT^n{**+K>(*OH*TyBxR+m_t9N)M_NT1)v z%p~{YDPpMT5odzegH`nr;HeDG6Rufs*#J`7jEZvWOSFQ@bZ!d`1|tZ%_V3c<-3+jE zZnC}Ey;@|9O@E;5Yu5l5Q2gNdClF|TK82Z2{)*18&L2uQHZszPgh#Pzya}-!$jwkm zEmeW2swS((!%vRSKV`u#?f)7H;;1#L^HTRMo=^7nd66ut^K0hjaJ5;5iUcXOu+s-> zhndF9VywWM0(tW7=R29MALP+~AL#t?<0+b=LCBfux!tBNIcsOZ`ywGHi}LsN)J$wc z+dPeW-Xh~h8G0o5E>k-Mv8orOOj&JW*XjaQX9jpJN4S-G_Guw*w&LRNL{uBAxr{qY zm>H7oS|2!_3>!NaOVEy-{G>{5J3hino~7{dd7P$iG(X3j?cOOcZnQbu(%EQ;9)$Kn zwf4y1;R2JvZ!@eXYd4o5=@(U`Iy*Wjj(S?*Bcey!T;wtW)CUEE#D^it$;mm}yc4;d zTCcyt4|Ye%XTda4sqOus`|)?S2gK#T$ycM;i}L8rS6-5h-9`JtorL)q|JqyWN?A%! z4t{|;zsGwz73&<>SlPOdnR?HKqB6T8g3F&SkCe*FipGTVcWzERs?Gou;(9Y>v_LK`5Cq4OFzaRMyJ(METtP$)*(X!b%#v)Mqt zg4j_%fr)Woax%=Mbi_QrvPrbsUuCUwUe{d*(q%Tp@bF>xQuS76b)I;>NJ7)B|40e-^E&EO?=istt4-t)$qI3PRN=!r)CSdOsxv*eT-Bq|=canI|9GUN!7qwtt{|>Lo@!Jly34*ll zXg8ihIf-kYkLbdBwCmQK2E_*~i00J4oRB5AVXBiWLxsK~Pg(jhzI{`t_vZq$`pvt5i(?*J9h=*Iu3c#dPJYB3HQ7J9j1CTuyifMt^VlERjXuaK zDX+B|%zi0>mNmS3HH-|Pr0MBtvTN5^LB5X2QOXKD=UlqTHTa35tz)Yuxm470Bzo?~ zF`fDF_=z$^wd26uhfZlUPovmysy=>ZVbRW? zV%x!jW3^Zp?#AhCr5jT^rA~r2GeP$Jnwfzz8&f|S%xri=a$P7+6`XJ37D=n^GUan# z?&B^OV(zwBwbP0j^H}Y@+S=M(ekiq&Y46?2<)XG11Jl^$caU@H*xe4|HNkU2=WS^{ z4`QRDn0(JqGEskYECC5w^EBooavfI3BxxvyI|b3Kv78wTis(2V^VyoM&hkBa;eA!t z!wtlW<2<1!PjPKp^aTTkF`_yJJ#IJpDl z+hF+OuyJy6ZH$pK*q1;=$o>3>zv`n~$H!r^0;A?uy z8d}=h+nw1IL@^)6?Aq8=C!^T3X7h?W%gVh$T4gF2?$u1@UKCOCTQ+sqlBVS5ud+j3 zBqAm4>Not=g@=&iB)X(D!8?7(49sRZ4Ef zgP9O6Mkb~v>Qi_=T;&))<}&joJSN6uXWR|Vw)ulxVJM(tcLcrZ=RlmKb>56;vW;Wy zUJw;W*#Si^r72ASe5RY&XvR~UGwfHd)v}oJ zm5&14aJBekWp@{lkxAv-Ni3%s0=unwPa(+yW{%>AGDxww``k36g)WS-e_MydM$^2A zW}NFH_T)_OODoIb@^z#!56OQh51S6{gXm1 zX6pMJ)1iXY9dZf^BltOfR@U}|ezh|v>y4NFo|JJJA2YCNmK215g`ufjtwOJW@Xu@3 z&%)F`+PG?;FFvr8k5 z5Bh&cjCZs-2!xOowu1y=?_+#-cm*NJS!DLhMpQw6zw$8Ly?lAN7;&IoY8L6bdNAxE zZ51hUyjs1+X&qBBsfk>wWz#Ba-76z>Pw9KVMRl}YStJ=06`rK)dVE4CuVl1AKnM9rkcA#%U4EBNpqJoa?P-I9jy|RFm1O*BMdJ9Dh>ju z2&KH*u`%tQf?R(IPfyRkbe;OMmp}UZ(yoMv&9(6$wGC9V9k&s z6!C=%p{3?XepTodDS0d#(Oj-*Ob6{gGh_^~U6TGor$+aaO{F{SYAlZ~yd zVrHU%n2TB?C1hKKRNEyIGyp)AZ7&Tdjg*)g_`!B2D$J;V48AKm?i4<9(7nztAfN$| z=2t^w1aM#a@Wwh5;f>y{h)xaLPNb|!McY}$Ru9KIe+JzFAzk6ju%Gnelq8PZ-;B!{ybwI zQ_J@2R}hx6JVQ1RiUQW1EWUd#blIW;K=eR}>`UMs%mJ@2a zXt>tScykbuu0KL-M8$=9y=o%}F^_9)(d1G0?&T~p8k}@Tt*KyF?A@21?2!(jI*&=d z*`q&_DNMh97Cg53ofBheYZthu|9Y7Cnn&qsfqo;@Os^xJ@2k~#l?I+XLd9aTR;N=S zE5L+8%TjYk7UE4S>pmB2Z1n3#&8MQ^qmovbYUaQ$fGw>6MKMw7IHYR3q9R{GRM`*@ z(e|6OdniCuq5(AUII8-kZCc*lgimYG^f@wG&ujQ1nR&`k&nGw9jUA*ON0-Q69*?p_ z1FcZf(on}mZIkuyJxN{%rsR1#mVQa42e3P@A)}>c1%f6+Wv|fyBe<@?_m-_l8j_qw z76(OQdC$R{+QT3P|^p<74+!TCzbf8ILuvW`lXAU*ZMqGfm!os~9XakOGQ{ z>Fz@kJfVD`>aBitU#%RSQ0;%ON^=Zerb8r&0T9Ys9*3sSpf`fnb^3}LmXw;iSsCA} zcO)V-lp!m5VtC-;L9j$hcDLWT`z34wF{;^{`FC7wJuP%Yn+sPf2$**T?}D)A^NHz- zes1#`-^mIq6t;?qs|z?SN*da?&o<`Q#k}gdRFU-QR*E&Zdf}T&f^+9IskS!|$<2Va zE^q!CDK$67FZVS3{vj|;FSKv&(El@#DBC?6Rvt%VtI!@`DQ25)ZcXH->b((KtErji zbe<`l#8{FXTpGz$L6gB((y|STpmrA)ic>_Xs@$3SHL5Od33llw%a&Figx_e;HGY8G z)9>>Mlpo9AOi<-t{98g#p&|H{hHp6ijjMI~#qAu^;ob%Uw>~-b0iCVgTqfv@#EU7O zCxS6HmL4mwO_hZd@sHr+E8#HjlLm{}M|>^dXB769j^=ohF}zfoM3*Sg=m($$XA8wF?%5Jsffz`CR(H=JOm$1h~zv zSzF)aUw>wwFuhwoA_SnL?V_3eivm=hjnJ?nl;ED~!oXAAM zhw3Yc4Z5}KnGK+=_5L%4=26-2FG?|II5?yqomhfiaV0bT!8h_c`n=fq%1KQjO;EU! zDS^Sh#d3_nLEk|8Q1My??4?A_-e6E+wj#oF$j&AXP1mp2tl9a$U_I>#B?c zg!X_Pjws9U-`4CNv11_DrSA12EB6qfRX#?eM0(TynyJT z&8MR%!Xx~l?o{XJTXSr)WusQb6Y8l3J91PYb$kWl(x|;Xjjuu%Rrh@TOS#RHqm!p~ zV=8f7IY}JtmvD8Dt}8(GxUm-q`CCW3a{nwI^aXZK0@^y&>~|T{`FUltf7G1VvRlzI zIsZ{_v3*3sAoF+SL^chV@@}7t4()nLx1DQBo`i=NU$hVahp|jnaat(q61JwpGpZf1 zK`gWA$*+07^4^8%2_v^_926AWd$=D8%@ue2{7jak$D+7endYNC$ToO*)_VGfZNBvR zlUkQ#kHZ=HSj;?~fW!U}^DQ)CMchf5PHgX9gQVZ8l5$1zPPOZ^(dIWWcs5?$@mE%) zFuWrBmIaHH&-%KJMwx|an6Y-jYoAL%_M+jpVVJBy>d~9$2I^SsSdLc>5XevR!tiwO z0g_Svy#{lxTElg_N9slBv=g7!mhPj&3HPrk5I5O*8P-AAk6p^o8b$Q3zxQ|Ak&^gH zJ)~1+QAxyh$lTJ>GFSnGX;od9X;<^giieB$l08_B6TVyDFukgjOpWm95>ISCb#=zZb?@=zdg(%$k*ITWTI5M+quu zDBKZWZr-~iRcm62o&BoN?&wq)<-9y(`o7k+O*J6?#FmuUJXGy0JU9~%4TL(`FVq8a z58WX(>sxVHF(RI?zF%QXRBj>;|ZJbxTALjVW#uH#ncg}-a;3&OA9a*@6m=TlW#)vpk;N*m#megs0k0K;(mdBG3r|! zC8;sNR#){m6@4|yOx}Md9Mzw3N5*v&F~Qg4@h=7&(fUxbX*T!g=&Adt1^D}$@mWu> z4nU9(yJSk+sboWrMPO<$-OSuI8FL_+9z9Jir;&qfi*7cjJ5>z!tj*8g%Ssw~xgC2v zpKKiHWh)o&wJ2ZbF>fMvyq{hJ6xTTc_JJC_JDqOi2*&8`$an9~09{?IJ^oRC_(EMH^XwJ!@!cP$fd zFm5F$*`(~h@8XffLVU3hr?26HGRijDe!!kmg%T zH+Y2RKN`M8$-K{5KR^_Ds%DqGW*qc^qni!*e#k05@N*&V)L%Ppv_oc7q@~KMt+d2b zw^>FH+Lz`iAE;W2-j5b8c~1IvmhdKJjlF+ATccThKKn@JlLE-f2r^$f+k^Y?THu8p zN4~pyC;qgHc1XZ*H>wVO+B|%<^DN>9bq+m<11Ln3BN_H;%33GV^|eDiHlDZ#LSOQ; z>R%T0_ha{+Ya9Ib*w)#yQi?aVm{b4-#1%c9xNa74s47K?`lO_yT1=F2@)9BGl9 zZ+@J#45;Z@LMbo#2sT~Y69B0vN2@%)O`k=fEi0bLx5gvrV4x8$8$G#d{SoOsO$X(NL>iY4 zSe&Uk#g@A`N=4_f{@DHF zImaC+ac5V{LDMCYF*@NGrbmxJ2a`gg(}?MAblxgZwPSfL;~X!EOahkt?XmB<-AChW z9-#a;XkTpQy*q4-^1qqy%-6q!>|U3o+M$Fei5lmhALAX>>r3;BJ(*-GCyvWP-fyUKsK^)8OT~5syJ{S3cd!&@`7@(x z@)RWT(cczp<^3|XS2w4I1~$WTSYJS{<7=v@Nt_*_^FAcPO!;1xanPrp8&HI$FN!Tw zsrd{(QWd*%`?ld?FQXGOLBRg01Q9j0BR2`eYiGcL{FUbbX`Wyi#o_6k&w8JRC9)5PC{(ejp-;%Dg4ib6yr+1qJgW=0t&m63sYOxxP7e z{zFh{Z0X>mhl|e3)K*QdlmjcRJ5r^BW=7gOP6VGRaH`$^6_m+2N-?L;w4C^YpHz_Y3m42{S-7A+9ugE02M}?#tEs&#(N#Q2(3BRyF)d<#Y z!(&<-;dMY6Xq@Ca=+R(WmELyT&ylpaWofJb8bKPZ>lVwZS<+l+=BXiD7fMM(W3fk} z-OaI~<1~z#W4nol%4wRaB~Nb?zwI3GrNu(ED_e!@;D#bB=E?s4H~FlVhb%&HY`fcLzE2*3tu~ct`Gr!W#Oi2XTqm0NaX!j&_Dde21 z(IPg^ljAEhW3beTm-NxBSNIwT;y4`0O}w@{cs8f^gp4-(EHk7K)SX%POKN(?y2@)g z8~jmN!@kZ-IaD|A8?2c>Sc&(epoY+{wGXi?z~O@^UcolKdVy|8q~Rne43OzOO%!x| z%CanYTe0Weg8w> zYnCiV1VE9;^*rBu4bqr=|j{*mm0RMP;e?_R-Sa1`!kM~%IXgR&08B7mi-f} z_YDfxV^%8@Z3M~mdC4al4Fk5u@ekMRnfkTDch!CQ$rVXCS`=+-qsUh3Q~|1X^q>bv4Tr#)wCI=Xrz%=_9JbX`TecmLdvbzc<}1`D5F`lrD! z`y#&cHiRQ&{K}eL?peAMwK=x&dArdKCtVNK&ovmuL3_leLXNiOyF= zQ&o+9J08$d2@Nk<~uUMrvrRsOY(>_sktJr?qYZM|LY$Q> zH6UANk-C~cuYgXGNZNkksEeRu!~hW-R_lo!AqNf+LX>xWSIBuaG&|d5OK|GCz)pWK z8Ev8((J038yKzE~q$p;V++9yfe`4M*HA{)P&{eT*^ z_jb=U_kBFtYGvI2WMC^Q} zPl^sc8G2e4o_nNS3V3r1P%2tLC)3ZDrF%Z-=|ZbltNN((w=5=V{2W;k$4FgwXwCZf ztzeZNW>XRO-4dkZIYKM>g4$BDWKsr?u0p=(L$KjSs`Dytks<`f!0an z>g~~BTA>#i6V9ldtfZ1A)BQ?~;<>a)&%}8DqAdBNC*1ow%CZUy(Ww$^5y{@imD&0h zEKgEipGm8EPvs_k@6K~=0>bz!>(70zY|ZaRTgHD>&0q`RZU6Abn`?S##x!+KGpi(+ z3O;9GDlk_^u@-x=T8V5g!i3KmZ~igZcf6Y?vH2L{639C+7i69@EMV8tTN-}ypmbdq zDuHkGqVJp^U&W$yOJ`JDRK9(2>0#AQ*GbXw<}*x(KUXC==m?AgQvXOzOWIf0{9Kmf z%qL}Du9j;PhG>D+0Q%bUNt)@^>mxA4#^$EejVU&>x?g3Bwxea1EW}jDmhkDciVX|c z5PoNu6AJSphq-fpaEI<>_QXAUH_^m=V4iLm{?=z%(|wyb?4H|;UEDVM-1k6d&b5h- zz4N!uEFOk`u!iw|v2a`SaoKCFayGfD%b4QVdqgmI&-DUtY@8I8i- z_eKJGT3-XfATo$!RVn*bJ}Ic-M-d%O7>00MH%#QSPNMKCIDf6!27vUqrD};6XE6O9 zcS`L>KHuOn9IN2dR(;ubv2Lw~t7pU*2x6JP)-ae|G0>xc>J$oyGpo*;M?2>U?~U1S zf-aoA0Z>e6GfqaSuqBCLsVX;`Zqhd9b%lmri51#&7IJY%L(4TIowi6gSvrv=uN&}h zJe<17q71j0)?;e6-9E`LP1^+6HE*1wdij+r1{JNNDHL31*g{r$w0rB9`4eSoQYUV> zJbdE49OS!P0)GR+*LbQiL#R3b!7-NpVcq!*E!zoH3$yKfHq(xzgw9B-kW1>k1F2rZ z=Pfi(_my=+Jh81y$2!$>bHqj{t{`Ql4*Tv_xgzZPw1McfoNbStrA7avwfP}^yYE)$ zt_O&!>Ms2+OU=VqrC2J3z$t(=dc1~)tzauMjm}RmQtir@<6s8JW%NnoU;_I_fG@74@h|pog6PJ236e0l%IO8jsAkb zsz%ByYR`~I!B3X_dtp*+Ii^qYRy7Y%bux3QX%e|U#}jswDkO%@sGV`zXY8&fVXWGv zlPgYYH{ax9+r++hIh0D*CVagsA=g||qSfYqYqKxr5EkK_V6f>dG+W3ADrg}XrN+i& zQKat34=PeNe)<<(T)SHxY5C(LYSGmPe4%jz;S) zp%MEG7EU9_UTqrf6cmP}x1oJchiQ0rV{7;=pL?&)1U|^v#mw!iW0gutUT!fvn&SqQ z=SVE&lMa)1WG2#fv2*d(vmi)cgElXjBzqm?I4t&RaNi%v>iQYH>XEFuSmu3lY`2&Z z{ru>_)jP@L3=nqdc`3ZMzQclP4|dS^(x1WKK+X6oJh7y~a*W6QYSc(T`Y%G67#THg zO^j*pc~6)!YLiH!=Rt#Z?8PdM3SqSX(iNzywnL93+10SUpG44w(PCo`jXEzlJVaI4 zYPiVH<8b5NX^UX>WMOxjBr)ioZtE})iEaZm9n=E*_Ar2FTqnDnpifR(UcRg>gib`0 zz49B3B5e@Kw6{90wawEJJeaG(0>QTdtw_tSVdvsbF!S^*;zyu!B}miczPdz(W|&<3 zL_h$YTeEG5M0vlL|HMNb^c0`@xL!&fbT+nA#$N$_lPwD*IV z0dWU!+Xs_TU2HW?J3nzfS#;!MYUTXpw4GT4SbBz%64OzMh|vlf>|nGOD%Lr~e?yzp zu5WQhM=tY{m}FHM3yr$X1fvl4V@b7Fz6!~354}^^W_pMY_ zyA2ISnBDG5jgB4AuRmSdTB@nNIUudcbJ5myDLzSySrZkj>Po;pl97HDbDgwtQcaKXSZG zvsiACXd+%#k%@56e>v`PtM}LL1GDO+t-*nKLnVLg$*~SNuWIaN)@)anWa3)ecnhaf zJa&E>88;YRcFR?zlbCM4pi)(j&)@BZh?6U~+GAZ24)2Mm0MU8z6tfG;-;68CD=DE( zXzjrAsqsDr7;o+tWrRNNkstRp0rc(>wfJW{GB^w17TCqQhSg!bpJIc`Nj@IA!zWr@ zqD}C&#v|9kgi>`u8(o$my?4u-a>*Il1D9}QDOoZDXR8RIQjsChC+YsaJa?CKzqok& z=Dg85xRs`LFc_)t8&@HiQL{h&?8edJ+vw3xpe#9>w5njZ|E-t3-nzT09f%}5-U^gkyt&2RFLV7d>Wn|nUo<)e36MO`kixYLYG|gV_9aB0yt z{gClU@vfCvN|;a>vm|uevV2Vl>a6_oc=PiWUsV#3m|j|I@B2$#HuD?7C_HORCsxhm zY9xE8&fL7s0p145#XHUM3IP;2jngT!r~9g`em?*Ee|==`+n`)aXCtdMD-wp`Flcz! z+sMP63iivdzIQUxJ5fOKwF)|PiWKr)zIz%W-p`mzop07#OL|!_s+s)AIeLuOuCmQ? zRnXlT`oLObYy>q|t*7$HfS((Ruj<1p|TeH)FZ*Qw!<+S{OepjrkTs}(Ge6X@;1yg`LH0PQ7rTNM(D#0F+ zTy*lH*{umA^G8v zENZRs*1;T!zIG90#Qf*oSe~q>r4c@sxzr*~z#JpKH6`wvu5mV6ZO1#_xmBSBt7Bz9 zfbrgN99KPJ%O8QM?$Hic<#<%QY1zIbq?%#{`Zt}AGPr2> z4(Dh&SupPmqCJuw507S#R5vgOW6))x1U6*e5CgducLaa2UPIKId~{JpezFMtBbBgm zLMM8lg`J)!HZ{USOb0q2!EThAs?zO~iD?f`sg#b&HJ2!bS&Z{yLz=|oPo1t`zBhi7 z*j9VmE(IozuJ{at_Gv$Ygp-=Zjjr4$qixkQE|X7Q7CeEe&JLK>1gEU6mTsY<)$*Cw z7HvfTUh~s(ef+@3Wo3Sx27(c-+h=^aN>|FMr}vUYbYj48D|)`-lFRWM z=2~4L3+b2DR3oa&rDI+p$9J}(v#yQIKNVsU=~3+z6KO^1=X<{mY}c$nqIjJXb?4?h z_Lg#bnMC_hp(1m-Iu4VQRuVOY&IhdozCxuoIwBVB#_>j=XivQQ2F3@y$y!%qTLoXW zny#9bHQb$)?Ar1tHgDT1=dpK%?NmINb1olU@&42atBE@|kstD2i6b6%>k4ow(po<&KM4>jycU7BjmZ2-c2BFCO#eP{I7h9~rJmt#)|^B-LtB zu3VQ1WF%73Jf&aE&w9uq4xIPjr|L>YPN>4yu1eJ-r{}I?(JX43ksh>19)E0^o(1Pc z#ZUV3{B0rNbf7ELvv*j;1Z26_H3~Yksua!%C#l`w;{?EPfV34GNE~rc=tHJ|z+H3m zYWUs_(C#@gS6bd_+1Kgdy0qfRIZ9v}WX4AQp}EUI!Ct^{j7n?P@BguN7C=$PUE5a# zDJdx_X^@ug?xm!=K}xz?y1Tnsx;q8w?hfe&S-QX5C*H^BeZQF<-I1MPy!Rj1Ip;dR zGl-`J?5$#Dull9R((74kNxOb28ZAq^<(tdVh@Cm9!{(JW;|Y(&REJ09Y^{$o4qh+j zlxE8dj<*eayokn&flAJ;EyriGU_h_C}<&W;!IZyYt z)jFaT#$i8QIR8L^hwB@qB-H&Z!JTCU!-R8+WmGUV(Kz*4JLYSOS+Q{{sr|Of%I*jqHF6-jpa=#U z&b4=z@Se?S`(AgujSu2u=D7Hn``VKiN|)4)vzK+2fvBkj{0Z-DG>s3&?PI{;G-SY9 zoZl^RzRa5l0xyHegt2M2Q_@X-%T3%j`y@ruoYu;)xu0XxhlFOY{zT;avB#{_Ms1at z-}6YGtvN^Muzi^QK&5OWOvg%SqO}iN(Avd==c?5qZZkm21{<3aLZzr>?VrD_uj;q& z7Jh1meFj$zu_4x&3$27sdh(UC+>kxilzcdg4BPDWotzh{OVy;c&eT&?{H!Eiq(^Ws zl-Aht5v-1yqzUD_wgSno9t$VRer{dVc-B!tbeo3cCZ~y$n(x$#b@k@1Jqgv764uyP zc1);temoU?1ugLRi>ML(dp3KcH>}&mo~y|PrK;(kPMGhS}1Lp3A5 zW(aeh#$6G|JQJp3J6jk?Nc1YC<9PBIWYuWsbzm>Ssz;bUtgM@lPjxSwBg6JqkWu8g zSMZ3|?Ra<%lDJhZRd0ceJuii?AmDx67|xh;y|H%tJ>Z}Z(qku9E+@$YHjmXRNoD|B{T|#FEbr z?>TehEMo-jD##n+@<{wEbixKS9`n;qx5@Vv-1qOSs8wQul^Uo9R9)pQaw+Z_{seZK zT7o~8;Hy3*^cHJOK6SIYrAHSj=clNOG)+9qx5s{69Hg9NIq$RdW5PNIf|gj+Hx|8H z{?NEytP4fKs-2@yQFcnBT{`@lExI`O(TS^w?4P8})((d*tOBMIgJKl0#+|Ft&LJ~D zS{;6$qdO`VSIps(27GCrFTjf@VjHJ|&lNV%o%k{A!{zz42kFehf(s+tIqWDCD|Rxs zRYPbbeXhuO+cj-T7pYpue(MGnELW0V^^~(ETYwat%6t3 zc8ss#-0aVP_D}t1g#c^gw#nKR_o)0N*O-cp_PFeFOwjGQyXk}8f~N6)nBY?X3UaEK zk5h(=Da0YrnL#)X*8Jw`+_$vOZJammVKX#sZ>GRa`CZgBQiO}3V5w+;kpLTCYjtnc@|Fc$9{H55?0E%3jL z%>K}4$`k!|UuKH}l_K-YVgpW7Tv(dQt3a`}R&^kKRSCwO`@T5zdL7HX=Q&tg<|;2m zQ80B^2LvnylNg$?cKQ_JuNJyZs4}#wLbaW>LJPb0Pl`Fb}gT4;krB0xM4O%uom5q5DFT$Xak+B}rP#8F(4Mg=7Z1NpD@&dpmXQ zVzZO7Dm#kiF(`E$@e~hD8qY{au>boMcm+Kr^vZXw?u#%U>Z{lPe)-@F>Md^L&Iod3 zel^lU@Bk5rWr1viD+ApovaOZ~w;Lb!$+VF}Wvkm;Y|^ZG^K#`fVaNN^Iqnq=sWnF? zc8lXM}uM zWz^xu^HJETVrGb)4ciK=tjjNVy8ixdC8@Z}g2_Z$@j;aL0=^7VBGG$+^IR5&I#zwA z)n=szkMwlh^L|Id+^+hg>({0KB7HycUCB1ob>2{nIE;=f>>1oNp6s3cPyjUUm=9 zyyH$gB$gfuw=qVzmm5q*(A9>wz4Pg{6lSiXr=2-4-gt_4H z_bkJg%xQBrg^tYTN5C^^{K!M;6v@hNRc0-DefJLL^>Sq3^h65w=n4Joz49>kL?#Rp z%h9U$t?wZc3xMqCSvEeXy{XIS;ELoF#kMv_v}UEu9(uf7MYzmCT{0KF2{GCCe=#g4 zk<5O$0MD`xtDLrpD<QNCJ9+yiccuzhVO*BXThorxZ`ZPFu|>>|4|vp1(3X?bx_&h7J%`*m77lLe zEtadU$1E(^j@UhOY&=sTDzBr9&!K!erM|MH)usCoa|AY#{zzNjoXqsq++M!2e<7K6 z=}D}q(=M5L7lHUu39)dec|VE@(K>v`BEqc9+Ww-x&xl>f^EJnK%*E`HKK&d2rs)|E z9sVG%^*%^_-}be}U76@Axkxda2fnWkbPo@BL)GufPO*bPp*!LpgCG}{k8xzb^P4mbZ3e; zcl7nPD!(lJ`5EO)hlXUvnJzaA_7&h8SA^sOB%H`c9mKC z^g5|-v^tqXp}(>kA8YMIO`C3Uf~G&zY~tvR9E%Hh5mVAJ?_oPlp|koUT50&{>Wr3s zd8rsHV~mI(J)>z_d4FM`U)dorzp$WjXRiPIH8Fy$oUX(j#U-bd!l-)t$}V ztw*p>(QP}&l0hFU-xYaHOwoQVE;ULa)wq(w;QxJQYO*O6y*x`@ymqf$&-d=icCp=+n1@j+?!`{fTDrRAYXb64{J2vXHb( z8m*@Dc%C5)BBxze%IkCwiL57=h||FS)M?sP$9fUHm4mze4_pk94r3ALk2_Kt4+0O1 zdtx8e?5`<)yEZFqr}x(-Au!n&q)^p-)|#h@<+hf!+n;q4^y}?978^0p^2`C#UQdiC ziPjx@82YLh-u2zHC1x!p7mkRYre)P@w2|zUKK$Y`BT%IKp76lNR_N71-X|T={G1HI zpWQTfBs8Z#^tj@R*cpa0R_xp6DlT7NVVu3vzSz#GpRK>K4gqnH}HEL~${#nTBAgknq`sszXTeIgQb9$)C~ z4e=N~bR@o|uc`?zVOQZnL&iL@!dc9*PZHXRwh0dugHu z!A;p%<5I3G0l8|ti%=1J4fp*OoYCvo&%of0@K4I|)Jv346%ym{h{X|xR?UwOiOa<| zBD>dygZIZP!yBE(9kPvm_@0i`8*l&j@~Qcwa%#_i{+#)b$^q^^aUvr_i<){?hiy>t zyh%6wmA(;v0Doj&ko+d0E@3~-jjC_%!LIg&R@!5Sg@E!9=ZANAb}yW)IBp|Ex-^CY zd$BC`O$~XootuicPJ|gOl3Hb_ty;G3_wJI0jzD8o$KzYNrEK@(3WelIk)S~Ox^H$! zqaS6pLvqpKa1 z3}M!n^G0LIefJF_d^cS={LW)0utHwfhtWr++P2MF7W8dmPJ%3RH=z?jT;p5?j8}Uk zH{}WAW4-3`RXqH3Xw5u@9eI`Ml{)-UgPx@U11pW`mHc1-A)7$16$YrZEXG~M#gjiK zeZDHsI5oEu;EA8<$i8nXdAOk0@DEI6SpnN+=nJ{HYsiO)5b`dRPdxdTRVG zh|gmMM;OJF@7Lr@nReWj-79&-MxKD!>FS}E_s{B5<9;o5vQFDBt3FZs!aXy!mEXvZ zb>ZeH^Zvd9PldjHHRm5613vjbFEw&tEtNy6^%VXSIK6^O5&Q*cRHcC~75k!zVC-$e z4>He!av=oHZ_awZOtkM^-WH#t)u%>`j_^EKFx%05+sE)Yy+=P}I?YmYxA-y}@{CH~ z+1E3u8Rb7&wV0%EBHjsg(`wt$pm{n_`9uzD@Wgh|el}V7!IQh8mx_ zhBzODjfOC_vvO4yz=APu=S(g^B$ zZ<|G1TlF23%Gc>>!`)>JX%JUFx6Kkt4;dezB@cT3Sv;?x<^+D=iXzv9QD0Q|jBA!> zZLKsi>N6w}3lMRm7tulg=n#5UhRMH%l;?;-QWwf{(L{JEN23C-e>vs8@m6#zfT$rZ zkSLMHiI-4-F(mLo(odF!$qkE6nlPTWL|%yHxsQ(PN#uqsAPR(?$F7YehZw`HMyxY) zztget81Xdn%jqdV`0VGci-zv1AHu>11cw(i`(&csTtYl^B@#-_lg{xDjL5+te|sjV zKii$j?>i9unk83R^wV*r-*pvC-F{XQ(>?IeGswTi7=n z5k}5}_mng!1o?BxwY1+HbR!*MG8OTsZx;(gCr&AjKGx)lhAHF-1?(@?Tcq%Fh_MiT z$q|B~R;wb);C3F%eupzBE`Y`Pd!%gVgF$`ve60P{i~5*F14S47I4~qOk!WISF{Ut{ zp?GojINBWup6Wae9=Zce4LDD*2X1MDiB+Mf_U{n=Y+b%(`gz%;Ihj;`!9|J9j)!j1 z80(x~k&x03HG=dU|@iawx^o18AekqBhx=@{5A} zm&E+i^sL0v`)ybY+n>s3Pc=W+f73S1VQXA4Z&md$gNE%z|Bh$=p<%1YfNz;j65Z41 zuf1$U1LfXnEs<$lpHXLi$t{g0pXj_b3#(N1olaYOS_la2)@_L5#qM1s0U>DEebA7by>9>my}|*%JSq3PBWNd z;*380DrdU9%MMN5p>bX-ki&Xw3J8n3;RovS44t$?WvYDj9Tegw0_K-cL3P_C4+nE~ zMYkPHzg#6|Q_ zlOrj$c6d;w8fV#pe*41=UXHY2GjfMIusc7ZoVzPT^hy1)mMLZ|~)hQIU$Go?RskgW^ zEKUW@RkuY@-`4Cw(@1~EPO0E~yI^O?%d=F*ILw!}rV_W5aT_21;;&9a1yNnawG zXD}ms>?1hvYe{V#VcpGt?GriYY3afhK$fv9&A3p(+YW8gm(2=I1f(^vJ^)2c_>|7_r3nhLfTybUS4MR}i>dvr)t0cx4U;QB3o$Y*Ndq$>!LY z(ac3)O1V~nIt3DDfO=U7H59&?8Rl28MB5QqH2=;9@W=gq*c0g`KojlP5B2*>{?}@H z>%;$brjUZQjzDoe!^!7S*7y;&&p2#(dXhYXHOWGHVwglPYi;M?i5+Co5Xb!VCa?IY z|K*F8$5P}`#>9Ar*bOzMGuYl3*3gNm!Qt{qO##l0#=>cM+%GGPQ@$Ym&7J4GKrMVL zw(|$iP#{}kk$7a1Xjhw8kfjVZKkXwJ;fmrG-K)e4<#+2)N#Bhq&Rs7Uydl2Hnm$hO zxt!mC%?EdVZbnfWX@|b`0~{z$)KH;m?A8iLbCz~2s7~JY_V$YY$g;8l17l-4@45X0 z1E+wtxmqQGR?|t8nF1;79h{X;@2val6LEH{l`oL!Dtah$+fr7Jq+*zM98SWIL4Gil zaHs=j(DzvOIbGzjIzm&r%lj6@4vbtoXAj-3-^_f()v5J+@8o4mIuMXyn~w^dzv;ttDV85Bsq{Nf;9q6{Q~6;&_C` zYB8q;j;O6=o-I}k;^Co|zk{3_FdWhLlt%VE6xN!IPoyxL91JDU01c(t(_;$kgq|#+ zz$T*YX-?bkC&UIXm4m@xrKH|^T7?Ro_P6aW=R#&C78W!oG62p(wvFw%A8fL)yez-g zb~n(stK8zs9F6>uM*_gSC~%95i>Gp&qjweJB+zN9v=Nn@6DBYTDUk5-WdbNS5fnl` zvX8Z*VY?Ur5at=?V3y^qK{Adao>C4NV!I7T9-4*3$!pZFT3I1ER;h6$Q|hARIpoXQ z_K5;9+%;nHikyB?`R;pVqmO&#T&?iO|45d9Y8N%;Kf>kiK+o#$wTuJOD|2?e2l9QR zj86E7VB&5});vD~-$g1l8mEsa;4bFay&tDlZ(0*`V|a&R6}xyeWa4?8>`z#BF;?5s zYET8uvSX5&r{eCNCiwW8LT`xOAR`dM^p4q@Po6K;Nqygfud^bvy>v6@X{D&_*SiCi zn!_8=FM#wii@_)kHvw(wx;fjL;;B|C#Vn6u7l-GRn6K$52m7U_p5?feYlq7kJ zwfzkbeGob@i5hg)gwqmW2m6KrRzc!h4XRw{bg0mG_B;bBJIqZs!)isiFMIh!0w+{G zZG>?0l`7v{KS%<}W^>?P8K#`6)m5dI(!o7#TQOA?!5BquHkt5pwv?-3C3!D>ut(6i zs8d=q+3@zwQ_}gt=&}P3$o-600@BnfCh_ZETO+)N?f6)xmVo{mmJ}wS%$(W)&o}%4A%p=RsIXEQUnXU+=b#>A5E)F8?{NbX5vegQ3TwPO=opIu!QgO08o{ZIRJT-TK8%tqFXf@ zX2aCDq`3L&c_6v(ICQ3!4p5LPx#o~)z#Xhq8R`sQQw$7KC%Bq05E@c#U`WP`@eUEx?r}fvG@|ikvC5mCD|$SIurCh9j82g%y+8$ z>gsliBDEc#>n8Xf@wLSp2Fk;kfrJ(|ds6njwp7R26g2sB7QI7PF6XBZuI1y)#;p>C zsJXy?)Y@9hMfMw$V8w5xTmfdYGa9M(yiSaL zk{@NoCa#vpgL^0NkNsEjQ_%pf9MhTCQRRsS!LyWl`JtX4Vc;OJv^c&M_8k~a`i^P{irwCV_s{$a8xJ=ug zJDKQawuoC!K=TF>pGvadYCk}P6!h})nrffJt{ArDm=Ov9dIgdSWzr~iYHxiAMsEl7 zut@R306R6J_;N?=ZPLSP)rOp?jec2#7vH!uaLwK?PVpkT?u|YKE(pr-14J*WH?YXD zB0WEYyoul=7vbq-@x?!)qYIB`^-EX;N6BR;F`$zZ*Tluu+8Ei#O?i2_n{9LlbemPQ zksZ>>lic;fV`!qv}!o*`KZcj%R|yfR0V02#E-+zWETZ973xHFvrFQ6!stEh=?3 z)Dq~!2}G?JUUIAMXyU?^Z{?+P&*PZ>D4KEQx|0KyR`Sr@QQ<$bwcyc7 ztP}eIa1BhGa&)|#tcnOZ7;<`n%E#D+G$^8Le2k*%Q*&!;;r zjCOGjq)c#H=A+xav}K)XojnpbPk zw$eys?`{v!6lgXWo0U)TNU{P*{37WTCJ;953=%v%#aGv}HSN$)HkljQ? zczFEb*+R82Tv#dS!1LjH+Wo8@d`U{l<$NklyI|a}=R~3d&|22hC|#;%FGp@)X@1Q80Ir=X zQ00v(TUlpdm*KHv+4*T@KHr)5`#ejHXO~ClCow&^b#n#<>xLLBR zG$8m8ytu4iJ!3e9(?VLYD+Z6vz0pF=ciVEU^F7_eq?nvg|tKAknenFEK zBSmb6>%(5>m- zXKTEN3)SenUXN<;a|-+E!dLAowWl#>tCH)*qn!5vt$S$p>42f*Rx3CpNa6+nQpF!a zMm4S5skAyeln+xyD?fGj>JGQct`(|rlr))*nE;$|d_p(U*S zW(O`xrh=Y9{>r1LLLga&g=JFkicB%v5EXSm07^07RYNoCo_RoGc4HfA1u}YM3le^u zh^58}2ZQ|MDUKtZe+7d0;*5d1vNN>_m@c>-6Hk2F?{q3+kLrc4o8*ORM@pVp6X=P~ zlb17tjB>x7wnZ2E#X3ukyFH9!AMo=x@&?N{T0YF~-G%@}92&L(UE3GpCp-QXBHb~) zhFa>xL~EpqcKS6UEEv+VtnW*c2{+lafvh|JZ?Lhkxx5}fR0k^|TRA^J!Vv4Vlb`IU zxoFgWMN;U*a0D8n&TCZpn?pn^`1tsyyyQ;50pO52m-F|)f`E8gt#`EdP=aiJKi9h7 zG#&ukYV#gzG>c!ixHJo(_2!93eGEzZp%Z$wTG;vWtl4&Z_2zuoz)q=5P5w}~!$f>@ zt3PVEkxECkTtgCovm_k?kY4e0zDXsp7hsP!?F&B`3bP$)0ZhIQPxp=mA6pR_wC`)} z_)W&N0H63-!b5uOC;3_eR=o4Lx^!X0wSq4%ehMv4l~hW_qXI4NR@ez;vx4eYZar-) zA#S=U$_%E(d(qQ9Z6gb%%O4D0JGo_H-UR%oX7{f;%?Q~mLF=zmeQJMSW-8)(*Fg!z zy8W?Yd%d|!@Q82rD}VN76gM#<+H20(6*?hl7b%~RD6Nnm_}#T`R9`-iggHF7oRiM5 zj~7c_l_Wn4HdPPmAcq!q=w{|siQD#-d>A!BGn?$b8&KwW#f?2e8j^0I;y{LVbttan z09C&1u1lH5U*|y!Ac!oSWuZ#gTI!oI(T`i z+Gv_CwdFE!(n>qSzv`j!tJp9e5+8{6<6hCuhQ#`VQUQb&OtO!Rwta5#$G_AHT9 z|B{75uoM?!hvNfKl@tIbcfRsP(8c2he`|p4J|af`h*C$zN#-vKv%&DWU5k`M#9tF z6UX}rE5pm&L-$O(4h{*E#6;0|uj{m}FFmR`szzv~O)EG(qPGXH@n9SMCvRZ&{lGXE z)Wgjg7y&ajll*KFi}rSGdoZ3>-M3ISgWA8~q=1dq!C0`0OYQd`oNn+VnGf}uBY^9a zs$ni~vC^169vj}=6bguaRxyb=vZ$*{w=*-VjA z@%xjNW)vkFj?We)wyS+_rqhC+OG?pzOaS9x$_EOx}U zJA0cJbUKm#ubYM$USJ|ErH&Enub}JuESlc@3~3l1T5D4whN@rQfr1{(9pdCSC5N`{ zwL?8?VdK!nIPn80rFJ2~A(I~UgbdBau35FV`2vj5+aEvGswMCG>BXjg;9!Tq3>5m8 zpU}({gy13VE5(*1IurFP%~^x8>oAZ717&o2+R1Jj zQ9fWLCtt|R*-UejuDEL5mQa(`un3lqBhIXNjGoFGR%X6o_ob6DVL2+*!KHIgzIE+iymI#;&n zaJeu4C!FGVb|sw!II4DBRx_Ut_EoSGMj!6rzMR}*o1wm-WW?WUVr<6BM9|_ zX5j}%d)qm!(Hi#+BLA%lf|Lk7LDs57f--u7s z_-%DA@8L_fTaO+IDeRNG={BuLg|UEXMP|UDv2w*=; z-d+9P5I)#xC@T6yF2|p9syNK5+W8FNv5P$JAPQ`q(EaX~id#U7Jh_upVxGA&!$B`M zUxL9_A5ssc+dk}Bm&HsGRl7*PF`(`X09LHj?CnnbTO?c%eb4<#+4&kpCBdxQo_&qI zL(X)kw`{e%BtO4Kgru~R?fz8?aX$!?^+$CS%cnU1^G>P>Jq{7}bD@6~XSVL9N)lN;+Ln63( zO_C5{$ThKpjleD3_YCYcQ}x`m+)*rEPi@v(kl<<0PfkV=rhBzq=(L_E!qhcui|^U+>3ahKtCvyL3V$o>OD)eJCul6L^0-jzVU-k8K2{IZ0aH11Yizve%i^rZ zkZ$;|mxmpGjgZ=>=2#&U{T^l*E(R#4Qy>EagZwSWI}TmP{CPTB4vt{8cR$XL7nwyJ z@Ccry?KYL8fb^1-kIx_jTlj}_VgUK0%uA4GcBLVk&LMc#Ha(pU5FU}UD?9E%Lnb+b zTYWMZXug8R5#a{Cp_1Y_+#F;Cd0wY0oEsu+!6YQHFkff`T>wOLNJc2o1XMVQC=dMQ zuePX4RjM@TCv6K?p$Kk3eP^w(S_ik{u6yWbZU|EO~cx zgI|0jfZ4+3^YEADT>lM^1dM+80%>(Ppq905Dq7Jbk#G2>&gF3%J(bXro!GzUI>2bR z{plXKy|y(+j{rVMv9q;xarjL-(B>HUm3M4L*Klu4n@o@q(PMFNVQ^5=#(`w*C(}iF{redj$x&E3NT4W+itYUA3WELbipQ77@@rc$!~#>aG8&+dmLZrrvFpArNyE;p8jw#o`*X!`#Z1H zrv9`n4S2qckWBbpI*%cPWm+YI)$Y*q%cFQ3s$79PwCJ}Yljz5Pa zRXtw+Qx^W`PYcplf|d2WXd|$HmB@*v;j1)HbnOr2M?o;mM#s;(nP5+FoT$ErU)8?- znKM#xwD1(Hv4-P}>+yce-S0Q4&6^Z}F-J(-NFf!bkmswI7`Pg|-yJc-UpJrSCzl0b zsc3Ad%C;N#!+7HHjI7l;MXu9J$97Gm%jS0|xuH#cwtsnZZ+?g5_Q=9Fd#~k_k^W|` zex}Tw?H9b`(=FjB6KAckFgEULsYhxje-_;QF78ugGWl&{e;=#+`y!3{P#Yha`(LT5 zRe+jLWi%8k31gh63x{ce1U&!)FW#T(62dua=NzL|1ALKGUiV0*!i0Qh5nsV2 zwH9ZqM_pM->(@>>e~G(M#6j8o)C7^;cnEoMLGAUhi(Q(;2JOnx6cR|{KrQTrni+Oi zpSDeuU*DIr+YSCtbZ290NhA}!s>8XRRG5#~&VWs?m0h9Tda!*8j1Boy8rcCbu;Cq# zb|t{psPbdrzOw_GcqQFMIyAVhPnM;C%1L}nyTd{30<%-h6mUjiLd~xyY`9ntyRXb_ z?qzxB{`u6b)A54j&p>kS{lmstXJX)ziyKhLX?Zam{Z7lJ00{XLxMiB)lK1WzDh@6+g%K z;iMN$dXl(0-F`P9Ih&pfi71%-23e5rXSj)$(Q)VEsALdbm3nsXi9aX;$`8c5347UC z3wAnUr!-gnL+@T!x5;Y#ZTI+Rbyxb&4lqmqg826a2txmqyq=iot>cHQYG1PtdUMwI zr4)_w)44H-uz(V2Q3sB_lRz^8AMpeBRgH^t`MRe@^%gy^i&00ks?N#=AzqC8AelH8 z=XmTq5I@bB{$_MD>khiU-@>AajY6jVCINHBAtFloWp-`wRO0?*1TY`&h ziON^xy1RYp3xl{n${v^AVPI$oR8;t$+3P<835Ev+M7REkiyQzw_GwE@Obpb2K6F}l zcd-X9RgGIMbh`x9OD0dsQhdH0mVeb}5#*=5NE#&@@YBQ1aPLg1Dg&4Mb-Du!V{1}# zQ zfZY}4^>n3b4v>iA$19q&TO5eJy|*YY1_-{bGzpHhRyaH?TX#;HWRZu&?$}*j0YGpt zv2b8fZFpf8pC<^|Lg*F!gD;-HpA&DIAyO`nQwxONW%FnU$T$$bleP9VK%jvD%16Sz z$^16ZG8yKG0tN~{)P?}&D9eQ*V^;pDJY-vG%5Ut2Q_608=Wgckj?=Y`E&2VH;lX%J z<`Blk0(QRli>D-f^>{pw{d?L&Boq!={rSkW>5=0Woc78YZ^3ZN3N5Uop!+YU8Ma6Jcjie`&1OsJBtC!nnLYoQV?PsrM0tX}bcsX12w_ z1n`E|XB4D;t=P69?r6;ok61Wn9;V2OK#}PU`>6fCj1OTvl_+b}!dWOFJDeJcpc2{c z9uIeKFO?BaOTuJZ)z#GI$u>si0X|*Gd3#4E>?C`sA~t4Gp@Bkd|EH6$l$=;eHr06~ z0gx{uN<0AwT@I!_h%KZ&gK`1GmTtM;;8+$55o164Li%<=DYjLn0XeEXuLL2MB26mu z^@)UI1yqt@Pp#Ica1BIxP7-I-Unob5J0o4hgFalWG2c@|Ij!_pPUp%|3-0zO^A57S zWv2l_jM4Rqd!)wnyPx)=nluqCA>D}hyR`STJ?#!uceh4PP-`8YK~r@Afb8-o3Sz>; z#KaeBjk=;utTK$E_a6SA3CTzPo#<6a{g~4|l+Y>J{q^)1sLc!gdMuo>HV**?6HMNo z6H3kI=4HVrHJ22#3N~Y+PGIX+{c-|4lnx%YZeTFO?kHTBjoV)EHBs~`{0xS{nzers z`=IXHxz;ARc=iNf-dQZ>z5xljN?P2n=T-O~2r!6xPmkB1 zwk{rBG7Ecr-aHJh@($u~*JBTQ-R)qTPZ!n;HV)Dfg215PVdg+zIu@nDhZggTK>`n7 zSn)4kP_^4!VsyND4|*BvOMe3jY!Zk93*6eUjVBpjJOM(yJ=Gb&c{iZ1lsp)DRQOR) zhkDQ_|83@tncA|)UGal2*~aClaOuHiiKK!TAFK)WdL1QilZQWvHRa1{Op3kCnVN=s z=f$S_?`Nj+E}^y8y;>oac4~H=)Hf*^l~x}kiW0_g&ER1@fN`B|85!#Or+=s2fcGiF zK*Tb#5ib9?v#19CHQq*WufdeQ(C?C+BJ&|8p;LZvLhI>d6rNSVV9s1TBdxrN%MH^M zmv#oEaEYLGhR;3o(~~6T9px63(sNO`NZ_3 zFoVg#+Vo%1dbzld32}MvNlEGIYr!%PAUF)KM1&wDJnHmGzPKscw^kF`IZmYL zcC-D$wE{csH*3r}$_fd<0U5HD50+pL2?^=e=aAgjw}UN8Hio|J#pa2*47R3Q)lKy2 z`au*e19xddBTWhdQdSD7*X0WwOBm0=PGTbRWj5O*MMd=fecIaTMFnxBJ2G9>Nxe0D z0TUM1Mi>O49w52iGZcG6*U32{9pEp>;Lm!T!s=Y9cfa}A;`P+xf^(dB`@nd0CJz*- zxjgR)jctMF3IQ=s-H2Zfy!8(b4_5UzeF6?8wDB-fGBW=^ z@g4yGi9ZEKq(vopi0K!UA`!H^Y(b)}5<<0H~5YK^aJC!< zlSDDW6vd+^VO2>vg(W1#0JTuw_ql`a-MzDCO3){$-P5IAlXlg!x)%!_pqvXzA{ zEvaH^09S2^!k7t*WzP3zb=V5AFdG4RhC+9~nQ+XMR4iiP1y&Ol0;#XSB%XbYImGX+#2 z5^RU!sY>%>s=S~yHW4%HkH1rZ>s7ja!%|}Y;(kIPxjKHk3Ue_@w)b+YK)i$5XFTUmGzXLA; zgp^{V!B~Y^U|!TgJW})O_t$4rK5t;RHN$ifF{ngm*YV}pkt=e8*kwUas-}}^hu0ZY z1&wl6l9L<6ScLPq+$;^1+s%-UFUU@3%CKjYi>{f%Cj&I|U6~3L`b!BJ?msIC*vpyB z|4%&>21p)T2qy0%{2h{*0B1>Z5U6hcJuTZ;SXWL}Vs_C>;5S1K*S#T-?- zDhW@AnX0!?RPdj-@2Uq>rHqJ^hE;>UqUoyUh*k^mbv>EN$f z6#1v0QaPDNlI7K$?h4$g%ukiR;1UT2KRCg|8mw#HjN(ox!*QA*sA@Yucqp{?`{K1q zS|Q7&Sy1z%V5xT=97;F5ga|(ce7>E=YnFh3nm2R$2WynGC*{|Q+D*}^W<2_`7AqyFR4DRoay~g#l`DR2%t| z_=#_}QsZ0|TKV5=OyKRGc3;2OdG7xu>;G9l9H51wQF#RYnRpxc08G>?c0SwQa#T$7 z0}eYNRgk~#rAh2Km^+PtN&TL1eYlI{71kRY8}%f5?Ss3E4}-?4Lm0Y%NeVRi!U;OB z9@K0gP`L;Sh-iBnsI6SRAOB$rXD9;?@+6_uCMRRbjYuQI)S=bQkx z^Cq?^LABp_z5+%T=GIHXOww6|p8MZfim=C8*=MwOv#&%YBZ}l;wtV%5Q<693joWF13i_e5K8Ri6`KYVZLJ zcC-j`aYQ0k<7X^N>CE))*kJ=-z#d2Q6L3Q!f~&W-x8oh8uK`9#uqZSw-!HwrYT$6+ z9k>A`4Vly6&Yzn5{T1F9Bcqx$U7*GgV0flboZbnHMUWsiSjb(uIhYoIe>H?dOVr_V zp6iizSPz8Nmp~Rh!EG8W2PT*DQaIfa0ZhXotKZQB1`g`ym&`-m{#2i6+kSmkohZc$ zsrtQ>7Zn@u8G>&!>IH2ic=p{uQs|wIPkO%)V&ui7q^eVm$iI||fD`49Ze^!hM<*wh zM4+&U4!P;1y_RDLfhjs}8g>`sbg^~>%KCSSSb*wn!{$lfFCSSsF$gI@b&+n@A}6fJis*$Ih-k`8@-6)e(CUi zZaWX0Y0SzZM8aiJGf9`@OCj=aB&2qwok$QR0FH|HBtAwyV*kA2jV8N+gkJ#j0-NN@ z(Z&Wbyw_ck9*iAR<97`+}&*q0hC@d5(*vTKZo6~eGa4}f4HE`9TsV;iV3OIq0-K69Sz zH3qqi;RC-QH%B-KWTx2h8{dTvUqk4f;=KR?>I7xB6ZTfkZ;Sq`Qi&UVl6CK4k5MM0 ze~H)c&Cr0QhZ4Fmj3vYI>cQ>zuh*p1fNvcNrYkdUR|@vW{zbW8&B9Co7;oG$)q zoNbR+u?+4n(eVnpEap$2<*m|Z%Ky(jA@RnC|3!-d-zsj!E&?7zw}Ax=(ghEUj>@EN z0ND-yuqBd=MJ#$Pwf6@QwfkydIv}yqt-|2f96IiMEWnOG$egIw<`P2YG|Qlh7~Xsg zc+0yNzo7tIL6u{-1te<&>|SzLJ|MG_cfJ*uF}CKqM*z8c(&*G2b$@C&1RY-vM|R@( zM-qSmwObq(Q3zxNK&7fL74h!wH&`TFc|*MKiK11Y%01_zOHmV&-*d<=V1SC={KLDi zN9{u)gNsOf=uo0oojXYZ)MN@L^ZF%(l*&PXe!raF{QuR5EL=adB%D1_(yQ z1nSH>yB*Lb_M`%$7iYMxo|J?{c5?Cu1AV4WA}m5ehV~zQluB(bXf%+lf(1-&EEF6j zH8{&7+!;g!gj@iTHvvq#C2ZoNd-xz5fmgO2c%nCT9HoahEYO62^Hy7y1Pq7kZztU!#{?u?ZhoH1FU$xU zTsn}p_V(IJEvXxK6bYYeT8C1_%I2bw)nsF!+15fo^+4m*dLdd(w_QV2c>hPr+Ww9e zI3}4Fu!u)BY&1xS@+fuR-*nFASS^7y>zygFcTTmok)mo3I)nq9Vf;r*39;tfz(9W* z28IZ*582Bs>PM+->Z-+17zE7FD>{X`r+uG<1-Y3^*qbB;Gg}_>+j{!6ANV@WEN_V= z+D-gk64fOt6DvIG6<~_H%VNcOn-d@1&cVMXu-#W4Yh75M908w{mSfnVC+vwm^9sEmEU4gs z6u+Jjm|Iv#w_?a*E)p%c&MxsRnr*NLYv5$OBIDG`%6Eo(UGGN+Nub$!!ui*C z9Iyf*ImDlDb89ORY|GjXz;PpddZ2Q5HnlzQCy2JHL5Pr8dDtiE9Kl=* z;$Ud5UXyhC?Rx&Imk=I;YxFh;h0WAGJ{WaPxv0cy%&*O&hcZ5sBc2N5@dxPP{?2dE zPtVcBiH>MOUJp`5y?uRhQQZ6f9c;LSgyO+WTG?n%O>9SwQcQV`cB?Tb)DsAInjC#! zkPLoGIOwA$N_y)=%$ffJf_zZU$i+Y@W%X!7mv-?^T+1W!f?47H{U2BSK{n+sUDa_q{f~>aoN<-i+0tq&Uh3Um& zjrFa#=ay_4r^64pi{gBAUDTSY{ z_vY{4BwA1)QU4vJqS*;Nfk9iG(CYmRGVO;DBlco7>Z3UBP2}l;-O%+%>t2t9Nw}`n z%g12V2oB``37I}~K+NF?mDaW^W5{ElNE<(Z3X(*kU{(=9pkR!`f?wyv8&X=%eSFjC z0fG9)Ps4$I(gO?&P}Ys9ls#|s0Y~^+;APz9%BEKtU95CFF9a~gTrw_Yg z=Bk-b8D6`mTs+R_CRiwapgS|#Mtb_3mxM6D73DHD%afjd^@0PH;CiaAUWLVrz1!J$KLQ z8#U#xTD?B2M#d{a8U61FF*WXGXaCkolvFG4kz)?5dy3R))`Vp-l_cU@b2%~R4*dcT z5*tVnsm^zVy7b`-+u7Z12Nm2P=X=c22)>}(Kb$(^)3Dst zN}IVa7PAXN3>CueP~n@hzK&gSZ(a*E$R`@^#Xn~_{bQ9xwWW*T!{RVj^aVz>pc2B91qmLBL+LkHip z@dDRSmk;}zzQ)=Qm0KOY$QJmQy1?KSU-N|6U(oZXU3>_5j5NQnU|9c|DM==pm-7ld z5Ct7HG;H{bs+`))D+#BoRCIrijA)NiOi67m4J)q(Ai&;Jv|7E&YR~U`oMBl?{_*Wp zV;B?d;5Ybl?q+^U*KkGSE)#wx8GPG2*btZ|{8es1F>KJ5w||U+^V@c^Iy$U~AX-zv`v7AHbR^nb_Fa$GQ$G z-a$A4HB`xuYaioVCE9)}#33avH&zw#DRJtmSN57YPbh>4RK>rzV#MMasjyLpxkMkQ zkSM2Emz+m{OsZxs&R$#~J-$UCH{+;5^YDU)GN|sQkt_QP%c&l;D`X%CNf0bjRa{f2 zXQw#2zh*^?$UyY(i&SC5*H7Pp9tiq;XM*V1(eL2bJ?hB^7E$R^ z{FP^|;m@2{b+zxM`9N12tZEG^&COH8h^S5|=eh9&xWK{1B??dPUsiBiI7X_!C%$59 z=OF004rsYQ>*roWt^1BpOj$aYGp8I)RnaSJRv-TlU)n)yRzAHbXfMhg`mMIo=<_*K>?Z#dhF;xb+U;^a zmRq>Dm4u)}g-`yND*7XT`lnS0W+DQ7sL58{gXiaCf`7I1V8)wnAvs{0j0K~6mAh}>m*;==D z3l~3NqH1nvAbfTsT=>&$#C#>KVo%JWJ>KKot3DAIdWM~9I{ z%elYVvzt3Ubb0eFVttP?@Ih$J5Wj+arj2BCsMh4P<@Pd`Lf=Q$#{`!T6VKp z9B{zH6+Lw&?p;_03%OqEJcMFv&qo=39p3n-Cqjh8X?N7?UJQfX8CYzF6ggc)Nld+E ztD>T(XPZfxZA`9TJ)N84KzG1VX4&Xxwhp>9_}V=&axL#(O}mYhgN(T0>oDgP)PQgG z>)yG^o?>1U(1B-1*B@Lt7a{yZ9X8~Rw_hSq+4escQ%xU5-1$#`NTvue;s*WXpJKXyJz_h8uz$noVXa>M)ezd# zuO}$rQnlqsDb%cdrVuAg#JMwPKT2r-fPjaV0q^wf+NEQ(vwak5o#?Uy)^{uZ%8BgU zL6h$n3!fPdemB9shT-G;PJ9o+zz`d@yVM*T7u7Vq-QKpo{EPNeU(EkvXDT1Tc1zj8k3I!%pg-qEBhfsq8fB_!EY;6!x2mr)!OiATgwFZ)OH!%3pO4qB;0009fcm zr48?nd8oM@kpkol>rSLt=K^N8$))8E{pDTN>i!}nw5XseA{+w z27;h>XU=)KMMS_`>o~Yq>-xE4V4>{)%X+(Xi)OW(^0J%hhLX7jepCR*f8aVhf3?Wv zBa=#2|5}(_4b}2N;g)jJuQbKzXvDLcUapa*Q_16Ai0pVn@q}^GhgB!=nMh22i;-b; zBTL;4YV()GwC}HzIE#BMF**G60_)z@5Y9w|%xvVrX&!}i^GRNEh?@6X? z;ueHq*%WL+s@j66WiB>vobKB&H6qzH6arm&7-;=`{El%X)#MoxhYFA6%dpAb+~Qon z_b9+t+VGR%_zN-(2(r4kJYY!ijqZaI)BDj!9qH~|Sak@H{TxlOS6%8*rG8aT8|6Pr z>F$0T$eHyDJ~*`H(ic!$swx3Z{Pp^W4rAJn-_f6a1!cQi^#b9BF<(ZZK!dA7VT-k4 zh6w(RSSN!0Z;vX@vcP6!BXZfi#R^FhFp+NAf!x~mk8_{~gQtcO6Yj0lHlrB*_v&?} z(qAbWBA?2?qH7GSv)0rIK3m{^`0yVff@=b70NxBTu$GoBcj-Hrx-@j5xwOTcWnpcP zJ{YHZ^&Hxm!`vgWe&_9((DzPce~r{Ci2p;4$>J!wj(IvkN>5^@#p7~0m=5uO9s4 zAK_N?4(Q&t@EIB%iw$;1I;O0YI-4u=4#TAGQ?M7nso9h5;VjRx3BUCwM7vpqx;o6v zr^b*}BT^~*FjEPa*wwc{#w_suYA=P6fuwvF}9s%7ewZ-_}>+zk0^lSvi)7 z^k1it1t42fX)hh@>CXI+m+g%(e<7R~xjtm#9^n{pkow`N`j2u17{ht0F$pXFWu6*9 zggRZiCLP7W!TzEu?974IVh0dA9uzuH)c`Lkud$9rb)aUX<3V}t!C-g{2ED`q`eO)YSsUF;pdlSRmI z?sbnHA^d;H*s%ZuVdvIOyLmR>@T)!8vZZT`8qC43A(@k^_$nM{@^;_AwznE`s1L8i zid0{GQeFGW??=HEhF&$7`&zw5i3F4{w+o%Mc&50Q3-9Y@^b#2n`SeD3 z?}sRltCI3RGBe4 z{;SC5%PC#$i~cZ2q*Xiy0S&!7RJLuUS+CeM28%^AubQ1n*BAvC&`d&1HNl5B?WS8_ zBi7#|yuKbUQcW=Z>rg9*`(Bza^miX|^2{|p@lTwa9W*5eE%WG)vedCbBDSv1dxC2Z=PwEB+3jG34RCUzs7Lq3 zGGM*$e2wG16tYwt;BjoI?csMyn#nevi`(l=Ao)&GvErsz#eW>K#*)_v^VH4LYL{7K zB^@o^am0TW%xHeVMqD0qMj9@sAYPKddxQL0h5zxPAcC)Yp^3j?IltD=aCi`8sH5gc z7A>RqDL2_71qk1ltDx!vMz^>}ihX01?`6B>14&iXiTfjhOgLjS zqe7CZrBJRj!Cdn5b#fqUrbp{~{l-7e^9yy%QZpCuJPnv1-|)eS=u^8)y*<|Fh$q_CEfq7f zT%(Yqbj|Q1;KR9#zhBs1MY`jwjLme#G%onvN}iR`wIW&~ECFFXtSpzmc=hIMbVAfr z?G0`$I)XnQ8sRm{u--Xr8FFzKQPgw0b0kJX4uyDlAjk=ziXzx#BMBlQ@yDy|yeUa# z^!f8t@M(5TQW}GghK0^EBHy66I4?4?*T{&p0yMFOt;W+w4opL%R7j$szZ)ZWhFo5n zxeQzJnv;Oz11+h<( zg1e3%&B{XVj&OEXf-D21d9f_{t~Z@ks1v$2_8gl+<`8C7Ym+qz8}ZxT(*xki@{q)X z(qq=l?xaXbxOK!W9pR|{4#a@}3A75CLOfXUMT2p^+0ea(p}cyZ#HY3WX=Y^&iEb%c zLoQ?^53!-uNZ4w&J;m%K2l2zSOoK5S=&lTZ5C%R#5s{?V2AqV8bC_##G3td=G!?$R zkO)%f#imSqDtX_$`|!%{tA1&hzaNTE=u5%6`CNn9YLLS%`NkboSv<={gvY?qogE86_8ysL8e_bM z+UD#E0<0Cspr<0WFMmmoQV-2Ria#@){gdzSnU_RD<te+b>e@j1&!>~}DMY>eHtt3_zFZ6|4uIV~%?_svFKd*Y_ zGy2u(JmZq(%}kA^lBq65BHX2!qP_0h@01>9vAR$BcjiBfnqu$u?$$?@VO=%G!0Bq0 z_n03TQYq(;HW?V>uHikKZurC_LET>uA;hpyUb=XQeT(~E7gt_?=~|eeq@89*{FVZE z??mje<1?6{9H{r~W>V9HSn|MXAkp|in`v{O_Ze~N^iwl?`kdYhX7}E}WiX-zn>G^b z%Vzw+CDy=eKD(aFW!N-t&bsiSzig`aRWLLZEt|8*yzs_Ci>>mA;G7X`&xkTfB1jy$ z{`nm2O^Mq|JvX{l6V#^ROWRx&MSpujA6rksTq`+Gfpz|*y^m95KMyO8wa`Ethj3bN z68a0eB(a^GX0=C7QzR{A^p+8&jO0p%3jQsxn(u^+jaEc`*I_%KU@-Y8X$Z*Wunm3N zOBbD~u#5&BFy7}vcNAoCH=@Mf&K(=gC`GHwPfPl)opEpD!=h30PqyO?i%Or&4)R9k zlpmQlW(EBA6+E_&efj{)hSU@rGyQ{|CgZTZzisB(@7}*tj{HoY|8n&jXGnQ}CE|k; zEhM@wvlQC{zBX8S>H0#qD>6PM0P1j&`YBKO<3lbBG&FFWixH;YNz_FW=>%aHpvl{l;s-X?bYY3&!k< zz8!qr#4b&G8Nu8O+b^_n8sc*aW|srM$^`kpZJkcoztrAe!0phsM;My&CVY zGRyF@BF;epw-89F=6CJDv)4|sI=8r`9b;H`ck`FN3qxx5RAT| zZ@Es~hPt14^Gez7?@$Ud-^E}@2^s4h70d4`8ffz?(sJ~1(9+C5ENUf9(~ydML9aR` zwKCu3_R^rg`pM8^2?Tw7kuea>hz3%T)82fT6__Z~4jh7)8x-AZ+auM9$;_V-@ zItb+KDzDv?-t8tfQl{I!q&OCMiU)agq6)wWocfWl$ga6`uV;gAzkXnrf* zjm;?SYv-T=;KN4)*v<=TeSymg#DwJoljN_Fu3L9F(`@#(=0+(~^L}^C^q35$DsAG9DCKW9ktRqinREHs z;#HC*ypGDSE7=O`?RDDD%7`xf+2L6TD-_*si%)&zvd5VEVEYHvMv!dD=Z!|?@B+ip zsPb9m)G)jEi&g|qQ=3sQ{}q!WTuguUm@kQG|1R9lK70iGSEfAeRFi$UcybtMl?x>M zo&M|?qE1>B_2C?yspe+s-bb<*$3KlmvnI_RAT;l4G=JnWvA|0lUJYTwx~(B}ZF8|b z_KFBP#TC+)SedAMC91;oc>?~@o!L9q6S~Gg{}(UNMzEUN3ytap!=0m z_wrx38U)x2yqK6mmEzFrmo#Y@-Qxv-+0Y*AX&W=OLNieKRE$XcTx`;YTDmRQ8UDuS z%CT)dzW?P_H_}qjxNLvPZ~`l}k7u`wf0$ z9&J$lDHx`yaX9SX>Uhhmda#GIb%St(WU=h6)U3Hxbg&jT!J~X;>TcP3=D- zc9crg%)P&A-C6E3YH3^v$On(go{F7@)vA)rwUPL!8&xgcsmY&1R=Zua^h~=NQoH9| zWvGXm73ox`^cDxw4}Fzq%cfTerM66$##4M7y{GM?IrdT2;Bb31jL*zo z<(um-UAtt%!fR)so>dom?^}m@(=5&G#mple zHts4lTTf!9#$(pMB(mr1_cQoB{b9jRs3HG>GLXQER11$-lv5L%T@T4%c=q=`^NE>( zy^^n1OB-v!27?t~Iqra)wQuS-Cu1s=#KJoqNyd|m1)EM(KWDpVSBClt>?bQ5aJ+kW z9T%5o9hyz}%!lJ^gVVbcn+THx1U+mPckql^pRaA+(Qs<=)c=y%_VYe&gPQ0*?3~!S zL*0=8#lhn4pg0G1vJrHc?0mDa`mu-aDGnVQ7yy5;0lVVpfad7WguvEAGtG)-a^nB! z0tVtUKXPp;D*dvSBJ5^ixW&oMEFEOTuDIzZMc987aUrX>GEo;h7zp@Jp zyUjXl=h)S}dmNjG4|}$aw-$QTjC0ln2MN1bJ7~94if{K>O=rypf9R}Z@x!C4EOC6p zJ6u#l@=@jzFkykP2Duy&sxN-&qBA8N)IWS+Vd}5PU5uJ8E2hqj(?oML<>3YDfr#{7 zk!)x!f1HR#&qHeW6-KkNWzSyT>J(G{eC^ZcpV;5Qg&xajG4$a{Q0uo38|ZXgJxtl{ z=?>BaL5u`n<3I7CY^?uatE`)*lAVyaD^sNL}Bj}q%mioLdRUT@Z<_+0wW zxy_k%Ly6%847r=6>GDqql>Ih`jyw|4mpV1{@su)59_XYXSCToIP{Rpyg!z| zp;^eiMBK&F34Ng{A2K&EFI}2QH*LfFw+zxA1K@Td-BX8TZ29(w7C@lmK46cC` zmQ06ELZh(&v%ZMOwFEzyuR?fl7BOe!EM`3GB5Yusmh$oG>{h359XDza_H?HIU z=AEYf$kSb^+`Z8f#wv^4QrXj3@S~%+2X{71p#P1CUlL3|jV#tr^T~aTwP2(1 z!zAbNve?E>yh7J zj!);3WYplU`Q5B?T@8CZB-<9Ia}u1iZ5V)?wriBV!f$%3KIaz1_QMDc0wXS$Vxrb_O#d+X9uC21VVC?q)R z#`E+Dadnd(_>2WehfTmAL4Ynu-Km(!KcjS&g^v)dR^zjH#pa=j3wztH+m+XU1?&u) zHR-%7`P6Id8Im)jg{!0kkMfd=_aL9$QrGRj^(5^6GbLR1JA?~%O09=B$_*iCgbIaT z6o<2Z#?s*eeNUp|)b;tZ9#?KHKj(=o7G^n|O*3vTZ%gtc6efX0oWsdcx)9 zOv<>AiPkFaJljF4_EryZ=|=0vpvO^j>hW=lnTkzL%|BoIxU%nejrLTuK4cTd?8-1B zo%IZwd*s@|w)BweQb54#2jljDoyNdLrf{_r?%ypiFO(6%M3ddqD`+%pyu>HX?z%1u36Zjm-xkF!ds)0W}rV!3L$xm&D4y%UFeEgmU5M%5^N#FZn(4~k2KD}6T80gIahxy)Qk zf8daQn4g;Lp`SCQl-6Y)lT2JE91>+m);v!JVtrxP&}=_&XG;sS4HaZ zS9P&2qgqmD;FHM2KPQn05Wy-g4S`e1N3P-2_v?0frd_YOmqzcwW$M0!OxI(UFinV& zzn>_RRxR=6om}`HuR?N?PuObvaK6);(XdSY+l-rU-}}j@mdfEhO?h8I+}XzZ3Wo*) z!+q=XfU>AP>WR0^E#b#4JbO1t+p6zU(_?-CtzJs(!&efEmOOA?AzpG8NX`^c{!E!$ zw~;PgJVKvfe2G!JSXPjeE0OKO7{Oz57%uoP8fjPv;fKzZ71Zv}d=<97-G_ln5gjZ9mo?`EVMfq^95u2f zk-$OTXQFgZ%g7rYitIUje3mRDRgE6)%jUQSxps0-gdku>U6ZDVyGCoL;6h!@<;+M~ zFrQ&%?mQ&Eoyfjtu#xr^S%35{GyyK#BV;-Ssm^#AsT``^zk}EEoOcrsqd(t%tr}xp z>|^+}KA3GcD@KM67GqM`AsQk|o1E8R_Q&MRg3()K)Vn3l>a zs3Aw2n)X{n8p)q zLuUM3{Y1_`{7(3|D92fF;fZBnH7w#|-YHjEeiZQKV7pS_ebrqskET>Y<+c6>Cx2hB zbQ27gAC6jKHjaz*&!=ZV9=2f@mY zx&0;P!4V4}l=|B!!w)I);TXl3gL5ohh^bf*v7=KnGEqknqTYh-2k!N<%e#lZYiwIMR!zas6ASY#piUk zh|cuVy90h-r3i_Pj!a1ULkQ2#sjd%-D%VJ7)i4G8$teXH-MC_{8(pw+E?+(by;CoG z_PWq2T`*52Ce^dkXrl2of%2QoE~vkC#60@i+QFz>jByC@93ZXGru-O z9aa-+SNCMvyZU+Ixju;c@9@YZ;St>@Pb#T%F(KNawnnnM%?a_FA4U|R9}gRbgPOOn zm3@&n*?wm>?o4uA?!c2VPfN}mNJ~$hoO*RF5pFtLXmAkdDJ!TG*RE;Nnw~0LvNC5D zBzXXnmT}FTHo|zcurUO9R;hbU_0LnIIgcodgxp_i7N+68x=?wKAcR4OwZehs@A`Z1 z8gl$I^90%c+X``j8BKZBbUlU%o0y~r!tTX7hv|Hku6Vb> z3zAJBH5WgBoA_ku@9sIR)wa+CGjm%}z#OYt%=ThtCv~x7ejf zT;Jr_nbf<4>YOOlWF;~@@jcAvs!s35vx|&qenDjGdrT6w1Dlec})ob&`EH_cpOrKq6&#WW1=TG)In%7XurkEf{x^Bj+t~A^t z<}J!BO3)>NkAWJZT=qZ>m~tNHinQyBWAyvqWTTX_6mj1;F+*d4ovCuKm^Kj}DA*$g z+&@Q|Q^4lMiizpD_V)UjM*y?v&V(F+oPwJWrCOk|mtoXXq2@=_(eaCh=R=0vV_A+f z45&oQD_P@98A>ZxI$)FT7%u70w0g(^{$ExB7BY*G@3KI#^nkUwOwdMct206-y2H=r z_R!iqS%4O-LtJn=r}~p3 zAz%qbw`ESqO@LaJbC)B~oG?DuB6t+A$6ULEHN8A-ub9#$NOTyH@cYM%Stuqm=ox?^ zpne-z%`uAXS3E0fLZ3b`r9l%EuBFZX+od{2JI#}&FG7W@e1f=E%!bqpa*XOhYT!PSzfLtLYmW=hNfgiv@dJ)bE z9F!qRK3BF3cFKP^uFttXiLCI}>S<64ZSkCoD$g2GYF#1LlVvzefmrNg;9rHk{nWhY z)h|J|+VF$E-P5N18F}5MKME6%Z;?48hiS2^Y%rGa&rQj+eGWdlS%LM^4;q3x;fkqG zu%3|kA^YC^_ye%A`jRF54`K|9L(elFR$S<_%e~6XR0Z@7-=+1z?P^2)#P_lHtIw)i zNCGiC8!btib93p*wVQn2am7#uh!usqyXv~D25Y!h!eF@aT&jpF`D=F>WJZU1B1P_l z>!zx!zU|(&TQh&Idm%uo=>tk**fT|?o@P3*i@Y+|nh(chV@8pNiG9Qa zrP^{R@JVa?mi#gc0|CkAB<4ixE7&omNH2^Ywa>WCeZ%8(OV%I?E~U4R6GDIqpsTx> zGDQxS{iTg&Z$g{TC{HX4CAwq?&?-Rpf=Q7sN%J+d3Z7We%ncRLly7bL;)a+QeSqs% zfE0Z)vZNWL4L_#_kOoy( z2J+#3aQDQ<06#L_b4e@uhOhMNt9dGpaOfUiSNmVOl#Rh9gQKX(u+2$R&OEowBWm5N zAcsK@o9w~Z#9bQF{%gYdCj7>z3Cgw{8Tk%{%+}6U-e`+q827%T){Q0=z(JT1_juGd zhj@G#h;)Ton0iW0ZlYfD?lkbef_hzYn)8vvEU+zXga6jpjVcd4!!`AP!AVRce^!+S z{2fGX;)?^yfG+mH!;&p5yT1}KlaDnz$GVl%ob{)Hx5N+P8FddA_>TV!1tQ2-5BfA zP~)Cd?ur@9dUx3S3#IT;2HbmWL+@-zaHRIbvA~a$b9cNWQy~+Qxyz!pGd0i-2XoW3 zHQZA^3Fv+m5@Xq%snBP}R5%5AaxLcy{xzJt?ob1i2%7~RkU4uh>CE{jT-MWLw|*%5 zDJVEC0|tqxg{qJ-DA|-j7{h8+(KEJg=gi754s-||xsi)wjj`Eea!~EX;5{EljUqpf z_h&Hz85X>K#2S_2}g`_i0)FUHSP39B<0;x_Xk};{hafri~11<>6!cU|Oc(q>VLdZ$Zs_$6jpY24Y8KkM#^|IPElRrNWYlDl}2k zF758q3nGFP4T6E{LMp+FTpLid$+_vq2D99ixYB9#B?iA=dDBtvPe}R@WJQd&FXZ9f zvYY!62k~#HQUnBe4z~O5tL}+}MeFO>1J$EE3(9rD|w7UDpZ=OyPjfqf4WPthsD4QUP@0O6#n zP&s*^iu*^4L!sBiuMY^&HXoiEH<^VIJd6q&D9+4bPB3oIib`~K=R#wUO%O;cIdDqY z7|2Qfy54{73L5uS%;Wg(QN=z9rDm&!yk>%s&f7 zmgXqoPd_sgMu08f%qm?8dw;aQtJp-mwzMo3C3%HT+jW!Cb=qp7w?q>s%7CC%CFBkw z(g0<^9x?IK)Ih$gpznnoIpFCe{g%dyAw6dtan5d%Fdg215RyTb!1dNjLWW4k2JKap z&S~i%N&5a7gLk=W2eNL~3+Y4iFVgpQ(?GFjv$yCvP@+YGqUA+91wcPRURtV@J=4}r z;N^+#tU{XYqN$z@xq0n>{6u!H@a~v^v2P$!JUQnQz|G!*ff&8qALCAILurfjC_te5 zWyCV4dJ7#v=H%t&Paql#dxrC9p@|oU`4$C`VKRum=33HhUXd^hpS?;d&k?WolNb(U zx-LnjzaZM!=|}`2kk%{dCUp>RyoTUzc#Xt;#J(7a7I@4CJ=2>DUQ8BH2z@aq%*>S6 z^rhG&wkwumiR-bNETVpFo&)~yYcxx~(_bTr$H3F^@rT8#l_Mfj4l`a*&+0Pp7;RXp zmPQiD8uS${Qy(mk*&zCP&HNCHadsxw*j&d{s?X(fP`zzf>w5EX#GN`kL?mZ==+jJd zp4%AbK7lL`4!{c=lw218OonGsQ8zg^>0ByW49W)6*3ixLhhI-xG5r67zdxu~5Oh^@ zBtK)TZM63F4jXPwb|Lz_HUyc3R)|!|P^MS#dbiBo#nzJI8Q2Z)ogboP%v72nK1{); zY_NCDo>+>~dJsw|+zSuQx8f~>I%)3VV2n0vvp2aeE*T?72qof% z@7mtBIzoosj;y@5d})jzZ$;0T>>0E?-9PIgGsgeX&@<&7=Xg%(=bdo_-TQ}+PtajG z9-6+E(b{{oRrE!AM|SPk^|imP?>(WhNcFW{O36tErWy|mWn0#;z;i7qU;|6@_SB9P zw9OZD=#dK`ZnSK7!tX-;v0y(-KD^Y_4!>{JE0Fr<5gE*5`Wv8Hilv)_mM>3heV1d` zW6hsn+%nSn)nYx(!y4SORJ5E?sF-fZ1=3JYv<7+_r^Z=;QX^@`Z15Z@3RoJ`W4XSf zSf0C?ar38wdD4P0fv55A1c0&{nh}QCzvTuGzq0^3bS6JzU<5WzayKv1MbIP^4lVVL z$K6}0;{2IQQnzoOY6Rr2ENH7Say`iH%UfrU=W~(f13)2_q8{sDZ>6$*DK zxjM@mKzD(5eG;Nf|p)v|Cpy^It`6QNY6v2psHj=GRfe0iFLimU&~PQ*iOa#NJGkMmRX3#% zIhP9A035=$q7hcl%Mw^LY{y2(SsT`5J;}9Bra;iZj#j@ zKoC$El4WJ>S5yJmcG2yN@%)5miL#L?iO=Q@0XBm7pr$M#smH`Re0hoUv2Wr+C{0|! zMHxvJRPL44(ifd2`jzgtzVEDv{fO^ChQ$m?U$mFV-e`W>XQh$v)R6-3p&YmmPr&3C zE!gPZ56jRR;@Xv{U2J|k4Imd6DPl>=!J7b$Ui`+zM0vvdsj@7&z0YUU9g2v26;o`3 zmp>7e$#d8?VrcVTQ9rixi4T;uhi!kuH3d7~Z6n&Z>jM}cNcaN7V*<^zIbtC< z`!)(95*ig~?Nzl=(?~?tsx-mtC73r{JTs@MQtk>v-{@->60iV+U{_a;x|A~ZQLO5H z_=ORt=E>6h{PPx3{><~x(-Y^cMRI@T2dmq_@^_5y^1L|kY(Dz#`vAW?ZCfq2D<`Y~ znP8gD>3Nld-KxYH(}6$E#=eFYIc@2(8A#e+c&>)VOsA(*Bbu)ZfM~68lgT zG}%_7*S_N77n)X0IkI2E0lM_cJoMHo-8%-OFx)O)0YwOQ)zrMbmnSMuE_`>EFW=0} zktRV*8U;x`W+v#0wQwS@(w$R~y2ecffsVX{v~_*t4)!;wEvca{{a_3iZY#pBJQ)@PgaGr_*FQg5 z@=yD#wNZUJfSLdh;}~85HI}E2eSaYS)o_hGGyEbkASL#6{OpS$tw_2GAmre^Mq%oA zV_FphS}pn%F%p(5nO9hjZ}NybF3)_M^e0`Uoh2r5MD-FChNnSG-jXy9eKj;+?~c9F zOaAe;AsJXNfrmXi)6S2Rj+$6$QwUsL#x|8c6%rab)>BS74X?(49rLQQ2N>zHSb9Y9WJ_S5hqCY76|~oY_J>gg5Y6CxJ#a6w+ESz zpDb3LT9q}}lq97Tw5+^O^j+^RGaqAsyJT#@_O|Q`r#^b#mAn8k0eJHW4I7C7fRfXp zg5HqkOiv;ZP#=BMMJ^``g8|QKq zCVQmWyfP(YeYeB|rvf$pn(l*eX|8k+w)+S7?O)%+KKb!?QL-&A-l1Htwy}%q6_y_0 z2420dKQW%GI|$x6DzO>il=F%CN>j6BfqQOJUxdzmliO#dqT@l66;>6q^Jf11G6-LP zBIWXTav=DzFc}SUTq@YmiCGzQQP z7WycoM7XV?r$kz=Pi^=*g-=5_8I^xZ1;C+!A30)ahi3ME63NyDMK1!iQcdV9l)R-fN%i19f{p)tY3P__f%XIJ(gq+Js#_e^9cpq>NsG&RW48DC9DBCPCDWH=A`7rkK;(S z=7hY5$W(9yP|~0P?~RVKXifOyP-XIZ4te^o5Mkw>%BqSMh;P?^$x)oq>=Hu{1rZLT z+Jo;x=Q?lU?Y>sS97zEw)oaerx*HqQ^JU~T)g6Z#!dR}?AM)_4!Ic#_w*~8ry@<`= ziB6*??%y4T+`ewX$l7=zIa$YKSaRcPeFR%c)|2HsaH~^AoMN|JiE7Dj5FNRIEe9Z! z@M~zt#j;Zsq)BmKi)ThI7wTf@TWdD^y(wBYU3h`)7Wgz88F7qd^opSGy*rQHajq3M zZ!t->^#B+2n{+s^V|4g!__BhooaZ#qdNVwb{{IGwZTg-^Aa|2zGD}mKATR*es8~So zmc})-VsAN|Su@B5puh>|cOmk7=LUheg?^pnqY-6wPX%(VYTw**ksl?0&iIr&lmor9 zJj)wiO%r+mQVOap#sVBx0ZzA2I!(Ktz{|HYcb7VWihJ|_`gSV?qDxOXy$UKfaW8L6 zfl`yH3del~c}gbmv=I+Tab=J(=tug`VzvKK2P_h<>Lq{uy=_FLU;w$CicWL&T5TT| zGF-RZ_rR`Ja-E8$q+?@`Y_UQ2vQ_lwd1>wyHR3+ zhkSKIgX5m1oKc@=se5)GMeu3mnuFbj1HnZuTcx3~U9)Kv* zN~5kQTasKD&Milfv7(1mQ@4VSCZFUsQK!Q6o+59#*Gy0fxLbqJj5u%Aa#bQQBFSHX zC@!E^Llij7XG8+-xoeRkkjoQ7dT=*#kTt7{8Eqex4P4kD9K1jK@@No~5NBebCmQe8 z^*`sY>H_PR2GeqnmQcaUM{%5}`52G|*NDWdhA$IT)weErB0=Srq*(dk%5fVPS@3as zfTe6}O)l%K-Uo1k889r30&R~=Nyh<50#_z22`dpuIp-@i2k%lbbJASv*~L0pb!mWd zX+fUBJwbf%FNB~*7)VDXuLyFV_Bwu`>&DhhB?WZ0lueyBeu71gpbKJ#_4cY6+oPV) zv@>r9lZE$cbSj7JpIrf=g<{pSN1PVW%oma2zoi*R)QR?_yX*d=NuVcyhF+(H3S;is zI^u2e5l9=VO;=6}icIa0VHoS|Z}-|K2q+PvWN`}L7>OS}eVWY*&n5#zO2QeecR*67 zZ2dNO&{t^Xi!bBYqxcF3&Q-8z5cQujRW_0)DQX`tFgvClusDF4YPdX67q|_r0$REj zcB5Qx+%x+Mm8fmx;HQNEnu~TuU<(Oc<`*^I|0Cq)H})qZK)7I2YjWuX{%^`_>eYo6XECD{#YVdd(ZVbBRkqU?@bV}#`Zpd! zT;W~N-~?Q$pZ7Nn?Ru4boY*IV`1Hh|EVqqyqKxtJYC$x49i*%Le!3oc8GvM~2x6I7 zx8zH!KH$0amrFWd$O%1)5CJ1sC0!r=!D;Pff<-;A32GQa&g65-jDqNrpWd9aX6jHI zXgaKMnwNH_kiB<}h*~-EVJ_Pu$X6pKiB+6CgPa0Mg(*~U5XYEp!n(rfVS0vetM`ff zN6D#YN)=hhu&OL01}@}~lyZbVWBF{jiY z+Y#@iGI2KmMBAKKdbQtCo*SxmRy&#S3)fG{S_L#2O!Ke!j+ygYIx0{Q1_l$6)^`bT zZhxJyUn1>!@n7@W#!q?luYr^!?IXPMN{6U<;DhpnE-@UM09(JpaLV44mOVWQs~7!k zO5`g>?|4!O+AE&}*1D>{d94N0-U~eb9Z|ziq`ZFi1?g6RtDOuN9K-=5ZwegDBkLru zJ#$FC0S%!8dbanyIq}$dPqIy1r%g>1cGVu|srY*NNv`!_QP67KA^ikGg}m+Q*BD!) zdn9Gj&D_we{_;3*5MO}>x{eT-xP4AqhXjnZy-PQ?7u4UnZy+G$dFA@q`=Wvb?G>9h zu9hHE2a^-D8h#|#2wsT(j7#jYPWYUh!{`YxLfrT4+Rq%XM;0hz>HO=13=((`@EhM) z-nU9F2I|+EX+7}(fvxnas+GLj>C&Y?JLN)(>yVQNn9v1kV$dbL=o%9ZLFM&1x#f=#GUf!C!ii5m(tGtVj#dq0ILo|E$g&970RU@S<(xNp1MA^>y^f#MuZhsIqo$Iz=q`E)qka*xRa z(P3xM1LAdKx>!DKZ;V~s_Y2D~!#Br%%fU5k)JZlR)BLzKE`d<8{wK_tyu8ZdV zjC7KueT_T*8%-ER;lKeq|}t5J#j3Q2K&upEQSO__EYQTMrVSu7jJl(2V`_ zpz>Ii7TdNFDp&_-?K09|-t0}nIsOEbS=GLKbmrUdJ6=d?;hix!sXj4KHP-_$O$Dvzp8V=*`6onM z_Yb>T^+~{Za1@N(g}qCvx@!nZ3o|P zmaVwm+`Ma1?Cpj8#`-pZf?^daU6g$~1Ee2zf4}tk{HJvKR+8^%?6;AS_?r#u9RpNj zEuahKNX7#I$v8GeYj#`}<`)9WFPsvu^)e|S9tnWG8T;?vWIV)*hoc?i9!X9YeJB4O zYRulbGe#cPSr+c?hCa!iux~Liqw;-{y>sCwk{ZJOKwrDH4{)`_QYZLv2Y`1SWQLl= zzMbGb-E$=4L>BUa=7g56@Ftp=hB@KO_Eek+$F^k15qD&nFmFJZpR1Tg6Zdm5*oCgT~3 z+wwb`naV>Y&)qs36@B;VuFWk>jOy*7b`kep{rQ>|YS0_4_Nb1! zV!gs)JAm2=BoaXlRZai-8ZSQSmb4(wZddUO40ui;l`G=I^7yL2^ClY53@0W?d6^Vn z`C?~A4^w=5@0$|P+N<)MJ@SvK3{U`JUkfjWE>d*;c!y$vgB?>Re*RDGz8@9QEz&z2 zL=q<-hQxm*Er^@!dRLeE?WloI)zQzv_WYM6CPpEo%Bi3&@1_51(7_K9;UO3NlWF3tvFrmu3BX-eTiP!SOTA*NDm# z53}oFOojfqghM$XiB}5G{Ha(bf&h>Lsn~eEA{t76cuo_z2EEZ@y&uPQ{1h60xaoy% ztD7Y5FD)&U>EAmnFU9EIIdXcQyhbEDg|uzBRgQqGmUr zC-C{mlh~dEWvSd;va!cL`8IHRB&n5Fo!lJ{PT4z;=i8}m z#LK?~I`O|Z{Rzy8ctM4Z42gT4)$&i;zl13T(LJzdFQ03^1qE4uja4lTo-_J2C}++k zgXIxLvvQxD3v`cpMYnkbS+)#t$rxN=^Y*mCmqa+aD(`%O{nVf(y7n43X3b}3Z@Lk3 zPT)4JGHaH-lifGxpZsc^bo%PUa30PPBXNIU1%kzrmCRYVR66Kt>}(A_T_H&N9cQ$@ z%hlSB)MCD^>N@Zrg;OtZGaHN`^i#)VFp=d!>VG5p!;7&*gDmlv$%(=$wEwmvfCgZ) z;P>jOLrUQ{f63eYjMYpja6Nxgn6wxuqC7}>0xYx8BgR-ELi6|-KpsW{|JxWGWN z4~mwOLLu{JQ;(#?^ht`2Z~*vMEGe!?;2x7*4@jnM%e!M8=vvO)5Ms!jo~FtvZ>?wt z)P~NiDJA|3wZzA54Wfu>KRrz2T~kHHvkesQj*s9F7`;#hZ_fINTIQcO_dbcS8c<9D z1!q|I8Jfw7iz3*E;V;Ij!fqX99k=8rx^G)#fyQNBdI3QT9dfMV_l$a;XPa1wq`Eg` zmSY3PqQz2`xG6w~hkp3PKQb@^B1CA6cJRP4M8gBo$UGC^-T?_S^&K>O%?n*Fi10`M zdT{U!%2yA0B+Jwo1Z$=Sh+w(zM3WV^#V4$p~2CnYn*f>L)`qP@m}N#Eowd zB0hD!`Rg4ZjK`kqPyE3k2v~sh%T_AmDz$I(D6i?V$%k7B_sq5qQdgH-&IAz*XPB@E zRa*KwO=ZjR_O2*p2SJ{Y`|(j-1E8DBAlAeb21cPsK(Y*p1WtAz$>fn^H^lXGkjge3 zJ5*4#i7QJ9xZQT|Hq;}s`mpF6ACPb*{eq1T$PN{a9an}IU=?+#Vtwb8z^~IB0DfGO zm$L+ID;Fd6GuSkybAl=+HqU{d+J(`7_oK9PSvobm7=_u|6X?X?D~eR8RGY?4BQ(O`+Ri^oZl}UqJ)3 z%iH(w;4?4NbqHYU20NAgyip8`9B&l8LA+*x-28weCz^iUy+lN<#R{^Y#2@sn0E{FN z!|(WG^YB#@l|q9m_{w4Tl)Ur<;rnjg_vIt6CmS%WsMXttZ|uPDlz4UYhmIkUfj88` zdzW{a15mrA^Aky@L>;$6HbE|VY|o<@TPxX7{!-L+%NP7}uDvN|hP^*$0H?aL0-U>h z-U7KTCf;zYyVr2j5(sLijsyCW`0ss-5+j51R`xyv0}Qj0JFKdp(8HUVwp`#>xeXmW zOdacigxgKxpEi!|XFE7e9%u1)KfH5=>#&B#&xrb##MiHZWAg z=w^E6@Yr~#W@+W*=_>g2^9K6##(Pydyf-6()G!LRaN4&GRU2T1i(fjMB3qvadl``! z8&;!gEVa_hoh+Nog6G#4SOz0=RUA|T@7eTrud951_;JT;!LjWT{~fNvh?z28w4WPK z(!;adu%Nd*aus9dq8^PLoTk$LtiFKE%=I5uX~mW|Rxf-Tz!j{B8C(Rk9990C}=~A)|ZvBwVVX&`hYt7T304tkt%gmR|?5 zF&8gCI~etnOz@QIjUzBkA{Rp$-{ByhAFb-aFOnk* zU=AMXgpLlF%AC5Z2-?L8hzES7k@AkdzG`+{Q6Lu393*FMxjyL4r87I>D@hbdl^ zd^`sSp?dcu=xg{(<^Je$71#LFlS@z<+}TgFzOgQbeq$MZJ0WsGl3_gGA0+T)I~(PF ziST7=cPq2@d~fJs=Ypdpe+Nmws>Pu%=_V4-Ub`2i=TVXMQj2-#gnw~q_gIudiWG9c z_ciX@WpIXl_!>VP2UB4DnyWeb>I(8!u$QY!5D$!)CL1wLSiMeN7g4&R`&IG|_WW4A zdX80qQRZ0h8FZW}m&JUDcm}Phss9qZqTR*s&OuaF5 zlq3Ukb&d~Wgn&2}>pVUnBD{?7h^KWg%gZhP{-#b%PX+x9hBcHhw7VBI>8FPUmD?4>8sA!)gJa~UnJtJ z+HP7d4!aw-s*9|^c4MR-XOhTRzmg8vOu=NYD{VH!_Xl!eK#zzN!~p|P^=VB@ZLEw{-pN90Zdl?SeaL$prsZRDfJK0KEB0#oJm^sliuDEwe;%n z&@vmqaj`~sUti0>g~O2TsV=B%`+bGJC6#!dd5V!>>HB}u*wH?fkGQ<)lk0rI`1_xC zAK)gj5GB^q3&kwJJR03EyLPENVhYl?Zb}VbhD)Y%wM%U(u@aIqg)Jz?lp7bIwrcFW z6>>wxbTBnM@o8dmk9fmyH2Jr6w? z@nOh(iyP@4?9(2V_0FNXA1)xZ?zlB-7YEgl)G`zomsK-u)@?NL*-khe?A?S>T&Yqb zH0=2)jJ~<6U_Mna4^HS&Zcb~<5+hC8z zoyJujkpMFo-R}Xnx%eCMc}{8QWZ7G36F^FuR|LMV#f>|&yY34dj5DDjp#BSi71CZ4)#tR9O~mLaY3%}K7A=c zI3>o0BOUyQ8a)RN`n+ll4_k|Hjf3;Gi@YStQfb@X&;_H` zL>wte3l$lhs+3Z{a9XU;-Fb1H|NCuLSNx$7^v5a25?mh-3e;*5su z3oZwP7@HP5AjzCosbS2L_FG}}5j=oQN!Y)GvkU0x_AykdK~|3lguthg+W*Gp_ebTfm!1ca zM*5@%-c|VswMZW&?a#l%!$oY0z4wqW)7@Vo{3$Y?&t9#V2>RF`DzNVmskQIE3m2n% ztiya8^zt@q$*Yc%x|@%VIO3Xjajm>K$HPZd<<${s`4C|~H)P?X-0hVqJjazY!eq>xTJdjCThoAK1
    fqqqBQ&QJ zIh-AD& zLy^6+UBARDca^=J{S@hpi}o;q?1Jt?9%E*)VwaH@a*HTCij;9)3gtG9jg1^U2G>Ln zaYTWmG0_oiigVt(yf{h@K*|J@OQ7L$V&bnb*BobA_P#K>zjXGT(ys@hF@Yg02h1BF zg5kepO(r2mNz}7jXc7LhOIQTBQTH|l&BedWmh>$WPvLnN&Fk8O@_Ty^>=whJ%6rQv z&s~*YoV1EpgRhfl7w;@;W4nFWVIN;&rk+MFl>1bzNT9z*r3(U&1N6>p^(=J$Q&EM^ z8!GIU9yu0GhUtEufXWu?mfK@{(P8ENN9MW0&xhsx zf2`h%`$nrFCWa1X-;xLO3!$4`_T;jkrzR|RI{kFO6FK~44&5L@GoBSn14^bX@_ z&vvZPD7?JgDbE3dbnq~cz|J9r$Pys(;7vXP3Ga;Il}%<6eE13Au3d|gIp{3 z)7j;H(_vaY8h`zJ=cgCVbx~(wdPSiK4b3rLTkU-zrjmH`6iFpQ5qQ?7yP_FyymPzK zWjigYy&;>AJ#gnA4m(^|e*4Jn!{D5zN(rOPmCvTHJ29f89azpD8OoC#G_0M7a^&mq zW53SoTkAzZ#4;}wyfm2G=jF;Dd;~Zt%IN&4Ed&;JO1LVVx4*+i+9e{ScVhQBF^kvY zhH7NFYTOv9@G0H`6gj5^yNy`R_Tk-8MtCnV)!(o9LyJ6Cm>#?hHX~myWZH(&S>@6=h zQ@t9|^W`cpVvYU$ITzP&PRFj3doQJo_wO#o#@ri_UZp{dzj^5{$+=EHcq6?-&s099 zzFN?1PY@loxr7~|o)ODy^4}jr)GeQ*>q?qn4~tP!wsH^=83uZO?DjYo*LHPLn^RZX~=C zqqxtCrvj6>EkY96(>=-U@1I~#yVo~zQLoA^Xp@CpZN9HXxyGUu zyULp$jV!bY%n7LA9?6RdjpQupVJxW}-kaTL@RDDAZ2rsV^HSFvd7ay%9PJkZZ?=7f zJ5By}ONXk)pYR&mRhVhs_3fdn-pSA86HlJAXK%I6TKAS*H_062wF~dSYD|UC_{Cj{_G8{mT-8?^N?1)Daom{+ zR3EL9s5#vJd!2V_Q<`(5;`y@!n;;!aq_HBXHb@dtFc;s;V;C#`@`0C1qV&wHd({Hr zX2Yz{BW-rH%?3tC3U1mRD7t)lU(b{zT5)-2_MkwHQ zd?Se*tu~~DuJ^R+F1N)9mrQrkrsluMNvp`^>a@fw3eP1enKjp$C2+FZC~#2uAQ_AZ zL($b<5_?^|uVqTAUC0Zmc7LEb&dZ$Cyqv;A8piA4?a^9Q^K=om29>)R-UCO@@M@&$ zaL?^-_=gTT8->b1AzIR7Q_T?<(;eCb73)VNsl*m`K3LiA+4Z@pw8dLa_tOo&%M>43 zu7odj+CPCSjdwuk7L%;^H)n80;@eDw+S$~@WsS8{HKGjh&1`2>txW#fdf^MV!0RiCaYcRDOCi^t+zGz!Dq`TfXEcTG^S89bgg3t3b1<4Z;9UC!X7P^GhzE%Y{h)VP@vagmvQqvRhm$e zp2M!g;{=AyN=Pnz<;;3;bTAzLhIeEi$pZagomEn4hi#x(-~Eh)K3j2hv1a5RFr5tdTtDIom%c`ZJa%`*q2-0r{Nwk3O0OGpylw&o3IP zOR(9+3thG^b$kA0HLL{Q&v9kfUaejr|@+azcQNpG0V5Zt+3&FhQxhS-;|uV zHy)2jh7A6ZV8HIRXg~CdXUQQf6sMky&dd^X*>gM_znR4I+8`e~*BYhYha?SpI0>vGNZsyEwxINEZMD6@*pl~AQHQCWskx1czYoC4B&^YEGJ(Vfd; z7W&gRC3%|>UJJ;&Vbu4;=#OWU$&dK0+B%%D43HX&{6|=PaKge9E2Ts_r&3cxI%#qI z+Z(h^`h^j{!!lBt9PTal`f=Z=mP#5?Eg7aZ-Q+UXp5M!r+kRDOv-z%8f_N+3Cg)+B zR0$Fyxv05U0z3V1ci#H$9K}CnDHGgy<@_@RcYc5=&u`U;;60m>x6~d>M2#9^f|fxw zkg$Y}Th8&2ZdOXLvX65of zPYM>`{-*E5nH`rF05d8_ys<3RU?TynjaBRXNn5YjL!i1uT80OEI$QrTdU2qAV!($; zV5drYv9;W3?bpSGaWhBZsHUtRS}^!^(1Aa9tcE{lK@KqiB zD!GY|deCfhn2Xcqs&dOl2ah9b z)Ir&#DR`g80DDiHC$>LlOq1Gu<&_!ts$?Ep&mGxt4m;n?-R)^FPtIVOS`UH%DNHUYV=W8(-lf+1jRYVhmGjRzbN0vu-)B?P+pz+Ik2Pg_=oGr%vKOW(&FE z#wqcryqs)bi2e4SnOtkw`Qs)v9A3wr_;YUQMBzOD&&U1=?2EVoYoRnUs_PVWp;=`k zG>+gvbS6mgPCAJ$ZUq@J4bv}?4jYrNT~qyH!LnCr6;773C&8@!+=nHO{|;H-o@44> zXANC&PsKaf3KGxt@0A{h?{O%gAhGQ?repl%Z^O!8m-W;yG0TZYqa=QqmgrwBK_a+s z50$`1e7;j`+7NQfi#GJ~L?B)X2CBNKSYGVt%EdHRTuWEl6i@Ni$xo47GD|Mr8zM&M zne2l#ph2t)9M?Y_KA)9B9q8r_8k2u}zlgSCrJwkX`LCy2Oztj7mTKQTfI7bHBtS6& z358PSq3qSHypT}C!G`9w`y!tcx5|?*8dL<%bBk#<#6G;V(4Bd?tI|)6h&6E$+3~P} zkhyEHu2Qg4Md8KUX@|PDUium*B4g{#l%~Cvb=#kixa=2O=9%NO$H+YYW}Q ze*8~qipj6zDhQ^G>{s-p#_ec9!uuVuic-Zw=R_YHp7vEVaa>o$dWP{zgtH43wjn1xnM_ zOo^T=oa9L^J8pG5ls}>o7H|aU#?R^hzCOSMcWLL(4i-U7?vbxfXch?`KKz7VC2>k~ zn0ll#Q~59-w9+6MeE~uWv(}uq$!;+Vav$B%<@?vN9DnOwYOv2;ub7X%2{_sNzIa}k z;CK0m_)$IC`DCCrf8KHG9&4hqoGGu4UZZnfZv_3Fso9II(TN27zj#sv-Z)<|KXo%$ zT88dge}3g|vt+gq)mYCrR1uXZA?ANooE*2g#=Ng)j#mP>lU*Wkyeuy92bCSZ3W;lx z9?P?TZGN7unAJTzY9tUg#2zw)=|8KvPIPE+o__hq z;QYw+1%d-!KbI5s?fK4iHWgPqm8xFD{h64>X8)e(!Q|LHNcDsekz0c6J=3B0`S42j zM|A$zV}1!)nI#dqMoaIf8}wdQaq0ZcJB)bJ`-;OS> zvi(TBjz8U10gh)Q_WXbRup|$KZlVitfFy%Oqm3@@o5u<&uEgrLc&5T_x+2d&5^14e zA^{Z2m$*Lte&_=_<=tr~E3%~v>559K`>Fn>SMJ*HZJ_`Vqa#v_l>ZgYt3TNjGAw%7?Q2ohc{HyoVIo`~+88N(ByMJ#D7w-*orEaojh; zEqs8~>~Fs^?obQ3LU;`&_tqL8i?t%6x69`ktY(_S^VI)oS^UC5p_-lyZg@QeQ(aYo z#za39S!FA(1G)L?)$_&ggVT!n{Z_Uz^5j$c_O zs}o5-E~=*R`g_>VHtdY9;GtPVF4?d_D(weNzI#2DfJ0v|>dn`C44f@Jmf(Ls`SJn_ zg7PnIVm_AGDNUpK&ZI2Ens`X6OG`v<7NqiPo?#6$)N1NK*bqFrSNHe))Vr5mH5X~+ zo&p@FS*cQTs=+}rBdx^@`=NgDGl}0Tj*#@bV2mpvd_1cmj*n(Q2&Y%zxf@FoiX7^x z{ol8HauY17^RI3mYuhtIV9i}>Cy&S1oWSd%X^Imowg1(WghIgO(6kNzx*1Fz zIdW}pSu3CU%u%2BAZO8RxaJma-QVH8GId)iQ`KvH`~>-ikYCPrf~sny;gStE1eCBVo&%PBzUA+|I>$;hWC#0>ca}h zg)k0vHVnJXP%+TYOjPKj2cgj&Pqa`Fjw?@~&PxMHEs?y98|U61+x53;(wi^*nzgQ} zHoD+bS-(%CuiKB2ewh>#e%(|LAP`lBH>JCFp`&%9Aa+n)h`8hUxPxIiR%({{=>#pv zi*bc)Cq2#@n%0`I*l%=lvLA2AkF+>|e-lD@z$S2HSdJ1QQuXZcDMgRYHsKtw+XB!} zAC6_<$K6_u9ws5nl;1Ng>F?u0Ft@Ygu4Ts@lHwSNPo&xhKINqeyT zyMF2Ez01$Y@yH2FR9B`nQSg*t$JvQZkEn~Yr78Dgbm4iAdQn`vrr)9v&k6Bd=(}Sb2D@0pCV7tfNBA1TGX|tZj3zjmFQBPO? z@QtbT4UcZ&UEb=g?qxE)V*^^icBrg>0iI4w6{k2O(Er!mI;QH&Ps5oA^ZcQu+#eNSxDKl+vDDtxCkD|&Ny@Xf9kj< zp5y&|n5te~dr!2=w4j}3n2{afvHEj|#M+4~M-n+LDq3Qv9xMLl!MXeQ@o)n1j?D{% z4rMo0SYkuIwj2EM5}rD&S<=wVRz{7Iydnoqlqj{}(ZNG;4jTmxIeUEY|L@a}*R@o< zUYD@Hl^mCU6DWCevEEF3?-;bJ0!v|p%g_{BKTLry+&$q3Mm<6Y6tBkYbyQodneomK zY|h+>@$EV|0oO$70kDKx#GGN1!3@xBN3LG|junA9jd@fpUDKz-_4s*Euy%Ton~xlk z{{L?^tP>u1^^7Rhq(vL2#~q^FTPemlHhgBa>J|2DIm)kdf=fg`13k1QO=;1U4i{4@ z7NxY%Lb5_i_N$&BeAUD<9$W2jmJOW;<7D>l&87b4;nK#PV|RK9r~)G~3FKIG{{2MZ zgEvTeI_qINi<9RZ2{*%r=PvgvcJ}*zo~H4A-)d&(7gHSy3bF6q0yEq@#+S=yJ$2O0 z$ZUhd-97_(9U=IXs>pR!SuqM8=P&R_#CT}|;T~?=tg$TgCR-j#XBV7$9IV~F1fUBg zb;aTK{MR|K?&ISvI%-HS2W{f9m9)_LkWT(2`thRnWvV4tKI)lAng~m8=jS_OkBzm` z4gnhIQ+4uN^)sNFS|0X!Ut}W#BO^FU3e=k6qSe;yC%6&dN8aY>(^il#F)G>wa2VA^ z9L`gkcn?0MYLsspA{zP>cGd%LVl9?MPQ`bJlcqb`BO9=S6LerMCVv8P5%`A<66?rBRdyR`1FQT28#Q(XV%TJ8>FsOZV{X(Y>NboEw z*Nx_xa-BEdyZ0+bwAw0FUkb#)6hN{V9MvYHmzRmnPog-I9tIx!CHvfP;v;(PjM3e3vbBH;g?xMCa;5R z_0wpy{0;tEK*|7|<_;ERyW7bON@0!$PkZVD%g0*-**w||5O#8g@ zWAfnUA^V+Ez>F73~P^ybQvXUYHwu-K(v07(Da>CGWn-1H~e0>Q?0FtVW{C;HQfEI&;aT)j0 zwyWO0_rBEVMFEpob?!n>`Y`(G&rh-)lEe3bM5_S^u|!hg65WgMf!WxW7BFjfe4Y9r z^j@}B?tAADxYP7VxkF!t6C-S`fpKwU8=~#v9nT2?# z6o&f(&`ZQ!#TM$QJ@hzYcbn99x-MQZK~gDLVl!$JIc}GmU8I#$Mq`_$o*s1i%$7!` zdODeyxJ;#bx(jN(LrQKw{crTDLd|D9<~zi+oT_9Q*+CWA6ipc={kxYwOwg18BJMVy zC)T0GrWprM#$o*k60P?aGa?1-UG|WO)zD8B&2DpR5Dy-)?qnX;Uwy^66>Y%``1q) zpMCL42I%mWu3HOmXu`dq3#P$}(Sn&mNWJVYb`9nu93D#9+EA@vW(mjDiQ9d75Pd_> z8<+IZ_imd1czbT=SE$M;&nU+g>#XhS-_2ZKgNK!{K8410hRtCdp3BzM~Gt89H3j~J$K5HsfTGDY0)gLk;JHW1m?Xm z)4bl326i-=xSsFu2PgctsQ8jvUf0{!eV{4ZFBW;eL$vh-D&=@bd`iIoQ>OE zS6X%usC{KV?tzqmR5+@MIWP4BP#@Qra{r@@gvX|as;cSC&rtRu#0{$`zDYu_orQGe z`-6%*tpXk9TdT&l7xm|ivE#QqxAJKgZIWz;zxvmt&JO%k|1J> zg+^sL*Pvpq^eelnR7NU3yBW*xrPVhtB*)Qh+SNUo>*(5pH^%^6>RX84R7Z8XOyAHz zsIpt-dB3rN8Pl5wKA(CX=X@=*HvR*}{)eos=2b1XzuK3rZK#=r&vEDVnfBLqBV|e5 zsi&5Wp6+Zc%pj3aAelqATRS^dAyuwjS>_(PY#J6jO85Km8GxKWCAiRIHD2w-pY*dS zXm@)Zk)GgP-0;+;QrvUv8CR@G?LteeNYR*AY3T0muH#IzCPG9zM|%D$VlZ;avLX$+ zgR*k=@7-7s(4lcD8lIF_*DTS7j`4fw6g@3z-7&F$&nVnZ5>?F-sy}6#LtN{PSuSla z@<6ZHXfDINRvwkznO-gx%TkK@Dj&0{b-wS6ka1tq9jVgsaeq>}9Lo}V&9c?Y{3a~! z^B2v&0)u=TsHIDLov>Dpjxm9w!|-U@<7b0~GvCSIJ+tK;jYb*+kJ$(F5EhF?F!WY? z5vFIYWU8~5_+U?BD(5O}CEFO3P6z|{s$80R+H-lx34z&7(bpO9Q~_4d(nlrsn^v+F zoM*8!>1B^;wVd&tj#)9wEWGh5w;uW;^R7!X9Z0)`7$j`FsO~7ZW2JDw5oHhFQCeY^ zKH3VK@jlWDAKU-7qQ5Dt&osgZUlu)p4r%hvncAo4J6~^;=-%YmWP8eXpk-AWzML?F zohhB8si74905n`Pnm;B=-%9xbB$J^KndiQ{Myba0#klUCR>)>RnsS^yJnQQu`wip9 zp%R37Pnwc#q#{B8&rl!Dyhr6DJ8kcXl}{6BcEwA0ELn9(pkq&;WjJsA$WfF*&^+TT z~_)Lbo>2;OJnz| zgYqGR3UY7G_`kKSpDH=_WQ}-m4KRuo@ss{T%(>7d$|FZVoIg59*FX?9+PSIc9Lxg( zJ{S~Q#ECj}>)XNT7i^U>oZ)$p9TeOUH4~YfTZ^2I<~OxZF+uhZCf+`k3#n|+ix{eO z;T6-+O;@(5oB}r%?w}BQHQq3$GDl5~J>UeE7t?3mS4PT992Y1n@t`8XD{JU+pKQI7 z#m!w2`(LWSfAl8a_QE);YiC{g;Eq9~%l>oR?$fpj;?(T;r z$My;#3a+lCNV)_?L}#)}SoI^pVT6yGRyX#fcjUip26EtVwuo~sqQ66GJddx$q>)S$ zYEYLuv~r4EJaMKaQUqPb0AO2w)@k&!xS@pE^0cAi?fCK_xPcWE1gULK&407%%)B8m zqeM=p9X0)@WL<#7759c+=bI#Y(#)7>9URuPQa|mu*F5v8=(%%%v^YowTjjj;Y3l>Q z!L$W|_}_lI4w^)H=v+0U))9#OflJ>h)}Q}}>@ve+@$8i2)+;0AQi;7~tT`E%RUe4$ z1a9OKJ_NI|V52#l%Ve55yc#G(c9`nlPEM8Cq{&sWa?DM>shW$N^X7W9y%1=dz7n#4r%sW|4 ze}1a(OC9$~NYys<>N{i&eT9kedlxePKs#js?HD6k8K`_gYSvAoay+45naaX&^-1mp zj56MUkp5i|d@^TlX9e7xPa|dD?;0VuT3no2Un@Nye~^UneM6#}3cq7`rsXJ!{`eY* zW?vhf`G@Rc1eS(mfJOmQ6k{~^hQ-@ln;+)99GxxJ+(FIpaKH~3{GMhF6{SyC-bwVo zVo*9iaDi>hb+MPDa(PE?t2Sc+yO<5#=#ukVz6hywR(nInw6t06g~>5`DqG1kCc{ysSzTIu>-nSP7xrqqz^h){gEN6np>2(T>NEkYPsKg49vk&4lc@S4R zFl#2eAjcTQHuXzejQ867U!P^P0N~Tsr1c$fh3#mCEP%&fp`)3c&$i^tfPpN<8@qhD zm0nYBi=-yave?b#BU2hDH1l+a7!)UgSnhF?_ZM5rrdZ4 z&)lP@ENtBNjtL@TGJwCQFO^x?UdJHXgvaf(Br9zNH4_rt(!OfGi^fh4n|}YJe7@*E zWltb?lp+H~SMetpT2x%{cHgPf_qn~aI_s||y0mGyv%cL{bQ^!_cH;e9;SF<`GLGO< zALmG7gxg}T4!Y`)1s}w6wU-Gpx)C3t{<25B=?z*yftc|BGi&WFso%l{`|VOytP?} z_E?d{?o_K+d>#Wg{u$5lm`yc9k8#E=r-EkI=5|SERM!m#KM%@l8o4E8b_QRH-nfkQ z?ESd}0))&m6p8Y7GOjI4hlQ}75D-{HYm7IK>JDAsNn`i-HolXVaz;jTR%`&9Kjtkx;JQcN6>nJZ>B9q+uPf_`LjSe|C9T6 zdr$Ixcnqs^W?Hn($Et>Dyy`mUIOe{6;|ddVS*he{e3c%|B9%8WVWbpub9DcVPbhI+ zv}z9Gnnp%G52WIkXo*zlRfVSn_C8<7l)wZ|i=MQvk-&0weW~Zt3c;L8PY3abmb6QO zgLmn@g2(lO4zsxdWlxu05RmqMk^QAPDC**^ZCADSTEH|{ufrS|bDSoFup;*a@@~4A zCto>;BN+Ifymi=X`gqydbWzZv`<7Q;18|N@@;y?!t1q(ykLTC=VOc{&6__F7=TJ4{ z*f*KwVE+6ef8&R}E*(CGRcyjP3`V7^aH(>%b}ioF-+(SjX_z}IM;b9l_8N!B2Hj)+y|=(y6wY(ElKC~tkWpq z)+>(UF{nDf|4ADVqp-Xy33#Nyo#oY=WByC4rv<6_G9GG=Y zfUxeYR6chuF{g^2J>bP^>F_~?L2p5v8ulu;;lO2&Rck*^2s>9Gc3MwllWCc>dJk## zw2wS2BeN=X(W0@cOO&1xWjDXN#8fDXFRoHsBcmQSQmK|sZjGv{FE|*OgfEW6*33JP zb^fx6fN4+y5p>t9$LEirp!5hy6f0tNvd$E*+?ZVbEE zhHqS+dnjF-jH3jAf}E4gsRVZD?0LSrr{3fXWl&F>oBZ<4I;u#!NLD!6LKLlwxj0CU_PWE2a+5 zGpk6T!m6>}u>!lm;PqHRN6D5&>2mH3f3@i?GE+&<{_C!Q99;&Hv(}c|NA;4yM*w|B zJFkpbkPBQ~6|&Oe0y!LGJBJ~*kg=jU3_p#VQp{gOZFml_I-oABxKtn$B562Ci&?$o zm%`DLG1q zZ-kmbWXHaT9o6%{H<1!6f@30H@-Kq?RkKwQa7vPB`9a+E1%K$}2^bz*?{K+;8CUU8 zcV;wV=mT*Rh$dYa#9i|NO9&Y~Ct0WUQz+@4loa+pS4o-udFF5tb>+K-v(Kk$9 zi#ocF0^fA)QCa?Md)&0+XY^1;SCLlgl!S7E1@$%6T9RC!W&9+i@c^1{{pbbf)mxq@ zi}g8H*#PRN84gjBROgv*JbnfI&GbgkUyX_(I3)i;8I${Z%*IN|+?kA&7n*wJdn#Uz zD;XHO6C6EHqkc=O$@zG9-FtJhb$#VSp*z0#-P#&Yb&0iyJ`k9vf%=#|7U{)YcsJr8 zRPvR>(Unc`?_Unhou4_*0N$iIbxg*sL`nmclpBx^)&16ZPd=3G!?1~V-XjamZ#EVL z`W=<1O64&xGz7Li%ea|IY!RLRbSwG(M>#?7T~|{8qjpox<6_(ly--4*1ImqqC+ps1 z0!-x$|Mv2Y2H^DaBS(k8UlqMbXBqZNbI&DC+6Sa%e}^rO$uoc$3wde|f#5dd_RH7& zw`VfQ)SYe?a#pjQv63m6_5y zTvdqB0ERqnxHXDRDS8oFvv0pM=8ds|?QQ1rg)S_?p*75&e9%@Gj@{>*OS*uJSC+!= z2Fl2coMNABv_D7>0)!pK2?K2b9(50OlgWt>YtKQ7hKtBGQo8*TjpIV=^Ei?7C_AII zJf;G@1BF=$mLA_Xi6umVM2W@U^T(A3ta<`HipK`&9F?Ah7!h=*DP_|cTBiY;yTacN za9-JCFwEV>-}@Me+~#tdB`Y-o_ZVTH!K`+SS_(SG1CYPaWVvA7zUOTn&n5Q2b+{m>AGtl z0sYtH}aEg{I{h6SGJPEPAk42rc z-E{Vj&}k?2X)BI;;HTV9$7-$Pou8+_hhaid86i#=7Z;m5Mxg#txB{`EK2xhPYt2h> zq=|6`Wzxh~_TTbqIAzwyibJeuhhu>{2UKA9<%{WP&2s!MLM_-qtp+k^gWIQQ+1cF14MPy^Cf)2Y*!x2M3M zM+2sHK{~qj?~>6Jcm@bOfY-{9AJssNf#;vLL1ZfHnYCZRx8698a_*7!Iyf32)KCC9 z&v)Pn^S_ziUzu3!kzul0mE`>Tv`N}%wu$i9QnY$im$$cfoCKoLoE)n7b0pgz`vwwaIi=9B8bFzKuXSeu{lvWT%cHq zGh!t^X94m|4WA#zG6!R?X7P0U6Qlsx-LR3pQfP9DC9s==IV)3K*dJ(qk08( zcj#d!tKp~^H0Fcx+b|@LsRM8_=*fN%z9b4^3o2(TDEdIs`29*$ZH?potAOK-Kq3^h z{=Ge`PS>#0;B3D;-yt_wZ!h~M(Pdv1%vtmX^1yOp9V%#70(@*7hjkpeL=v99!c^eq zXkq?DwW;asheMTyV=WHH!vaIxvtd~h;5f$$-ON$Q-X;9lj9breIzhHEo3`%1=89&X zLAjzbEadOI_^ljOj6a~%LZixD>Nk`{^(McnOBOM~YPx_!lcdY{?%$Ta7Kfj)7y$K3 zx-%gNI=l`Q{gc$vXQS$ai6iy?{rKZ3H%#ADI;e4MKMbC{ja7Eg)OCQ)t?O?QeF}sA zwE(64n9(#8bE)g{vN+Os5<`EwsSuz;+W_q@DwwGF9>;?eUN z0@v8A*COtr5fp4UJ;fP8kF6Dnbl?NDP^q(64l9QsP@gdY*1nff)$8XnzG|&SN0EgQ zHGVR;v(jX>=~&8Z&%`+^ulUR6_KlSeocLU!&^yjxT7Wl^k$pq5$@jE7v5e#yP4&0XNGa$;yJ6^V}Gn*&8 z7)?KKl=z%@y~^I-m&}Z&yFIXD&KY>i#_hyX%^R26LIF?U+TbN7ISR+RZ54>eE}iVc z!7ByPVLk#&MFJ2clNvo?WXXdd!6Oy}6q|5<-MV)D6)0XIKWM;0_oLsr;sgbf!l)O@ z6S`RJS51A?FAu8o8_4Zhe5SJNOsw(dm=u@qxj5Gc;z%y0CR;fGW;12 zy98**pqx+{v;v?h^KxywK&ZxjZJJhCiS;tUXIiH3Xmw>Pz^ z;>F>0H(UdvWG1WH5BuB0w04q#p5u~&8=ReYli~V`yHh0D@qx-%W&XDh{R!i!^KomL zf*}MWVPvA4DJE91epwC%LAWE8mMgTzGY#zD$jHH>ECo;4MP(%#A3hYJ>wJuG*QS# z*>JV-Bul0Kuw0f%F*_*hr(wTP`auK%&K4r?>3MQ6jQaRij{@FW^O@w~h?GMLzxY|O z`m7!4Xqy*#f*nwjJudJ{{Tn3^KL-Puf@ycsCN84`?}pgd>+_ zZ+QwQmU0MC$&gxJ?n}qH7I#j$nV>^$jeBv(9Uzv4CMPF@Fks?CEzz`ovll=tK#Dr@ zkVH<~Bw$t8ss4qE^|?$9K-pTqW)$;F@89+p-Uo1H$5`_3;~#RAItF=kSp~KxN};{b z>We<|(*+emz8Cl|>($QuTyZprq+%e?lFsKJ=H{@qDy|x6+E=d-kKx;Z?kNv;n!X|* z%rn+KIl-x-U;wh6jitXrlN}W({5vyIxZTn3R;u$Snt^UcWLcn;wct`x?6NKVp5`vz zV1@JiDQIJ(RH%$3aNKe}Bf5V&Hs<%KdH&G->mQWL3yX=UoN4>>TwjUJ)d3ds{jDn2 z%@zsd21Q3527htQjpqe#EA$E4zd@a1BX}*?75;S3h~w}-`Ec6744|O=DlfCqG)?E} z88e0Ag@MkSQoG}kDz_!mSFAYDM~xvA&DczBdn%=iy7is#ORXPT5tE38eCZX9z%7D%l$rKAqu9@F* zpKNk|{`+G)KWOQEQK0npfRz@gT72ww75$w9=zoEB7ROdz9hyfu3!EN6 zUR}~v91ZVK#e1p(52-wpRefd6U+##|aiS@cHIUapW@va7_XL^CmbgE;>+V0pX9foM zU!kL26R21XxC#~kdCosS`{&s$0q}WN7ZAmB(X}7JSW2&AkcZXIsTCcbBgVL$$>4Xb zgWh!|jx=VXBL#XL4vnt@CI-^MU|KE@0O}GzjSOW^2g>&{-E!A++AG%ZPl8Y)>EA1zq z8DBX6aGrj@#{~3J5*qj`^^WS(_A$E1q~ft}N9rVoD+fiD&d2Z9Is8h{rHz36F_F19 zu%Pv61S~2?!Rzic?h4MTTfyP~LtpyuyeDJpoiC|5x?WekoE(acXl>x7Gx`d2xi4je zWim#SNtD(HJ5Nf_?tp{aZl|uL9bPPD49>A{s9c!_P5njh?Z07UfqJml$;>$O4GR6A zWvoUqhy0tC;ClopBOe{kySD0=Ekpb(Vxby4J5@23{4c-TUl;3jC4@qQui98!``^Wh z5zGr@b;x;212a27bXj3``P-}9-sX0{PhjZoYIOEe&u<{||Ja$k7wxBMWWKls(5L71 zuJtmV=o8TREWJ1hJSMdZtyBd(OZ|CCwHVSlQ z*rkaOxup4#O4kD`c-M;$M&f75EB5mpmwUy7vh~=(Bd5vS#{>HeFt7l0RdeNBJ=p@S`ZZ2X;vTybXx24i4cmd-mM0(OlGUBnbSY znRg`r7(GTE2vyrR)A6qD^7cU?&^0Jk?Ah^ufA=4QXi5A}?|JBvSqVBfZE-u9;Ub)Z)g9PfIuH*pXJKe=2mXJ)&s`7kx<|A^ z5SX1TpeqCyXuU~E-M`0LIzpBP(hfL#o7?Uy9kn}hyoV2A|L3oL4c+C8IeS6t>BVE% zM)ShH^P6Gi{R&;@UjweCUw<5mKU63g0eH!!?$Gwjo&@%A>FjrfKr;VpZwV+$2XsLB zLcZWtfUwDZAox;5!DSi*7nn_FobWjwHLC9e;Gr>+Bc*yDhZe9N@g@>NH=C_&)!(Sm zfkV{^Tss$JaF!9&@`vEbp@{ zfM&I*JHeUI*8}XXfGGr$T&Rv7=s$ZZWHLoE0WD&1b$J&E6!T4H8lD&qAoGMGeFqY7 zrA!en4S2(HDkR;rq06bmYKPOr9YI1E)k z7*iE&D{A6{1DyeZJ_6({3G82wb^+GzKbgj*lF6!QPESouwSD@<`exvswSwM_DN!_e zef@3Qw`07j9GjQhMoEZL8KY0B_r9(xUFsm;V!@gLd!c3XuO+vl9SW zlXwih8XEU;igNS1_DX-E!)`}3u@{T#n5Tz_Y_p3q)(a(B7nc)lkF@M}iQm9jFx&4v z5>MVz8*1^Q8!J#W_Iamj$-iPbRb#$3zVGaqWB)c&MB*19Y2;Sz8Yeda=`a#++LQ~_ zAhiea;p62iIiL(agi0wG({h*N>rB3EZW^>C1;iciuVTJ*+TQ1n-4Z#IgdANh`tH~n`3r5rqAvQR4;k&?z{!0%OHu+2*ba(BZT$H_rYj_PMrdg@IxI=!e4wS#{AfGOb|J+q774ibfa2-}hiAM6I<>g*4ox@7vyO*zj4)9#5fGUGo5|&~+ zTu$?uiHde~Ls~J&4%bEt4FksvW}J8DL&k~pEG@x=Z9KC*_5+2A_Xri@pE%2IbZnMA zvV1m>vCY}$`aoZ~JOs0+995!jb&3!a*CWZ4^!usN6C+w8Z(JBK3`P`jcgF z-a0iRu;s&W+sT#y^_CUg*xz5xzXQUYsqvS8j|<=>g(d%V1{6~QHJWYFICN^VYu|GL zS5Ca*@Pj@NX$L5BiPonbWra z2@WLvzrydLO(cVieU;^ktxjGSV6OaF*z7WyR|wYGQH(?_jlV?XI;&21ujY{|lWjaG+G+V$t8u5=Ez8lqH^wHn~*M6@1ZIgubx`v_v(S z7$)OonSfH*tb4SSom*n)A|~kw+#i&IvvC7O@F}ITMYQ^PlL*$?pL~Ek2Z9eT&cM0r zMzto2f7DW`$oboiGmp1(ta=9`Sn89nTWvodyGYcfYL~lw*;inGaaGoMdEppI@gk`5 z8M>Cc75n|wsnBLECqmY1i*LDjNIzmP9;s%DzS_vM{Ob0oK3~uvHM2^|aPJm-K9hq7 zabk71OLT2@D4oM@hY+9VvKSCS`UnK#Bjb@Yo{`WtwOBxy1Fv+ExDvmk)#P-Nu)l-C z7=qLb*k%JzkCAh;43jIYJK*t-e^!k2yDk{irBy++F_iCMb_PRH&R0DRqA|%BI@g8O z3*+&!4(_Yvcm}za>bz-|pI<>)M*s30p2KQ2#o&96hP<+PG;N~uwCwQ<<*EcR$#H8C zgA{?Mt&ng93ak7zBipgedY3q^_{RERpeo4K8%isZ;aokRFx*V^Z}LPyD}!wxm>3gB ztOIqReg#v*nC;$4)8<0yOp$RSh5g_Ve9jLLwIWKHiywG2a&U%+8{=~8SqI#x$}2S5 zZ4(+HVPu5WZGAFrHno)?Ucz%4t&i#_K36`>-dpZ7v`uC+=OYt&wZ)R5P^w9-T32z= z$Y@yaauN47gkUr91nB(=pB*EDqQina0)b?u0c2@qr5HHo$;fPRGJPH%9^D+I=z6|i zK4^qPb=HQPTtK-y^yJN-a;v)+@pU&^MKx!xY7=zBlqY^S0OjmUCsnc@keh}E?gbZ- z_Q>Q8l^7pt9>GhDekt9y>uOUZgAGND&}ZbcPcCtp><{x(;v_n~YGe(|UA@_ln(a@% z>^NXDbXMrlkMg(U3vQktxujI^&)vlHkXH!Vl;5EqXZz@Dfh)Pc0D1i8Y)m^q`^Bcoz}@4m&=n?1j=6&&d;ba zpqMxE%d#(;R2T#Fb`06~f6pEMy&P}Ku^^UizaL%bUqZ<4tU*(Y{aj%X`KsTt2$Cxe zskhm*=uaO;L{%e_8Dc(Xu-#I5LV>Bx;=`a+XO+9RSj#->6~}4Y1TiK$Z=7*3Ijqqg zFws5fOtD^P>9^NLk#V>044j-L!wh5I?yxRUZ&o{4o6bwwSYu3fy{J@+Wz?;zhZcI| zc~Bj>oa#YSP8{dap{*Iv){WZMNgQj~zS+oUzz1U@I_! zL&OW4Tq%vKdB8|G~9Y=yXTMx%2qg&2uM+^oN zl)?H~H$)1Gu)Mvzy5ZEtnWu7sL4imAXlt^$b3f6R;}_6d`B~Wk0mebw{ej6bF@Z5q zt>k|kO(u$+U$$)!dl0h_DX%uv_Ay{%PWK0|36OtmAh&2x(2qEZW2uix)mf#W5^@_Q z$9*b8qKVf!JKW4uYxJHD?%`>=uqp8H@R%|=xj0gUN~j@NhjqhOr|ZS}qS2EuGeEso z?NPv(u--HXBse~D#Z4E6zT%ZjKw-EUtn3IhdIx9Q&FosDUGBWa#T-=-kGY6y?1N5 z&}7bx5XwMTQ0F%5Ut|WfLbrn8=8hG-CWLs!pos^6K)2piEiP0AO3NIsmkn+5sxLrs0TqvJ&c+o?NI}WUeVbVz?1W?pxrvdzw=7Vt zhboxLCzG97_}jfvWM&%dfe)c5_j&N-+hnQ~CLVL74d`x31=6VT1=XwLIZtkbp|p?d zvRNGFBY7hmA{|-7vW3noiPeP$jm4Z=pb0D&L@wL==NveVHBuSfByn7hRpp+h%@^+) z9j1#mHdGLYDU~X6RQtw94mxnu6=oAhUcS~Jd#IQ>Tc}*k771;r()-w8+I)A+S%U`@ zTC)dun(^m0zhwrvobQ6-$JRs=yQQ~37R_=X<7_)XyKF1Bj>X-J8nl>ySb6~w6l9_M zcCv8h97P0njQ|Wlyu|j9t~$ZfTgszB2%zyvcxnfmddR1?fT#iK+Z;Ft)Ennr0+CLCEf8@3r@h*|Q#Aaf$oyap!YO9t(OQ%aT%E&arLtvQlkMzg z0aS7jO(R#313cds*;H%%Wp)W3RZ&2zTU(!e)dl#CNu$k9m*?Wll^AodaaaR(K_*Mg z+&d<(Hp^iPXcP-5lAXS7vBGTZEzzukXk^}LJliA=6`2m`_Qe@H`%JI{u~LP}^aL_a z^R|k^ugvI!F2d?&&i;>_OkxKbG9Q63c22cqZj-vrwkAmQkFk?dLiYgJR9{I-Vd(=~ z8m(*V?7FH@9GQGScd>SsCbiB|$s65gjosNhzeKTmsof|6b`d*Cf)ba|U5#cZA9MbR zCoMkkU@xiXJXdXps7Sw0cLF{@4?Kr1KG0JRYB$S}(ra=9>_1lx_fogN03@gUfbqAT z1dw_7dwQ26R9vO(DogRxGZDnqB20>R{2b?z@^R}xepyirZGujJ8&u{IkD$|52g)_l zU~MFv0qxI7i3SOXB0XD-M6;^(CRb?T3tb^&Kquoc=Z+v-_d6UJ8QEg1(PGJ8jLmL+ z)YwKH{AD3>A!g$GkbVqQg;iRCBtppXa6=ASZj!ogo7gr(i2j4A zh3sHKd$MemhfamgGWxoF9h$J+9VEN1TYhVV2|mQWmx4@;vg|{0?cof|yA%FN-H_is z&Sg}y7?cW`kpzb4P4BkK+YSlOKKz)eo_SpVC$h{%-LQV#ifpcN*!{_<{~a~@AM?fg z3g~-+1f2+O_i7@Qbq7saldWH%H9sOC(`|4#+{o<-Hyy~-qAoY z@C$+tf$O9BP*LS{0|G2_CFI_jL5fmPc;oh60Lr#;WIfP}|XiU+3%~UEVUQlX_=_tO@2>&Kf)i3UcW?-k9 z#}9Z%frs}GJv3pY>TLVXYy}kF+bX{AwN2`(XSDoszLFUE^yi8?zhDFFgtLWKCy8Wv zG^hWFNyv{?M5BwOWO~h45>cF~ci<^`VYG12N9+Y6)rMjQ4L2m>&(i<9iY(cJ4hOCv zO87BIyTLw6`R^(TMt3wFAt=$&Amh*$OpO59HiOX*vs|Suk|kzqG>3yVDl(gQ;Xcjw z`)~7Pm8p7iL3aqWMJ{Xu2Or2h+A@U0GvNkg{5tX3N(gnnLSArXKtuaiWvKaXSO(aEe>YD3k2OxY5H@cD{Ps_vA zeLe1k?Tq-BrTSD%r=8dva%I zine_UE}cGk>nS^&mc1u6hJ4 zSaQo2bPY)B%m_Vs-Q~Hxf|Ala zXoTE3I_d&^TZ!dL5otIbtI3obn5Uk7PfyRKFLe(eK9rW;(z0_TYy+LIvgE^^#l+9a zIXO8Ob{8nVuzhD2QaE6~#0%|yp4Uh4>hV!&!|qw&fr9KS?8p$TzK%@pt=Z;cHpmIc z(9nDIE6N7?3Xy<%c+qlqX6N8QN^aiyc!vlymQf!0AvgM0X?BR@PV8l8yze+TE(YM8 zKU2iqZ^?AFNdSbq1>0;pl^jW;TFny8XP6FH7*3ftw)hBsFQVY%+w=u)cC7)419a?y z6FL~&y7-UQ@0^I7UkciFi@upfUdX=wJ(!)rH!xDE^0I4KK}d}b$8L`?ptcSjQF5{t zFST%osj25TR~~gMxTgsO%pdR8_~#IZfs952U`TX`7_)I~2BDs^vho7R5j#L*?$R%S ztvZipubxpX`is;M4?#$$sFm8jWbe{cPFNl2J)%3WKr#b;p|rIgO-)|C z-B>9#jC}Q|nYAH_t-a%>TlLsGNV{Fojo(0)e1;FaNjz$I1N`l%r|>550+CcH=zJsV zYWsLU6FIl~y`doq*@{1pTuE8k+bl74URf3_zkKk{{C0LVud+c$?qgPy1liq+S0LZc zFUZPMk?e5K&ZYoFKJC$Bf8tXd+64LFwaMz_w-Dn6ir)lmW_Q4vkuQq;)(W~liKvVH zv2k(z`xEQCvD`8HX;fd@Vh}3w= z<{qO~nOq9u6G4b&WE$*Ju^GDgFN~Kpo$sptcA4;e0@?(5F z4RogfYPG5XE41NaOkElM$rCCvpDvN@Xhi*4iA8OdU2f@$y9kHrfW+9#%_&jI6oCjt zpDPuqC~izvOW42Q;K0q7chsC~f%#$xtkOL?I(kpV{29hqkYG?XMjJEe_T%LuTdEk1 z70;gn9O9wiBeGpkcd5ZI-0h{ot7hohw9Xl!b|u}2a+1+ zHa80op`PD8KR^GKS~zl}CLh@Ef!=ltZ>f==FI$M9(Rw{f)_4s2@bC~FDH9Mw5nZpq zQaf0y?d}4KANS@f6dk^8u#-WF-L9t7ZU@d@9RP;mVJe#uhBT;}T3Y5HOi=CGvcF5* zlTsP2mk;fB20cl&^JR$dK2PV%)8TPD!P)OEwgR=?C(s@gw1Dk5z;p2^T8w7PeCZ2T zriL`qcs#2q9}riDHOK>*qxt@_cm8t^Nkbp}>guc)X^fi5fh|D(LZ$CSlA8_>L zR|zel33DwhEHnrD-3Pc#k3&O4%fLw%pif7oQ8v)|h*mc4==B!Pie^HN%h}d6C%>Q| z1qMEs0}~Jo!bzPRQr7_@_f!5aK=8tYrehI+w z&D)SyX)s^72g*%oQkn8YZv!6(KO}kEeTF%r1STtgRk{he7+^Q(_6cE9kfj4a%?QSE zO4}EiA^@)T^S4YaY7EDf8HJ|HB<8XJ^uN zvMnjTY$Y*LC|d;LL<7-SU+UYw9XP$94}VU`&e>bJfD{Uqe4An$V*KP@=Do z>=ZYiWVESpMn!+KOQK`ZoW_~BL!l?H1m0L|A2Knx7gSxpte8`X*PZ?FM*8&kn~Yhm<5ls zRh5vOjfF*6n61{%&o?y*CHUCb(QvfXKeE095or(@zMh_WkUmCG;~t6H_zR^FfIhdE ze#b!T_?Z5E%F9v}hFTDH06h+GvC>aQf#vhDFP6f(b}|OeV(4`JrMg5 zP~HY*6O-=+igzjACGZOg`OZh(0y8(*w{()(-3K-}WS2cQU5E!4ABgi1ewfT2uD7xSH~lBv=ec z0(S3imj`sbwS9R(jwYEaO?G^IEF@e{Xhq;DgiI@$atA=p?@G$Deza0)aB2;9yNZ?C zmE@M_w<`&(U90DkzvBHUr!(j@iQ7w^`N=-N6+Z5&%nqkWJze$-SeWV|)x_qw-GdnLRuqepEM%`Pe@yZ-8K2rd5S@ZPIT zO|o~HZilc@wa95p8#T?@@>K&qSC^R+be*v`_g{^4BTkivV+Nk2(Lbp5=52XlWFEff zE6#nTzZL%1F0W(rAD{o0bWra*`6AU)APx*S+s4eeugwPsWvZo7gvjPZQd6hd#kYvg z1bPmLQw;DAgrMMX@r4Wy4vR!2<}M1QmAAm)Lvw)Ga$YR5qU>EKHhA^>LI0cI+?+dYGBTe?GNTE z@-&i}>|SS-3-YQHQR2m4FW$`F`yZ5#>3)pVIHSfnw^=D8L9F%oW^g21tf1*D$3PtC zO%m}xL-614Qleo`XljTzmPn{xGxO3d3|FV%2L5nscxU~y+4V`0QF6BFPX+=KtP&bY zT+`$!rf<{c$~O<7PmSKb{aVUTyC84tJJxMM{GX5f`vWlWF$r!u{jhddYkobO$~aF= zST@m(_OQAZ0?y1WPIy(H_b^j_D&P$w*#9Y+eRu23r2Q8&NjQG*yBnDPK>q!*iUj*{ zOa0}JN^Of7Yg_m2;JUdZ)2EK{65_RAXPAGj;W~@Vy$^+ZbS9_7lr3Z5sUDbI^!$kpEOb*T<1611{Yc z5$n!%K7UZ3A`~=Qb3S0yP-olGk~UUswuv0^)@sqwtI;V(-JJpVW-`ESJTXDKgCbvD zV{i^2)w7+V=GIMj7@1o$dxH&@ArTK(=l?pfzcYi0jSg`TxR1QUtO0K_9RY9gh$@5} z)20_r&2n-cGAAIjJU27U+cMGgc&6FG|HrB?lR~2C4H=VS3cHKx(Aa3xGHICI^s(FS z_QTwy?gLxMA*5p!{2%-K`(TicEx?y4Or-Knn)}+}1R8QqF>*g6@oOPhM`DU!Cfn}R z9XYbIGYJXZ2%H>5aCch5O}iYdJl~IIhACb48!V>Bb*K+D zic4J$WI(uheCYj{3to&rMXvZGqP+_a>me;mD86O<&24>=8`GqV^}vE4Li}rUyc}R{ zvf`K8)BIyR3mAIeYa%V)_@He{6YSsG444^bINYEKuUDA~OYz1}B%eE*e5u!a@m?eG zE`!uV-(b7q1Kfm|1~(xKG}H!Cb{`6!PmMQ^hklh1AMm@vEjur7pD%;}vaYPVFHK+n zwTAZzH;#KI;dqr{_o24YKR5YBAz3tH7GcPa=TgrF@(Yp+ldqh)FW$=!BAF8IH;0eh z6YXdbnHA&xMSg*P`U?GwoK>VlB*9<}_Jd;Krw(e)83Y~{YviruKQr(?4EDUKTA16$ zwN+g$o|H2t5Nv-H>E;M$Zv5C3 zw~R9B6uhIz42L$bJFF+Rjo*U*-)eQsy}xrdlXZzYcX{JbyM@4@eaPV6zIHQE?Eiic z7B%=CIw21^E~W#@sZ`zr?n}X5s(U3E<$NB+x8wIr2Sz}8u6&)sY-4O&I;rJhE=IRe z5?05$Z3km>JEDE3I-e+37Lr7N6bYeH-$5k&`4L@5v(&MT-_Z1%>?rZ)2=L-1Vvl9k~ zzt47mfGtV-+n=61cssmxXy>r*5tvX~=34AOX7|kaKVr09Dt?!^1;J;UGrLc`h8q5X zEY!nzan~EC3^5x0bGN`pl1{VnAD_S6quQCdd2UP^bQE@TEeCF{00Za1^u5~E0vo~~ z-=l~(hkh|z5{c~}GwOViBD9KC|7v~)={1ZwA*Sh6{pj{I#E27hIjTxpXW*A_Q1IaP z`ye)sYC>CL-BSOW3Y~kfs2$FEz7I{Km2Ze|u!;st!K1Aod|A3RHn%ts;31g)?YCEe zMWl#4bKxtl9z(Tr+>`|=^#dsAxpzGH_|NK#$$(~x8T>QDJCjQqVP|96;y5|q;STN< zhrQuATCtnrDpgEwW6V{Ua8UVZ&+>GNz3Sl#>$$eHehpBGrp&wX7+bUdNoeWoUi15*#1DV1Zu2xoT{ zoO49<%R*x2a|!$!nrZ+D3dDfx-gpe@C}C}1y;(UzmC$#4naVnnpz_zP<-7o~xH6aR z)2&kmbD0N!ysMR``ryLg+*FC?u+2;DBb@rpeNx;E+{Hd%cWdhS>{P$bL)f7P;~fn< zde|YE*{%(jG~pqLbGZJGpLhQaOryu@JW21gcK_YYpg?ED3GH8h|11*L-%G9ZK|WRn zhD=BnW2$@z!M!)v`FX~(_v(2p9)iovuC~Vj{@xW^;!dl^QNNY2uDgNiN{Zb@zb~?@ z&u06V?EPu``Up7xv2A|?Ro$NU!*>S0wy%$*F`(HVil7m{*mr~k6&7^hYsB=9 zrodGG0S{D2zT1ug%bS&qnW-E9lJ}v|^#|9Z^Ur&V$v<S-X2)lg2is}ai%L8bv|}hiYw?_MSI@wJ~*mSR&?87V zOXMQ6lb^OHrvPJ{&)O=dF*Mx38EA6yce*~gfORjsgnD~zn5+xs9}bJXnld%qI2 zAw*Qawn85bM3<+Li+Ii(B?F=Gks=dm+8Q(sQHN$nJ&wn-u0GYnl>P@u2FnqNar_23lh zQZ9}kzxtooO7Z3e&h_C_d@{)DrcX?_8S@9Te;~&{-@vPc1dOmy8^vmxuIY~dV&A>& zG&u{8+&7m--6mSJSEc1FoDXbs#18+8}=E$dho5dSa=DqaHw2>$Vrg~ z&0;*3MDDcrVos6ma?imZ>x!EfF5D55OH?hzEfv`}gwPTc7<{&CEnr}`PoJ*IJwCdE zj~VQ(hP@pe$rq9}4m6L7W?;u`YDhrBIO1ssp@ZK*j_91EU_E%ra_?`B`tLl0tQiL^ zM!)8}&odT#<8;c?U6$~2RJjpEMEx4%6dCgiF)*-$N&_y4Fn;}D!dxB8q9_0T9M!UX z0P{Vh5Ci|>p)wjzdqHLOu1KC!zNxXrHiiYCsf9WIs|$?A4{E|Dh-Z|aGTe@JJZ356 zJ~hcLiCF}$`Ud(7Y%9u}A3K?qEqqItIiDt&9)a(dwH$U0QjB&>+W@q3uPMY%!hGa!!&&t(t`TW;}60re5-$Q z%oe65lIXEW-uBS=_v#Z*#%yRmA8-X&RX!iP_J04m$v?i^iWImD{MWeOUXmdzrsc{~ zNt5pSYpaERkDp+%K6p_uu`5}qgS^=9pZBhcQsz4@A+hE&j0x1l`z*O3DYiwQ?kelb zOZC!Rrr?+oFTojv;^otclPZ`bsIg0Z)PU@YD-b-Be=0YkYc%#!m@N85`3Dc3s;?yx zVN#x%{2P)~FiGN^?u3qyy3l4HK@2Tc&-5w?oC#pi+P~u_V|(%o?9WojMz}~3JNoy| zI-z^BX!XDO+y`=k$5n2g>6rYmIUwpWZ|LUwCLuNcjd#D5Q-*THyJfy8qFVI2X`bR2 zg!0QbPO7ktu6qFzYi=gDIY?W+vpI-`C)wwtIPI$@Cv=MFL)J?aOCMq6NBPqPkxhxd zG?UBEb{3;ZyGn2AzxIbYkT38-)J`8&b*o#pTXouz5<+i-EDW*};EHAj*aD9}a|>cu zZl2T|@)U-*S> zJ;Z;J*jr4Pd8zPOs4F((sHk=vhd%t$SEO{_`Pt=SPZIozrH;Vm6!sorXaQ}JqOfp- zB82oyv(r;Q8F@7=|A;$;zp16O2VTc_l*Q=su?re5_G!4Q*evfk9=GnJ+3h^XlTh;( zW$EFeFy6}TOThcK-+U}M&9BZHro0{%@pb+5;>k&4*i=o$DvfqB*3&GA_wf>v_2j@) z*xlY`UTYsqJOCiNpiCZhdOTZG$X*PBHx>GoJ+)2CO5UeAnm;at*AJ)Z1b&dMHblqV8M@=A>>pc=ig^WC*}kv41;l61U*uEV!(_cX(%2Fme$-x+ zg2|V3@BP*Hth#0x`5Th(*$AwhVqs?TwDadP--!D^v_rWC7FxdVf1}t{66KiUQ>idiKihp>MhiLS}Mfljs3K?Y|CQ z6QnBSEDUip#3v;XRY#|VI6_)!=9vucJyrRqNsU{mQAUl)ix$nnlr$Y-bUiLZrF*jo zG0XOx;|x!RsIZg;wxd4MXXTR^6@10`SaPvy8MsqJMCRQ|z9wpys$V#zz*wr;){C1w zpyY@kdL=xeyZ~PrBRMm455c7{b?7VbQEuCntit{JQWR*|sC4%Ysi;O3CMRu&^w>}F zwzyrAx0D|h;ZN-SCN5J6VuBJG}gVDvN)=N|psH>>qHoZt#Ue;B)W#`%KfyNZKE z!D*>Sr|40vHP)H4y51`~W=wyaiqGnd`Q1n}aRnqZm=K4AZh9?o%_RkpF59~wW2wd- z$2LR~{eGD`hMt6>bvy2jZ~)HE1&Dn>L=&EMHOwBnv?D~03FBp0F_kRr6;qk4L}x`S zV#+MEyh-00F-yw7y4UI8ri%SUrc^D#^IxVyRTky^rF&-16Ao&1mmx(ON43qRD^olc zVWw^35mYJ<*S$Ao)wY^5?$W|1NhQ&sey%As)}7nf3|Da885;<52^hx_q=@FuQJsK? zx4@PYlRCjAIDm0YR`AI@bBXe2AiF|}h;8cj%Ih#p50-iJsM7ZHQpZzr@gr=iJ~DvV}%&z+Z&O$Cd&yF`qV0)Jcvp+W5QS3S`qpKGe7|WHzdH zLqEtw^N#1yNdxcfxcu-7X{jZf?rMRdOnsP0;a^nnd(YYUik{VWC@1+6byXcGx)aiXPr*DDY%v>B|Y6vQez4>ymFDm|shjEL^q#vW*m;8?pkmd(sf0 zp^@7e6XKetO}Ykn6?s*v;G3an`2qjj$l_;y?p13W2Svk&>dyQ#`9SC1DZ-nff~q@7Cwt$s?77lCksDQqv2wFF&6fhhua=##71VT$%;!o!7ELe>l3tgK|549uu^v@tCm>rq-;irek8*7ape}lx4Z|i z#;_!W)_jiGuRvm*PufF==!asqE8k+KGLas`p2~bn1`UX-i5edHG)b zir`{h{6|$|&-GPg&9Q|W^CoIcf*(($#^lka*JIN-^9R4FC-Duwj9GR(%aY<2`=yM* zZrms1Tp^S*B71s>bQ%Mrue`j(6tGWrtZht@u>EJfqKWK_Vjmn(g>MtJ$ULv!TOo29Yt zRiRqst@sjo`d%Y%k6M3nkyBOc!MpPzd2-@;U(b}U4)#bJDhGvPXM452h1!`776Hob+&Uvd9_)Xrr>szk#@7eT2_B|rH+<4fsTC-3vAM=?e* z2(E>G7Qv%E!9x|6a}9<+tcit&^>cCQ!V(7xbMtp`lj;dH_C!XmC?{X$Bd^KH((NiQ zJYE0kHR1g3r-r0moB(+f%X54gRB^*!wC*Z!G-08F=N90wv22MweFF@KtEr>M3(;9B z?3~PKug}Zc>Uyw<^3t=j4w5ag9N+C~iOOho*FGA=aX%JL0c__`bjf2MY}no8OihmD z+`nYl#eXH9B_)*byBr%cimtGXWkPssR&K`b(lrg%S)rR>e^<#=ouEgUV#<>lZ-2gL zcQoJhizsF_INv(fufWFM%w}4Fzsc1w4S9;?Ha=%rSwzz;yAZjgTwalf8C?*n3h3D( zJ}*~zOerpwheEBK{pazjm5P?|o6gTCs9v@{dP<|>eaiZQL z33I?IG~3c#UHx_+f9+6Gr7gtuL1!wBW8}(wib?ESbaUP6FI4I{5R2wGIn`6Ifz^S| z%A)ay3ljrg_RBRMZwQHJ7g{>-(S@5nT5?i$`Fl-OS*l?4;oQxO&hb<~Jx9I2pK)Kz z?`-s`y2$B?PJx9u!C#1dQy!o?T(;hOpC@Zy{yr(=iiD-HijrE?A2}Q;UdWfLKI>gu zZ%>lwi3c>8(!zU@a?%!Z&_q{sB+Jm~s|@|7E6#p=Vz}qmEf_V*C(KNJX;4-@Sfa;- zZ-b4NWb8iz(_T40RF||R|#qSWQNYB7k%^=$h{^WkFe8QS2G*X z^Yqi8Z*Iypw&CgQ$eX1VQ&Qyxmg``6@5P+-D9To&Jk8Odl?cSwzh*aHsOrKnFuLs9 zW>on4&i*0Q7osApcny=InyX|SoHJUJ5SpWYnlmf}!4D^`--x%u^`keH-I#r%DC-vG zniufFpq_7$7W*& zwg`^jnNL`ri*d1PL_-sSt=cJq*r{9J6ItBpc%1KSQ{3f6n$6qyBlod`o(CKT?d5JT zRt3<_@TXZ+W9pZ^2<2}!cOXlo2&QG2iozLr!=t*ycgFYMA+&`65C$0qW zm%H?K*B*4x(*12Zi?Clq_Rnh31Hr~M`(uYENs4kbvcKrz(FQg@mxI$mxE?f4v3aJs zg(7R0ehEH(bLFPmD*b~s_u)*li$MnGQq{GIc$1;?oG_EK;97S^M!0Y%9j`R@B3yg~ z=&L85bM5H=(Dl|)Rc_z+@Kr=5L>i?fr3LBkZa8!a(%sDgrBgsaS{e><=nkd3ySw4g z9q)s2@8>(l@BLdnW4NEa)|zY0IoBp?FWAbN-HZci7>G`YbRQQXB`%Fe<8|BHei`G& z3-7yhu-xavDDE?EF*d+Ij%hZc3Q`%WbuW*~ho|Ysf?nEVH;1S4-r{{|z9KqU$eOcr zCam+AWHxImO+Oe>jVNB)q;}Dr3y6DTo64TJ6(X&6+M=TTRs)oByeLA<*=v2H9y2FF zfb$&`W{p+Vn)yN~3$ZD+apG>^g0wR=169=Jta;0OrQ4SKfs^<>sq%l&p}={3;?cy6 zf*i$q*Qir81kGo0h-?G;7DX!U|3O!H6~dn zBgLC`z6fPe=pWKhLabiebTf_FvAlvIh%y|hPUYl>`0bW0m**IP8dnys z%NOv<@xX8HvXqHJnp(gE5JWEXGG!<^wp#fb;rgwsDy6wC+Anfa*ii>i88HJK%+0a5 z%o6|`gb{B1?WFZKAFpYK@lVCJpkiQ!^YGOWa|@p`nBZOUzUKRTBoBFoN%6a8%cEDr zM`9elIBy1q^xd?Et(w1KpI*aNNKF7j_NIM5g{E^5imCbvp7j1j*^w66wZDJB56*nL zQo}Ba+g&asJB^K>FX`H;I&LbB>F>DfwOr{@%wh`y+Tg}%pcU~T964P+6#(<^(%LUJ zZQ)?$Tx<;xEjn`0r#Y`XH>H`bsn{*l9mt(EI!qBqJbBvjDlrN5d_ZGAVB0~U=cl{o7{$ikh0K-U@?*Yb<)cBLC~5TQjkSWzSI0r_pi@T^Ok5PsusG{z9j>lKv&o@pa)#JY zsu1a6F?*Al@qJfcgdVu4`0=iMy{Xx!M@aoe~_-mg6%GF}kKESgXZ}4AQ5x z=fwxgwBjzwpwFw)n9ik+z6+w0a3AmTbI%Q16rmosR)kpjKwDB&iM*3Vq_xNq&aImWu`?bdyN{dc^$L{YyKFwpAKWi4O zpS!vtUFWbef}Un9ILCx5$!8kjT@>693b1*GdNs`w|9dG0*?bQ7jMI|sRXJ$yJ0=Ei z<6?sZd-aVTL0`wMQrD&1xB2)T+*n6`EjItmTEY3VLjS#C#f)%tbdAk%3DHvq*r&ml z)@urV`BfdGviseyPr_a716XB=HlRB*23SZ{Q8L=HvTBq~c7;&*rbPiTui z4B+5gzxib$#^h5f^Sg@SH3VJ=2_t(HHU6AeVmOGKP}*8yKnL%N-SAJyLINpR>^qt= z&kl<)1YWVj5~f!wUTK7U^}N*)!i>xKc|m%7mmJ~WtSt)e!I=^?z2l8u1z zdPRuxC5bvX91W1MusP->VI&$WkGlk|#OX*Nbi_p^vo*TgB41XTlo}v698Wauf4Fm- zQ!(f>G)7UlquK%@Umu4&Yaml9AAU(qaXkK-0uS+4#g@;F!giQ#*0V7!4l z|K6bW7gW%jehf&KNdXN@IhsTLHNFT9@oE=cjU+TYZr#p}_{$h8n+5|rrI_8uW-5D= zZ4{w!8>$1{!?=?i_v}ZQXUO4|z_eGY_C$$2&+lHto9cP>xz3BYQmZ2sxl5v-2V*=K zmUTK)?P`-VO0KupSlYH{;}W4)Zit-YJ6ZKbeF8VzwF@k}5ovVbs5rEsdO(B)!aEr= zIkCGI*hfV1^f4MS>+Hxv{MvRE=^mp5r1VgC0SR#J?o#}OUd)&VA)kE@`!4r!oCkNt z4)mf_a`t>;VBzfN_qF60^P~SbvsZP$_&kJ(w*~<$ih>p>dDLd2%nClo<1OdaZd^~| ztOJ&h3Q_Zh*SLg5+aLt81K57=%=M@$IweQ+|G%S%96oaSzVTjXk5rzoiI(QLM6zk^EFohxwV`~n%*@^c2i12-f03e#z4t3 z)3F4Oji1}8)R|_Nu^9td5Nf;mB<#tO@3^fDYMT%lEi`YII-)Hzjv}E)h?|l8H@-U7 zP=bTA={&I^ModSb1I{nP?D(T9XVQ7l>e!+FQ6#Lu=|91Ihw78S0~T$xdtqy#;9T$O zGRL28^ey3eb@(M-jnpXrW*OHcTUH5$5=ZPG+R?`WRqeKgFITM~!6RqRxJv&@H-oQk z2WNQT(Z;z}(9^YLUKSzc0!z*;#Cb8_G^^LDy*nlN>b=T1>6dS@VqI|vsZ|&IlDd#x z%QjStJonG2X5F?Uu&(FUDug>0*A0e79E-WvrxGbmc*?@<>X(1?Gd;T_bbdZnxa>8* z=V?gPe$ObrZ?!QCzcMor8=>3e?#Ga$0+N!Y}!lt%okDcrNi>I`}4Nl zke-g6`nV5W^R7Yb$N#Y$?^J-G*uIR$A_A7%+?W+tFiBO3FEobu4^&JXG@Lz+d%PUw zEFv;L%DiI{Z@U!XHf%jt4%_jVH`HPc7(yx%EWL9kxZ3tUYT^Ho&v>64Gkp@eB&H{o9}YL&Y(UCvwc* zjS0rr@o#hImD3@Zv3lB=HzFgkcDX=Oz+NoxY8Bmw!sp5LER2RV4jM!@Pe@pJz{LC< zIuB3E%DTUCqyM5LHk~C&UN*inznZo2mbTn}pE~u5uQqspnDa0(%MU9Sc{0#Wgt{xv zfUiCMJiW5|?x56TzSig&&=BbI-l1L+zVM>P178_;#1NS2t(}8upkdlv|A-Y4d>LR1 zoehYB@9ylF@nqBQSGi*gMGyWJ{%s+Y(M33G=PI}MNmqabb>>d9L1u@pARhtD}5YN46wdxmC4R-QxA z&hc3?!~OVEp8Dg38yA5qKR-6y!Z-5)>7`D6rBf^kakGnliI0~W8Q;~s*#+i*q5S-0 zpMx{yhX6r}!4oc~LOOsLD^Fo_{;jX~XLz9XkG>Z5ZP({{d<~XNiTq%F0PF0|(+V5; zbs0L<3rKY4>e3mO-l6=RK`kTTCpihIXN?<7NLz5%YV2cSSp-xh1k#`Kd0Jm89C$it z3}QwOp&hFHBU%|BDofw6X1=6AB!Ayg{c-Z*GpE!oX{K$kig_rU@R9WmYu$`~HOP!g z_vnx>_(Q(?+q%B@i7gp0jnTL2s;-ua15bNzjR6Cg)7F*RDD35$>pl6xvf`rpTFo-Q zGE&NjCjxHly<#I-RJdjzBm~DgwQIw^j^VR;o6*tX%sKS1PfIm$!ne?|FZ|W01+xm_ z1w6@N+*AtwmOcF8DEV~Lhf8^scD z6$CU4Pul=UIFe?(2B&u^iNf2F3d&3<-~1L~W8zLW*0r3jXx^xW-D#RABH7L= zgraHBLB*AGVrFcKLX)?k2wA3{w>}~Yk$xM+kmyk$QJ)b0A`ZQ8K^)|w+Zfh5#+Akn zCVjGTyFjw|Vfz-Cg!tL}?b^K63!-Fbu|2!eO!^uHYr8&g5@Ct#>DL;u!3e{-*O8Nv zwK>4Kh$e`lPT%+8$eUI`N59n?*t>4jyUR$x{@Fw0OxF}e~51^ zrNhUc;Y*dY_E*z0xP8I}-)F{`);KNT^w~#$0jWR9BFinh1>H(;H!%JHd$Og8oStpU zLvu>)pp#O{(wP3x{h+ccS&HfDud@3`_(O*jyI2Xbc?l+=;>d*aZc#_I$CK!RLAUj4 zG48N28>$_O2#((^Eak1%KGG=g%kyDi{>yaG*JEA3#@4E1JkpaE&9w?zBlTkNwyT

    c;;iK}j!!ouM}fUQ(D&x5m!=#|&mYgca~u(0yNm-(iyL@>QbL5+7aF`; zl8qk~mllgMUN4(y=aVKO#>RCN2ScO&C;j;Rx@~W)V$mr?)?~CRb2rs?xe0yu#8Ou- z)>H$-Wm|gd$R6L11rX}4xChIlDN@_Qjx|4k& zKDs{lz!nj5BiWKQPs`dUlL9mqDH-4a%<WQ(**PkD`?br~vJ zNC7bdVr+A_p2_DM+O*Sla)s^>)&so@K%pxbKWOeU@c!;tNto!j_v)?e>j`SbUZ;>{Z{ov;*lS4YR-H-Ey_7O;!-1&CH*B)`I$bbX`RD%>BMi zd$qJHLpl(&yXYzWs=bK7`+b${TYAqk&Yik86Ge`q()}_vxj{Fh9O-N11iD0Xu+vW0iyHLeO;zS0zO0o26MAyi{E@4haTHaUuDtQv zj=#l}|53w(xPp*3oxyyq9fm=(O`-fh1!?gp8zY(53?A984M9>GV#^*W zAe`=$Y^+h|PSY~Mu7@x7^FK{X-&)850ss#{#38JoMIoblu6mwACz{d%Fe2M1s^+tW zO?W0+hbm+|Asex1d&8-xUnuL0Bp@V=AhKK|U}3r^omxf<6#np>1l?6cKQA{4zbQy~ zuSLpSKsg(jjcB_N+~bE|zr~l?fN;&%2%=adYm3Y+QFjDwk1aQRQv~fD&V?8Nv=*o+ zt*?zk5&ck~D*hXgVBgXC#M|@4;H9wNjfiDXF&yz*KVa9Y2!EeH;8hv%U+q1y!95+6 ziJhnE8=V+0X2B@txtz7wXn;IVMC?*ljQ2z)0WbVgc~GHzZ%7Ne^yW8x&>J|kZu{BmoCFUBbP#B8f zuagqU)!KDoTRqR2iCnRPLB@)%>|wQ1^oB5 z8LrzH!AijjLrn|k@K?Q(S41wswh8sT(_29BTSy)|c4X_qvuTw7L3yFAL{=8Ay&KVYPktM*YiQ7uRw1Pm2D`p468l!p#J}R2 zAUj!B%t;+5t?jqRrP%BQ)V5V!RCz~mCv>o1;ly%4>R!P9;#+^%b0 z93HIktktlij`>uDb0Oy!jHhbjP?Bt&F;Lk$-9}#Rg3)KaB36g5bm=u0GO;uj2m7YH06(+kS`tiEv)GfwNZ{?(01M~>g z>Un7NeEQzu5!$fVm?;V4(SqxkUL<)mXG=8x@v;mVr%dgWdv{nAezaCc=v~%e9Vl(p zpKKdr%)7AEP&C_xh%d@S9vz2Q5?&4O-UgSAi0rPfoh+NoUEP-$-HpYvr;6`K=mG|K zH#mF8gmXSG7YjuKVKt#r>JdP-ZYO1rIIzyQcO%~=?(A6bv zVD4jIzHf-xnB{O9qJ35r>*T5Zsj}xS>a|wI%A4$>MsgHB^Dy((C>m08rL2oGzdJCK z+*KQ*!i)Ha+#&Ozy_9~+QgHsz?C-cTYWxZ7+(FHvH5GJ%sW38RCtR9{Rm z)2S>1(oB9Lc)&aq;O9tRU+*bO)M6n07l*WBbecxv$xv4ac0HD@rXh#Sdo4%wocF&W zq2`{?U48k0I^S4JJmIb>veQG^Nt)!@Vs2$0YSf(6TAOT-(a^IgV|<%b_iElRV7b36 zvD#(^Co%j!ob3ZtxhQ#5B+`3Fu?PWiofa98MLY?p{}LStOih4I6l3KAH!{xH3)m zyKv#!9`KO|g)&ML63G=JSX!ah;YPT!$$%U$;t5?E^gsTF&kK z+dARpdp>)Jpt94r$hE5wvDZ}Z0`j;Y`NVhcH%Jc#lmG_EaWHj*h5s8=zSo*)jM1h4 zZL!$Q@%GG{2ApnV1B)l@)PS%$vdV&Imba9!gi85tc*XJ^GXY}Ys*Al8p4K#zP(Z#N z)xYP+?-Pps>R?U$#FPp1XBxwxS@!#MgDBZ>EQxlgpstZaXZ?SZ?{^#z!+{}Es5Wn1 zl6bbII9CK;N2l)XX(crj;z{=htB+-!RdDR=>m80?ON8TqEZL-?zE?5!6da<-D3QuD zw#_2k$cp!DZ$O1KQQt(E$|&eAEHSm7UM;pF8n2dzT^CBotOMg;-=2ST19>tl4H*Y~ ze^|a?(J|W92V1Zo2(P&2B@;*Gh#ci)TONbu7|n)W$mDEU+^`j09_$2`a%#d3F7+Hz zo#07=K*>&KG4F%dd$Rin2igODbs{Gd$NMBDt9k0nu@ToLw4?5BbBGpMPmlo_S|`GN z`VrI}~Ac}%Zn8v*oX6A}79rYyuw z{_o;_P=&gPfcmKOPu5x6MaGWB)N$erkKQ9mVcOq4ji4vwznIzBa@3p;_^VcjLkFlA zVjW;ybC5fFKRfAN*(d*Z4E^2vL4^s3$jA7py6mH3vCPk}8^6#TZx1<*B8rd&SS6_- z^kdoOvgnKvM}D7l9VSnzzR>`&wL3F}zgfTrP37#j0kYeS&tH45Z$Q4aN>TW1X~wq5 zR#0_rw8#=03-FWVgw=rSK_-c!WUY>?+XzOhuD(_O+_AVmlJ{2Dmfy#LX4C)HjzF^^ zwXNwZeaFaEjPSyE0!SF!hi=;L2YPwpK{)Vwe5dtd#`t@F2Fb>zcs!&(6N}i4! z?ZJ-j`6`QJ=_?$7r$p8v_R@b#Q;*xf5_&(2sStwLlRnIZ_qWTzeCO~8FroYa)N%CI z$ze8I2G&z=zoR~g>y1WUl9DjL(y^Z=roD(v4}m@ zc{(5?^|Tq2W&82#ph1enafJtTYO2_DURi&RZ4 z!(erD&xtr|(jj4{=WeI2&C9A4$9ku7Sj1RcW3`tHFQcPe8TggE#zaO~e^zf!1iYc% z3(jmYlXb!kK&K~%SKV<%C#iYQ(#NT3G&`H_DhT_2>4gf)9I11a&Hd+)cd-1ne3t@H zP!()3Cx_{>7a()iu1$2g3C%(cX3+Yg@+i-!eFXNH^U3Hw5iHrlX`=9qNz4K;SnH~G zN-_kRcsPMA5&}o)pXPuzM|NB^dH2rL|gf6I}pWUEPPi zdh`2ui5vNAR9ZghLa;wQmTj?C)p8uVxaGbh(~Hk1*68P@(mmiS##gQEyB+N!MHGLm zQiJ%0f?7-RY+Z~NZyGP%Y-8)~P%+m${9Mbt#ETbn9_{~aB>2NFJ`@&dod-a7g3Z3C zE_T=HEF+Y#?utiq@A-X;xdE`ozDIJR&kb)rQ?Cf$8I76Pe0NA9Y?opZ4o_F&{K0Wj zEul?&a2YJ}$tFZ$15g@NW0!&CUSB7Z`a9BQ*S?R>&*H*wt9!}#7H0Cfp-EY6T{^*- zYCy{#uctC=zd@gdTyJ4gi!WXrl<qMx`Rm%IopJFsMEL+`+<3%vgh8Q z;TQ0}d+4E*k}iT~9HT8AP+j?+T%8cXJrkqk_!hKsy(uOiN}>*ARf?XLKXzR2c?4$M z3Itb4jujE_mne14<8>D&RNs5mOVfT9^L?oket~ZbBO@2M-d1u6^#e5hS^Qn?4Trt3 zw}Pp25^Iu4|8G<1m-z>~f%PHTejJMw#q4Fy2lR$6U8mbSW-H$3QeIykonXhI+uX-M z2G+}2COD_NXy6uWcF+n+joPiK;;WQD?9o_x1qKS#9pc!mIpvNY<|eR1Lg0Xjt^8Qb zZiSt8I8FXeKdu@gKov_m)k9kQ$Q~ymo!lD?6qb#qndMD=jO7t{Q>Pq zD}kv;n_MtU9cEc}VOyttwF8ath$$x?_;<>Vg`B3R8z_JmO}Sm}1Xdgq#=FBsCUM{bzkUMUu5`}w)j^^vQ5~V6?$kl-tZo&OS&^~wh#9WD z(1b`Q^pV)xwM6YAMTCk(rx_DN7AqmfsjJmrIfa|eb@K#w9_7{M70vugrJ!Tq`R+N{ z#kNFoj-+}Hy2ZNb*Xq42;HHyUNJX}hZq075tzpADLIXk8b{8dm(>RN9=}u7VzIPKI z85c!fzZs9*GT@?6oHKQsQw-Kr7GUiuaK&1`@G1No{!!B%Siv)T01B$;pm|CNI4|}` z7-(ci_9|3+1ix{7SFW97SPDB!LT(1q5ikY<2OaprJuFQC9HP1XH0Z)227=HJ^?)tc z{MA5^!e0XYd!siXYZn&teM6z>oGP4kH^(tN_@wnZt8ZXqtr!ZseF2y!@TRe)sda#& zsHV2@F{)95$ID)l<(xtZ%3n>#e9Aq=7T#hGJzmtw(h^- zi`bbYQTMTZu}T3|A}7yONp+zaLhw?lOgPG3r1Y>jye(>14wB&pjdr;@Qu?$t`!j2( zQ2l47Kc(yKMV9I&^Oj=NEtTWsM(3vx@TiojTKZk(3jJd5DO*rc&YEA8qTf2Hl)0$~ zlERN_wV9T{@UCyG(sA7!C9a}|VJqQ$OEM;y+b8Eg0Y&m5L%t_%R69dKe*T$D8-G(B zY|vryb(?8zW6>*BLOP|$PN-#Z`jG=vT@{renGuF#xw6g;RGM3OqyAInd57f--fjcJ z&76nf)^W`{>c91<9HZ0BI0BlD|24mW@UDh*zM&dACzxcY_}G%CsF^$QMgJ`ainH8} zp`trmd0*u>&&TQ8mC%iM-0Wp7gU!bEf3f?21CxhezW+5eX~1&2*CI$4EX<~(=EVMt zbMXN%=p@LF%^Z>_fXE7rgs%-?1~=8aMhSCnf&6`}*dtnED{;sF#!R5IW$!HJNum(~r^r*+7u3?~pZ4+3y zLz20@_{&VJi2mCi&wBJuWlKhaX5|`0e!_&twUUZN`ZqTDxqNQc@O~P0;<}c?w$lKa zSB?{sZL9>sqe5q-pn9tB8L=fO+snzFy7)?kQ8{}T{+!5oxi95KXnS& zD{&8)?o=b@5&uvXCRmXd-<%_VR2iLTAm>vQ4GI$4pC^8i(eGlx2<$9UrEES=N3Z$1YV zn=s=PSAV%8jK1?jhI)m$LRMw2@*I0cf|3Hwu9`dnNex?Jq6=RY0r*kchiQ<2?9N3s zFQB6X|8gHoq^ASR+wN23ngao^y}a*V&G0Su+X*xF?h1UAra3~uZko36(@5T7thSfm z!U2=sDn3O3?Vu8n)M+5B0^ULN7j-K)*%B8ASLzyb{yTs3!hZvtha=5=Fu{(zQj1@g7lrrX)B)sX~hk+IXc+yhG`h%9Gwgf*5 zG*;hkdP=r9O!E~OFoxdtE3B}{X}gA5Q)-R6q|j4*WE^;M-*@@}X#dB1TrC;{;PLj& zcyt*LH%q5cVT{0{qH{>Ld8SdlW*A^x$otd|W?-(_X!&kaPH2xJ03~6GZ!dX>wufz4 ziaujHF_>3I{|x;eNo>sf|#0^zBBkL^2#io(h zR7$NSO>$@0J)}{Oz`)4-V~T?Hq+xE*?R`JgAJ=eK*^%76P$gB#g^ax3=p)`_<#UQt z`bdg5PnyC60euhJ1(_$t=*Y+ST3-Pq;@mK6|C}bb+;>2qxJbKtfq3Z*Cm}M}t}Q(<=g(`Z}ua?K~bmoM)P8V^t-VTmCs` zP!0oW6q3Y-X9@=OV*a!%vyOA$zSy^F5?}&Y`|aJIw6K%qwQ%}8T4kH!3~=$a##Pvv z9(OC&SfdMARRU+;Fdo=E z4VG~@uw<-OwZZt9(7z4F6u8ozWpN0rhoEA)JI(<@A;11;2GgWTh$X&M``4C<(_=Gc zZDmv^6KAq6jykWRa7dPAG*G%%>hj_qJdBES)KHu#YVp*wf{apznh?OJ!#|kcx$3`J zFQ*yzo3EAMILs|uELp2isQ;eDDFg~Peb_gyIr5A7EvNQcRI=^c^V8x}Q7T8fbu&+XJ^EmWUC&0?NZH!5f*!gg~Q?rtAKY2R1 zcv0*%+GALr;Df_Ccib_2cBSDvoX$LNhCU|4-+}A@&6BU99-{uhG=|D3EEx&%lgWIY zIjA2{Us9Evqn%wgdW*}y|9Up33jYq~PMPd~&B=@y24?@f0Ud_g?RFE0|;gR}?x zTI7UFfSJ?9Ycadx5?EpOKkYuHQyf2-E6dD*C@-Ad16Er}EcogG$r2UIkHs>*xiHru zalX)`(Sp6ATYYCHxM}8rE#J9BpzQyZ2e71FINFZi>`&Zx%qM$yI276ba~~4OQYnrb z^W{loFi$LT)$<0`AV?M@R@2wlY)k|4)odD)B?3Lgo>0`1nVXhm2t((h$`YV0u|_~Z zi|TY5VB_2uHlnaM>X(*nzjr4b==IppoQFA6xDu`;<5WsD=`v+4FvP2Kz=v0@dy7`| z80@IZU`+{D2S4c(0jdiK@rkp`i=PCwX8Hy(I-q$H8F^s80<7V~$3Iv| z=<%JlC<)^}G0o8SKdu#SaHbM$HrKtp$vV7%*>zXod$khP6O@F{`Y3HB&OcGz+0h67 z?`QcF0V(c4-v&9M8+U_Y!M5r$xz{gMHP63NxeO^zX)SW0Is^;igydsdjIm zAo6)jv5lPQOiZX(NJ`*q&uc7@XLz1oi;_~2k8HlmVn~Uw_&iL$M%muPMT31m<*B)4 zgQ#V#7x;{%*%Jxh*yIP-dxH|&2vge-24v;88*gu^e1extcB41su3C4{pPMNoG^QB7 zuryW#ho4Zme~S&<33^@avVw+^Bps_S{UiB$TyEcqdWjfxhQi-6-A~bG*8LrePrIYl z&o&!*?bSmRh{8KWi>PN!yalCcotzyCnM_u5yO#-C6QVT!$+)?)-{-zn*qnMEkx!j2 z=|Dmv9x43LdD30$LQKknp#Hl1=B2{fac9XPjig&OZHSEz;F@_5ra1CP%-;x*H9m&{N*L^K_`RT}IrQcgWf(<2g_IWXq z_}vdIqCT=*#4UVqASAjWO{k0{R0m??6kTYuX47u_3Qieumatwxiji8b!aBlmyS)}( zNl`|dQjsCE*O?t0FW9@1yCqOybnZ(q@5%%z;gVG6)qk|!^Kyn6lj!~6l@Za}U<%J& z*FYbemHgQPx*{cH0ZW=+X?Jt|92yERxX4IHibuMU)E?V_@Kp5e2+uJO-^t}p zNH=YES$FdbRn(H3dfAt$54h#tG)&_pQT?X7>DY@cw7$N(a5E;=vJ#ZG#`SFRxlYG?gWs-lNzo24vq@7 zB_XBwb!UcwV)hBZ9u~eT65FbJWlPmPx?5WmH|dKP9Rpcv9 z1<&E9T6ER&;g9Sv+N_if8+i) zPW#n^Ey@8Y06Vfua7wX_vE1F!*Et{Ma28ue+2Yn|1w?yw7%W4RpI}!hva*vV^(B!? z=s0Yup6!uP(+#O^Qz54;)Lq>P9u#Ro6J>>D1~yj^iN4VutTu*r=z@LY0tkey_RCa{ znu^vn5Ch^Wy1_riBh)6!%)d(P;His_XNfkhl{h*nsoR%-h7&qpF%zsk%aS3alToaa z_=0F{w|oOv&$%6#p0DCS@3Uv0@KXt*Y!Py{)XZLRvsFu1xlD-p9f+-BNvNAOq|sML zMNtKItN*tgA+BP*)vaJ1j7V3`9(7DXtZ6Nb7wnD}-WD=Nc6FVn{;hHse|)dnH2M~CT3DHOzT!JPesC8b*k9RG zjjTwg%(gW9Oqyhs25+V-+;iRe@LSn_l+)|a5p4v)ON+y?E+xS?AKSf@z#T>3>Yh%F z>!8M@pLZ5`&`=)-BQ{i8SmLU-CzyuyPM3Num?Wy?I04}-QAD}=LvjT!zT{WqVcql&^*Qb&3U}N zgnBUz1l~Vw<0#eQI^OdMP9O15u0Y?i?ptl8A^5ZMV3VaMwO0+}I5_MM(M7elj#=9WSS49e;@Q9msj5=! ziLaM+lBM?_2=&Xodsr$bX`q7dMpgAQE{ty-4Wqq6s z#+%2gvM8#7O1h0aEU6IVc*viqVE!e+<@Gg=A1TdBWQ@~tDW(gFd~Fn$hF_nUl`Lzz z(HY5q+kgLWBlPzB7XW5reWEQe#GRmukbpCLQw$JYzBcQM)c(@o1_n$1fT`H*)J&>7j_%4jD>V{o2HZ4g$&->Wvg*l0*TwLz0S+1aAodRmAhY= z*H)X%;T&9n`_$j%M~jRXmSGu6#2DhHLu8C-#t0 zS4@E=5?~Gyi8?5QZ`hpcW);8hIV4))&?T)E%9r8UCH6N@DN`&i7?RxxiIO<=;B#Bw z!+Xxj!qRjm7!$ZkSISVybT5SrodcF86TNjiK9~$z-b9~k2^$0Tv!aR=a>PBB*o1Ok zD{#Sc^!{TeMLv`0|IgwVy?EeQ>5i59EDm*hUwZXn06|mfCYYF82@qhfwCX=xXU;PO zT&L-F;Plyn?{|~}Lu(DkwX!JSFF-%C;~$mA?Xcdl;qy8Uth%N%73Rv*R9Rk}V$Uaf zc5jx)p3=NII&K&3;C4Tp9SbnI?oTtWE48sR) zYZ#+d*;#bDk}{J3sg%U$C%dvv9YMzG=AbS~nlcY0J7|*Q^4VOGFoOOBwy6I&rusqM zuw4fOpz{LH2jRaV_X^vFTIrFG&^jq44T1Z{OIGeLs=)o>=a|@jPKXnPN10*cF!sbx zWsM0Q;pAc+IhZS^ISVe5{RUbB|6;@O?-zJ0|Mu}buNQ5o{M(~hp!5HIA>AJ^PQz>$ z-@uYmA@Wm)Gk)mVz74%W!)j#@+sL5dtio(Vs_AJnXdxp&BwQq-5WTweaE93Jd9LO>T7SQ-BU^s+A{UK5{+2>a;LRiS zpLE2k3ec~uelIyar!qz>6ko(X?;4JcjSQ=zAnJ%5Ij7SOKBnUL*%0SvbNvc(8?#*z zYH1hnI4GD=OH)<-Jn%2K`%9sxiBwL|fNkZdL1NTLrZw3xJw9X4_wOO;Df4@zQ1hx{ z?df~q$I{1taNuV6pMl!u!w}aij$}boNvTvlXo z#aL<3ewi`w39BZvf+a{gRd1Sgdc3WGkyX#mb-nYi1$BKkTRCd1Vq&ElSH0z+f@uxP&vQL|{Q(KR^UdU&C zimsg5?Qnm|l*Pc^N_@B0Q>?UWB>0m$|GQn zFU>%{csPog8bX>j_fT3568_h>0(lwl_>P!(b!`Q5IymJ-qUO>J3yC4N-Iki?Dn8RNV{ccmX{mhK1A3zc_X%GImA84aHbu2tKy8ij>bwML7dfP@ggvNYMW~hqM zLbRZOBNoLgN9=_M^Y`ps!>Fu}y>6cAh6C?eKL|50gu-A37J=Hj7_hvSoPAS3M_6H$ zr4iw@|BX#!-u-Z@K_uOy3ZZF9O$!nCGPdKTE;HlKd2iWHaPagSg9s9;HYZSTYM2ic zxO?g3sEnRlBi@uU&poe_NZhfX>XgIlY_nq;YH_0-&xwg#6Nje!jaPtQBk@^8 z(S8%Gy2(m$x@~sA@h?aAP6j}_*&I`CZ=sMZmafc(X;qQed7q%@dp|R1neobrUSdKj zP2Xk*Sx>Ycq_7}svraF#o+#k+#pyeQ7Shub>b`sI5~RtEt+e=9d+YWn?W8esrXX^V3sS|_es&s* zCmBh^XMIb)%kJ@vlAfDiMWrZxBTu~$xw6mHX#84}?aSfuO0nDZX^wXK`(vQy1zB?i81? z*=cDQeVzG9Va)8DHR0q=xNP~1>Zf=O7Ibl2EBJ9Xf(!G0po$QV=~Gzz%*!g-Jr+w6 zu`cx7@dKz!QtYSJvS)^UD|-Ls0I5fwsd>S-@uTKFbw3(@fnfma6hEw9oo>gtcU zhL1L0!P%^Hu1r?qeASI~v3}jdl=059I=9>1!w@y8hckh9Yanu+qNRJjvlW4Fz|!B1 zx1S>1i;4CR@Gsz){+aqR|8o@=Xrz((Qh|)P(sKiqenGN_ts{xL1;9uF;``->@2jYb z#AVNS8pMX=>#7_(*bHd%$?`w)zZ@yEOKg-zx9z zNGk)lxUeiSq2hLNKu&+gN4RVqH<8SXGVt3?efMiTmBk7$tUhSSUTy=A5@Hf^UW2~Z z!Bcg(U!b;1oj6b+Y@!7$!jez(-hY-NO-MJ3m+8(>9(j;rLVoeb#Vwx$tOD54pp?g$ zJ(f>X#UF*Pyd!3NX6&U?(4W|xyQ}l#65hI=(-LQRf3CSmy#c^VZTkZjJ8))UZH?~h zXK_*48I}Z(&;Raw@qP@C=yE+OU^4maX$NE81n~=oe`gaw8*~r%&p-F~GhCNPe>boI zZ)~|>j!pkKR23K8&7V z<8;BzK6w(dlc+%qLGLF`96M~YT}EtEQ@#8B`*$1e9!}2dU(av){b4l$acsuGTeimx zONdfF-x3s#76;X84x{`P8)wyZ@IDgpQfc2^)?s2^t>-&{pl(O&xlf?W*AtT!M+@ZF z4cq39Id;a$jd-S|GHE5xllDUy>Ykgb+8rX92Cu5Onxgf^MQW+% zgqAdM=LMR(UJ`7CUIrP`m$3b)1hu=}l%0gGjC+$0ZnO0_f~Kyw4B6K)qiJq2&o57t z2^H(yK1%e_x}U|JWmLO^8!e_{C=;DmCDv28r%D)foeb}97b0gLM{Eo?R+fG+W60B> zYF^=WYdLS6dn4CypK~`kYrIvj-Zq*-|PpJNeQZ~hjqyIhWGP$XqLEJ#^ zJZ;ZF@l=gT#6ORJ(hXKE#0*z05Obtc{|Ih=n&saQ=8z{nH@!J=Q( z-I_;|st@8=rSgmjxH%UXx^4E(xeo7yliO(+vQ00Vjek$4O&D!)AnT&STkT0b|F)mw zd~sA0K3t|PbDNPjVNRq?l?TSBA2#-hC7xB3!eq6FCn>p#eH3Q6yLV{R>`>0*x?SF? zQ})B5X_ymv7=1*SXewK}>$u-OiJG16bzMYH>P$peDp$pQ`RZKXw0V2cirtNHn!P=g zPY&FeabjYA$8{nm8m?t`&jj6Y96Q{eKV1zAsFymJ=-~QlFG(+>L%~&cbgJ2=1A2US zeQ!k*=KxjOji18X9{8S5q)yethR-+?bM~AV)#!1%ua0AJ9twNSV^V%WYrWZctUpga zOX8SJpGtCgkx7+~C`nmMBRxTVj^L9ZgP!S@F<#1Yn*T-ZWeER2zu*2I#1O|lw255R z_Vn8ho%y!O?(J^wPe^Ozjpnx#-xAv=7JxNlqa#OxA|NQ0h+ zjo=hwEs?xEQAFIsyGun~)4zK8r4k3fH>(ar9nd2vU2H&EO^_>|1kNZ8wUjUNY3w6*{3i%C8tTz}T?c zJOY*&5jd7PKh6~DP#IetyB=UnM%^>p?IBd7*m-a7sq%V;eIr`JxF;|_0oU5~M2Ebz z^7U2zD*kajiH!tYm5H*%dZt56_t2V@nac8etdU~M@y_P4XHph9genE{I@wKw3Y_Hy zDrPgoxF1c%qOKRJl#k|=pU@Zb4WRK8dprpZ$}|wA^c!flEFYe%9*<(ySB?w>)tbkbS7)!}Xoroi>c)2JCf+%kiaTxYAufZ;A3dx~w@Xk7^}-3ZYks zaogWlY5Bh)ZEj3ctE(nw;es)eA;bBUr%{7=>$;e+K-~TMTZ9O}CqPqjVXn?iQ zRc<4=JHd^wy78`3O5IWwkfOM^62#%iagBL@Uhn#TKbr37DsF~*U!zL&Ywz&7<#HP@ zhuqOV+ss=0OIEIh^@msH<%PYe8${S2ANlysdl$d|^IWwdcD2pwh9X;IKxUt8WVt$( zA>lwc9P_qKP?GaTUHITSw{6<$Zcn+vw^mI5$1Dluks%!(Fty9(Ahxdg(Ew+4Dom(^T0G{JM^gY1nS*I&WG;F7HLfbBo1OA-<8!8~k#I5q3 zLm(hJ#YXq6kX*9{BPb&*yCV{FleGDAhOJ)8kLGQ#H&rtuGWZN6 z{2-#6kX+jv*VAozDPC~pXH_L?dqdbx&kXFGt!X#fT}SrV(Z#r3HO3aFG1_IlES}BU zvqC22+9V{No_?m$#o4@OOVNITXTxWmwjcX6;$^QFj;0yHXL5`XoL76C4boXfMM zH}&0Uqfabj={iqQbiGg=x%o;uQ@F76lLCy~`QjL@qg5~g9KDNS?nld`1wP>_E37lz zym^id3D_!?or7HM&CRf*9reJ~Lbx#$3*+w-rBCv`CC6oO4~t1XVg~c0oK6?K+iT2< z_o;13f4w;C%})$3zWE}v@x^+P3WuOF`3Ma|F6D+PmJo~) z_~>>bI!~`7R2DJ#n-G<_LCi-_ZG7$>^m>wC$D?QM^X)>oOH!`F`HOG>e;^|BmPdT7 zMWYMO-?zk^p@6|sQ#nS|F=K6UNU4;DOSclnRRnV4rjD;WuE)QG zSy5BLqJ(2w@kkrE#-lm|?F@0{92-~f43ES_W#c;-QQnD5ExY%GkTnv;?Z#=g7qOsV z9h?JY<*Nwn^c_I}XiR3Twd?;Q?5(4sY`<_}K~xZt5>y&tfR|K|?vPYKVCYi1yQLHZ zr5ouI7-FP56a?u8X^`&jI`;sh{?0n<`~G1}0<@zZLee%}ZK^4)FIA%ycc3fJqLt6CZ|++6c4?i6%AaUIxy zeBd}K06*#h{y{{iHcDRlLFU=s@I1VuU0@z5XrPB^JhweWZeq$d4Z(HL>$h8dub`sf z%{$kHhIr~HnD0-%QCf`q_=i-pO|!SkvK0 z9X90}hm93Q^)>eiA*Y$9tt|q49a;2QX%dUoKeouNf;rQz?8a*)PC;`{$Bacbo>(V}S%v{;I2b+4AQ`WsUmS#ZorX3)g zLsX@Q=p$sr*fBeFT=xAC=O-6X1;rCH1D4J&UbzzGxZ$?f957RGOp3ZisjHqSJ!%*d zvvRg2)Z^Waa_QBwAE3oWgR?OGyies3Olqy;GDC$YQQK8+ zzB4_{&RG?O<_d$orPr=`N>xnOGz0joc=Bp=e<#>t`m?}nXsFwGG<}RyM9zZ(8w*%@ z28?yFV=18{H#{L?b#E@rXjXk^;{Z>QVX@UnZk#&ZJcz|}Y|6wAKJ>$EeC1%sX=J%b zOlG#mu<*>&VUl}DkTvSam9t=yXUOfyNGx5sPrtuKtMaqr+V;_qsBK*obTjhFLB}Gw z~y3u{f0b*;`;E; zeyaU}ZbXr1bRs>v(W_C72UN|`zxNILgv&O3`@S6Rr{r<^rZpD9S~dn)!g`bq9++b0 zXi!NL){Kj0jcAUMw>Y+T@tXuMw>Iw$ziRMBL|S`ewKnILl)Vo3!Y5;g%_UGVqCWqK zH1h3jIx;;fg2<07I0MOhu3WHJZfs5o6%juZcmtvrd8X3ZyLVz2zZ~8po+Duh`cx=g zT9Kb~a_V5FC|dohIwga?b4(i`>R@4P_y&eQ#BR#X%A9sB*P_*CqdU{dGZd$66QB5}>~v#GH23$y z`Ie>Fv=X1cmq~3|x5-~D9PTnR{h(+zL9Pq+DRCXhSEtjzZ8=EOiF z62>3u_&P*KtUHBcW1-%tL<7O2=69(UWC@G;y1AZtLxL@B0HB!no`NqDE*n ztIlZ8`n}kb8S&Jm{7ohf6fzu8=NWk-A^Ul8ZmFRJ%k+WV=ur3eV|;;@FcpE0$D{DV z+qk$!O(O&4QY|#$GG^+tb8y+Vu*h`Pn(J~`D;B!nZT=p8;%QJ!>kj>4vNO6nlSYsf zVZp{6wmH)Zby;!VvI=padpN#v-GN?m(T)F!`}Sr7=UCMV@2Y<1Eb) z!`iBI7JCXune+oSm7`ipX$DsCBW*PnowmJa-}6cybz!5REkktq)|G;Tl@=3DD3b;R z+go2>s?O@QW(jebwP`u({Fm$pCvm*goMu@^4Sd2^yo2yEdXhgW3r%4Smg~REJ~Gsl z%<=zmY0*N?8236#=Gsn_XWQcLYhTGGMEcEj1)%gSldrmREIz?DMWt1AZmonqn#3DFjVnJ*~@abpH&@hhgy zksS{92d&L9CuF!mfH*xuOB8le=qd( zRr2MT)i6TM{%h?nMOlTs6|l?~0n>z% z!!K&2Cry?@({_Z$oauyfSGDBMj1QKIs~XehEIu)j4=j6Oj!T6R`qM`*avYT~mYw_% ze7dvoWg|PXLK4IZzEvK*Nr5uASDzbK+`HruVM;1@TZrzI%gI%QpKMxu`IZ@JQ#GF@M&~E1}{tfMQ({HJh>(2 zvt>ktyzBcwd}%$?Cr!tk=;$D5XulY#(pjOO<~{@9dte66NS zqfLAVeLRNk>cvYdqf_5{8WFX>8p2_gte>`3QVm^rdcbOnfQu@t zXTt1?{EHsAN6Z#vw~|MmnPpv4qj8792Bi8<4ksbSFVx1u0FU(uXLe=Gb-g^4=Qj8FV! zgt-EAqU1U&Qi?UjCaSdR5$?ZwwqvPuhA9+1H{E|5mT<7^!<1hXii92L*M|^>yYHuN zSF=Ht(k6v;=xtm!-1s3w^+b(wO+j~7Dpr@WUcTMT-<;YKgQhaAbldi)^$2=|W{c9w zm@RJ2(U0kjKMUjOOL^M1Gr1hcIy<_paP%0EN+A5F^g6apMGNuK9ry#YQ8_G>?^#515(uox_sNzNdqMsIK%_$A>w}YtQh~IAB$_( zYbyG1HHMb&FlBQ7D7L}7hdN0iFF>z;D99o6AUW%&TnAPVKKG69F9r?Nr+x%>1QYpp z1Yf<+Ff(@-{$G!(y*N^Zmmky)7Hc`a=DHL%MHCurcIa;|AXI&zzW$jx&EgA_rw049>N08&^b-$@yB)1gi4oy$B z%htko(u%iK-cX(p|MWR(f5blO>G6vxuu{!+XC&jNZODNGxuRYc{pf&Tv9!V&mpLqf zz#sZ@_jO6RjNVFzCEI|J;A+Hkc;xB}!>2eejR9vHxzcuIynCw3JJ1OI$(OLnVFB2Vr74 zPB%Z8QB>O)oLVK`L__*g^am(YE(|~DUmH)MBbiE6dO)fO9gNCpSGcCW;`$P2Z>crv zPDL)*#H~!hR+##9hhcf(IC^So@FVsa+}nR<5O?DTIoId`6_vzwKTXQ?o3gz8d5w*2 zJ#L?*_qVnWJ)Rej?0)Bwi_z#_?PrMj*;7(fsGsf9g8g$neL$5p0{TWwJS^0t!vO~x zTw1u)LE1R|`zW%hN%8bZVASQAqRVmu(+CZ8t+jdJrMl^-kB#LC^zkPRq8PS-=ReF* z&>@d46|Rn2QkyY>f^C6|JKL^$ha4`GQ%vz3C6%L)(WRd^h7tx1bB~J9RuJ3 z!uLw}ExzaUZp2e41p-7j+RD-3mjGr$##_3GsM+f-A@`SG`{PaqD+4V1wmc0$?!-5h z%y3vF_QFnwbIkAYP+sQYS5PglZNDTqrg>Z<#&=2LqM&^Qep|z*PMf?rl2_)P_J|N! zH@$Oz&Wlx*VYiA9z$K}bpMJiN{s#U^s#WArdtm!3fiFMY z)HYcM^BLA!`75fP_eFGA>GVu}Wp>kz&K_MpLtB)1*VqKOL^qQ3tatD2WSbyE9vNs# z6kjb9t#P9O+k*lpjPr!Rz<#e^EL1>B)OU8zfi3{T7D;(PF* z(AQO?%;9t=h*;EEmPRX0&gUx4TyEs6Ps+2<#rkg7ijHM`U?`<{an4{OV@5$fF}&pV z#7=FH>Pp9wYTyIa>d6n9J3nteCnzgJn5Epc?Kg6L97(Bx5fU#=EDM9N0XJG3(=jnrA8+O#Wk zL(FQWAh*A`u~GtxqyZ*>cQU1ZJY0BXV!Y;9L9S+J(w7Wso~&E|CqGIvDoRz#bl+|v z*RV}Z>=d|fh&$7P7f!tw$Ur0o0FF_Fmh&MC(Cu?&(J7!|rvV*1DzLY6b%$S3Dr}M0Xjeh1vMyeeDaL7tvrIil3RmrthRNL%|{!%gv|C*T0B{CDD_<-hTlp9-g zy{iG2{!;j8PrU#c+~vk;1CkV5%TF-8@zjud&K$;PODcC9wJOc<9(MMB6c36%3GIVS z|LN#AdsC(R1)85#izsn7?ny#E*o8k6f-Y2TeKzcdsTr6kajKtopISNXVjO@}SSq@_ zFRT9OokQ|WRbzYjZKkZUTe2r=jv(dFZ=-3dbPa+%aLV7s#*JmTn`K%F7|r1HLeCG0 zFf}`b8yG{EZ>uF{?>M6NzX!>)dBRX{_j9?7oarKOL=W?lo?cwkT(f|Oz>$c1%1Z_24^xwxoEgu`MrM^ZBEBqdPtC&3%VY;JHEgwmmPAjR{14!+gw9&s3d#wo(g2$$Q_*5%F8kd8&0-ya~fbxwd8rSjmifm}-l7@~r z2v$JPYE@7%u7*Nh2<7YTU&DWg1`Qv>Ts;sXDqP8eY*nR0w)p259yC0m&_#7nw+{|& zyxrVY<;|jx^Uw#6rXSz+?D*iS8v9B#p86&_(qW*>qCka&<0@dEe8wh5M3a#S;_N2C z)jC#&qDVx6Bb4|QRcV0KlU?FFFMc$o@Uik7JcxzzM}E}Jhaa=F z)tH`#oBdp67i_Y!8l8Q?@)@A@40NRob&b#V_bG-WUQwlQ2E1#|SG|F}GkGx~!Jc-I zw=8ld+x&?h=%sgo2dl!8yM!``1AUFV0(EsSfgFCzx4Dkz>Q7X8A)qTLS=Sbe1mu1n zL7IlFv_q&WIMn(1rYLoZy?=g$roB>vGzsQ+a6H0AM?TZb%M;D-?Hw+woj~paWTv?e zUY@wpO=23EwO>JfL9hFiZ{|vGIg57})L;4s`jYv545Sc2t?e43P+S$7E_v|t=H{s0 zT#N6>o5@cbXAFTKav6iWpfmfERWGbikY3rR+AB};Evz%EUF$p+TsRR;Km;rey{-8B zSoB}Ywa!;~tX4}{tyZ57HxMy;|7a*8g#P#4IryJ!XO|FB=NODpfH3g)jd`DX+V>IF zw{-C@2;(vcKaf}UCakgyYp;uUy0ta+t7T?AV8?)zb^b_aV+5{HCX0Wt(xzdsH&iBE zLq>SP#DQ~$QP;XSO7Zah(SVOYDjL0SuOM>SLrWU$z)dJ(v_cg|Bt?Y&GPbyf98F&VigCeB3@buY}+D>^GA`u zJJ6tInChaoy!n!g=gO_QdnJJ8;@H20gdmMD>cQphAFQ6=<%z|VY|-b&cj6zLkL%d( z8Z^h!GBcJvk^}ZfeT^vAE$Q(Zx2m$|K_Q7?At&{~&*VQ!n1bNHR-Y$+r>k>AhJeHj z1e?jf?}NN%5OUbYe`;5SPaMV_Zb5@wS|pc9A;nfGUA+Yrw!Oa0WHUah(pOxTK~vaKmS9Ce@f)Qpl_inW`H(y&~8DN#}T~!3M5cJ?=1=set zb1eV1geOwC6viOF4&F&e|7<}efB8*xFCcIfAtPzz4}n+D#+#t%C6WTUrH%fbi|?aS z20eVJ_VRay%uu#(NO(Na2OR0R0+Ruh5a%W007tv{Wm;}G&d8zn*U^1GBM6pQ&yE|m z6nf#uA*_tO5h{zWuzoAbNdA+86fKaPt#o9EDI9hF@r>vM-k`dk+^*aAM8qm%nSKe0 za&-{o1SYgW?9Y!1)yg5-AlPT3x}-cla~FQG3Ge)5V7&4u>%6A~UCaC1nxz9{dpm}0 z4l^0$3f#RFcTP?Z9wf@!E#f4qdLI?N^v(yr+y|qf3aQFlyXqoa*4+7KDJ_m87Z0gT zK&5X|sChZ{d#B`yw%(LF!NKw|C7WJPv_|y(g@C=q5?>q23C4$xBl?X@9>cK(w-S(A z<9!AyJ4b?;V}D&Q1x^@hL#j56*tz8G;fwq{PK+vXtg(y2rmhYOG>H?$BF3nP^2!B#5g9|wK~brlWPYeE04 zLJKk+*%mgEowNGchWzsBl{oTJXe`cWP2U}!kz)pmVeMi{O1L(plG1Wrwtrg$a|J0-46A?`;QpByh>0V+E?kr zP1!?MWQ?47(N1vCxxGCC+rre_hMI!4h-Yd#G>L4N?1~bvTO3IjT{mi(y_O(3+4M@~ zS?NWw-b)45Kx(2dYZ{h1)aqv+I5%*#K)PN30*azqvn^eF$admk0$(f%%#`^t#V2Rt z?qcbQGIf7#VBz{&m`#>D6nX?Empi!my z_;78S`jl}$0dwvAaw_p3hSr)r{lHGMLbT>~_w9i;xZC*cEIf}LH;BLZYbz<9Z+ora zb5ai+)>p`JFDv385J-e$yKZXasvJ&l_xEO4%W-}pCi$r zC!+EW=S0@%FYj0HHGR0D%p8X@d%s3#XO_%5GSV1cOU`PPoC=6UR7j`ARw)ZcO#+2} zp>MlPuw{}CJSTisF0q?^#7#Xws+AL^Z0p?UdSJ6WV_4Bc=KU4tL$=bh zTn~pFy&PWU*5DtZtGCJ=B%ryJDt=mYra3Z#u9AozDqAys;qya}VLB`LM^bC=RlClN zRi9ihvk*(VTJjjhU6)b(+kJDPlGja_e!2Dwi0(u7dg%XzT|P>}H3ZsioI#M`lz7DJiEqrG1bXkH7|2B0#zj;EevYtoq2+`k(_U~a~4 zMtedQvyiBB)b=TV<9*3WDOUYCh?y|*4#9KDtX~>6%&?PpD3e*8G4JJ7(b@SuGNh94 z_vupQk{$qBEMuAaPviq8Q!7;)l_6bpm6oJVA|#xyDR#P}b|eMmf0f z$>7u{sTiZw(cFzYsH}lw0|%gUH1R~2-$e>#miSU<2UoenogP0Fet6#1|zGz~h*qDpmS?=s= zpz3#%+jwp(6~hf%s^E`T$cZ7X&l{g2iPL(w)$gB&bzJl7GvcOTYPaAM>Q4yytNTLM z==Jrq(#o!;wQp8V;VLuh?O34NDuojG_6iOu`fitBs@z(t6hMRMRKL^6UN|FZ z0_(`1S?zJGY#b)xQc}}Q1YNJMQ}3#K&A*}CW;1Jl;qKKEbou@`+X#4gLYRN$(vczH z$q44XtZkSwXb&v2B6%mL3E2+WCwZrX7IATIq5Id=wfIDabdI9*!pf#{Bi=-3HFG@} z#YM;VHXMZ$hTnqcLdf|LX&gQt=2{%zlVo~mXm8V=RC{%6kShK~x8}Mgg-Jc#b0gUX z83=QG46lsL?5J^No0}j;(61$0W9;-U0FCY1v-rhQkipl-A0WCH1z<|>PxPhGyyhoW zMV&=>LU_+&n-+MxITjWBTSzEdOXb}_$`T&$R7pi^i`|SZw-X5{a=t|gDzxufi6Y_Z zwoRdeACIAQTiVsawgtu4`K96rwNlsWdPtWL45t3dz|?DxXN>0EOf9$__*7)?#-e}uI@&;V zU+YOZZJOlDuYmlCz8ALocf;?EzT7~Z6CD@DVYk0zy!Iv3g6r^;aE1U|UR z#@rWp=RpOSlb@0Kp*%HY5%1g4BC}MCX-ofFX1;O__cN{IW!3+m!+k;X!^ocWP&MV_ z>c^Fu@B7nX;D|Lq)r6yk|3&!(tXUsDF8>x>So z1G>1v#AJN9f%;6)^HfOrnOj5kH@tJZ1Nd_lPhhSs4zl>vm*Fv*3>&m^2e{NF#I?CMD1<-ub{7~K6iJgpOiGlJTe~QM3i^x_8%s7Hl+)lSs zxh+6o@E1~=A;NPy#me{Gx;a>5P!^-STb&bfe53lS>Vss4&}pl+oCiFJ5W;{m$HvZ% z?)yRe`SmBXyTg0KsdwWi`1<$y{~qf9pU9;50q0D63?vW=tZJ{|IGDei?E416X(;b6i4i^29)giiF< z0aEzr+6TAhm*^QF4}j;kgU@LRJBb0jKyP#c6P|0!Y7;tA&3S;DziZdd$NR_a^ATDL ze7M~xsyLODcU$70V#Ds;5596?2nNqh5vHG(e#kUYuQ496AAn{kqKmfsb%Wo;CXc9{6HWruPH!{aEin60N zGtAZYT_#Xp7@mtm2KX>T(^^1^0Ah{NBP$eA{*C`b*4jJi?O9e9-9l=$u}X6O%QI2f z13-&4T4i8xDO<#ahtY#1dYaARJ5%OBsUxZPKfWG^PAbtb6b+$DsWb=zjRnnhWcSPC z1>3i&vei1pEGPY+aF53!Fa?LQ#Xj}`Unj;hS;88plCw9u;^)U}L5n>@DV3guyy#&a z3%d6+>H~~W?0bpRu&F&LAoGg4UMhx=F@mc6eAEp4M||s&wa(Ts9v?-KEISbvPvNO9 zm3QJ7C;uf*@j^FW-%2_>ds}I^UW@`Xo5Z6&tH25oCuI&7G?WdBt%|9`_l6>_N0=E= zr#{>zrdx#8d|x52Sz4McvPaqBf8I3S@F`U(MSNk+f3EvDJACyC7}+>yJdWyO5$`^I{2UlItQ%r#_4rXm8F+ew&T8e_*)_W10p%)#ucW9~Dm|9%S2ZXHDZ z!<~SS<8JqrY~K!a|Jw0evn#q@sl%yv-|l_PoMqu9$Ku@y*kaD@y(ofzofOO~Pu+rx zB#{W)&w&Kb)d3mm&~KmfEokMs-*FOD7IFr&bGALrBlM~r#;X~Lt39c>f%2~~_&%edXp!!i{>eWU2}ulbp<+-DA6d4@C9?yq zUyOJe37rzIqkF-6g=H+7|J^9bEi%?$dVl}%i!`dPv(A9W2PVq|{c^Pz0a*b5Aq_rE zN^*ARzQeCu%df`nEzV^rn`fVDOzj^Oh=e{u8le(`-3X7jh6dAxyu#fkY4YOloBVx8CW!`{mVp<0YY56&%59d6B~3SXnpf2T|AEDG<|k_ zEkI%7g7%?sMpJr=C>Z1;>{5AtaArW~5Wp7(hA_d4X%2J*PA20W7 zx$*n&#l%&DL6W4uTAF1+U>t~RB@@~n$$e_R@A1@1T!Dw ze-IdWGf?Ho(AReO0Mh|n8snx~4f!%gRYOhv!T4t`$pNN64e`O{>d>)ySdo6?$F)hs zF+XBtG=KBw)nYzkQj1KoZ@`w3b8oyi>1GWTM=?Wmm>b+nz<^MK`fA3?NT2^z7T-Hjx zzamop<>J_DmzV}|aTD4?kR6x|>BEW&r5SC9TB7U$#L(&6cAfb4F_(@-IS?vX2yLX)aS-9NUkn%eePU1a46sg@$amEye@4r93Qrp@0`Y;g>|M){n7Pzh^`6w{A@W-k<&I zLE=+q7wYx+ve0}T6((&ps_YxW!SI8&tM}sy9eYe+1QVv(np;f$fqq$ER%=X3{SiiLouc+Yt~OQKdBwU4+sM6oeY8aNJ= zK$z)CLE6+rBZR@-*Zg=g$E#8F%K6{^aV^6`eZ+@%7vEYSC6>>mG9&rwq~m>3t`w}2 zQKPDh3#6Ek1(c-|>&QQH0`1fI^TTV>&k5f9tCW&O5o0-Dn1#?o3`8I2^0Q2J5iMBS zi;^nW!dSZnQU&V=a@B6je1Izd*}ZZ9Z@s3r1hsum0HOGfBH|LDO4zVwR(g8<5lAoA zuO(lO)}i}k1KXplC}RBki@=~`ulYgMw~eT`7msTAJ~T#bxQDOcrSzWPt9qg@+Cl4&?q*|;~`D({FgrDnjToWV}B{mx9mZm{Nw z9|C?OoMaLrA3Yj_?MkNM4Xf(;X$wyLCaoE9(Q6;?72T{HBBI`*&L<02&#%Q{OkXy)I z0OtYe;y+&_y*z}>{XXi{82{;9-n}aibuGB;Lh|y0pw2v?|LI_5Y3o;H))u&Vq(Q}a zf1s7(S;g%jkfB-IgEUNX@bh7K^lITbv|P{g%Hy%(q7gfcikx(3)IC0hWq!}u_wvw| z5rGHR7~euVOJT$mcBeUk_diJ4OGphZmO(oskBg4^6P^2on?=X+Hr<&@Z6DNvOqH;R z=m}?|dgI(N?phKz>D^#e^o6)WgY1HoX-!9pb2F&TnC^aJgMugY(8X&DxPNRzq2niwnx5E2cXks%D zGfjH*OTfn%*d`5vU73&;g5JzkDu|ypv~t>saywTI6uiz*l)i1HIjl~ahdB^bDJpSa zo*E?;F89ctgh^`|{o-kvI*|RGs}fEKB2}I)&i{+HzA(GFAsHovI$X8zQc6?Y|VXdV4&sF^u94a+#k&efPjhO zt`Jv6Mm5>KL#9-dNbh`$gh4~KCOL=5QQ!_$`m(tpUX-ft=J2HuZ;@Q+dt5^eYDdgURJY@Q;J{O zy7vSjh`ObFf%BJG0HH!cwW26fFG|PWioW~GNRnpauGDkiXNo7F!tp`P zVJXuZ(%QoO=#yYn}+G5N6^y^ zH3q$XfbDz|rw3yofo&6Ym~&@ggQFQ_};GY+^lg$3(lAJMm z%|j?o8eh$+Zh!Z!Ggv#+sl)W@dw`RQTJ*Un6l7DjtZN^}m2rB?(=!CwSUpZOWoPCN zEwpLQF|sw2?o&r4rte9wGtDqo-{pHfYGUtYkS88!R)t0tP12!}*H?s|maPnrOaa^x)j?r(_sDpIQ& z$JvWdnzR1WZ{m)%K+CNeF%>|9Z}Cd^UaG_dFMzP_MlC=8RS{i$lsQpr0zxoBF-Y?L z+}OcQdHZ-bg*>EC>o!c69Lm0f?N(+*IL;ykrh{7Eaa)yJ)#G3K0PqXLpmEa$DxVZP zZA@&BiV@|taYWWU7X^6SWrl|O%V+5-f@fQlKk_-(BV>^1$0(JapHX2|pKFo4d{I#$ zx%oC(9mXx%TRV+mt-t~~@H6DoA~g3qm3(2EiiA%~g%KS%YCaAcj*)iEH4?>42jazP z9xDYd_rT0K&@(#}z1LKIF8od@2J1KdNI4Ilt|z%hNQtaPGtDAL!zm_kD3T&sP%p3I z+}HTL_1d_i$;73E{jKgLn;JFZ--J|eBC0?LxK;HZ6y$p#w&$b~1leco$%!G^k$ z%C>!(Yvzs|rQ%ibU>S~lo;PkL`L{jGu6R#?B~XcJ zh(OZ6{CmtYZT|&>XBED=!0Bi?>*pzgiMM~_iFF5}y5Yemv zILyEy9?r#w`!*)s2RGGD6Fghu9Rzs=5eqrcqJ_>LjZ3xBVC1`;Hs;$dhDL~w!_IQL zPs<+#Jo0qThm(xPyja-3bzZrhDD!$0t+MlAu)~g5{oOk+>0i)37bt6mUAT5|0U%WT zEer|HrHfEPT;OLuS+D;c-2QuY;46`5y6Y7hq%u4~c?upL8=vJh$d-gDmeHCepkZKM z2X}{UyF% z%jz}vVBF2BcmC5%msUxU2>P{J2L9*SfAvX3J#i<^N$NYnUULXGSx_8cE*FaOxsYO{ zxP#CVQ~qzUU+>*K`bLCG74-P`BpcKjiuN9RC6b7J=?(@Bn_lSC_-%z?w{P2Esfq3o z(@P|I>51rU!#0@xzcu&rFmSY&zwse2CQbsX5kA)R78un-dK$Dyz(PhYR(>mT5;MyY z8uxfJqC5*_%WSS%G@@2z0pY}9?gO&->J_N&z~TD$k?n_n-|zgZW=2F&74JGVZ-d&y z7au^~BEseAb>KxN?i$BC=h#;myf%M!A|2tu)g5wer+kgd*Q8IBu*$7uS(|qt7@4P9Rgat{5F}6FE7>eE@A+A#MSUoJ)S}v8(I|vL>aO#&ty#4zc7s&Dat#F7? z?*<%e%1moLFey-Y$}~U1Kpv)^M{3a5OG|B}^Ch$TG5AAnnA_!RdYK8G!?@Fh!!eQE zzW}J7?oOZMZWzqB{s<}*Ypj7ySI#wI3`0I{fS1$tZLyHKCW92%ca--eq*KGshxm^U z$|JB?@36!=@;gZRUL0&fI??h~vL=@;Y^tk)d@Q19ymB6Pe-8}&NnSH;bm)gUjRQB< z0m_Bdh57`(QvWGrx!h3OA8HGUsT%zwnMwfdX4~d*1yI}jTx$~ep@b*9ik+wzUHmzu z8;btC#wEeENIxP1?1HIY|9?=lP%XaqXDC&g_R39#8h|*npx-uhuC5f6t7NICD&^cs zI#JPvDftEc{7^tmpB#H9{#0g{jEgeHX|{=%t+*w*=sjQbM~;h^^vOX~4sADTYC;j^ zPEbgv=H+KMXHw-tngq^MRK3P$0{F}r9!7M|ZvcB{2A2y7h;x%Z-Qc@_v|VMidSi+h z=$OsGhx?Zi;}xQ%mBrycQs>S!iw`dYY(nYH#f3P)B&2@aoS|NtkQ%gG_n9VPSkI`@ zB7S1(TblD(Il@juDcEibW(tRU`Q{vvt1Y^BmRdj*ot9rkXbbC-)z{CAdv^I<@Bx; zXC2WRQEg+ObZNur+CbcIoYp>&AVZ%J#m{R>1pQzFS1NW_r;djp)pQ0u^UG+K^30h| zQAhgCvyeLO^l9tW{|22VQje=wgBZuH#bo1oNPDy3aAvXRz(YY)Fd!HUmHAL!?7 z`MF)Lu{sT+9Lz>mZMHPOQAl)Ab;#8311shfR3La}XMGt&lmTa^s+~3}3Z{Jbu~c>w7sOUze)5q1Nh# zXYovM_dIB~6G>0S=0#VSR~jmPa7o9{%z#Jfqhll8c?f<&L=@nV80s_Yh-LMylmX0- zxylls_bRpXIgXicl;rFnJEp_5YNJLtUAmo{T7RkT3f~8g+MGe?iRG{*mN&9+=7pfi zark=v;&h(`A;fY5sSucm*{6nZ65rG@IugO>bUJP0v@9OwPi~X#SiMyWk5w0zSy#d+ zJx~`h(e_Bnggnm1XJQ%ak!D_2(r9Omp8M=DpUStpOA}qdHQXE9&;SD;n`h}j;#*ID z-O0Be)^XUX$rS9I(As%ATqQWp2ojf*77KOA=n163=2^nw<_PJA!m})0jR-Tax?yw8iNjZ#n%xd-Wn4bKJSQz9 zRhummc9ZXUmdMdiVNRMddi6rLIM{TM(|T*oVVJ7yTDRjbxPo)J^IPpAc*htS3x@h; z>0vyhmZz%Bl@9AlC-xTywnk0!F;mmIW-(>1nv498H26%N`>L>%aB&^4xrrCX;}s4`yil6v%wx^yEobs3LG{fu8k@VubHt4wVcTxT z!#oEI2j0jA<=RG6_am+UK!37rE2u-C4|$Mx`~*H7#~2v*)vBwlNVdiikjw*?ydr#m z{XHeEJXA(k>!j%bF9%vwbg0nuS;bG2`F@48Y^st}x#%Hh5GL<{BlS8*wubP7BIycc zE&8Ob*Taei5)n(%#b9w49m{CX5NtvJTk{*%<4ktjL-_Be?DkM4I36WFx$#s+>(X&+ z>s+5FSs#7Z>GPLGW5d_kgVQZ7Obk`wLoofZ8?=@|zm<7e(N6A63cD_Nge$E$7-AACW6KcbAWQB?Y!!Gy)o-y1q;>~4{{fRXy)JhHQa!A&@dKZL%! z98Fs#6wA}qzg5E{@mC7)@6D|naima>PyCE^{w38zG+?t!T0O3k@T6S4Ig2TFcIoNQ zpElG#X3fHVwX`0o_f3KEL?^=p=1dON!%_%1dJ9kcAGXu)`vTQqq>zH)JKu z5i3WMUJv!eHO>RUIJ%f}Ha#u@eal9jn>!my%3qJBN`E54=(ojVT?oYiRYHM z!4|P$#mCVFu@TRYT82j{9@EseqDib6V$Q?N~H=37$Uk5vtKy|f4= zUU`{Zhw4Ln7(_9Cb>daUPb27xHMsl>;rwiOG<$u1mtllu(++L_*d1BU81vxLlj^3xE9g>Tnoh`b(-2 z% zZr0CPlRjVGvE!I&G8V@Evv#x3%~2Zd%#P#EQ|W0(Mf$(r1XTU<+)sVnAIsaI(h~wF zmI?nj z%~#wUH7#q(GqV~4+}_*DHr=yuXY*{cT@KBgtliR^j+1C-ALH55hR#8uu9qW&U!~6z zP0?py#4b~`xO$t}#A&Ba!I@R3nz%<}GjN%q2pbC^{{25qBA8NfuWHP74s#kmnf|J- ziS-k*VbwCEU zlxI6T_P2-5^*)UGkGB$q*+(E6t3;jv7cD<1)sL(cC zs--fdl@QGUmKQBL&VD3lZdq?3l3FqhCzZ+rSUx0Fh3%I zEsvBoGo?k?-F|RpGH#78uI3MKVo6NHB$Piy5HEK*3@6fT_U15Y6<2MgJ8Xt@be zcbP6 zoCG3n4?!I^nok4v3arvGD;qYd);h(RlvMM0m12B$yJv1OVUL0hqu;X`U@N4vm>23y8^nLP-oLt!HPK(oLVLIz!qL;W ziy+=fJ_u;o;PXGLKJgkv6aHP1n)D7M(@;zQkowMxJF+xy2nCBrFpv+}l9}(Ef248i zRswbnSIKK=%8=7AY?=ABgJvbZMoi=0(z{a~W4Q|0c?8{V_!o7mI=yQyr3m}+WpZ(9 zX{u6mrqz+^UQV+$_ft} z&%zgsaY#pQYo}59t2AntwZq!#%i`Em>O!AG?Jj=am%6C-uB+APFZ%%B0c7oYzDoRWv3$MIt@L_8}4g zw@I`*6?6J^JZ8y+$9r}TWwkqob^1;%>D5q6B9NzVbmP)!+dmg9p>P}Y7Bv_Qli zAW1x*AhszLKi>qr24u14TRX2N9z-~jDZ@EiL zwi2LR7s*)rL$ut1C{H}CYUy(EzJJ>XL~USkTtvXRR0v~^-@ozKSuY5EK(o}jb>RV@akD(QrB*G&^T21b{`go)dV^8U=ZX~;ppsn>LO&wjk`jh}&rkK(LW4~| zE9-Ffy0YtERv!Ha+u z|0HH`_P}AR#~YYkn16=?FmT??qF!k(gFh07eth%{Do?kv=WbyE3{!dJ2Pju995c<} z{|&AactzITN~2GfMpf zyYq&`^Y@9hbxr;BR@I&Ud#i1j*6>g1y^J^-bS384A*C2+;hz-Lb639Vl;Qzd2Ueom zY+gbgs4sT5qsjwmz@Eg!rTJu^MBqyfhtG{rf|Zq&e->t^KfwcchmRC}V-Ma&>ZWce z@@7)Z8{&v?+_kP@{P@`o8wFPD4Q=A_AYS*u+{RgD_IhfQOaB%IzJ`?{P!}Zx!|L zr~-a)ogYuz($L4MoiymX1ysj~eB|dtPuccvHl=1wN&Z< zI2@3e5J9Inp*FmPo|>l^HD+^XgLHVqnKP|a+3?YEw6p{U$QVxDG~BV7su?qLfhMRPj1 zZ#`!8*UtLOIhvXRpz`)c!16c_Ps@FCq)5H1!sX_32M0uFh9T#(ZEjRb@g=dhNU z7nCyl_pB>4z2qn%y_zU6j~priv!+vBkMUxeIdXP3#5+OnT9f<{EPrRKe{!2XNZy!w zDNN)`S!&Z5@_Q(GzK7CVIb9~+zyA|u12{LzLXX|~XMlEqRE2rv`a=XbP=X-%q@)aB zsVIcz{`^4U#L;z~c}74d!cbLF@>~YZRZQljL$&%!im&&T8oNyE7xIxmsiNWla>BCC zXJp&Y*pt7+;5&ydgM_y_jci6q`0|@gO-RgBRb)scfe=2#;wowV@Swqw`Q$if3r|;B zzH-EX4cfCWUg;{X!cewbhB$u6uCP~G{M{@2z|5qr;2S* zq;_}YGVQkt8m$rDYBANfD*@cckv2z}dE!U!VovkJylU*WowR&S`)0uLCss!T7@iDA#z>P*J+-xa|NqJ{mv zPMoS!tdjjZnt;D{xCv!dSep{zSp@qy9%QH(3jlwjY6$*l6sSKpg7}l>ANSihP&LN+jF2PF4*cZ zH3@Y)47>T*VGn zWbje2_Y?C#`tP}O4L6`t^5yXJi^Rdoa&cA$Wk>S~8j{t*$H=kMo&y}P!_lq(R*3po zFVPXY#=;W4-&;GP09vkDUPZta_`mB;mAV=&6ip~3=6}M+FY_zi^5_j z(qK^>u230)+)A6lfgMvafm%geJX2R9T0(4xrwk!y`D})GzfP{D!vhD-wl@Y<6?V$6 z@RD7Fb8_Hbp%6f}uKs?r;eHh7u^q}Lt6{cUTo}DOvVB@ zzbDl^Qhxzw-Zbn=PF4@L2)n18(x2qp=Cs_wimFKdw=f*z@|?EhrhZn;VRjW148c;QmBE0@z1Dw#~WvaKq%L3v5Dc#qkqoTb81Ai zU%gNtmr%v;knpn+=??nc?j72-ni|VftW7+q8rW6##qAzdNf*PKvJjb>tX=r28dwj< z%#NK^H2vT%>M#JW+C38_Bc@>7z4Qh#ITN>bAKd;m@7kb&-H;gbk?&Z#D+{P?c0y`V( z-?zaJGLXxB9GOEi=y$rrP}jyJ~3{AlnsB%QvA zL&`c!JHo|&6y@5ubaQq1?6Kmy1@PX$UEyKh_H2ffyjTMKNP^1m-y$HKG2x0EfJvr> z!boAdcJ8a-Ow^K$#4C!e4l!Wy>F!W*jyVxaX#BT+Ppki=Yrw$(9N?x5!BI)*|IA5% z`#lGO)8;(`vyOg10=$6mZ@lsTkyRLA`X?0OMBNup(HGVt^%Ho;bZ4cT9&iB_#`mZhMKqsGeNQaTgbrHiE$L(CR=WrwqyZ7SB+{|E z4AEF})yWWu?xXtxhkzP{bP+0c3s1{j>6PP8k=CQ+E{mzz1BQ=}NBM-Zo&47mN5{=V zxaK-<^q-~J)7K`<|4-HWJ7G$_S9k7micI7`A_RbX1aR}KK_yE{VALq&TALSbC_nJ~ zLz$bmT=*!o#u`-Q$U+Dor^$)1g)I9hnR^nR&=a#1@biZ49~+1lNsi@sp_y|&Lvx?H z>&9g%y7_c!A@!U~qH8@VfRw^IxkJ-WV=k(Bds<_XdwR%{WMFwOTPCnH=MmfPTN147 zL})_uMgm^Wf^SOw`ysA^yw~C!`|8f2sZ=-QILjXwKl!Z(cKjF4wU041RZ_ZniO;Fw z2fQ&!wUxvlY%2#Kl!nu+E3dtL8>`{8K5ZE;xEy;lL5Pr@?Q*85z}U@P8;5;r1iW`j zcGN63DaNb1Q@G;jf=z%Zz|7HxGZsYLHYqE~mzlhIP7tC$q=MOLCYcP66?>k4TxV}9 z^Md0vS@NwI#C-I)w+VUOGG5p{qId6C7eDJ%+PE&Z-rcm;Im_W|F=eM7;6XS?zVjK* zrX+Xr-}m!x1VFq`UI?L#|HBdYNobw4A>4n_My~oPcyjdpoOO!63Z8_dTv^iS~LiIcy1sjfzTwwgq=|s^ST<4)DPK0=s5J$MXFE6#HIK ztREeNVLRkG5KdaSp9n8MmIz-DVS@yu{(EQT`AuYJ@G#BSZIF`2%wY`E&e2Ie0NPJH za>pF+o^pCrfF01!_3&K=kS~2=;g7JOzA6~*6<5w37*FDcu2&rY(2P|V;69dXl&7B< zqV9`OPB1TiYHkVbS9>EQ=Q;?qqdFnkFgwy?jbDb?loWcJ1HPrfEJkYKP}0R+D&8Wa zc1=ZS`XV_g^J9cbhV>LRPp>1|bW4As6sJTs97{Oe)MOM4N<)k$ZHswhCnhGrr6&7i zGg#Rb&ZNj1;~ana4X%_e1suNCzmSnqqC{KIF#mXbuO!ue%Q=j4t;FD%23W8pRryLHJp%;1dVr&bbENt8TJkpjspZ-uoz+3EW8N}?D+zTGbj zRC5kB&me5dVC0ZUpyd#HlbncDPUTEp|n$15|k5~)zB65*Np+~eC&U~P#k zq=6OE2aHf7$mEs3hqQ|U~iu+;7=Qk7@Ma`Q4u%K9YNg)^5cz~ z8W$n9!#Hk4aiR*?2>frgCTp1v_Z~4_ETD|^Nn!4-6x5UH8G>TpXY1MfY;A4+>CX3m zAD%wY`)mag$ng0Sih4op6HGMPU;~I2-y#-#dJwtR+efyxQ(YQ?78oYOifShRbe1v< zEf~q$UA85(=1my)3?Yh$+F+3`APQE&1}z}EN|BJIW2lWHF*=XjRJd!&IfDHY)~heC zY{_&oUTqHgHvB%T-|fou0<8~552tDiNer*asM8ZLy^gNAe9<$O*_SQq@99F)CBMow%2SJ3Rrk)yuq5j} z@U5A@-)Z2D5?t7>ZN~oe_=OyXNZp=8V~;}JL9sJjYAIom3 zh>V~f+cAd*#29S4gtSkl?vmOzb;*uX-pl)TA~Y_uSO}T2a}vhE1R9Q=lkCiNU$F^Y zg1*HDs8KlB-jA6zJTFqJjXd-UTX`zltFKB!Sw^5t6#_7}*YrH!WQn3A`IY;J7YQppI>P9vkYPP{{ilLKy;eHPYYrpubU-9H!wQGRo+_pQC4__+z|e zEG99UlBGXBalDa{l>N;LdWf8rYc;CVxzO1rVy~KLSo^&Es7Tia9coh^{6x_smu+#R zq^7U@=)A2sZ-}+fD__H>e)6N*kvrtWZPSDkzC&au;w_kcNz zdE-q+23aP`pGe~`fY;#+Kp~77$VUGKDBjSB3tw~aixO>OBG{eip(BBHqtc)^V$6zI zc8k*O-t5L}p(%Pk~f1tvU?;FN;AaBUx zqXTPTOVL}3HoAYApzrAog^f_OajNRby{WCqrb(S`dhzY|F4XnA)NLc;7xNYvKqs?@ zd0Pcn=xJ@11Zjg0JP12ZwEF{opXY&Z*Hige3JQ0Mur#!ZLWIJ?>kb<6jbgB^h7v;-WLdP6gII z6)eALIrG!%n^N0~FHLkT3d`v2LwEa99>=_6O9Rq>@OBrHTZrt6gcX_%W1wY%HLLw- zUfM*jFgwGVvP&yC{JfS`CQP5+76$SS*W;uY{n_4%DMq&HZj=c97wR71nVcKGr^Hd~ zJ%vB+hPS_xvI}Fu z00EFraJo7;hgeZXB-;@xQjj{rE@HfU5{2ccrBPXzT;$9gI+pc6<^hY*9GJ&-aNZS=hNSNd=;>2488EU!P@h3@~yJ&Dg> z5ehbM>DowVXyhcz2wkCrTzvXv?yO0kL-4aDL`B3unh7NPpVyGZ5htXF>*KXy+Er3y zBN9wg%261})le*m1ry~FlD@#~j+xjpV4(6#g7faR8%H%WUM?Wb9Lvs2fu8hR!6pMHP;elV`|0qFvJ#K>(3czX2Ebr z1FDpo!svPd)HQcpkfs~V2tLiih&8?Tqg(GZ#!OfJ5Mw#IW{_f zrcmeqA7S1piYIgKf$sJQzuaK&q+h*fkb-8$OyWQV8h}%ZEscx>Gx@Fd`ZAJcrKrhI z|1NBg-519TYJpO=daqeAQ-#eE%^{rmzCS%w;Fr0I@wv!}oDAnOxY?K>L`29c>c09X z7urypVcg#9Y|E}F$;8~>ElXYE9D@b)Ov~9GdHlhcC2)Ml&l-u#6!SPPF5pe!uw=&meJ$u)m&~P zd^Rr2lu&0~XQ!a7ss=Z%yzJ?SLH5R3a`l=fZ?N)HG@`~`kKBJ&O@kDY!&9`la3WX?kO+g0=db0hNH$9f`D8QElm#wA9HGGF( z=6&1sm)?d;(BY$rjvPVftwb>KbxrA>1uoI7%w@so3Hyfed}Ii1H5 zUYpm-F?z@4zv;pYSGqhK>U*;MYi)&c%^+$u^L@d*scJV?v5>(ih4O5yD0$+kpKni( z3|~@_hU(01$0dAjZMW!Cs7<2vv+Qj!H->^kcS_~XPcvpLTa?5zp>I!BfZg^BKE9?Y zp|gff?-@D|!i!mMB(^qjqt#b4^`4A65?bU4 zTe5MoMbvHEfx;`R;={9t4!e8CO7!j*$dr_%9|EgW16wh$FiesxHe0yBd@r9r4^D9* zY%-PIvx@FqeM+D9uz^AK7+b$S(F;P%Rv(Swcju=`X(kNW{ZTGUnpTWv%j!nHX`CY5 z>?h=}ef{{#;&g^{LT%~!0R$5K$4Q4QeVFa;O>j%_Rj07cPOpg{NsBw}xU%?mnktQw znDehh`DNE?)n$xK%)nxrvGsv!?(=UApk}Cch)^SiEhA;clqegCr;i&M7C+9ERG`}2qi5;{= zOy6~7Pdu(0VSQcY6fOndIdn}!pn)6e>K&C4y&j0lx`4=R|d{^1uuQ%;e9b z61uzIMETu>frYCzVt8-bzT?1AaB9ulfQ5r&y!6* zf6EvXCy0^NDTpu>DoaWz4U`f9=90r&s3b22<>X$%p>cu>-7#P90<{}!T~z$Cv60Gs zdYde_J8St9n^gG%B<5;ga=^;K-*o-2MDj|&<1@CFuOx8uwXd2#uwQfzN2@qqz z)EVA8Nqk;d`iV?CxjO8~MvaVXWJ`8X@ow}!cM|EC#?%(ACN&Vs@4F(vPnu{omn`G&D@SM}Tt+T13 zb~r{nGfcYQaaT@KDbN!c3`V<^gEd$?%<>iuN4S|N;1io6SI|11lt~xqYTcD9A|QRv zwUY;OqG^HKTsYsCcE~8v)iEUV^As^rPTHpBy+Lq*C+^d9bEX@u7`t)ZOqKf7F(!KV zv=eRSMt8ZlYJ%yQc>4&d5Hf^yJ}q7{x$tmiD89nMM*z&S$dY5;8A7@(g9N$^)j2sQ z_=`Ua?yHuYJ-kvc*V*F=2;I)5B?2y8SJadp&uL=-BJ0-qIsxY`nIyu&0Yjhhh1>C_ZVGqYXu zu;n>WZL?Fag`dV3$V8Y91aR1Iz&d9~Fq9wAb3lC{UTAj>df!|Exd5L0^qBq6wo zya-CzTKJ=z&;2FPns3e?Wlo$4nNJ%*$Bd1@%A*0YANX}fT<(xC=u~Co{La7P9`5*R zDa_LsHvfpcwE6=WAWZMq-vOEL8@RjmhyADW@Z|K%c+%5{ZbUx&(@0HFQN-~G<-S1}uF4{7ulwEwXI9}d*kMzN-8O%~ zyOz**6N_4tah3khwBNxl*fBZ@EEW*YcXCPntIo=`*e)L;(fT^OY|G-}xvl_U^ktkX z;zpbC>4w0y5E2kmqs#CGiFHXMYzy@g;;S|s3xzh=B01QqA{Tx`0bcI;i6kS%TLRY; zAcRJ<@N8#kAWxd1C@)afmid|S7$p_CqKR=lRD?4m*Jeng{)tS8sy!WfI-eb^k&p&M z^UJOw@xktwSf2TvB|+wkyU>WaCv4%3tu`ZQi9wIQ=|3)bQff-**=LkZH_IY^{b|usx{Xkm%_jwz9+JKvTP=Og zNY^}p3awwmX`L7??0^ng`!$dMno|8-2Jx zuMaYWRFJijYk8+Ug_7tYcLpm|li^dx*hFgC_)*cZHy7-!=!$^?%hV&>@-rCeaa+Sw8$l?a-EB^gF`zLg;IjWnf;Q6=P5=ed2Fz!?7K@EXiX^ot;VxagmcG2Z>x~7 znPvzCtde$aob8dPCQ*ofNY~z6PY%sc{?{e?*7(Tf!<^XpEc^cQHg}d+> zT{lW^{UkR1t)uy6Ba($2e%BNh7vAAzxfEGxU(Wl<5A80>F=Xns>{wT@f${{YlVIF& zvz(;8B1#DdHv-_3L{S5ToV?H=#8qD4lg9;YF6926q?WHc>q z9E=lFDAO0!hPMIUk=GsD^3a3lNa8ee{(s7bCM@8R+px!4ApbMxz$CpeZMn;iea4TR zv&41W0LC5ZSmkzI5yI>gohUdHW8{n!z9iztrKpdnnV1|4ds6r4Bxc=QUdYoCw-SHl zmGg(O6=*jKGSopcUq-#*9~JrGRon=mut`oIJu%%5Iug?{%2meDsZ8BER(=7$do;bb z!XYfI?DI2esea4TZm7QVo_poL5~G{SJ)xT($)$J{g@$Tbsxp*eR?1 zTrECstoXRa+=eu&KrQ?6Bj`AS%P_efVhlos`JK6csOJFU2L7{pP_-QB)MCUSp|&PH zuAYwwg590wDp2RfBhI=^CWz81IWVCmQFL($NDo(MHpUv6WLeegamXy(<|s@Tgpy(% zw`yt7R|Ai}9My|2=$GfmLcUvCe}P|1_j}2M(c)Nr*C7AUg`Jhal_BYDdv#%~5&3p0_|6}sgXFk> z^7)+h&8|$8O8~{8Vun#|$OJFkS<&96L3V9ijUzkh>-9~!N|-g}n39ofw50`U-9B!J zWWCN4VbJH32dZa?q15nS0N0%l>E(=^T`_!WeuH3e^(<<<2bh6?8V?8I+_c+&E7Kn* zN20SYu@RwGrk%?`iVeoilbVc^A53-JhQcU1BZin0ke6CwxEJ|SU$nRK-Ic)59KH0H zg?y`BYX;vyile%*Jb0Vx41%}LD+|X>%BHJWEY%|8=XT6lWY5np?!W_rO4Thv?h%}* zZykkd!qz7nf`tRl2JLGyZPLgF3)6d%6Q%)W)AGKy5_CC7UvFmK)MofLM7-TCK`U>X z2@c!Tq{@mw8zCYU?Tb4m$?n%?N8qfj@;$xkzL6iEvb`u&+aR+-FAMC6MQL-A(G?8qm0 zfR8WQ{8LZxnmS|7Ks~-;%?j$(y-IU-WFlJAfHP;4W{OVdVw~T zRdogrVRbH^-p8waU=G-_nelKCSFB`q>Olp4$_cv?t~#~X`##yGd`6G+eG+zhbO+>L zRJZ2Kj-}%29ET^ARk=k%0-!=JrJ40P8E-g3>0qz0yj}@hx8C2 z%UVCWk^(fgRqyIes=qZ{uS&q?!Y<~0R1*~6KF0@aQQ%TO`p59;j@SCWM&(&O7;zd} zVI<~_Qz+3rGnr?y&FM(;_kt>6(N=wJ+~TVpE;k*RU|g|z?gPqgbnRe@qmq^>JbQLR z%(Ij{>Qb4=0cV1h8qFm{_(-$B3i?ES3fu^VL4MWt0ADNSk^K|IA8fsPP{CnJP3g?< zY_a8;*Cr#ivr`d{;0Qj1UfD%<{5>7xz~OwbRf!Lc&S{l%t6_&{8&fUh3pj{XJnXyd+aZ+L9yJtIAybfwIKL@v>%Q zHGOc02=v(R9;%K&(T?dnxKD{Gpir?h%>MeQfzlVaQ&Vbs@MuRyGYBuD;_%tiwo}XL zk@JxC^CweWDiubRHl!!=D)~o;q4f6`r}pU$hF)pr?UW2W^l=sri%=&b&F;k5rcd&h z(rU7z_`8}ox-~p=v$8EOdD{#uY7J&I-ht6hNHXP;{hmNgQrN1d8J$lC9(s&h+Y`;# zyDawtt25Ac>Hk`5&XMm_hO@1~-Sm%y`=9Kq4Qz$u?Ga1eG00R3ep+s)HVac(qbD)B zKQp$rHGMf6kLZGQ{UMJy4>wuN-d&4u~rU?^z31cuiqtHK?9x5 z60-?R&^A#zvT^^4#+Ayf+;V)s3h8qTx7_01>5Fe0x4rzGOzxWz!Q{;rmnbC{9rlUg ze4yt*ECcJ~7pSIE_=tv^c+0hpCu8nrZ%K02x0sK#@jX8UX3$g!B_eh)iz4`yUiko$T~}MY_K6@)i+I#t`q@IvxcH@LM0s8gjC0 zZ@D>_p5Dj!d91{Qyx1f>P9?en9(cm}YLT7!{UgOqv(vGj9n}2m-3FDNz6M+FZ%pP zD4r>?$!TW?g8`QP_An=WEK=_D9l3Yan8IYMv1*{>tot_7{mW?O=Irb-Qoe4N@ZTxt z9XddqtLi$ImzPvT0hc#7y(ImRft%nHFOu0TZ$G#F01C`>D#W(|H_q!cduQQt z?}Ed;C#!Fw#5%_Sm?Y9~^67K13t1${JmPiBL#O<5{S7LgHUR6S$Qd?C!hRZSygk8i z;h~*Q-Sz%A=y>t~fyg|)?~ME3+W((W9ANQoCrR@!eh~}I+>X<)0YJdvr{{p>v5X-< z`ns^b+i48sjkD8>H*)H#8M>D{8DrT(WO8SZpW7y(=41t|Z$%zZmAf4X+ctxN&!_%T zat))4D(oGdi}1Ib6x4JmduQogbQ`M0Dg$)4=QT&P%#2EbPo?{Q)lO1HO9X0Cf~j8$ zvunYCoOmTWQVism4vZD36t=}IyDg07m=|pnr(Y6p=l23>81oemPs}|0buy*o4<~J8 z3YdvYjiYF(tGgagU(kk!T3}=Y|s;mmFVQKj>jLJd*%eW?`OuM0LBWx2wSyvK!yTx2}R4nt6F5lwmnY zjDTZB#z_YqyJc5fg_Yf*C8;cp&eekW>fqJzm{8Q#!+XO8&{kHJ6}q}*+Xl7VCMmP= z7xJ=B!YJGyer*WRa7EylF+E2?H^>M@lI0D&ixy$Z0&LPCX5dc0U|g3C0A5Nrz)LyA zNFlml0(H%b5T-v+pDw@U=NUmX$!ybhxC^+?mi9Eci#B4fe3>*gSt|y?^4E6Dz9TOT zO4=pz9QGg$pwW`fLw@buenh)YPa`yxn0PtpQmZSh7z*_+T?LF;9Dj!3AE z&<5NVI6e)8BOzixhzm=f-8l3jCn^r4c=e-wtm^w+os+J*+XeIAcsz#zNbYCs_La`Xzpwj0n&n>yXI$O{e57W2 zCdFLQ)Af-$>qTYC3m#OaaRvE3%-ApRP)-tpPbqKR6^gNO%HITNRmF?FRo(!rxiz0? z2f$7YbJ>2$##E^mX=$P=PBt8OtNYAe;}fSOEl$;+*&p`Ton*_M#=J z3~qtc6qeDQD`xr6#xt9znxIi%;M3&y0k zz_Ke+*87-P8stqmPxEAZ)`O*w{cF%butzOu3XTxAL0SPJR@)ZGcWXXJG-HO%dS}O? zsoEx{xz*|Vcr{qIbrN~=Qc{FA6P~GX8P6rvWriJufe^b&zle7X1}?mGQCgS1nBMcC0W{U#j2@&>vYqx%z}Bc!){+90S;^c*+aeR21s zrsm)-Lm#Soe1nAL7o1=Gv==HC(tFX-Zmk~Vc98O~CwGnqH=rl?q1(@SjzRda9UeN} zE~H_}75fPq;PWBn|9Y1mwZ$CQVkwe@x9Yj%%+K*m}9Q z^wM;JdB0WL=v4<+_y&yjP-bgm)TaLQ{TG6LAToac<-lMgKRBl86xPzqkny-v40L(B zi9PMZoz;*Js>oXe|BK%52!QB)a?yAw`F}_4?|5G216JIf3*nKsGb5P0?Rr;>vu}`U zN+$&m*Z@{bK*>RXgRc|7fT7r*je zI9cT7INU^tdP*}7XNvsR-7pC*Fd03>U6G{2SM@C+n(_v*69*?D1CBh@#S1``z5ldljM zX(JlFlc18>l4AyjtRsxmacr!KPeLm~;<|C#h#?r84ns=(<6fHw@idS({0?_gxhDTu zmH^X@oQ0=FvoYvpI1p6+D(2py=K-cDZ?d14$jD3mRNr6-8SgOYCefkQ761`|09Z00 zU*d=TUiOhK)wNa{_(C}QhSFCmBq=96$=@~fJOQp?T^0(fhcmFYFnkp&`h#6hBTR^w zl2yz;>8>=41?2S%MPF{^_JGvbbHI@E8M1Zl2$6(}qZ_bgphnEC3E07^xn?}oqE7A$ z!y}NP76#?XG|Uu-97S2|S66^JdQ}EHjU8iP0gD%br7?D{hQ80S@6G_V@&--KC>CUP zWgOseIPPD3{(M9Lmt5cmtJU{Fa7~)>n3Xri1E0k#bL?7$z1>i(vcK9O*j5hB2Gt%B zIL&a^QCw;SX#BLTr32FN)cPdZFD9oHwfm5iO&&*GNOG%(+ zTL=SfHxhsWHUZvFmPbKIXe&m-_3{UVYQwy!C(2-l!l-JCHRA4xAGgeGWp$MhboVbk zaJG&)DamFW>>1tX8`t_^N))>xOw0kX8&?HRqd zGRepOyCTZm=FJ81A!d<4uaNG^k6dL>XMcIp`(P(}@v|zzQ8WbtYCOda5lStAPu(Qz z5pafQ-L-)xp0r|atc*{&S2I0p0RUaCw8$h*@8Ee=nO+;rcKe%yf>B&tOpx7pr0&_YM2J`-`D>9dGu}QLi62%K0E0}IU&lJ+Vh|`b zMH^@~S((A&0-X+aaE53ng0w{Nb%+6jV$idn%s|(^K`e(#v<**TO}FloZh$CBq}(0( z5`}oFE+z|h${4hx`lLOxRY!Lu`vG)L0BciFf3E2lBoWe`@lRZXs(Gr;wlFiK5onbQ zL%1oL%TclcRIIS8O?r#44{D4Nk^d$rM&R4s2+~t&p!Y^n>{K7NrSXAo4&tul+V=Yl zwS~5tF%G2j@D_hiW+Blh`Az^3C%scIs@sk3o5JivYO=~{)ZekZSDZO1OGH;(Kf0gj z#-TD*s-$-r3sFJia0}pVyql4^5?$NhDKsIMiV_P#1y?*3_e_=CKc4Db4Q5t8J=Zbl z8lG_2qGtTM$xWqZC0uiH#o`)2#U-b^b&=_#9~m@owGdT(O2RNbjPyvdpF9#b={Am;DPFaU#HR-os2dwL*)Qn zgOG=IG;KIG8t|U_`dA1FBZZVsDs5Qb(T6R=#|P|_hlubT%XPP8Cd!-x`oMZPI#2U4 zY*@E(9FIrgSS9~93%s4edCE7pWQHzwy8Vk@z@Sj)$r9ZPQx332zOnthRyV;8mJG}^ zvyuj9lW5pjOlB4BA6_=j4aQFzucHl!&!9QUdm?Sh{F>)3r%%|TVY>gbk5G`zDukBM zbQV1>*o*G2r2VO^Be-K_vr|g$nvw~H2#ey2dN8*7)9W1Cghxc%RQ|m{oOKEANrs(A z(B=fi$uo`dH)#ng!z^Y7>;E+rty;aWJ!mhd$;A2>3H&G200)4D2w9fNQgnO8@rPK^ z#!e#vucE0S>0tTlGIu75#D6zs$ncF8*K{`kn)+Atn4vq`#G2zAb0Dc`bEn1jMo{F; z)>Vub=U0otM9Jx!sQCe6B@t&Kb^SKxGY3BD?2b~ylw;YF+zELzK!X(j#h~7Ap=9?} zje@;l6R$cVMmK6EVL^RH4P*r6wiMW@2{EVSTK(m-_<3j@asX!D2zbN~`(Xo+GO--HhrvDiGEx(gHL z{bY+dN_7JCtGQwshJ8)z7Aq73f3#8ffOnsX1-h>+Pz6DSp5&}u= zHx)(6zd77c(^QW!j+}po@~!pKQBz{w6=Cu6u`QRgKLvdeQxD`#kqlo-wLPi0Zp!lJqF&5@t#Vjt+h|t2n4i`d`2g< z_5b!IdEbQrnmpF3p@#DR(~ke2I6S{azztjs)@rk7S8esAQ#|(g^{RIbvF$jRx(lKy zz$JWDIO{LXbW@wQDA}g=suKBYsgF$WvKh52Av$n&3-vT5BwW~2zJ9v+UA8ygm{7|# zmT)-q;U?bdh+hGRoJQ8O_|k^s&mpTN;ySsfb*(z5$vGz7ySfNp{A4A_8;LKPVzus3 zgPN_O@a|;+q#~u+9smHYyj}ka0&ep)o#4g|wWQ?q?1^7Et@$ppsnup58);C3&t&bQ z8AwfxeWKAMfue1%^7!mmgY{dOA&W%%ZKLNDXi`!V`Gtm&r&3RcNz9Z9(ufLLsxYR! z(WEA4nr)6nco}K>ni^LA5O1f;_2c(%A|f6qW+{@EE!7|#7LY$w+NfpsnD|K?IM!** zJsQZTPxH2egvN}kYyo7V1mN-l)NBRoLjQz^cHrQ+HF-M4=O0o6yic0$c1Wkf%L8?C zxXerF$ez(-o*dfDbsXw=C)22e^$nm3bt295mqTU;Aj#k{r1^EiattHWD0PM~LgPG} zIXm?vT{MgH`*dl)tJJy%E)Q($Nad_xL6v)XK9jF`DeK6#O0%GP!93p88zA)@yb z;TDYt)#?ZM7(*_P@W0(?T$4MXx6*|h=kyvWdgajdxQQSH{Lf zU2M3YYcrm7W}9S!Hx5?krN?5_^mlE$ki}?Ko#WQoQ%o5g;3kB=QQK`N# z`-IEP(lp{FmZr1s>rJ5F-Lutu@4+EmO7{8y;0?NJlMu`}M{IAq0Qsm2lzekHmg2oH zfwN62cHU0cp)WV2EqQlOv5x&7$lxw!7M%}%n*b0Vv*)x8voyG3Z{ni#=)pK)0(*V6` zEAI&Ty7WiEpu9aD!+9JYUE>ozvoo%Gp%$TS~}lBDd%*J7)+TxFJL!vdjuJ>e3g3el7Lq+ThQPZQM3X z-~yVVXD;rc6_$I9)(Bt5nbN6(m6`7;1#CrS1EkujtmRK+orCPvg_d;(Z7l5@bJ1$Ud8K%FUUl3mF*T&~BEUFEn)4N(Y0f913xqzlq`}!f@%AEwU{KdUH_E*;` z-bEwQ0;#ks%3V4`^%E;&<8N44%? z=k1v60tE>AgeymY5_!MEtOtALE>nP0)a*%~ZuJ_z;f&@YyeQo1k8?8N)-GhlnswIO z7x$@A?FWEX{4D&JV=?#wcoQ#Oplu3XuH;<}U^xYyD-A=Cz%<#WlHu^YpioxJ@GzJn zJsWJWaeF)Kr|UT&y&;ATadV^Hf>_g%j?`1VgYW+jVQ(3g$F_8h26xv43lM_4I|O&P zpn(wF-GT*ocemi~?k<7g?(XilIeSOW`Q9-uzZeVpVbNVOYu2pQ%F3?)sD>+OLjR1z z9;3WS2}H1>WPY^+{xo}j1-_NT_k1I@5-!cQ77t%ex9hHUBAqAZ%u6-~=5;?Jd=msO zwE50Zxo`cGc3LoiB=23;R-f)$ergQVnaD9^B~d=-n>~Ck=sGym)CTqq!E&ygpCb)2 zX}li_U)w3}VlU|8a!l>!RuKR~lHnoeJ)T4HoQ}z|rcsN%lMSiPlkHh*@q72n`*dxE zdd~08ZSELmKNx)GrymGf%-E%=zfIx`m~rIcOUx5;aVRcI5v>wWn16?89(+#qPD6yH z*A2z>8jc%C?Q>FTMDAs*4bxkUAh3K|BDbrpA!e`(S3i9;aL_R`0%N^T?%PZjX&%Lj zAT(qu&vfQe`eLgV2)UG&6OjJ~U`OBPZC#2mTy=h(bmVDq0pG#sQt~lTd(=qV$4E6! zom@3=*Xbp`MY?1@uiC$uTN%;ve$lHgoM)-JySG%ya2ksK%t%R!F++6?Prr5EVb_3V zH>wKP6ZfgMq;rTh*9Sypj&B~%Kp>6ADZ%09V%lnRzK9vnDZk3%b~N^}TT}Yc;BN3w zDIz_$TiUECntTpSePkv}*fkRoP3Epe>CtamTX>hkscfD_{4&BuzP7;@bjX0F-CXz-;cGxvIaQx%I}|7M8mUAyx zpfE(`m#{`>`W~N;3B&wB8q<8-1u1b`tBW}qb|Eb3(>6*BHa}s?2c)MLQK_?b`mHaB za~pMDH7QqDr{0Au`r`3S{2b*-70Z{a4(4g;pNF4Ft`fs>{o3O5X4Y$ARJ3>8I|E0) z2)2#?d?O$}49Tq#_aibKx3o!rtkKt|0>6RS2e%uZwq!1)SpMV_hCduBq+uc{YpNS zrW%Qw?#njZ1(=1!T`Va#Fz5D?;uA6<0Bt`*w_!1(&PgU+J}H8ZiJ00io*EE99(y_G zALvuK7aRrgs|VfKmlCJpoPWU6ih$-G!|5u|8}NA=;R&sqTS5VCUdEy;m^v%QIRO-- ztfJKM@xWcWUR?HUzM*pvNXPZ^1|O}F@h8l4iFk6W6-n6HVe-rgx^2rb15Bz1?<}6> zk9QmG+$?tnmiN#_a14aX7D}d`qxaK~Zc0B$cccZME1zduK934#?)SP?DdZf2#XWcJ zTpDRI8VwUbnF;|i%**)iGoq&4)%g2Jr9byQilny&T*TTG{YeYzS=&hK=R3L?@|J9Z zu|RzRrWx*sVBHd~nut;@!U>hRn>T5OcemkIYxoQbMsY;LDN2?fDQ$tTi=md z720P&rTC_rkh+{ z5CT5_tffTG%(kQH+_cqb3aE6u@?r4H1Py9i9b@C?=;dXmT57@ZfP@X~UDvQ^!b-Ea zvxPh714HcM8w*Q{hPVSw(t%{}6c*k>G1e^1K|Z^8ecB zi{*OOro9SK?AN^R3h`!hf36zw6??c9IxI!OBM2ELogxDG6;eM?Cr!9?=>%UkyZ!HL ziiHWEjm&-WQ(8q9#}Sx2IWAqEYUy0fWWps%3&K?$<$Ha|VoGr#OZEcct`RujV)Sc* zQr?-PuIY-nK5qvDgOf`TlvxVR_<_V_QN?h5AuLQ3;O(oPY;N1wq1wE!tU;tpfe{Js zg&^*4Xy&Rv;ke+>+JpMGo&7FvZ0UA_a6^+M3%vZXHCKa*WAG9cO?}?SeDo{{C^!Jp zKbkvEfpJ0D2KK_^1b_N@IEJ<8lFKU6&>RaQ{n}i=c*4WxDg|!j@%?hoM7T&Gwt8%D zIZ}{^5u!rXz%oKL_Xf>~ATc8_+cH9sA@YM>K3+vTxhL#Hx{f4aMz@NPZ{B^u8Ze7s z_5S89Xczt4Etu3^2<*)Q3EfYq2!jK(JV7TGCxmKoOYuB}@Cc&EN|Vl{%oUw;KQS38 z&7!}QHgF~1w1uYnS~A8#FS2(br3;0Sxmg_;nP zyC&7-&gL_#-V-GqWEBN|cT+F2pja z3w3VyEF;OcSR!HgLZ(Fz%TT-012AgR9?6RRa!Sg|3kktE8Qc1rs%l!*gM3+4H>gmYy*nv0B3Unh$7Rks+-oz{Gu4gOPFc?2mK#GTW(I!Th)Rr0qyn7k4~By@P}rg_=Vrie4lmS;XD8@DrCk#X1iK(qy~oh$X;Qj0p!7CHZLl zT_z1690&RI^#sW&lQk_qT$Ce?^K{5(<{Ngm=JfHc-h<7)zam?a1H+LH=tuB7%(QQ7 zp_|p2`NPymDr=5y+T%QK`~o8l4&MZ3#%*yssw}1iymv=dh5-4hz-XT9dZDDUJ{kZG-@?N^Ms0Q_emU9YYGirlMxt07i zYlH8GYI1yXdfh$=v6}x~6bk9LD!D)tE5SDgmXlg%F#LUV+%yi+0_L?F&L)zCAQB3r z(uVPQW{DTa7BDoc)8k!QIjj0AsNUkk(bD{-+xTw$G_tXXD{s*pM`3>ED?sr+)rngz z5BKFO7b@d@{rZ(my@u*+b1=vo3W<=0#_iJ+>$0nN02(Qo#Nk3c+T%S^IL&;K8Y7iP z-78E?%)O_sE%tEwov@dxZWyRENeKz7yAyeL^3iO~`JRFe za&mHz=ie(WS372^c3C%u5~d!%_D7P$bGw8(Hw6X3`6A#1e(-@MX`Qhc0W(YkN&|e|6x^|9Kb);>;+ON?H7!i960PgixhDrQ2sZL zd5Z%xW)e9pHH3nT^HxI!fpaGUyDIp`(_JWTE-*fB!C7Cw^4K~Vet~#@9LJ{mqRsI* zX8bAd2NK==oDR_ce#_oYePh^o!|lgJQkgk+M#KEgQ9s*uWT#71=s}Fes3#T}8qKUy zz%X+DqG@f!z;PTIiXk_W^Cp>kL7|muQRkB`i6&(hKWc6=>|80dZU3pXlHp=M##hj0 zX?5*-^fM$t77cMat|Iz*zD9@EaSnZ4Z1&C)BNXBxAB{AxjcW>`%cNM~l!!+(Pn(l( zZ5?*4QiC5lQuGxKC5moIIo31j{u(yg&0F9Mg((EI_t>NZK>v;3(vt4!>E0q3j}uX; zK(T$QSRLJbWA5&9df7v;_D+0vJg3ZLnns9Ef;~?c7`QgE$&O5Y~-wEG%T4Lc6ooJ8-*-B22gPk@OQIXH!FCX5D5sA6jkk+Yh`TE&u#c$C`I5@yr1b2D& zsqbzXy$9MGy3(7&iG+43TC*=oy1g2D3{FN7$wD$Lq#yNP9abf}NM2*o4Nkr295>EP zE?b@)`-{u#aK0+BD8AX>VMbP3d?R|#!lN3@$baXfGtN&WdejJ%9KtmF4|nnvR4srQ z1lOsCaoCmFhULS(m)k^F6^^Y`zf(f;tH(^Ym}z?Tq*=l|rUpPR8Fw8yZEtE?hMan!b_*IEI9O?KF8R6;i0T;Bg7l zMI)Bq!EjQQhr#nY;#B}Iknn?+nq3MZszgF@+qK;veR{)uP6n3=P*6|;aj5EhBfqOC zeXKI{B$3d1diE!bAgymdnkmQI9Bj4qN@FxAL5|K1CCyuiAQtgwCZKeY3$P|8&N?~C zpcRj!DgKCA{IMEUcM5K=ra->pv)IAn{n=`i`C^0K^V4I2dCK}w0^?Y@o(Ks(CZ;be z28B38|GTkbjrxkn>j@cN7?6uDCYuNs+JH=>(%~dlF!m#PF>&#Z?jS6=e0dUC#2B^8 zFM7Mgt;4 zxIb0=4esoNU6K7E2R4r@_D(|qY(Th78V`_(T+xp< znU?4g#GO>bE+@_QCh0YIkVNmT$e6BZ@KX;3EUPq(tfQ-cn`P#$0pftnW~hNfbQ`4R zbcwR7nZJZ;UOv)sEa1qBhKJV^n3f{Hew&c65Dr#h%Hs?jAlUq_V_1|hgBixJvLKwy z6_~Mx_V1tJsW5g+{YC2l6~^NWc)3eB5BzWI22eeyr|WIgSmAO!6Js)44U&t!g*e(e z0j)eXu41pN-unJO$y6RBq>_o0L3-O?z^_ftD@EEJ7Xk&9`_f^9OS zw%#R~=CQUM-1~rN8%299N!-JNBK_lHmVN^^dDiXWZp9@Tkt2L|l`9mc3FwhFH~ZL_ z7lfyQH(u^f_dee9?4}k1U&z_`D!8A>XGce6*t(|V7Cu!&IULSmDC9}Y`GJ9g%GR25 z3z12-Yc)IT4#ihJPotuu5`kAxqsyI!05A8tRvk#;u%l2e(GZ$s$`Om|>CkuZ;h1W$ z!%60JkY1cBfyZHi2ZKVC^(#~=EJ^m}cuQd$iba#G0%xr+-Lg3l)0yUeG>)4Koz@88 zWavQmM?2!a%{bWl`^c#Bf{npAq-x_y!KEgr)q{fv_p2i?n!qdsu$wG&2ox%43grU? zm*c=@o#P%a?f^Nxux1B6);A^x%x@^Kv~&Yh%RN-fK0%;kT+FMrs9PK(g6H5mjJonR zC(O>yCOo6oBQ3dLkt^hW>q{;qkE7M@sWkAEKd*dn-W<>`Qm@57UT%%^Q&m?N0DsSF zG9_sf*sfxgHdkYo#}P}d&VtMBEVzp{O`-Tbd>r$&hs)Ig;LQYsZj4_fRZ56M1E|`m zU})*G$24}qcoQx$&(|q6EroDzb=#Y07XxK1wp360}8*xoaQo| zBLD9S9|){$+dJ@acKtTm$DaHv>!$@P)5R*u$zDhZvX>wJ^LuLwZQKG1{yO6`G?d4Z zy|>#UtwwWGv+f@fY?_q6zHM?K7o%)~Cf_0vWd`4xvW3s`AZI=n_Q z9R^S|Qt5Cn?)iaxcB?h;kF}wFA8}F;o-QV20Ep?qV7t=hY2B7TPN#?P** zG_hQ)&U!FgsWQ=3q*j^z>W8qnx*~_eRoBxa3doImt$7T?B4$)rkcYAr-eP8BtZsK8 zF`X=U=NlRTOLU*Cc1C*>waoxdXA~qJip#!HZNeesQP`(dr1`PdoJ4;~35t^j01SG) z!Vd?cpYfjnRI#b>@c6iyZg6;By-!0!!)CXaJ$~7Vg!h)=Jq`uY{%L`dyBJ72Msz13 zA)%#1DTs=S3j2CFG|N;pA|8jR3wx2#Kxv*#npYosk$O{8(+LpuiJ6#)&YN>`a&Vgt z*HG#0AMX(4S(a(9HLqQ3)@5`|e{4eXzB*qirUm96aEg7ZMt>lYj4QLSDSz%tBXT=N zCrD*b)HpoLklh>aBi3JcC?7UAgidXB_wo*_S-b4Tvd(pja8iD_y%9@c{+Mh^%x$F` zd4b<18(qciISUyuhxG>@lMJm3spC{@kzXq> z)<|dM8GV&cXSicKiC?PO?7{3ltZ-S*|Jzi__&jgWkwGw8H`34xhYwr#W1x$r=rI!LK@YwUehC7Pd)j~IUk z`zCzL0L;gj3jINy$2;2P{ckyR%!-2HWzd*Y=n;fYmwU|dj0T|#Bo%NL%Pj~*aAjoM zquSwKxj2J%!`gFS5?cT#83gHDUDa+8*@u*PzFC)%S2nOy)*Zfe4bk>|O;Rg5Ye)^e zw&8r3WY?u(6$#r2sU$Xoo{PcZ=aKv*Z3|oIW^G=<9XvCU%P48jlA{|6oU8C_4yn@7 zc8-vX)FI39Z#z5@pFXd4i$)EJS(ry0+TV1CIzL*?67oP#l3ZJm#TRTiXbN-D>uptg z%D=VkYNeEuiv7Vt35k)6HyK`vk0xU}v(XBjv1-xE5exP!?$L3BKwcy+ac_qHTKP{5 z9S5D7>Zj8ka-GC~bhXgw&n$hmRJTLL`P)eS^*x2vII@iIXv6lNrgnu+_TE49T3$}p zTcmtoFSQxrCri#v9>R!2=29Bl+08s?dgA9@FY(>|UT0s82s|0^ z#z3li($u2}FQ;Xp`c_kWr!nely6m#5Fl!A(D4`nOQV)cgOC71~PC?8@?K7!hraq2w zG&@9plK`FL!)q1S>-7q|+%Hj}?+Ila?Ww6gR*5bR0^uf`s*dF3>CuI~vk)3wDux0B z7Z-PfH;vc5V|T*ff}sZpexRwTseyjbUz**YTNXxQDC45_9S9=d1@s+JgPIj87yIVP zw7QCR%+0--F4gvqiHTwG>qDigfG`=jIb9!XadWA6+Ml9UEIle=f7cp#+uTgszmJXw zg@_yOWy)FDv%^xwxE;8ngkneuUnTK^B{nZfqAZ)8FRcJ$KO~$f`@}sEO`dfzoXQO~ zkt?Mz_X3a}Znb&9wWXu{L%uBxQ zuVaEDTa0&7i2IpD3nEf&MwGyw0oUVsIS5VF-bFlnA7%CgNB<~zV7C=~ejgF@7$sNZ zmgM7cd0gy65Pi{%mlE&e=koKOZW7WK9N z>*>x9x1l8Ff$Zy{VYxq;0lU?s4^(+D2ZDl=mFedD>UaCM_}ea4)Mdqt% zotba&5A|ZjidIs~$pc0Co5jM>BJs zx7PYoH9wxo2yLOWD=Gwd$f7))QbB@r5^-9{?8^1B%WtV{p@zk#QbBb4Pg_v$npLFp z6|9Mxr697zk|SS{OO9ASoKCnjJzq!%fzL+ zhoJ|HMMGrJHVHqFz(|US&y{YZd$vIiP!L2Oc6S#>^0~l7Mfqx{pI$etUAkJmwSKwz zVqChQySuw$fub5lG6z6BlYGC}9E>}A6D^h_USm3Id9j0%V{$NKrP{={hZHKAz#s%G zX-1xQzR`~sO{FHzuC4F`VW(KBum;`LRnrE$KZ>*$a799|NFfxEcA|7OPUuRkHJCaX5hyi^ugQom;TP!~hGEzpi8dQ2kLd(ca#^&iOJBRdx}m zI(N135;~C;(_E})_XI5+kta#!7@%#qiH zbf@6KlN_b&@vM_^SLQ9K0Kp)E79jhVb79;671HDL0VFbf(PK0JYvl!rhz@}YhzxlZ z7pGMC01T$yT(+lp62>pc{NiBmvOS>5s8eegtaGVeo$lyD6;_p1T8D#idh@pMi_YMH zOSpf?Zg6}k8%=u7megpG-`U&#rg5cGN{vsx$S@y97E_X#oUhFF)v@~6l$~z1kW@s^ zqgl!LqK^@kre-$ghf2=dZ6VfP^1~fvK}$Q&pCqfgQFugIiH;X`b?Ao1;zHml(bC(Y znMMN=YMaTME6C**heV+MU`vZJVBNG5AT`U8r&8coz(6;m$nKk~DWjayZKg6wV{$h< zDE{+HDt9Rf?a{EM+x5GBxMlS3Ma||@Zud>$q%!#R z^V8ERBOUu28{YsBLYCkl^kpWI*`%MpeQw(XYCrIaTD?YG&8j(^$Ibb3UpT+BT`Z_0 z+#rAB+RgT8+UZI=n17o#ipLvdWDg3Z0-enPjI}b2H%x~95^*#}iICcH)an%acf~XW zXlf2ZSDK4!TU)+(oKJEMcHUNY-gXuXb)NYOdHp6>`Jz>=wGIDz!SEf{y1(QC=eeG#@OD zRxxfGn-wTfCsNiD@O};M3Behh4O6c&L@akWv<95_mZKx7n+?3{S|lQ5N|qjd%p{@< z6(e~+UAZS#KKC)&S6bn&3#tio`7Ux%jU8Exq(HKYNa5*YYkfp={t+fY(Vn)BZ^QX> zabr6x-TB;G@7^j-O7>}yi6YJF#^?seWzN$x8LKBA!ukt*Bc1l;2xaGERJHos9vryr zJU;(x@yv}Hho~jLP%p<;95s~V$?auq!sgP8P*eYhPlbJ;&fR|3nC_kTbE338V83iP zKKlh%pVe3^{95@Bt~T@h3PwsOm1sNgez_H?dnSUH!c6&Z(I=v34#vUTZR6FCy7>U3VJc8rc{NUP&*uCbs&+zombGd5Hc8o{W#S3> zb#t=tGEkz*lD@J+b-}TszHgKa6_AiTaf}tIz!CE3AZ$fe;;xYyN2aE4S1xo-hr zEL;4MxqcsD$>iU!V$S((HkexP?LGxrTZJGyh65z z5{Qw?tE#$MpHr2*+yp)V?*br^N>p@#1&4ytJ6dp3t+UKX_EfbC4*|yzjpHKrt*54| zgFF@dmQ(w_zgN)GX!WQ5W*%F%RP54<Q`a8*Ewonw`Z)ZFBiraJHUKWnX%;w3GC&qe2lKD{;kJqs zloX=xz9wQk`bqh?fi!D`M6s!gV5aH*<7m7v2uVaLq=T>kzIhGo%Xzkk4(9K$g&YG| zN7nc%{qGe%kV^DE?J{i8G@hP`ydlR=McS`;ukZulUsryQWz{uQdD0ai>G&_c;9s-p zp-N9tyI!cbk&m5^sdGAif3$GgeSdwN)qFvvR9#z;XDgT5f9EDHPr zKsQag0)&2NwiwzcGqd8oF!ObQxcsh=M}yDp41P$}O5|;tz@XpCFT@=5U^|OyW>w#bUC5xLoNRRP#mb0YDi1dGq?#qG$$fpWP+H>lDC1PoPTx+I-d z*w%FZiZu|Enu4Iw`I2I9vas};(8k5Z#i@lsf1q#uo5XCz=7#BDrT}NU8h-labfHS= zXKh+q+F~u`5V;rPr7VtNy;qq1(Uf;;ImHjq(sesF^r&&kk+=!cH5~Of5|p&3`t92_ zBGfR>ed$d1s)WaPLA`s0)|7SqjR^&r5>zjXf(Yz1KTiwVahsMqVm0+a5d;N3X^5!) zAsf;lNwSYdAAUq%8yZuL>N5A^R~HJJ7PgW-tZUu)`43KrlOV-CK+0izG)+?uYoK7D zK%!y7$uFMBM>4FgVx%*%8=M3T!lJo8xSrK_H?@Q1H}xkALzk}7-Ts$vd*s9U^DP-4 z`MTHTH(qOUPOWa7_PN*Pai$*Lpc&qG%JjwYu3?cT7LFvdppSy3878{s{5FKY>`IuL z&h>`Q_Ha%~YuyitKsHNQ>gM*=Z6Z-zdIC@)Lq11*JiayB254%~nJ+kMw0_kDB(9iv9JbLFu(k4`qlwHo z6L}(^5vwaDJVC%9(*Xi~;1mEax>H4J)^rw*j& zYN|IJO9#$SQ3Pq80~yjiDbZ{sWVj6ETf5ku$WkrWwVql7c*a4SfL7&Ftq?*1UkWqY z(&k8!F2BiAt!Ce7^24`B0ru?fPffOAxhud$bBjed5q!PLV6sdht8K^eR5sde@5$E> z;-2w!txK@gX%#qs4$UmA7|kEi_O^?tBj8UQO2%&-=r147< zh_B%L4AQ*1`l+l;)_vT4Mn^^=SM;Zg$y5iLP+*M0;iuImD@V)c`LDY^)XYgHTChJ}%BrfS#K*@6_^_Js$$SL^TsBKSBNGa}-q0A(0Af&g?bff< z#luoIqL+zWPS!;l^`MCdjfvhwoMknhx$Zz~@8))UX*??D!v+n|^F7>t1v)%Rxp6OiGYxNq_c3{s{Nad+*phPYQGETj2=M+nRe!BCIIc%r4 z$E>4-(o{($kRSD*&z38$KJPzlt^Tas(Raa|H6q1&KC_6t;v&jAS~*8~hBUkuQI@fY z5*oO==Zt(`?r+-Xa5>sa56WXfLvF*Sn%BKUBteAG;r6%+@m@RPi4#6(32iA+|1dOg z#J4iu{RTY{WSfY=mlAHQK$5Z?MOm!4+L@?eiB?9hzc|48@!*9z`{$|70X>MxDV>ym zS`sg7ZKmKAja%(ey-2HCl`!Hl`9-zI-uJcZD^F&?m2`-ncL?+8lI(UhJ{S@PD^tUT zJ>`5QUVpCt!%GMX=qxtak*SmvG01=3!%#C8(kYILVr2L-(3Kfs@n$P*D#BbiX)`1DYpD{;x8+hu9HJ1%t8=yF{W&8+fl@Hr7}01$dz?zet^ z^>jJ?G*f4lwMAFu{V4{(i_nh6Dy2N;3w4A9a*9L&aC$h>i>~MhJ1yCenO-;?&jZ_j#hIXrVj14o!;ZP&MrU?U= z5^5n}(C76vs29cG!N@o037wqXoT4edjw~)NCh^`E=R1xjSD<$|(s(BpDTtVe&*g{= zka4zok=w|g6994C)gP625n4(73H<92CniyriR2*AwaL+0(nt2pT~;rOdLQMb7S}N~ zE^SfpdK$8g_a;}%{WG3|M3JA}_=d9|?>ggMsu|Uz*-a}Pjgll7KiLm21*Y%MQrbuNiNFXy=s*3v%~Jhc)g z*84S5f73gIPs}}Y<{OA^(j16?p-ujE^GsA7J_|(-F5%xRWI7d~^=IfGhCfP$6K37X z*(V|}a+V5ruxT%vun5N(Un&Kuw{9V6T=5j{F;4p$)OsTG?`JO5T@iqS9?|nHYP4e4 zS^WC=e@zda&e+p*wnEIaVn3YF`|C;EQ3tQv-M5d`#+|*rBG*9kkH3UyMhQJ4LFMyK zNRj_R6OlwI8PUB-8jl+>4h2-w(Ok8{2qqO|v05c0(Dat;A(e=gG)DTcJ(99nKH&MR z0tEa}0BG##_t@Fn_W+Mbwp&gQxZwY9YYQ&qBv2Ku>GEsx_0O;o^>r83w-Kth_v$=iMD5R|rF2>>On zB1qjDPXP1tqzS<@@V- zfG%LcdYA=08{#nw)qcIe_$w;?f+pC79zha4&rsFM!L|WN z1duvo>HNsAKLYp*yBgrx%4%vl%Jq6t0Aby(B^DOeP%1Z^xw*OF@)MM|XXP9zkakoC z1{(PhwNmIlc}0_7Asu#Fa~q5#kGuMW6N@0;&Jmd$O%_gHFdXcq8X6e|01d|v;FB$G z_m}|S@n~&rJ)+A=VKR~*il+xdz+q_vG*0yHPp+Hs8G#`oA?UA~FmBJcJKMeeHgwbk z)(cchLoum8>b$5z;JbW#jPJVUgmfw@E77!oRHG036*NMPtzf*?g5ctC9*cH-Qs)vVPwp$7dDqT)N|psdTeA)Om%Pr~wE7c=VL+9% zgBK(%lK5F#K6mx3&qN!X|5ItU&OwUyu%l^2*M~dj9shw{9I|`vOH+cW+u@KA5_aET ziGUFcs9qA>K`ifoJxtlQWN<;2rNrtaB9$YrftttTrH(b9C_3|T)SR$cCk)uE;%F)* z7Wt3|7HHpy zI42F2#Z>%&bay3zIBw|(LXsi$l0%c|H`B)E-NMtetk0sg>khh>LBJ1^&Vvrc@T}FJ zm<$g-XmJ+5*`~W`YWXHXE5rX82NA{vZI_+A7?-Z%B&|%`xH$OsgdCl*6hW|UzK<6- z9X`}M@W#1MCkmpJ2b}2SahA6&|-rQR z^VUsF2e-nXZ2k)ZzF-7CZ5=+(*L~4MetRB$ww$}x7D~&tEP|Np(aQPZb8{&9kvUP? z)RC$KAdT(vW9BEltk#d0e%p|hr^5D{D8UO%CRk2KNfu33J3p3Bkm@mJEwBFkr7U#7 za^#jUX##)Q60Gdo8t?;ojy}((ZgEA~T-V#R*O+2zPTosRk@xW_Dj8x-7!msQ0^2PG zm#LgC@a`6BB`;~{YT8y30eb;Qfj%_vH{$tijxYb3$1XJ6`%w>q^I*@u?}g;*$JFhs zz4OdcEq_Tex*`A$W*s_q;;*%LO?)j6LUNV%XxTOc->J41X0znSwqbLqDJB=Vvw0B` zQdDwu7ea;-G=DtyE-MB#Ip1M|?PnidbEA3IN^EM&H zcyn7UHWgfyM><0M5|*&6xZHEZKCw$p8kB_0K<{AKOJGWQrj>@(GgvSG?>_#|-K|M^ zfHa>955xV{hU)U;+oCG@E>{VoVY8(`<8VL4Or_1BX;c|`10g?`*O8vF=kf-5CG57c z_ubQQcL$=Ny%x$(9HrA%7dRlL2Qoy_0$dmB#@}4m|3Zd89$yZWH%l{>8{^tR4`(uqTwBDv@7Rp@0w@0V`^yf-RPPYum6QoG;mkB1s93agdTWMy6 zR$D*$6>YA=!CbnX5{Vej13k3O7I*8s$8E2SMFkMjh zgxskaCAsJ?WRv_LQmr)RDbZvv4aR71{@TKt&C3H^@b7=Chcf2s-srYpZ~^Z7x~GDw z#2YYXz9QIc$uzW)+kwvKpI=H*RI3+E>d}%Ug-}gO%uboUO^AWJ%y^!f?bA|zudQ%eZhmy zYM%4CT1?PDU0d|FKh9S*s=mYw9aK=eUOXSo2C9=K1{l^W8m0hlE4071^Vhf9K*~Fw z4q^MN7;5VS7yQD40yJ&aY4r6~XwrHcCeLF4gQPvtJC5iJrw=mDV$4Ns589S_xugD6 zC;bBhZ!jpQr}XM=?%zCpMx(_1jV47^lC&OGWqn090?i@uJfrm$?73K zZWV3DqyjW`5%O)LiPq#3<`7vh?XuU;+(Oia$tsaYZ@13V*m8jLrinfp2bRjRFoCA>bni(CH*LDR%f9#U@2v7C z*BF9hj}=C&{1w$ahbXg~ux@fZmE6_qb_Jh%IzcZ06O%U!M;Lb~;E4_SZel!XneC zqB0g&bHbC)k((Mw7x3vYr5yg~m?>IrUGP|{U5Omm{H%1DVADCa-Y?{<6_L-Hq5xTS zJceU5&asPf_+UUSoibB8J&O3xr}DYN8M@QHy!ZUAATp~xUpj& zh`^`RI!RLy7|t|3mGcHxR*T#%i2>D3m!feIYKZQEs0H% zzByj@)7`9CUUiRab)4w@1oa<#=nCQkiXKH93o>m9*S91#m?}Su7A4Jtj^z><8Yy~T zkKxePe!~KcCs?p;UDw&nkrsb?1zkSM!cuj}l88>vnvXiVW$9K$(_vON~=1>}8m4IlVLg)ASjY=%7b z&yx8M6VcjX_)7?YqbRy z!fRI<7+Ym#M-f05Uk3!m-{okb6)3F3eux9==YUV0zF8`zTG(8U;jTyZHrrzr`joDK zN`9ao(8~Eprx5XcYciW>d3dm~@Lm@xD~oTnTJN#WT>%;fdfkCBstvaJ?Wc(&54YzT zKq)`dyN}4`21Y?`G?}}Gr=O=0JF8+U-5jI7PxcAtQ+uut(Cu9 z**GAAFlORkautexU8>#a-`vPbbTW$u_zEnvXJigVdzKg!Mo+6jsP4S-6N9=B>acL9 z@S$9RBu4X(mfF(wQjE$R?FzRs&Ys^64$EZvQ~FLzNvUO{=r!;@FC#uzt<>rN+$=@V z{={U?wn-6C7pIcpykgNxhSRehNuf8X!g_eD@B#y}ccnmO-5= z(ewjE(-Q4mfaY&t=qX4l+w>XY=l5B3dvf9mSAT-^Rc zD-pYLAaazM4}&TZ;QYWcTrLN~9CeXHN6xdf-g-m#9|EE)k1uEnNIi8`uKoRJUxmh! zR8F0ow1R+C4y1`}T3Hy9Iq9xqfx*?vu;ay$yDwH&=%QVqBO@c&9Jb%1VOZD5d4W36 zaH@#?;o+erah1hns))_;u?y=>3TS}fK||5IIz0CRxF72xlWFsrMu*aI zObnE0N>F=1JeRpQ%>=kWXe5aQAr+P63y(yliri>_s5m!S*tiaiSiJ~Pu%p`Q#I!*t zUXPhbI{2FW$s*-1)-}Vr8T^-Z(Ib~heIkWAi>1;OW8Y7GHanPa6#80KG2RagVGFzx zgT@~*<-Wk#V!0u7QzAG2ZpOdGquI^aKYa;k|L&yNKI~{6%vST4ru}wG)SCpybqw}rW65nE6FgY=tLJlu>Gjem&nm9*A)WB%Y;Wj z54N^)FKE?kBoUF1#&d$kr!$2l$SY5ba*FeRmTD6Kvt1KRKfcQmlj|J|rrS-)PJ?+74y_Qks2hTom zhKA2VrD-DH5qaItkSh%e?iImiZVFxs62s{XR{3nvd{+C~i{&kt-B!7OF+AS~Xxn3E z^n}WdaBn8zrzvW}*fx`w8jtRyXY{U3rfV34qvcnuk_W~K!|8q>z@P)v-vV8SnO66- zih%ep)flfGknlMC0nWG2hDy5ylvwz?duSA)0HjkezzcJ20Zs4kN`)-u%Pqwk4kO94 zCnqPebD0b#Q>Kz>JTKG8b*{5Gz$D$-sa%#YFaeZPP@Z{uKKdVz6?gxU+5MK`u0pnL z2E3~B91-Wh$aHYs`FBox1)-}3Ai8q+f!)8>GD&4ybfwtiRnEa4+6-jMmQ5H-GrE^Z`q{X&ph2H+(LU&Dm zCGP8b_y{@JhYwzKR;FonP3YS%s0jeY`3#!^)=;EeEzVus2ZK=#wGfuFzvl;r>*w`q5pg{xvRc@WU;fA>wHas4#Kc zL6fizWgYVG%!X|70&iH2wfz6V^)JYW4;o;E#5|jZ<%$F$AU0Zq@>Z%17?+y9=3kV5 z@Z5n8ep8Da8>?K9k>z(Cj^F+$H`yyZ1ThfnAkqw3d?^hN^VJ(e!d-;Vqjib?7rM1#Hz*kXFZR-vcsgw5@{!IALYa=U#s6pK@}U((>tn zJzFA9I`zxe&@#Qj2=3>R~=1_R%W*`DGAyqhCSZ@-QyAWvwgi>mAI? zluxXDjj0-!EB4!3A>L+0&XJ~trp*0mC@!FFrhpKh&zS}Tjbje!Q)e=4b362{si*> ztG@s2FidQ)Y1bbu)jrecLL7=Wn^mQj!6ylRhY;`2WR#+q=l_ZTWvBD(5wv=bNu+zA z`ttqRc{3r@rLPaYSH>qR;)2K!T4NKbo&i`?*9_ODdK4jm50RwGL1$9L+SVKiYHxA_1LF-^+p9TJyyZ zmwQLRa7k6=gI1Fx3O;^_VlU&DA^(Xy8FDv3uH1PrYx9C+=^#PAY%}{dwlV*Pnw~d6 zt!MF&bRPISdbd$Q3`7^wK%E3Fl z{7-EcAI<0cVRCgP5{LDgwmYwkc9vSoIBEeNf()?!f4j4Kw%idZ(-W0Jd$^R8lp4*> z5J1yD?w-|j#^dP`s;|A>U^G?kZZw(Qduv$z`v}HM_dDHS6kq(=3j(gp{TYOflatcj z_~&;|Ty~93`u~rutB$Ke4YGoO0*Z8ZcNm0#poD-@N+~U=pn!CPLAP{?ph%~5hqRO; z-Q6W!J6BNO{&xR+Pw{fUnmKdk%nWVhZd+9T+E&GDbUelud23e9((Al0h7#HkZ4(4y za=L3UP;u2n1tV424f=FCP_%HkQXen2 zs{7x56`oqRzWeqA=@A`z%L{wC&gkuk7^r#*^??z`oALsOiQ|%GJM-Id>)lg)9hbq# zjdCC~?tWBeyDaFsy1I~d6o?mgWIRHzhfJ>dL_IqBO)Ko08XAXQt%3zEr8NBY{5uv} z%^{yU3rtj5)NFIE7J}t2HXly}SODTQ$Yzn0yqtcpb+@RiB>yx1VHp*q6TgD+E%ZAm zRv5Fj=XKs9qq8SabUK=!@RAQz3A?M-xBjC(G3p}_T;sjy-hVj3kU5CKMD9mwFEV&4 z1)J61%=kzuJiY3jix6vE3QPN;D4T24i$*R|s@l`ou!9bqq}w)y1D)(+rXKMLA{(~w zcDMIj*J#sq`hN2)?rKElR#uYlkMXALJB|>1sTSp8@7No7gXW$0N54t!}iv-8b+#C^$R3H3<=)B|IN2jO6E;I8p-M zNih@>!1NaXZO(in@+aYcgS<|cK+(pQ)wEQ;KG~lB_Z=eXAw*KS zL+HN=u+z{dGEy}4s`AISat@v6ara01^FIgDAagjs(72i#_fim@MIqVL`p1rO(&O6Z zNv*yDy^6Fz|5c)Dv_uPtc4^xqt6=#WfsU+>Z-JXA}{3406;}Be6g#&(?>O zA~SD=1@|g$@j43-q55g+^fd`cz0hOhdUu;+)TQX9(u=@}=M59>T{rlv_U};-7j-mU z16sxs7a%}&tU!Jk2dHNWA)&>*9H}JkF?{~QHrr<*mqTJ`{-8PlkzQk0(%rDa6g&In zFl4jMwEgS;P#8f?O??hfe^@?>@7M&|Wm01-J*c^eUlYy;aQ0YVsBrk5!G^PnQgw0-jW(;S+G z(JyNNkx%K2fS#JoIYWV(7X>I5pF)wtkI@TxzqSfpeq;4qI)ywd0=w%kvibU5iR7Mq z_u#5B?If!{i*BlIAy6S^Oh6Uhl;KuhCG9g%#1iBA`DbE3+k~D z7BYw9>l!yUg--_6zUU;v?d!uc9_vye$jOfCH|by`7cN)-K6S=@QLCV0l!l3>^9oN3 z*qUm;2JX6k;V{+@P^z5!QkMN#|MP^AiO5f?fm1Oz9~iV;*r9QqtQ+K8BUQif!3??T zDP_DkP%PnYpFcBsTq0o?wr(YbS0=GJ!+}U-n{7amLQ^QqJB=$)mbUow`PlMu=7k^u zOGA)q-M?ug(5=(AzqP1$d}!}5D;LX;gGtE#W08mg^4;Pwyg2gD93c3Fl8Pthv2#O3 z9hlI4Cpd7l)cPJ)ThFD!yu6TW=gNxpe^^QEKhD;2)~Iw6=$;f3b??LN#F`>a@DvJ$v3o=$G(AWeSw72#`em=8Z-abf{&B>;3wnfp{qDJ*KJL+ zm?$-8JQ*rwLyQ!wtx(uMopiW@%McLEHdH->3scD#lL>AYL~pE5-d!50Afwe$IrM7) z-BL?J3>CPB5YHi~6(nF)`f*9M!p8(Eym28cm2tJRbsh)cb2t0E^ga=o%cNlbp@`Brx-XC<0Zds4KT;h~My+z?S=A&XMJ2q0jP0=+s} zPFMTmU$9fuQhA^C_+K1RD|mwSLgR#s&~O?b{0k2zWLn&sl$d1Z%8I0pPp$+$``MPD z< z(|x&m#)E~LAH@cW%mUXZ8(A8m#{Mm(Fl~HGg4Hu+hn-`Rql29YMb}*hd$hlG5glDIt_}@#;*O}G zAlGaA$vcsjf75{O^>heo%`&_A!QU&aV}(p|)euVkV(9L+AGQo&QS=3zKPY4Y@jiAh zaursr-;bx{$`Migg@L~?BdCGu$YoQ2xa9iNpVDUCi>h2twzMs`_WRFDXm=^yNef7m zUiR#7-~)6du|0a>(qSbO0ZbVR^1!2oOB@kM6&^~JRa}`S7R4&Y-mQblbicOVt-cSs z21n~H2WrWH2Zn<+Ik~xr9xy-wd6@KOu^mXo3kl4$$GwI>V0HFjh4R0&tzI@3zQ#fusuL<6boYmtaf7FB>iVuQBZyGIXnlpqVI`F6-C(YEErJRtPZ#V%8MC$QNo}{I5(h& zooCpZ`FNuIQPLWe$RReBOX0KDz0mBG6U=ftPn##BBOJM|x7($DzkWlu&gvu%nTSlr zRo9hOx=*6M7Yt2m{2x}6BVf9?O|Q^~%8`?EXz9ub$&YlljicrLcXBnn)@VZIQ*ZG$ z%bZW%#Ja-?gdzhW&HUiwMNW-kx6V$5*N)688O+dT#2aL#b^ZO)?fM5B)Ax1{4(eJ> zsK9!nyGSY*LNEQL7dNR{AQE|$1r**~@HG?+r9ts@ znnJ@7QNN6iRaTe2>=OjAcD2+3=JYIqM(^PM*g87t$@DF(-oNi=}CvH38-np(wXL}F-ikAA7y@WzG^EySF`nO>*d-+d~ItPPv z?h_yQCO518U7V;p3gR*#Cv1lNS)2lOE(X7V(VHd!YqqxyFx%==6>>sEkxP+go{$U{ zW>i-h1u}N}v@Pbf&tLoS&Pb&1la<1AA?CTuDx7gO_nTP>cz^rmF?G}d+e1|Qjnd}N zfn;0nLRnUZi{!p;BEom-gyzmN{VseKx8A!1i2qVzd8a9krfqTGPuE)*iA~+{V|yr- zyxB&beeUO$s54)`k34Z+hBie7fBgf)IwjLBA3Ka!#aS~?FAnrN;hSICGz|Q?^5j1v zOX_&Q3uGN*<>Y_R0=`rR^4lSq4{}H0IYsgeX5-%$BVMX#t===jTMRFLfrrDa-cGSa zTBx$@5ml;0ZZU#Q5+aeTKRn?$dsBry&Um@3TdgYQt}^n8F}&7iXfU?JEz^w z3P(fWu>j-em+U}3AtQSrJILy&dq2VaIw&U^AoF~x;P_g~rI8AUSmvMKB+l%!pE4qM zIsf$h`OsEO6S3h6x1&l%y`{^X`lO`k?Giz@CI{{+I95MO{X3PA2Vz_VJ z^llnKMg-Y@lR)vOHyFD099BnuSOEd|`{S|c+;Q|~>IQC- zP@)dimG>v<{k>~=ZnbV&lf@B`^3Rctqr5GD=%;sE1NC&nse>;Xk9_x%^${RYma*YhBOd9#b;iiz2j^ zq;j+NQR2T<#fHqed~a960`+vW!GZuLKPT>?rHH#B?4Oi$t#q6C6{J3<3%uUL!?kP+x?Hhcn%b|wPo!o{vKU-|C(N@%+ZlJrmO zLX6`YZ-Wt@zlhL(tQah`p(^P0$=TmN$s)g4g-7ORWTAn6`pv4PP_0~5c)@AE%KVXJ zaUm3v5|zhbVxJ6#6LgmM;>Mwu6rzZYzx^vXaKnKLm0qtGXc7OM6fOugDrr+Rvr)yX z-!RkA-0sUap%Xtxi3wqIf_eu{Q^<|a&!Ql#scnsLPrJoCA)jD9sKu->*Xnuxy6VUo z(fD-Z?6$2bBdzcD%4zPmPGV6FxgTk%S2K@oIcxk z{M5XuMpv>1mlJ)2$42-_oeAX9nsSgYgpGcuuP?NOaoSWjCG;nq$#DH7Fqx5{oP5Y#K5J^%9tj6OhgUWU|f_#9Bai(`MyDqZJMnZfE62i$T8m_eS-)}Gw#!#~$@iv)SBEPe?ROq=N+d#*O>Vq2yO@M{5Pu!)|AQWg{SoOT0k&)#>M0Nm zLg)`}CFv0p(H-|}bi{2WVC{KuS-r{-iPP~tGetKAxcQDG zbW6YQ6ux?(d~rpuyt997u{c8@R@Vn~Tx5!yjc9fgG1Jw?T;d4PWks!=jvz95v-pPb z`Ak0(3ysTX*1;X+%ZaO>+MPR9fh-Tf^N|&X-&h&lshdE>TZ8xrrF-0f1rM!C;7>1r ze;Nl`g!R+Ey7W)-$H*DPW=r!Ubre}nj$}H{qtelLxQut~u&VLC)9g?@3q~lL_IYcv z6jzIKlSYSFp%nw4L0KioG^J0RAf-zynlVvr*ZY>X_b&xGhjBePZzo zxygc4OTc)?Ycd;I?jLDdi4fS0&NSqonSLO^6A4q)N+76unzb~ZH7d)(wu&YcbStXk zj(a_`LV|+DmluQg3Vu!A-D%P8O_Srr6;F^ze__t{;PL8!qpeve<#N&8zs?ouxx1XE zi$p-|-gFiZodYyH*ctGA1Uq(L1AcFV>uZj8pGBkD->waRBXXn6u3!%ao6(0Bbw}4pmzP^t^u6C*)jUP>u z8p%=A13JJa+*X{|dyDKXOAXoytJSTTXZ?rcUwr6pli9FPbT;Qx#eO$>kSTUpmT$Fw zeQ2{P^DiTpz|mQBg7VSYs-diihFB!IXq)CI*rIC)*f>$vY%`yi(9PvKeq41jwo&-h z+w8ms54`^k*$`E_CvPH%mSC z!S#Mo!}{sce?OgddWiY#Ud_`&_A9qn8Ejx$nsxcqxR zgD9|X@N+};hXrl?gS~xdQNuDS%*W(K@jII-HtQk<4OyPu85QKqS?YMYd$^aM_WrE) z%1u(|N3jUV-MsH2?QolI8_V(`4Er_UJYj)dUkCjp0$P@*-=3VIpIzP>0zi3&Gzbq= zze6JXD9@Pn(8&x@_9yCx;>Q!IYC7gA=Nu#`Ph-yog05

    `a~kA_O%2v&8yr1Owe0 zqxz4?LZ?+|%EVvbGkuM4V~ZlitDXo&@sXn~uD)9elgzY zWn1%R-tSWtdJ*4nb`n%1jgK8KuNS#VWhvz; zG1y(7r>1h=zkbelMqb=_Zcs`xKj!b66sn04w8te|cawi++k#o4VRtuQ#kKhgT zMSuk<01GnG#R^zspO~sYAE6!+Mr~7o*OYAWJ=65#72QrFO1}fa>_u{lID^+5G2!F2C6g8_HJE>a9TJAqd)TC^jz9!E za&}@#&<rRj%t3F%*%qh+V#~6!0w>nRGI4M=@S_{)DXisFWvJXYDK& z&EtP>^W=%P-4NEP5riM*fa=6|l@&vO1E3jJ=tRK?#Qba1{>>&7kUi$=9XyK_bZpa* zE;hS{ZQP&Cgi#Wvuxz#6h6B;U2Ov(No5=~U^{=H1P@vcIB+_2-Pj#%++3mv#G|@h- zOS(q{*17HX3e1WvM>bN1_-O0)ORCUnc6RscVE{C2D7Uoxvz5z=5R~@E$32X)iuY|HNTnhKGW(tbrIo=;H_0uf{QOY{aZf}`I1W9axEe2JS$sGm& z6dGt0N=`tmPU#!uzk&Bpf;4)d;*@vHl^xIP1f~jfq)D zvHhES7bbetWMXV8f~s^Z>;;$tSL?DU7X1vKYMjAh#GR{Fg*`kVpr-ssAbLwD-1+o4 zMYHH_-W14icZ~)~%bgIq%(uwNtP05*)<4YpBnv8r1$!s!dAJZuqZ{ig7M2OmN_^aj zIX{~I$@lYkPphc1$Z6Xyop|Ku11A^P-ESx+-(L#k%hrx&La~)ax<=TE6|F0pJ?}*G zQ7Q)gDP*K7@?B%vlZ)}-Z1qvTRP7k^ey!H>e`8_=H)n^sWZxp9_iaB?E6&aej^X@1ID~BSU4;OX?&WouT=67jpCt zqQ&#hbG}0!6I9nIo#Xxq;_1JG*tTd7d8L=p$POP*iqS;TKc+}Jw#9lWW>BP|zyjaq_xXSVF zzMkF?giAUP5b9(Zk$mEW0le1^%H)PU*xFa%R;IkN_g`P6d6YLb_tWwsILeUKz}+La zU16ku>q-!v`0X!BR5e)sE{&UcERwSVzip6Ez;aqOU^SfbgY_MUP(n=9Hfd_>XLk>8 z8s|N0J+?K|UB7euQtj;%eShTc$&<(T0+D`j44!Dc&HsF5-X>r6w@Wl+oTyaLaXog+Y*!PF|kW{w&jr*zZyr@{V>Om%`pdOScUWLAIpb9 zoQVL%+ds{9|9CHju|?#P&EgN0cgYYUa7uQ{+lL*6J;g4|6TR{?7cn9es^=_Rt82R- z^goi4!e$Iu1`Pv`oV$nrzz3zMw6w1k&SdOI-MXZdBBj}XfJWQhY7k|EXd#Htsdts} z_)zSqhGH{#OpZlo1bN{0^-GCYE!zZHUr0UI)Jn6A?7ZCLU+J3)ws4ZGd<91^k4ET7=ll};2~ysN`DT{7!xcSsX=QQnyo`{Bt3i_8)6sjkWuR0zUbVLMYna;yN7IZ)_BYUgp-V7`iGTS}XzN+m zEANX=+iI4P|LxG>Ed@vAJ!fc<`e$Vd)Yj2fprO7DqV0#=SWAN*Vi$JL>!H3O$R|uW zmCB}H-F0lm09U8f)97J=asAl<4ugz}62}TCQPfK9NLTjvQug~#q04t@;DuMegQi&c z{0Q?TUVy!K510fUE#O3M1Rlgyt#mNYt+P>T3kD?R4@5O4m)t`f6viBylaK$J7?bz5 z4J#(mssL#7-RyesadIkv;gtQ(tPNSt&Voh-z%jB~R3hYNp+(-l|0>G52mx|_N#zgv zdtme#q9FbLs54^ILN_laHmciL*t09|aL5go2b<}=L?jW^;bbr9)$yZ3l9o-l z-JJTtXA32c&XW~cffPO=A&s7n)0P&Ig`!)e{t5*S=k4FIMH~gh+=`HOtQ(?$B*1d<~P4!x>j_t{~_8jw%N{dx)@A(ukIO$YhZi~8saYz|GeIzgy@Q?nG zb3?DViT4Ok^D9C!&P&V_E8T$x%{+j;nvVbEc zKEh@ZT68Z@gNyjgDf9-t519;n<5marFAJ9cRFlLWV)$*l#eGEM95UDM)!@F&OnrA@ z912x}^EeUma`t=h%fq+IX-$f3*55G`I6AU6S8$oz97Q%g4qrq-NG~g-hdmAw%Ds!n z5usCBE@_WHzP`Kh>cz4H34?*}?CfNPw7rK*uv1Z!HmALh(uU&)i;4PozS$bQP_%nU zw8uB`PweD|+{IY^X2dvY#{VD8*+ExIQM&R;M)imME!UMd8Epp}3~WE=6z%S~pJ3Me zMw~lBOM7SgUdY}{dUC(J=@rTXukq`{D*S5$>)l_!kJ*lgDvAjH{y5PX?^O#^xcB5zl%86NY2ga)AA$_=O4*fQ>j?M9iXnhU zK%8@^U$}y(b!nB9(>7*WG!>|p+?@x<3#`K`zafBzTEfX#YNzt2PECrd2?%MVwQOZ{ ziDVWGMT6+V{=!_osHIhz4pU1=BypD0jwtgCkb&ur;G@~Q4|Mvot@^ovVMdwNYu68_p)PL$r;@MX&jrS&lHikZ!nuT^X< z;pxfVMpLnLBGH8xk5)eh1!2Q|BrQ5`7I}r&_CE~InkMr7xg$`Ro4M0U+)HxE zoRN$XveCaH#K+FFaHdoD~$fVmUOXLY!_qqB_KZ%3L45$5 zYDlk>wx8ZdiRb7#B8I^htg18}H_LN8`+Vub%22X1mDhVZFTK?j4v4~ruVgg*GoEh9 zGqlxjv@Gp$hyH=k-6~Pu*>YyBL?M{mqu;SPD{nDZjfFC_@fin<50-oB)^Jdjs6|hc za;wo~+q@otvo`I7+miuJ?}~!DBzrTWJs(zj`u)kW4&X=yRUG^OaSpW-Tj$Oy5w+>xT=MT-3g;Mm zT*%rImi-B%wsG*G%56pKJl$<%mIukV0hQzMX*u<1y%%wOwP)Ed3GP14nsHEWa0nk`(NK{NfKweLNe-YaNhhm*NIl=Qk|g=erG~;FRr6R@x+0O z5Ur|cx_9{<7K@N6?Vs-G4>w1S?Y)FQaG|18aBJu>cX-w`9y&Lao=>Gd{&!JvIF*P;iw%cWY zO-W5pPb`M^MrH4zrcNC#%7f3%UcAc=bwAtX3PuwWR3oohUZT8Jp8f~7vTFl;ZrCl@ zHM<%lkl!#ir6OV{O~T&d)WW|nm$K&;>cB1 z3MKH4zBLj*fN?VA>yb3JB4?|r zJrp<*l%B0q{d>g|2*AfYo0h(MreHg}Jfd8kX|nSA?YNIK@AQ_~)r=N9&1Ymat776C zcMVWH%Ae*P*lRJkX0d&L?#iY=XWnVp$Npd}kdiJ)NP@Lw2g!Mu{VLjvXz<14@GB$( zk_c6$!)E#PIlhxKgbsQZNrx8mKT+hd9>Bs1cC=3>`|pH^8Bu72S-YHB5CS zlWD_;|KTUOK;Gqp>h^Xmj|$!8JLD&3RRM1Q#i68dF|$1=p?>^7SN|O99n`emXCAZ? zn#$ymFR!mT5>#?FRSOp_{S_5PrS(fPLoHXCtjh8rIYS1Q{7~x;GE++yg%%h*ra#C_ z_6~Ml=nag%X1|8Lf>;PXVj&nwJ?s-f4I~|A2ajaSFNMNWEvzmIag_LVYlMuU*7~IN zYJYFHME&Rit-C6D=^L$wJdeb1vvr3q$5`E25kfWS?f-tFJH7G9Bf|b)5{x;425}H` zx>xc4o(;n0P%D8XY$HXZz};tZH`lo@=S6T@;N@04a}ITa>6YHB1G_7lF*zo)Xh~-U zsczHgUJDQ7$}WeKiCFG4t8nb(lv5Y$!6$X2L_*nRXtefRFYgJp^LX0Y;4Ms}pZ;A= z<(B~K=5V^N(eGg3XrgLctV}MmXtiy3GAw~R-tI}OFFlvR;jKz!J5I})qFDCUv=ZIH zzl2f`u2j>RWEAmb0m^_Cnz1xc`mYtrLA1WvOteoIQ9|Q0(+F19P>wTI`zX3tSTPpb z|EOT+3e_EM+n>ZJC>p9;`KQ^Ga3+LP`;ocI$X8isLa_}zpZ#s~M#v0&MEKfn<{MQC zTNZb9SA%eOIF}kLS-xGT;yMq3PlhUWd2_{0nmX3XM0xrK$=(n51_*Y(D~}M&dK@J_ zU+835^D*fvF?#5@_sH2Bmq8*1%b8m1Ywq(+4055IO{3?YJOAk#=Y@ti@$*;BPQTTk zRf%UK5YYIDW#~dO^sKL+8y{ANtCj4g`@mBdg{b}DNq@+^hvu23z{F2cNTrks%VM^z zwCYmY)f9T}u4vv0Ytct1J|2{(r;lVL1CT0!+%mn9CJf*?ua;1jYir4n-9Z+gkwftd0U z%&8OE$%gAZWA7LE%hCMybBy}Dg1h^*Jr=XS0~wX50%>YAk&S9{|92w0&W`d zGPVH81mYf^0$XMs9^~N@a&P@+3gv^iYbKXoj1(tAY<3kDYX4A+Y$}3pi4iKF3#1zM zv}=bZcnW_nA6@4`wzpIyH_k|vtEcYkJFafe1H9wJaHuNWyDL4H z>0{(hl&fdQu!tTTi~u;?Gzx_p*3PRtDxE!C*zI_luQ=b?)S(-4x3#xZJ|Eb*o%Uni zAbS@?-qNT-|M{|CxB&Sri|9$7%C^pKS~|Y*Ksj5i<&5grO5I^va*;xLh?=J{^uL8; zay;JQ#u)2#kLxS7fBPqxs6IrUsQ33gex2Onk2X~5(SJ=c>Lj^D44!`rs-#~O(`pSy zg`!+$DjEJ$0VERNp0B=+$7`e;WNY*9k|*@I5xkw5}n#IK)l_V1QOp%|JW{-B)^>!I8@&E0;n*_qWCsI-IohA9agxo>d z*!-1Jc>g#sUpDUM4MYVn6z$L|(q4!avd4u+j5RQjs&>e@_6>S4qb%u1nJ^4Q$?rtH zcc`{E4wD>tUw=Oh{nUAwXW|9ziKv;GncJ*gw%>v%l1{xa1L~$dlJr9SE!Zcl8r8Tr?JfD^IDNH-7DTwAg6g0X+@q|0kYFc#e3S2YXjS7A(#}00?kJ~q)d-CU?vteA*a#_btTZjb6s_sjGHb3BT8jvqb_QN zrcuWaKvl1pqk{wj-V1y$hB|jVtwW$gpqFDjG^;(>cFt;#f-yx=rewId8BQO~xZ%fN z7nzMt442u;T($6W>MfIMkcFh)1{=?tL72rbb;BYXsvbT-XS1tOy$ubF8H4HjFqqVH zd9Y~l0Ah-#zgG5XC46+2`f{6M`=v$XY-vNX(v?zuV06<$DMI@aiOsB0k9y--k%DH4 z(>yyN*RJ~SBY?`bnoLczkJ2%U1Wg6$L^(Pu;y{o6ekwZ0$P&I`5(T8PQ<8j+oQ=U^ zBQsS`SHP`#y+oLBf!v-UYO$`zc6QUuuj1GIyHz$jNth8g784J^L*A*g5tzPTJg5|k5^<#j1^;KK(g~*NE!&a^0ZXA!=hSpt7l96? z!NEbYO!YDv=lx&&<~miWG}_B1eK{XSpuNAVLh^l*46O<@Q2f3NbCgKjs&+qrpYiS@ zAz_C^Mjd$Vi|W-mweMg2c*k^w=c$Ia=DTcC9P{>IDp_@_8$O1hV&J!;{i)|ga0xth8$oC^Ie4gWXq_Z zp-2XhyBmIscDA%o{8ad2*g-~O;QLF{GMnc-I@Rawk5{Wsp47ha?)%b=2aUUXvbSJR z$Ri|Gr3Gti>z9#I|3+Lo|4^y(ag2_9)KU0!5-oKPEnMG;+<{98y$o|tO z9n+k@$*f%X8oaM=KXPJpQp$p{9kg4zvscqdEaYG{niF#x66!P{FW)@+RBpkUKQs>L zB+ON;>iXpHOA|OOD+GWl{aE1qK32Ju#&(PHqWuAByt7Y}>hrs8bH80ubqLCXf2jL~ ze%qO1hPTxf{|Vy7UqOIEhZKD8%-^z0i_#aw3s^qZrr3d!9<`E}4CNKJH9vo% z!PJrn@7&TzM1}0i@UX!{rC$^xF6BZ*&6TwCyxNscr61H_MoL2fg)h`=G*{v=1<-+V zal;8JHX?-{9r5fu?fxj4DDDkC^&j#J7=)u2KFLW*jA2vdG@zKA(y*wIe?KxeRFcoH zOhLwLDh}n2O3sNe5u-|Hvf=W+i{ghJ=*$jHxkaEXu}gmtJdaP&Be}Sx~UwWqsmpNb!&|Bb6_f zqOO_}=}!vi6x;x%3s%3|XfdLoVZ~*gFczDws9QMfdB)7RI<4z9>@v3eX6gb1&zx2uF%?ozsdtQa- z4XjQro(1w*Krvl;B3O8Ztd}FNn7CN?FZvO6rvma~HIVEj>L1&MKJ_hzD2C6hd$j~6 zCV~AgspOD@hvf|hru9~^{^Lp~RQr{wsgLv#E8(*qRo*B=JbDe#**I$dg^`hw>F5dr zo|c3WlwX7$y!feovhfkjeB`YoDrYG97O1;FXKlNRWxLZ!uXpt3fcu~y+8oGD@dAmvirWdRlbMWe@S@w zJyJ$OMbl7q!M-ZFWr)>t?v(SZW=Dy&oVxp+P;*)fYh~2?xw=Z^*UDma427{-%;JK@ zxA)~fj55I=D*oQfX{rh5M>dtstE`kI$NgU{{QPfR$`97Y>A1~Cgg(l~5RzQg7X|bj zW>(7((hJW$v(Fwe&LB-4THO=F7f{?PfIh)c{ya8rV|FeSkWjOGz> zJec)lXbq6=o;RJA&bhBC^!Af4q7O%BfM|dQDhPy(lH6>ThrEW%BAcG0)cq!q4Cxh0 z?-LwqeJC92D!qXT!$U>td6OFJG8M)?gE`yzykW9E)0~Izk$&(1rRs8Rc$EzGlxC2j zo`KHk5mh25Ud>MFWDCeQ3ecU->z^rmv;qZye`rF8Vt~Y$t}j39I#*qeLVDwwSFWCz zNW(UC7ify%d++i(_sQ1>xCRGx-e2MZS#p*qaom=eu zQ1O6(|GN7Qz&60*_y{wkwDpbi^X`7UIE;_j`Yw@}BSlQu2gwvw@5h^eq<-httwpKhL`*D=;dPed#*?lB zm$?tA3rg3+E?JAr&+j+qzcU%gyE6AU@GTtJLBQ~aBWPHFD!M@F_QGL=UE}~<3G-mJ=TON4)k=t=oxuf|H(8*WQz7)$pCJCsnCY#9@Sb>_r z-Bd&#CG{}6vc$Po-^)NRus87h4GN~$ry99U{HCza)TB4ikLW9bhHYWG@Bj7nfo+>* z{t#rW{siBmUoL|0dK_sFIV40d?zVT)>shuhk*i!M#Z`S~#5fJ3*(GMEtOpODG-?XH zM<1{hu|w*M>EKDdmpi;9MC0JRiWkE-+hPUosrV9j*Ftx!{gMfBdgMT29%LA+stWQ+ z7&R}Nx}dJ2^%$nb4GlX+k}@9Lv|aIoIX|tN;OSVUzjD6JQWLYiZrXga%5}JrtvW1{`L*iKB@liG(9&I zo9)JH-|km7_{UH~byJFB(#2>2a zDOh zd!_+`z-YQaBEZ3wwMuzdNItXjB9;S2)pACFvGSGp8Uz^IMMt)=**5-Oc?BRF*J`CT z5Lq|Z_TF7^tqr$>d^lqJf77BM6}^*9B82kdOdO6KhYZ7*zh-HUjFwNsK%35tN0v~q zDKAoJ+?A+S;Sg4N1O;96QbD4lKjWbP7-pSkU^NV*v(_AS8U|=|E6Q%$^ok$3z|}T^ z#GBbE-E3HzH?)FH+0zycTf=3yse~PrQccMouNOh-yNvQ+R-WrA1@z$9mjg{ zXV`3_kA*@fS$!at{0+H`BE3eeU#lYLpoOu5CPI9)TPV8ff)~_DllyFJ0@ZbL<5NCl z#J(^fSeZ}`)jH;sg7n$RDeu>kXPx2Q-?LF43yU~e&BaWE5GJr0?~X|DWO~WpMg@xpbue$@!uB*vMW5sZYR%(@S209-6I2#F-T~ zRmiD*^YvHE*50h+#4GJuEVBA z0yZ@08+=e64MWo*JuhL1V2CILJpynXO?uJ_UU)4iE7euF3~P__*(~uxXCBSbIHTf!mS>_h4@w?OiMAdcg^nC8l{k-|LxAj2#?`Y zR@D7H`&c9^Md=}r_{v1By*9f#?siq3>xPQGBe->@i^P?We9Di`B|5rfw7Byh?v4Ud z25+i3i#I!1;QepiTTQ9-IdL>9N3> zYgYSE4Pl;+i3uCs>Zt2E=&H6Mi+cC&U2;JiB@sFLq0-V)Qik1;O6LpEc18i$QPneD zCR2_3_A3;A*W*~1We7vqq`&IAW{e}I&@wC13b?F|)yOaD_~B~BNl#YYEkRuR!QJv5NsjP*S}itnLeyeLj_9PpDHf-S#gYM!)4ulMUrMWZ7tI71rxS+&)2J!+uh~HQoSih+T%3d>|jT(zgD-lxhU} z!g6x~?-bp;nUg#`l`*8OvLrk!&>UTBnDN^jW4}cPJ3)PXaF-lXB8q970bjw%C$0r( zK%VIj*nu!SveQIb-q-Prj}i}Y)4j7AL?g!I>e8qD#JUKe;FplyGPPcDFc=0m1^@xk zKu`63mtkoI1#DQ<>*s^zIVQcFP{=A{D}BPsy1)pH!2y}n!d}v_PWk9Tm-%9sBQ)r$ z;RQXzo6<^3&5RAcMJqq*P_L4N!HO2!OOKq@Gv+7rF=_jM{^)|?BBmqd{XZD`Z5Mt> zBW6Ivlc}6sHmNOqt{w~l`H=xv_Hv}KW8oL+NNyTvMn;3@<9d*pVHJJN2rK!16l7gVRLe%p~88+WDD?@6);w_0|7Ei=5`9SPl~B=~RWfH4QBmHzHeBiCvll*2<# zT4+^ubz)6rE>kfHEm;;*R-6E@HI&5{@HY+2fi;H67)Dt_iXtRR=@J%}M?^%#)e|b1 zN5o>O$z$5b{ZanCmiFb|srnP!EVW$R3P(?sZrFYSNk3xFY&cX>ph?_QUYOW<`IN)1 zy{&Mb%Kg5U|*D&5OrN5ELr0wGpQ;2AkKIr$p; z(=?ZO?A)|jB3}5J$#n3xHR1Mo#Y!jp{^Jc0E;{b6>3({)dTD92ib`9Bfe?Dk2#P7~ zOoJtOgYj$W8lg9CdX*$cEFX?)wgz=D!9}IC?sE(>B(Abs8ddm>0V{>bNFIo!2Ban& zw#cqr@TA{OIUICRII)?j(*4cQsvy<9(V|-QUt8by`+2Zw_>%?7Mv)27>}xn(aP2O$ z1QOYDsWYJ@{pJYWrSOdVKH|NcWnu0W%rO%zFU<1!Qc!~Z4}7}uA`ZfTwu$)+kK*92 zZI5_E!=h#ZT5l!#cP@*}FccjI=+Jn2i+2r`Y^LDqNmvhqLt`T_RHugaVT=)iPP<+q zP6Ov)oa7w{Z|?{2^suBI7MhJ}X+0bG!XoKU%F+Q`mA}Zz($i-c(5J!&=tWVbr5*}+ ziM5c~u$Fz74J3TSsH=Q|9Q z7nFWvJQ9n~h6x|S4u`4HDj%hA7*=dxrc7+}oAC%PZB}L1O%`PrHr)ol`TY{w4}98{ zhm7g8ix<}4AgeHTO6?iiXPvm_YY^>kKR3yBT~$GlPlO1)4}uI-dZWr@Euxer(jI*a zcXgz)%lsEYX9Cz9YIYjGy3u@}l3X1rc{~5mGx{uL^ceN3fIwZQCYQZDaOi9mJ)`X5 znZgrHt!}fnoR2C{k$!LRSR)Dsk;QHQ0gfqJ5K-x@Ealp@u1X&fv;L=Y<1$2ls;{qv z(VX?ltYkn8F|b-a22E7SYnUqWCOsrw%5Q69fDzB#+Pfrqg^qQ*v@~22ntU11K7+0S zQ#pZDBCKK7cb~w&kjZ;`i(RW+N;*Tv^vfG5LYJMDxI+SBV&-@LK)5sQu%a~rlVpP$N+XK?EJK8T8|HR!Pai4at z5b}eP-W7>g*V^NtC~&PBCaC-}@p>~19=@ib0S!VpAl1pXdN0XChc%R7V~v7m1km2@ zk*l=oZGLF4hG3#$#CmWqOvvzaKYwAN5l#sIoQ905-F+{ zWDO6#UADj#oQRzjcd|SA$@;`F=(qP+oBYFcAadIiqa^&c+x3B5Z3KTKv~#G}nZSL2 z6Mleps#?SMx{0LtmQOxj2-t5Hycbp0Ou<$$5Jy2P>Iv9GJD@&Ye5A1DVE8sD(GYCX z^nm5`7RN1Ss$7$1PpNhS3kLc4`>8<(q;OCkkUB>HmK*@NDA8g_wAK7DNUDTJCU@v} z5hNBg%~00tfXToaEo@oq;P8Gx$FCVtHa=^KRi;2Ho$g(i1$Wb@j}w$*;+tX_JXsrh zv$dXV`vtf3E_nXYf>H0I_#8e)>oMUC;~T1cUhv@dDBJ#vc0ssega~ZnYj;0-RR6(e zK|Kp-5*>?Ch+QQHC7- zCA&YeC`HV4M4dY^Ap)&}v3i2xayYZn$57TL2)J039qv+dkNu?wyeQoZDfVf_8ZtHv zCna~Lt`sGC#@T*wlRzhC{H3+CQzsO-PFUdjLPZ_fyL-Am-)+sgJEV}-==$k$6_Er5 z9ltysy^#9gbHqdFlYMS<@&aw?rN)1iTo`J>5Y}eS>0VR%4^GEW%NIS8Tn^^b#vyR; z{i)2KV^#)om*<%D@+)426bCdfhM>`@e4LQq4Ypa(RQ*Ou?sGWA+*4Fw#A*ilZWHr- zG5IwVYKxEw%jwid+Q00$KUYwE_w)Q^!7$Tvo?isaU(}(XR5^c|S0gzs$P(8`aQa$m zZjnjP6ffY6pC0Zg?u66+2ZccZox_TFaXpiUIsdsG_&HjClyU^;s)Dm7a-uzaO$;Ce zY-ApRx*ImCO_%n+H^3Sh%R3}db<|=5p@FH1eWaJTVyFSVByx-qpZ#m{`_v3YH-Azs zH5bWX|K&*wi$N>dhUSD*3wwYPdvz8BGs4qT(7oo#%94fM?pXT{N5iB4d?6J&xbx}u zKM<0ne_#G5ht4if#ZB+KS5_xiyVIbg#=blwTyqf>R)_ccu{eExYkxkho zWoK_$nPnuEk-Zfqdu4C3sg#)+iEK({Mm8m6B%8=8d#~SlzUckw`}_U=c|UrW@qFFS z`#$$M*SXGh$!j#m@gz4vsSE-s$IF>b-Ws(=2|D0%qd&h#jVuorUAC}o?Sm5&P7Vj6 zN%G1U8*#V?*w2oJy0-P)-D(VSb=?X155ps}M~nK*@!Y)$;mchBU!4^>k$*@+b@RxU zcY2zH_Rnrmsk?${6+`>s?D+@!eCFTNlw6MvlbzDF?R!C9LOwwLVg!a}VSK>1tnC0- z#&alT(hvr}FpcwRrf*jrHk@)P>$V#GSSv~6AXVlx04i(jAx3GHk4JE{>)w8i^J!Dl zA-gS*d zN3*9*kqdDM<0se`#gGZQZd~W|Ifah|tUdS_XGBrCh-{Q}aOdghu(^bv^Dmk=nxM^^ zF{`8>3$OeU(n1I^kv0;(Nf^90kS+a&WFv}6h9+r{m!|$I&*k%%8c-}|7(@p@4TLu0 zmz*pC>}$TSCKu3cc6_Yy3jaOi(g=A(0#o^)=nj9(hcT1y6g#U&Ie3n!Zmw|_oTUXK zg+w97AI^)xunBU}XIkiTL{KlD=svoT(1&y4o^SMzn%1(;30Im$kA&mHON!+g?=PT) zRG>o|-rUYtwQyo4yU+fLGBQ$12cKrxM9R!dC>l(U-AR_u_&wk{l6L-8?GU~7_5O({>H&>~wLbRo?!*q+B5DxMM)W_%!7} zdya3axObZR+{HjR0XZiVB7UvppsB#3TY11nDd9MeqnRI1S|L1c0YB~yk_5hOdD~`u zZ}5A@r}2v+sp1lwN;dv`-q?avECI(0T!g9Lp(#_bDmd+H33^oZ!?9{~!ZD3yvSov$=SG>I1~$ub8JHYfB8h;+njkMDdCY_E{LazdO)*2AQ}< za8Wu3Oz*vq%(Y zW=7t+F;_YdR%xn+p{>7K0H`t@wUWySmD3wDIPU*$18dyIC)NSrlBL&kmwPtdYV9dmEfn&^QtZD=szPJk;p0g6z;pjyW(YTMq3);=&?6;*yE4wmaZ z^9hJ16D0W6M7&^c&zwuPIpeC|t)>M=`(1sJ1yN#T_nxDdIp*Ng8=ILu)wFh}x2}vJ zFrujDEKXRmfLdK?+JGmS$dLFc8H8zUx8lZFO zI$iHybW^`dD^@}cLGZwG=t*SXr{%-T&v2#@GP3TY5Zo z`QMkUjJN>LKKN{m|2OgR)=V zb={_s@^!MLIOn`FjEC@JpTM+3E`yZEu2g1DJLg|C8uCZ(OpXlC%qtGBzNEBMTb^Bs z6qG7xCuap((tpKTuXA055-B<)py;W-!e9TGGtgii14I^nOgGfhoD!v?Snc`U?)Etl zLeo`UB82OIPYUUmG%|5eH>vXXFF9rCpso!e=b(T_F{eobG6w`askt6A`8_3{w}0H0 zY)-+XhAcF1H*jAoC8J%eB=Ftdc4;t~OE+Jxa&7G_Df*24G?R~3;4e-8Py6jmIw^b&P5%mWECH}%!CCIUSx6kuGdL2w$pH};$tuR=g z^7~y4^gatAxo)G5?0YrN8~&^Ip`>uZq3*@Hr?>>?uU!1#yy?0pgu@v0=%Bbs1Ox|) z@Q}=<$)x|$vrXI=8S}FNAyh*YEQh~?E%)NrGv}~7#~~7Z!6)OAdS;J>q2J;! zI<<0mAoiu@3n~Raxp>nxVJoOEbRbCvvKt;Sc9q*RmRD5J1JjBqH0#Y1C@Jni;c!mS z;&>Q6Qfye!xVFL|{95mW^U%f9B=HcYcJ6SD;uNzT)n@{4k=d7Tp8yeH zYQQLbVx%g2PyVGs`tRWi()Ku>r`s!2xgY4CTTowq=nMVT4Co~&mRK`jU}JNPeaDvv z1Z}h$_s;WkqwHSv{83$_qlQ#3&atVz@fF$H91R3vmfZf!R?vtblnElZ3PQH@&ogSp zL96z0AU>tn;1?l;OxQsy12}hb``!L^VjT6Foz8|z%nKL4v1_{XcDM|MnqvuV>ax8{>QU| zu!9RP@TK(K6LltOOLT_N_1?EH05*3fu3Q&X}OGm|#|Bh5wR2KP#&_|1Zo`Wc35Kq8tR&>DFU zGTaOx&Zukr_FDakyZY;>>7kXWQwUytx`S0X#g~nn0E6qLWZifnKeh$!+;U*3fhq91 z7elBs2-Yk1jim2l+>d(C-VD2va%*WUPQzAiV+i0`_R!B+=}Za2u;H|8JgIu#+|C_K z`~$2WVNmRC0x!>Et3iHopTi5FRjJ1Q`!Iu=^Gq|_^KEyZSJ=NuSp zo?k9^bkF+BWV*}*gktORa?L2>zY}S!SAzaw!Y;o<^2K+lrZ=j5S7>Hz1QNg`mZCMz#9q61y*$)EW0nF|Mpm z3;Y$9Ama0@IbdP*_J0iRe~?8?jy%k#E$$P6{z4Hm8nEBtBGd^IPb*9m4D8evWF-=| zXIH0kI>mRd`BOKhgxy-}FX8u=y!t`N_Le3^?-X6jFkdU+k3|a5`Xt=;ue#`h#MA-* zt27a66vUGj$8qkH3{*;k4jO2Rm;-`#4i3-v%ALQ^LRUZZxkTveyHVnKVx6hAbfm`E zXZMq|wQ9Y+GSRIcuI8K@K(!e14qJ1`Ibu25ikhbR(|7Z-uTdLZhcMq&Y=V98yT5SE z7i9d$Aqel*EGPBm>rsMCb1xzAFQ{cp3f{_yCrZGfH6UplfExr+rQaAxN=`2Js-kSX z?i1P&o$Af2%xav8K6ymjaQ&-bSjr7Fc_z)FDDeu$E9^JM;Id;6@bdU@H+bOu-=v7h z8`T1EEUS0;6w~pm=;7hdW#t(K0CDDFgIaF*U|hx|;xX4%r>RihIlO)ALc$Pc*`b=x z(oMB`{&PrNK2H>qN{6OfHWx_7CL?v?glmLW=uY2Ewx@>*3$x&2g5(Ef&&4|JQ<$0*^-1=htWZf@=pWpyEL?INNSakq5Z z2B3P-si&C?_$j<#&ImIB6u8{}paiLk$U)0XQn6B91q}ncwk2WpqOalB<=^1uQ}Wc%0iT|pUh$K?CfIPPevnHq zRM_sjh_HZj2L5ylX6*M3Y+-;Y67$j;Be<2bC`m&W^79JVb|^MYkQj|rm2D}Rc5I5y zxuCdVZ}Pnn0o>@Y+7~Jx7JtpR!*?_SD!O5UFnK&FLP%K(RyULlyf%Ih3AZN_jC#^E z3gl9Ne0yMCk7eP$4xc!bjrd9uJRAkY%flov9_mId~lzxW+s=AA>)U)P@oX z@de@*N3DfI7-S9hBV$iF$-1JYpGUaerRL%LlRTFDw)`BlzogM_QUVZ22I_BY4FD^h zo%xdB3*!iS?%Kmr|4Vs&sgOI9fEKUpFJ5ecrfT2}mpYK3Ue9Z$xBm_yX3Stp7#JO; zq2x{q&ZgsdVteT&1th$d{hkFR`yD)(%P=Y;S_VG%+9f|78DbLks1u@-Ac55p6;@4` zwX?JH%}y_e#%xIAK&$u(F?AshSSdWvF+o)A7xq3mmVoD%*QF7jT%yF6wN48ZKRc84 z3`uTuLPGrM_mGRRiAe?%)_@#L^gIJQ>w{j1z3DezyxEm~cz}tJ+JFOHj(LnKd^K8Y zl3l@iLG>+YVsymUuCT!mRrC?DFPkm#DI_sf?CV}}c&IfUdD->`(h;W{hJAHLm>gR- z%~xiAF`L)5YIvtpwQqTSMh8E_Uk^#I(j@$%*}kP|45hTQU@=G6A5@uM;ZE7=Gfa#4 z$EgQMjSw^_p86%8>`>WML}8lGeVsL7Ij1UDA^P{=J4)x@VU}>uvY>i?JuKqLij+#sF1A${+cDCo@cU5GL=7~<3 zO>%Xd0;f%H_N#6~pbfreGJA@+@HFVZphN|%@ga2RCBM*cpK1;-Jn#9li`!~b|IJ?& zpc?LH4EHUdkmttU0q?jSMGX!bWO*4FU@~lB>LW4C+Y%>q7L!5h1c^cVzHh$6(_o1! z^y9L#6*{&r6A{XpF(x_;Bm_D>+2`*$3CJ8FFX>MRG{{rzbHcTA$muo;O5w;_E|X$Z zI{(g5xBvaN@|^+`EF%lhvtG|XU6hAA!jz#{dkYxHP-;=i#tarcS)cm`tMWCp7=mXb zaEPaufuWh^vSfJow#J6bLjUa>OrzQJ;SuuCypCpXd7%Q+G8xmd*OrRzHrUVgT*|Nv zy2v0&oFxJ#F(Cy8RaAzW$&_5WWWbm0+4|_YLxM}f)K%uh0{!k!Ksqb(@^~mmX&`kh z$}ql%>0PLTpV^_V!3C*n1T^0!CjzSe>u^~4`3K%i*G$%Qs2d$gEOy-6Ey7+y`Gk?8 zCnP0J^mDK8q1~DlL~G;@r&KU1zXHO*5qp$`x}KZ_$WHgAz)-BxtY0Fx>`(!~20(+* zeOYlXaqZ^gLJL{2&)RU`JlMA@7d*aiq)qWW6EHZQTYy4*DCo#vpRxX=pL@3f>zuGn zQZ+Y;+dI>?-9B4SK`61_@>1)5Tmb2o);Jz1#82ke)@=9bk*cFtm2nCRHQonTXe2#f zGqFfLu03*s86&;Tw^;HH&>}rQ+mk5(rEY<)D6qZr^~(BL=ySObYe9y?9_lvz58&#D z4-M-#L2WhQJChEB9d`|-T$kx)z8cZxa)v+k|8)#CM6ryIKafqx zuAi};sZv>mB~=!E?3s5QzH0<4r>x5XY3X*s8pK)@eRaGF3!D;E?|jajCB zw(ZjhulCr(LI9Gf7DDxd<7yuW+BSb0;NYHjvp;4pIv$;|b&p#FVEwZWl9}v3DlcoL zK;TsGBTE5Ewxc1wY7+mH;m}1rI|z%}Q=H z5|Ok1^AMP&h_iKd%G!!C)3XlwXt0b0NDWFbiRSK&r=S4B@VX+=G*EakB@E~?c-0- zmhuDIIuceI&~Zsb($og7Dm>$jvdD*EbT4>7_iuJ+%=wHnfw6My0vk_AjwX%3b!x(U zgh=&n2h}_2?t{B4#RF^N&A}#E!3b{1f2fNsr+Yg(aZI@M5?sb634V41$nW7)0YUK~ zR>M`7iZ$Rsn@pD^P@KaoyM@}!s0T3)g*&LUF{}BnV?6`w_|&_bH{8E4m>EgWvtK|K@EPkdO zN2-u2_B{F)Li2}t3ozgG$BG<+d5fj3W)FcVx>F7od%4O$06A-pdsj0gcB+kuGQ z56G3TjO+a;QV>oy!8u-)8w>^{e?%v!;(@+~JlDbKH4n(#ymvG%I%Hw#{-f+U@@xWmpdhIIUf9LiaE{lgMdg!oE>TX1)AhqMTjV*1Nck2n^f=x6`E zk$VBIGO6}31O!Ae~ z+&TG&t6ErMqM~>I42$lD)!#is9&;aHBY(Xzn}iEs70G#Nu^$_2(>Rx80tQTKz@eFv+R$)=)vO?YlxfE&T4 zjp~bb3Xt=6oNA8jPM5<+j0gwv-4Ap>6GsNaS527!UHgDF0e1@daPXrwH!@(&>jhu8kU_s~NRLd(0o@bZUB%^09 z6Fxmq9v}bQ)gDDbOLiLBB*qWWLCjfZbYE_|;0euU{hP?6mxE_3E*=Lx_yVL$2VMIG z<@lA8H9zE`d+rVt+^0#Rj@Q(ky?~eU+;v^i?aUpLy8%QnmERaiO$kX?tQQ>H79jm* zG%62YSI@BS&89DT@FfhodN4UeSPrHokjF#-TlXqb$Uy}uCObU=C1A(h+5^qAFo(MH zBU+(KGw*w03A+t&+chl1Oowj9akF`B`GJ8Fw^2=A<>7r9@n9f`O(HW`VDtgEb0|-6 zt22xm#V}1;x5jc&*Tlwi^gB9n=>H-*K?#LP$jRIw5;Y zB3-73em?Vin{T9mUht;?1!1CndhKOMOV@0i=%2~?-fMew!**;Zf$=LV|XR=f0Re;&IwcYg^)5S(B%?`hc%|R7k;mb zjO4mDRiw&JaT*54AE&0Ku5#~}-OX#XLA}f(c{Gnb5yhBMKZTc^ne6+&hcr!&3=u_C z)Gt1zUhv~o)6Lj8GE1$mEp4ROZ3yBwUWGt?Baf2)svt<8L+2Vfl#R_3o$fOb6TY{_ z{gqd~Xa!k#C|wfLJoFuv?&v+ zlFWcY#S2<8^FR2^O8Q*R!NK*cs%W`E)uxE^qPA<0BdRLK(+-us5r+rZMGgCp>remO zZSI|LJxZ~~P^~Y5R7U%w^q$f|6!*s$kK+05Pk|PZC#o@nH0);|`j zW*kV6h_#G|G$|&(U{A(nWH4U1Kyp?6+EYjo^3ETQ`Lx)t&#D4row@p^gFYD^4B5Xz zQk>XfRj0W8M6Jm#zl$dwZ0H+hnCL#5lT;@eK3naVa70k{;A}IX5VHQ#%q(UQ6)$Ps zyJpMe>wp_h&f06mnWQN6Y;SAPfXp^Eu_bYyiz1pDK1JRgx++J>%a((;n-7_11!uk{ z`&PNw=wxCB{L`EG|3HZkIH0Z%fbo+I*Ohy%sYjHJ5mYkFFG3%e9IFv*wHLZe@--YID=D*BVdBp&pO%cFkYxBa!#AI8k*2rP2dGQ-G zSG~$J4S@7AtojU`l?vq2KqRApX<3M%q!D#xEoc?(B@A- z0&^BY!tmT6GTOuZ{`T(fHFYXVBSHp;kis~IolThM7)xTV!HNMBM7Wr)0rnO%Fbs&! zobazuFO3}aox~{uY@8+V<)eeiJ%v95K~C&OI*>?-N%Zt6KCFRk9&ex+Dk)-}r~i-0ro->qEi>SvmO|LXnT z9sL!Z#{vuTdY;59(@K)OI_G9O{s9YS<&& z{-01H8z>!lUQngX<|1P43-njb(F;W1ep=IryZVAUf(h`EnG1ae*+?GBG1$QJn9Auz zv07SM;){vtdG4;`qM`YT*iSwd7fwnPwA2Iu91EDq{EPjm;lk_y&XE9a6LsTo7vCr; znnUZX(|oTyOm9Ae)XGhemv=p7vIf9-tx?`(L&2L&hv0&%#VnZ1{rH_KyuO6}Jn9sN zW32|4r5vdm{d3{MrjT>?o0cqt9Ei$C_cM?`$dr*8F|rbgeTcl1=|Xqs^{tGT73K}K zBJPdX`&v*sotESeM{~r$)R3_uRmx0!zi>x~19J*CDuXJDTUNSo=pFxyPm)Ay=FUm{ z!P5?xj@134TK>?S>JJ3AV&@G{OWb7pe-MlKVhF-twkPah9{>1QBg@+5FAZ4?V7aSy z!3-q!FnAlDAYhg=gGiwOHX)lLUJ>(p{4&sY-nSQ8JPU13_1SEML7fdPFeS`m`f-@c zbns(t@6(k*FgpeWBy8N+sZ=BCviSY>v65A5ZAZByfH%fx`sFqE`Xfn0Yg?Wkv5-D> z@|tivgM$O6iCND>#FeD>w;(9MU2p0EB-h!&cX4^K+|QF>=G(s~Q^tq&RqAq68%%nr zRydIB*dK)7vS6qGwXV*Imr@%^xLIZ95ln+_ZwZh#|) z;^^E&fQL4(i~s6dJ>`sv&T7z$KFL6lz{?F6LE+x=KYe;wT;Kw@t<5xn6*t5Cc2Ij! zNt3>Ma6#2=tLs%j$@#(>fg~2d6Hy36Zq@mzD955RcAWzul*JzKrhj z;wz!wmMbTAV4HWnHy4-=M(0@{fp*z77%CiJT+Cala$QMxD6~fME}Id&I{29@Gq;~T zC%Eu9EsZWivG(3Q*si=l=|4E1Eap-VxqcB0H~##bATw4d=60|v_&5{P1lPkPR<|Y5 zR4-PT#QE($HS5g>k1~|*&%m)uW-i%wrZFyPsOvU+AH!`AV$KpkO%mdH+|*%PAM1g> zq^D8A!vu8h5sC)BIDG#AL*tJgh8+a{RY;5_I)mP(_S#=>$S@?e?&_%ZPS2c(Pp9zt zKcDsfIo>J&?g57Wf%y8rf9Z=Z#XA0H^rE0eudjkP0RcfHD8a-idOf8hae=_-2jquz z)r@9D+Qld9UQ^h_=5Mi*WIhx5ML3{7T-7X-lJ^Y2&s(&qsR^lB#R$k71KFmdMrkU7!=E!Jk4e;wp1tc zSo$s)((M1SG3-oUu?ta^i&=S9lAMZ4JKLC~vbeyzckcw2+HN~+?e9G;$cKS2JEx18 zrB1Ws7`C>y`7{as$p++{+C|a}?EKrzx8fCqeTW-5cCCiXapSlRKBZj^7+)M#t$G6` zt9Gq-fTkJ!JbGq_rk~7#W+lGuC{EpCt-h0W9&k_cv6kq#PZbDtGDHr7geX9)Qq?T3y- zK+t2eIN5U(3)5$7#D(7@AE%DIzBEY3rsauKL#|dmkmS!OrHJE7NlAqi_sU?rbDrzb z$!FJbs4|9NuWP^sY;Rf0^(&ytg75=U3Sg8$TwJ`jK(TquYj&uN_Rr`?j-kn>@ZdMM z6YEAs3>Fwmmin_*)pEln8KiewXnmrs(a_Mc?=%5l#j|Ty_RTX8>wreByv=>?-SCAo zrz4Tn`^m-RQr`#NE%o(i-?DC;cLJLR;|)c2m zT{K3|3~NNofKp;lv?!`XDP}h|`Y6dh)c0bmn#K-yZAJ-!!|yqrtw!;N{w}d3OP%lN z*SY2Y{2owYo@ff4;gk~$yk;9o{ls>&2h>d&b_JlJtXu)lsLp=V_qY_ zfC8Cchv}2nc_h^3X)DYSb{kvjDd7?szH)Aw?atuyaDMo#$eDp85H@x?w6#;$$#g;i zdSQ4+m&+nIJ_n>E1b!&RC1>A9Aeo0w6g5g|kEkx)v_0(=JGwByZPLkER!IF!3n^H6 z?a>lF<+^jMTWd3vS$Tx>)C?WQku-s>5`*BhyI1wc@u`n|l|eJ$q(kl3*rvv4*?qp; z%~N3Xqqn)x!sInnPMa?ct-O_+;YzEk1B%ytG1r(UW+IhS=e&MzS3fz1TaLqgH$5!u ztjf=G|K6Km(|`*DRG839i$*J$KgEzyfFmp6zMlPqY$7W$ks8D_3X;pp3WFfrm~RvX z3YaN%G0{SBZ)jq(0~Wb{u1Jm zabdbWcwg*6Uzn(f*Zi|foQam8Zg}qoT~_Itq@=x$D!w$~*e*Bf7o^!jt^z&#Dnu@w zi=S%dl$eEml;Yv1NI$|e-Ie6{;WQf%{kG;sgN=68DVW9z@6@y7{JT$)#g`2SUxAFk zsDS?)!mqs6AGUVQ+H)W)%=0cshc7AhXkK zdrVy!bQ=3?n%f#hNqFmXkBLuiNDH7}PJRN$Y#7WsFSHx=7k&6357ySNZ-R2%{Zl14 zMBpqT{zfS|2teJog$w{MxCb(b=C^Cv4=^^>f z*f5zG!pP}+7^0{#KZ~_e>u`0jW<}Y6ngiKWoLAG#QdL{y`S3x{Ixut!n}KyU@V~`} zNLq~XWhnl=bl+G%eX^7Nut*77u(-i3cdjHDGL-hSB_{eh`GdW_x?=6Ic!OBck*(Fx zg-XZ%vWPF1C)Bp%P%wg+ncAp60U6hS*4e&Y#Ky=z*QVB!Jz~R25oPiJV_7#)nN9qOoI+nF|6aJr_ zbA-+WWpw~Iq^|UjVyq#tueB?u(Jp0YvZ&4XMt&qudq=T7(K2lJhhL#Ub$?BH-|-oW z-8M^M=d>0rgSEX^|E)oyGWeG(8Lyk4dcqom%xF*fOcmDBSPlQqh8-HRay6Q1&LaOmddhhgzawZ9{SO!lz{TmKK?7@_#S%lB_Bs1idLJP*qkFG1a@Z*z^jdsM5%|e;e zfKmza&vnw$rUl7hAJ0;s$#ByOl!NRya%!(G@lc*Q{m6FgkPv|Ey+t_)9IF1VKCxc1 zbiY%54%wF2{3CA0a?+o6J9FAdF3kqoieTQ1Yds7ShG|}Vn^+rCATJgSNie@fDjNUBFo+$(!Nzq2(ZX*E$yZ9P z$gkEzeRt-YjFFS0qYOfki%fkBH4gz|!M-uu+eQV&V1KEcIx$*1^a`8v^uVesDAXcP1UK5B?|{4IcP+0EX@g;*y*E^1`uL9xFIg1xdw*X7a}me6F?Q zev01B+65|D5j4MZ@MoZ2dsd$bM1cJqu}d)MczCE)%C`mM-XKNi?VLCI(cq_q)X)u4 zHgxkAFaw|N(DLjl_4c|BDnA=9HjB>OGhleJ1flv-mixwhDDVa?tU-dH4#vmrr`yTF zx?T?JNYZs#+Hh;40XyHwH4rlS`VLDO*R1zKQTJV;&Bo8W1KEVG7(O3M*DDhr?O%9a zJ95Kwc_q{Pcs8Q6jYV+Hbphu=!YDt_gLJ z|92zeAhzVZba{WPYoZ$83Bvp7*a2=0F84T~{CkTO)kWS1?p({7>mU{yOptemfM9ps zU*Q9E1bMheZJ_CHs>AAGpR9gN=1vFzm+)~fp+tJBJ^B{40lTTJ9S ziZNk|K3NgrD#>`Z#?;!>=xo+ME$d|+IJe%h!7P7oBO-KyndvcXV40QSiP2bg>WYYnG4R@d%t5bVs`sr=44-c} zB@aF8YzJC1gR~nU2S3hnXy&QUFRbitP*aI;_?yYu*~wmqreKWm*x-*j;1%3$efCOM zf<3VIXf!m{d-q1wPq^gTh5T>4uVf8btTkz=ybFRcmCl;?l<4k$lAWF4CxKCbo)Ocf zlzi|`$S;UQ4eHD=ca_|B`PpG~i`%ktm7&3)rq$TSh;Kj!ErXbsVD^5$M8=M;$T2TE zO*#qxyJmLK52wU7H}P^GY<%&i@V%!~o`y;P!(m{}8IWDo%36#xaFJ`mAM@O2%X%Zp zI3>S_M8I!5b9k^7Ez|==KDc%bDqwb6P#)C6b*lOO`*&&2u*GVC5Tv0bDm~Tjb96w- z!1x=~O;;uwJVHD!UU`HAO|PCHhewYZ-A%Ix+9SzZUI0{CoGSolp_m)o>!YOtqu zKYsiOv$=`No$u(~F=ao95S!j}6?a=D`o?@lZQqDm=pE8YuCu}bWrje>)5Fh1>`8{J z?aALAoi`D(oI>*PDbiMRYepk!3IP-8!WA#6q$qoQrrR+z8oLFJiQ|+ayx*t_Q$~dU z;5s@ZJC}hCEEdt;|L)Sec?xv$nDlEN2|d?(M}53>a0kHGOd3M!WPfzg4(sIXW{?~6 z7Iu3JCV|va)i-g`MDk*0A@7EIkljvUN+@+he%`;&=iO z{e?>ztpbDBO=rld-20}WG%9+R8^)fm`}jP$EVzSKVfo0{a$^!yv&XkpAKcWG*uDV*w{gIEyx;Xc;hlaom?lsen;CNa zw1Aa2Au*ONP;sruHV@vSrkfo9}ojch16$b6F(CQDsuZS02F1--!(@pStTMW z=O$vIv@J-WRQV~&qJA~fGPt@y_BrujK|?GwuMSGK=&St})KVEx7H4d-s^<9H)WN7U zhn|E|S1HQPw@x49{AJC<3N8MhsU9=}EtAa~95W@C3t+sI_YRttu(Ig8Q$A9z?y|pY z+ae#`NTR^JcRS7VmyUwf#>LGqcAu)W=y|?1|M=ntj$Xd#d~{v!-OR|i?xxEd4t6;jHtk5V>E;?!(OJQ3#A$lw527MV&scM(m-8ugZB zh8>rd(1CQgz>;MYbF0F~(nS74SD}#<`twh$OwZ7DtF zB{ZXar5KR_^9{vqe42X73%i_t!^PZw>5uiTMDfp!nssw z^mj=@u>9DaH^8;3b*&{)c)u8qJBX0*pO>E@`giMv7$DhUf$-9a*gUU0tlIeltw!8C zbw4pkm~Vx^%o7`x^UVyPPbfU2L-Y6dCjtdrICL?!{?XWrg$T?K{Z;%&<0EgW$2at5wRQhy(@r4NW=MS zWo7C*Rk_FVIQ@uQDT5V2F5IVcL83Z+L>c31*~4y<;In}~$?g(TwT5X1!IG`XWxh7P zjKN#RQ@c%-LYl~x5nm~tQjOXDL8cX-;hvse@kcI{R16;sV-p0RedNpkvhqczj@`?d z%tizU91H@FYRG4*)saM!1x3<2&8!y1O3wxzPg}SHM>x9UZMQJ@v@dkqbB$z}v&|@i|&n^66nN*$k_j{n_?n z0&e=+E9Z7z_ze;jNEc5|cW0Ypk5r70)7?tGOu&;O)mQosY2(&KV*;Bv43FHh^-_qH zHVl{xPEXtYLG~QZ_dzkpXH+};zcm=R1x=VS2>iOtW~`4cmq;LIxc7{6KrdKRe*D0) zS@3FS5Q1Z1fU1utj}hlS_igtk5Q|1s=amTdiCjwJJK&jlg@Z__Ow~Cv=O27ImwAE%y~Q)_NI4Bw9x>mfa!eam@08p_q%v5EsL_MaK1z-nF0YK9qb{44 zU^R|KZ~JE2+`;1V*}+;Ll=#6`RM0}O{%g!N!)xUZJK_|bi4V!D>=Uwtw7_WVFXTX^ zheS6n^U+|`EzN5D8nQvb9-g3Y$5i@v#0nW!d#okv%u3JI%ie%lRQ=K?wv$rxmMSRa zU&%In_bO>OEEB9?KJ%&RWBr2H5}zimWJw+J>-;3V6kKn=q!Ly9pYN^1#LT>w=XYc> zQdn33_W+-jlO0sC4K|4P{C>#-(R+xWul(Q1`*+BdsN*rjF*;yWz4k=R;@$qo)6RzJtO8FfWy?CctZy-MZ?!F`voC9pDHh>n+4%k9j-O zzMYv~rQaOSoAq}HNZOd}g;+52nJGO7X#Rp<-k?L8_1>t0P0TfJckpWwSzA)=KpR*5 z8w}x9eAb1Z^Wb2^!Tvb>`Gr8DNL_s9>&XhI>(O0*QoUWeW?Okz3Mz`XFM`0v?P z6#UP7$?yFff4cHfu|vDrp@e@-hgo9JI)XIU5n$+#h)=Vl?;niMP1s;@Op>q?ZJ|$J zQIgqwzOlUAuDV?=9J+^VkIJVGd7km!Wk5253!-c7u`qXjZ(z)D{e+8!dKBM5u%R5V zs!`+yAsW;ka)Xd8KN==+@@cv+b-gj*`B}=ANBu-fd`?6gzWbI++M@(TyN6x!ot_6T zcSO9cYHXHTHcpZE78SlH7*Cu6=-7eB= zo4M$#E_V$aA1`#o?aPtEKoL`#D!KIh`>iFDk4Q25*?)&@W)*#3%TIBk|KRO3!NHmxFi}7w{VMrJs|TkBdya zPHK#i2)DbpQ&gTzv;@hLc9O3~SoFi88sQSt1JwerlbW_k^#43#Ea3Tu9os1til}ES zvV%>jyFGSFUlJ86&qYe-sGD~++-G`zsjTOV`KFPH-CDE8$pMcrkTz{?e^Ew+K(%b7 zSW`P|SFasSMD8k<9qEPZdAv~aA#7fuSLOOw~MKJW1} zR!AEJQ?OdvM2Bd2t=Y+ZA_!%GamBz1{!i6yTf0_4Pbl*uEUczx;TaL?FG=9oFi^ zL(%TOz;ucXGVaeV?u2+H)pf@Dzm#OSFFxdvAcO{)75ag@QGATyEoklCU{ihOYRs-79s{V1TWIA4Tw6Rdt`kG ztqNW4gbQ#GpGh$q8H$cw0HQV{h+l<44VG|FSs{JA?NFCq2Uw~W-uF4umq4vqd~qGm z7qM3=Q9VEKs6OYa79AgcvJgkV*!(I+BfooGWV6f3=0gIkJIw$9Fl0hXgRuJe9#g7lM;NR`S147Z~I8Uwqv?GGY}__qHiQ$Rfx zuQ06OOBk{G>pV>6=l+CC^-WUp1NslIDm~|tG|f(Aa;5#s$yv3tnO>GIrYAN=E@+MO zIp&=}56!H`FJSMK{-)3R;PO>-ak!@cTvnSXq-hjP&`vxh=5f8^o-(1!eHR8P)UNXT zPOk8hT_T5Ygxj{#QT=wc`ysD0OI_9f61%^P216Nev+Pehn4@-vaRPdf-WZ-AToF^B zYp-*X2IQU~ujh)T^1d5@B)KbXkIyK^!(C1iT;E z93&B=THkf`sBiJe2*kCk_$O@q^T!!FIGv8$6cs2u6dBaqm;mf)z-);lPai#7{V{Z|z)k-*AH2gf_d4 zcDK)|)Fso-@ir*nE=0pGsb9#>;SbMJoA0Q0=C3cTzD#UAlfie+ZZEwT_NN(1$3bnJ zznl7azl_22joQ{tWu82<2??v_Fh%6cE9PpeqZMc#oI7~%JFds3)D7^<0}!G}<=?!37bs{Zy4pj%szBC{b(+Pb-FvIna&e? zE=#)7M$QqGB$^N7&@s-PMaxRK?dzb0;C-;`wc#sO|TXSxc#5t#gAM7)?_Dv!VVj4a&}jGc``;n32Rtj_*v8I-qY zf0X9(H%}F1=?J6yfjIdq*|(`q0xP2xhHh-Y5k3a{ni;wd2Wnbl#H3DwKF3jthXtqF z6yl|YPYEFlv*DTFD;{w@5&Sr1zjKtWT2*3rqU=XwTLn@d2+P7(_E!F4P=Ajae5WH4 zpG1AC^p8<1?ZG@f9RwNqxo_mra+Hw!+6DcX*5#5B5!(5z^pS( zDY;U206@bG7>Lw8xQWTPW#nxh1W2KUL4IBy2(zA!=CKWjZhm{MZ0r~mxaMA;IN*P= zK&7@%DHAmQ0inM3!D{gRhY&m$4>EM(O;U zld6Ib$MkCoX>w&?^}56ANej&CDgK|lDQ z6OEx$x^}s62w?$f|M1H)>ve0HmXWsrE))u9%iIg5I)X_qDL!;6EpnJ9euBBQ+m?OE_OJC%=!l0g`ek1q#2N)m1 zgh3Xy1xd3f*cLFt*jK9#HV#tXhlUtgS!Zt=xJkx>BB?#tP9!+F7?eCbzu%eKbBr_5 z6@WI5RYX{fWt%ytp7`lsUz0-?*j5gaKyw*Q%mW*$*!Ie-U@=J0-#a3AZ83*&3^z4I zs<4s7Rhxf;=*b^JeOnh<=5`6fpgD6LlYsR#SmSX_h7*u#^#1{M0@4UNmZ?%cXhDRu1%3ErtxuuHlMcG>{6oK?e`bGl=q2vCExof4MIig3cn24B z$GZ!3N-bhO)8q+VfXY8XU?D)b&ym;*3mZGbWl8dTrBm)AVho0maqu5dL_(o49)A$tB+nEO{Fs<7iF1LS^VWz!$v(S~oFkmeLK84tNpl#u6! zW`twWjo0O9S8~|?)7Ur(g}@tzi@jy5RReWZz(ofF_NN%HdpykbPTNnD43x^Yq(N5s z4VT?YIxXy(H(U(LDb)K2y_qI01OxUe@hG&Ccml!}n;t4R9Ell8+p~9!+?wyDKeCm27Q(CEuV9+yPQ?oRS z!RxBLyc{Sv5i-z5?4Rv*Dzf3fdX?vA?T}FoLGLlzLRWx+N5<|q!&TKjv^4ULT&%1x zGWYE=3M~Fa4p{zamS4}3MWDOLO-#)OEF@@G%4L|-4;I^ASouW%)sW9ydGr{kN1fo4 zKN>3`z(tnr3(Mm|GMt#GzM3Ih>w=#mZ~V|hEHj$rc=?#cjc$ zQ)}T=N{4PMx18rLA|f&gN<Ls&2q z+VcbKgd%}aV6nkNE<1y0q(jvv{~!Y5DC+=MUl6V6Dxs^py9JPVK>VR@up*;hKU0xh z|KogNU!VWBOB0Z8-ruT`l&tD5Fc90gEETCx*XDN0LHFo&V)w4#nmwSrC&~GwV%m*& zPgw6ON`X@kJt*bAv)kOcXF9FUJ=OY3 z+dLd8f}%D2bB!Q{J9Kd^gN)eYj;G{jxOnZBO!5NV9+JAFGjx@C2VWx>T#4W2oqIg0aynGeLB1}XhV2?s#Sk@Dsc@&d`NCm z-u~~rV$|GxarWbG1Y*N=oWP0EbHAzgKvrx!-S>PK$Ca~Gv+GTVizi1hgu@RSH;ght z>+OzA92IIBP#@R>ZSy{5max5Grrna|{riD1n864d<~Vrnp>Xd_!cM{=xLk8Fuu=b8 z=1mrfrZoT;jrFTtRsZ;s|C#*$cPs>z`!JG0NG0}WOG1VmAg!Te@H6x>hza&gDE-C| zFI;_!JO4C35`J&pq66WK_JGZ2zeSsRZHLSK@W{Q-x{#~AxdohyjZ#No@kdFqXP<$7 zo(ym^`q%+T4o5C#;K%9e0VfX{pl5T8a< zELp-s6KhSG_sX4Xz*iDtXQC#dUc98&dC(w!|DgB-+;Em~Mw-b? za<2~*j1;-8Jt%EgW+YK~ArwHu`77tX8ig9E->e$*+2#i9t%!$jk^oMCvCkl$i&m?; zVGY<`oKb$32o57%*H%$mvfvk)#CF>K_Bj3&*%w1P=%ur6cHmUIubeXbxP9%}pwEQ9 zaXFNMX4hX`!;IoF@}B0Q4snO>#WUawDDQ?-4zb*R83AN-ZwKxx=V36`9}*lut}d)n zfn>%4Ou1*`1OsNIj)Mn_L6gKl0Lh0EYJ+mc=<-*?tPKRoPdv= zn{=d%M5yV*YK2kmfro@zQvk*8pjzP@fS?~nw1p6Cll{T8;`M@#m@Z)+y;hHGK5-=i5OLjd^bV!UkP{OJAWL z6^sRybCcaFD=JbYgJv~d<2X!A9Ei(A56XM$JcLJMC;hxZ_&o)EggKA<<+ytG>y;_; z6E7<@R)#8Z_P1AmkG`nip}VjAB)6F+W)H1yh{S##fErgoMZe4`^ZV-p4pyfyE+4Z?z|1J~#aLen)g+-$>c9s1I+4;Xjyw4c9D%^B|W_8uW5N0XJypYvzbIb;3?b=Scpm&@Cu#PT@ z)-M(te5mSVl;d-3W3IEijYzJE$b`prL6eAEsL0& zW~wb0#w&^PkR^;iJ%Y-1TC};7=J<(#a|5Y`n)9bGiO%H6TStNPpDO87)`bQZpl>}S zl8&BrRi-LAPc>HasZ*hBoo~I3e@NnM$8CJ{7b5yVA84n6@ zgu>pbEDDB6-Um2x!0_au|7(;*1z;_5J^7|SOutMkAUNk!g`1Y1p8k??+-%`-xvLsf z%g88{8E3;s_T^T>O`KBUm(-1K{2x;R0J(XXHJ4>iM;!iV5qIwMr>Jjq^K=TDhJb0W z+NA!qYH*blLBx{cU-𝔮$G@ZCS?yg!TL<>Og}`Wh1%+E@x%++C6J)b&jo%cO*0p zc;U6(R)`cW2jyM3$%bDGHHZBomj=(l2NABJk?3ZqsHbmlT_~nc+cl81TrzWlnjKxx zbsJJV&CbWusciqgdTR~IKY{pKVM^W+`XCWZnPuD@~(xR#TY3O~7e=jZrx(%#w(G13GBAS~B)~Am(Eg^vQPG z5UK_Vr!79BVvxM>rEfJ~r9M~2%O*jBN8Ar_F#;WKg79MT(N7N! z7-`%S@cp8qE{0qY%n>Mm|8ffwXIuT2Xf6DLWZB_-lzJB=EP;U^jx8YwqzcU9vgF|4 z;E}6qOdQ_>>&N}w-Fo<>`oOX{^t>B*hCE(T@N8PS$7qm)&XbYWbQeHu01No5rBEZ zx*Z+LY}->nju-%Af+<~W{@`S-bDItlOjzGvtCRIal5Y&vu7wBll=y{qu}ybUmH_Aa z_~7|K{#S{`FLH?qQT2l#Dr;$n%5()W!L|^SHtQDb^dD{#ReVwGdb&cGM2U@@*EUcq zCra6^4`Cfd&e;ywP~3FyNoz8`T`dfCYe5aQ2RME3@(o-lBp)c$yFfs}60***2OeW* z92``pox=&#jWI%&!+EU@={XCjB;M&+``3TBnX%mXxuB%s2*3>YW3k|-P8~x`_AOqw zU3{bqS}tgqIjlXUuTtX`r>nt=y~&b1Igz` z7L_4rAoqCwY^xhn)6hbzxao9|Kg${hCaWea)x9Hx0BPlbk6sRL-$e#a|!XTj0J6oo*;Q@jLaM`~wvw9MMl^2Y>p zFR)ou^*6ffz{-^)*MDGv1;931Z8Ae^|vd(_Pxrp#4#D1TwU9i&ObM$8=+~lV#ozTGgF+G zctohbXrpa4R11$Z9P5a!s*#s1Bd>9DF0g{rC4-`E*bI*GMH|p@reivQgQh&LK|v-+l_$R<)&p+wH@^m!|YO0iMZ(@;?0o?41Us6ori zEvZpd5_b8LpZhmu>+pPFphNu${Z-k#7kEas?zg|12-M;^Yj}`!5|)X0dJzEj(1ZaR zesid!v~D>IqNk~i&#fl4XlF6&3ROJsINK(w~i{1hrKeo11ING=eJF|Tt znU1CFvzS9Qhnt3OwLZH;10hNgRKG7rn`}95egdqouT6Ll&ixd^gLuhzkb84ym|pf+ ztkebZe&;*V1}3jFX$1j=ac*XJz7`J<;Lm7~vNr*;x*8#IMsp4eXEJW`#iib|Qri7> zfRmz(QC7;h705VE&w+Pbep!Fvnm_z2t-nCf5Jg%2L)6Vz@Z3t%mLbKJzZwW)|2zON z=~$Xh3TY?})Cs{3@9j(U+z5yFfP_ zq@r_kb6cP7(3-&vxL~s+Oz^r2EJ7d4f=wPL^EIh{nqp+=?!p(9+*17!RFxdQ6!TkB zqqHHE!+z(NNPbUx@gq=yP%BnAmX5FY8OPydD#K56?P+r{atJOF@0nP0c6nL+NUOE? zBPGl#d$_qVkqyOtYUfw&EgBP~--ODD9z0Dte)qxY7WAU}5J{^UHV^b7F#oZK=&CCN z0|P%Q!klhu9WE{OnsKEiU=|qDHQE;hU^aL+iRrmh z365NZnkqW8$u=`bWu?DhB-7xU7C|htmlY+1_|%W;Q77Hc_8Vf#QDY|^-4xtPn8+Nu zFDrmc?Dy*8;Ci*@81iN|PmonLYmY^M1y^onNcr;!|^FR7xeD4+4-9bl~ z2*`L^nC0ig>gM$j`iV(kod%zA>ji?`G9d$8u+b5p>r6FjPZoZ#XPuriumTKyd<{2A zk%HZDkvyq`D8O&y5~n~#%Yo&*_v0e|SFFHv=sjb>33oaDJn?5SK$@ab#_pHAZ*jNz zIZv?C3K(5FD4t_P-x9ILzOLViD@}JTB&e*w#1LwZ#1;qg`)dm`q-ag#9`=ED_BHc9 zb6P*r<79~g52BMzc2Be(h$qcoaUtyazQITW-O05Yo9gMbdNoNnfbPZ(dH0;IkH+-v zRFfv#mG{cK$mnZ)9HiGa%;vFI;kTR zAOe@=>Q%M%aX)A_@{d!aDz2wQG2I*x-ZLp7}*+X9x57LH&$h<(;kJFWFt_l&!~mLe)Z+ z5U?mxM2wN@4h^R5-}95kB9Q^h+dUck_$zFu)F1KpwqN8<2I2LM=n|&78_&Hbil6P{ z0jgke9|EXUz3doh!O2lm%gN_Ac|JK|q`U_g{t&e?i5UTPy(k)lish1*u1r8|J9ER#^k*W?@4(w-7H*g? zy==jtapNu|0J+dT81t&EDAWP3$m zCLXdir=A7wk{GJDgoAE)Mhr;2^b=5{T-n8c*lAc>$vFyCT)8}NmQXsA$B1u_Kx#2x z6o=Q?AQK!pOmYTv&}IV1wXIs332uSTjj zcL}R0>t^8%lm)du5IzJm!?El#Fy|wK0_8H2qYCpXX7(RyedvN0DEWwSNf(<3*-Zaa zaS$MTQ&ckU-@G+LC2B~;nD6z-b7*Ue=`@%SICPL3xqC9Mjx84f3UAcoEz@~bxKi-! zmdT)2lM8(OqjA6+dg(}EUNT*3cYXCryX=?f#&YF|O4=cn^B7~LW*5N6&BCcdm1Nis zYM(UAaI^ff0IyvFae-=&i1xb0fCC)bIX9^wlVLq)^T zAloF^qzCggC9f>q6JbaGp2LFs8T>eDFdFm&ACy+>HxH6SHl{9R;nU<`Co!tL;h-RY zJJ4|eYBBY9632CvI+!QyEQttD`vSN5?&4&Mm1%6fJe`Y#WTf{$+MYNe-(*Abi^kT+nd@vxhR=-6Ue=?k;}z<4M~B@&l>&1Iok5(-M~pu zS`d?{tLHM$lQeWxKS#P^qL`L~+$#opuhqUbWdgwX*fAF@+w}+X!WtPS1eKHvi7vhH zSpeDD^c=v$k>lSfVa)$}L~@5IDL-Gk0yt7pU&?|43kwTN;??~gc)2ujiW(5c8Nnyl zDtlN%*BkZh&y|2Y?Nf*VtPXj8Lb`$DU>O&R1d8W=4|<=tEvcR{z3=#ENXmndbc!PsXwANX0sZujNyz%YYjb(dKaoqvA4b%eUaW&J^ zpVz6zf|eS~X{otAj>4$;pz}b0`zf>N+vF$Lb<-rU!2|`_qep8UgEy(-lQ=SBVl)Lj z9GC1Dy9(HE?_Vpm1 zM|LzI)@1B5mwU8B$R4ovZI1`p{=>k1UYB-|&xeT&qYqkcq+->3A+-=3S;>Igfb16! z1EdF#LESK6nu00Ak3jH05=X-dGJ-+JltAQ$ox;lG=wF21(V5Dz@j3v$Y z-DeW;4&rSrEdg4&#}{@>>bFjJ^{VsOLtuW*)J1Iexn$P}>`i!Gw<#pnS8H4qTva)2 zrlsj0zE9*<9r7yAbQ&XZXlDPoc6Iqy+7UFWdtVL#a}%oIu0FE-dz>z!4zo+&iw23m z8JcaVz8XeXAd)&@^|_%lMl~f8w<;&Vzc3#}%#>#N-f=zR1!>Psy5jR=&{vt%uf%)` zq7oL$%g>+T_L`JBLy%&DBZX8;ljw!}c>C>PbD1xC8#X<*$Nl=wgdT4hcXUj_@#V>i z?4btRHpQQdQ-Kh2I)1{inrPFgPn&p0;f1`t-s1eGZHFvOt)N3xXAhqc=I__;c9$Bw zo6BuxIG_Y)sH&_8R&vPuwImy}&`EAO4^8lOmz~vge)c4@0G$*#jF~z214-wh!OdSv zS4BPh+?aafIp&TDiB>pexe|lfV|QI$T{z0?+&W+DmUuTjRYGIS#HfllI1fQfPLY(96j&&fzS9NmR4 z8LwXI34E3v8{)X8#7%*8yn=o=;*j4k?-qV z`l(>K##G&sbP$3&S}K6B$;2^y&mL@;b^*|#aX2JeG2D6Mw)evT4lFC{h3n6sHV4}x zk@+$$P)T6|s|2-pN@d7sknQOueAW>#0AO{j;8>;uAs>D|FVcS>aO6jsO$A!CSOc8} zftLGo$sXO{JhW2n)N^!nxL-Lw@Oy^2?=LbmQno}5S<6*-(1h7FO2_~@Dz)6)*^!!Q zrI`xC*f8ABR$`b5(Mw}1xe`P@okd~ToJYz3t}W(QlRYh&8t<>&WmS%I$G!zR;>jQV zPX=~N@@o@dd%C(!zX;(D^`N2dS2_TXgnv$5k+;YzSCj1aZ|)fNBI+ULVYYxL&akeG zcE@$<^d~KVnV(c>v#it{EB>r;NP*#X+iksc>rLOf-<+c!dj0bIhwTdm<q>NG2 zLrEjX659hXR9JBEm4SR@kecP9bwW0r;xVxq@fw z;|RiO&C7tWh(p`mR{$aJXP|}-07w+6)w=YM71a==N$DorwJWol@%1(KR@&!!~6R@!;AvW!tRFBaf0)5+1QXJHT%?X3Gv4ecIM-}>+8 zWrqWw7vHVhB&UBz{StN5H5l1*Sky@2t)x}Q9p5>HW04j08FX)vj*5s7Vsp6{)#G8h=RN(Kxe z@BuTSRMKdKNX||I!1!no?Afru4Py{Bt0{ouwvF^AL{hc5pGx^smu|Lq^Si$DBPNa|S()dc3b#*k%^z*_k<^cT^ydK0d$4c&@GB54IAUS|57* zM~cxLqB3fIm3FdIJ1|Q>(7yiA?wx5maql^@75B)h-U~%rV96=r1%=;4VkHI703Hv&ng^$`RZe zhFizg%1W`eDFt>NVVXn+C9PUK&tlZADr4|OC&3R?(S zy`D9N3wsDbFa|Nq$a{ZzUkACa%N7N4=vb6#{0!`S!RK7Id=8u^fV~BmVMK?auA%!R z{w6XI{K@yD2LtDiK~$P%eC-O7`IidqZKX4)Nik?Q3wgD5bS5TlHm@s2|D{S`T<-v4 z&Y`Io-tXqpzglEdbyPk@zvb)rWX^)po$=Mg_;4!EKhh53BHlkUar-4*E)N{w`{$pM z0YUU_+!0NrQ+Xj=TpPFCyP~xDS({ZgWK<%R(*JOTjS{*7h+xO1T{|VY`A~I}mW2<+ zqgt~d&4n;LW;^qbkGFkG2@%CLE*0azQuFQ5)Ij?VK*dFX8`MzmuT8@E+zDC`aAoip zQp%JQooHxXCC~pl4xFdOY%5{OZN2afRb!$noTe`b-2}7-AE42~^2UO!j!K7c0>{pT z3b50vDcK*_T1jYm32@h)EDIg*`t!x>uZv6oD--CH(}B(_&p8o@B0=&UY9gc7$ZU?O z0`7;r=mf^glapQmtoYh;8?&;rv(uBgVCmMnG3_Ib2O;_(Qo~nLWF5vC4K>@g!L(RI zqtB|_7r(w;U@r%ZWv+7bKW0v8tS}{DjMzXuz0>OlvB5HfgkDyyk8S(JLMr)R0yzYw zGpyTYyn>LEfYrX9kH_^EhqS+GNVSqFay7GzYGb;16J_o+Ay>xsuYcSCPbyDTYqqf7 z5e(pC&IkZ>FsFyfAcA1TRi5W2)xh~WRiD>c{>;WTvTzQa_y#u$L6{Z*%E$@`yS?Mu zbD3lT=NJ1sRQk}#l{<5~5P4j^|4P|(BlyL0tdS0I7WV$oX!rt2L_LrsnaEW;w1$hn z3-5Z#QD9y*uv3mLg~PLV_SZNknu0_Csgxq6I2gu_iZBd@BSs3?Tah@99MoeWTo2#_{2N(Ai6L8Q6P@O(WZYJpdi?>{aMv$zec%Os=vo?4!Q9) zYVpH^Keb&gYj>JG&osNd_MmkK^MeGwiQL~?Z4gU2M;jAT_9A0ee|^QRa<6MbR0*N!)GKz&ZI$K z!2LkvlqWBuj4l(I;|XN&wl>%rXA8H2()rN#kr2uaO_YzGx>Qfucbz!TR`j@QfRjKi zwfyT1eSsQ#l)(%6`(h80eoG{NUs%Z37+U~O?EX&GRQt*2Tv4XSLnN zIg*a#yi;`c^rHtCEX!_;j8^3@I`2MPFyT@C?D@@KW&XpI)}6d*%lbrnE_y&=!$=Pp zfaU0o!rvQ(=NiG|Wa_AZmmkMX4k74+UQ=w^kM*FE>{oc?i%+GAvICAP6YBZr^sV|g+c`ofm@o;0K=6VHV~X^|XEU8E z(?0T@-MEDGDZ1y>BEk?6$HM?ZtaPk?&cY{oS-xN<%o_NuV` z4{Br@^6zsb1`RT2Lu_VNOx|~p$4rE+6|n0xoJff&!T>N0+?UJ@EoGv_TtluUnk0LZGEV(-qgwp=(iZ){KpFOMn zD;Pu_8@D`>L9}1Izi%9k^5+Mm<4CAdgO@;$V?FQacO|H)nk9A+PW!X=#(oCEur(Uc zA=5NywdM}Bh7F5=>o2n2%yUv!HylZd*XypAyWzy*2(S=d4UUtFz2p+wHsWWs<9Q^ z-nAU~eG(!i+vZ=-a_`tQ$zg)<%#F{~mh`Nn0@7WFz9f+QS+!uVGZ?q(5oD?!Alrmc15cP2NdJlD>I&z5c$j;%l=*k7d@q@+l>{=a+a&u{g0k=*aXwTRpk?l%mvq!W0tG0w-m zkN_{1DvVt{<&x?bp-q?8RZrdkXhsdSHpdQ|kw!fuc6tIHfdL+P4PSYlzU3xigmd0< z*fz!XeQM=u=#{aLuZ2DS(24~Rgc;08w~rrvr|Qdt^~z!}K}hk`!2S(672N%2*Ui%4 z3mXu^L3$>%F!56`o$hQgV*wJN`p?5B@kKHNjZzOdEYNHPTVz2LC@-(o?RgTQ;J^MaqbSGS`$8BfW}) z;Ipmc{iUwaG9T=f#&gkMUXx{WT=%CEuB8C0ND(X2(8AeipTFP9?loA_?nG4Vr?;5w z#rYv;YWMbVDK=rodGt>qHpR*~1*cBi;zGSS(?*lFa_?s~`~TmqSOdt$&SOH>I*Ji#$jE`GN4WsZEhu_%Z}2 zQNOezZ;v+g!2+x&kL5&k^^3#gpM;5&Z`@F86jNAUZB$nq#9Lndq;9{W zX}_`>Ql>EYgw=9+Rn-#x;)lcJwe@6!SsQk3;&s$D=PL=l8|16sHYNnuP*CvCAY#SN zc#Xx{WERWepF#ea>Y99soyo8KSGglyv%#_peV@h6FB6=64Fw-7K&1AdDLctROD771 zTD`ASO6{GcJ|bad+2yxc4&KZl}{;Hj!->9hLgbzrSw!oHOa8|A7VLd4y}k?9Z9 zhm+Z_{ILG>l7GK^ks)mL;cJ<%h&o$*9q|g^^s@Z&t08)O20S zx+!bedmHt?KcT*h;f&~7R~=?7%E=czeTbwtgU;G7^7#XZ%3`)?Kg;-7{e4S=S?~hl z(@^oTJ-(;*49^m zyQj2jY(@O>0)SCnTfkVkdpKNjhQkq`mQQ~KYqY0PG(}&|6QLZ+YENdI(AM8zi&fmvH`+xo?;biz2g^#c3W1N10N^0lf_KR>50j+!IPu>GHGyZ({-h++N$*lNAVHVS#8CgWL*CI|Ba=HG`uU$6O zjl9Q<;v1De4_aw{tsks9ZXxbaJ@g8uFaelgXd|Jej zOIlC4zS{P`&n#N}jF)a(1!*ky>GDD+fSkHZ7nwBWIvGX$odCBK1w);8DVGeHPamp6 zln7|2v!x0Zh}qrU>>)k@h3i?XzRSX)c8B=?dFQ9AWqco-S8YY6!eTr1Lf4btkkpH{ zb#y1MkJ_xjt1s)3nLRowdqUc++}W&05`Ql-_&sY7e5TR%!Z*lIKNVbR`C75_Ir7`jA z$QLA2|AB_nex5@<@endc9)4~J`1fc3Srct^XG9BUMv2<7PL|O)1F+^_pX<--6-)e3 z7q9jOyX)}ZZ^F8OI-Izv&`UCErz806ho`9=c|n^v>c5-l|Ge7<8P5m)HcOkNO#$R; z+|Lf?**cPLGUtt^2>o~aid-e~OyPNnFycLZDsA*(9k{WNdh@7S{NWJ8jB^gNNQ13AQE4q1Q$sd z+7e{j2C_YeVgC#84Hd&C!uSD0Y;>?lW2|Jou=MAd;QP~}Y5yvqXZadwXDKJ;vNP>M z9CzytHmU&wK7$;^uc@xPU>F!|dGM_r?2UnJx^CzwDfq) z+e=x_xmS!W;w9wPrURb8ZF*KgFL%)v^<;DUUqgdkmkH9?1y$Rzwupgzjg&u6mf8?& zx-}{Y26Ix71oaxwWqIFomjL=#zlI5LI5}jXgn&uw(~=OyFkuh(92jxaKX@YLxcV&v z7%pFc02XOjTFA}KZRlRn^5FvlwABxHR&{=Eq=yc#c)T?PaznOmO=ToVvt*ziP2``G zOiF5A0N(e9O27%DZB3$Y+wit=1MxU~@*#;VIno?jq2pCqZBUSbp7is7?lqBzXo{xS zWoGvC!u#1QDZ~dII?m@~w~A7?63%ZmtCy6@GR>_m?T3E~U69qQ`z1NNr9b(fGY>xk zju!HWRqg?tlaoU~@=Vo}vL}NvUq;NrX29?&!$Y;5OOrJ2_jlpzqA9*P@TuInoJ|yp zzPsPs_xX81q7uFcbq+yM@!i*a@g@H3cVE742o)O!v3hY ztpG{)d9~~4;j)jh)-~~g6#C^)?ICK!KO7ys&nJ0hMdcz zlQ$@d{Tk-!+5ZfS%koQ{%?w+XR`+V+(n9wK%1VK&tU;bY;~)Nt8Q2aAn2d*8;0W;( zv+rWlGKsUknW9_K=xa8759+3fI(&aW`l5$nP0!XKOr%T$1d}aIO_KK9 zCYU|IvGE%TnQKb>RD?FG18%6T5ez&T50aCBqrvL)VHv-b_OAE5tf#OZ>lroo7%=aZ z0^V~ZZY|^-t7QKm-`hiXjJwSB5Wno{cRBQ4P)d!|>Kto#KoA?`+-l{g2d`6s18B{R z*@wZw7~qKd1T9g^Tw)V~=XjDOMPs&04 z+}K(E3AKyCaaEu}XDOGs;>YELgoJs3?!T-I44HZDLr4c}f3{LQkb&3>?E4GACPEx& zW6`U1XEDyD^ydz?bPdBwdi}9LvxmCj$%liAYMYrH*3WUAm@7l6W|rL&F@PJSk2}8v zQUINB^TDu#?b2P?{3Mxgh87nu%L0Ej+O#X_aUPcQe>a>F(&Q$T!_-D`P}po%+U4hZ z(*IugKd|A#-`m0BL_0mJL{Q5X-@O*|k!>TWu1W4`sF?D$P?@KV#!4Wp#5nz5M3Lc- zV&^a0cjvR`Ws4()}qKjwRK7QEQ`Y(Oz{P3Km6-q@NP3b`sPTSNaV?sh# zI=&7^flPEY#}pnVpR~c7o5kyZyk*}3ICpJKP>26&8YTk9`8{B4I1e-7zA_6n8twf^#-EApi8U?uN^?;OfH z+0_ZJvCkaP|2IHX%6>$zn4`?Jp`n|7HG?{~!UoAa$TkpHyJXf3UaB4$FoldrH!_WD zJ}$~~fl0*=TbSsDQP;r?>}Qv7ZodmyiKOb*d}B0etxtdE{QN_MPmnj(aVqiTW~`8q zP-EIO0Q}i2yd`dX91#|SDt%Y)giuI=h<9+B8jfXrRn+DBj(8iV=lFG)5I@5%v9npU z{Zu`9w2quBi@n*{0GWsM@c8JgZ$B$r$0qQ52~E0^62ZHLMyCOIeD`2=b6OO@eZ*`w zhF|QuQ=lKRFl*Pib_a;qgya>9Utk<4{%xpH?k8v$Q-NpEwxj62eHp`b|7~BLhldNK z`oLSzaG$$8AbJ@sjT7Ph*_~$Jt?oTY;~=3G~**#bTge=>N+bWO-c)& zws8L~A%0)awhpZ^)h;We6;4`C^;v%yWu5+Xo8~7q07YVORCjd2&{sF8mw! zsUaDzuVzr1=A3kX?pwFd%9ZZtJ?wf!_X0q?AcHm7>d~Hrg1h@Egp#yf@MUP))1jhN z{N5SDG=0}C#=UMnQ^W+kxju6wRcungq2T=WB9=!$4}Kk=`Hn5f7vi93DY?t`e62}x zV5p`VxE{$ta!}+SwvQ#NA3hB$%o~62X_*GF7Nq*jihW0_L5H?K!!|cf5Q)Evx6BXZ3fqe=H55PZ{UQ2XZC* za}MRehC#WP!hi-`n9igBI@qr<_;`oU{aXZ^b~)LyZTsXeC_V6Tt9fD5M*rGgVVN57 zfTeWzx+YhQ25XkRLuV>U>C{brDi*|CG{55$dZyX3ggc=}vVm5&dwVxynP-!48u{X* zVUE$UO_>pHDsyB0ToV=%$W^sg$TFDkrkT{}y`vVY(*;udt3IaMVQh(KFJ9M_&|#nJ zFVK;C;xf()-KXasn$xB@R4Z9x=%mG|i~%EIP20fnh#-Hud+8&ps(YaUK~C~_QkwN+ zR>>nMO9ISZ*4g2h6|+38p6EJ)?F$w<7Umu!SWg2rOHIoJR7B#R?y?q_mJ+R_juqZ5ul+D$L~rIR|nY2TNnV3Y2{{UBh|RS|eZji1r#2%aWP z?lB|gG;6DmT*a9CE-H^P**gQNZK!**yJX#u7e~tC4Q?%t z)x_(MO3jv@J%mi0=lupfJV8a9)1Sq`XoTeZ-R9^0q8L~bDySEKJ$^kMhub}6TQxtw zjHh6KDV7II8db%^F$0jqTrTcBEeTz-kevVNXVUPXYfkU1X}BkP(j7H~i}V<>Dc7hH zl}TY`DiiykmJSjeh*p(F#W)+$5I+Hd;~t;mT`&DhXzKMv_DgjJuiD{)&lW*=nUj+& z!(FJ1bGPpvCmj$A(m)&3HUfGFJ4hj<(d`MU7hg1Q4oUp7psHmCHVu7n7d(#sybI@I z7AQ4-9zE-3!eAvfa8xGw#W(>eZf}9;TM2YGL8o>3%Iasordb;6YZcEuY>#>iQVuS| zMyw3n#V;ATc9;-cM>o?lkvGdiKtjhM`&d6lH;GQ{C#`&?-6KuNfA$YD9Q+^?<#qIM zG*#U7GOtxi4|gJ;{Ttx&FSM#pw;HP9v0k~ZTaC82zrVB?8-cVGma}ZH%Us544;f{( zsj;4_B(Aa60|o2rVDeG>Q7{RJJo;tv_EmFo1}HSJCk`In>QaVEpT*dSXg5wjRRtt$ z&s7p{+hV8`UMUYp`j3m%lQLpV1;TxhNhgJeY4PzA>wrmWBBA;Va6Qpgp&lsBj8|{F zlcCOQI*7lO*~Z2Hl!RGX{UT~^)IEuzj4H*9KrToGHryb?M zq%k;lbDfkL%60C~Uh!Ic8Qd!U64+9wlo>Kk(!?6uV||5N zPpcKjc7~jj>R1Rws4MXqhaVN#%|ElBJGVlv##70PyX22RgAssOooaqzfg1o~c0)#) z|5N!;n-f5(Yd*@}PIA)YQd3|}x2S|&=2^+xertVb$mjaY|KD$-jS$h?f6-SFKX!g8 z*GeRw&-q5pvrT4>Os`@w>Uu9f@TzX5n*-^Z1ncq=IVbe3s?O+|FPPUb6ztVr-fDiC6V8SbEq^5N7;A$z&0 z`ThwV+Ev#m!_opawwXu3M>E%P2n!eXv0|Nt-G>3KvltmfRL7R2%hca??_x28o1T5ljng!lU42{C1%&y8~R3 z??FGJ1os4rOJ@S&Nf{&>AS<@T){eXDa|@G_HR-?L9cFN*eHm+8%Cjq+<_h`<2}Ey* zKQFi2C;|E5~h9r5`Lp82EWsk{!3dobwp+eR3LIg^wra6xC`DB)otZ4LO*0f}P z$E0sBtN>j|WaLu!yT&mT-~nt}8@jVqPdyIi>9{W*uu(czU{@WwI6EtR@IvqJz>^_o zo9hCLm@j-IHtr7*IvvgtQV^y6(XIq_2N^I+lkzwp??cGP1IyX_7e>}++DP}SU*p;bjz_SNe@GAiWPad9)kvT{t0Fs-+*GoY~j4^e%w~-b#NqH&uO0x$*$qGtl zqELCht&wLM=s)2|6!VBjb>q$pzz=fn@ABJ0;qZe}?X!UGY#u(rpz6zVFOf(Fe0Ie3 z+tH8iU3l=6E?F%!?ZBnTGxjd^(^^C2I)m>08@SFI-9djr&B$&7-yZq{a{Dz(Q@oR& zZ=Dj2;tRhbphS&Sd5=w&egmAf=?q**EFFF!*6CnE1U+N4)Zhfjsux;Pb&y?Q%o$w% zp^BG@?Yu=p*P-H9Y)osfH0!#eNZc-^2reaZI93|5spU!5H6SWzoqAp8hE43YUfi$w zo|mMwWGR7=&tX{t>UXu5i}oPv;_F!gwi!+1bqnL${2j&h53pI+mqx2Dz!7}Uw75Pr zR28`E)ryk-%LQMc|5oVL_Cs%7c56oHjPA}qBti3`FT&sWk`a_c$M8NBc(WtuK|xRp z6ym(95LrTPeY7&d8;mcA#mi^<27ys}z zq>k2kBx`obw-^uA<>uz%Ya~V_8yrz&Lj3g=@nqoAJDa>8g$zrXL76fo0w&$+SY9!q z_0p!j<;s@Mx2!J|QM>4%?cjK{EWHW(33*s)Cby~fJ8f?=6b-Eak-fYwUn6FVr`VKk@fu&#niWz^MR zGPBu+HwM5?L>JarcbGs$;&e-wfW!4#hm}hF!^$O!aA!OLQu=klX){j)^&q8B zc1ue^->q=y`KT|$7PNEgF9AE~i{N_}fOq9*3Pi$wf%@rflg*|CkZz}K!|Qg$ajT1w z&4G{haessbEAChvWdO)xPrA-DG`2t?$Pp4307s4kYlhFUX{ zJhzcZPj^qp>$|PGRoi1h0lb_w5*hNDR@-qiKHMPam}IN(g7>|TA<=+QMxY(}+|GIW zbz5s7xqZ2v$U~JN^h{>ED`aW8x)ZSpj#}4h&*Ct3Oh@^A0wrV4AQ?tY z8n1fuIFk|aZoa`h(pC0K4Z2;ZQsD^N#FuNzGCH;IfG78@kcMLkvQ;A4^~Prj-3ONk z3zL7{o5O*dm|&+MzkDouYvaNR&Iv=0u;H8h0A#5pwrE(7^xjF>e*Ht_zvyxrGqRFe zO#E1VT1nLgK@#>^#%I3u!f&VqtK%IkaeqziJKFo-`2&98q2Z7)-!EG#>)ZOd{z2yz zzeOb51?;w~^{DTlES1mK6cr<~rEG`FTO6uLCDQG$PwTK_zES(hl#L&UL){Wc_sX`7 z7}pGkq%Y`BnjU9baOc+f`aw z+xhN6`m95_m-XQT2)1H&Q^e&82d~GLsg7G3eZWScnZ>b5(+v1DM>XfsT9Z4mmVbW7N{{kTTq{)9PX@*po!=$UU`(;Bv$ z7lND1ye|xCSlE#Uwn#xcVf8y--4Bmaz)ZE}2XMWV7QUF+*_UBM>h6!90&h%jJslIn z3crx^=p)wCPvee0B0Z}XGOxHUUDqg4S2YT^0J7oCEb~W)gaY|gFWy7_aLvXpl`+N) zlQOFb)QW(B!L;h<5PN=7s*Z&4h@Yq6l@9dmZ@(cCOUcP~&g~U~mV0)sfL1avN5v_) zbryGwcy?-vrPc%W`}Y?$@lXhaK{n5UoILka2qU}ernjxOKivXOSUzVDk}EryD{-Vf zMYyQ(2l)u17T(1Q)wteG+Vqlh2*Qy4NSMY1i7LJFp<|-o`N7aJ#U$wY)779iZOtYB znKV#qBIgI1-*s8>PU^J!Fp)L)Deo#-9KN}kyGw(tH(2jn{yn8|$3bDqMT2>#v`oU) zxF-i0LDzbL@dE=XbrKXIl2ghCi?RdI4Ajp6^3i-0@s{IwL109 zc{(_a4C%LqgYT;__qw z{vlR*c_is%F8yMIx^z<-{gI9_&oVUBttF6BioNm6Wg$ANob=tp9fHcC%SW*rNAtLC-!YY2214uI0@;CPO7VY03B8^tbXGg}x?N*Q=~ zc=m>;ZkM#NS7BJ3t>S~#q->wq7j2!;bjbQcO$?k?XNosuG%L)}bw8msEqmv^r~z>h z)3pNCeCAu0Lt*M%dFP?dqa#`O0PG?DdZI9#{BPQDnUFCn6SW$e3`39mbE51BW*pj? zEL1b~b&zH4F0V5^EUtUyK2(ZOfSkc1qp6>~NAk#KeRDG+?V0#Sez@tK(xE-o+rj$4 zrBy64f1B1aZHDSm5LJ)*%w2C>35S>K=~%*@U>rBK3A5^SqiFp#IvFi-o}U1EVXGOi zXYlq}0Ezq&1hARcOg72RQ#eO?!DyowOo;o;zC%Tr<+648+FZulDP*~+T)YWKdegNC zbJMB~^L>TM<%Bl8$`QyRw5|xaSC!3-v~QE}M|yEpu!K~@Z zwgHkRY>)?nL`*cE2+n#bTT=}8%sU$y2EYD;)}BH2g6ZMztyB2QUjgmMEXy6poK8D* zJ&S(*rul|C>*>@}k|;~HhUOx>#$BFf&diXoeP0otn>r|jB%+?9JwpM(I^&V`tI^9Z zKQ{}-6M-itgLiISjtaB}3?Uxw>9D?`_EMF62a+){Wv#X%oTdOGzoD&YO1Y?dLv0c< zoAIfXw&?T3cDuW~VWqZs8LwP!5qDAux+s@7qVxHe$WMbb;7fKWc~QC*w8-A|4C%X{ z?}3{K$&;kd^rQ|w(^Mo_dSDL*rvO`1$TvA`U%bqOt`G-SVntN`vn5ug4l5~JC5+h) zD}0U3Pv|6sQ40#rKLm(-v0*46obuA`hm>Z+1Ti{TQFI@N^TT{Jms_32>)mPaZ6hDU z;vY6qB)It*=aq+gUTZR`!-rWalIT*ASe@JoJ$mD|=wO(d6yPLBy4e;2z(|lBlv~1A zHC!V9P9`d44)NteVE_*vnULDK&{8uLwyL?y7%Rmq-~y1*nRu4+W`!>Jl0Aa)nRx_k zUTFroTT{mbB*zd&+nA*vn+w67fly|d4&8gBf&YnO_(Sj4{S3Py6NBPO^K33dhVj+W zvy^Sl&(Gi?PDMT34Q~xTx|D%&U~r@DR_rT0CY$wfls&vgdjY}Fh}>KY>3;F+)*`>=^W8XfCK6*y7gIdLXusROl+%Ntc2q(e4E6 zWEG5e#K&-1YYX2B{%bmg1dBxakfYPSIzRPOhRDCuMK0yF_ZC;yP()=kO*m;qLxiAlh2l_gnPNo%XZquXKH7^SbZdAm7v_{-jqv zg-|!(8z$PAbIxFy&_54-t0wWBRiyJJeeNpRBQrBI$TcPy{+g-s3XA5u{seL5y*I-s zt1aOl&4+=(pOKzy)RDi-XL^$|XfZOy{{PYS6;N4i zTic4Dgi51GcS<)%NGUBLB_T*lNh_%!4T2!u(p}Oa4bsvINT(v*@Xyz{_nv#de~dF2 z3_QlW_S$RB`OGJNsBV>wQb~vOgG;X&Vm#pNVj06D3`m&yIERu=&#VsVQropf7nP-^ zTuZ~7WSonv=7aD3yLs^RIWY*fHy1C`6m__CMUZ)`;Y2=#n+;=T zRcd7nR^Czm9W!Bq2-&ObYw!soe&PfSE9<*`oYvQ;V>WwAeRB3*EU~ZIUq> zeB>}c|BE5;`y13NNLV|sFG<+{57TExELr}zK7zr{QAhntML~+8wBy>=n*$f*u_{Nf zL488cViYy@W3uM+_b*OOT>SZ>qe?cWc~rtIu_$cB8qOb6`AOeOw)vpr<2Ai~R$aA; zJp$Jf9YH&T*W^T*v_2d?cLOL%hz9{y@bR`Vcl~JxM;5Y-P~i*?4JL zS$Th{sZ>Q>>@uULU!SZAjou)%RdrBf`0*J%(1n>GW@l|w&rkhBoFLb#q!upG#U-jtU&F&SDFoo@`z zFMQ=^Eh#PK)aw0F&m29s7I{BCPds@IN=j%04!%a1EA=6US`){EFl$J0-EF#O=irkXnun(es&b?3vlqW*$s z3wq7e%PI&!hdt9f1_4;9E05Y{Gn!6a;nt=i5@R>7bBNzpkLKo9QcgghC-lPw&lF_FO5518Q zZi4f<(0atYP}6>GF|eEz#MU< zq&Kdj``QF9er2#@a~J4+TVCfem*h5_9mxtHZLeIF(ck3qs4&xcQI%&iL%Dh%4Pc(A zkQEuC?`p>hxjoXv$ObrGe4DsRFR2+;()M3Pmp#oJZbCC{trZ#;JH0d=b=!3!n)JWe zH#ZUZjg)@YZ}{dv&>d{aWK-K4Il7$v2}*=>A5XQptoLrx_^&BaH};0DcV#=I8hxAq zA(Ky$V`}fh$XBziuudSJh7D`tJ<6Zhpx{9awz;jo(zggqG=aDDy_sa5LUG?cE}L(n z0Ne8g`W$8%6VNe!?59!eZYGOv0#Yt28?E;~QVf6M9w zg}jMv?E%lY$y{5ok16x=cvsS$v#YU00r-Zt=hQRd7OZha(Hi`*@sdju`t-2|>Y9#G z+;j-m4cu;-0_-JOF+LAvY@D2K+&w|!=uE28EH%as><1=*w^D(p%_!;nfD;$o3uF}q z#GFZ7X3EtzGqr<}LTz=3p|5A&ldWn%`P;KdNlM)$BK?@T1+}zVBdCqx`hnt+XgQDf=-RAO{gdSP^fr$}E%ayr3lnZi`f$ zB}YBXQ8v4KQ{Ii{s0H>W?uMJWPi@&nUD|Ko&j#WZogBOU7f65mylhUoW_aF260Y+iUC!bhe zd<|*!q(GQ%e@2XGawvTUnav*;4*=QdZeC#1vUsCXt!|kq`yhH1JUS_6$KlJ6F}b3g zHIL7%q2$-c!+2k-*14GPnOn46=_Qt$&x}ZJXCzi5dHltO={zv)l!ujrUsuq_sSBCY>g>+uPH7ED}hn%${MDm0xx{b*Q!qM5BM$+ zD5XmC>K5pq@2z*_BRdkCI4RH|Y|N^O`jSLK-47RT&}i$9%O4zU;wr!Yw63X|du=@x zfMr6ptKHHQKqT`CA?8obr$z2J%XW3S(Uo|I2+r!n-Xu&Myqc;i|0QijO}!U8H6Je3 zi?}8oxKltO=bdoD28^Rc^1#Bce=o6?XC3~n2S?`HQl_u3uN=(U-;JS+Y20M{ zrU>J|^kT|+FVP@!{RC?6;e%uEM{DH?r7JIwD{mHCF%LdN6YaLB+P}rGMVzJZ~{9~xpBsscARRlp@x~pTjzNNE70`5mrZ)uVOGL{o{H}!>~^FC zqsIBzF&efPjwT5Q{*rs^(fQsG4XPZ;=w)!5CKPha6q6{=@@(1cjQ~ZxH4F(L*$RMY z;I+4JU`yAF5Ezt2DBn}dQW7(0m%I*`U*z>DnOA_B%NDa{Y6?w*n_oKpm>Sc=g}V!U z_8~;1xxFqKFWIH#^80&K1s%s1(&oyMIGRnwzE3!K^KD!$?kIHH&{gj5yL#=?bST*B z_OFkZ`t$P8f9%JOX*X#94s)e|7y5KACHFMZ*57p(bjs+{b$OhhMvdJc(m?pgJO9`V zPc<}L=zwR!mgE^6e2v?3!W(3?g}Bq^yuvs4jF($1<@!Id6hkr0^_1~5^9WcwT)g9P z_OiC_uwC2lsfS8J@1d$E)Ep>ZG(HC3V2)y9@e`a4x7K8_LA{RN+QE&c_cCEYEW5h1pZwHDx>zA37U$rTo2mZ+}v87 zrg6KVkdWK1j=-fqsHgB0m7{)>qCp}P+Z)4TnRxG_o=Cd{vPP*7mS^w=zbctPTM3>>Zk`BmxoO1;lzpUhRH*`S4&_hcoi| z1QSLCujRyhaXeLlbFruIFEIw1l&6Z6&z@7Q+q6?+(tvYk5cn?SQ8(L9mYVQF zP=&l@v$T{23hSdrg?PiZp!8;6%-mfp|1)GT8<(;eyTSu9N+<$0e(5Y2T;!}s`&^B5eTC|8o6jCW1{N(?V5fV=BiS#c(m(O zJ=6UDl2`j@1_n(LUyNke>&M^?JzGUmN%;EHLCq4x6Pa^=-_Le@MS$`8OPLuHkEx~7 zv}_f2LuN@_QD&xz-^T0J3xC)m-b@$$T$=Ie1paxP(gU}Diry}l?ZJPMt)uTIi${sg ze|vMk;%mP4!+}l1V}Nrdgb+GtG>Ue9hh$LfsemJLH%@O(@EKWgMa2!4wDELY62aFK z6BB-Eb8*>74~3s6l9-*IUhWxnhRnCWIC|MV@ z;Ea`B7xl$DMf`OUh2X z5q5iS%XNqY!S+MOR{~4lyhABx&QrS!NUyiyp2i`e@x`wIwMI~;jl#QwYI~%&?eVC^iqxlqFU*N5e@Ut5E?86_Bf_(bQuizkaJ?GGmLcMY`r=YX9Z18&}Do4{8N8mhn z0mBF?OGaT8G6tZP57xy?R>K0&ovlAZz2Cn!KQDoxn6sC>xLq@L>+;lcBN1stfD(Z@(4V7TS5Ik_1JFIqzC^`G-RLvh1nXOBhd06(+Tv@2tIrJs>HTSL#KCc z|EA;l;*wC!wiP5e;g@f5Ch_7SqA#}W?7Nv8obW32^S1>(`hJ$4Kt}b;IT8kf52dA4 zj|`%Ut7+ zI#(?eYpj`RY-B7yGh`fUS#gBCBKkiDD!NgYaRFcF6gQ+BB(q;h3|4qmCL;)`L zD3TRY#(#8ezpD)`r1Vb@Q}jG?3wu&uI9d0D@3GfjC%LhAEid$ro)8Oc+hHUYpdz`&M!ap3+(>cfAKg^F+ zM$IfU@ttZ7jH16^TJZYi6x0>y`@Pu4jSI`D#X zn^D3i$+Y7Qg|c6>(YjRo^*WhKpkY^4s**d(Cjg5GZ->DMt_zp5(|x@O@T5+-vxd^n zcbmASA@D-rXL#^3YB?t|D}(%~DcU%PFS?Ml9O<4=+!B-|!dO4+5VLjSdMF*&t`K&T z2i{BRJja=>`T6;+>^}~@KkxG&o$&9>z5o9GbHFval@%D~E8jFWpG7o1NIb$;i71wU zh~3zo?r;R0Kk_cGie(rk5FF}}4^+LN8IKue2vi6AC4(}ShU21KUOoPww7%sQuLR#( zBn(vPLd3!F{!Il7ap0yecgK9rvHK1LnQZmKsR>4o-h!(2#7|zlctG&!oZmn9x^yf) z`JO^>@FdOc2H*-nTpq@Y3))*>q2&#<@qxGD0eI%fj|>wOX$x6TJae!Vg-%yJaEzT# z`@_2O*B9Vi#qIHDfXdy2J@u{ir76u=*(FiQPKpJe3uYRm z_7@D?2t+R!=wei&MgLRJcOn4**qOw^&A-#Ne^nJh*hQtX_wPIpPUSnl5y0R;&_kx^ zWTmGPUMYoi(Xs2ve%}V#`kOWdGh(<_nd037Usn+kphmIiNI5Ld&!w95UB|Ki$=(Mw z=v9@5b)*Ul^*1V0Kx1FtXn55^y=ZT|te;s1U7Q!*_o8S7j4~*uz%XY4uz`2Yv~G+M z{W1hPW6g$(?%yeBoLvB}J(0s&B#EEL7=9&!+WI7ae&)Bx1i@gD@Z{YpQhGSwo*uSrKJ#%1A(4ZGgF-fv-^2!$YS>Nj0u%T$AQEvRw#8I00UtnH)O4FwojYG2#U zaMi3R#PK8m+bO5_mChTeX`kd($F_$wFnb&G>R)d-KdZs(W5n0!hZ)p*s_Sfvt#Z6W zF#nBG+)Y4lBQlyUy5~7d$LD86qBeNI_)*H?3Vi*5^&ly7BmKm^%gd*lkmE^&?U`@F z;N;im$}r&xKATd_-4oP-@TdGxR8$EkBuOoWpweZ@y=#G0P8tiny9p24Gj)P90ePq2x_ICCsJZ_z!UP&?yMmFq&7tc9hk?9=cOquPZm zj_0T{5%%z3Jp{8-2`u^Bc>#s`8ajEk6v0;cjou!JTy*yUC%8Kc-7(_T#>WQ-{XjNf zfvNhI>P2_VN@zf`YBiKTv6MmTO)8A@uh_j>xIVV)3K0>iX;KccY>y4tOf;Lt4r-<* zCw2H*1OkOIm7wgo1|#7HS#HyQQLC%KvP&2ckTHh%C!n&OJWEUxcB9l~)jK^o@fNQn zb32@+n**{MTh(QPFEGW8KPbCQaJcp2R?3PN?3;i%0R zQKwulfl$ypvksfFd_{5AuoUyzcwhq}MqZ8UXJRSdIk=P>a1WD|sEN zH!5FFsXt_|Kg%r(W1YhEX^L*lKZE$c_>L4#M_B0vZmSHZ^UcEpuM9m&S)R~70=5Dgp&Bbiqlb>DPMEuFfTvYF1P(6M6v=zJce!A%s07=S>gU{&A zftm;^wqm@ng9F!yR8+|)23=+fHC6=uaxol|#Kn)q17v_RT1_mg-5$?}!G3VC3I<^T zX^C{M>SRI+uou0HDk|`Nyt#mn51}nG@b?d^&CQj%kgi{CZ_+VT@c8OEUZO&Zkqfhe z!jSgaSO|%{i9fu2`R>1jkRV1ZLfwOs$~Y7-W~t`~KT}qnEgYNgWtjr|YWi3Mix`^% zW~?P11ZU>rkX$fN%j!POj_+)Bl8CQWR8kVYk#y3Vj_lsP@RkT+akg3~lPFY$wVRO% z4xfQedV1*?kNyy@{V%lC&LHDV{<|nZ4AHm{&;wVczs5h$YfsS~>i!-}1hSVcv}1NEwoj4;4UY*ihZ7?qMQ@bmGZetd>QA?!j$vaAtZ@?zg=CZj?T zT`j05AJEOMXbWNEFY%2E?#w|7(QFri!FE>D+OZhqBk-Rm2jcr=ta~ScxRKwhf^;7V zO3@MQE0@@!c#%;8>W4WaZupO)-p>)4d^y;$0uKYBkM!!Gc+<^8nyz3aX|_JAVlK#Z zxE*-UE>UOJ`AHmG!GXUx58AA9ZDldN``0nNpWj8E@2z4?KA)Ght19dVYRY?Ck7gWO;sW zW}4M5r*h7d&4vCNg<9$g2KD7h>2tDJ8Hy$9p$1LkuBC`*mdV3=c9UfN*A=bH`$`VK zzt@lP={~!7KA?VXJ*at*8%@=>{W;3>{M?mF5BvONAuexQZD?Vu@S@jlzQl{%gW^sB zcj6U|c;!5*Z23nr)Wm_f8m$?a^%u*Q=4Go7`=v>U{+cbYNhKS9H&(4Q<<}Vi9*@~d z>V2S+{;Ll8uWy)>;K9A~2xSxh$96l=gza{!InU05D6XT)8+(fvFleI+!2Yy_QiOr} zl(vwW#prQ%-$!w)!oOYsnHRPWiAC#YeG8d6PLI@3WqhJl(G`6vcSIhG#3@xSZz&p3 z^vheCNH)AL3ZGSW9F^C{_tmZ4Obfn}G>~>9X?UDk5hrv{fi(x+Z1^Q=K!oYW{rx2O z!QI}}iOA+{?9%?%%}cr}%^#P_G#>|)-g7ox%Msc>SewXCm5tt0 z?~Sh%k3u%iRVoQ0B&=IvTqEr>c3Ldy4QB4RwAfgZo&TCAadU-o! zkeA}ZVt-k{o#3_b+sdy^Dki_mUzfe|=)317Z2{$_YQi#2^V*N1tOCzxf@67jIVv3p zRy73c23EC0Ym-@USwF9|(l8heic0IJ;Zu>99=~TQn`taXT_)7|-T6q+AqB@dq!9CC zEWev~*t=<|QKR(#eS2|>6vAV3LdFzr^Kl1K%z9SF7sRne=%xI&kjWQ=w<@qOejf>c zzIve|xCh=;Z5I%$qAz^Waqvz}*?apw?uOye(Y)PuLIH=}g!L>P`75_Zc-BIlZpmOW zFMj9VW&AGmgCuV;NSHs{aeV0G7Qf+njQY^iF_$!>HjeQHC%Me0L+iXR3|l#@H?pIK z+}CNU>*^n|sq4QDZpu#f#o8(GP3Da^P5tEx;8&0QY?1L^aIE9V?KhJLCUPWFeMxr) z7pVU42Um<7Zqg--e`Njc6|vsfE7JI@LDK74%Xb)|hT~FXk+D7VZ#9X>xxe@mKJMp&hd#2XE=`ylYid=Ud!TO zbs^G8QI}>V=6lC+uz+L@n%95q!@q5?gwVxyj$nU-){HNtOqA|yL0IX4#uKGmlhOXO zcny<5AfK(l9}!0a`4c2tgZ5O;rW9VI!2=5QtL@4JQv}va_sLvewv>nLq4`Ue(`-|x z9c&s9k$hhe6p1ZcWtntemvtib2&bI1&iio9_vedjRjvv>mbZ6KOPA1gV;p;)R4F$q zG_Ug!Yncko6T3LqWegs!n|6K^dO|XN5G%e$$GpJ&{D;vD~qMcXOzu!G}U(qmw zg>0$(jA|5*lb<0O7?2?my5Vs6e}7O*NgLSjDOOZ5hcwEy>Nki*>voASm@I?%{pex#}mpS{Xf$inrN! zlN=K6au67^7s|h^MAROYZ7JR(w)9CV1_nHBOl!X=epy$ zw_t+CJOTeDL%cxR3+#oG)1-30`L2I2f97}aZWFw)U}H!8VW^Z?yjILI#<3Q0fK9PaC%%o-i{U{~LbboJ~VG9?A+1$r` z_CL6}Z@Koe2|oH<-t|5s#?3BveY@1AI)CVtdeUV*H&>;~6kY45iB$lu;1g{fyO!GO z5N`j~bmf6~_bM)au>spp8~tVF`!6}L{(!k&Hq>u~B+XX_iC7ceOZz5=PoLsE zsJ6cz!KlV4;PivI&ZF@BJcZ-J=%>WVm=fcjyR{)O{{KXl=m8FH9bH`kP*2|n&^;3- zn2hkNV5S@SY_VGmM%3>CUl{xpHC1NZqa^@C4ZrV7sQ<2(9>j>okbYv24;i$7Jf~6p z!9qb*7k!cRI@~1JuJ|qgtN8!*FbwE{&2P9I++G4@dMaEbKS`!oatD0uZ#wyZAa!|M z*8R1+E%Ni=fmNH1Rorz!#dQgyFbb=94R|eW4Jr&&W_E_1RBNU+)#4wqy};2D6cEvD z54Ftk?>@(7XLahYvbub0Y;a)tW;4Op_lI$0w{DBmB1#wd51brg%i~mLQjHvRCTnf| z!N4-_Z>>najtngmJqR=qq!fy_Q{$3XLM~fMp`?=x(49t5N}|8rjd%$X8kNH>78#Da z1$%pD*)Rc9t$JpJ=muItNDj_ZVet1RHbgY9QiDQ5wID={;Ri^!<*}5oUhd z#LY#^1SP*M6WOQH@|b$A8MBt510LrnOz8VTGLp*u;U8V@t~(9QYID7qyY#F~@m^f} zjR=-D3hsjk?5z8DGE{iXb%&>x+3wKlr0iZvB>czXUL`D5t_eAPQ#P=s}^o=S~Gb1i}PFV7(bcD3^5qR&P(4-cgAGX})Tu&Eunk0XhwQ0@To( z>@Uqn3-D9 zn;Rtj=WV8h9Dm3ib;zcJreSOTSIO?)@#}M3<34O)miiE*k0f?vIS6vKs)E zn}LF^y5x`4VR>t;bq_-Pc7D!?Z|%9?udf%L2i3tW>vE&lEBkHZgL9Ft)^s6YCI;fr z%4Nj`hU;&R1A^;AwQ*rsXB22cs21uffFebjD`&kpKfA-eFTFG0X*l!#ST{kWW|frx znfFvJ+Sz$LSV;_mCYK&q5axO^-mMLw^jDRv2UCt@Xz-a@5v+Aj&sJQUY>ijYRz_@p zZE)iJK3&r~yA*^5zov27>#C%MO8sT=<*gA0`?W^pPtkbB*fWR%)TZU;-=q8Y4mUtX z92+f`ZIp;(gUYM!uFV>=cSYOX&b>tYjTJgWN#liJ(+vsBoJ>xwed*RFDZy(LoKV4( zS(rbTu{1F%A&7hA<0z9?({8sayov6HaYdT>SFI&5=fTGMWrYvAVvA=5^ndS{pX6_t zoW#t>-j^0I5hOq-9HcAck@rdZ_i5J1g$Rb}Z}PziLRT)&KRbIN1VBFc1h{O?V_&cT zL=Pc)9C~Xnb8~Ns`2*n|fU&oJBtDUi(;k$F{0*lsVtK7eU7U$iVYG-IR+fe(-WT<9Wpj=$ zYZvR66<^j}QEZdRI=f(kUW~XJ7gbHFMd)d<&X5_ekKJ`7+!-MvPiGzqmgeo=>DagPpzk~IqAD0y8O%G4Wuvt(F}aB)MfxIa1|YdP?8A!IRL@^KpImm zE+{Nyg#$Jm&^mUb^BqYeexKp@smk zGezNJPd;5$RaNKnb>c@UcUzUdm@>8C2r>d>DhjzLs-=Z`4GM_JI+%{AP+7S-j&o=%wQ5U9vuFDB>y;!7b6G{n(M`2=E0j+ z{&DCSTt@8mHn%oL#9k-77>8`Td^AxarM|nVa>2;r8{Coc-ALm&pBr$|3G=HBmJC;U zx2u^A+rM`2p>;kuqfVAH!&MHT-ef4oLMpwB#WY-z3&UR{OHli#rV=&!JAR~sdNI)o{z4>eKI3os-|dW}iO z^3@Wv%LtEI!*irSNA^Up_b~`OA!}ipqxU?5{=rLNn@Gzqbwvse3SR-e@{MgY9A8lT zD)apyRa(N)YH6M$H|mPG{}5=<9P)`mG-b5aTQGe3+~O}5QUi8g*&wEGX)^isDg6}w z0$>Z_dmEE-$NN_P3ZI&_exE_^ZvY|@LB;C%b5j33pM;&eJe5v27hF{mymQSgK{77AjrHr1=+S8G|MpE3PL|Qz>j09M0Sy%77zD+Q zqihjO>LCL5riyTOQD|#xHyfm_c${gfnM8|4aF;?4Q450-$@wBMRVU0kp>}3$_T=*1>wGe?h0ec zu0DI9e54<5z@O)%qn+SMy!P|L1G3GBb}b zqRY;gkj`5IZ|M1DZVZ5MvxR|W#x5X$gR}tAU13cjk0nIuJm-h1Y07?p47G(A$^Y{c z+9Y*F`fqDX(WT3#^R~SzLXnX||}-9MXbI_p8qm-8bw6hN@EjBG%qFyuc3c0e_TeO3dKW+xC64 zksWLqoKaIzL^78BNo6KpQ%q?*LUsw2(+Wrr%pHEr0h`qr!zB`t`jLT10KU&anJD0Z z4!d8zhm(Ncas4Lbq`m{=ec^F;m9*m!r;4Swd=LtLM2H|iR#P?a1op1C!d3-jK zf1cB$sRXnrBw!92WwCs`MpQjG?QwA zorpGWp*~@leu>UStgw+Zm7LJbs6BTWdGr3O|9z+;FwL7H^YqR5 z^-xPuhgjlbjdwcD><{WPb(I6LZv?%IdE43BuzrDfV5Z}ccV3`_sk<4^QQ>af+4af8 zobP%!%zQJQqK`52#qOC8nYUJq>9V9Tccd~JS6_k3n_=sY8Y}7!tOgM;6*f$1TMl% zp(EWuo?pIlN9*sSna}wl#qYjBLH8lun&Rl>EPX*9hm#{tG)L7e`$b`x`Dvlvsp-Kt zh5xaq0(A8OV!Tc-R)!b_cqNG@TVA_z3(-f0@e(^rP15PGYZ)sn=IN1EabVT7fVSx6y#x zkqX4&WlQ+u{?--KZxL&9cQuX zG`NfJ5G7kAQQyabZkw2}+8L5#Vh%E4PzRNEGa4>!f0^0Lnq1CKFcYdP>qX#60bwI^ zq82E~6oYm7AO&F7Ea``;ekf1CVRdljvsdP`r_=Sp5C)b0E+)YFIVqjG`svbu>SWPk z1!UAb-&wX&&1-<5MT#O41t4F2cBpyMi8G@B25jwUpuC1g7av7fyB0`+vcMNKuC|?f ztraD54r1J9Vo(Ao);-^SXKUx(#Jpp&WJRzA7rD@wos^@u2jc2%Y(jm~6`wFshG|dh zn>^ZNbv@$}(gRP?6N&o_dUam*qjr~Eruj%wjDr|rDIw(@q-@y@S|>jyEpCa>F3+Qv zU-&!I_*0$32DpgW02hR~5P-f{l4P=an%q#0Ep1ve>(M^;wZt1cSJcxY<(|-%2TMn( zNAf&4nj255NA6z~XEkj*I=0{Uw~iK!ADfK1_3)^5-EqqLG)v*U)PBi!teu0~PrF%e zDAV6|FR(&5Rm`p-v@Uz|&0owk1-m1<(;otsZ{$s+9?q@6tPn;A*bZn#xmo4q+-@f~ zT~$;OJQsxQ2L_fHKz*ZB%iVjC6}Y>zLk(VSB~!pT@ushQ-^qg@?7-w%_0KxrW&-Kx0T_7RbUWOV%qIAu zPDDgxK2^&PoPua#Vq*K#Qqc;dPY>?~k=cj)jc6V~l>|)=HN!-m(}sH%lD0UzeP5zg zneChuKW&YF>9#eTRLe8X(z8nxpz`#C(;%al!OmEkf%qZk?~a82uKv)N&#IhlUUdM{ zuV?7Tj$FdOlx}>xI(H3Br!Mxy^E{GA_{jXlEPsD9BMB$)PfCAx#P%V_LAz?fR)bkdUr>JSTPPQk{>2xPtuN~g0=WmM z_egP>9OVuCX$Gioed4}l5mbyU8#HOkT--AC;zo@=t0&2O)Po+v1`u>N7QO(y>2%f1_UPadcQ?o8IDuELkQa%1B>4HTKM(SCr zxRzgz8HgHO=5Pp3+10X3|I_LpocSB05h)QFwCxBpdwp6jGrg$0zEahk!wQ-NeuPZc z>83Q}lkv8XH4`KX-S$?mv7q>L>hY%MRaB5keS5d#AVQ5(Y|DT#ByV5hOxJb8sZ~To z{dHiecM5mkH_oxf9DObg^P|qQ|nJr5g9fu zE-sF~vn}n7ETURoYM_k-%i5Bs$(i0=y&)2TPeKw5$EEm_ukx!l4i1u{jgsk~K+w1# zmnb9tvMB)n(}UcRnydAcU$QEk&}!v>KE4gMF7bS}kGlF-81zVP-3kE2knX0x8hW%k zIbe@|ett?EYXRe6tw4RHA)v&$0g*m-c4Ef>FL!`JYry^KHEwp0srs#t#u|QWWG%Lx zJJufo4!4ZR3-0;P02qr+*RSqB?r|{N6aZ~4fC|bn)#k(I&qnkIevX@vY;O07FfG*| zTj8A@t+A#js!~9C#piw!J!k~bl5)|xb2%OnyaCt{-Ab3uhLH{w5kK31It$io2f(+GFTd@!m+>=G;x0J;Exn ztnngVYM+)E9e%}6|3_rPO>KzMXd_r~Mr0mzlmA@nA2iirt>}%RWv=(<_n01WVX2bB zW+N&qNbI$$QM@Cz#J)lHIj8h3+O5)R0mI{{);;m4E8frS~GCbl)Z~QTI4n$$a+naCO*%?de#Je%@Ul^qGx@ z(Ywg4?IKgPE|*M9mJZ~%$`Ki(J1d;3-#1GiPB)y3Ue8m!IbTrS*b%9aAS@1spxAhL zesA6=0cjGO|Jf7YP(?yO^R+ugnUQ`nJf_Vz7sEK!sY2a3CTiX!tAY7`?uNq=wL zJvYsyFL99DWntUkX_(|AJHMxmluT@xi0q6JdN%j)hLZIGs%aB*)mxf~e3Umqo|zS_ ztC%|eW6Sr}qsM|S)^$3k@0x|h=sYnUC2kM>@v+Tg=a@Wx@m9U^KNDftRACpq4k#8u zL@!}r9au(VYPly1X4!X>jTY-SPvRAB?TPHp%ttG%J;&zKPOotxyF_~@9bdMdHT1Qb zooT-GXPYHkWMNWQ9K(}<6dmzN%|LFqP`&3N*VFnakL2SsI=_upQFSG2TJDM*SzIPu z^SHEqUX_-;75O{cMgQT&>DX%nWmN(;fX>6D{=12$z0HH*|V zl@B??P)qQ|oB;C}<)S%cMB0GJ()^vn>2ul{aOP28MZ*9nR2pi%g~iHBK88RuTYfC1 z&%mBm)~K{e!RerzkZc6TqKA3)&qyR={GXefAA$9$Y6mt-54$Mc?poo-IJfqBqUy`9 zV|^?V_jOO}>dsw>WAm)DTVjF8?4-rA`+7Q$9@#*B#^1$;4tU%wUc?*2(>p+%&Scbf9EA%5@~tvd|qxi&RU|MBN0qUZ|Y1+ny{vz%*~PB#() zS@&Bn3b}+;U#$?hqVT>LpwpX^bsCf=ULDJPTx5--Vn4)4WtZJ43R^JK@%5f6}4!wJPm=`jX^`a#)?Jo!=UmbLD26*Macv zGQd&l6YU|VXyBtK1|sJNRnPFbERPsCOnUR;ZxG5#O6i4te0v3D@UG~ScXyu67ny^{ z=nKOyANIvIrlzI_`+D`^N|nx$E5XLb1~Hy5am(|WCY0fuu>r4MUE152_I-(h(IpSq zzBn);xiaO?s=>R4>**NVfQx~lAq9tZC=stNzAGyWR*WMk3Vi!S&V>fnxanGsWq^>F z&fG}x>@6y-ZjIwL7@#Dtr0z0uoVxE0t1Hufqk1N#=j7y6)d%)0PwTGzLVJnd?bi800kd#HilF}P+DcTB<35$!>-!E#T{M%$R?0L9<1e{i zdEAlL>Py^Tv+Y^;zV?TIOkFHdai#2SP!TLqJAI=+B_y?$yvBA~Etv zJOu9E#}Js_MFVlDt%-MDL_Tl2nIuSia+CNt*L zRU+E0;llKobM4Q0Qi|s6y!ftkCqOj!pnVnJ&i3qUjdXXrwaNH%WDs>zprG%m-#!2x z^G$&rqOa8svcm<|Mq@?R^PWQT=ZeCIcu+qLsg~JUS%+wsV<9c%>rNJh05(5zsSl3ML-_OK^+6eQ3ol2+E#%)o@e zd22rVB&Y8y+_PA1lp5;lSYVD`$M$^3)F_KqKK9#S`X`y+0hA-ujm&i;_7#;6(KSAZ z7KE28IsN2t3CnyJ+|+Zr(e_b=w$AgGllcwUhmzOFDpdV!1v0{5PEl_bUirdIkiA* z=O@w2!$^;^}yBoJ854e!*+XvXXQN5p+5w3DR~J zU*hNab31p_^ykR)supNTb59O4Efw2u%Bc}CjZl%3S~S?sT^@c3D3c$+S)T~`)#$Ef z$t4OAg2{nWLDs|k>i9@ivwKQenx&T?7Ceec-gVoBmr|qD_!_)sp-|uM(`i6WZ;#F= zARt5NRm!LbmQgQDOG{5^grjHH*Qt$g-Knm01w5^yyi~{y6Ug~Sgy{iulfmifG3J|6 zLhU)-N@K){c6E7SAF)@NFGk7zFy(NJ68bu2mNc`_9C5BNtzl8JWLtlWL*eLn^*EEV zH;(h7(?;~(wAlK1+>6YAU0R5x#krv`YCX#%gb0gmG(ef)?tVr1N@nHJ^u%Q7&)pqa zfxeY5&iVzcwOdAm<2ux3I9|DL&uaanH6|~Xqp>p2Ed*dP8cR!B^Um8iwN=-J7D;KD zsFv*+ro@f(`nyndQ4`g9uRnl3%Wt4vVs zdWa5YrpnowWkrBJZ~@)Es@8PCK%msZT)^+@`}33S&3m_S#AEciUm8wyA_HHB_966T9OEYWpz-x_j zd3w+aYZR91CN-iC9Q63t;d4TPghiqrocgZ4Mxtw;+l8m;g7b4_rMzaYrci^ zCc4E?IiakFa?B<3EEBGnH>~RK_P;`H0oslQXC+^9QN%)p#K-Qe2ei5IX1t-&&-2T# zpU_-b+t2o3Se%cze!O&$s+1U{b;^BB+(f6Xiv*KWZArK{Y%YaJRZn}yb4?61;#xmRw@7g}Pn&GI_%XzMXtIM_H> z8ywcL`eG}DH`%sA#ump}gK@n(-;0@$#36)mOXwE90NIcWOR*I8Q&(sAYYCa5kDOnB zm`)gQ2?_ply4#^g&})(=)VQT{)0FO*hiOQ>f~oDpLf!N{N#q6htNVEQl{ar+Gl%}&>a@5Ash^_gHLG8myBe>k z*=oocwFRx1PF9zj-w`?Ey9}Q6;a>m=4(*D>J@0?J+TET>rhLP0 zVa0WPnB}^%tAk-{%q_wfgCp%$*qJzqEB;zhxmv{I47ow>*8lGIH}BwPke7AqMI;83 z<0HX+sNab>5h^+5$c5~V%kth}en09%eiG5=%aJeBBDlMvr6p9E86Ek()eEOld`;Va z45wab+hH!q&e46LQ0tj5eOJ};NL7Mh?mK60%9E6Ct;y+nlzO)%NFFYs$te!<6^8U!&o+r9lOn;{Yr>0*GLV z_yPsIC+HlhWC^}E^kuQgDEWuHOOztlAtE3Mxkhv*1|mD$oqN^KSBK2_`w#LDWZ&9X zR#(H=ZLTAN;q9aS?KOWA!6~ENNTLI>zx#(?pAM;e(1MOP_RD)uLX;ebV-%~Zz}fz< z?tac^9YLI5MpZ#qCDp*%pw4sp?aZ?KF!JIMI_j^b|9dJYi^gI=ih7Ur#T$tFkbD8@ zcgcp%c&VkOw)KW#-%R6pri`{ZM$*tuOZ;PD8^>q&zAJ6*7E&3qJ1-hN6~39rt-BEZ zV~j7oXJ?vkJNnrc`IZ&u?9Sjq0jw)Y<+cDm0R<+v@}SG zG>S9`NJ!GI;X-dEjlGXsLTKf0pUZk(EJ#YNxHBxie$P6MV(p4?k(BHHA|_Ve{On;*;MqbNS3Inbk2VUd{lT@j)!`8p$S*T+*qR%`(Kok7(p`P2}z?mGYiV?Q63eP836= z-7p)B=1RMh4WA$TZ@2E%|=!&h-3`7&Gc{*~{_HG~+7^1$s(pjkU=2dq7s`l>9Z@j(`DS~EOGMnl*_U)-JG_CleV`Q| zUzU#|Ibn}2qHdQY2qS?_v%U3He~sjKF)?QEtf_b*F8OvwV({9pGKva=%W9F1_?yKf$LUCp zH^+T6Uvbd<-%t1n{e-PRbH4kv{IPog!|vG1)tr2|s^hoL_PKw3`KAWcAw+flQbzFL z!^OI*f>XOq;#pct?JS!t9W9y%Y+X{UkWoF2>7D<2x?*XW^!Lo6~T&O zYz-=$0Z+I8akJavl@j4`ukrU%Pyat}-`@M64lnp)lSE?lj7&C6RI;-FSM-0cwpaaM zHoe~<5Cyaj7D4^gmw}q0l$)thWUvGq^Qt4O`M>xGYC?IDF!Iq1o#4%XR$~uK^6E%9 z%2H7QP7C6UL75hT^l!V+=#&Xwf~Kclaq66OfAhkur-yFRGm7A`#0QoagH0RMCo(G? zO_tIItCFzqdBS#2$RzNkT8@kfLaKcX|Lv5}pzwj(VeySQ;lIBOu>N~mnIe_X);nzs zkd&9pqd@pwA(xdUiM7e$0c}@AhXXKJ8T-k8>os|qE_5?(8E%vC#lMpn*Agmic14gQ$bD0K04Em!pd|TkHD1xT)MpJ4}-|es! z1(B{9Mn^B^03KI}42VVW@hKjUVuN5HMn7c*x?eX3L@hO^rM(TfumDxS8UM?U&_8Cq z1+tuybzzyp|3n`MHXV;X6f5) z1#O|ekjUMd(cKP)UB<@}g3R~gjdp;h?d+b)r!bsudq?fi^}EIMp*Ib-Jq_jgUrGWj zK^9oTu>HuL1n{r*rDJ`X$>(fWOv`x!{_9R}6%u}$xx6$x^K=G!;yMg50tmp-Zpk8n zziVl{>7Cq;CCYPJc{4Hd((Ww`N~EZuvJNwxBN!IJ|F`tbPN)>~h};v_)89VPkZdc9y|X|1wTu=35u@J(b0*LF0B>rI8B+uf zu7{zTZ*R(0jtOwy!I>{ARL_ec=IfWHz3qqAK8D?cbAsdO5dzD|AazemtBzY|Ee4`!LPx#B#ytGo1SE30#MjghXM^qMzB;YQbLh5 zRryup-qmQHsjm_l$DN^EQ2z9CIeQo&$7g)CngFj&AvjHYXY4GqBd`D4#p${!aBJiL zVH5vIB7kJ~tf7$0jcl@8tAN2wN@yi0gCBeVE z1Nuia{7)0pn82YU1cc6DUSAVu}++OE$%j$vJe6R5E9EkXYT6*6@J+@m|drY~zln@V0k@GM8m@x=! zYVfxEzq?{03hYXWC3X27P(WkkZs~|9xC{ztkPDYg8$2lG8WnAr{cs};+~gGo@$!T; zChd8I0g;er2)s^;R97jY8Z~>`$2WS~qkY_22l=}!I7hpkNf3}$p7)1z-F|#R5HPO9 zfkw!WEF~pndD7}L63OELPno1l`k%cqfreFyy>dDAzqb7%D*WJu(6bp57iWwI!%k4_V&sR8F8I#V#;g<}Y1W%2{r{rN?j zunW{@^j(Q!=d}8FY^e4H5Mhws)SC)akeSC$tty6zmJCh8}r%Fm{;0i zI1&9Hx04Z+1`mI!Oq2^7&zSD)&z#Tm_d6xUnnB$Q0$gam{tV}SHP$<4=sQLecaADw*b3k}fFEhEf@dIpv@`SnHGrtZnL93U*$%ngW;qHd8L&KB{q8Crg#i5ppBaM(CX|c6&Kip;9u?*IWK{uu^<|X; zbDkXS%Cx`j)W7EG0*c3xWiu8|08;-IoigMOV5Kh=iI$26Ym!>+wobsz433BQm2`0( zTPnuf4m;}Y%1GhcL$d<{<4=@JDxBBM%5crq{vzF5aq?^L*S7brJ`}qGjiSi+g7CZN zKtAh%2Uk@*M;ql8HpLh{+*VX3lP@kWOY+vmwZ75Iv8=C-SW`#XN#r$NBd zCNi}RY@8Km=t97?rHfM}qowG;wb%J|v6d3IKT(GcOsPecTwC;Ee^&^sJS*Vlm!2|T z2K~1pcr@hsp^DQRA`$c4a#$xm-h+gj+CKAl@j`KYFArI+BVQqZ_`r;#PCD@)Ixw0A z#k=ESOWprjHGp?GpT;VPG88fsD^>yF7)Z6eo5DJccJg!U;fiBfr$~eE7LcHA2OUgU z%?cOvogYh!*;)`wQVD{dBJVF&L3eA`gTd~lhjnUV0qVH#Vk_pit3~*Mx`w>RTh%euYJU!Y=0VhH;Vb-gADMb6@~zd$bZHT`08sndfa& z0`e?gl?%C)*I8nOb}VI)yB735g?}y87{oiAJ^co4>CALIGMqEj{DcvNBOAg{KbO0hFHq7E7j3m??uT6rFL!8(IO$wWF~uVqUn)f8u_ zSt&cx8+9cxb6n*YC>wdPO&v?q3GGcdgX#XTt%yBY3?Uy*F!VB|~y+JRio%b`QIc4p+%UycT$y8Dsf~PECAzq?}DG-(Uzfdi*Kp z9VPkvv=%g7WU-Qkn@0d64?nS9z&6aQsxh_aumVFPlb6OTsn=-Cupj@N5BvGsks_1C ze}M_~<0GKbPsc>J=C*@v*I1!VvO?Q0F65@sL2 zhN$n&loUgET_QoGZGUxgi+(7jJC57EIP+TOHV7Vl8oy*a9X5GpwgzNBm4Z)*^$l9% z{rKesw-EeR7`zv988#*sbSU4>00rf@-vsN)Cm`~#C{M@x2GODxi;-8@Udo$Y!+Q25 zPv`)HyrOX{-CIN|OwAts{|_>dGIGAy?kM zJhkjq8A92fMh@M+fCrk7xOsTsjG>L+qM1zlwjV!!%+s5Dc^x~UWXf~`wR7!jXjcTd z=`}(KhUn4TFXmswX&-fGnqlQjN41}B`d_yfrAiSudL2n%5fG#n<^Rc3e@(Lkd`HI) z{9UdRe1eL*M+Z|g-C&b5e_rg*m1jl-Yo;~q5clmKWCxIwLV%3$gVa-1guMwURd-L; zJ)yP{BX{u%ICbqb8S>Kd_Wm$mmV2Af@S)F?d71Kg)l#`QI=mvfIYR};qVhenEimsQ zLI~;<3DI@QGPQ5u$9pQ1HyeB3m$!S;GBjeYqkm_G-TBT6M{V=$GH-W!Dmwq5=IEVf zz196{{$$uqHGmV?x?Gey-2M$9pWR_M1u5rqchq?@Z%m--aw?r4$|Tr}R!zD4_(+8W zjk9$CjLfpR!x>_L6I)E5iVN#F;NM)G(z62?)iKIBcL99!6~_C5S>iHK=Ih>K2p9hA`Swp^bVv_ zaM2(fkqVUbY;G)kz1zx~KLZb$4|23ogUKXvjr5uf;1ON<5X%p6Wws2r%@!}J0AsI1*RYyq)S{AGA{lGKRrPHssES!(h~m_(^~QWK?rXI#*`KdN%y6Q`-4qFgTP z2}-Ysvb1OYbF_c!rK4ng%Tg_Wu+mMc2*mU#S)M(y98lKbDbNG7~X2_&${wa?9wF()3S zT?y&FJWGNY$x{bzgAgL{822pp+Mdu|r z=x0$Kpa9E$BfvkF>+ZkUBrM!Y)5)rmOVPly-W-%J_V0j6%{N&y0|1Xk=L_r>&++Rs zlOU@pq($y+^C#|mpKD?{T`OT3$ZSBjohIG z)WwFC_t`7TK+5@vq@Y=Mt9mPmh5VYm&J2giOvOL!=bukJ2Z{@2H~Qmyy-p=m@XD*J zZ?^$IgWXp{uDI~NLGw0SFq~mqE__ z%GCk4A|o8T9r%v`J-huTN!WQfz-W_*?SDPOL=;`M9NxrET{6X5!BaiTwNg;au@Bi(gX zK)}bDKIV3;FruPFJs6A^OM_Cd;)j2l>i??i{?Me=RN2mV+dBdQx2Do* zVw3P3d4`096r6NKbkEjKXO~&6TrG5mhTJj^z=m?66rQyEJK z(80da+Q>btH{_})sCx$ zTWxgo_k+U2@p;XqI2s*C7zwo1FXO*)oQ+?KgbF{0=M8~%yg4afqu~0V-UtvYM9?Pt zw;3JNpj*e^6sxVPgRxn64FJ$fiQ@`*u@68l$@6hPA0PANyU8w~7!*fnSKbw^41^Rh zX#@1!2Qy?h4;?Ht^B&|aW;$fh97O2T+WPR8uvmk8s#h`NS;Lm}<9IBvHg2@^)+CnC z@7P^4f}efZSM8k-?M#3gcdKu`eVuSsrQWV8(bh|kf4CGdW&e|(jC7LAgHOIVel?Nd z=WQYW?-bc90pt`%mVBJM*spbjw_NEC3gS0K-Fc)RCh83@(CA8=cG8(H{MU`Zp(xgC z$Lv)S;qscKxb_Iw2dRL+18OgIY79H?w4xY%?#o-5Cd2;h7QEW|r0q*V+_7KiS^jsSS6m zDPw}J<@h;3C!8u5CYcfBm}T5n#qAw0+Tm2?ytEJxQ?92i@9E!PDBS~U3?glhKPmVd zwC8}i?h@dL{*(3@ty*o9%2;^1J>{PIye$Tk*wCA>%j3DH;GB4mFaq@yuQy z)pXpx4=LzzesjxG<0l~Kj`x{qWJO?*t7S7JT@ywUp52bq)S3a9ruq7!kiP~!!JW8t zOn=*xIs2z4V~woxQP50^wzez|_Y*_lJ#^+I7ecM^ciqrGqCw>h7?sU?zLBQ{$ZdXa z!I1cbP-!ZC)F85%7BEEJ;vK#}*_Vy9rgA7gta@Qb>V`aEm-^E>Rf0*bui1G5LF@vw*} zjhL%buZo|#=aR6S!!Otw3g+%fa#Q|K&JqNqfPJTX=BFbDOBwPpM0%V8XbZIGFl%vn zdR&yuPD9lHx-yIlJik%DQa3zVjhToD*K$u3C^)zUAhso}P@QFN#3|Bf=;Gws|E45c z9!iQNa6VmHyc$fO5YZYg&Lr4fp)^1)EOKf*x}}%3PQZFy%<3Kit&5^RqQJHuEevFD zq!A7BZbl#uNYD?wtpnfg1j9&Sbeq3lIlR#hl$%0ku`t_Z;K4PU|NZVCRd7=aO2%&( z1s~jP2Pe2QN;8?Psa+H56acs(eGyo4sn3K(ChAuGza4Rvh}`(%F!A#qV9Of3$c>5Qq<$ybOJ8I zPt#m^`tq#EW0>_il9RC1J;w;BKX~AQbBenIjR+Y{tP|-#mkSk#M!lMc$9Y&?b!fk4 zc@}_+zwJg46;zddw1YAt0@Hz)cGuBfLQs4CAp3d3h#YJH<4L!LK5iaA3;}J3X->dd zFrN#PVy)@rgXw_4D9MWaQhR@S>EjOvQ#DDO5Q^uq{vP*K5I}2*M?fS|O`+%94+;b$ z!VWoaBnmYcw9c>Rbh^$>A`=I*9`l#EssCk#2@*gy!FD-!^L9Q%&6Ltc;rg~D;Rbl& zM@`sIVx=8L^j5~`#l_cF#? zxm)e$@*hbS8DSpj5YZ$K43cDfWXqyHl{!X#`jX^XPsFe>%R~w{HXuj}>h*Pnq`$D# zZw;CxM13n%wWC#7VNV`=C?LT_DmK}`3?qz9(vm8nR)017VGj?tPZ)ucI3??NsAJ{SVO|C*4KN6iE9W?$ z{@#cHG!J>Lz|+c&<7{Jw51%#eleZu<5To}J$vg7Y(Ad(r&}3z+B>iwLNn5S_@FETG zX7^m&JOl7yAmR5m7F1SleXuYO($_cquSHDC`bwX{T3d;$+WG6z`quX=e`laddN2)( zk5d*s=q1fJ79?OMC7I!`+O01gkCQx=N$!2P9@&kI`P6h_IaA_cV3k?;S;$Y3$(i4# z{4~+U6-Ct=SYx5uq5=(xt(Eq;76b(GBq7zgTGZ_DJ+kCo@Qp|)eii4nY{FV+kliiy z?}_T?GZSTYxjw=s8Vnz&s~t}8sI_!=pEIdp90vt{`_V2dr+R>g-1mI_x8~uuuq-j@|+07VnvBQtaLaXdQMIP->y>EE@y869nu)sj2vfUa)>(T-D=3zuNCYgjA6N&vLvy=cg)(vil(la0_ z(pRWz(A`^h5Vi@@G3((-mIxg9)6W1zgSUj;wsVK+|BzAeS6IzT%-4I5^cA~+rc)yz z-vBa)N|4}1k7FXBCbYXZG0W84lte%|=VwMhFaH|n@+Lu0h}nU5rH7;esNe=1Rb%4s zOO8B%z&&~2j7p_BtMwAYB{o7)_76b zOslo-H_;AL^VDv%+RD)vESUPGg0tThVozy(O1~1*r0x`l5AS#v^6gTdzx&A`F_{^T zP?`AE2_gHzCv0*W_mpc$4Vr8|_UD3XzcJ&E4VM}PMz8BS%ZGdT2=ICXgB7Ra|S4<}vrT)Bii;!S!4^jB|haCX`PF{CVma~`fr zwoxpPUG0+joS2j1zD)lw`tD{Q+bh6zdq49$}aD;G^2?@I0W(_!X!M? zpIY)WZ1INkR~{gUI#nk_lYyJ-2*rXn>z6=m|75*ypi`N*BcvYeic3c`-vF4{l}he* zKYHjqnDp&XC|+6tHSVSBi~4%444@7WR73XZtfG=o3{I`VvqpF8yx`6buXnf?+tVNE zgikB%?R`WU4HK+qfHSq{mO46eR{;*)O%!ky_!o%!1xiCsqeRTi^Cy|Qiwvob+In*&qP83LQ4()e zeG4i4Ltaf+eG6yP^nSzFIFP2p?VsssR%aTa%xq^>M3;88D4-4#Wpk$P-#JLnzezDI zppleSKi?sQ@)2K~GEy~0f*OHCOq>uRnlduN^5GH-L|8-7bP;tL>~*?t$r!sC&v(x7 z<-%iV)Y2@9UvsR*9jayuae7Dq2VS9QsPY5kZOAm3bHD=aqo^s>ddges0ClvY;w$<) zz6Ivka!mNRq(bWd8=Xotmmf9r8MST}|IElw_wsN&uRc&(Jd1m1WH89q!xzw)#C?a^&3L zPASv0(8Rz?Dp)j8olurQ)rgu9_j=evQaTUZ_q-XC#An!hx4U>#UWnyH`sKw0T@z$O z#hyIFiDS^IJCWj5KIN)1ZrlE~Z}fSf9gTfuXud^Y^%P@)wgI*B zVCNV-Ucrzc{~GooUI@)~L&3QqTq zd$OyNaeG1{d+Z^B}McR8S#o7mr+n;_g&_O)- zDHpA)9u2a8<`k7RBr}v47y7OAhit(b)yuNIbxPN;f|_+F=g3l$pUXF|XSS94%%+Ru z&DYLo3$u?*0ki$}3M4TcwO|?Imm#HQuQH35|-q6?}l&Bz~dr1J;SCK6CX#`l7k9>btw6T?ZHf z4ArtssBztK2$dYcg`kOFQd7^>P!Hn;5TKo>@iCoppej@p^_Fr`MAfKV$Bf~#5`l_< zowPEE!``PwV;4G}z$n}tpp7hRz^?p}A4Nc_j*|85LbN&quzMbkO>ZQ_(j)4sIIg}l zb|t^AouYcRzHG#VG#~l2VR4mBb9cQ96{0j*vnWk7r=*ozJ>2_FPnE=`qHwGL)o(WA z*z+RQXE`Gj#E?)W61@hTDqHutWcn+Pzs@FNxw^P&vw*w5u-DgANx2zEH-wTY?ax2* zxzj#F&O#;;Vd;-ow`xi z>-s5Ne6}HX+)0I+3WP|$33z^*e|22f$LRY+X;vNhYT{Nc&;V33gIFF+nUsm*1+vYt z;&*@Bc6qkYV(|D?>ydnI6)ZB`m!{3;?wE}M6D;SS7;+p2fhM)>dJI4t2LVb|5gpXp z2pvcU(&Ody+o_~cPZ3KSayQsLTODZ&w8z`?uj=Sb%1bqNw)B9ft9E7pe#M=(5s2G) z^lbgR*2qea2Cj$1O-zPZ+|8pGA}HjQ=_Afwwsf(@td34@%$|kGY=?5$*T!Z&4d52_ zqH)G-q0M5=IakZwDwYx3+*=vKJJr88F%wqElb1w_Faj< zm%JSy)9qs)g(=C}1&q)2%xtW>y)5tuQilqd+&Mx08W2YYg3?(xe!lX$1lE{lX$Fv7}}n0?ANE3?Z%j6U|c1k?N3VcYYo z0M70an4zT2o#o3550#c*vs)@I#!~fE`KEQyLTfgo)GLFB@)n~ zf4TUbc+_b#?T9a>MJ~JiR{R*Ik;!({d}%f$YP@!1sz!0eoiCpmiylrJTmvFF$B+@| z-kSyA(U{L>#a3)NaE%4BHZ*{M<8 z5pvn-W|@|TrXPmr5;588&`AF)--He-&Qw7?#i13f3sdzpOn|)0+PKjoi2J>dg6WaY z7++8pA>Yko9r*s#CFisYG2(=8I>4rs;IXr&C4rC53+${|bF((hh|x17x#jkFX4lx! z&;Fn6Y|X)^u1pbISMg%a8l&CbZn^_gMQ2w(TKA_I+z4<(S%(}ATH%mr)0E)}Y64un zdegkI>hi%KBFtH>$v)0BKen29Lr8De3@evlqfJ|ALO5hkd2vv3k(qbWhxmCaKf`K| zo>I`tXsBjMaQ1YoL=OMNaMWXuvnyq~=^H+3*yD{QQ}A=S7rEuE`_Csq z_VGA7cDz|)fU+=bm0KovkGD<8dKNZf-+rPmF-IKkkRe-~bW0L*SD~)-kQSD)TM6A# z6&+G=PbHd2dOx0Gh$qAmj9^7Q*M`&KQ1#sioRtR8%Xcul@oPcx3(!Jp`We=IgM>Wv zEK5evyS8^OB$%->)p;4Xrux*X?>z}*^!|Keo+~t}ubo;+pw#A(K|h}H+jly-If7bU zD(T2rQm8oH?_hM1lk7S{%?__x>$oUssIvooSCD2c7Wp74xyyYI;+<4&6AV5Q`TBip z^yidLYDq$RS0}b%-UE7HDyr$StC;TVi_VB7aebnLULro`YNM~erRW@ro2SXxw{gTr zLAu3%tikM3xiKUSFW{=__#@_*TrTS2=F6*o^GTG-3`4U6TO62SNR^n-q_R8-rHqE2 z0{)EIGB2H8t}lis(kfoe74JFnG4DB&cQRUZ_zy@aD75W-LoS3IHV5Zb4usd6TiJE+ ztT3fKC1gZ7ZM#oKzBqlP(Y?vPGEDU5k-$5cNem^(jBIKpIm5DN+c7z;Lz6cfivAwQ zIr03}&CbL@*NnRiIYtd z0_QD_Y&gv{>VFHQK>0r?9T=D)^8_aC7C)2nRr!yxwM06K2TI?KM!aPM>?g_QDD@sD zlb{!GFmo*Qd6}|2X1SvRlViAj#GVZNesfQA=3%9+LiZsN17tq|#E0S&0Ln%=22~!u zJuBiBu^l7pww7jn!8CV%9`@Md$M!nr1oftF=XrG5CtiPyx=c>yT{TByC;LwNp%LSB zQk;`F-7o11Y@6Q_iY+AN+UckBF(KwA&E}*r*h|N#GuWuBdbfAX)tfC#3tbwUuP0lhhvSS47-a9s)Gx>Bvc<;m*SNL^KlRz)BlHT#%{p6ZC zx!TX!wj3(qpu$2_SK^aOBiXv39o^wWvfBh43af2>_2{`1_pq#q{-83wOs6Q>IJo2(novVAh5nF|1Ht?%K+U+(r>>f zTHa#4?K-LAQ>+z`aKZf-<{+k4&aOoxH}lB25geIjCzX?ZEy1X&hG^KftKKaUpngJnpRbP3O^G`(a&W_mg61S>zz`; zdntzE=N2;0B4_m>#F=E*qFTxk{a24SwsVrsdAF!{>&%KHy3t&0H$UIkFrh+h3P{g0 z-U4wl3_|q}AL2<-q{JJPFxcR4xXeGRhkwZaq~J=UHqU4O~pAEO+)u*=d)f5!fX1}P6Ovo zGKZZmS4p|^IG-*40w%uhWMD}cF)^{j^;eJ1P^&t!(#Mt{m8H8aRquR!-$iTl7!B8r zEFv^ZMPgczvA1mOzIac3QVhLp1(?#%-!M&+%MN610o0Z=7#2~FJJ~)@AABkVskAe# z1qRu_I8;so?G+tL7@!Z25ub9dFM}gg1-ypz60WnAUVc}=mX4g1Y9?{?Eu=vD=TDmL zFEO~d6>{C}QT^pWh1e+OFkbgmI4%?e%&qM9we=$%><7jpnwaEgh!TX3M||D9d_GN_ zDXmkPi)qwI0vk@*{8u^ET=bP|1Dxgj*(m3~w6>SqY$W#1$hwbZ+@s}reXyA~wM^gv zwEf(O9YVG~S@=}N-bHSoM1CwWQk~FQ)$%o+7>s*;PVLRPNFh?ce?kY#(oJwdxZ#Ks zraWAAUF`10yW^hqc?!26<&#gJipLzAyop4xZu){re76<#Bnid_vd^%+lj7m|CVJbofg!*QX6U`PS<8XY=*=tQ z)%Df;p*U6@GB1Pr?8J^Cxs`$P5TzUO5K(^qB~>trCtf1zV8#J9|8-PB2HJ8(Q z-aoC_4ygMqRdzsR$-lr`I$qG>IEC9QW0apWft0P>g{qz)SC1Eh9zHi#E@K9i!2VDn zz5dGmc{B_Jvld2L^Pb1vt=noU?I`0VGR!`++%7@NW^uZQQ90+f(uJ;P$%307_y-Q- z1e8$BpV(Be{a&C<-Yl(oDt4~nsGTX@k~aD5OG5?_aJotB%-+X6OhquAEU__Rt6}G~Ni0Qvj#L%;D4?vR}R{EYj9x8z9 z$jGXd3b5jb&Nj$muWjf14?^S~FHP7R7W;oRYv}0g<^Mp%m~W<=B)ES=Avm6ykFiJb zb9#D4ST9W4U$-X_{d6VJqTu;R&y?KtneE#Zo#AXB0W(txp@Y(foOz{FcG}1jl*W_i zm>c*2_S(z{Jj(e~e7#MOgW>0|t1y17VLzv?P!eE{3=6!G{fx17j=>AT+66)S6 zeM5zV?9}l{`yK5UCvIhKJK;b)cRYH`y6M&$_cYZ=Hst06U8{Qb=}!fktjCJAl_K2M zYuEfZhrp~>-a(C901pz<{TQH11#lAQy8Y4BinNeSf`z+7sLq_`T>oAOL^4hi%e>L=W&hmA zO%+sdLvQYd`z%rx#d2F0cpzP@++VCBb$L~LpE}f>KK>`g4~Xr?6`maaYFOJbn+*~( z?d)ZT98N!jj+N@{dt%I~Fa2L^={eBw3P(7`i76xP#*;tTli(N>v4lKH69t=o3Qkp& z(=6)FE@#I?@+kdOoLW@ZL;*Rpihg%JX7kmcvJRPuQJZ!vq*;6`3p1kmt8a5Lkp{Hpohbd^LgT&cTt`m zN#xTl*mjcpc8D&+_53N&vjb};+^m1d)gHWvt-$weW%v_=&d7J%2f!RSF<${Hbr6}% zpN{jyBXhf+z&IB%a&-=y;~-#`D{nrRyQEl^XhQOa*-dcT*;AqN+~t@H@nfcl3QG#; z^ucKG+zy$A{oJHQmKsY>q`W!9JuO#+HpdkwpELcqbvYA}*#+m=-e)rxsg04A>OG0V z7FSCM8g4d1?J0I7b#gCMjS9=w3$x=;#-QVG9U4Ya5S?RI=$9ID>)S2G*cU@ zL03z$?{u6F@SI(b8A{kV+^RZ0b|waNgX*c`bBD^X2GEa%qVaE2=F4kBKq1>S+OSS6 ztw+NcTa3cnztRk3Y1+y)JZ>6Ey=I0q|q>X34|soBPTS(B7O_YaHnXE_e?K4waubL9K2C$A z1Kw!aBml$nBHE;j(rS5$AT^A9y0_K)c{F`G*!bOriPXYY8P|AM20MT5^muUPIeI9OtO5SMfgH8;3;SO@Ok9r&;OIRJHn?=F zo_|L;S!wSm-qyBcyL5B_m{Uch24`Z7^gF~4Ry954m3l39`feeGXhix0w8SFtU!PyT zc$aj@w#z^#f>MH6Cr@jCQjN>yc)kWx0*6MqPPsS*IwZ6@H&y1~0e(&Q7-&%gBl#e~RN%1xcg;;rpcvq+VMXmMk_vZjA>Vcm?9` zYRYOm^7eOk(#vqD+Z@tx^sf@aHhk2Yy&Op7I@$CIbvdlUeW`!m8TGC$S(wLJd7IOt z;J|OswfdBuw5mF6uovIPRHto^W?O0aBN;Lots*L2Ka8@_J2OoulptWy)DEowhcRH+NljF#A z9JQe=`_Q;VnX=%`BVBaT>&k)HF8qK|$mm0bR;_^q_HCCU?2VmMB5O&bSB6%5A{(#y zWSOGRXIhU4IhVJHzScPSzM!pT%k=j?q(D@5VG6nM!TjVCF!?dyYh9Hi=8yJ3Max0q zmEW{Z+V7VJd6)?VcIH?3sl-TW8!l%1L%vV52#Yg~IDBh;>^!@t#2tL@iEGl?;0m3t zuQ`c(b$^ObE_4MVY;xT&W^`LDZ|HD4ftDpP0}LQzNQ4mzu{wI zViY|{xQpNbnF)IP9xFU>W)XUieL8;O?P+Q!1!(BW(L;~c%5kjPMXAhx)MZ(|sP^&q zm)Ody`jeuMpog=LN`r~+)P7VvEU-*s(gR@vZ#!w1dc&up+sod(&QMLT zZ$KA7ELU48<~3<~yx%^d4{*i|I?a;b8cReyq!@Nk1 z1*Q=Py5rdX%sgO8Csc)|kCYk+VP|`1(`p z(|?Wv#32Ba$ZTcEG9X4Rg-nm|NJ#fk)n?g|;Z^Gj!*@K(&~m_35JxNlcg0Qy_(^Z z7j__C`O8k`WY@#Zu6tEzrA}Svjpy#?aX2+bQ>Onsd15<=eU7 z?|D_df>CwZy%TB$`)rkQMf$-wKQ=k62`@q|AaZ>C@vO-v@WUIMf(+v0pt$THs6EL)@pc z^9S?CoqO2UC!rrfY2b%%$z=wHiJC967xCZYlRlYJmK8i3X}AJ)M>ebVVq=Rc@FIA| z9^?kT0N&KV4ft)YFoF=vvZ6(Tm`KF5XnP~V`Q93|NNXA6Rk+XkL8|q|vik&F#jt(6 zArFOZ*AXoUPu;>jVuCN7@DsG~jR1Mj&RLKRI<^8RW$!dr8=`{3Rvr95w+5%lhdbNgr ze5djQ&Z!ufU|gbYr}6`E$`>F~%*%*nNhsPE&PXL=-lpfV7U8 zWdcU@RKW*C2Ut~6)N|bDesi(Fa#T9Hy3}PyB@XFqqhs7OBR@h&!iOba61@hhQZ}Ze6sQ3;FuRMo|3RVOt_# zZ!8#Y`1N69_;`#bsqe40M)-DnR3G`%gM06PAQt!rhde^dkq!&IFCj=VeYC}*1e(=& z+v$&<8h(QC=qP+<1!+rzAB=ruD10R@sfTI4wdcTPZ-)BJu&INzLB^MCueXH423tLJR&XNr#ocPJWmYpt==}@&>RrtNJvZJ_)RvESpHbwG7qVAZ zUXCG_EFZUX&?41L%^=jw%%FC~YI(ufXgQBiQW5BK%>3*zJ#v*b;!=*$7o~q*G}#iC z$aGq%jtZmg@zXCzSNHjDTqf=N!JC&WEblST6$Vo}+EZ;>ga+}`N zf(S@f3*H~9H^2wPX$Uh_a6BP3cw@EHif&t&ju3J+Vv)*>K>~-#`n&8v{ME0Io_=}1 zmxOXq<$K#~+rxs;s}Hr}glF+aw$*@lo(bW^K2}F865r@2QqAgXYcDvTI>vV}eQoXT z>3^)w^(`Zt@-%=lB}EPI)zh9RbJj88qA@pMXit+~BjvoSf%=e2+tn=45jJ`qkSrdaVo> zx#-gv%(TOfd>@Kb{3YJ?`9eb4H#!ke1Ta0J`IyJKfOTvBEX4e@7qgv*1Pg{z5dPNP zm>=TeAAZ~@dgq~K-H#2dMnCX@pS^6Yx~KVrg;>m*1Kl@rdRN7hvfI4A75H18F1t!osq`oAc;;KS-JUlZ5xZoq4Y%x>@82nia&Qi+JdB%-qvL+(FKEsG21#$)J+OFH!`Mi)`+#W5WJT+0GC^Gw`xL%rNTYtC z9`${f1FV>?8_3_+4bBx&f|kz+9i*IDlge^93)z{qp2YrUAqt0B&;x$Hc>pS%UD>Ex z-T8_tVsAxTeThvjWOnvyrAYVBu09t_NU4kTW6tp2*krHX7c#Uz~}q3V{A@P8YPOaVecN8VYmo9p-`)JySYTDA?@2D6BEIa zN$$ik&s{=@4~of|q`sCab@4wGFr~#=gJuEf?-k^xlu;RUnm=VWpD$Z0Uk*zg5LKsw zRl^o!$u&F4r)zoZ!^QmQe4A)FnKkeU0OT}Lg0CVt6M{x|f53^a3Q=?~`#3n3hq)lj z8%;5^WaGt3_rVM)bhL*H!0{-rXKYqi;`d5o`zMOxMNU{(nll`^o%Ea4?dRntdo_%{ z@vobx1~1y9@nS&;yLox&7FCpr3{17J}ZBg@#c{XAE$mu1AUSBgd8FQM7 zoi5KamXXhK`+n+}t4k~@U&O_2S#dZqLzaHLda8rNrCOd&qOG_>YRgjZw)q>LPDBs| z=Fy?}FAPtAnaqzrX2j5Rep*mhNtm4(Sdlk?xZ2Qo6f4rMslN zySoJr{cgNo@Ao(J{>z-<%$#ShwLZ0;Jt?%oa7(Ytix`Mv$v_EZn%qbs-{MM#%VivA zJLfiDx4vj4eS_*h5dOCbgY#hm{UHr}@=UZn2#$)t^_5hJ3F%5oSU%eMjY>y@D#+8qvOGoFGe=Dgu ze(@$jnK7C*pA>FcYkXRnIM>&lWAB(t`Y^L@RR=++f49Cj@u&^u8?D@TmdL5|rly;~ zGBzZ#H!X=6Ncff`F^#OXHX!%T-B)tK(#XDSv-xK^rmq&49}RndaLnQcOH*-kh~Do~ z%;s<-T-V%qm*dfGcbdqELIQt-yZi~B*R8fYG>}AX00>{G5+V` zy7ZhIN}0bF)sl4IKS!+B4Rv=#4Bz^7Sd`Wsv_|x0r5>)Tx?1#DiHR5dMq_12Liu5P zR{5H%$?B#qKo@D)^a3hH`*V9j`3}tuIzA>e{%l(TEzjP+#R!HjFQK=Rh2vB;cX6y( z@3tE-!1)>I;Td1h_gF1C?6xfssn&Y3(0-+9tl-EWN%;ds%nt#K9%k=!SXD)7*SGHw z??Y(wYkU>#S=;7OD2`a;n`3I0uoBQ&(Z<5(lm>l_c{)ax6etH*(HjULqDO*y?+UJQ zO|uI%asIsvK)JNKK;|Pfbc>>v(KZ~0!lwv>%T6PqYGPc-z)l&w$Wi{gS6@SBMsGY$ zo!wyo@HA5o;{aZlrenClf9@1>u<^=+3~$K$F2W%CjhL=PWZ;Q~;l`r~xr6!ilWREt z*syj|yC#!@ju8Fqq1yMr$VLoGO_dshkP8m;;illglT9_73z&F}$(cU2b5r1+;4-$01A zv%=MUxngEDKWCo0IK!snbXOGp8DlOk}d~@h$uC_A)C&N z;Q4r74b05|O8MdWSG^IMZ<0W+&S($yhN&;pR1gz9|8v>d_AEo16e@9V``vUkYp#O8 zOH2R#ALWC<8h&B>2nC8}5TKs{*a_{NLiB+W&h3@vD#wtN&4)z~&$ z$+thzYAtX(`M0jKh@&*+qDZ541R4!UaT>bW7tB!Cyf+3|pA zB}~@ue;WA*j?bSbybsOz;UQAmtNEHAJZr+zHj+eq%Z28I@xlGH$KQS_x=3Pg>l&qb zlSy7i^t`N#X)#m0RIYxt&iXBu=tvtoMAZdzDC*F-fuZrBmV}etColp}XRwIwqqTu? z3Q#D_Wky=Iz$_ZoocMYxHFk3a7z5)PbpS8rvDS(gzfPA+9A&rhjuE5DFNQfgj$j_u z?_M}n()uS$(0F7r1&22vddH8zZLIh}oX68=2?BWc<->x77<+StJk57^O<8PP zySs?=ElfA0VnA`f19x*1PhhpkHJt!9FuShl?rwc_S<#gTkh}+CQ`Zh9q+;$Rf;_>B zRi#yD{*GEO^l!2m6;h`FYRaKhdT#-LRn*2 zRlYNx6uCensx29CtYt6R9-l*lPG&+wyIp!+nr8CH8X7@vCNj4j{m-307DL(m`wy&6 zFDRN%ueelCfHB@tE=eosq|3D(346b$b`)u=7|XQ>3L6>a-BvrI2W@ufq+yjB)Dtwss- z@nXy{R=B^_rH2Id0I4Aq8b_ERyZk{5yTycrgF}2u{LdVw@&I0IucSxc z65ZZaU1rL}Q3l(Ex|;lhHpoW37V=Fhe7ZAYNZps=HS7;;NwIs!RK!U2!+txgn!_BM@_iHCKIfuX40uO_^ZGITG^xqRP zC0#q5B}ih?FPHN;FIC3aAZFG-wd-3cF2PlgBa%c{G z)G|@~>HGB&n)b!&WZ`pTV2q{sWaIAW)W16_#;6PQS^lgtJx@2ZJV*A#E8tjV`wFUg z?`z2*Mj{?eGU<+>$_h(=*MJSWG8<@KyscAie6{ERVe#n;MQJ`0`I zpEpNBH-Dm!Q5f<0aFK{0GKiS;+0IlmyOWCME`!+noD8tZ$bMyi zr;qchTfnV7)?`ob;USr*BG^sCJyP4vBV_zE(#&v(^ORVP7iDC$-es@Yx2ULhpYuc3 z;iQv(U>qIma?XD1Dq5dQzK~W?nPK#}cHPFFQ2eMj{s6pAqyQ-g^6xMaBm=kIpAHIw z2=eO35OmU6JsHa6*btytIHp_(6duEOw14GCs7`*6jQ||)1bkS50RDmMXHvfP=kI%1 zcY`g*M~>Tpi9yWiJgeW}ZAD}Hh>5(inRqfoVp;0dXCYLRHROQ~usoL?DkB4^Ni18~ zehofRqaD|aQskqd=BY=zRn{s8f`?YpfkFAIQb_3&&V2P6P4RQOHIUk`$5ShFHdJ$8 zAr*4e=2*ra1HuVxpMj^+JV(U|l&NBE>OgB0-X((Vda=}L>=a#-2OK8Oy-i3cqTG+2 zyH7#V$P7!}4qZ3niE`<4)K(A9B&;cq8^=~^KD&Wx zPCy1sNqE4lhX$|Lir1l}Fi7d3HV{SU37JP$_`KlS1tsvb8qWTYNEV=$HL{Dl+eE;7 z)a}GO#o8aX=Iw<8xmTTWc-L&aYUgSEaJ5FsiP!WoU23v_ZjZGMP}JHHnVh8%>^%EM zS$hr>Inp-K&yY5Sqo*UOZ#$Ql!LaR|MpG_0H$Kj4=bDv?mQ zB?Q|8pOBo~RpP>sg1|g6sn@ZzfwI)YQuuzmHHD(?OM;sxb)`gT$+*k zOyuW~RD6u$=s0n!DWja?7YQLM=M+3v!Q9JI(%s8DmP`N;hZObpZIw7D5Hja|H~(27luddcc}LoDrKaF z0H(v8H2t1Mb9-Ja)$%5i%kHqT#^_YQgKO0@BqT|kJpqwFBD^8~8pm#*k7hD=wx^Lo z+M?Opd?fWd?V9a`Ss6h?M>q{zp#GJKbv^?sJ}kiQ?RH;_bS~vBc8q6*Y~`+9x)5L< zZ}w2%y?at#XkT-UZpdqA8%Dk*h^pGCzmTML7EHAnTiQ2LpWM`8c>91HX!t|Kl|C_| z-$zY0>cg0(tSqZV^xxkY?5s>X9o~&cFgnjdjB`RUU3hJ~+B%WznqO8H?MmU#VIWCm zxP)GxS)O|LP%Kwku!%0cn}40H2En!$)_%s2CnDp-uNDqGo1? z3L)JU#d*N@a=W9?x(Kgi(>+?mg*A6)-w>CMKio+VYy-ZR}xmq@`(w(St28Rw06IgVhi@am-B*ZdG8rw>irK3 z0#K7z8T`~m0VG|5q19#FhNt`|V`IiT9jxm#?{28cdIb5|FQ&XNmFC5Sws${n4M<)j z8j|)?baTz$S7n4);gmn2<8nF^0DIye5|h)@VOjF_o(BcC{p|G=p>{G8;)7i)w{~_q zOU$~YKR?!}{oBOzM1iuE+5a-G5iDo}vG-%qW{D`1>}Zb$jwee;PzB(7BoLy4^xh{Y zkD2D-H`{rk7esua{*yL=>xvs@KSw+%4rs$ew7?C`N|Xmu20L4Q5`KN4&OG}g9K96p z>aqshEKxc`p{A*4wy~~rwXr}glNir#0FtlhtCMJ3zaZFCkG?cJ@etX}lA8+xi1K#I1B8z>n2$4p$eMDc@nOREcIRy!)Yoo){Pd(_uHLMIg)eev zVP<~tzh)4c_XLG}b{-Dq^$#2^x8b3o*unn(er(YeZ=6wKEv=HORFr>UbUPzd(d?NQ zK)4~Kq-e+eD4+QuJf9stOuc{gh`BfG2?e@i!;xV%U)Yr{NhJFWOxgrCE6jvsf#=ks zj0~_mxtWtlQ_+~e9YkIZIPU4oOdV1^1SszCMdT5Fi}k6CRy5*F9YJG+`%E?r@Q);V zRyq=B`O3ywRNAp7F0ZYb&i&pDxx}cudIDl(Ddw+oJ{8qPnrWLc3HyWCNOGPxPEOAW z@U?D(I(Cj0C`0S8B!ZRxV3QM4O@Z0DG^;7pdGmzba7?BMuQ&oW*IwaJxn z#Od{@Qif#E5F40y1%Wq9>quK`Nirf2XIxRVyi*f5kg*kXlRE)dFPq&n4K^#UA#5g;^o|AtJG(s1HUo(xdZc^*%u zSO1kX3S52TjNeWvH(XhZe~;mwp!4kp7hJPD_DP>)Q*Ja$oQTMu@kw?j*;kiwh~E-Y z3Ho}7Q2#3Pp5bGtj3}}s#OXB=+^}Yl_VMoM>)$3NE?`o!?0i8BKFgQE69ohmV7~tT zPDnJsh=LT%qyFbl8PXU9Jx~gUc=Q{N7%>o#%dF!zr!;o1!wf&8qq3@T?TOyQZdA$t zi>Rz}({HFuHy?_&Kv~|-tv?t8b!2jXOHYr9Nu8pPO{ZnPm++p!3u8uhj?r{l29x;I zLTAIn>RC1+DmsRv-gTdNVI5bs2WOm{_pGZ9V(E(E-J)ZMqIPr%QO-w+e#+qJ%sTF% z=$V|r0j?#OIfd6YHAf=oPC|uri}|}Y3MO72Ky=^kR1lOhaek8UF|46d|8tE!=Bo_M)MEa$bEuFSc z&1aii#9Tw5bw#fC5d!p8xBV$wkstnBMxA?_(*oPSKQ|zuy?DqJYOaaEO!f*dO{Llx z*tQ$0y?M73+Di91{{{8}2eTL1o{_oP(c}m@4#jkH(m69M1-3j@h#MeScS77Qb*zgi z^W)R{>>2BJC7_sX$G1c_`=3FUJ#5}KKsRM$JNi_&zMj88#*G(lK4G7RCugcQJUW% z@hyk8Y$e1mWxC~~r8&|v&(D6=RQ5pV<$A|tS4p*!e992J_)BO|d# zBLQa^XK+?o{$mU0K3}=FbmDp=4ewg~RrTTxk%~CrABtb zBDIPc*)Uak`5@pRt!--)%TH-$3PX>Vjix?getmW*2afTMOkVA6R)W#hMd7z^X!!*b zhFlbkHV2Z{*49cG2`q+CpG=Zx=q6%9^Z)WGiWdYe^Q(KjYLL)dcGJzoDjck$qIRw)oGM2Y7LE5YfxTx>$Sx}G{$ZrA3%^_04MylFeXWaV$xft2 zwj$F6UffA(yNxSl9e>c0VFIYEalV$jd#=DlCjE+ac^N}|S`rW%OzEr`Ml%Cgt^B1d z;CRZGWpxg@JG|bjr>EYYm`|+rhixnDVvy!<1$}hFgQ)&Oj=rsS;bDUt`2;bWD>cHjH) z#`LiFtkl5u;SBzgu|+hqyq+VbKZid2A4QZA$-A?yJeBhaF@^K%93$rBJD^!uqg$Vw zLALVsGCHkHqY>Mr(Z>4#s9}r&+&=xGWJPr6jG7%Zc2z>v&3m=SnBwjX$9(zg@^tt7 zD{aT}j~`|6mKEnjCY0@R3dwI`J`RNP?gb($->gd;OqWP;E157{GLSE5SA^HX|Iz3prYA<9Dse#Cid2V{>UA3{0 z%l<#Q2rbkXi(_a7t4nOc_QIrMQ%#Oe-*slYqZS)JwZCTM7@@bfZ(9Jj1AYjMJC+mi z4@(_{{r$o$$D+M7L4EHagI~k=I70R@W}f4DbBKHcz}ghZUw*n@EV0@7DgIm1os#;0 zwJh3R0rfL?wxZdL{hx+HRP9~((}&r z2ji7XU-0MrekxrkYj<~$NJ)vgW6UC zu;wcPkrFmEBu?v=1W?3h7DF3s!^m+7>&JtW^E147s1MQQ5S&T~^slt|rt1_Q*v_kWzZ!Y5K+l~^Q-&-jdk#c+&Gs)d)&6$!=r??M`Juev(JN}I0u1nP2~u4l8B)E+%!{nt$Pn`W%v5Xiv$GQ55r}|gVX;$K=|Rk2I~(N@vrroU zU4^H0Wl*+-vwY?sU)v1TyR02)X*Vq8BKC<$N>)|L!v6Pl>+o1lso`3#$fN1TZz06s zGw`kYY~0?EYzS~RH0zFA7GVOWS2q+yQ7hE)vH%Q@`S~i?uga~d6fDlCGfK|;J>0EV zTc7!$8y(8NxX2&c*zjCj zK_UYHXu?TzlW}>fJ-!|*z*wc50TLDj80mbUvJCC?OMz5R)UF6Rs3rsa$R#SDDL=22 zL;6fJm#NIOoo^?qA*I3Sv!?6J9af`~r|P1{pYmf>Gy+F4?{)bE49skDNmY4H?>vdf8!p<`9Lv<& z%|kP2%*)F-#9+^^G9Gj1$uLr)<*0GC#QdEmKM#EjPp8)qfs#Y}ttxprLh0;-umTr;Y}@C1PuFB{U9Nel1pn zbBTSX{TfaCCHjY?4OU3-M1mj(Ii&;|R8|I@zqg#9D|5~cuRiJW?uIrN%0ZL!+_b+< z>!6Wb_1eM*A-#7FfRjg-kve#&*yUe;YDwp19?2jm82jT)y+uN+;kox2+%22^!$2iR zIn-tH@i#0@PPlYWs?L~??`Sn%Qe*AqwupdcNvM`QKk&LY$5uX!6VS=lT)t)x(lsti z(t)_|4<_93w2L*B50QwciO3w(jFuWet9qVO?~Ph=d?}8E1HBz6yyqvx@7-3-_2v~~X)*#e3vTj#6)M|GKn!IoV$Yg}J1 znNMRM@9F%qsCPeqrv=YT`FEuLq&(|4(G}t&)*T1ymw>NuxKwn$5Uq~(qWVq~1z&*i z>#6332M*;{zlQ#c>2QZTf&+A|90LCd!VLUfSQ)N(Hc7v1%uC! zDz|%NM|1RBCI1eG0n{@Alzh%y!`e(FXW zQ3_XT&-l5^crC-5r+LWQkE~9vuVJQM=d+qE`$?a_gCE`BFhg1HbkQt#}x)QFWJ#|BJGapiOyvU8Jd5C6j{n z_Jw)}A2Y4g^Rx9UnSWwGg0IQEaO9AP*ulrBTdd(5FBpIuOLMI;2@k&s>gxv?%yk7i zcJ^H6V=247gM|tRPk^Z9)o~|jvYeI%g7$Qo|FLA z-WvbC%eVfobA}t$ffSpdS?^#;H#d~n9y)G12o=A`-2p%$LFX^KBv+Nyn|RHM`$#xs z)`)zjB|*36&dcJAHrue~FrZYjeK>e3Wt$@AeJ{RZ_{NK?F0LXhDegDXJw)nWrfG53G0HLIZV@UvJ9~G|wkTLz?tA52Uqdt#uJ)$YQ zU%Lb8fHt~b9YEXP?PD=~oVe*JUQSvP@Gc49!kJ0-dL)mBkWm=@8l_AxTR)616T6e(9=fZ_X}gtvb!E zuIb~>2RlyJCwf?V77B&jAc~+`+8!Hmp1AJwuYD)sD1`LJ#^Beqn_6v4R{_=K#xOg^ z;oqb+@O5EI7y_t5*ZXlcs;Ujij*u$;a!NQ^N7089p^)zQOsJhx^}d$~JL6Zb z58M0$wfmQXBj)I{+15idy9>XV*h55KJP31Bd#h!4bAHu`l(mklJTK4K8LdJd(s)Rn zBY7f8BPq%q(-lG;TNlE!8+Z>a`};mbr85ICn*X1+^c}-=Yf;+z=*nzNt)}zgffr6c zYXzXF*7qv)f9<|E;q6}DhVA*Sphq^kW9l#SHBcBBds*;iSh?b_u>Gm3BA#8~WK%h_ z0Dk(Kg7ILGYwbYeV?&n=KDOXc%Lk)>Wylwbv`GeN54}#Zrea3vg6T2}ofN?Al%j6| z_TnZ{g267uOTfZuIB@*9u4viN4;s6DPSOE8wlh5D&53?I>nh@2+Q7#FACZl~mF&z~ zJDfBNTEiPL3op-&XZe|2f{a0$#?p(JB_D#I(PmV(FD=d!dS-K~Xvrft+DP2BS;aI~ z^RDLTe!Nd|7D<8H+5lbAvXE9k9vYGgBxB;4yWDm%Db7Y3?4LRj&!0@ZZ3*~q% zkUf6hmTfLa-)C8P+0DXqDoJr5X2bAmk{n=}lYCA!w*U03H$cz|3NGWLm0&bG+E@*p zQVCV-0sDm`C+4+|SF!X`a&odcL{ldD?;aQCD=6b+h0AKstEQn5jE&_=hj#r?F9fK+ z#{hIzbqmPjgm_wEwi&RksCH7K_Z+N~S_5vr|37)6NLjge z-&WNzExd%6@!;zjh2-64>oOc_NAxU=iMvvjI z(au@@D0}t{wmC&;*u5pE^R@t|V>! z&JpL~T(3N<=%O-PQ_gwT@Y_IZ)k09YI2Jc?#4VAcUE0qDV{LH(+-a{-@>iqKX_$r3 z+OCxM<%Xx=4D=)MN%xD7+GqD3)4Q$dH#k0E3I}RT(q64$@Z-n|?zDA&nf#OW`B9ry zLwvzR7zf-Hy9y$$yW{=!x(S0fDtsmHdEYihwr$LaEEQzNCB}DjullaNc4HM~GL)U) zi@Mhc=l8PgyM?~BzB+di;!Ic7n`@iiJgl{e{V_IwOn6pvGroUqC4lUY%wZx()Fc=b zV)l|lH%sHt_)iAZGl0_4`Yaf2EIqfFL#I@vrCf98=f~Mmi{szY-w&U~|1X;T3~|iU z3}e-NB~&?LD1P1E_WYn+l8U#5N%am+A?#w;3U+O1-!O!RFOCV~TDqIZY(a9oOa-`6 z9|+ipS||ZV%pa*DEFK8g;GH&P#wPNEuM!z{^yISvPP+`L&ZIzU4J2s>3j`1+AB*EU zY1vp1F^O;kMjqOdpbK`ej}R8hMa-iD{<_wK6)*LB9G=E?;eySvAUAEQog~~joT|&} zdb{yl?B&l_>SM^*>9EbYse|}qede52cv=$Nh^ylCACqTuT^aV&4>4<*j54di5Y}er zh!f@>X)**~rB>HcGc+`#5Icvj;cfKs6t5d>z?Y>M%Mz|dbL-k|>oK-s&#WXMI4Op% zYGXm?P`!=S0G3OI_AamZXO+@i;ng5mf@qW z3*fl1@5wL^PCqJLUGM$l?#H^hi!_jL_RvGlnPj(?&MkvuuB3u!Yz~%ysM|c57d#= z^`=*u53l6&NZ^(1%1{jZhCj+CMyDbp?nHQ}qzBGBSgxL19#{ZvdfRp z4M4Q{kCoFoS3PT3SD&xx#A(55r4#_t{*J~S%}t6Tro22i3y9@IzieDmR+xywoP7HJ zK;x7z?CWtr4X9Z-qfpj0@aYWxY=|_TnEH%FWI`@%>&VO7FZ*evf%;q8eavG{mF93h zLZow;MQL#h!l^UTmd?yWF&O|tJx+L);ZNO=eXr@4l^kN{esH^EEJ-x!yhx1pk!fpn zc%SE7iw;y40|;;eBlI68L~SmUPQYM8C9~KaVx@v9*8_P1ZV4sIyl(UNtP(SBR2>!> z2U<~v&|B+v<;!Z1BNw{q7slG0UlR`Eu-=2eqYXJNDKM*a7U}`C#xuZ*`B-rD^kbx4 zh+$Odiv{rR$@ZIQGokdCP*Ch+z~>UPLuBp53LO7Mkj6}2&L_%_qi>l2Ij$J#S|~}h z)dk4QDI&JL=wH%^2JZVZXOSS1et_$??ey$~*W0}E@g3=!{)X6d2P|&=CaP(e1v*`j zFvzK3Gc)X@Z_$CMdxS;6ZKph|&FfMuY+tG$A7pF^acU98^S78J3c|Q?)oseBQj8r3PCPi`3{2nS8g6iYM-@?ph2fQfgU#LB-A7IltH5EqfQQX%C)xMH@pF0jj-l4 z0LJ!9rtV1UM4E^^IR!4i@~ZQIEZtdjFhSP(@Ss`DMAcvq_aZgbPnP`KLjeFQk5RC_ zKCI=oh_Io9kI!SoL)6U|25x^OW@B|QN%^;Lg8?2*qi`LOM`$MK^2XPCCuUz;U-t{y z`>_nkF}JOF;`L5X_c}KgpVBdmDYSOPaQ+A99A+QCb4jef@qKX` zmshA9eo!Q*6%=hIIq(SSg+Lt*5w1-(Zg%uB3C>*jMn8L7)Wv@ovG}8%+BTC~|1*F^ z71$d3w&^?}E)lSo4*4;vAtMBM+fxJKuLvI3Ltz;FBCB8&qI1IGMrW3Yu-WewhWE&w zBy4i8$|p3Obq4iy?2YY7WnHmhf!(`AQx2GoxluAlf>EeuD)w2iO6KZ-9>Cb<(K#3} z!%k(#;aEjhF*YznaBvgp8#|A`^-K2e!#{0;SUNtyvW#+nkb5|-5co{S!va0le@tlU zw5e%V3K@v&yDNnbD>{xU;txi6oG7&+t61 ztjZHUzjM5H!AZoUr){&wXoYpOKZH+RUV*kpiBoKi)Phls8j*x&Qmj8?+TJaR_E8AGP*K|~)5O1rD>zRnU#R#>2$;y~_|`V1)C<<{-{bi)Dlmk& z85*91-2Fpgs7|5e{eld-JIMtEeha<|PGkrila)vi{{C-5esu|)dWGW1(iZ(P-GI`l z-G}2_y;W-n4c(RNSQp`m{a+3v{W6l1P8zaf@nOO3Hyy6c5cS1Xh3391_f}GAKm$mN zLL87m1kUi_EmCy1b?#GZ4lB6bqqcal&^GBtT?VgWXe-WlzO1lj2Z>kCRAJv6m5Sky zmuSr>VkafWgHO&Mui9Ny=lT_gsV^8<1=q!^CZ0X_{t2o~`NMgzec?+S`vT=WKf8-P zKm#+%@Dp<>)28i?{v%#Ftg5+Fnb{bdJxY^N%a7dOQsU-4A1Tc-Ov$H+T-#7Bn>K^i zj4itg7F+1BPgz&oDB)PcQABOw35fb~^im_6*l5pfS#Qr&QMZtPCrf5p7%d+jbZ zH;b0~RZ5N)12t55;a0{;um{0-10|TvU9SF{vk!bHDznoGEJn4CUuIBC%V6?L)am-k z)q2h9HG+$pncq8&9_5;%G9dkNZiW5r6EGiIfI|!r=m;9ezJP$>q zRM5WUnrLVh%`QLMS2xG0pXqJQ27*{4`x9jbvv#lx6cXw4EiG+<>jPdZ3&{RLLf*gz zgZuC4%wK^F!H~L%ACwgyC74gomnk({7i)fhd6S;dbY=B_fODPq&nD4t8)_wH@?4}tlQ!aO zK<{KlF8$$Y-9qhUIbbW*Jz4C7$;ORz8S{^@n?@<-SfaIlVRhrwae9+0Flxjg-xu5( ztBJ57o2HNK!f&npdvk?Zd;itFu+!d4h|BSF!5L9%N-EgvhQe=&$tZD0ms7n%DDu2v z0&Et|342R8pIO!$e8r4<(3T>pR{BP@4BvscSb9A9)T&2$R+xd+s4#6jE4-d~=9iq} z1$@T-UsVvCG$TSVwJ|)QzOHs{$=sNtHHj&J>q_Ub&76T7*a3LKWiciY77LEvCsv+n zNF9Zk;_IOFfQA;;%KpI*BKqh-22!xs7XBHu&s0EtW!6w7UAZ5Ni=smJ8U2?wErSH#QJvZZg~0vxVzzU>#aS|-cDVSHe~q-stKRI7A)Tk z+WOTtS|d7C*+OGEW{1{hN~-8k0MepK#SJ=YQzH;x;kvn&t+2a89EDA}{&AdmuRw>(fiy+}~ z2j%n3a1`!_OZHEq7ucag|0jyZ@C1E#qp8|i8Z>s{C!Fu5Oun~VXTo9^Do{S@V#?Ts z0elSZ+STP;y!%*Fwf#7Vv5VfvnCvh1MiK@p%?_wEv@O=)U<~;nCrrzC1)mnbUUjkrZl&(C2&3DzUu%2_C~`_tk+@rKIO%aM zJjtV$@V)INv_fR(o43f<}mx73_7dQcO$L z2~*Y6pXV4ezlvK|mXVmzIV*esvW9PaAfojR-5qtXb9VT>fgR2_+{bYxp+xe|ArML* zsdq6Wx=xzR!yOx($3-dY>WsK7%bS>xE%{oEYuvK^3n>7VVOpyI=t|)K>J0BC+7}iA zf?XFGZLBm4wiWW{@XBFy(Yjjze2RUT4fFCjL3PTtBSiqZ5~5yTM`V@u_KJ1@`II+2 zns@PIS>OXMxfNid-Ug>-;Y0mbQCX6a6r$||128a11juPR`~%8XS^_v{4#NM%fT@~Z z5bRN!=0f5LoIPG0eu~Ee0_4jIZIidzTi`3hqP*fgJe*5=@7F$mMEo**1ipMbR(M5X zS1AHc{PbzZ$hwr!>QQ^Rh}*fkGMN#*9Ds6;*{-dc(>SST3!8{%%cam_$y4}3pT2(KnSUasH zUq*bNo|y8*W^-{D^mxV=6dlCNwFgnyZuPp+R1azB57aq3IX{zHzUEReW<7l=TMAoZ zO>o~PD@%#;8BcWzd3G)MysfAhB)f=A7bAu-#_LE<>rkwE)>gm&3wGBuoDib zbm;9L$?u*Z5%gJ^SeLE-S5gP$DM51xV1WQ3qQ!st3d{HXa<~`TP6}>kikn1xUWV|? zK3)tgM5%_8U)m{l+wqvd?vu}I#0fPjoPDb}kbuw@_~LaoCYU-Z26+%K7+W;G7VWJo z1O%n@vubMcD_k~7KS;XgtOlFe|NEedW=y@JY0MhaycU<1_`xO+g! zA$UQ4D3pHHS?F7lPr5G0M<0?HZ8XeS$LL2C8(k2u@+-}HWat&D6JVhRlW5t(+&9t? z%uQC6j)3A2S3sN+=6bVL{{76Sn4FIq{N{t{%grUuNJyR-aDeu04IKH>cqwJ`AybeWuKkgY zhX=D05ry=HF66WYXo(GwzrpMqr;S|xq@uM^)W5vLGLu8S6O9V0RI9>9-gJ+LCsj`) zFbr!NQOMv&1(uFZf^Q92hAXx)2c&${7;X>^}9g(=zUe(MwBOf(lk2&Y**u=^o># z?zEZ0WnZBB7%I5Q4*%W!Sn%4~o7PgjhiupvJ6BLuk!Iq>$vv6-fk0{rta`$U#nE`X z^0&S?ztpp6u2;-Qi`DQKmzS{?e`)jY^+A8naBzrnQb+ZIYP;c{%lAKkUJ5gs2Bp6mUtwqAR z#X5)(C{@}AsLQl&rXfI|RQteoU{Z{1QUh@qJ+sgj>25O$F67-LU`IV|hc_;Tj2unu z3IO8RDFV6OgTc4|xK|8i@hqzADIHf7z5;d+JJinfCNQ48(WE@s=}rKciKyypWtZt@`6(Bwe)HU>E%q5@H zcz#($_@xB&{eN?CfI%ytDeS)+(IT@T*mC!^$I*$0GzH#GVaY8G-i1}yM(qpO=ii@C z0P~J3)d{F`^HBVfi^Gr-&?Ru`*`fO-!*)tu4U{=|eN8vGeofaXDB97LK#UJt6Tttd z!&&rjb7}*+I6o;0J`Ivf)fsF{JK&nf!Eav3EWB~VHzN13Hj`hER0`6hD!_~27de31f5`WVYAmkQrsWq9U zd7v7s+B1 zzzV3a^_ZRhX>?!kzk1gIg!j!o3Oc)>#9p6!SW$C=r7q_Q$#2gi5 z0|tNCcQ4&o6~>$uB}1(wQyD6D4LfbO+1alv*%{%N#aWdyxwZkp7O0Hlr7_I;{p^j#^ciUG5@m+H&GFPGzl+Z;duiF4Rp%qK-0(qgOk?G)Bkwwog@-!Y(8mr}^7 z%Yl`Z#DcoE95p0ioP~aGV%y;Tx2R<#@@3fD^AkaYmN{_}Oh0pw6r>9oXx^`#RXV!LFR+QjsVUFiSY29zDQ}##z+&|qZ9c2-vvUP% zM9-62l2k@R?Hi!!(yb}{7m)&Ncz+;Y&S5%HLx*|u!<$CAC^#-PHWr>ldJf-}?pttm zS?C`bi_r)|R+j#3e(W3&y_Cn@O|Q?M9-#m>(V{$j)-LBG?BQ*>gnMB(55 zDj&2wz*TV%ZYOg8_w1yAsMO$T1H&kf__-yJssPqQ@Yhvbj3wMCA@XE1fWY?<94OAE zQH61#bZN96(Y##F$Uywq-;$SPd`@CsoBU-J;>jpDMz>fefe^SJ!%*RX>8YhVXma9<#7k7ZRY&kQ27mYeo zSXyg`PtDmPX3JR{X2aamcGF?)^YIAVm#;!Z(v24+pSJm;Q&j&f4BEOAB^z4)WOPnR zeZwU#n*nGlxC)*qb#SdY4Z!6|dJ=oM&PkW`IcP0E20b2!^~xJ!j^4JEA;X^jCjA#& zaEBfW%oOc6g@r=IB434C!;W^TmEWc6SBzp=*Ok(_AvFZ=`8*vy5|cbgWR#G+L_+{Y zhKhD}OyWhMHrtEmzUAv2Gta+G18${Z;KTf%K`I{sr>3rsXxSo@R11ze+SubrWXFKf zDFV4Zkz0NCjwM^Itr4cVC9bK7=Pf0rh-+gr10JnP37mG5qrc38nrZ-bgD3JZm<T+wsmF@;9Y3UTDr29yBr+_Hk-7T#W(k0#9Eg+3_r-XEO+|4;h zJm2}gyVkvbxE2e4>&N@H*1lr$YzddT^Kzr>2uBQ9~L9KMHnsujhAMnd9iom)Z$q7Y4#m9!Svq4nxw_dHC@p z@nl1tp#UKT@?98$hw1*hQLWQjHX^)ZLxdhEo-^Q^IbMMgTWWpNB4f zyV~imMNcM|eVRM=<4%@6Uk^1TVGs6RIotlq-NP0okG!Vv$aHAJ^-D1Eh{;RbJHqXV z>70}F{z+H)e3K-Iq{gHItx96qkw;Dtt)-LNJ`~(_zP*fDhw8z&(5da7HjnYAzwu6V zMvD9B7;qw0{F%%D(m6tU2ZY5VR;Qnt&ZbXpdtO(O3?$z+-oFxdd^iCcA|xba%fbR0 z7*tBi%#3C+AL`Z8(p&PnqX*N!Mzm{lG?$_;i5r)PhbP#fb*|nq&3LeyjB>Rj)>KAD zro`!hd}Frud1{WT;`@*g-|@m30m0TI&w{C$nO059#t!Ij5lek>&m*HVFM1rY30+-X zTfL#+qOZzIO1xlE2;f(i=gZ5>NuM9#Uv>L|Qt0U?BpQdR%1R?24eA`NTGlUFS#4p2 z9DbA&`KoACGKr6*6WDRS*2kZE-z+UnEQN8*%LSyP*X3|d^zCA}f6Nq3$d$QAg=d#;u+j-Q&6#8GR{|j{pG%4IdZ+uKh2FlI(-NZ{zfYAg*8isY+dqGq~kkA5*=m}^Lf^3qJs+@HrfK0F$@NV$YN-~FFW)-k@ z2RZqpxdQucxIt4933x4I$m@OTSo=erh~0UtYZYP86q)pF=tN+HGwk)e2mIg@6|4#vlSMFkS)+;V6fQl`sfS_6x=R7y)v+N2a>oyM@}?< zef{W?9MKT^y~a$)=$BRaKeK zv`kl;!gO-3b%fxixtwg481*_XuCG(~&}+0lvjSIDrxsx4C}a{KKjA^mds&M;v$;#c zE`VoCm94<)-S!$ybQIi=G<7w=dmp8}ynKZzH%@MiRnF=MZKZKCsO zN3IFimNZw*CBr8vf_@?P(xBU(Y%)QW&YBwp{gTs8C8tOX<=3Hn+&~o2s>#N`jQJIo zGR2^1SQ7%quT$wTXM?aiz6M4;ms=&2@-2g!DRWkL6=_>#n|VV+by@_sQ0Ta4eJd zXHv(ox5!$?N=h%jc6PF~YCSQC?et(JrJx`hdUrls>-iaL-`3a%_~f?jsdB%cAHJIw zHx4}ULlejlLy49Y8aEzD#5t_D-^!XjOBW5%Zx2A};RISuqc{PIg*W?4T@)ea7@`p~ z)vO!`U&Vn0Vu{N;{WY4IcDW7gSN=NLpin=r`~>cXt9b!%_abG%M(fR6&KghptG=P; zcE1m#sYbsImlgO`-Uuxhqeow`GoCIkkHEeRpP?u)UtnR*(4t@r2C3l++0Yjg?hRd6 zhBNbN`%2%93ixwSG6NJnCVaa*tC1x-ULP6{Lz0TlS%8b0VSWETC zj*5GU1bm8Jqb_#v*~zWYVF^u}2Ik9gQlSAr20lu1aqj6`6#PhJpl$wnsNWF=t4=*P zX<1@e{hZGxZW>S6{`B+-B9WFZUhCU|X?>&kr*tJDjvsOGpY}ls(7l=GGj0ME~5hm6rS27TID4+{ROP-`eDP7nj0{So-*d z^mIxo%LW7>#>T0PRT7NdeedlK0h1O$N3&tRen=G?G%IIH{}S!xLHgS(z+KhEdepzI z7Tg5IM!$)W=r|O$auRx~^p2wdT&P7^*emCl*w!2Mw4G)5Cs2#!E}v?cBZnO3KOTZ^ zn-=dJ%O#oVlaE33-vgxzu7upUJ+7THuXZku?gYaK*!*UDW0{4^-}Fa8j+~!6QNT z3H`{3;PU~N4`1r+>@1fpqb;yhn7&xpLC9_f9~T!F85!B~#Io6+-8^~WjoV0;rT*>p zMX=oW41a$Z5wXX2a5RXzx}G;EHTGLEG{hiDaYG~GcEFyFAmWBi@x0ZVovC-Uq=F_! zn4h0FAqwypIpx<{e~(2SSHCYsRpLHyz7oOz#x#lA?@MN;aJ~v71W6_~HninTl`=j7 zCMG0}g9MJ#UIB-p{|2cf!^A89qG8!*2Sl}VB z$(poHNzYl01%$EfP#QkEJszNb5(s**gr#WXp@`nQj$cCGQ+=Zr3^>?Fpz!g>xcQvs zpUjBv?5gZs@_x(@&>g=iWO#;h6h{Wnk%{az=sV{)A%QUV3OT|H$8w5~!%y~6Xi>HB zmNdP*()+=?jx+;_xg=GH^4BoW@xX`;0wt5Yw{!;>{weo@o{HIZPgB}wa>8(R;V(6m zaQud8#9o~GZ1wj^bJV<5K#g@^Di$Uw#`vgk;1i6qv_jdj$(j=Ys85|0DEOSqk23y^ zG%ccVa|PE@OV7Adh{|8;FnrXFq=t_@^1eB{TY+>)>B z^bb8q3j_4Ht&fdNU2O|QuwzNc=V}C$)cgtBT2}Hkq%HCRx@Rg5_BA;u8 z!>jIE9%*W7uDR3`$FsZN z!VCc;?moTNq6r$PFD>nu!#vx)A#pu}AQAl@0CDYooE(Wr<|ikFK-wr-tPn*miYG4-=LHr~(*$tRBUyL})c zc^ZVC|7axno+B@Y?mSgy)aKyRI;&3f4Y8vuf<#gH`=tRc)3pi$Td(m`4rXR%5E2N> zgi2=t@b>EnA@TE$7P}3D^w&z=3uz~Xij1pnt||m`h?|Wp)=JTb5RV5EZ<*3F+I}AS z!Njxe1vwD8=H+u@xT)p#B}7Fzl6Yq6gmV8qoC*;e5#lE0L@l#gjz?kM4?R-ZWwn!~ zxUHobOapy`7==r6q&=8HnODp1^(i_e&e(`wN~Hohj61Wz&`T-c=~27NM5BMsQ|{~c z%G3j9r1WFEsCQVVOw2AhEX5X07}443>9+QBX=_)z`_gLew0nHD1K)>X+UaGzk#~(M zwVNDKZ3m^kjYO0Vy1CtCF?5>@`OcPRZ?)v>+oa(!Ro)6yPZj_I)5-O4ngS=~X#8xq2!h?Yn4{#q)! zgBF^^FC`I#-*7M$U(OZqic>gbhFsvdx!%nHi;*1a4}LpMxygF76C zJN6bUD!77Gk0`}Oc6&jwy`D9(cjo}{Ti#h2ohzKKyqT~P*1#5{pqp-!-5I#mY2Mf1 zdp%i1EshQZtP9d!`D)VN<5Xz`ym_!b^Lr-4PxEE;HJeT_HS7!VXPEv}_0g`}6b~ij zkikE?+!EfOciqDejn$vqopU9nq7pNYg_uyzSIJG&#OH~I7%iw;TwJlT?mllHm*u;F zK3ZpH;kur!MW38BbUPjaMlF{mg>S#@1yTHZrpkP?be7A06Z;7fQB>6jiUqF%H&c_D zTH8Q{Qq@yq+@WYPef7#3wbIu;c8xA4kGr_?i7DDgJUl#Ld*gUrQNci?w5sk4Blud^ zGYb>Vt#R`g`55_7HNxIPG>e;S-VjjY?Q`uj8@nnu`zVH_9~08NJiZA}9CaA4d_CKy znIl^uDfi0E#Chqs6IgeWqEdW4I1n~@ye_->%<+CG%U=^!Y9TL`U2qu_!$Z=H`*@>Q zX!b>546QhFdK1WN>Pe_423^ukmpW(#yxS;9p(2c)(4~HXH*lGWQOVnzdXE@=n9*dk zKbZF!=c8zcu=WrgmojwGFqUWz9Yi%21$q*8_{LW&k@vA~vC5c7TU7K&4$RNL6>NTS zc1Bw|D-NNn)TK{b7jF#z6ix3EOBB3mf!{ov#-DlnnPKPWi zEUBT+^ITh(hCL#1t?GK7sq5vNS>CF!`h5Cv73@sAhY^kxRNS>QX+Bdm;}q16`;~yl z%{%ihi@lE5@(789FgC(1>7OYflT1?s&d+4nsxNCXccYt?Fc>|uYKTdKLmXv8Ch+|_ zbeGOjXPxw53{ipAee+#r{d=?#cB+5}rdo*}#7l?mRED1*+X6g57`s|>K_5N+^rlc= zipM4GT7N=u=m$YPeE4y5T3XtT@j~u!BJM0xp=_BX5xf(m%;`e2(4ZiJdWRh{`q}tt zL*+#zT;gkpksu6;Qj58litW~y$F!WBhR}BW*ZabuPq;9XlaqVSKT*pDU-iN>Y*E1@ za3KK?yShK73io9m7yTtCttZ=_0A6<-r&s+5;|$e-C2xichmNP0h!zv z4D_3Ib#=k9NDK@NB14Y+;l#Xoo^@r-Hmis)-W@J-ghxE#3MS@tA!TD*;jkehB0Bh) zor0$%rqkqB3$J3Vq|P26iGoe@15!C}T&Ve$B6OE^%>lbflLzVpMs?_Au#K-us^c`Z z0Xpv0Vk}E=+2Bf(qh-o4dEX2!#3~(qtPIw|)Q}(FNzY*NYRB7cjdc98a~@xCR!ce#zK+f5aeca( zBA(ZiU%8gYWG^?*1y8xtLn^9N*FY)MPHli1ycu9z8L+ON5NQ5N$u19;gHRS5*He^o zUcpD51FL9limg9MEkKReOoA@W-jUE!WFD=3>>R1)6Sny-w!cLp@^SslWlPt9tg{Yl z6f@NNt8@jrY9C6uo+bu@;LTi*(^X)tH9zp=$!;E>ikWr3pMgUh@3*Rikr235@QOJ1 z$G1Fi|EjFSP#x2Ze!Rd8)4f-Jc=f6*r=h^L+W>#Dk+ErE_HnZuS@Yi0pv~Ud;HpPZ zjiOfsb9yZ7A$u#1?03G0XGHqsy7edb0Q#?oc zZioPviXn5WYEHoK!J|^3mP>3rAID}Iqrt|($47j&JE!Q|5!XdUMYWupZ6Xvtve0z3 z%UxkIreF>@x92{-zR~Db6Ghr0_CFjKx2_h^3}lme{MVCRQEm7vuxauj88z$$6CCgt zx{gsm+{Nu}_S|n2XfDp#-Gbw>gH4fkM{?X-+v_2yt9+bwmTF=@^vcgUDd{<1n`FQs zM}cPe(Yg#y*36H;#!Nkeq1lIqKF&X89le4ke#Cqs2U#$5C1=L-9!#C`%JM>HRk6u^ z??TKNP3JqloUvdFuJU=;zRbL$HH+{hXfnVw{g9O7FaHX@N&rF_1S1q)r@u!m-%mc$ z3uvj|3-1E-O!S9|;)ND~Eg};Wed5_n)6HktBbPMhsPcdGnAFx4>Na~wRH`{A#>7zN z9XN;y2zX(l$LQ;7E9?H5gjnywWAyQoqm|E^jOKWw5RT^?#J_kKoUbZ<7gJxbMxTG# zV?LTAuU5XMy6VOiF?+hV5U~!puM@`2||(hdO5Ra$i>?6tuv|lJmmCKPGpd>;foT4i0z`ur!fq2DJ;C0Jvt&PmNq^cPjN72>S&Bo zlMho-BE&8Z`pTje${i+mP`Y$Ldu{v97KJPP??2_8PTL}2`Q2@|!SrDh_y2&rxjO3t zXt^xO;O6p#oZ%`4{)#H!K($cAzcY-GwyR7#z{T7Q*>gr$WfkO0jQ22++i^E%{Y~Xa zoxLf8dYKxLLahx>hD24J3^zCTH^j!eoy^!v15h_02ZnRB=AL2t*n5(1vfQ{>;pgdc z2izDWAa38V8fsSC=0CYmKC9tYA~*(ARk;p>v+zcC!`f>S726~TFUz`3N^PI%;K-n~14ygIY!x~$~S z>6%UZ)3omwsFsYyYF`aHD!)LggRZfbtcS}+Q9xzI{Mnmm*40fiBU@XO0ntD4#vAyW zpa_)eYAe5_OsH*!ZGC#3vgM*%@c`m zWMgvjIWmbP$*ACfsiG?2fPjPL10Y_Gw7S3NYU)U~Y-=l7MqMk3=QZtsc5VSB1A|l& zMSjv!d*DivV`tnGn~fndx3jsk`-Gd+cX;;R6L_~sjD7cPp=lShwxgyZkbK-PVCZ*n zmabx+tlZh#V}vU_NRXsCN#Jr!5TsE_NH{zG1uY<0cl-}luot^XPFGQn_2-*RO2l-Q z22t`$Tqk@b_G>+r2mbgQ&k4xm3>6R4qfmvCs43ApEnLV6sH~%GGSD3dY^lk<)V;gQUQG&FPxE{E|TL?ma|EE53R= zv}&gw|5YNdEpl&Dg2526ToEQLst0=dLX$m_;YnFr!^sx^JtSeR>4=yo@flUR{pbZD z!9)UPr})Z{_ib%&XZ0}%uMv(Hw)|8Sx4n=^{N)&c4?-V8J1LXcgTmeA^?*?Sz`?R(94;l<6#^m!A>>>ItCi-0%!+Tx8r<{J)x7YKd> zKlUM@VD*N-yqEBll0r5ab&?=5efJJQJ+oRWj#VO|;FR0*)-9BnSA$DNLPDq`*c&!F zaO_iu%t~iiiHUNjxImAC`jV>3C0k{GGB4p=olyZB7Z*Or=bv3Qt!fAh4G1;$nuAb~ zqh3yBNNISp)8;P+zy%T^`}F`_<0Z>%wpX&i91wdf+31@yiL}?46G?xB@vmuizp@vBRvf+5>P0^8qQr;Q=XvJc=RJ=~ z^in|OXTQZKGCk*_S;KG20orgV1b&VSL}>K%^cf?Bl1JRf`zb=D#F!n~Z9LP=NNB;d6vWC360| z9>HqMg~u@oA|;N#3f7#I{$p&)JiBrN@Sy}p&v@pp9$ zm5Z(8#02P5@QcvudY(9Z{D}GNqFo;(fHtx%!^4P4^{2vfm$Lbvi1}(HmDX+`y1QSQ z5dO{%1#}QgBrJ6{Z7gh|@iy4R-y8gL5BDJEeiu?%5Lt#a@lxpa?y=Edzx+`u0N76v z8j#iE*wP>O^i;3*L@N#e+`tPs`n2t4*iD@dxd)kHyEbq`pj~J8 z%;fHPWRS&jo+raW+gEGwJyz>x-Moh@gG#YZ;nuj@-BRGH)8$XNCB}Y1m$0(ny@Qpm z?AY@FgESYbrhRLA21z&!l7yiz#S?La^Y8^X+*jO9_#(q8p=^WRhupb)%}d(7szt0n*b)YcbfJXetr z3Jw*!bsn{(qT*ZWnMfcG6Q#*_oM3amLB=`S2usZhz#u(ND}4X}kIb z1Q7J=o0^7zfG1S+s#;V`EO^oU`E0$T?8KJ~KKDzzkw&`FFMfTB*r`ErQU$r!}`>8Z-h ziDQ;bQm{W#^O)r_A53tCz{s1O?@Mu^o*pM;LIbb{KR>F+d(ZD^PUv5aS6;RwjorGE z^aV8fX1K_*PV%^}L7#l)j$lGpDnxzxo~5|FJb`tp(bamg#KB(!|MGir3;yqQ8-P~J zyR1d-soyp5rkM^4t8N z885m)k&I>XMW)%R%9Lyt4|&W;N{`23IWII}w$If5o%QKlt*tT0uP_faY(D9msqb(+ zefm|82aQH<6vm~Q1$xYMl;ia|=#Bs5)vITDLzZbpZkyWiMo)w{ehUqOAq5l)!*1k);WNq35CtvqQpj7GRR!eEP7 zPep!URR7LTE|Q0j{#xi%0f6^3Q;BhLB_Fm0u}L6PB04fYKKN*TFv0$LS&tb2b|T8N zPLxi0B;oe9w!T0W^zqXt(Qju(@cW%{%CwUONc^pWhfNaEbO`kHrT`04(9!i6D(jh= znvND}6SlUtQgv-C1V7PD6LO{;C4Ay0R64S^&IdyiNw&YXk-L9P_wH+{!3=E0+qtRK zo7X^Aqw!YFdR9*Wf-iC*kT0Hfa1nLDKk@5Xh%rIM0qHtqOpMCLY$eI&xTgm1#d+zC zgwg!@dHp{fYRf0gdw4d%qJP~&U5TwzjgI65!|rFC84$!-kG4dn?%5_!_GYp0fwg>C z0Bn#$UikkCd=J^9dhvae_j^ythXd5N%T@y1QZa8Z7bVQTROI`HNVP zFE(AR_+24>(<}MDj%KuL7%r#8 zhT~z_<0eML$$WThYX(rh!f>~pmZnW0+3>!A6dc=3{RDsXlDnRknv#<8b$cBSr_I|~ zFlzAWgPk}@K_22p!lDxA>lBvU&gRdPIvy&eu6~Z*M>g{diflYL6=knBcF}u&EZvUv9oOs&dRCzqIeiVvKUT6 z`_9aroKcxw8&nDsqV-|@0y3yg&PN371vj9)7m#EAkId*o+6%1Z3>Iz8)&ZhfP%4vU z@Mc3f260*O;yk?SU&C>KJ=?wi`9=Yr?+89-MBzW3QL4Z#E(^}aSfLiI>)h<@(&kzk zAlY>*_H8T6ir2g#r`5<<;ENkxPV1e396Nw$W`YnHq$vcr7Ta!j8qI!-zYvwj{xAss zs7SzU+x$PkRx_g1joF8~7Z)LxU}n*u*1+hU%9OE)GwHRY&G@A1zim+p9^_+?0sa4c z^!qKBJBKMlI*z9&g+gJSl$)$F8QV&iZBB!&KDnxko~$>{2dgH9bRKmqoXzA;%3q{W zy>sbWo?~;J0es2Bmyv?&a8!RrhcFhT$bHx&5rNRqD~5@U8cUvKk@Ryh#z~E~&3*Xr zuXXaKrfw0~`&7Oj{a-sv0$*Wr#9%0}Bwy7=uu-VF_l{>`1qUi#*Fz%|3_%7fC7_w= z;k)*Bq=dfx3i^{{(bEsZ0E2cF6I z0rvbIKoFxqyoTAdwl4kmLq_64mMIh$q{biU(00Yr6nM{5$yN(@$uy$ys4ygiC{jn@ zRUEX)wScp0KI169QztzZp7Tv}lC-U1T}b9X3=8I!z-hSEx{+!7 zW{2eM84Ob*zqa1)k~MRMiJW=G&Ja;@GUb>g90|8qf5P~pgPq@WC(*+f%b^2QQ%%ZO z*`QsnswZ55S1wWetsAA>%I2n^p^?=1f1JtJ_h<5;ef7VbUQ0XDj~A1gc=S>Bo5OHn z@fBVSta5kqMdA`qd)!k8T-HadltnOr4o)GW-KvGv~DDfS8bB*@<4*` zJz%W3&^A|J3TrNUk@~Lu6j(DM17o35K(pg@nxFFsAV=7DA25!0+ta^nx$W4nya^Y7 z4P`SCV`J`F23ni&sgXOR>#xWD6_f9s(+6PKT+7RP51aif3J3%U_=+(O)k$+`)jI%U zwV5G`p%~SLaFtH!SxxmT5@b;un~#E;@;p}d_Tqsujq-&qL?@^1?Us7Ioot-$n>qhs zL3l8bJ<6Retp;P72GKgv=|g)JPs$abozHx6T##-u)=(Z!T?K5htXq!mbuu^&K*STmZIVR_g!S8S%dzFVINPr=>Oqq0hb2Z%mjMM`9 zkM*MG+pg^(idzEUHxH@W>;12u9qs=6bb&S^mZ5|}V))qKhWG0;-*n z8a3F(HiJ-qKk>ZegAEqIPK=Wr?PLEoVUR8a-MgP3g4S{WSPXo~fq?;_twX%Nxmj9Y z4;;>PCz}BpS1=aZmqI*TZ)e(`)8qQwfWp?!4t;CiH#Qdc_U23%h@?z(G{f_?Y7yyF z3LcS=kT|)z(lY}9KRGo;yT$Lg`^4k!2F+};M9?<8FARrXMMO?cS*eh~ugs{IoRt-l z|F(vpE1am8C#viIX>1twcm0@`7B>o#aWSm1%8eU}iE%TDE=q@qxKD)cGt?^K0phNh zFjMr$4$A*Tku(y2o*s8uJpK}zIghj^Rh13K(TG?M@dxPg_o81Yd3n#fUFy{^Jea8* zHZ&-~%I7K3Ch~g{zkBzN%5n-M-;!BkInd4_IP`C93by|M9LdodqZOcc8M=5S zvWqQg?S2l!>`Ye*gMVcC>^+Rno?$e)o;_||&gdycCX67tLyc!QHyNK^ebv28u|xRc zElpePhn^=Ip7%O(Dyh$2ong=ORyQI(oaq9c&undbg!_c!(mlkq^?t923vzG;-h=6} zkk9;%dB83mG^%!k$IVmNYUa!}$Cr!E3j~b4+Ms^DN${7y&>7NNtbkmsJp3jPBKMnP zL8os`KF(NLY!3kG*P%^C2Z34>o|xS7w@1T%;SF>bD=QJ%=_-X95^_LDz-zaG9>b^^ z4oD6Bxq%vMgJ-Y5!e^Wo5NK4I6hix#6CAO)mm%&ET84@&G`Z^=8D(;Hh?BVcQA#!` zUb>v^`U3*cH2nFP)80JqC{QLl?#(|ZActxL1xT@Ki$St{y`#xegJ_9HF|3mN2l0x# zN6Mc$?VDORK;31jUKG$Lh)3S_fgCR#ogr}Ol@%?IE-NJ`>zq*lzE=9DPY*8hx_;{G z?c0?H{b%6&oTP)qL~F`htN&Q0C`DOsyx;%d?g5;Mg!>eF=l!9_ualW7z=sQNn{Np~ zA(U%!TXVj=@aa>@O&tL430T*5sYSy@%f~mg{H#riJh9dy5&HUm<+&f)=`~k5Byxz zD-Lk0xBD3kn2Fq*KY?YWB7``#y#DnKGl~qi^D>JH(_Lq3VF@vqZG#O?Q9$9G@7~4L z*^NIV;l$$Y&3T*4Oat>T1ESdnm8@Y<$+}p3s-8AMU*ZjaH1NiM-t9=K2L0hff4g;> z;QI`?BYVI#>j6o~{?XFa1sC%8M)rARUh|hh{uDq^-fA=>G&NsOHsBc&WUL1=dpCF0$&e2&wd z-YIdl7#evGs-c^Mi1G$=W(4thxVAi-MBw-sNlv2-mqTrlpP+21i+J=V#xD|LJADAOj#3 z`8B_=n=RBm{tNzo@`SbN8^EFOAAy1rO^@m_xdxlad2*Wvi? zYGG&JIi1=6%h!-j0J6K^UP0zpB?8z?q`CmCLM+n_aeo4bYMp|jqV>;VBdPcouav6i z(kjLPGnKDe91xuoN>g2HyZ(B*VldkMf`gEdFpDm+SIr7-3V1BKeJ<<-B0rI zqtw^?fK?)=+r2e9r36&Dx0lx=qiZ0mc+cFNXmna@vv@SfAA$dzSZNm68VM{i-Xnas zH8HSvfK%>K&GCWoooD}iTWr2nV&1FaTh(SWl%>s4@peqTk?3MCuP|X^F(rxcpFjx$ z(U9>kq*PEyEMAPf9}tM=ArxtLR4|H8J+Zz$NJZS`;*9d!82+{s0eMhSsm}3)`HcWm zTMW>FEFQP%{B@m6CJ*b<=wg|Z+GC_mt$w}^`X`tJg}Ps8F4{Zfu?(Q3pHHQH#c(E1&F>_{D8u#a z-$!nd2h6A!H8u@f+0DAN-Edzlt*I>TkA}BO; zRIR(6Z7fF~ijciPRW`=f^J?dAza5RAl$~A0d}11eHV(eKYr)JVV5)5s6SzPuF+mXC zPZna%FSlD1IOHHL>9U?XpCGnrbnMUPn>{g4U zW>aONSqqyYS-s0CjFXuYNg~r^qF^BX*Q*xwA7#D$L+Ll`k6)F zXF7HaK!X*~+YzCT(rvx)^*zaZ(!+e%^|@wGPysy%%wca3sTKDfxI;BG(p6uYNR(Dt zFdzOx`}+0k(ItA7YcJ4{MAroN zB}smOc*Q?Kpu{v2L4gQ|*aAIcDG^at&mG`7wzE_BhJyu7@A zt!y2F0m*;}8#RrkSJgp4%}3#yq}@?{T#R-nz(v8t^mwA!pKfX1R8`peV%Qnp-G`K-)%@bMR8!S^E5McTDAkWK3%l#A4746MZwAV(9}MF6^#GKD?h zrzE1x8|qYQ$T;tWlshK2C8(hy#YX1paM~X*PGL} zD{~Xo3=*-laQqmDCpcufva%@**-Nhk*WzL;Ks| zrqbNkzM_)Z_o5$c?MIqd0RyNZ68q946Z7B^a#$$L0I}XPmt#%PGM6MsIpyaEeGe`W zN@3yP@>ibk^(AsaflhU$c*}*Ru>Xl|31h z`Mk7t^PX6L|IF^*>@Qz}5S!A-7YWJl{W2i|c@tG=vxAgO3+n&tYC+tu z)+2r%CIAZlcDg^rAwVuFpE-sWh(;pj;^I=oEU!{vK3PHr8ifN(N=md+?yRL~e7h+n zWBfuwo&%JIj)PO!kYH<$hKBZs0si2Ct~&j{AN9QZqkhtDJ@@O`LC(#E2_6w0 z$6I?W7Mx^|nMB1RCupdv2b;8YOUS9H^hV=2AuX@%?uLWvIi0fK>SZ7bVK@pQ`;T7D z56Z4Ly}^;iP8S!^zMslXW41zr;1%i4dJvmf7YVVjqW^y$F8Kc8R$o~s{qx}-zn!gl z21E<#ews;%iE-C6n za3vn_8%?C5H!$MmImfQ`;}=HP74K3Ec4uqR?3rYHh#;t`anIolmG)20ih~rIZl`1t zKRfB7oNcx>akLk`aV3WPH`(Fk42c>eV^zuoVVsZIQy+4;i+ZuEw~EY-<8TJ5?Vp6#`hdPhv1^8Z+|haXen@7-+o+DwbK7$;9yD z(xb4TKwbrRpHUNoQu3mGe4J^9Ejv5=4)?H;F7HA|1*#c{nx>L_As!y$FJ}{+=Oy|~ zGOB{!cNle5Zo27-TStAd_9HU}Gm^L;>%B+^gM|wu&dCK-C8Z_4+0w6^CS&}vop1tS zUVo&(_=NXr3Ax^$Py$ixD%t3W{cml$e!lauG-{ z)+%Y z*4zKXl)NA#6aj1AmD_LnpM@xArp1ko0%$jPiA!NvH>1Ug_K}%_t0% zy9x5|IXxMPk38#rc)Kk5YY7*l%dtz)$HsWI3YS)H7cVZqtzR#cCS*8uqT&xu&UZqp zsC4MRlSe-LG;GDY%y*0Oz9Vrg){2&ataq#A(}U0Bc?W?nR=BL8nH#LB1^rHO_-l6e zmuyne28GpnP8q5Ch%cki2gyNSDxgbKa*ng#>lHkqfGYdB%$%@XRq{C6&PZUQBM(}u zkatn`JWf@0T{sxi#t*lQzqj%vQ6iR#yk24203+oSv&Pk?q7g z*^5Y~6iJBc*itvz-w~{(BpEL1?bfP?l{377xj_E(^{A(?UxR04Hj%k{yuJ^E#bWTNJzf9VoPfk3pE;3s}$KN_n?c?UUkU ztxD{K?hXy)rZQF5n99Q`_5zni7C(^VC7F$%7r^G9lTLx&0O7vvhp)Hy*>$Jd5 zs^N-%BCyC&7{~C?siI-jF%tRw{gqO0Bi`c(BTt>KVs6X026}uSqOp30_%VhL^sO?A zxDwc7T2QWg*n@Ik7;LRSEse6D@C=oObDOBz1Qf96S9T+|lDN5|8Z+TEMqHuL7)5+{ z?@gDX#9cLQ4^3=*tY2kb?{8gv77_nM_4yFK?EJoKBahe3}jr)WWvw zwcj3HW((7&S>WKV5{M6WF0aydq1y*8a7*#wIsEPXgM+-1{Gq5OG$7S^&#W!VWy8cb z=0zft1<(pBF(N*mP{&<{zvNH5$R9zO6!`zbk( zRPG`@R8w7xrJLI>G(^9K03ZHS;TrSJx(ovf*$Q;Q@ol<|re{ak9v8jm84h#W1tll> zu=|)}W+YwXPWw7qsFF@UB)bJn=&kSC>#j2N*;LEdL*7e@m8V@D^32laFLo~Al5{7& z!3$t$~)*-C_Qsm3IGi;%+GqZL^da0fekA=GU#osw~b2&Noz(Q))DK*XJ(NG&pXbM22{{ zD5V=%=ZzlSfF5?{pTsGV!B^>wTx`+^nbg@?A!jeJu^?>iVn zm3&Va^#gWlO%oTo*B{BFC+4EmzGi=2N_L{moDbZVl$OO9vs8@y98U_FBVXgTm#FYg zWs9J!Y)4a>e`2#Oc!+C~q*i(-e`y?@S=DKVMj#*cTkF8i7kH^_N4Xf|KT;G2 zD2}^XsV>c)#Iz-}6Jt4bgnS;n=)nK-jIuUsyW(KoIqs$n^zVLQl5S+lll3aA`o{fA z?M#-lNy{0dS~T)pzbYOl>A<1+5fA0O5jy*|1Ez|3t#`3!T>-Rof80?*si0F;Ts4<4 ziF02J)CVV{9_xN*oz0Dq!2qM1$|`+T&HztqOj^){#4|g!|rS;oR#FH6}w{pE9wlP)94g%QcY-)=at6aA?Xv0{K$C~V3GZV zFw}3<>4b+_Q`hc{#4mVYOd8f`<>Q{-%84?3v!}LmccjHyPwoGq>@5SL?zZpo#{v}* zQ2}Wwkyg4vK{}+nyCsGm5EYQ_?(P}7Ljh?R$swd1dVm3jp@#TeJ0K5K7%68PaP`shEbEn%^cvWsogZXnecV(II5Mt9Az^C zU3^~lxP$VLq19e~lh1C~-`BU;6Nir*JN-M1`ZHOHe|_|;`(K0$lKd|W@ar3WxYv1k z>v66bk)B|fHm!~Zewvy+pt;fhlZfGUJ7G-212#hymE~O8^{!hu!|k5z1m)YP_a27K zQSSJ{RJLnK!ef=INfD{__M>v@XZK63Co<>oIfsP2k8JFJknDd~8w@R?Zq>a8o=a4{ zon;Hy+3UjxpZ9tr<>^9HGl%kRj2Pn)rq!0WV@>*xuZfG6LZYA=~mu>?p4M)JiD zVJT4*RKV$!N+|wrOLa}k?MukS?MvItWci5dF{e6`%U7x{QpNm9g{$2EV8#{T=}-EO zk>9=Y(De&O^=^h1CiZXJ1F2AaCMAbjXU(c*YP!+bqhe8K6x8PUCB{`--M?5Rk7w_P=gjy6~^ ztg8o?TDa~@@dXyoXh~*5Y=iv8b$pRIGK`g@w)?U?Md)ly)67PrUP^%V^7v%2L7B;5 zL{{bUtV;#^|L8D${`QYwZ)e^UM9BZU`26b^J17!=8I#Tm$SW8uG}noAb$V=IVEa~4 zn5}XQ?R1$sI^qF}cAK1`tDSa(oaObGQycVgRaY{}_3ssd4aMpf6x-Y$74p3LU7v2z zNOiUSD6axL-e?p^K`}DQ%F6ae6k{6+V?J+8n-^TKD1Xhuk~6SX+Mg>Xz<}@ZNY$B( zneZy8o0eVl+s4@%@680)?t>`X&a&=2T#m?4+iw{>r9@T@#5#o2it7C$&NNC*92fh* z1jsOFj>K^%&S~lw7=B(<6u0%@R<;iwwJ%Sht)|4@<}t}029{JqK_^7b+nO4k9BQ|G z?93v_ggCuCPDh0?H;}^k6}?6dnid}fIP2UJs z^7bQON~nFqVT&|a$=q)dHM2w8m-X`ebc*4nojTD+SM=FaMg3M6XvZ+5JROc)KL2Z{ z1mv>5?d-uDZfp4h7yU!j-9qx4;m+P>7a2nVgX#J(X8Pd~*F&{B{~6hl`Emc-nMZz7 zXwIx#9RZb}w*9BZg=fNht`YU*ScW`HrSos8zNwsGP2bs+z=O3wM4ZTLgKXH@7kMt7 z!q*4eBMX6=7|g)kr118SUGA;2HBD-$hVNqWg_0_FVtQ7g`rQ%88C3XGe8v6zf#94q z)dkM!kH!0`CF<9wocQWEBnDk!zQ(0#JOAwQ|6r_-U;OGLoW6l@`K@;?-~;2*=H?9! zC!yiX5>NQfbv7AXgH!+$y=I0|7Oy@0s zXkQ*CHfHhh%^w(y4Wojl5*x}cN*1ai3E;cR`muJ+l??hJeP==vNusIm$UAZ}S~!oX zdo=+B#`0|PQ&^q_MBi~Wk=)Z~gtTVerMjUTmNoUd&P8cJpn7)i#A(EIUaTP=u~sLy zgj>~KelT^F8TO`VGuZK3Y`X@|QN9AZrkby-qJBs!g9tV?Z!f zzv$iyI~Lu15Y7?!jc!Y+diPM@D~q@Fq2ac%{#R`~7gDla{;j94A(mIp{b%baqlqU4 zZT6V7crdAgI`j)d9^k~DtJ$Ws?WRt10`w+I!(#7`^&Jq@#o|y0DCjsNl&E1t57S*Xb zF02L+;7*QszwE#s&dlR6j zc9V9vhHdX3{Z5_!{6(Vufzr&d80-Vf@0HQejB4{tS?&EjG);~KF;HjcaHRQTAvf7IU4_fuLT=NJoD@e!g&SJJ{whgSIcD> zSHfg*qOFN?@fd{&3cK_$mCrbjPi#u!)*R3xQ2`cd*-*tamkB59oVNN^EMsDPOd^md4Gn*oq(*QWM+!F zNXVWM-0%LvzUHrp;(r+7M}1*;lwh%UHWW3?-D@|Dxnx;=SsvW6cJjkfnADr(hL~t% z8LjrvKh=(a4>aF@6yY@|k>)o|GpvjCc8s?0V22#+S7wO8*QKoQXZgE7R9Y0sok`M* z*yR;H*(l*E=$yiICDe9p++_lLQ)v_Z{C~fL1zAzzM z5IT6cThMKr$y|nxEaR20;VA2o?KPCBy>0KB_pd_aKO6IH_7c#htGAa$gZc->{-u9C z|8yPVNJUCxq%)~?(-$-eo|p7ds((zl77^MCKs?fe1P$;vA9E=UBcL5}GjV*$?6oQL zQRe5bnTUoe#uHw1&le0l$WUWlyR#FFcpS~oDY_%X&}zDd{A9C~(rhL~=eqneb@;s} zNEjUogjl%k%TYRrlNBYQ?;Cn@^25|q#L9P(h0|w&&GKe)C@UE290`8o#sg z=U6=gDbu-}=e~lqu_{@bU3xW2W|;aH73_72L5-`fFFevNC7xSWG@I|fWAN243I8~H zqBj~+%)vZen7?w4?6Ky2g#QRf{mb`V3xz{lzGKhh+eaZ#2iJOU4gI~jbr5&(rPI8I z?_q@rk%&MggnvEIz2K=L^NGO9bAE_djzR=q-b0$K(X9$T*F&Bp8#1bYN-==bfqAl4 zkat~uAdQ+c=UTRA(u_l1nNn~^-aZV>$t`#~z0|9U?`~UxS~g#`JxYb^UlI#BIrO>s z-XZ5`)w^IR7;s(-;Cyht5JN(k<-+Hhbb#kIj)VkhINRlkRs_`^a_@6>92JEPiJ-5& zHjT2&2ud302m~M@H@4a~-OIMTcz_~y^1=T)zi-8X^UL;>AawA*UY9(*Wxi@yPzt?$ zw)MI_v$_=8!Uy#3yMA&*8K&Pp9*}EqkeueDTVY|rE)Z*gEsWL_HD4qIECA1?Oy_Gk zuG?MR>2)V$PRLo1o}sX3d*`O3)^|LVR{jSI%U98n3Xq70uTZ<7eRfwgb4y-y|D1ZEaCG>B2H>PqOxn-GmrZM(fvHj^h@ zy^Ulkj^*XAec#DG;ulIb67U|slxY>z5Gv13(>h)#PG#}CtgYYuz674FemkTC?$2gx zAn0k+z7JrAv^*Pv^w3ug9z$hH$EwmszPt)T`XZNUHQLXvFU~mB|Fr8Fp1BK&)Rb$~ z^4qz${S)^TQ(Pz8AmkB;-@H4o{H>t!rhY47RIyMH80Uu9KV>HIcH$@M`y%QdcG*om zGewJUtbZ^Ki@K7@&tMT5wyxa4yNylvI}H0Xd>!w>vgqK&4kh8Bj{EDaW0h;>mfXB0 z%RxkOws&Es&!h*LTOSdBT3X-XQ;dwE6wy7)c74Q=emkP8Is#5el@Y({Suv7n8ab0! zW(!&^-q}v@vF7pZ=yx?IGSlwee12Xdk^A zn5>Ev8n)Ysm=4z8rfGod*KZi? z@BFO&tDm%d{oCX}sps!a>G}Mc7GG3&G_-gdNproud8^$qSES4Vff6%?i>18;$vnkz zV|Q@b0C?6*fQ0EsH9ENrb-CN0>-$8#>LwKSV8%)LwwA$r%Eug<;$2EOj5^t<$L$ZL_*+K+1_7vB>; z>#B6wzNIpHQZ|mV@NzHgtCjxf>|A|Vfl!W3Tc zH#EM>(szBCUapTnyZTB&mHrtu`3Ebxj`zF_K2I=%K^UzhQ@d%7RIvSj<>p^u%{Km3 z=&8&k(faor&cF0jtzVg2=PO*|CKv?N%XKE<^W+|Y-_~aA%;zS`kc%*~yxI`)_1O+5 zla+9_Xp_+&3(QHN?t18!of39uwk-Li!!;G`HOlW{{~*(D&B0}>vQP3b_1$AY#8!;# z-?@)^$jg5KepFMKpb^(V8Tz5zv%Id(ADykr#_wvBRA`tCJhT`Z9;hmh{E=HP6iRCK zDZ$V6bph0!DT3+a4W9MCS=z+*;Be2f$i@D`;3`iM#i8sA;&5mo>8C`-dzafc{T3-9 zUJ!`$m>to};<79tha2FOAgDP#eJnM&_ywM5Ehb*ush+zuOs-2>O;+MuQFgJF{CSJpMvGlBI?fd+4TIJaopIjEe&^>1pKQvT8J(HlS@2cGb zGH&n9>hLqu7?R$fnl(Q;DjGx+`pz8|N%Wz&8u=sunY^~}?OdWka)^YA&?I6=s9^hI z-?XWr`rgmNd`1NNQQkY2W!<%L{78UM-4Vmx$sz&WxQbYaU|8omH)Iwg1I?!)n}vq^liJPuy!v`UYK?%DrTXvKfA_iTd5 z!Qa{Y^S#EK!usXT_FihkgZ)oUhm+h_br`<)({2d7y(wB(?}(!K8ld)4*Pv-(syzUg zSh?85Wg$M^&5Z*5poo2eN8lNUpd7y*%}H?4aH=;@*Z}66BFG69re>vloga4WwpvVJ zu;Ig3+RQGarrO*6i5I{oNmYY3a7 z%XQyEVz23?%*kd5)K= z@Zyi_dKb~;wuZ+ailyeZG2m2i)U36Q&b{6w5qwhpq1M1frPmor9$`^P9*)~KPIfs% zh@aNCNK{7EGl@Zrcal0ER#&jHmcbk|)TpaC2y&9^wqi?mh3!0uk6m=tZ2$+4 z$&cg&3wWd>qK)}gYkM4ijh{KR47fK2OJ5%}`#YL!tTR?Ehcy>#^z-krFmADafJnbt znw-$g`|#-UygJkJILKi63FpoyOQSWZ({PF%wq<7F6)tyTBd$9kC7&M{F~U1*uKG5= z!VAFM#>ww@YI)tA!~V7q`Hq|`=b_KJul|}vNpIHuicgoYC%ED(aFb2Q+@!O> zOo`^moit0kIZ7dtU@OTlfMMX@@Fh?=`-3Y_c=>tNT14Q2NCZH8?2b~#`HO$H6z>*Z zxONDvrwK`Eegk8d(6qC*XI7_Vrj$3nc`G=eN0ho#grxDCD?;`1VyuK}*=O(}Q&c!$ zUEB@;c>6ETW=~p79O+~vhD=WWB$B%Lph5 zf4I8mh5H}>`Rn6>`WM+x^e}TmGD_YH`l(9?{TYl3iH6=MNqAUg@l?Gp0t84>a=OvAq9_K+|O$II7tnE4JbOg5-*Imob5+C-6fU%Td~zg(j>@s2x};bgpJeORi;yq zD?7prmv5P2-dtQy6#0{LvaG7Vv>ys4EC1BM)0|MaY)Xkr(e6c~sJ{V}a(_gAbx#Uf zovLkQJQ(T10#%KO{ z(%qY(Wh;zu^3EfqqoSXP9!h zDi*k|zkkV#Q2jR5KcL~jR~MI__$h&;L-l%1Vb4axVD=sf$bZam#A15r`8Bz&VHAAeK4j>4)4;&vEdXKfHhcoc1YA&im`v<=6wib2RJq+fU#B@gHBR)ZdFc zvCi{Tkzc#{K>Uw?zMOE}N{sT7yt^W^<|$vndDa!$VSX}1SB>(lM5Oy{+FRX}^&t;X zEh?OR%hOTv$`HTqGOaLR26%tH*VOGK1zO1UN-skP1xm|gG{6Tl^V%2n%6=w3kA7WC z<`8nuRFJ>F`M4N!`iDP(@BaMDO|i}QbG6|%4+qwuWz86`%uhjYWU7)bpHW}KiIsSAfNLGX1Z1$68(nS;cJIJegToCQ63VnF6LN`M6y*X-@ZroqM z!f4$qJ3t-3P_T|jk0V8?iIXw$<~~ADF~m7bLvb2@%ZYE8Z9a7sMB(@yoL9aGe#1T8 zel{p)89nWqOO|9;HCB8^u_j=iNdPXZY(32P;9t{y*ZA1+EEvHv3ToG9EF*pFo?5hK zt1R)?q6J)u1@v;llh$49-F>U@NfOC(#+D<^UT#w8IwsPGBQHogOkErl)_>gYV9z@` ze2Bj)HJJ&Ul%g6`hdB?xam8XTv>N35YZLO-Q<-D=-l!lrJicwi!bqGl68dq2`bL*7 zBJG4gh4S&T-boZFZu8@&Ah$X$jn3LJ=mfpb4~+40NXfxmiGZb6QnpDfi_SH;30ga= zW^tw&wWuP5A25RS&mHNe>TFOTVgNl z%OI$lbouLRl?9XXO+pfr`&Yg{8xrXjG>LN9dd8ZnwcczW_3RIDkj`Fuw71=u? z4=;QLz537a4s1L61`NGL%gs!@_V1wHZ6+X>RS&=UcNRpG>c;~`Xxcyv6)h)f<#&^Ahxql|wH}4g( zii&8B1fE>t8F}BpUq52u(WyOvShbi*>PHzavNXk##Pauuy>uY-a2%}W!dqF7Ta>Yu zlu_W|T3=N%)D|S6+(xJF37L$!A_g6iTQ&Gh#}S0lO533MGxVVOYz|>8kB#G|ihVx3 z(S5`9(#@q%q%g+_|4NXDXS4d!3vmUL%cckTkOrHTvj?xU$bU z^&)ed=!Se#yLBk8QO>&Bxkk8Gzcnkc*tA)gGRSxiV6 z_|HrA30f@uw)O+{{6jR;Czos#bYs*l^1(R-W}G~;0^YEUB)(+!B1ei4_xABm4{ey` z%C3uK1P!&DeZ^gg%P?r`S-f+m?m~~g95l9aq)K`2&wY97Z z52+czGPGAJwTb#T_$fk2vEqN{qkjiAV46)lo6j9ZtsM2+COEgcPPTQCuV&IKm)B19 zx+~|AKR=Dph!{KE@e?+6ZQ9>>#4MIxMYy*LJ6WP(L*CIL>rNGV&)yq?owFj!x29UZ z+mg3Vkr1GE-`kLuD6Al{>EnPW=4vi-e~~(_{n7nKHuUQX)&rX&T1PO1Q5V#B$ini5 z<*V*aQ!i(KvB!sUwFa0~vqOA@4#f=ljQgg{bYoBfBf!Rgo|@k3tj+z{hj%4Ey#pjQ5}ckWpR>N}V==9D z07`V(q&hxjeM$QL?RH`q%NvQ2W3rXHT{Q+XN}E_L2swdt#WWeMrgi1Doq^keMdxs( z{?NM7Ec=rI-R!tH>A>j?!*#sS-Sn^)So9I{lrHkW$aLgex%uxP{{88kRy-TdvHj!m zZ{PWx0YsAWQ0kRelTv+)_ci>Z$P^!iTGKL3&j^SO!$byG=^MVC%w7!X+Lg1W6luFmV=m#NGctj9o!HrRY8Y#l2isQTTAMp$4y0qaS));2+BhZX#52Nx zYTq)z43ZgjU_-e#+D8R>#N>%&n8f_HDDrnWT^f8_PHJmQvkcDa*f!iVKw}$i!`0qc z2Bi9eb+Y_|)9(2_J9quWAQ8S9R|A4A&5@@@N36TEAfqUl;oSrqu`KSc6|IlpU@uHz zJM+etc6-nuLwCVIt)}4-k>o-(s#JI$^wDr_s^{qWGfbJK8*)4j-21WMjNGp6%xvtX zm9b5Ux^M(yg7;(nV6MhGMel~>-xu>V+n!uIyVNx1Wp9%9JKs=Nfr|`;wp+$Nf<9V# z0Op)tj~tL9ZD`0sOkeCyEN#8#RFf1#71;E7?wm4I@1Aqk*zUEJFMBCw*mLx$%@`hR z*Tbx+Nf}v2*sEa`9~rB86TN4Q>Xqh2;puv;L|hXt$Qq?WDhhUTcGd=^9oQ?2Liw?i z5&xNYotLkwcgDzk*m3_0h24JoK}lM z21uuUKNo?v-O%i6XrG<->RrhT!Tk{w#~8xsVuCbCMF`~A)=cVqcA zOIRURzh>w)-UGO0fFF%~jBSH|`7Lu=A!>)9@*ihkxT+e!P`_J(>H|vq<5M-UTf* zD4}|j3gr92tM^&o0T&)cuj!aT>$%56J|$sjNsUK>44h(vE8MPKI{0+y|P%DTTcxA~V~Wq{EFE zVS#-+pRs7_J#tOpFoT>SwJk1l3^oUsmRT^P8ec)u*_=vqxwO9YM`Xk_y%7)g7xKPZ zihD%upB~{g6#!XXeC-ppk_>7e>kDzh_Z=0H$t+3i7sQ-xzpyXLL;nKb@@IWku5H$X zmt_ZE8^NLm-D8-ZUM69 z1@KDqDe`+snm=kEfAsCih2tVvUyACE+)iCNPBKe_&d%i3&qq2I+S2O}(8^^nS!BT6 zJS4^XW)NnP2v%={(kQta!TA+?=w)f_%20f_^DY|Y7+WVaFYzt%(dOUB{+e`vrb9~@ zj&~iKLF<a1)b}?Sr#EjF+OzJZKO(?^g>+2nr$Crg#tKKIG zK88YtB)o%jvdsBV!tqT*^nLw#8ayS1m^^siRZT7Yo2a1f8j6NtT+^Lm(%A7BUy*^E zw%bmhZSv4@Hg+6s{&l}UGRc}>TcT6Rp|=2ZuzGn-N#c;^H{u1vUYzye)9>VAykXLB z{zbfg9eygQ0DdWx5?h9GIr%)*@*p9Etu(hHOY0HmhrBp{;bndp&1v zkzwTPp>U?`0xd^!dmX(WQ*DwYE261^0_oIZao-rapF*7wD=lAu*&^V|!~_#rt)BLB z`9#>fL4;OlrsdecztT3v4gQ3&G`crY;GNKn&fMAOw6XABRLz`UJAL1eYccdA zFVc)4cU+6#y=#}{!2USGut6dAd8U1;>KoN(VJMzLC5^d?mpA&RvT-soi}BBU(qm2e?C(W<-|*fp8%{Q9+jcg%xV%v4wGb~y znpsOVxPuNx7!Cd$cbz}mUCY-9$W*0OeA6pmNJ&P6gmJi1v}9$>hvFw~%Vu1qmnVEs zV?4a%N*KRrFw|ueqsn^bAIN`og!Dbt2mi_8sh%q2n_REm zuGPAa)ao)H`KpV)%g7kln9T|MFQ~#JBh+Tp|NJ8?Ygmx>V-Z!TBa;sA8e!ICjKpiY zd}G8SB@6MfV~WwNNYc177@tbWqB_Z``T4NukDnmL(v^J+xWYO$wmgoUJRw|*lqf<( z@07M=1xsTg(lU&08XS@7RYncNoxeU8#2D}hXFm1QhwA9Q(JiA8suQiilS#93<;PEX zg*ooMR3jSE+B;k4SL?0F;i88vruv41?_=(5vUpq@fz5Qu?kXS`>t>kM)y>|#IYy2X$3N#agB0WwvR}@Z9SNMK0>WRwYAgPSm z)$eFd<2iCEhFLwOuHym@$MiKXYju?ib zjyPAEBH>^&-%F{ScGc$zXd_7>H;1I~AM@kuy2EIXxG|fuGYSvNX&2`L1;H2Hb%Q&N z0N^fAfz0gRUmDVrjJTH_<@f$Mpw7xY~AotXPd?kKO*(zy8 z))&{OF0@$l5y)1rNF(8}B>hGhgW;tbyZ%1pY^!#p?FeL-sI}mjI=6pNKpxKg6^v?^ zdlx{_ztR#lC^H*BLURjgnYTuf@Jj8zZjq>%$58Pz8&!U2ofnW6k0WawE=ox)?4wLY z;UKc_$CJnIwpdHCXZ;U_P_9|fqroI}l#f9n@nD2_wc4BytF~=x)0E9d`>{=eUWGey zBKNMQ6)ag>6Racq^Bd-VhFt-oH+-v4T6vK>Y0?XjQ1+X@)n+M^CS)FaVtVt<&~T}2 zz6f*&wKB+%WA46wSU=~`tG`nj^>wn1$-eas*EEuTx`Cty0%O(I%!3E*!X0Eff&{e_~LWZk`>C)T|dwcZX% zn3z{FZ_aK8#59Nb!r-)1P;n2>m?#_e%_N7F4-4bbz$m2FNCYkv3L= zhdlW@3reEB2Dm|}Et<3RcHI&4(*nEijO{_cAh|iF>FNkMy59BTzZ3Ky*N^GNvyU^U z8*l#>Rq?0Ku9Njq9y`7)(PpiKZNB2TU`m2|1-o{5LmP!Pm_8yvx|CXFE24cc}g} zuM@UV!uw14 znKp_E&@KX@v=+?@#s|XvMu^}Gr}j}p=R5H*J)7scU871nMU(6Km@hkPmlUbk#_lK- zjB+>(To2Ta-oOa0i1bwn@nU2h|eFovqN(0Q0|ZlWvzc`EnX zTypKUEIM`4!IgpIc|W2k77)t9M6I+Xi{Y!f{hBPZf^}gHBXWxs4%<1>WAONOm%2py z{q!qgbLB(++Z~Ud39(o3b+*Y{949Eg^p4`akdg%eV;BqwnFl5{2pFl z3!6s$5wI{_qb1Dr8(w?Ba*O**^I4gkC`Zt9ga@0BZajIhOWCe2Z{cLO)sf$ z>3209lg(mQUCt()NiTG$jk*ZRJ7h{Z$J)OKM;fn4wQJyI(3jhhW0-g>< z7gU*WyFdecRUw{=&*cd*dA3f(moj$?SqUc}?_2!zQW+Pf%vTL!6b5cJy#^;anBwq? z`@OEI$guDKR}J+ediouy<>wgrTeb(_`fx7Jsw@p(_=5^fC47RYW?_f=dm+PH1u*qN zdIr4wz0+LXQ_PnTazlhJSiLOz%$BZQfL5YtQ4geMWY>Hot@TZ_Y^r_Cs*FMeq5npc zrJDD}LfZvepa2j}A@b5b=h(Hd1635;=!lTDx}ReD_oi8Ri`mh@M3!&xo8S%u$<&FV zhdUw=eS#zxHqC*E2aC&_#jmTpKQcRLg=z8}*$>-VCD2gP`lr{eCui~jdP(^Y_kJMJ zVO?d-pf4cSVw1%nKBF z+$qsm@R}!|+^#3J>kY5LLSRBfr1V~Dk0VAwIfOJ)@3~(;{HC~a zqM#I3E{F~D^)U~Jzio1h8e};Y^a1D<&U>E2t%7y1_Ma!!1^gFOnaB^nb{t;=g3lX?iNc-*UuWgZNBmiMf81X)FVn z7Olcv+-R|=A>ehHsNedKxuJ76`71Cu0+Hf+U@lABR70Pzad&LtZbbC;2>+xx!ja`A zKuC>mok{l(-=##vR-q&NdyS~$_vS|6KFvgfX|Ji+GBo8#6qq(u8KO~%Sur#6u+O5w zYUAQnIAP#AJHAc;T$@#ct~BUYC};tY&$%e%f0S>TEa2KK!(jwR`t*h&FQ^eb=cP2$ z8?y^KQL+d03nus5cI*7+%=f()i9Xqp(~O6-i=sO2@hS@ zw1(FWKt!RF{tYn4TkaS^{2eOMT9|%kosrPN3LAaJtUF(C`64iL#njL&1B*ac(B2rj z+n9MQYN9?w*<2H5b!?EeuAnL2d=no-O4f$FCBlBPwr8ya-qngSj4_pZvk2T107>r! zXu&E#4}<_vaL#`xU#?J4l?&|}JCMU%3BxnMaW|NGjyO7U-3$>P%4n^0V;7tTlm}C? z?8yg?BjzJwM5X|-t6n)2?!{yX=9NAXb~F;30eR((Tl_C>_WnIozkvD#!++oRyC2yIpekkW8M`dlTm11 z{avmNdxJ{%*B1SmFRK6^t^;T$Gk}1qmxT;DvrjWrj3uS9H&XmKMrJDl677aRZV@Zp zLmw!T6wCyV5C#7uxkC|dFMRrKPMs$OT%%z6jTXwXDXi_*p1Leg#Vl{u@swxK+W7kX z5PUx8ThM4|g(2aE=pA_7LQd?s#yEEXdRz-eAfuZ{6)7*R6@6VGRsbKntu}tZrg=&c z<+#)aKj=@3a1l@<=U>eZ&vcz|4p;hXsi-usv7{r(X6w#&S5qq9LF|mR;8kaNdNooN zRt3PHZJXvu&DBX||Awb@C$m#DC(RdQWT&=Q+1LZm)p4z)qysnZ(p|wT?$17Lvew;f zr^c?XcbdRmb|L2bYBC*TaYOGQ>q|pjS%ayrVInPUBZzMy97JRAXk8t0xiiU>ww}B# zephtzz1hn|_+uW=nmuVlnyoUEr2OMGVwc_%#^yvJFPhD_jUDu#)4l`aD3>lcO|=LB z?^0A&(6W1gb1YB{8f6|xiCb|a4}HPRaJ(?44+%7IMy~%~VfX(7Z!GZzY=Y(c5f-f< zi>}rJ9G^^TWpTeQ3Rd>I>h*<#*74cth(Zh9cMiPD?G|`n7t4l6mqJUSnIy{C)A++D zl&5A1BE8%c&Avl)4-EObM$PV~LM3Y+LC9EiR8hKQ~DRzxXyrl!$4P`gO; z=c?FhXF_pV$B}J}k)i*B$nB-(DFT)eIqX*<{T5%U28U=hQTtVW(Dnf49n;xQ>PUE@ zVv4wCB$S?PBto`@jDp=cqO?c$Q7_N+XCnz<5xAG@hSKRJ0gAbUZObC*a_6qM5+6+L zMd@8-w_@gP?k1NIZcZO@n}NTpkNSKd*e==~snSM4B0G5biV)lw5>e6ZByf^E9|0+=TY9zO{0 zq~9nIYdaGW8Y_}}Zud+*mOiAl?9es`;f=EYrN4L^u6h1q{yLWGrNd_GZ`^HfkzKKq zHM-mGWDYX5=?Ml0WUMVZ7}Xuwt$de7EuAd!;SCOg(r-+*L-s)^SPOB&I(3v6QKJ;f zA#rjp@9OLrBvw(`YPXgb+jnwkkLVD424 z#6{&Ddp{{X5Nwl&nBU45A9yI0jQ+6Q+G^;yaNj-k2zvG>NN{OL3J=M+8hSkbji&8D z3{rtq%9K)At%HAjUNK(%6Z+;MnKO$NT#8SYWyex6R=%2kn4#oRA>Zpdz#V7r+Ki7y zm@- z&);E&x+WBwiG)|Azv^+rYexF`K+H1i>ZV8NJO(?7UY0>L3M9!$N1HyID`rjW(n@8S zEE67l^XN5SX^^JxE>_r{9m|(_DrBkdx>Ft1<+KNkjRiN&W0+F)YX_N*h=(cSwtGF(fq<|bFZKM4!*0uVMCa2`eOhldN&Mk zMBOY%Z0t$uH>4ZFo<(O=i{V_`HDo&&M8bS<)xkfQXLs|g9OVWt=Ok}@Q`)I(o-xlR zq(8FH5S?dmP0ZNejy%%8F@+9}Pe@ORJxMR4IbaloBy|=Aj+_Q-S#!@W&N@-wj2W^RRaGG&Bozm{c$G1R z0eYK<7SW%D2p>|oYkcU!z7u#sqGYtNI#c*fsB(w|)xmp(uqylNBh z`2BmPb>cx2cUHeK*2s+t_cO#18V|)ki^-RxGWtb_@U*&CeonqcB>4sPzodIxLSz$_ z72(y$&72P4qJb|*w-}u2^HmhX+_!t%uJ(vp~r-%+o|;-h{3k8H8wb zHI~&I#Zqf!CS+-5#o=lB2D^}ebq#B)E7XvpwowXKtMTK}T3I;W97Y6O$6xJU;85yb zG>VUyyL8`9^~Q-Zd)EYyKiU8J`LcPgZdN!=V!@B5A)mK%BPej z^ZxayWTTF$HsbTsBvSGE5!8_y3+Bj^A&VQDr1;Zz(#&D7q^wEhU=S=Gl)bEWH-KN*@71oAR)m_Zx zXa%?!675MJ4LZ=hD47i4FbFGu=qt-|>k6bcwcUFDR+D{Fe6NQ|W5~8%Nlyi6ml5#V zy;SFS*S#{?4Wkx|jAx46}kbPqI7GBZc-y6U{*FzCK}B}Ju{vY%<(v|)s&UZ$z2+u+CsOn6RG$&)(OhXUiT zfcdBvI?Zk+<+^nPnIyd@c=T_=h+}Bqgr;T%-X)4H*Qt>$R7j!sIxs&HMlJzk6b^dG zoti65A}-QkhnwT_Z{J3*jARV9daMnlFh~U5>*1nL>JE7%pU&@WF_<`f0JyZ1W$Br^ zu^7}iBcxP|-iQG_?D-M9xR~RN?$4$^A>TmE-{0 zT)gQle{XQS{d7#wl+ix41p$cWi9LgV|Q3Lrz+Amu*B^8)8*4X*dvEK_-z*I z`}i+ePJ;pi<+QaM3A-cAG><1eZd-&6EM}FNhXDpGvOeSeX`w7cgUO*s7NC3Y`6Qokk+a+g(h39dL+E@L1e2xtZ?j zBa(!Zn&tJZdbSas9d#dH%4#@O<30sH;KPoH_1Sg5xZENI5`W7&d87Wu>BZEUXqj61 z%cM;T+J6P(KZEc^;whk_(@fu_y7oKTeOh@7C<{FwloFu@nzY`1Y@~FSF0IvJ>xJQ1 z1{(6+Q#z+LzBN?7l!AHSbwJEXP~lv5<>#jxz}4AttcF>H7SK!sZonycHlXQScx!22 zHFhdH%QHPj-yzF&7UgEDErxTVqaV;o>KOpOpsNCt`{(_PS==8R`eQHDi1@g<)tlYH z(rd6RlxKu{Gmf{_P_oS@@x{9JwZSBK`PvrQT@mM>pVTXKhwp)U!bp?>pF!)J(c{x_ zNl-Sd28_K=`oj4A_HfthE6)) z|LW4^^4tr$N%kBVV$ddx-R81<@6-J`rZ58D{lxt-tM*$Q0xEl7%7l=EyYpRu{r?*Q zXLG=W;H3M)mvtdZ(IS;ThKD1SGf-`ARlJ_s>`I!@>oyt;|Lkf)Bx0D4p?N`Jn5)J zAd+MOKVUzmzFP^qtP}%@@5k+}%$K|1`4do==auoV{6$D>Xrq4pK9AE(?i;+#xrQjO zau{|cuFe9m3RJDNCd9@Zrd*vMl+oT5-euSH9jN_R`(d@~Ce)-kDJ%27^Ih4Hnq;hJYheDdPsKu+N`gydJo*QU+~5pg0ipulP2nn*DYK9t>X+aclI0j#WZ1 zA__?^lr6ypP5)Pu`19^F4FC!u+Lf}xw7+Lv@ul032T~N6lVs@9jtvvouuz|jq+79ndSLOL$U5IJ84#qRFErO3T z;KKM_iOd?a%|knCEN8Y~4yP&}kn-9mQ?|DGT{Hs^&RObocPbhL&w%>iq;;0(&pWPL zxo^Z$u9=I#UqCg@>t+G>^Ht#bi3f(F=o%cYuk^*a0-L5cFJHTOBfoAtQnHR= z>?PX_BSMVjxpkiNJb4c1J^k}u*L%JGbIr_e{N}#D_kDlv&-eSgKRQuzHL)NOj@WCI z`4~@T*AnSG@!W>CpwD4#Fc@?2lK=V2XGzMg)p0(xX-2XmQ=vL4_h8(*Ca5W}u9B`8 z7kjJ(G0DW%Bw9qz+sOUMzQ&v!+h&C4%!Ck~Y<*`mPriOY*6GK#zTg=O@hihsm3vhJLTqmOce%`W4sI^ECR z&*oh?WbZa}LKqZK5!Bq8|iFRIP3VXgt#n zD-96PEcFlWf??E|xRG6Fpfnv(x%&PjjQLM*Hep`wd?EJu7 zgR_&&boG^OT|{cQY#Xh%}CH1yS_c9Ht@)dzm0Kxux25`cs)-$X?xD?*4;)pr*Y8 ze$=7j2a}EZ-u5lec7V$3L8*hyq00PcAEfT-tF@AwX>IE{w6S^C)YV;B`&*3p9}jh? z3W`^A2Lf7}?L;bMx~Xz}sRD9eF!~`hE+V3b^z$R%BdHh)hHmD`88}?^hUG+J zG$&}dj!Xeiyzumwor)_kI{AUu+r7-~5GyVecg2ps_v>dKP!Q4s6RnREU z(XXrgUg<#8JqcA=Vk0spe+H0X<@y|&K^AI%Gm_Kh#@yf6Fd&L)oGQd~C`M-tODheV9}6V828bs&XS~BgqzKzsp=3T0auezOYB;tPVit z*t#s0`ML0G@AUkH6u5-MD`qizUOV6A;UQ)dMjr=~3sm5ax9>U$2 zR5?t;+hlV8_QZ$E?vxF3rkEQi10v}$%I*jNg!bFV2d90q?OGX1D!AeM&g?eRL>&Su zooz&;iNNIS;`@>?phjMbi591$K};*OyV6`%M_`+Rg&r5#hOdbLAsT90;L_C7OtH-( zj-o9YfPP+&w^!ws#qeiG*#qK#yMv^ZMl;T`e6tJGZo^le(d5$lWS;p$nVEtoa_@k^; zKicnoeTwdx!fT(-&4MV6`+j*Ct)I|;WmADyU1Ftr*a!dkV+dQgzr*7rAncpdb1wRj zR+~E;&oL1|W?NspVa9njYO@}>JTnJPli`dq)rj4&{wfL~3Cpgq9q38bCqA~R^LoMP zUa8_KrJI=jHu`WC{|zRRPejQ|mCCd<%0i7chTh+};c9d8g+eWt!Jw(5F!uge-mQn~ zi{EB#d@BEw+vhzg=G02`^Wi)c`O~cb4mzO=j=MmL7(}3@mG91OlEUHH zuaKRyYi5y7zP`R)NrcTtNp=K+=VVIImV4?9i2VtQOp1>k(ct< zSVyI`qU18M%*_SNR@Zj<)W&z&RmuYDL0c{wR2G3m4Rk5dKKfNSH&156{yMduJPJ5x z>&2da7kZrzJ#?TsH+n~hRcwm=iZu5v+#l1%o~<&+s$!Mt4e_U(vTl*w%{BL$6-Gdt z{gTy?kzp1MDKINDV^wfYj{R)DoL$RlbVCrYDJIO4#I-Fnv6Bs2+L5}W%sB0sq?5~A z7};wb!X(3jt@hZ>Trh`+$$Vf|{_aWadl5Oa!fQ{nuQXNkZ5%P$trcZ`XOpB}W7orOVcj-Oi)^cmIGAAg=rrF=G|em~*JDD)JyzGR9(39C0BWGCCi;>HAG4~| z&o-nr1*u`&vLwm=O7hhyTEu~Ok+K>fyC7kXmoMS9L(kUfsO~rSIH)er${1zRp8#-m zoOa7FruO`b=%%eLa;*d9s(*m+HMa1vMTu|bH5h4T$ZW9f0>qmG&XNmCd(;(?4c*z9 z1ohye#F?SeWfHx{wJZp~Cq}qjn24?J*COK=a$2#_dC1hpwf2b{Am1c?T0^&r9>J1`X#SNBmxgppASjy)KCd6 ziYq-f_2pCW+Bb>=7P%_sATwAQ2}9W7>`jg+d3bQ`x^=Q+oDDTSb!gb1Gy?tX)~;rI zE1bE-=O3U4ohvbS^wZ5u`L`=wCO9qXvORMyJNp2;pv#7?dt>%A_Kg+$z91SLI3#&5 z-vEa#^8D>)r#h{%XMlX{y2_#BS@(S2fwJCN=yEHc=C%*+!!lKN>ZnXS#*y`}DLP+! zlLj+nWUF}}GGbh>c1$XP4%B@WyvpbNNl?*Kr_nVk#WUz} zni`<90xez50p;0k=+TR$M)$#%BO^|r(5L=oT&PAerx*$S<>j_Q+?Ye?F6k{{SLlsB zu{=mo1t6SaTT!Deprri<1Xn6K(1WQ%lPS&UVK{b`?~pPeXB3c43s8tH6vY{pYOJ#W zsw#Hi$Yp|n=uthhYma`#likS;kWoW{RbfnvJdBaGqIA8DtYd9G>Kx%QGtpB^oz)ob zC#Ew-hCjZM7Re4ywOMbp{568f7!~CRC#+M%$bSGK#YlCiY%;#}fiGp_OpDz3Bp$n0 zBijaKz2M1h=e~^v?1`SO6(EDca^hdK;O(3%c&{@LEKu;cmd$D`Lmn}Z>P3=3-v?!Q zp^7@uy)^-i+393m6Hf^Gi7gnY*P%(}@uvcRR8nfOxz&2uvf_snv+1iG6RD5rmn{lc-|*OdoJ*Dx!+ zu$8wqNku+l+!k#Qac#qu6@%h=s^ip`tDKg;IN;A}bM3|4Ps53b{`)vHm{tD)({K6V z3yAYL{>E#C!Cu5~x1F>Td4aW!?fhUBi$hSZG`&CiQf06{CBb=sK~s@7%?}c8p(rXW zNI3!=+&tsQiw-m9NH z8DR?IS`R?MBB~6u^JIMEX_c4ws?awZQu=a`d+2}+_e7PJ6svwGYeKUQoi zV2A4XpZV}AxYCLAOSFWB%j;O>0%bDIM|Gl0mvFHGN^wPyaNWQJ@L@MIm!&J$lpP}> zb1uLCZOxdqvyYiU5^kh89FRv7{Z&^-nV8U7ApAs=pw0H2o)iwl3pH}yD|}*WSKWFx z%2btr3?i>Voj@gS=pwVQd8_=IbG=$w_Kg{jc*SN?lr`E4yjD zY>5d7O_nG9Y%#-Tr97ko=^}S8@jIZ_s_gn@sB`#@G_@RL1a|)T<8OoX<$P8kb--X5 zgG!H_eOrqX#WNZRA>8|4%f%D@HK{XhslwGX$r3~}w22-=B|MpE8k+cK<{Z?`^Cj4< z-vWiISkdyB2j?v*(aN5=Jjf!$_Exlr0<9w@{g7kVY20Ams_qOCI?=$~h21uQ$v39@ zBY;T21Q>Wtj~eXNPrW~v=WJtFrE1*Xwqu>pOs{NXn$SLzFW2wyIsc;g(4OQ7;narP zP*TnW@QbnzGN0!xBe%Ji_)aw3eJUUuytabP=z+>9NXqb-p2QaDw43s!btCy0{ZP!K zL67kKTA>41u#p69A2ZPiC0s~-^7+z-3FcG+ek^hVd-c=%Q#I*SNqtF8key*wlplS1 zA|N-&%G|=N)P6xPhfFO+bA#W#-f- zYGGFB(a-pOb)92Zb_QLRBr;Ut42d?6Q88&c*}_67|Teu1KQwwiEh)) z_O5X1W+#NJ{5efyO$K4|T|N)8&roW4KtMqACAYXRznm8the(6O9ao5({#Bu4q6o+h z6MjNw8Jy2ehwNI!MOtVsz12HP_hrgBRmCbl(TZ+BQQfS)5$tsCU-&i}Ye~t17THUW zS97}oAlm!HC@Y*bL^8Xi-#$9U$ZjYPlL~(uqgW=@nC4?cPdAQ9hhxtmcAGi0n(3&r zV3AjYrs@FH7#~5WMq(%2mU#mOvA3eF_g&Qw@&Y~4ts!JfKpa-Jh;9jV+G_(G7jz~&Fv>tf&5 zfj-OWz|H$BFX3lE`siFHsuHc0qk8@Nb<5uBi|XFk_@?o4i96*W0?N9otN`pDtF?g6 z8-jjmY+AN9#LeH-RJwlsCqVB5KRrcoXsOimIRLqYAN8TnYh8sy3&qfbg+c)l!FXZr z$lFfF3-{72Z0i!GPXl6NIgph5*vs)eq#vhV3SIixPa~q(Wny0Yq>Dbs;|lFskJ{8H zKW(;*)ej$K9;d39M6Yr+_bMuCdUCPJB+oH=(*yZlrby!SP^pSKt@TWIVLCPTmla-O zuBNX(ed#E<4#$DxdABJ%-$r);iQ<)~h(m6NNWT%?(SCu-Wuqp5|( z!@qCv@<`5kW;jz};p#88>|e~}A#)VyfT@3RdDt8XRD*VQDruEQ&QZ3YPJIY4a(R_C zp>0K~cN<6&z$dJ%?<@_7b^;A+G(>`6(oY#j`q=Focb(e<8S>|~n-)j_ zv9xK*^t)Vf|Mj4&GRWysgT!W^H0i^xS>zEXf8iGm-jq$(DBYM%-9S174!(vRvS6&S z(TTAne;4^UW7xd`NEoOz@-_>V>;l`3W80J?fQu@e^_0%iDa{o**Kn(_m;r*vPfQEO zLLlSG?y;-H)OM{j%IYR~=hD&%$o+Ym;qQjKLUr;7s0fuAV6lVFzWQLv85|hJ~M_|NblekSuXB7deP3H%+)cL+ zulSPoqRfFN_)5uKe+rv8IVVb0q<>nqakusrz2lyz=JX(6-;)Sv)+0F+*-BnBt@kb^gp>@FInRrP_$?e=abe?6!{ex1KlTjbs z9=)p~s1k(xTZ{1l#^nrb+jRv*GsIq0mD^~)ewi_(&@x`R-DmHgp4;DhMhM-d^#k91 zj4lB%V4y$AW|7~dc4Y$`Z#8zg)ieKe#y5S0!w<=ZPvZfdpUB>rNs+OvsF)b(5$&n{ z^Evz9|A$f#tYWcOrk#=Be96C!^!2sDvvJ^x+Kh`Qnkcr>K_c?~WU{5qg2`#Mc!xbS zmoshLgY!4*zulNzC|u@VTVFj#oV#&wxCKknqW3rVhS%J|uW^0{ukXIp#~V=1)@m4# zIREj$MO-lN=D!$wtEE$2y*b~1>56QCyxwh|X4@A6Q-Ar|^LDV)bkXvb1##G4UMe0p zcb4Mw*vRnT`FZo5HUoBIvPC;)zW-A0xltH#xrA_y{}Ane^RJ;?E*~>5HrM#~U%J{F zmLhl2bfMBBYjrV#MBLk(3U-=w=Xs|3-IuDV!BXVw9q9SE2=e+12Tg&U=$teM#Cb>9BEpKv%Z}rAsCjd7FI%yCz4*6(_#mG@$~99{ z`SUxAzw$iC`viM*szPwyH!c48um84w8Gq5}vf(xJ|NUQIL|(bgExpGec7gj|^uoB! z4!tCyyE+T~*u^e#*xym@u1p>NZ{sZX`L6~9BiI*td;H0we{qoyhC85*IT5z|TMzuj z=fA#{3`StC?D{Tao2*m#Y*v-7^gn&~w+>VTBN$7I6TZjT9k6=F-8?^jmsinX1UK%9 z?=m(WRu6qd>bt!9GZ>*^UHNwz`x&gBqF8g>cX@Rwgw~5Mg%HHjQV2m%FNF}4xTPut z8FZ-%0oYoqLI6URfE*;oB_IdTatX*mV*KChg|^&$St*0S#}_~^$aUtF_DS+_3*UbN D5i&f~ literal 0 HcmV?d00001 diff --git a/docs/hazel-architecture-july-2024.tldr b/docs/hazel-architecture-july-2024.tldr new file mode 100644 index 0000000000..b313e0b55a --- /dev/null +++ b/docs/hazel-architecture-july-2024.tldr @@ -0,0 +1 @@ +{"tldrawFileFormatVersion":1,"schema":{"schemaVersion":2,"sequences":{"com.tldraw.store":4,"com.tldraw.asset":1,"com.tldraw.camera":1,"com.tldraw.document":2,"com.tldraw.instance":25,"com.tldraw.instance_page_state":5,"com.tldraw.page":1,"com.tldraw.instance_presence":5,"com.tldraw.pointer":1,"com.tldraw.shape":4,"com.tldraw.asset.bookmark":2,"com.tldraw.asset.image":5,"com.tldraw.asset.video":5,"com.tldraw.shape.group":0,"com.tldraw.shape.text":2,"com.tldraw.shape.bookmark":2,"com.tldraw.shape.draw":2,"com.tldraw.shape.geo":9,"com.tldraw.shape.note":7,"com.tldraw.shape.line":5,"com.tldraw.shape.frame":0,"com.tldraw.shape.arrow":5,"com.tldraw.shape.highlight":1,"com.tldraw.shape.embed":4,"com.tldraw.shape.image":4,"com.tldraw.shape.video":2,"com.tldraw.binding.arrow":0}},"records":[{"meta":{},"id":"asset:-11998747","type":"image","typeName":"asset","props":{"name":"Screenshot 2024-06-14 at 8.53.56 PM.png","src":"","w":999.9999999999999,"h":443.41372912801484,"mimeType":"image/png","isAnimated":false}},{"meta":{},"id":"asset:-1358159130","type":"image","typeName":"asset","props":{"name":"Screenshot 2024-06-14 at 12.53.32 PM.png","src":"","w":1000.0000000000001,"h":722.6962457337885,"mimeType":"image/png","isAnimated":false}},{"meta":{},"id":"asset:-1607072822","type":"image","typeName":"asset","props":{"name":"Screenshot 2024-04-06 at 5.17.18 AM.png","src":"","w":1000,"h":549.0887713109935,"mimeType":"image/png","isAnimated":false}},{"meta":{},"id":"asset:1833018429","type":"image","typeName":"asset","props":{"name":"Screenshot 2024-04-06 at 4.51.43 AM.png","src":"","w":1000,"h":433.4600760456274,"mimeType":"image/png","isAnimated":false}},{"meta":{},"id":"asset:557566456","type":"image","typeName":"asset","props":{"name":"Screenshot 2024-06-14 at 8.18.05 PM.png","src":"","w":999.9999999999999,"h":443.41372912801484,"mimeType":"image/png","isAnimated":false}},{"meta":{},"id":"asset:748446367","type":"image","typeName":"asset","props":{"name":"Screenshot 2024-06-14 at 8.36.27 PM.png","src":"","w":999.9999999999999,"h":443.41372912801484,"mimeType":"image/png","isAnimated":false}},{"meta":{},"id":"binding:-9bMg2q8diuH165s_3lU5","type":"arrow","fromId":"shape:i-K-zTAplWQpePo-gx_0b","toId":"shape:FVtG3gQMntrD2E4ycx_39","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:-D9c7LKGnIwI_mSVFwaJj","type":"arrow","fromId":"shape:LkMVCME4sYU7p4tjjqxMQ","toId":"shape:QDAE_spq4sBhYIdeRcllK","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.651591797171451,"y":0.6382975209670011},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:-HmBIx_lFXbXIPKhjYDh-","type":"arrow","fromId":"shape:vtt5PUApYFjL8lBjhLxfc","toId":"shape:BZTirJCMqisCDjRiY9Nql","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.4316966209138788,"y":0.48573601394157895},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:0UMy_H3NwdfWtzLTEuSQ_","type":"arrow","fromId":"shape:CHde8DU0ttewBtHDauQHT","toId":"shape:7YVVT2Gz1W4ie4Hs95iv9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:0lwIZR3d6aw4Uip8MpjrC","type":"arrow","fromId":"shape:19jRzkMv6BG83C6J_xgOT","toId":"shape:1bQaav96jcmu2kZWuu4jS","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.4316966209138788,"y":0.48573601394157895},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:0pKurucwzUl8YhjollIpM","type":"arrow","fromId":"shape:kedB4DNBtcabj2ekTKv8D","toId":"shape:AmBa_gaPgJ8BBWS5kp0Fa","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.4431938326418221,"y":0.332321395464957},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:17IqwcfVlMWFKXEbyNNMo","type":"arrow","fromId":"shape:fJsTleAqlp7ZyBuz2onm8","toId":"shape:pXml8h0hxq8pjZWnTxw3r","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.499254666199465,"y":0.48045215066643754},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:1_-aqI5EjjiTiLL6SfRTT","type":"arrow","fromId":"shape:xMf3nWKzGmQIDWWDjuZci","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.015456948297596276,"y":0.7220237837629602},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:1e5U1b5iRWnc6mMTiPoWp","type":"arrow","fromId":"shape:3kT-T5sNtyKe8nDwohoXc","toId":"shape:_w0MfFmvYUL4X_YXfpveg","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5339313257784831,"y":0.7455782094445537},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:1i8b9xJVSxuVEXZB0sOsn","type":"arrow","fromId":"shape:GmRUY4iwreO9v3UqO5jYB","toId":"shape:2aEoopQmLITghhMHI40h0","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:1xZ0rzB9Ysj3gsrdrVJTE","type":"arrow","fromId":"shape:X7bEHWA2G4z2NTtTp1Qw2","toId":"shape:D-CuL6B4Zf4JvihxGMrPR","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2484246502189469,"y":0.5090426814564746},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:2P-AKGZkpk-R392ODya2R","type":"arrow","fromId":"shape:XKKOTGkr2O7B2_QfYPQD-","toId":"shape:2aEoopQmLITghhMHI40h0","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:2e4zLwvxVt-FA8IwCjJMZ","type":"arrow","fromId":"shape:QfDuhemlqGocpv185La86","toId":"shape:GCT4h5nilU7tiS9kaB3Rw","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5061411940617323,"y":0.39305522064142756},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:2kWRRrtFTpLuxLvYTFWvb","type":"arrow","fromId":"shape:KW9KvY9eAI5IZFKg3h7tq","toId":"shape:FVtG3gQMntrD2E4ycx_39","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.4431938326418221,"y":0.332321395464957},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:3vKyNu-80rMnqKLqLMHlj","type":"arrow","fromId":"shape:s2QFCo-qLzoRoPB623UPg","toId":"shape:Ra9uqsiCo5d72aJDvbqby","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.47143095814885977,"y":0.4696165903062455},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:4QOvoHAca07tF-owNaUgE","type":"arrow","fromId":"shape:2wt9mwb6iYWczylffB7Tc","toId":"shape:G3wu3DUUWZqhJnbduYLSW","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.510561797752809,"y":0.560043404870991},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:4hm4hZ1zMhKW8QHgerxiY","type":"arrow","fromId":"shape:ycJcFqMPHcVeL-p2tyQLW","toId":"shape:jyXGM-WuWat-W1dooE4u9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.25598394515444134,"y":0.5762267367029811},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:5QCsMVb3ISlz3HlwPdcTP","type":"arrow","fromId":"shape:SomNgLAnnWcKJar0oZb2e","toId":"shape:2aEoopQmLITghhMHI40h0","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:5dIG9A8PV3ClFo9vs-Vfb","type":"arrow","fromId":"shape:0hAN2NYmlAMbv990Lf3ks","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.9683984911069102,"y":0.29437648191831245},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:5hLOg6mkmlPrZmXSyricW","type":"arrow","fromId":"shape:IhuNjv5Mnh2-n1VmSAmC3","toId":"shape:P_D3IRLK5vIhsEh8uEUZV","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.463801531444807,"y":0.8069721587295955},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:5lrQKu7AK768JoTqTupNL","type":"arrow","fromId":"shape:X7bEHWA2G4z2NTtTp1Qw2","toId":"shape:zxOMqrymmUJ1uTBVlWeyn","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6981701444622793,"y":0.48782252230528095},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:5raz-P-zbSyiSEFfDg_DY","type":"arrow","fromId":"shape:hGKz6lYibDg3m75bClNmv","toId":"shape:qUGq_ge1ZoyvFAUZpQ-1x","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5529651865675675,"y":0.38261036614831173},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:6-FcqpPLl_6xIBzzWxDxZ","type":"arrow","fromId":"shape:d2pID3NwSpV1ryDmel2Sx","toId":"shape:YcWUaq_GI_MiRusTzpZEY","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2267250412893077,"y":0.7228051443380653},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:6uFlawLfg5aPG0BFf8qZf","type":"arrow","fromId":"shape:q1CZljtNHskj05uUYXtrP","toId":"shape:AmBa_gaPgJ8BBWS5kp0Fa","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:6y88dZ2tVu7NAufYvO-i7","type":"arrow","fromId":"shape:iOo1MtEuxU6JjyAWjJQ1L","toId":"shape:GxtwIvm8gVH4psG4l0bei","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5780990273904612,"y":0.5159636618992341},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:79iwVj6Jj6EFeIec2T79L","type":"arrow","fromId":"shape:fndTqfRIPzHG0uHWdZT1V","toId":"shape:9pU7rAH2eV-D3RK1PpiwK","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:7Q4Jgpx3Ap3EvqmWm7kUu","type":"arrow","fromId":"shape:WENiQb6VBbHom8Wcwztnm","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5111488497164574,"y":0.39759389796565686},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:7sbeL4jCEUf-Fymb8qbIF","type":"arrow","fromId":"shape:iOo1MtEuxU6JjyAWjJQ1L","toId":"shape:G3wu3DUUWZqhJnbduYLSW","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5220235626500418,"y":0.48113993305636243},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:8-HS4qHRU20ra7402zcDy","type":"arrow","fromId":"shape:lZaFDvg3KW0zU_pmbxAK2","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.5138042177494682,"y":0.33129512179763493},"isExact":false,"isPrecise":false}},{"typeName":"binding","id":"binding:8IHP_yw6uDIq0rZIekOG5","type":"arrow","fromId":"shape:gw57AABDJM78Nz0ZLkktv","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.420205597326017,"y":0.1737244723725585},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:8n48fJYA1RCHC60NPIQiF","type":"arrow","fromId":"shape:3tbvsHiG8EkBqRwCZNF6P","toId":"shape:uKGPHzttKvTm0qoyO0NrF","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.7146709470304976,"y":0.44972269110200147},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:8oC5qtBedDE1ywy5P0Xfa","type":"arrow","fromId":"shape:UmxRaY6IuJGqPuw21yAu7","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.32834560495975423,"y":0.38065378718546944},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:8rulOI4cx-KVYeB5ly1ow","type":"arrow","fromId":"shape:GaQeAbQNB08qdotxv4NfD","toId":"shape:jyXGM-WuWat-W1dooE4u9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:8uJL8ydn3L6fG8oq0w0-L","type":"arrow","fromId":"shape:q1CZljtNHskj05uUYXtrP","toId":"shape:1bQaav96jcmu2kZWuu4jS","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5300000949755265,"y":0.6404583101389041},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:9Gchhaw593GrO-GIHH95Z","type":"arrow","fromId":"shape:XVYpYm1e-oEgPTUjKAZC8","toId":"shape:uKGPHzttKvTm0qoyO0NrF","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6981701444622793,"y":0.48782252230528095},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:9IdaS2FpFraPDcYkLVY_M","type":"arrow","fromId":"shape:2xDyIzGAJyt2F2xYMynxF","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.37854296875,"y":0.4701421930342386},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:9t_BazpZMEjcKOSyFJE91","type":"arrow","fromId":"shape:XVYpYm1e-oEgPTUjKAZC8","toId":"shape:GCT4h5nilU7tiS9kaB3Rw","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2484246502189469,"y":0.5090426814564746},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:AC9Eu2E3FgWfQpjlfz-J0","type":"arrow","fromId":"shape:s1mZUi48L7J5hd7UTrbkB","toId":"shape:dgrW3aui1oblnz88toNid","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.7294539861977568,"y":0.861206830422191},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:AVeET2d0SfS75NErNMu5M","type":"arrow","fromId":"shape:MA_5pNt4JARnYuEW8OgmV","toId":"shape:dKtfqKQq2KhcURGG5SvWf","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5780990273904612,"y":0.5159636618992341},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:AjAU3kyxcVzFrNRD-Iu_T","type":"arrow","fromId":"shape:RbXkv1b6ZP7AsTliXpzyn","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.5144654908139543,"y":0.9142938952028964},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:B7679d9EseQvn6LS7xKQm","type":"arrow","fromId":"shape:SgdF5TmGxAGa1Z15kjVc9","toId":"shape:KQ6XkjEbAq-r5QtfNrsFO","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.499254666199465,"y":0.48045215066643754},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:BmH9HpoLYYKjfsZ_8MbY4","type":"arrow","fromId":"shape:HIy8JzhSCmCE2ciUS96sR","toId":"shape:7iEGsy1__1OQkvTKWjolO","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Bsy7zht0BqM3okXZRdEAP","type":"arrow","fromId":"shape:yRsDj6Z0BcE9xpLJcq8pr","toId":"shape:BOG7SVdZ2f39LGyga13Jj","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.651591797171451,"y":0.6382975209670011},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:C52T7FvdpdIw0VKBDRLjk","type":"arrow","fromId":"shape:UWTCarsDnIK-lu8yuNbEC","toId":"shape:G3wu3DUUWZqhJnbduYLSW","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.7146709470304976,"y":0.44972269110200147},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:CFy_764syKZVITVfefkrG","type":"arrow","fromId":"shape:z9yvyhFGdLSZPWO9naPpo","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.14394140625000004,"y":0.16375374483471086},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:C_Gz3ep3WhV-GY60aKGaR","type":"arrow","fromId":"shape:dZo8zQVBwOxgy7eGya8h2","toId":"shape:3Xwh9pPy_Vq2Tpp-QWBFu","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.29856798884805474,"y":0.5180853629129492},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:Cqhvfz3ha-tC3KPl9rl5o","type":"arrow","fromId":"shape:lb9g-ewClq6--ZPVhLHAj","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Ctw94ryyUSl119mFfO6vZ","type":"arrow","fromId":"shape:JvuduKzEDpwvRUs6FysRj","toId":"shape:DkuFaBtZQ0VD9_amGhmUd","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:CuOc_-YNqyQ2YzWWRQElR","type":"arrow","fromId":"shape:19jRzkMv6BG83C6J_xgOT","toId":"shape:_w0MfFmvYUL4X_YXfpveg","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.587633107430793,"y":0.7157953247925531},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:CxaOqmXjbk9a6MBxNADrU","type":"arrow","fromId":"shape:s1mZUi48L7J5hd7UTrbkB","toId":"shape:dgrW3aui1oblnz88toNid","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.7297311433947663,"y":0.7132359834693909},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:Da1KVCxjtw0bGHDh76Qwt","type":"arrow","fromId":"shape:GaQeAbQNB08qdotxv4NfD","toId":"shape:p9N3WGy791UdwfyuCfxCf","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5672815425299089,"y":0.7731383721971058},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:DaBa_ad94EReBmyDuYHSm","type":"arrow","fromId":"shape:6dg9HlxgNiFGn87L1YA8x","toId":"shape:VET_kSFB-ZqW_fCW_Y1zP","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.43253169200545627,"y":0.3798292503141827},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Dc8NuN6YnyvtnttaG9yIM","type":"arrow","fromId":"shape:CHde8DU0ttewBtHDauQHT","toId":"shape:DgKNN5LS5b1V86TcA29Oo","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.47143095814885977,"y":0.4696165903062455},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:DmCSfjj5CbeWR--5pjMhD","type":"arrow","fromId":"shape:WTvQhWRKBwF53v-kJMo91","toId":"shape:4Y1hZbQrpWQf8YlRvQFcl","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:Dx50xbDLQMSSgyz37uQ9w","type":"arrow","fromId":"shape:xMf3nWKzGmQIDWWDjuZci","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.06828449311216582,"y":0.5011840125801249},"isExact":false,"isPrecise":true}},{"typeName":"binding","id":"binding:ElxFo541tizVMYb2YmwA2","type":"arrow","fromId":"shape:0hAN2NYmlAMbv990Lf3ks","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.932154783145522,"y":0.623951457935702},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:FDSus9ymIHBnIf57Y7VTJ","type":"arrow","fromId":"shape:3kT-T5sNtyKe8nDwohoXc","toId":"shape:GxtwIvm8gVH4psG4l0bei","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:FSG_rdcQM4XThV1fZOLkE","type":"arrow","fromId":"shape:SNJOEUTwLOiA-xGZenMIM","toId":"shape:p9N3WGy791UdwfyuCfxCf","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Fc8Rn292a41gICf42MLSC","type":"arrow","fromId":"shape:yiZUpNwiAX7eT0_lYo5Gv","toId":"shape:D-CuL6B4Zf4JvihxGMrPR","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5061411940617323,"y":0.39305522064142756},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:Ft4Wgop1mvQTm1_ctBfwc","type":"arrow","fromId":"shape:OMpd95aqJpvJf3LCse4ni","toId":"shape:BZTirJCMqisCDjRiY9Nql","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5300000949755265,"y":0.6404583101389041},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:GRlFCw06YphK6JJW-Q_lu","type":"arrow","fromId":"shape:CIOG862dWnY3vwxEiX4DV","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:GdhZTMkntHHysmQsr75aE","type":"arrow","fromId":"shape:Z9KwXcTxaLes_YBUyeAhG","toId":"shape:dgrW3aui1oblnz88toNid","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.2807602405705946,"y":0.6892064776429885},"isExact":false,"isPrecise":true}},{"typeName":"binding","id":"binding:Gm54eq3-Tm691lKNdqMsK","type":"arrow","fromId":"shape:mB66zbkLQ4JDjblJx1TDy","toId":"shape:dgrW3aui1oblnz88toNid","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.27984694161663964,"y":0.8479802499216978},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:H40lFbWB1DMDEDhTY5LO5","type":"arrow","fromId":"shape:PZXngPCGkpbZ73Lvpx98P","toId":"shape:YPa7XKdHRnd-xF6q1btM1","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.4316966209138788,"y":0.48573601394157895},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:H8UaJP4GuTUBmO0MV37wf","type":"arrow","fromId":"shape:xPKkxuRa8Xb3VMuu3n1JY","toId":"shape:uKGPHzttKvTm0qoyO0NrF","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.510561797752809,"y":0.560043404870991},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:HAOK-0HhmpnoUb_FVgEZ9","type":"arrow","fromId":"shape:xC9BYGCv_UVX9q8I3E7V3","toId":"shape:Ra9uqsiCo5d72aJDvbqby","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.463801531444807,"y":0.8069721587295955},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:If_XZ3_ywo7NBHhz0-rwL","type":"arrow","fromId":"shape:M2qtJOWVkk-28rM8rniMx","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.50221484375,"y":0.6906813385478159},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:J3Um1P4b55pVbe0d64p1_","type":"arrow","fromId":"shape:OMpd95aqJpvJf3LCse4ni","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:J92adErLSAJChZrRp03UJ","type":"arrow","fromId":"shape:GX_ZeICc5QxlmVYTpKfeA","toId":"shape:jyXGM-WuWat-W1dooE4u9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:JMXMF81J_ZAvSpi8gSSPg","type":"arrow","fromId":"shape:77OsxMdoGXuuGfuAzSJHp","toId":"shape:1bQaav96jcmu2kZWuu4jS","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.44452651220649975,"y":0.8517000241138172},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Jb_N6WilBuNZ9hBwWbQ1I","type":"arrow","fromId":"shape:LkMVCME4sYU7p4tjjqxMQ","toId":"shape:AmBa_gaPgJ8BBWS5kp0Fa","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5197343030428104,"y":0.2551636632059013},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:JqImmmVHkIjJJvuKxFu7Z","type":"arrow","fromId":"shape:JwVmPFsj5ObIFx8uRv2iK","toId":"shape:O_ftP9qRmzA2WhjPiXtLQ","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:JwdrJyk9If8YOboF5iSvd","type":"arrow","fromId":"shape:SgdF5TmGxAGa1Z15kjVc9","toId":"shape:_w0MfFmvYUL4X_YXfpveg","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:KCueo-L5X6lC2FMMjezqU","type":"arrow","fromId":"shape:dZo8zQVBwOxgy7eGya8h2","toId":"shape:Ra9uqsiCo5d72aJDvbqby","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2156461448500543,"y":0.5915119363395226},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:KPOmCjwUis4OTd9fpVgTB","type":"arrow","fromId":"shape:KmrmEDwMiduQa93gpqcAQ","toId":"shape:E_jgiIBog0wnPOPSKLDah","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5061411940617323,"y":0.39305522064142756},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:KXC_WecVEiP00zrzNuhOr","type":"arrow","fromId":"shape:XKKOTGkr2O7B2_QfYPQD-","toId":"shape:P_D3IRLK5vIhsEh8uEUZV","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.47143095814885977,"y":0.4696165903062455},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:KdwZI7pDNuSCDkVh7_K5L","type":"arrow","fromId":"shape:_vkXN_hNlrtMYPUif5k6i","toId":"shape:qKcUEKvOEdNw0RpdeF-vL","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.748162478701241,"y":0.33232293705063504},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:KozpMpS69QRt_pasp8npf","type":"arrow","fromId":"shape:xWbfBexPdz3Nw852ZRHcH","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.33021815467042437,"y":0.5305142805113121},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:LaikbrW0tYuwPn0cV0q_K","type":"arrow","fromId":"shape:sOAfJ5xWA0AXIHtQDfheT","toId":"shape:_w0MfFmvYUL4X_YXfpveg","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:MVT_2zbpbiv7SeqJgzXaf","type":"arrow","fromId":"shape:BsHK32d6Tkha0ckACpnAY","toId":"shape:O_ftP9qRmzA2WhjPiXtLQ","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:Mg3zZMLdTU6o1LzFdR37Z","type":"arrow","fromId":"shape:T10a947UNSBGtqD9wmnfF","toId":"shape:4Y1hZbQrpWQf8YlRvQFcl","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.4215837377101142,"y":0.5159446549916661},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:MugkNCMP3bkqTUXEDfRNo","type":"arrow","fromId":"shape:JwVmPFsj5ObIFx8uRv2iK","toId":"shape:7VVliMoBWEVwsBYLJSqan","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5672815425299089,"y":0.7731383721971058},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:NGqfdBrPuXyYNcNQTOHpp","type":"arrow","fromId":"shape:5iVvbQyivH2SRAeu9QpXk","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.5417089503995272,"y":0.7043154660884067},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:NQygJZ_wHrsdyZvdw3iT2","type":"arrow","fromId":"shape:LEBck_Z9DJvww7jr0Bi9y","toId":"shape:zLKOaXUf-h90REdz_U-Ti","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Ne3CRiG0505XO6wby9C-z","type":"arrow","fromId":"shape:GX_ZeICc5QxlmVYTpKfeA","toId":"shape:ctvj_gHuvkoOJI4qWru6F","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:O11DlYWLzQAwbKTKEAJcM","type":"arrow","fromId":"shape:OQ42YufY7SAWLHZ1-2oRI","toId":"shape:DgKNN5LS5b1V86TcA29Oo","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2156461448500543,"y":0.5915119363395226},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:O35TnRfUitSDa8L1CIiJY","type":"arrow","fromId":"shape:RzmUL57GZkZH4iB0YBdxQ","toId":"shape:qUGq_ge1ZoyvFAUZpQ-1x","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5780990273904612,"y":0.5159636618992341},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:OIWNngPsQ8FIAtQ3gJ0QY","type":"arrow","fromId":"shape:GmRUY4iwreO9v3UqO5jYB","toId":"shape:P_D3IRLK5vIhsEh8uEUZV","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5484921894578565,"y":0.3075717386062214},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:OIvg0nnUS-8UYlD1bKNuS","type":"arrow","fromId":"shape:DMYTDgc-dY-Crd2LFIwQT","toId":"shape:kI4Iz1Ot9uJyr5JiE3YaN","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:PC5ftRqE8vjPPjiO0DKnQ","type":"arrow","fromId":"shape:nymu8EpwlMapQnKLGUAiN","toId":"shape:lEPvpUN1Mdv_RziJ7oGLM","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.4215837377101142,"y":0.5159446549916661},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:QkGnTRBfMDHV9655q4jZ6","type":"arrow","fromId":"shape:HIy8JzhSCmCE2ciUS96sR","toId":"shape:9pU7rAH2eV-D3RK1PpiwK","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5672815425299089,"y":0.7731383721971058},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:RSHSFh3gOrBDt2JiD-DKo","type":"arrow","fromId":"shape:3tbvsHiG8EkBqRwCZNF6P","toId":"shape:P_D3IRLK5vIhsEh8uEUZV","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.564155041349929,"y":0.4496021220159151},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:SKPKlhWHuhcNUWqUqmK7M","type":"arrow","fromId":"shape:R2d7nyNKsqBWNCyW5sgga","toId":"shape:kI4Iz1Ot9uJyr5JiE3YaN","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5339313257784831,"y":0.7455782094445537},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:SkMk0qj0ogF7mKcRGTkb_","type":"arrow","fromId":"shape:nn0Y_sIhrHEjwcU3CZuG1","toId":"shape:YPa7XKdHRnd-xF6q1btM1","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.44452651220649975,"y":0.8517000241138172},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:Sr_5149sYZpyDm4kzgHyl","type":"arrow","fromId":"shape:ObyZ8daDZKqe5DSavd_ht","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.535542021820611,"y":0.5458742855091813},"isExact":false,"isPrecise":false}},{"meta":{},"id":"binding:TKI0b2chuT7koxp6iCM0w","type":"arrow","fromId":"shape:hGKz6lYibDg3m75bClNmv","toId":"shape:hRdJrZsZ69P0YFsm8XZoX","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6158728374376157,"y":0.59126274492641},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:TfKNuH_dNHeF5kBpPHCxM","type":"arrow","fromId":"shape:WENiQb6VBbHom8Wcwztnm","toId":"shape:qqTAenTwzcWNjiLiTOsP-","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.7179951835571474,"y":0.6667971300754405},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Tne9V3gD0FeZmD3sLZ1tu","type":"arrow","fromId":"shape:6dg9HlxgNiFGn87L1YA8x","toId":"shape:hRdJrZsZ69P0YFsm8XZoX","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:TudTpKhV7topZ-113VYZ2","type":"arrow","fromId":"shape:XoliLCRhQHwDk9KF38w56","toId":"shape:BZTirJCMqisCDjRiY9Nql","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.44452651220649975,"y":0.8517000241138172},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:UjH6BU1bNXd_W7HdOhzl8","type":"arrow","fromId":"shape:cWIOgqFzysd5NSGkCjS0w","toId":"shape:G3wu3DUUWZqhJnbduYLSW","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6981701444622793,"y":0.48782252230528095},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:UsB-TpdjrIqRj_1yKDypC","type":"arrow","fromId":"shape:yiZUpNwiAX7eT0_lYo5Gv","toId":"shape:7VVliMoBWEVwsBYLJSqan","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.6215327423505862,"y":0.778381469831284},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Uzjis6FTX_3lo6s23y4-f","type":"arrow","fromId":"shape:BsHK32d6Tkha0ckACpnAY","toId":"shape:YM0tOYqaWzn0GuVrECrxA","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:V2I-egvhcnDsZcntrK_Rk","type":"arrow","fromId":"shape:TixB21lRZF9BAYrk5MOhf","toId":"shape:DkuFaBtZQ0VD9_amGhmUd","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:VbObVa4NQL-bevVHorVrB","type":"arrow","fromId":"shape:B4eTkhj0q9z0_ODyg-01J","toId":"shape:8ZngylXEGZMi7Z21dbLgb","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.29856798884805474,"y":0.5180853629129492},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:Ve4-OudSpCsh64VvBUl31","type":"arrow","fromId":"shape:XoliLCRhQHwDk9KF38w56","toId":"shape:D-CuL6B4Zf4JvihxGMrPR","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.4041973726369753,"y":0.5830721003134797},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:WW0HodomSAnSJJuazom-A","type":"arrow","fromId":"shape:lb9g-ewClq6--ZPVhLHAj","toId":"shape:9ZkamnBcyPaD8hqn5-xrM","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.651591797171451,"y":0.6382975209670011},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:Wbah-ymAHV9uACBCnKgQs","type":"arrow","fromId":"shape:gw57AABDJM78Nz0ZLkktv","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.4547602107930997,"y":0.1772111075132691},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:XGVQ8x8DIWiqjwY4vs9yj","type":"arrow","fromId":"shape:B4eTkhj0q9z0_ODyg-01J","toId":"shape:P_D3IRLK5vIhsEh8uEUZV","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2156461448500543,"y":0.5915119363395226},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:Y0YrM-OpPrbP3NhNBhZHT","type":"arrow","fromId":"shape:SomNgLAnnWcKJar0oZb2e","toId":"shape:kI4Iz1Ot9uJyr5JiE3YaN","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:ZW9YfIh8xicoI1CNBUtWl","type":"arrow","fromId":"shape:-HzpPlPej2sFR_lAf-Ube","toId":"shape:_SfXnshVM36jz15lr_ent","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.4215837377101142,"y":0.5159446549916661},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:ZaSwEceDpAijOFsOTit8Q","type":"arrow","fromId":"shape:2T4b-tcwlsgLNVjEA3thd","toId":"shape:O_ftP9qRmzA2WhjPiXtLQ","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2619762221939643,"y":0.14143314239027124},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:_5wY3fOEY4xQ4Gtw7z8sX","type":"arrow","fromId":"shape:5iVvbQyivH2SRAeu9QpXk","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.5688929697096403,"y":0.6824394241318137},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:_9bXKmr8Dare7R8a9-TW0","type":"arrow","fromId":"shape:_lQKqvWRP_Uyf5tvLMBsH","toId":"shape:DgKNN5LS5b1V86TcA29Oo","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5484921894578565,"y":0.3075717386062214},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:_FiFRr-Zsw4vN8j3ZYPEY","type":"arrow","fromId":"shape:A5pwYUZYcThj838st96eb","toId":"shape:2aEoopQmLITghhMHI40h0","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5174628404609217,"y":0.5114600534055912},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:_VLJfG0a-KYZ451JIgRQB","type":"arrow","fromId":"shape:R3b8t1WRF0i-viHqDIavf","toId":"shape:qKcUEKvOEdNw0RpdeF-vL","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.7131251331981365,"y":0.2248361578805638},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:_rnSQ-Hd75GkRn1gJdaFw","type":"arrow","fromId":"shape:BWmCOBsOdE3Le-NXEwEFl","toId":"shape:AmBa_gaPgJ8BBWS5kp0Fa","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:aRLzIm_kT-QhE27qv0BFs","type":"arrow","fromId":"shape:z9yvyhFGdLSZPWO9naPpo","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.50641015625,"y":0.2243612012987014},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:anx0izRykdYYjPF7P6rbj","type":"arrow","fromId":"shape:xPKkxuRa8Xb3VMuu3n1JY","toId":"shape:8ZngylXEGZMi7Z21dbLgb","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.24458243568622481,"y":0.15939233180612492},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:bW7xODDbRcTaZqYx0hneZ","type":"arrow","fromId":"shape:s2QFCo-qLzoRoPB623UPg","toId":"shape:DkuFaBtZQ0VD9_amGhmUd","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:bfazn22pf7FEv8uV3fwd8","type":"arrow","fromId":"shape:2T4b-tcwlsgLNVjEA3thd","toId":"shape:O_ftP9qRmzA2WhjPiXtLQ","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.25598394515444134,"y":0.5762267367029811},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:bqgkIKbFqTYkpIAifrZXM","type":"arrow","fromId":"shape:_lQKqvWRP_Uyf5tvLMBsH","toId":"shape:7YVVT2Gz1W4ie4Hs95iv9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:cZOMDw9xZapWOfk0FAZ5f","type":"arrow","fromId":"shape:RzmUL57GZkZH4iB0YBdxQ","toId":"shape:uKGPHzttKvTm0qoyO0NrF","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5220235626500418,"y":0.48113993305636243},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:ciNwtTgt6MM2hubnh1DZC","type":"arrow","fromId":"shape:pHE52a9X57ZTUm5d-MOAG","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.21164205412959336,"y":0.7683468664215602},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:cm-6Qt9QlCnCur5ugAwf0","type":"arrow","fromId":"shape:UWTCarsDnIK-lu8yuNbEC","toId":"shape:DgKNN5LS5b1V86TcA29Oo","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.564155041349929,"y":0.4496021220159151},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:cm3HULSlL_7WON0f7Ip6g","type":"arrow","fromId":"shape:_vkXN_hNlrtMYPUif5k6i","toId":"shape:qKcUEKvOEdNw0RpdeF-vL","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.7950707620025415,"y":0.36060258451474597},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:eZry67WjMJQLUCw-uy2lf","type":"arrow","fromId":"shape:77OsxMdoGXuuGfuAzSJHp","toId":"shape:E_jgiIBog0wnPOPSKLDah","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.4041973726369753,"y":0.5830721003134797},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:eq2j7dVvZsB79LNCfSCBc","type":"arrow","fromId":"shape:fndTqfRIPzHG0uHWdZT1V","toId":"shape:1bQaav96jcmu2kZWuu4jS","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.514072461514539,"y":0.4877019532191946},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:ey5r4OfJuEchVMD82Jdk6","type":"arrow","fromId":"shape:c2H4ry2130dooylspa1nd","toId":"shape:dgrW3aui1oblnz88toNid","meta":{},"props":{"terminal":"start","normalizedAnchor":{"x":0.7282872863779646,"y":0.5498036780033532},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:f32EIyxrdkRw3NoFnphIl","type":"arrow","fromId":"shape:9PNy-e3Ya3rg9aQsBXfZ8","toId":"shape:lEPvpUN1Mdv_RziJ7oGLM","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:g60BFGXa8zfif-2N-qVxK","type":"arrow","fromId":"shape:_8qyzTRocBErJIyO-43Kr","toId":"shape:7iEGsy1__1OQkvTKWjolO","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:gPaCKnnbD9mys05VvxjLo","type":"arrow","fromId":"shape:2xDyIzGAJyt2F2xYMynxF","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.47340625000000003,"y":0.4314362271251477},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:gjXcVkMEV7L8LLUuIqPSM","type":"arrow","fromId":"shape:QfDuhemlqGocpv185La86","toId":"shape:p9N3WGy791UdwfyuCfxCf","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.6215327423505862,"y":0.778381469831284},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:h2mCAsBKMPC1N6Zh8YUxd","type":"arrow","fromId":"shape:OQ42YufY7SAWLHZ1-2oRI","toId":"shape:Cq7SKBRDNDXZGzZyatGSj","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.29856798884805474,"y":0.5180853629129492},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:hB9Y8OJRUygA-TTCSC0B4","type":"arrow","fromId":"shape:HjbclAjtUOP3RDxmGnGU8","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.14601441536003773,"y":0.5752514163729141},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:hDFyYxjMoGhTIODHHlsK4","type":"arrow","fromId":"shape:e_RDZBv7uM0cR17TOTKuP","toId":"shape:xpGah9sf5rXRTLVw1PY9R","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6197335794795038,"y":0.5241190109129806},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:i2W-INAf50vexaw6EwdI9","type":"arrow","fromId":"shape:fJsTleAqlp7ZyBuz2onm8","toId":"shape:qqTAenTwzcWNjiLiTOsP-","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:jQW0yfJibEhzTMFGByJ4S","type":"arrow","fromId":"shape:KTRXw1PoNbWLo9uBO1TsS","toId":"shape:YPa7XKdHRnd-xF6q1btM1","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5300000949755265,"y":0.6404583101389041},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:jW9DLmB4zpSLLIZ73yMRv","type":"arrow","fromId":"shape:SNJOEUTwLOiA-xGZenMIM","toId":"shape:YPa7XKdHRnd-xF6q1btM1","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.514072461514539,"y":0.4877019532191946},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:j_EginPDtEzd4hyts9fED","type":"arrow","fromId":"shape:S9FRwwwI2zMljJUhlUEU_","toId":"shape:3Xwh9pPy_Vq2Tpp-QWBFu","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.24458243568622481,"y":0.15939233180612492},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:jwKV5gYLppgEVfEslslmN","type":"arrow","fromId":"shape:KmrmEDwMiduQa93gpqcAQ","toId":"shape:9pU7rAH2eV-D3RK1PpiwK","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.6215327423505862,"y":0.778381469831284},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:k6zkK-c0P76ZlFHSPlrUB","type":"arrow","fromId":"shape:9fIGIX4T-adEW6HrpaMay","toId":"shape:G3wu3DUUWZqhJnbduYLSW","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5299357931954296,"y":0.7865420489709914},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:kLVaOTI5rqt-bLrx0RtID","type":"arrow","fromId":"shape:M2qtJOWVkk-28rM8rniMx","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.35562109375,"y":0.7985564492325856},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:k_0Xvvh0Pn3gozGgjdb56","type":"arrow","fromId":"shape:lZaFDvg3KW0zU_pmbxAK2","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.5657277750414255,"y":0.44870406450487543},"isExact":false,"isPrecise":true}},{"typeName":"binding","id":"binding:kc5mvxoZcnrnK6cQ80fZp","type":"arrow","fromId":"shape:Z9KwXcTxaLes_YBUyeAhG","toId":"shape:dgrW3aui1oblnz88toNid","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.2815336411298687,"y":0.5723960415654292},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:l6F88qXc9YaTQR3cJhjjL","type":"arrow","fromId":"shape:2wt9mwb6iYWczylffB7Tc","toId":"shape:Cq7SKBRDNDXZGzZyatGSj","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.24458243568622481,"y":0.15939233180612492},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:lBtOeC3Vz1Lpz-2GtFPIM","type":"arrow","fromId":"shape:KjKsYp5J7rHrrmyzq-Xd1","toId":"shape:7VVliMoBWEVwsBYLJSqan","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:lFouuOaPktGtDLPVTmK4s","type":"arrow","fromId":"shape:ObyZ8daDZKqe5DSavd_ht","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.5679047751301272,"y":0.5480303160360372},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:lRDyFbf0a6TptPuC9HOhR","type":"arrow","fromId":"shape:LEBck_Z9DJvww7jr0Bi9y","toId":"shape:Ra9uqsiCo5d72aJDvbqby","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.3592443854956412,"y":0.528357566098055},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:m1is_NZg9GA_06A7l_4Q_","type":"arrow","fromId":"shape:-HzpPlPej2sFR_lAf-Ube","toId":"shape:QDAE_spq4sBhYIdeRcllK","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5000000000000012},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:mF_UX-W0OgJvrVFCvuaYy","type":"arrow","fromId":"shape:T10a947UNSBGtqD9wmnfF","toId":"shape:9ZkamnBcyPaD8hqn5-xrM","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5000000000000012},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:mGS9UedQz9a7ypAoAEPCE","type":"arrow","fromId":"shape:t99S409lLaI9YbcXY7rtG","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:mN9M27mhV3S_FTG1N3Cch","type":"arrow","fromId":"shape:HIk2obfXoDdVROC3hEIz1","toId":"shape:IlObtdZpL098NiPei2tfo","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.7058777089207693,"y":0.2970079654057002},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:mO8ERiabKDNtESMoVP97O","type":"arrow","fromId":"shape:e_RDZBv7uM0cR17TOTKuP","toId":"shape:_SfXnshVM36jz15lr_ent","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:msL6Srekqk8lzQlRkszGD","type":"arrow","fromId":"shape:yRsDj6Z0BcE9xpLJcq8pr","toId":"shape:hRdJrZsZ69P0YFsm8XZoX","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5197343030428104,"y":0.2551636632059013},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:nBkB0cdPca5SgbNtpY4ID","type":"arrow","fromId":"shape:KjKsYp5J7rHrrmyzq-Xd1","toId":"shape:BZTirJCMqisCDjRiY9Nql","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.514072461514539,"y":0.4877019532191946},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:nOqrpTg0zg8J61A89CpFe","type":"arrow","fromId":"shape:sOAfJ5xWA0AXIHtQDfheT","toId":"shape:7YVVT2Gz1W4ie4Hs95iv9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:nx-d7tQDeOsAKr-sCzxcS","type":"arrow","fromId":"shape:S9FRwwwI2zMljJUhlUEU_","toId":"shape:zxOMqrymmUJ1uTBVlWeyn","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.510561797752809,"y":0.560043404870991},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:oAEXFv2zrqnWIBQ1RW2q_","type":"arrow","fromId":"shape:A5pwYUZYcThj838st96eb","toId":"shape:hRdJrZsZ69P0YFsm8XZoX","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.4431938326418221,"y":0.332321395464957},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:oZEBMENIqs9h4A21d_o0z","type":"arrow","fromId":"shape:HIk2obfXoDdVROC3hEIz1","toId":"shape:IlObtdZpL098NiPei2tfo","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.665018591934915,"y":0.2860534192394702},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:oakOrvM4jbIgcG5n2t71g","type":"arrow","fromId":"shape:yaO9kAg7FGrJF3Raoqv67","toId":"shape:7iEGsy1__1OQkvTKWjolO","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.25598394515444134,"y":0.5762267367029811},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:ofiHeQYkv3rVKDoFP6B0p","type":"arrow","fromId":"shape:HjbclAjtUOP3RDxmGnGU8","toId":"shape:zLKOaXUf-h90REdz_U-Ti","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.48306657388077,"y":0.43218170185540594},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:pCGqvhPBwZrTC0diqh8Vi","type":"arrow","fromId":"shape:DMYTDgc-dY-Crd2LFIwQT","toId":"shape:VET_kSFB-ZqW_fCW_Y1zP","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.499254666199465,"y":0.48045215066643754},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:pPT1D498_oyL5Z6qE3RjH","type":"arrow","fromId":"shape:yaO9kAg7FGrJF3Raoqv67","toId":"shape:7iEGsy1__1OQkvTKWjolO","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2619762221939643,"y":0.14143314239027124},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:p_ldgwa5PkLdVMxtRgWu1","type":"arrow","fromId":"shape:xWbfBexPdz3Nw852ZRHcH","toId":"shape:FVtG3gQMntrD2E4ycx_39","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2807872318508237,"y":0.5871543510485352},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:ptVHjh7zKA6Hhg6qWoRIN","type":"arrow","fromId":"shape:i-K-zTAplWQpePo-gx_0b","toId":"shape:pXml8h0hxq8pjZWnTxw3r","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.43253169200545627,"y":0.3798292503141827},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:pwAspHnacppxqWR0LP5bT","type":"arrow","fromId":"shape:R2d7nyNKsqBWNCyW5sgga","toId":"shape:qUGq_ge1ZoyvFAUZpQ-1x","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:pyWl5d-smvwh2W7br1SDG","type":"arrow","fromId":"shape:KW9KvY9eAI5IZFKg3h7tq","toId":"shape:DkuFaBtZQ0VD9_amGhmUd","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5174628404609217,"y":0.5114600534055912},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:qBqy8gZVen1uG75KrbUmL","type":"arrow","fromId":"shape:BWmCOBsOdE3Le-NXEwEFl","toId":"shape:KQ6XkjEbAq-r5QtfNrsFO","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.43253169200545627,"y":0.3798292503141827},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:qDZwCGYIc2OJCtatu4h6c","type":"arrow","fromId":"shape:JvuduKzEDpwvRUs6FysRj","toId":"shape:Ra9uqsiCo5d72aJDvbqby","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5484921894578565,"y":0.3075717386062214},"terminal":"end"},"typeName":"binding"},{"typeName":"binding","id":"binding:qnEv32FV58__CWShhqegx","type":"arrow","fromId":"shape:UmxRaY6IuJGqPuw21yAu7","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.37433504141834506,"y":0.6524489492927648},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:r2C1cetvew_5rSHC04TQJ","type":"arrow","fromId":"shape:ycJcFqMPHcVeL-p2tyQLW","toId":"shape:jyXGM-WuWat-W1dooE4u9","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2619762221939643,"y":0.14143314239027124},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:r3cD9d5oSNOAwQpSv902M","type":"arrow","fromId":"shape:TixB21lRZF9BAYrk5MOhf","toId":"shape:qqTAenTwzcWNjiLiTOsP-","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:rKXFrdf18C0Ja4yNuEu2m","type":"arrow","fromId":"shape:_8qyzTRocBErJIyO-43Kr","toId":"shape:xpGah9sf5rXRTLVw1PY9R","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:rQbsdLhPv0rdAhwtEB6gX","type":"arrow","fromId":"shape:kedB4DNBtcabj2ekTKv8D","toId":"shape:7YVVT2Gz1W4ie4Hs95iv9","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5174628404609217,"y":0.5114600534055912},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:rVYLOpjgj-p3aVHi_ajA2","type":"arrow","fromId":"shape:pHE52a9X57ZTUm5d-MOAG","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.30668457791107984,"y":0.37971108764548434},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:sFvM0kz0U5ZYuul6SeoCy","type":"arrow","fromId":"shape:nymu8EpwlMapQnKLGUAiN","toId":"shape:BOG7SVdZ2f39LGyga13Jj","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5000000000000012},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:sLF2rCStWWwgAz-t5gVjt","type":"arrow","fromId":"shape:d2pID3NwSpV1ryDmel2Sx","toId":"shape:YcWUaq_GI_MiRusTzpZEY","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.27483284340992625,"y":0.8547525871012545},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:sOevMV8eg5Q7C_p0_qRBT","type":"arrow","fromId":"shape:HP2MVb0BCPxAndSoiJRfI","toId":"shape:AmBa_gaPgJ8BBWS5kp0Fa","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6158728374376157,"y":0.59126274492641},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:t2axnilSePBbQsXMHa_T3","type":"arrow","fromId":"shape:t99S409lLaI9YbcXY7rtG","toId":"shape:dKtfqKQq2KhcURGG5SvWf","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5529651865675675,"y":0.38261036614831173},"terminal":"start"},"typeName":"binding"},{"typeName":"binding","id":"binding:tKhshL3YwrokfLBO5JdZ-","type":"arrow","fromId":"shape:RbXkv1b6ZP7AsTliXpzyn","toId":"shape:Bm4undZVbDdZw8-6yt7Wr","meta":{},"props":{"terminal":"end","normalizedAnchor":{"x":0.5673747660072805,"y":0.7732994218995682},"isExact":false,"isPrecise":true}},{"meta":{},"id":"binding:tZYKNG6ijGHimOEFtjMmX","type":"arrow","fromId":"shape:cWIOgqFzysd5NSGkCjS0w","toId":"shape:E_jgiIBog0wnPOPSKLDah","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.2484246502189469,"y":0.5090426814564746},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:tfhoLLXTmV0GcGHnjhGzs","type":"arrow","fromId":"shape:WTvQhWRKBwF53v-kJMo91","toId":"shape:YM0tOYqaWzn0GuVrECrxA","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6197335794795038,"y":0.5241190109129806},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:tkmpPwxaBG_biNkhRKscV","type":"arrow","fromId":"shape:R3b8t1WRF0i-viHqDIavf","toId":"shape:qKcUEKvOEdNw0RpdeF-vL","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.6673131734841062,"y":0.24804880364975124},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:tzmcuDvOw0D5HodsrZCyT","type":"arrow","fromId":"shape:HP2MVb0BCPxAndSoiJRfI","toId":"shape:GxtwIvm8gVH4psG4l0bei","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5529651865675675,"y":0.38261036614831173},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:u7BEV_0-3kz2-Zfmpqj4A","type":"arrow","fromId":"shape:3rbB0VzI65OPD1CgvEW-q","toId":"shape:zxOMqrymmUJ1uTBVlWeyn","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.7146709470304976,"y":0.44972269110200147},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:uJB-trCZhd5oxAl87rrva","type":"arrow","fromId":"shape:9fIGIX4T-adEW6HrpaMay","toId":"shape:DgKNN5LS5b1V86TcA29Oo","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.463801531444807,"y":0.8069721587295955},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:uPlKwIU0k4IeiPXF5xZvX","type":"arrow","fromId":"shape:xC9BYGCv_UVX9q8I3E7V3","toId":"shape:zxOMqrymmUJ1uTBVlWeyn","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5299357931954296,"y":0.7865420489709914},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:umzYgwb70ow6yBDEWo2nB","type":"arrow","fromId":"shape:MA_5pNt4JARnYuEW8OgmV","toId":"shape:zxOMqrymmUJ1uTBVlWeyn","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.5220235626500418,"y":0.48113993305636243},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:vmG2nDYzpwNyg_nNNK7QK","type":"arrow","fromId":"shape:gAz5NMTzMLWb18FtvmIaw","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.7658320312499999,"y":0.13092312942739093},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:vpwBe28ff31hQZObnjUE7","type":"arrow","fromId":"shape:KTRXw1PoNbWLo9uBO1TsS","toId":"shape:hRdJrZsZ69P0YFsm8XZoX","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:vtmRGjNLkg49WCeAxZOUA","type":"arrow","fromId":"shape:IhuNjv5Mnh2-n1VmSAmC3","toId":"shape:uKGPHzttKvTm0qoyO0NrF","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5299357931954296,"y":0.7865420489709914},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:w6LieaLer90woh8uw8Bt7","type":"arrow","fromId":"shape:3rbB0VzI65OPD1CgvEW-q","toId":"shape:Ra9uqsiCo5d72aJDvbqby","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.564155041349929,"y":0.4496021220159151},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:w_J5JArUPfzJY096jAbvg","type":"arrow","fromId":"shape:vtt5PUApYFjL8lBjhLxfc","toId":"shape:CRG-ZMzc4mNOl3UTVnIZ_","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:x2U7gZ9cdKzjU-7XCDYPI","type":"arrow","fromId":"shape:PZXngPCGkpbZ73Lvpx98P","toId":"shape:kI4Iz1Ot9uJyr5JiE3YaN","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.587633107430793,"y":0.7157953247925531},"terminal":"end"},"typeName":"binding"},{"meta":{},"id":"binding:xQtYphxKJAZN93m3XQkgn","type":"arrow","fromId":"shape:gAz5NMTzMLWb18FtvmIaw","toId":"shape:AqL4m4zuXhvvRlgh-NUr8","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.7399648437499999,"y":0.1156482991440379},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:y8dx7K9ra8HR03f7f4rkR","type":"arrow","fromId":"shape:nn0Y_sIhrHEjwcU3CZuG1","toId":"shape:GCT4h5nilU7tiS9kaB3Rw","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.4041973726369753,"y":0.5830721003134797},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:y9ntuPR_ko-L18qgnZBvo","type":"arrow","fromId":"shape:CIOG862dWnY3vwxEiX4DV","toId":"shape:dKtfqKQq2KhcURGG5SvWf","props":{"isPrecise":true,"isExact":false,"normalizedAnchor":{"x":0.5,"y":0.5},"terminal":"start"},"typeName":"binding"},{"meta":{},"id":"binding:zqqGtCU5QZjvfGS_4Tq_4","type":"arrow","fromId":"shape:9PNy-e3Ya3rg9aQsBXfZ8","toId":"shape:ctvj_gHuvkoOJI4qWru6F","props":{"isPrecise":false,"isExact":false,"normalizedAnchor":{"x":0.6197335794795038,"y":0.5241190109129806},"terminal":"start"},"typeName":"binding"},{"gridSize":10,"name":"","meta":{},"id":"document:document","typeName":"document"},{"meta":{},"id":"page:6tsLVZZe9YeGxE7_mcVPx","name":"hazel bigboard 1","index":"a6","typeName":"page"},{"meta":{},"id":"page:F3lmCiDAJ9TI-3Nabwuqb","name":"Page 5","index":"a5","typeName":"page"},{"meta":{},"id":"page:IaHf_eN2NLHRSDsBf0loR","name":"STRING SEGMENT PRINTER .OF_SEG TERM MAKETERM.GO ZIPPER ZIPPER .UNZIP ZIPPER .ZIP PRINTER. Z_OF_STR EDITOR _. STATE. ZIPPER EDITOR .INIT DOM DHEXP EVALUATOR .EVAL STATICS STATICS.MK ELAB.UEXP MEASURED MEASURED .OF_SEG DHDOC LAYOUT CELL. ED_VIEW PERFORM.GO (INJECT) DOM MVU LOOP SEMANTICS SYNTAX PIECE ID INFO TYP CTX SELF MODE TILE SECONDARY GROUT STATUS PROJECTOR SKEL UEXP UPAT UTYP DHPAT ENVIRONMENT TERMRANGES TILEMAP","index":"a8","typeName":"page"},{"meta":{},"id":"page:SkvySoubPea6W7lX7AzgK","name":"hazel bigboard 2","index":"a7","typeName":"page"},{"meta":{},"id":"page:YvJWuTpdWd0OBPalFS9LJ","name":"Page 4","index":"a4","typeName":"page"},{"meta":{},"id":"page:g5nJZnSQA-22SNUHQIPyc","name":"Page 2","index":"a2","typeName":"page"},{"meta":{},"id":"page:i72uw72K4zc6d8qbWjZkE","name":"Page 3","index":"a3","typeName":"page"},{"meta":{},"id":"page:page","name":"Page 1","index":"a1","typeName":"page"},{"x":1022.0080246402404,"y":303.33915289861886,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:-HzpPlPej2sFR_lAf-Ube","type":"arrow","props":{"dash":"solid","size":"s","fill":"none","color":"grey","labelColor":"black","bend":8.491650279312713,"start":{"x":0,"y":0},"end":{"x":-30.477078797083777,"y":-70.6845626105835},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ad","typeName":"shape"},{"x":892.3203125,"y":522.67578125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:0hAN2NYmlAMbv990Lf3ks","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aA","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":51.832044614052926,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":936.78125,"y":365.50390625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:0qsmVPHb53-xQjf5IIvOL","type":"text","props":{"color":"orange","size":"l","w":21.9921875,"text":"F","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aL","typeName":"shape"},{"x":711.1578415074989,"y":321.93569385503565,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:19jRzkMv6BG83C6J_xgOT","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":50.74318488524299,"start":{"x":0,"y":0},"end":{"x":-170.72054624555471,"y":-220.00496333476622},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aY","typeName":"shape"},{"x":791.7830353065845,"y":330.45011472792913,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:1bQaav96jcmu2kZWuu4jS","type":"text","props":{"color":"violet","size":"l","w":150.2265625,"text":"STATICS","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aG","typeName":"shape"},{"x":1378.7793150128225,"y":499.3589522947941,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:2T4b-tcwlsgLNVjEA3thd","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-154.27170889601194,"start":{"x":-134.00689226030977,"y":-62.550901825189385},"end":{"x":-118.76195122605145,"y":-108.25973792330524},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"EVALUATOR\n.EVAL","labelPosition":0.42732881966736536,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aF","typeName":"shape"},{"x":1708.835467285096,"y":945.4343587588223,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:2VvTuW_dW-aCDCUpqNyyZ","type":"text","props":{"color":"violet","size":"s","w":42.640625,"text":"SELF","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"an","typeName":"shape"},{"x":222.03836956068295,"y":-28.348303564195675,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:2aEoopQmLITghhMHI40h0","type":"text","props":{"color":"yellow","size":"l","w":138.9921875,"text":"EDITOR","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a5","typeName":"shape"},{"x":546.58203125,"y":559.40234375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:2wt9mwb6iYWczylffB7Tc","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-37.36625356480154,"start":{"x":0,"y":0},"end":{"x":-401.796875,"y":-14.30859375},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PRINTER\n.OF_SEG","labelPosition":0.4387003208615986,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a3","typeName":"shape"},{"x":736.04296875,"y":437.28125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:2xDyIzGAJyt2F2xYMynxF","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a3","props":{"dash":"draw","size":"m","fill":"none","color":"yellow","labelColor":"black","bend":9.732007076602994,"start":{"x":0,"y":0},"end":{"x":2,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":-28.061291931220808,"y":542.3209588397101,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:3Xwh9pPy_Vq2Tpp-QWBFu","type":"text","props":{"color":"yellow","size":"l","w":148.7109375,"text":"STRING","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a1","typeName":"shape"},{"x":569.7170451921901,"y":453.0221250402243,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:3kT-T5sNtyKe8nDwohoXc","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":32.56459342955796,"start":{"x":0,"y":0},"end":{"x":-38.05735098924822,"y":-346.8880956458792},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aZ","typeName":"shape"},{"x":873.4453125,"y":465.9375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:3mO1NplvHX6qdcdsX3PrU","type":"text","props":{"color":"orange","size":"l","w":8,"text":"","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aJ","typeName":"shape"},{"x":571.41796875,"y":555.828125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:3rbB0VzI65OPD1CgvEW-q","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":51.61586809715318,"start":{"x":0,"y":0},"end":{"x":-246.48046875,"y":-279.79296875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ZIPPER\n.ZIP","labelPosition":0.3845277028471277,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a8","typeName":"shape"},{"x":571.41796875,"y":555.828125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:3tbvsHiG8EkBqRwCZNF6P","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":51.61586809715318,"start":{"x":0,"y":0},"end":{"x":-246.48046875,"y":-279.79296875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ZIPPER\n.ZIP","labelPosition":0.3845277028471277,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a48","typeName":"shape"},{"x":1221.5380511244673,"y":110.79942838480918,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:4Y1hZbQrpWQf8YlRvQFcl","type":"text","props":{"color":"light-violet","size":"s","w":68.234375,"text":"LAYOUT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aQ","typeName":"shape"},{"x":283.625,"y":629.296875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:5iVvbQyivH2SRAeu9QpXk","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a8","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":0,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":373.72265625,"y":684.578125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:62bzW555X1x3B5gvpqrQW","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":0.12,"z":0.5},{"x":0,"y":0.63,"z":0.5},{"x":0,"y":1.23,"z":0.5},{"x":0,"y":1.93,"z":0.5},{"x":0,"y":2.66,"z":0.5},{"x":0,"y":3.42,"z":0.5},{"x":0.24,"y":4.5,"z":0.5},{"x":0.74,"y":5.59,"z":0.5},{"x":1.52,"y":6.68,"z":0.5},{"x":2.39,"y":8.25,"z":0.5},{"x":3.43,"y":10.29,"z":0.5},{"x":4.62,"y":11.83,"z":0.5},{"x":5.81,"y":13.36,"z":0.5},{"x":7.92,"y":16,"z":0.5},{"x":9.34,"y":17.68,"z":0.5},{"x":11.59,"y":20.05,"z":0.5},{"x":14.04,"y":22.55,"z":0.5},{"x":16.53,"y":25.07,"z":0.5},{"x":19.66,"y":27.81,"z":0.5},{"x":23.52,"y":30.8,"z":0.5},{"x":27.5,"y":33.82,"z":0.5},{"x":31.6,"y":36.9,"z":0.5},{"x":35.42,"y":39.37,"z":0.5},{"x":38.38,"y":41.48,"z":0.5},{"x":41.25,"y":43.53,"z":0.5},{"x":43.88,"y":45.01,"z":0.5},{"x":45.4,"y":45.94,"z":0.5},{"x":46.53,"y":46.4,"z":0.5},{"x":47.77,"y":46.88,"z":0.5},{"x":49.36,"y":47.22,"z":0.5},{"x":50.88,"y":47.52,"z":0.5},{"x":52.44,"y":47.8,"z":0.5},{"x":54.39,"y":47.86,"z":0.5},{"x":56.51,"y":47.89,"z":0.5},{"x":58.71,"y":48.21,"z":0.5},{"x":60.8,"y":48.85,"z":0.5},{"x":63.52,"y":49.6,"z":0.5},{"x":66.23,"y":50.36,"z":0.5},{"x":68.3,"y":51.05,"z":0.5},{"x":70.33,"y":51.72,"z":0.5},{"x":72.96,"y":52.46,"z":0.5},{"x":78.42,"y":53.88,"z":0.5},{"x":81.8,"y":55,"z":0.5},{"x":85.78,"y":56.32,"z":0.5},{"x":90.98,"y":57.38,"z":0.5},{"x":97.54,"y":58.56,"z":0.5},{"x":104.15,"y":59.67,"z":0.5},{"x":110.4,"y":60.74,"z":0.5},{"x":117.02,"y":61.87,"z":0.5},{"x":124.87,"y":63.09,"z":0.5},{"x":131.98,"y":64.27,"z":0.5},{"x":138.97,"y":65.43,"z":0.5},{"x":144.84,"y":66.01,"z":0.5},{"x":149.8,"y":66.51,"z":0.5},{"x":154.59,"y":67.47,"z":0.5},{"x":158.36,"y":67.95,"z":0.5},{"x":162.1,"y":68.3,"z":0.5},{"x":166.85,"y":69.08,"z":0.5},{"x":171.72,"y":69.6,"z":0.5},{"x":176.07,"y":70.08,"z":0.5},{"x":181.14,"y":70.52,"z":0.5},{"x":186.15,"y":70.61,"z":0.5},{"x":190.55,"y":70.65,"z":0.5},{"x":195.59,"y":71.09,"z":0.5},{"x":199.86,"y":71.55,"z":0.5},{"x":203.41,"y":71.6,"z":0.5},{"x":206.83,"y":71.61,"z":0.5},{"x":210.18,"y":71.61,"z":0.5},{"x":213.48,"y":71.61,"z":0.5},{"x":219.29,"y":71.61,"z":0.5},{"x":222.37,"y":71.61,"z":0.5},{"x":226.04,"y":71.61,"z":0.5},{"x":229.46,"y":71.61,"z":0.5},{"x":232.99,"y":71.61,"z":0.5},{"x":236.31,"y":71.61,"z":0.5},{"x":239.79,"y":71.61,"z":0.5},{"x":249.72,"y":71.61,"z":0.5},{"x":256.32,"y":71.61,"z":0.5},{"x":261.65,"y":71.61,"z":0.5},{"x":266.12,"y":71.61,"z":0.5},{"x":271.95,"y":71.61,"z":0.5},{"x":278.65,"y":71.61,"z":0.5},{"x":285.27,"y":71.61,"z":0.5},{"x":291.89,"y":71.61,"z":0.5},{"x":297.13,"y":71.29,"z":0.5},{"x":302.42,"y":70.83,"z":0.5},{"x":310.43,"y":70.59,"z":0.5},{"x":322.86,"y":69.64,"z":0.5},{"x":328.81,"y":69.48,"z":0.5},{"x":334.67,"y":69.41,"z":0.5},{"x":339.55,"y":69.39,"z":0.5},{"x":344.08,"y":68.94,"z":0.5},{"x":349.48,"y":68.46,"z":0.5},{"x":354.45,"y":68.43,"z":0.5},{"x":359.37,"y":68.42,"z":0.5},{"x":365.15,"y":68.42,"z":0.5},{"x":370.86,"y":67.94,"z":0.5},{"x":377.89,"y":67.46,"z":0.5},{"x":381.11,"y":67.46,"z":0.5},{"x":384.63,"y":67.46,"z":0.5},{"x":387.54,"y":67.46,"z":0.5},{"x":389.83,"y":67.46,"z":0.5},{"x":392.01,"y":67.46,"z":0.5},{"x":393.78,"y":67.46,"z":0.5},{"x":395.49,"y":67.46,"z":0.5},{"x":397.13,"y":67.46,"z":0.5},{"x":398.75,"y":67.46,"z":0.5},{"x":400.82,"y":67.46,"z":0.5},{"x":402.88,"y":67.46,"z":0.5},{"x":404.93,"y":67.46,"z":0.5},{"x":407.55,"y":67.46,"z":0.5},{"x":412.14,"y":67.46,"z":0.5},{"x":414.75,"y":67.46,"z":0.5},{"x":417.96,"y":67.77,"z":0.5},{"x":421.82,"y":68.5,"z":0.5},{"x":425.9,"y":69.34,"z":0.5},{"x":429.46,"y":70.18,"z":0.5},{"x":432.93,"y":71.03,"z":0.5},{"x":436.36,"y":71.88,"z":0.5},{"x":439.8,"y":72.74,"z":0.5},{"x":442.66,"y":73.21,"z":0.5},{"x":444.83,"y":73.59,"z":0.5},{"x":446.93,"y":74.27,"z":0.5},{"x":448.52,"y":74.61,"z":0.5},{"x":449.57,"y":74.88,"z":0.5},{"x":450.78,"y":75.29,"z":0.5},{"x":451.36,"y":75.64,"z":0.5},{"x":451.83,"y":76.03,"z":0.5},{"x":452.25,"y":76.41,"z":0.5},{"x":453.09,"y":77.23,"z":0.5},{"x":453.5,"y":77.64,"z":0.5},{"x":453.75,"y":78.05,"z":0.5},{"x":453.96,"y":78.44,"z":0.5},{"x":454.16,"y":78.84,"z":0.5},{"x":454.18,"y":79.57,"z":0.5},{"x":454.38,"y":80.3,"z":0.5},{"x":454.57,"y":81.04,"z":0.5},{"x":454.57,"y":81.75,"z":0.5},{"x":454.57,"y":82.47,"z":0.5},{"x":454.94,"y":83.56,"z":0.5},{"x":454.94,"y":83.88,"z":0.5},{"x":454.94,"y":84.19,"z":0.5},{"x":454.94,"y":84.57,"z":0.5},{"x":455.11,"y":84.77,"z":0.5},{"x":455.29,"y":84.94,"z":0.5},{"x":455.32,"y":85.29,"z":0.5},{"x":455.32,"y":85.64,"z":0.5},{"x":455.32,"y":86,"z":0.5},{"x":455.32,"y":86.38,"z":0.5},{"x":455.32,"y":87.06,"z":0.5},{"x":455.32,"y":87.36,"z":0.5},{"x":455.32,"y":87.73,"z":0.5},{"x":455.32,"y":88.11,"z":0.5},{"x":455.32,"y":88.52,"z":0.5},{"x":455.32,"y":88.65,"z":0.5},{"x":455.32,"y":88.45,"z":0.5},{"x":455.32,"y":88.12,"z":0.5},{"x":455.32,"y":87.75,"z":0.5},{"x":455.32,"y":87.36,"z":0.5},{"x":455.32,"y":86.95,"z":0.5},{"x":455.32,"y":86.52,"z":0.5},{"x":455.32,"y":86.11,"z":0.5},{"x":455.57,"y":85.42,"z":0.5},{"x":455.82,"y":84.7,"z":0.5},{"x":456.1,"y":83.95,"z":0.5},{"x":456.63,"y":82.89,"z":0.5},{"x":456.89,"y":82.17,"z":0.5},{"x":457.57,"y":80.61,"z":0.5},{"x":457.78,"y":79.77,"z":0.5},{"x":458.06,"y":78.76,"z":0.5},{"x":458.55,"y":77.68,"z":0.5},{"x":459,"y":76.86,"z":0.5},{"x":459.47,"y":76.06,"z":0.5},{"x":459.95,"y":75.28,"z":0.5},{"x":460.66,"y":74.75,"z":0.5},{"x":461.71,"y":74.18,"z":0.5},{"x":463.25,"y":73.55,"z":0.5},{"x":465.31,"y":72.85,"z":0.5},{"x":467.38,"y":72.49,"z":0.5},{"x":470.01,"y":71.68,"z":0.5},{"x":474.03,"y":70.38,"z":0.5},{"x":478.05,"y":69.5,"z":0.5},{"x":481.09,"y":68.8,"z":0.5},{"x":484.32,"y":68.09,"z":0.5},{"x":487.79,"y":67.27,"z":0.5},{"x":494.62,"y":65.58,"z":0.5},{"x":498.1,"y":64.71,"z":0.5},{"x":501.6,"y":63.83,"z":0.5},{"x":505.03,"y":62.97,"z":0.5},{"x":508.45,"y":62.12,"z":0.5},{"x":511.25,"y":61.34,"z":0.5},{"x":514,"y":60.96,"z":0.5},{"x":516.71,"y":60.6,"z":0.5},{"x":518.74,"y":60.26,"z":0.5},{"x":520.75,"y":60.26,"z":0.5},{"x":524.06,"y":60.26,"z":0.5},{"x":525.25,"y":60.26,"z":0.5},{"x":526.98,"y":60.26,"z":0.5},{"x":528.86,"y":60.26,"z":0.5},{"x":530.95,"y":60.26,"z":0.5},{"x":533.13,"y":60.26,"z":0.5},{"x":535.29,"y":60.26,"z":0.5},{"x":537.36,"y":60.26,"z":0.5},{"x":540.68,"y":60.26,"z":0.5},{"x":542.75,"y":60.26,"z":0.5},{"x":544.86,"y":60.26,"z":0.5},{"x":546.91,"y":60.26,"z":0.5},{"x":548.91,"y":60.26,"z":0.5},{"x":550.91,"y":60.26,"z":0.5},{"x":552.89,"y":60.26,"z":0.5},{"x":555,"y":60.51,"z":0.5},{"x":557.7,"y":60.8,"z":0.5},{"x":561.51,"y":61.25,"z":0.5},{"x":565.39,"y":62.04,"z":0.5},{"x":569.51,"y":62.89,"z":0.5},{"x":582.19,"y":65.06,"z":0.5},{"x":588.59,"y":66.73,"z":0.5},{"x":596.47,"y":69.07,"z":0.5},{"x":603.44,"y":71.37,"z":0.5},{"x":611.5,"y":73.21,"z":0.5},{"x":620.34,"y":75.11,"z":0.5},{"x":629.09,"y":76.98,"z":0.5},{"x":639.26,"y":78.79,"z":0.5},{"x":644.98,"y":80.04,"z":0.5},{"x":650.75,"y":81.47,"z":0.5},{"x":656.38,"y":82.66,"z":0.5},{"x":665.17,"y":84.69,"z":0.5},{"x":668.73,"y":85.23,"z":0.5},{"x":674.56,"y":86.01,"z":0.5},{"x":677.89,"y":86.05,"z":0.5},{"x":680.67,"y":86.39,"z":0.5},{"x":683.48,"y":86.73,"z":0.5},{"x":686.8,"y":86.74,"z":0.5},{"x":690.05,"y":86.74,"z":0.5},{"x":694.07,"y":86.74,"z":0.5},{"x":697.43,"y":86.74,"z":0.5},{"x":700.61,"y":86.74,"z":0.5},{"x":704.5,"y":86.74,"z":0.5},{"x":708.55,"y":86.74,"z":0.5},{"x":712.67,"y":86.74,"z":0.5},{"x":716.83,"y":86.74,"z":0.5},{"x":721.11,"y":86.74,"z":0.5},{"x":724.68,"y":86.74,"z":0.5},{"x":728.18,"y":86.74,"z":0.5},{"x":731.03,"y":86.74,"z":0.5},{"x":733.2,"y":86.74,"z":0.5},{"x":735.32,"y":86.74,"z":0.5},{"x":737.36,"y":86.74,"z":0.5},{"x":739.36,"y":86.74,"z":0.5},{"x":742,"y":86.74,"z":0.5},{"x":743.23,"y":86.74,"z":0.5},{"x":744.74,"y":86.74,"z":0.5},{"x":746.68,"y":86.47,"z":0.5},{"x":748.32,"y":86.18,"z":0.5},{"x":749.98,"y":85.83,"z":0.5},{"x":752.02,"y":85.48,"z":0.5},{"x":753.64,"y":85.2,"z":0.5},{"x":755.29,"y":84.91,"z":0.5},{"x":757.33,"y":84.57,"z":0.5},{"x":758.96,"y":83.97,"z":0.5},{"x":760.6,"y":83.34,"z":0.5},{"x":762.18,"y":82.99,"z":0.5},{"x":763.71,"y":82.65,"z":0.5},{"x":765.71,"y":81.98,"z":0.5},{"x":767.29,"y":81.64,"z":0.5},{"x":768.88,"y":81.39,"z":0.5},{"x":770.87,"y":80.84,"z":0.5},{"x":772.9,"y":80.21,"z":0.5},{"x":774.95,"y":79.55,"z":0.5},{"x":777.05,"y":79.14,"z":0.5},{"x":779.18,"y":78.73,"z":0.5},{"x":781.25,"y":78.09,"z":0.5},{"x":782.94,"y":77.71,"z":0.5},{"x":784.62,"y":77.32,"z":0.5},{"x":788.76,"y":75.96,"z":0.5},{"x":790.19,"y":75.42,"z":0.5},{"x":793.76,"y":73.8,"z":0.5},{"x":795.35,"y":72.93,"z":0.5},{"x":796.57,"y":72.46,"z":0.5},{"x":798.05,"y":71.65,"z":0.5},{"x":799.98,"y":70.7,"z":0.5},{"x":803.64,"y":68.51,"z":0.5},{"x":805.34,"y":67.26,"z":0.5},{"x":807.48,"y":65.8,"z":0.5},{"x":809.12,"y":64.54,"z":0.5},{"x":810.43,"y":62.96,"z":0.5},{"x":811.7,"y":61.39,"z":0.5},{"x":812.55,"y":60.25,"z":0.5},{"x":813.37,"y":59.16,"z":0.5},{"x":814.23,"y":57.63,"z":0.5},{"x":814.82,"y":56.09,"z":0.5},{"x":815.24,"y":55.26,"z":0.5},{"x":815.45,"y":54.43,"z":0.5},{"x":815.75,"y":53.39,"z":0.5},{"x":816.22,"y":52.32,"z":0.5},{"x":816.79,"y":50.86,"z":0.5},{"x":817.45,"y":48.93,"z":0.5},{"x":818.2,"y":46.35,"z":0.5},{"x":818.96,"y":43.68,"z":0.5},{"x":819.98,"y":41.48,"z":0.5},{"x":821.43,"y":38.79,"z":0.5},{"x":823.08,"y":35.49,"z":0.5},{"x":826.2,"y":29.91,"z":0.5},{"x":828.67,"y":24.97,"z":0.5},{"x":831.84,"y":19.67,"z":0.5},{"x":833.04,"y":17.27,"z":0.5},{"x":834.53,"y":14.54,"z":0.5},{"x":835.95,"y":12.23,"z":0.5},{"x":837.02,"y":10.44,"z":0.5},{"x":837.75,"y":9.09,"z":0.5},{"x":838.61,"y":7.86,"z":0.5},{"x":839.38,"y":6.98,"z":0.5},{"x":839.66,"y":6.48,"z":0.5},{"x":839.9,"y":6.04,"z":0.5},{"x":839.95,"y":5.97,"z":0.5},{"x":839.3,"y":6.34,"z":0.5}]}],"color":"yellow","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aF","typeName":"shape"},{"x":559.8211276106347,"y":147.8496038587541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:6dg9HlxgNiFGn87L1YA8x","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"red","labelColor":"black","bend":-1.1537474625142572,"start":{"x":110.26419275749959,"y":-186.41558210296535},"end":{"x":352.6583524159795,"y":-105.34374021343203},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"CELL.\nED_VIEW","labelPosition":0.49218246313661523,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aL","typeName":"shape"},{"x":-259.77484532812116,"y":909.6969097365543,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:71oa2frDebYkQXDf1jy8u","type":"text","props":{"color":"yellow","size":"s","w":44.328125,"text":"TILE","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ap","typeName":"shape"},{"x":952.5234375,"y":517.5703125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:77OsxMdoGXuuGfuAzSJHp","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-31.005116378497007,"start":{"x":0,"y":0},"end":{"x":144.84765625,"y":-105.66796875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"STATICS.MK","labelPosition":0.5007136168379599,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aH","typeName":"shape"},{"x":1088.5071727495674,"y":594.0342765571668,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:7VVliMoBWEVwsBYLJSqan","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"light-blue","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aI","typeName":"shape"},{"x":655.75,"y":784.67578125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:7VZdh8xlMtuG_WPOv4qrl","type":"text","props":{"color":"yellow","size":"m","w":360.8367664026576,"text":"currently more like","font":"draw","textAlign":"start","autoSize":true,"scale":1.5106167162564241},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aE","typeName":"shape"},{"x":222.03836956068295,"y":-28.348303564195675,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:7YVVT2Gz1W4ie4Hs95iv9","type":"text","props":{"color":"yellow","size":"l","w":138.9921875,"text":"EDITOR","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aA","typeName":"shape"},{"x":1250.1729104620672,"y":336.4857639200817,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:7iEGsy1__1OQkvTKWjolO","type":"text","props":{"color":"violet","size":"l","w":118.2890625,"text":"DHEXP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aE","typeName":"shape"},{"x":532.8615538854392,"y":-296.1392035049146,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:7waT_xbEyIcs21o3LYPax","type":"text","props":{"color":"red","size":"xl","w":367.75445554638674,"text":"MVU LOOP","font":"draw","textAlign":"start","autoSize":true,"scale":1.614839461747427},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aR","typeName":"shape"},{"x":-28.061291931220808,"y":542.3209588397101,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:8ZngylXEGZMi7Z21dbLgb","type":"text","props":{"color":"yellow","size":"l","w":91.9765625,"text":"TEXT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a1","typeName":"shape"},{"x":257.84765625,"y":496.22265625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:90NoiBCdniQ653k2nEOQR","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0.15,"y":0,"z":0.5},{"x":0.73,"y":0.19,"z":0.5},{"x":3.23,"y":1.35,"z":0.5},{"x":4.18,"y":2.55,"z":0.5},{"x":5.69,"y":4.09,"z":0.5},{"x":7.51,"y":5.44,"z":0.5},{"x":10.29,"y":7.5,"z":0.5},{"x":12.87,"y":9.54,"z":0.5},{"x":14.7,"y":10.96,"z":0.5},{"x":16.97,"y":12.88,"z":0.5},{"x":18.83,"y":14.68,"z":0.5},{"x":20.54,"y":16.04,"z":0.5},{"x":21.88,"y":17.31,"z":0.5},{"x":22.73,"y":18.4,"z":0.5},{"x":23.79,"y":19.21,"z":0.5},{"x":25.14,"y":20.66,"z":0.5},{"x":25.91,"y":21.05,"z":0.5},{"x":26.71,"y":21.73,"z":0.5},{"x":27.3,"y":22.44,"z":0.5},{"x":28.07,"y":23,"z":0.5},{"x":28.79,"y":23.5,"z":0.5},{"x":29.52,"y":23.98,"z":0.5},{"x":30.57,"y":24.53,"z":0.5},{"x":31.63,"y":25.07,"z":0.5},{"x":32.74,"y":25.63,"z":0.5},{"x":34.35,"y":26.27,"z":0.5},{"x":36.38,"y":26.96,"z":0.5},{"x":38.43,"y":27.64,"z":0.5},{"x":40.48,"y":28.32,"z":0.5},{"x":42.48,"y":28.99,"z":0.5},{"x":43.79,"y":29.48,"z":0.5},{"x":44.6,"y":29.88,"z":0.5},{"x":45.63,"y":30.39,"z":0.5},{"x":46.66,"y":30.91,"z":0.5},{"x":47.48,"y":31.24,"z":0.5},{"x":48.29,"y":31.35,"z":0.5},{"x":49.06,"y":31.39,"z":0.5},{"x":49.83,"y":31.41,"z":0.5},{"x":50.55,"y":31.41,"z":0.5},{"x":51.3,"y":31.41,"z":0.5},{"x":52.39,"y":31.41,"z":0.5},{"x":53.47,"y":31.41,"z":0.5},{"x":54.56,"y":31.41,"z":0.5},{"x":56.11,"y":31.41,"z":0.5},{"x":57.64,"y":31.41,"z":0.5},{"x":61.13,"y":31.41,"z":0.5},{"x":63.16,"y":31.41,"z":0.5},{"x":65.82,"y":31.72,"z":0.5},{"x":69.07,"y":32.41,"z":0.5},{"x":72.28,"y":33.15,"z":0.5},{"x":76.15,"y":34,"z":0.5},{"x":80.38,"y":34.59,"z":0.5},{"x":83.91,"y":35.07,"z":0.5},{"x":88.11,"y":35.51,"z":0.5},{"x":93.18,"y":35.58,"z":0.5},{"x":97.39,"y":36,"z":0.5},{"x":101.61,"y":36.4,"z":0.5},{"x":106.48,"y":36.41,"z":0.5},{"x":111.27,"y":36.41,"z":0.5},{"x":115.29,"y":36.41,"z":0.5},{"x":117.87,"y":36.41,"z":0.5},{"x":120.41,"y":36.41,"z":0.5},{"x":123.13,"y":36.41,"z":0.5},{"x":125.42,"y":36.41,"z":0.5},{"x":127.61,"y":36.41,"z":0.5},{"x":129.29,"y":36.41,"z":0.5},{"x":130.57,"y":36.41,"z":0.5},{"x":131.76,"y":36.41,"z":0.5},{"x":132.9,"y":36.41,"z":0.5},{"x":134.03,"y":36.41,"z":0.5},{"x":135.58,"y":36.41,"z":0.5},{"x":137.16,"y":36.41,"z":0.5},{"x":138.26,"y":36.41,"z":0.5},{"x":139.79,"y":36.41,"z":0.5},{"x":143.72,"y":36.41,"z":0.5},{"x":145.71,"y":36.41,"z":0.5},{"x":148.22,"y":36.41,"z":0.5},{"x":153.35,"y":36.96,"z":0.5},{"x":155.58,"y":37.03,"z":0.5},{"x":157.73,"y":37.35,"z":0.5},{"x":159.36,"y":37.66,"z":0.5},{"x":160.55,"y":37.93,"z":0.5},{"x":161.77,"y":38.22,"z":0.5},{"x":162.9,"y":38.5,"z":0.5},{"x":163.67,"y":38.96,"z":0.5},{"x":164.09,"y":39.17,"z":0.5},{"x":164.46,"y":39.36,"z":0.5},{"x":164.84,"y":39.73,"z":0.5},{"x":165.22,"y":39.92,"z":0.5},{"x":165.52,"y":40.03,"z":0.5},{"x":165.83,"y":40.19,"z":0.5},{"x":166.59,"y":40.75,"z":0.5},{"x":166.99,"y":40.96,"z":0.5},{"x":167.39,"y":41.02,"z":0.5},{"x":167.77,"y":41.2,"z":0.5},{"x":168.01,"y":41.57,"z":0.5},{"x":168.06,"y":41.94,"z":0.5},{"x":168.07,"y":42.31,"z":0.5},{"x":168.27,"y":42.7,"z":0.5},{"x":168.45,"y":43.08,"z":0.5},{"x":168.45,"y":43.46,"z":0.5},{"x":168.45,"y":44.14,"z":0.5},{"x":168.45,"y":44.69,"z":0.5},{"x":168.45,"y":45.33,"z":0.5},{"x":168.45,"y":45.77,"z":0.5},{"x":168.45,"y":46.51,"z":0.5},{"x":168.45,"y":47.24,"z":0.5},{"x":168.45,"y":47.69,"z":0.5},{"x":168.45,"y":48.12,"z":0.5},{"x":168.45,"y":48.85,"z":0.5},{"x":168.45,"y":49.58,"z":0.5},{"x":168.45,"y":50,"z":0.5},{"x":168.45,"y":50.74,"z":0.5},{"x":168.45,"y":51.83,"z":0.5},{"x":168.45,"y":52.21,"z":0.5},{"x":168.45,"y":52.51,"z":0.5},{"x":168.45,"y":52.81,"z":0.5},{"x":168.45,"y":53.19,"z":0.5},{"x":168.45,"y":53.57,"z":0.5},{"x":168.45,"y":53.96,"z":0.5},{"x":168.45,"y":54.37,"z":0.5},{"x":168.45,"y":55.17,"z":0.5},{"x":168.45,"y":55.58,"z":0.5},{"x":168.45,"y":55.96,"z":0.5},{"x":168.45,"y":56.32,"z":0.5},{"x":168.45,"y":56.71,"z":0.5},{"x":168.45,"y":57.32,"z":0.5},{"x":168.45,"y":57.62,"z":0.5},{"x":168.45,"y":58.01,"z":0.5},{"x":168.45,"y":58.38,"z":0.5},{"x":168.45,"y":58.68,"z":0.5},{"x":168.45,"y":58.95,"z":0.5},{"x":168.45,"y":59.23,"z":0.5},{"x":168.45,"y":59.55,"z":0.5},{"x":168.45,"y":59.87,"z":0.5},{"x":168.45,"y":60.18,"z":0.5},{"x":168.45,"y":60.45,"z":0.5},{"x":168.45,"y":60.72,"z":0.5},{"x":168.45,"y":61.03,"z":0.5},{"x":168.45,"y":61.34,"z":0.5},{"x":168.45,"y":61.66,"z":0.5},{"x":168.45,"y":61.94,"z":0.5},{"x":168.45,"y":62.22,"z":0.5},{"x":168.45,"y":62.54,"z":0.5},{"x":168.45,"y":63.19,"z":0.5},{"x":168.45,"y":63.55,"z":0.5},{"x":168.45,"y":63.89,"z":0.5},{"x":168.45,"y":64.25,"z":0.5},{"x":168.45,"y":64.63,"z":0.5},{"x":168.45,"y":65.31,"z":0.5},{"x":168.45,"y":65.59,"z":0.5},{"x":168.45,"y":65.96,"z":0.5},{"x":168.45,"y":66.38,"z":0.5},{"x":168.45,"y":66.75,"z":0.5},{"x":168.45,"y":67.12,"z":0.5},{"x":168.45,"y":67.47,"z":0.5},{"x":168.45,"y":67.79,"z":0.5},{"x":168.45,"y":68.1,"z":0.5},{"x":168.45,"y":68.41,"z":0.5},{"x":168.45,"y":68.7,"z":0.5},{"x":168.45,"y":68.98,"z":0.5},{"x":168.45,"y":69.3,"z":0.5},{"x":168.45,"y":69.63,"z":0.5},{"x":168.45,"y":69.94,"z":0.5},{"x":168.45,"y":70.26,"z":0.5},{"x":168.45,"y":70.61,"z":0.5},{"x":168.45,"y":70.91,"z":0.5},{"x":168.45,"y":71.21,"z":0.5},{"x":168.45,"y":71.57,"z":0.5},{"x":168.45,"y":71.93,"z":0.5},{"x":168.45,"y":71.37,"z":0.5},{"x":168.45,"y":70.73,"z":0.5},{"x":168.45,"y":70.18,"z":0.5},{"x":168.64,"y":69.28,"z":0.5},{"x":169.08,"y":68.27,"z":0.5},{"x":169.56,"y":67.22,"z":0.5},{"x":170.08,"y":66.15,"z":0.5},{"x":170.65,"y":65,"z":0.5},{"x":171.21,"y":63.86,"z":0.5},{"x":171.52,"y":62.32,"z":0.5},{"x":171.82,"y":60.76,"z":0.5},{"x":172.35,"y":59.59,"z":0.5},{"x":172.82,"y":58.8,"z":0.5},{"x":173.02,"y":58.07,"z":0.5},{"x":173.13,"y":57.43,"z":0.5},{"x":173.47,"y":56.88,"z":0.5},{"x":173.91,"y":56.21,"z":0.5},{"x":174.31,"y":55.75,"z":0.5},{"x":174.77,"y":55.04,"z":0.5},{"x":175.08,"y":54.04,"z":0.5},{"x":175.31,"y":53.28,"z":0.5},{"x":175.75,"y":52.51,"z":0.5},{"x":176.21,"y":51.74,"z":0.5},{"x":176.71,"y":50.93,"z":0.5},{"x":177,"y":50.17,"z":0.5},{"x":177.19,"y":49.79,"z":0.5},{"x":177.38,"y":49.43,"z":0.5},{"x":177.57,"y":49.27,"z":0.5},{"x":177.87,"y":48.88,"z":0.5},{"x":178.18,"y":48.88,"z":0.5},{"x":178.54,"y":48.88,"z":0.5},{"x":178.74,"y":48.72,"z":0.5},{"x":179.32,"y":48.18,"z":0.5},{"x":179.71,"y":47.96,"z":0.5},{"x":180.11,"y":47.58,"z":0.5},{"x":180.84,"y":47.11,"z":0.5},{"x":181.91,"y":46.82,"z":0.5},{"x":182.97,"y":46.82,"z":0.5},{"x":184.02,"y":46.81,"z":0.5},{"x":185.13,"y":46.81,"z":0.5},{"x":186.32,"y":46.81,"z":0.5},{"x":187.48,"y":46.81,"z":0.5},{"x":188.99,"y":46.81,"z":0.5},{"x":190.92,"y":46.81,"z":0.5},{"x":192.93,"y":46.81,"z":0.5},{"x":195.01,"y":46.81,"z":0.5},{"x":197.62,"y":46.81,"z":0.5},{"x":200.89,"y":46.81,"z":0.5},{"x":204.98,"y":46.81,"z":0.5},{"x":209.11,"y":46.81,"z":0.5},{"x":213.33,"y":46.81,"z":0.5},{"x":218.3,"y":46.81,"z":0.5},{"x":223.17,"y":47.29,"z":0.5},{"x":227.98,"y":48.25,"z":0.5},{"x":232,"y":48.72,"z":0.5},{"x":237.14,"y":49.6,"z":0.5},{"x":239.88,"y":50.34,"z":0.5},{"x":242.03,"y":51.01,"z":0.5},{"x":243.77,"y":51.64,"z":0.5},{"x":245.16,"y":52.24,"z":0.5},{"x":246.41,"y":52.6,"z":0.5},{"x":247.23,"y":52.84,"z":0.5},{"x":248.03,"y":53.05,"z":0.5},{"x":248.8,"y":53.09,"z":0.5},{"x":249.25,"y":53.1,"z":0.5},{"x":249.66,"y":53.1,"z":0.5},{"x":250.43,"y":53.1,"z":0.5},{"x":250.81,"y":53.1,"z":0.5},{"x":251.53,"y":53.1,"z":0.5},{"x":252.73,"y":53.1,"z":0.5},{"x":254.03,"y":53.1,"z":0.5},{"x":255.84,"y":53.1,"z":0.5},{"x":260.7,"y":53.76,"z":0.5},{"x":263.68,"y":53.76,"z":0.5},{"x":267.14,"y":53.76,"z":0.5},{"x":270.53,"y":53.76,"z":0.5},{"x":274.7,"y":54.23,"z":0.5},{"x":279.56,"y":54.7,"z":0.5},{"x":284.41,"y":54.71,"z":0.5},{"x":288.49,"y":54.71,"z":0.5},{"x":296.3,"y":54.71,"z":0.5},{"x":299.31,"y":54.71,"z":0.5},{"x":302.77,"y":54.71,"z":0.5},{"x":306.73,"y":54.71,"z":0.5},{"x":310.85,"y":54.71,"z":0.5},{"x":316.75,"y":54.71,"z":0.5},{"x":322.73,"y":54.71,"z":0.5},{"x":329.01,"y":54.71,"z":0.5},{"x":337.68,"y":54.71,"z":0.5},{"x":344.25,"y":54.71,"z":0.5},{"x":353.43,"y":54.71,"z":0.5},{"x":362.98,"y":54.71,"z":0.5},{"x":368.88,"y":54.71,"z":0.5},{"x":375.61,"y":54.71,"z":0.5},{"x":381.31,"y":54.71,"z":0.5},{"x":390.12,"y":54.71,"z":0.5},{"x":392.78,"y":54.71,"z":0.5},{"x":394.95,"y":54.45,"z":0.5},{"x":397.16,"y":54.15,"z":0.5},{"x":399.32,"y":53.8,"z":0.5},{"x":401.42,"y":53.46,"z":0.5},{"x":403.1,"y":53.18,"z":0.5},{"x":404.78,"y":52.59,"z":0.5},{"x":406.38,"y":51.99,"z":0.5},{"x":408,"y":51.36,"z":0.5},{"x":409.59,"y":50.73,"z":0.5},{"x":410.7,"y":50.19,"z":0.5},{"x":412.23,"y":49.58,"z":0.5},{"x":414.59,"y":48.57,"z":0.5},{"x":415.41,"y":48.16,"z":0.5},{"x":416.39,"y":47.47,"z":0.5},{"x":417.75,"y":46.7,"z":0.5},{"x":419.7,"y":45.67,"z":0.5},{"x":421.36,"y":44.69,"z":0.5},{"x":422.98,"y":43.71,"z":0.5},{"x":427.12,"y":41.28,"z":0.5},{"x":429.95,"y":39.49,"z":0.5},{"x":431.07,"y":38.92,"z":0.5},{"x":432.2,"y":38.07,"z":0.5},{"x":432.57,"y":37.69,"z":0.5},{"x":432.89,"y":37.36,"z":0.5},{"x":433.19,"y":37.07,"z":0.5},{"x":433.44,"y":36.67,"z":0.5},{"x":433.51,"y":36.3,"z":0.5},{"x":433.53,"y":35.93,"z":0.5},{"x":433.54,"y":35.55,"z":0.5},{"x":433.54,"y":35.15,"z":0.5},{"x":433.54,"y":34.73,"z":0.5},{"x":433.54,"y":34.35,"z":0.5},{"x":433.54,"y":33.98,"z":0.5},{"x":433.54,"y":33.62,"z":0.5},{"x":433.15,"y":33.34,"z":0.5},{"x":433.02,"y":33.05,"z":0.5},{"x":432.71,"y":32.68,"z":0.5},{"x":432.49,"y":32.27,"z":0.5},{"x":432.25,"y":31.66,"z":0.5},{"x":432.02,"y":31.06,"z":0.5},{"x":431.83,"y":30.86,"z":0.5},{"x":431.49,"y":30.82,"z":0.5},{"x":431.13,"y":30.81,"z":0.5}]}],"color":"red","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a9","typeName":"shape"},{"x":-52.796875,"y":541.19140625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9FmMTTSqHJu9Ni22o3i5v","type":"text","props":{"color":"orange","size":"l","w":23.109375,"text":"C","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aE","typeName":"shape"},{"x":1098.3461717945909,"y":377.0086057828688,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9PNy-e3Ya3rg9aQsBXfZ8","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":9.653317934039384,"start":{"x":0,"y":0},"end":{"x":-71.35911408485845,"y":-60.401868574605146},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aJ","typeName":"shape"},{"x":1608.8030880679455,"y":862.4619276719143,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9S9A_cRE4FKLHXhRl5uKe","type":"text","props":{"color":"violet","size":"m","w":45.5234375,"text":"TYP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"al","typeName":"shape"},{"x":1158.0920071098446,"y":29.19705375376074,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9ZkamnBcyPaD8hqn5-xrM","type":"text","props":{"color":"red","size":"s","w":43.0703125,"text":"DOM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ac","typeName":"shape"},{"x":943.5242504734837,"y":741.6812010047731,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9a3dtXOvNfMjJ_JDX6KTZ","type":"text","props":{"color":"violet","size":"s","w":46.453125,"text":"UPAT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aw","typeName":"shape"},{"x":319.6308592110845,"y":267.9124209147086,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9fIGIX4T-adEW6HrpaMay","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":39.30611087719536,"start":{"x":85.94476118180626,"y":79.52081640383915},"end":{"x":171.5625,"y":396.65234375},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ZIPPER\n.UNZIP","labelPosition":0.3822000097269573,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a7","typeName":"shape"},{"x":1088.5071727495674,"y":594.0342765571668,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:9pU7rAH2eV-D3RK1PpiwK","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"light-blue","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aI","typeName":"shape"},{"x":328.1390825207693,"y":-43.16529159626691,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:A5pwYUZYcThj838st96eb","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"red","labelColor":"black","bend":-129.96925147363697,"start":{"x":0,"y":0},"end":{"x":190.09703734410175,"y":0.20236544228248476},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aKV","typeName":"shape"},{"x":1319.272914408472,"y":386.1914186630317,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:AT85LlMH8mEB17tq0QAqR","type":"text","props":{"color":"violet","size":"s","w":60.296875,"text":"DHPAT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ay","typeName":"shape"},{"x":1077.8697464406407,"y":-17.50059143134132,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:AmBa_gaPgJ8BBWS5kp0Fa","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"red","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aS","typeName":"shape"},{"x":257.10546874999994,"y":124.8042208831057,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:AqL4m4zuXhvvRlgh-NUr8","type":"image","props":{"w":1000.0000000000001,"h":722.6962457337885,"assetId":"asset:-1358159130","playing":true,"url":"","crop":null,"flipX":false,"flipY":false},"parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a1","typeName":"shape"},{"x":99.01171875,"y":561.87890625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:B4eTkhj0q9z0_ODyg-01J","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-15.248752837123526,"start":{"x":0,"y":0},"end":{"x":172.43359375,"y":-284.31640625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PRINTER.\nZ_OF_STR","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a4V","typeName":"shape"},{"x":-314.88312845204166,"y":810.7928375486767,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:BIBiXkDk6bPXO-VvpyXO3","type":"text","props":{"color":"yellow","size":"m","w":31.4140625,"text":"ID","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aj","typeName":"shape"},{"x":1158.0920071098446,"y":29.19705375376074,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:BOG7SVdZ2f39LGyga13Jj","type":"text","props":{"color":"red","size":"s","w":43.0703125,"text":"DOM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aO","typeName":"shape"},{"x":559.8211276106347,"y":147.8496038587541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:BWmCOBsOdE3Le-NXEwEFl","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"red","labelColor":"black","bend":-1.1537474625142572,"start":{"x":110.26419275749959,"y":-186.41558210296535},"end":{"x":352.6583524159795,"y":-105.34374021343203},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"CELL.\nED_VIEW","labelPosition":0.49218246313661523,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aW","typeName":"shape"},{"x":821.3730002773502,"y":335.72941329101656,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:BZTirJCMqisCDjRiY9Nql","type":"text","props":{"color":"violet","size":"l","w":150.2265625,"text":"STATICS","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aG","typeName":"shape"},{"x":-570.765625,"y":19.33842684450326,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Bm4undZVbDdZw8-6yt7Wr","type":"image","props":{"w":1577.213417592345,"h":866.0301775609935,"assetId":"asset:-1607072822","playing":true,"url":"","crop":null,"flipX":false,"flipY":false},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a1","typeName":"shape"},{"x":1355.8185735321829,"y":468.1220622200499,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:BsHK32d6Tkha0ckACpnAY","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":9.339806240718158,"start":{"x":16.4718786760468,"y":-124.2336626529418},"end":{"x":-22.415379218337875,"y":-163.5461437668996},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aP","typeName":"shape"},{"x":-232.09311144573132,"y":981.1660081301618,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:BuGJTS55QNT9zPrUndPNt","type":"text","props":{"color":"yellow","size":"s","w":110.390625,"text":"SECONDARY","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aq","typeName":"shape"},{"x":218.47347136063468,"y":254.6191351087541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:CHde8DU0ttewBtHDauQHT","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":21.963362265487337,"start":{"x":0,"y":0},"end":{"x":275.0546875,"y":-89.640625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"EDITOR\n.INIT","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aC","typeName":"shape"},{"x":569.7170451921901,"y":453.0221250402243,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:CIOG862dWnY3vwxEiX4DV","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":32.56459342955796,"start":{"x":0,"y":0},"end":{"x":458.8202453795569,"y":-333.5069498787712},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b028","typeName":"shape"},{"x":856.682187360632,"y":104.8186377879652,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:CRG-ZMzc4mNOl3UTVnIZ_","type":"geo","props":{"w":66.94918083341759,"h":68.59832314165743,"geo":"ellipse","color":"black","labelColor":"black","fill":"none","dash":"draw","size":"m","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b02","typeName":"shape"},{"x":-28.061291931220808,"y":542.3209588397101,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Cq7SKBRDNDXZGzZyatGSj","type":"text","props":{"color":"yellow","size":"l","w":148.7109375,"text":"STRING","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a1","typeName":"shape"},{"x":896.1267463607151,"y":686.0459687613017,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:D-CuL6B4Zf4JvihxGMrPR","type":"text","props":{"color":"violet","size":"l","w":109.21875,"text":"TERM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a4","typeName":"shape"},{"x":752.6875,"y":522.59765625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:D94RVBrxfmjViMmkHq8xY","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":0.12,"z":0.5},{"x":0,"y":1.63,"z":0.5},{"x":0,"y":4.68,"z":0.5},{"x":0,"y":6.28,"z":0.5},{"x":0,"y":8.34,"z":0.5},{"x":0,"y":11.38,"z":0.5},{"x":0,"y":13.63,"z":0.5},{"x":0,"y":15.32,"z":0.5},{"x":0,"y":17.86,"z":0.5},{"x":0.26,"y":20.33,"z":0.5},{"x":0.52,"y":22.1,"z":0.5},{"x":0.77,"y":23.55,"z":0.5},{"x":1.02,"y":24.7,"z":0.5},{"x":1.3,"y":25.83,"z":0.5},{"x":1.76,"y":26.59,"z":0.5},{"x":1.95,"y":26.98,"z":0.5},{"x":1.95,"y":27.36,"z":0.5},{"x":2.32,"y":28.04,"z":0.5},{"x":2.32,"y":28.35,"z":0.5},{"x":2.48,"y":28.71,"z":0.5},{"x":2.8,"y":29.06,"z":0.5},{"x":2.97,"y":29.43,"z":0.5},{"x":3.16,"y":29.8,"z":0.5},{"x":3.54,"y":30.21,"z":0.5},{"x":3.93,"y":30.42,"z":0.5},{"x":4.33,"y":30.63,"z":0.5},{"x":4.72,"y":31.02,"z":0.5},{"x":5.1,"y":31.21,"z":0.5},{"x":6.2,"y":31.85,"z":0.5},{"x":7.31,"y":32.31,"z":0.5},{"x":10.83,"y":33.56,"z":0.5},{"x":13.46,"y":34.64,"z":0.5},{"x":16.14,"y":36,"z":0.5},{"x":19.22,"y":37.95,"z":0.5},{"x":22.92,"y":40.24,"z":0.5},{"x":25.82,"y":41.91,"z":0.5},{"x":28.6,"y":43.12,"z":0.5},{"x":31.87,"y":44.38,"z":0.5},{"x":34.64,"y":45.58,"z":0.5},{"x":37.45,"y":46.39,"z":0.5},{"x":40.13,"y":47.16,"z":0.5},{"x":42.14,"y":47.82,"z":0.5},{"x":44.78,"y":48.16,"z":0.5},{"x":46.38,"y":48.16,"z":0.5},{"x":48.38,"y":48.16,"z":0.5},{"x":50.35,"y":48.16,"z":0.5},{"x":54.58,"y":48.16,"z":0.5},{"x":56.29,"y":48.16,"z":0.5},{"x":57.52,"y":48.16,"z":0.5},{"x":58.68,"y":48.16,"z":0.5},{"x":59.76,"y":48.16,"z":0.5},{"x":60.86,"y":48.16,"z":0.5},{"x":62.04,"y":48.16,"z":0.5},{"x":62.41,"y":48.16,"z":0.5},{"x":62.79,"y":48.16,"z":0.5},{"x":63.1,"y":48.16,"z":0.5},{"x":63.4,"y":48.16,"z":0.5},{"x":63.66,"y":48.28,"z":0.5},{"x":63.74,"y":48.59,"z":0.5},{"x":63.74,"y":48.98,"z":0.5},{"x":63.74,"y":49.36,"z":0.5},{"x":63.74,"y":50.07,"z":0.5},{"x":63.74,"y":51.29,"z":0.5},{"x":63.74,"y":52.07,"z":0.5},{"x":63.54,"y":53.1,"z":0.5},{"x":63.04,"y":54.58,"z":0.5},{"x":62.49,"y":56.06,"z":0.5},{"x":62.16,"y":57.24,"z":0.5},{"x":61.83,"y":58.44,"z":0.5},{"x":61.26,"y":60.05,"z":0.5},{"x":60.99,"y":61.1,"z":0.5},{"x":60.95,"y":62.65,"z":0.5},{"x":60.95,"y":63.7,"z":0.5},{"x":60.95,"y":64.42,"z":0.5},{"x":60.95,"y":64.8,"z":0.5},{"x":60.95,"y":65.3,"z":0.5},{"x":60.95,"y":65.88,"z":0.5},{"x":60.95,"y":67.07,"z":0.5},{"x":60.95,"y":68.04,"z":0.5},{"x":60.95,"y":68.91,"z":0.5},{"x":60.95,"y":69.42,"z":0.5},{"x":60.95,"y":69.76,"z":0.5},{"x":60.95,"y":70.16,"z":0.5},{"x":60.95,"y":70.55,"z":0.5},{"x":60.95,"y":71.35,"z":0.5},{"x":61.07,"y":71.43,"z":0.5},{"x":61.19,"y":71.11,"z":0.5},{"x":61.38,"y":70.72,"z":0.5},{"x":61.84,"y":70,"z":0.5},{"x":62.29,"y":69.29,"z":0.5},{"x":62.63,"y":68.79,"z":0.5},{"x":62.99,"y":68.21,"z":0.5},{"x":63.45,"y":67.45,"z":0.5},{"x":63.9,"y":66.73,"z":0.5},{"x":64.37,"y":65.98,"z":0.5},{"x":64.83,"y":65.24,"z":0.5},{"x":65.92,"y":63.32,"z":0.5},{"x":66.82,"y":61.86,"z":0.5},{"x":67.3,"y":61.11,"z":0.5},{"x":67.71,"y":60.68,"z":0.5},{"x":68.17,"y":59.95,"z":0.5},{"x":68.62,"y":59.42,"z":0.5},{"x":69,"y":59.23,"z":0.5},{"x":69.68,"y":58.54,"z":0.5},{"x":69.97,"y":58.25,"z":0.5},{"x":70.35,"y":58.02,"z":0.5},{"x":70.73,"y":57.79,"z":0.5},{"x":71.13,"y":57.58,"z":0.5},{"x":71.55,"y":57.36,"z":0.5},{"x":71.94,"y":57,"z":0.5},{"x":72.34,"y":56.62,"z":0.5},{"x":72.73,"y":56.22,"z":0.5},{"x":72.96,"y":55.81,"z":0.5},{"x":73.24,"y":55.08,"z":0.5},{"x":73.7,"y":54.34,"z":0.5},{"x":74.16,"y":53.61,"z":0.5},{"x":74.91,"y":52.59,"z":0.5},{"x":75.2,"y":52.3,"z":0.5},{"x":75.41,"y":51.94,"z":0.5},{"x":75.64,"y":51.69,"z":0.5},{"x":76,"y":51.59,"z":0.5},{"x":76.35,"y":51.55,"z":0.5},{"x":76.52,"y":51.4,"z":0.5},{"x":76.64,"y":51.13,"z":0.5},{"x":76.78,"y":50.86,"z":0.5},{"x":76.95,"y":50.72,"z":0.5},{"x":77.13,"y":50.54,"z":0.5},{"x":77.16,"y":50.19,"z":0.5},{"x":77.36,"y":49.82,"z":0.5},{"x":77.55,"y":49.43,"z":0.5},{"x":77.55,"y":49.04,"z":0.5},{"x":77.55,"y":48.72,"z":0.5},{"x":77.68,"y":48.58,"z":0.5},{"x":77.94,"y":48.56,"z":0.5},{"x":78.46,"y":48.55,"z":0.5},{"x":78.79,"y":48.55,"z":0.5},{"x":79.14,"y":48.55,"z":0.5},{"x":79.5,"y":48.55,"z":0.5},{"x":79.9,"y":48.55,"z":0.5},{"x":80.3,"y":48.55,"z":0.5},{"x":80.7,"y":48.55,"z":0.5},{"x":81.11,"y":48.55,"z":0.5},{"x":81.85,"y":48.55,"z":0.5},{"x":82.28,"y":48.55,"z":0.5},{"x":82.66,"y":48.55,"z":0.5},{"x":83.54,"y":48.17,"z":0.5},{"x":84.33,"y":47.98,"z":0.5},{"x":86.43,"y":47.27,"z":0.5},{"x":87.49,"y":46.97,"z":0.5},{"x":90.6,"y":46.39,"z":0.5},{"x":91.77,"y":46.11,"z":0.5},{"x":92.58,"y":46.07,"z":0.5},{"x":93.36,"y":46.05,"z":0.5},{"x":94.13,"y":45.86,"z":0.5},{"x":94.56,"y":45.67,"z":0.5},{"x":94.96,"y":45.66,"z":0.5},{"x":95.34,"y":45.66,"z":0.5},{"x":95.65,"y":45.66,"z":0.5},{"x":95.92,"y":45.53,"z":0.5},{"x":96.21,"y":45.39,"z":0.5},{"x":96.53,"y":45.38,"z":0.5},{"x":96.88,"y":45.19,"z":0.5},{"x":97.27,"y":45,"z":0.5},{"x":97.66,"y":44.99,"z":0.5},{"x":98.04,"y":44.8,"z":0.5},{"x":98.63,"y":44.34,"z":0.5},{"x":98.96,"y":44.18,"z":0.5},{"x":99.32,"y":44.01,"z":0.5},{"x":99.73,"y":43.57,"z":0.5},{"x":101.49,"y":42.28,"z":0.5},{"x":102.99,"y":41.64,"z":0.5},{"x":104.53,"y":40.78,"z":0.5},{"x":105.67,"y":39.96,"z":0.5},{"x":107.05,"y":38.37,"z":0.5},{"x":107.76,"y":37.65,"z":0.5},{"x":108.78,"y":36.63,"z":0.5},{"x":109,"y":35.68,"z":0.5},{"x":109.03,"y":35,"z":0.5},{"x":109.04,"y":34.55,"z":0.5},{"x":109.04,"y":33.1,"z":0.5},{"x":109.04,"y":32.35,"z":0.5},{"x":109.04,"y":31.3,"z":0.5},{"x":109.04,"y":30.21,"z":0.5},{"x":109.04,"y":29.11,"z":0.5},{"x":109.04,"y":28.36,"z":0.5},{"x":109.04,"y":27.61,"z":0.5},{"x":109.04,"y":26.54,"z":0.5},{"x":109.04,"y":25.49,"z":0.5},{"x":109.04,"y":24.43,"z":0.5},{"x":109.04,"y":23.59,"z":0.5},{"x":109.04,"y":22.88,"z":0.5},{"x":109.04,"y":22.13,"z":0.5},{"x":109.04,"y":21.26,"z":0.5},{"x":109.04,"y":20.46,"z":0.5},{"x":109.04,"y":19.96,"z":0.5},{"x":109.04,"y":19.52,"z":0.5},{"x":109.21,"y":19.1,"z":0.5},{"x":109.39,"y":18.69,"z":0.5},{"x":109.41,"y":18.29,"z":0.5},{"x":109.41,"y":17.55,"z":0.5},{"x":109.61,"y":16.82,"z":0.5},{"x":110.06,"y":16.1,"z":0.5},{"x":110.84,"y":14.21,"z":0.5},{"x":111.09,"y":13.05,"z":0.5},{"x":111.55,"y":11.65,"z":0.5},{"x":112.08,"y":10.19,"z":0.5},{"x":112.75,"y":8.19,"z":0.5},{"x":113.4,"y":6.48,"z":0.5},{"x":114.03,"y":4.82,"z":0.5},{"x":114.66,"y":3.21,"z":0.5},{"x":114.98,"y":2.04,"z":0.5},{"x":115.22,"y":1.19,"z":0.5},{"x":115.43,"y":0.7,"z":0.5},{"x":115.64,"y":0.27,"z":0.5},{"x":115.83,"y":-0.12,"z":0.5},{"x":115.83,"y":-0.51,"z":0.5},{"x":115.83,"y":-0.86,"z":0.5}]}],"color":"red","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aA","typeName":"shape"},{"x":910.99609375,"y":379.4296875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:D9N1IfhsiGF2EdBPdP8IN","type":"text","props":{"color":"orange","size":"l","w":8,"text":"","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aK","typeName":"shape"},{"x":1229.09375,"y":694.01171875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:DM8D460EAyqeZev7OMtwm","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":-0.12,"z":0.5},{"x":0,"y":-0.07,"z":0.5},{"x":0,"y":0.27,"z":0.5},{"x":0,"y":0.96,"z":0.5},{"x":0,"y":1.68,"z":0.5},{"x":0,"y":2.07,"z":0.5},{"x":0,"y":2.78,"z":0.5},{"x":0,"y":3.41,"z":0.5},{"x":0,"y":3.71,"z":0.5},{"x":0,"y":4.07,"z":0.5},{"x":0,"y":4.71,"z":0.5},{"x":0,"y":5.39,"z":0.5},{"x":0,"y":5.84,"z":0.5},{"x":0,"y":6.3,"z":0.5},{"x":0,"y":6.73,"z":0.5},{"x":0,"y":7.13,"z":0.5},{"x":0,"y":7.54,"z":0.5},{"x":0,"y":7.95,"z":0.5},{"x":0,"y":8.34,"z":0.5},{"x":0,"y":8.72,"z":0.5},{"x":0,"y":9.03,"z":0.5},{"x":0,"y":9.32,"z":0.5},{"x":0,"y":9.7,"z":0.5},{"x":0,"y":10.07,"z":0.5},{"x":0,"y":10.47,"z":0.5},{"x":0,"y":10.88,"z":0.5},{"x":0,"y":11.28,"z":0.5},{"x":0,"y":11.68,"z":0.5},{"x":0,"y":12.08,"z":0.5},{"x":0,"y":12.48,"z":0.5},{"x":0,"y":12.88,"z":0.5},{"x":0.14,"y":13.24,"z":0.5},{"x":0.47,"y":13.4,"z":0.5},{"x":0.79,"y":13.4,"z":0.5},{"x":1.07,"y":13.53,"z":0.5},{"x":1.38,"y":13.67,"z":0.5},{"x":1.73,"y":13.68,"z":0.5},{"x":2.11,"y":13.86,"z":0.5},{"x":2.52,"y":14.04,"z":0.5},{"x":2.91,"y":14.06,"z":0.5},{"x":3.32,"y":14.25,"z":0.5},{"x":3.72,"y":14.44,"z":0.5},{"x":4.11,"y":14.64,"z":0.5},{"x":4.51,"y":15.03,"z":0.5},{"x":5.23,"y":15.48,"z":0.5},{"x":6.29,"y":16.01,"z":0.5},{"x":7.11,"y":16.42,"z":0.5},{"x":7.93,"y":16.83,"z":0.5},{"x":8.97,"y":17.35,"z":0.5},{"x":10.01,"y":17.87,"z":0.5},{"x":11.09,"y":18.2,"z":0.5},{"x":12.19,"y":18.51,"z":0.5},{"x":13.01,"y":18.8,"z":0.5},{"x":13.81,"y":18.85,"z":0.5},{"x":14.56,"y":18.88,"z":0.5},{"x":15.02,"y":18.88,"z":0.5},{"x":15.78,"y":18.88,"z":0.5},{"x":16.52,"y":18.88,"z":0.5},{"x":16.92,"y":18.88,"z":0.5},{"x":17.3,"y":18.88,"z":0.5},{"x":17.98,"y":18.88,"z":0.5},{"x":18.26,"y":18.88,"z":0.5},{"x":18.62,"y":18.88,"z":0.5},{"x":19.02,"y":18.88,"z":0.5},{"x":19.41,"y":18.88,"z":0.5},{"x":19.73,"y":18.88,"z":0.5},{"x":19.9,"y":18.72,"z":0.5},{"x":20.11,"y":18.37,"z":0.5},{"x":20.48,"y":18.17,"z":0.5},{"x":20.67,"y":17.98,"z":0.5},{"x":21.05,"y":17.29,"z":0.5},{"x":21.19,"y":16.98,"z":0.5},{"x":21.5,"y":16.75,"z":0.5},{"x":21.73,"y":16.48,"z":0.5},{"x":21.94,"y":16.11,"z":0.5},{"x":22.27,"y":15.94,"z":0.5},{"x":22.67,"y":15.88,"z":0.5},{"x":23.38,"y":15.63,"z":0.5},{"x":24.1,"y":15.18,"z":0.5},{"x":24.53,"y":14.97,"z":0.5},{"x":25.27,"y":14.68,"z":0.5},{"x":25.99,"y":14.41,"z":0.5},{"x":26.38,"y":14.41,"z":0.5},{"x":27.05,"y":14.41,"z":0.5},{"x":27.43,"y":14.41,"z":0.5},{"x":28.03,"y":14.41,"z":0.5},{"x":28.61,"y":14.41,"z":0.5},{"x":29.53,"y":14.41,"z":0.5},{"x":29.95,"y":14.41,"z":0.5},{"x":30.35,"y":14.41,"z":0.5},{"x":30.75,"y":14.41,"z":0.5},{"x":31.16,"y":14.41,"z":0.5},{"x":31.56,"y":14.41,"z":0.5},{"x":31.96,"y":14.41,"z":0.5},{"x":32.36,"y":14.41,"z":0.5},{"x":32.7,"y":14.41,"z":0.5},{"x":32.97,"y":14.52,"z":0.5},{"x":33.28,"y":14.69,"z":0.5},{"x":33.63,"y":14.91,"z":0.5},{"x":33.99,"y":15.25,"z":0.5},{"x":34.2,"y":15.58,"z":0.5},{"x":34.37,"y":15.89,"z":0.5},{"x":34.53,"y":16.21,"z":0.5},{"x":34.71,"y":16.37,"z":0.5},{"x":34.9,"y":16.48,"z":0.5},{"x":34.9,"y":16.79,"z":0.5},{"x":35.05,"y":16.99,"z":0.5},{"x":35.37,"y":17.17,"z":0.5},{"x":35.55,"y":17.5,"z":0.5},{"x":36.1,"y":17.9,"z":0.5},{"x":36.49,"y":18.28,"z":0.5},{"x":36.71,"y":18.67,"z":0.5},{"x":36.91,"y":19.07,"z":0.5},{"x":37.11,"y":19.46,"z":0.5},{"x":37.3,"y":19.84,"z":0.5},{"x":37.48,"y":20.52,"z":0.5},{"x":37.63,"y":20.68,"z":0.5},{"x":37.79,"y":20.89,"z":0.5},{"x":37.83,"y":21.3,"z":0.5},{"x":37.86,"y":21.68,"z":0.5},{"x":37.86,"y":21.98,"z":0.5},{"x":37.86,"y":22.32,"z":0.5},{"x":37.86,"y":22.66,"z":0.5},{"x":37.86,"y":22.97,"z":0.5},{"x":37.86,"y":23.25,"z":0.5},{"x":37.86,"y":23.54,"z":0.5},{"x":37.86,"y":23.82,"z":0.5},{"x":37.86,"y":24.09,"z":0.5},{"x":37.86,"y":24.36,"z":0.5},{"x":37.86,"y":24.64,"z":0.5},{"x":37.86,"y":24.93,"z":0.5},{"x":37.86,"y":24.95,"z":0.5},{"x":38,"y":24.7,"z":0.5},{"x":38.3,"y":24.38,"z":0.5},{"x":38.5,"y":24.03,"z":0.5},{"x":38.71,"y":23.63,"z":0.5},{"x":38.89,"y":23.24,"z":0.5},{"x":39.07,"y":23.04,"z":0.5},{"x":39.26,"y":22.82,"z":0.5},{"x":39.45,"y":22.45,"z":0.5},{"x":39.77,"y":22.11,"z":0.5},{"x":40.11,"y":21.95,"z":0.5},{"x":40.3,"y":21.84,"z":0.5},{"x":40.44,"y":21.54,"z":0.5},{"x":40.75,"y":21.15,"z":0.5},{"x":41.11,"y":20.76,"z":0.5},{"x":41.5,"y":20.52,"z":0.5},{"x":42.29,"y":20.08,"z":0.5},{"x":42.69,"y":19.87,"z":0.5},{"x":43.37,"y":19.68,"z":0.5},{"x":44.1,"y":19.47,"z":0.5},{"x":44.87,"y":19.01,"z":0.5},{"x":45.94,"y":18.73,"z":0.5},{"x":47.01,"y":18.46,"z":0.5},{"x":47.73,"y":18,"z":0.5},{"x":49.27,"y":17.65,"z":0.5},{"x":49.84,"y":17.43,"z":0.5},{"x":50.34,"y":17.34,"z":0.5},{"x":51.01,"y":17.1,"z":0.5},{"x":51.72,"y":16.85,"z":0.5},{"x":52.2,"y":16.79,"z":0.5},{"x":52.64,"y":16.76,"z":0.5},{"x":53.34,"y":16.75,"z":0.5},{"x":54.05,"y":16.57,"z":0.5},{"x":54.82,"y":16.38,"z":0.5},{"x":55.89,"y":16.36,"z":0.5},{"x":56.97,"y":16.35,"z":0.5},{"x":59.12,"y":16.34,"z":0.5},{"x":61.22,"y":16.34,"z":0.5},{"x":62.06,"y":16.34,"z":0.5},{"x":62.9,"y":16.34,"z":0.5},{"x":63.93,"y":16.34,"z":0.5},{"x":66.31,"y":16.34,"z":0.5},{"x":66.95,"y":16.34,"z":0.5},{"x":67.71,"y":16.34,"z":0.5},{"x":68.45,"y":16.34,"z":0.5},{"x":69.22,"y":16.34,"z":0.5},{"x":69.97,"y":16.34,"z":0.5},{"x":70.72,"y":16.34,"z":0.5},{"x":72.18,"y":16.34,"z":0.5},{"x":72.89,"y":16.34,"z":0.5},{"x":73.77,"y":16.34,"z":0.5},{"x":74.35,"y":16.34,"z":0.5},{"x":74.84,"y":16.34,"z":0.5},{"x":75.28,"y":16.34,"z":0.5},{"x":75.76,"y":16.34,"z":0.5},{"x":76.17,"y":16.34,"z":0.5},{"x":76.55,"y":16.34,"z":0.5},{"x":76.94,"y":16.34,"z":0.5},{"x":77.32,"y":16.34,"z":0.5},{"x":77.72,"y":16.34,"z":0.5},{"x":78.1,"y":16.34,"z":0.5},{"x":78.46,"y":16.34,"z":0.5},{"x":78.74,"y":16.34,"z":0.5},{"x":79.02,"y":16.21,"z":0.5},{"x":79.18,"y":15.93,"z":0.5},{"x":79.2,"y":15.62,"z":0.5},{"x":79.38,"y":14.86,"z":0.5},{"x":79.56,"y":14.45,"z":0.5},{"x":79.58,"y":14.04,"z":0.5},{"x":79.59,"y":13.65,"z":0.5},{"x":79.78,"y":13.25,"z":0.5},{"x":79.96,"y":12.86,"z":0.5},{"x":79.96,"y":12.47,"z":0.5},{"x":79.96,"y":12.09,"z":0.5},{"x":80.07,"y":11.79,"z":0.5},{"x":80.25,"y":11.47,"z":0.5},{"x":80.32,"y":11.09,"z":0.5},{"x":80.34,"y":10.76,"z":0.5},{"x":80.34,"y":10.45,"z":0.5},{"x":80.34,"y":10.13,"z":0.5},{"x":80.34,"y":9.77,"z":0.5},{"x":80.34,"y":9.41,"z":0.5},{"x":80.34,"y":9.13,"z":0.5},{"x":80.34,"y":8.84,"z":0.5},{"x":80.34,"y":8.5,"z":0.5},{"x":80.34,"y":8.14,"z":0.5},{"x":80.34,"y":7.76,"z":0.5},{"x":80.34,"y":7.35,"z":0.5},{"x":80.34,"y":6.3,"z":0.5},{"x":80.34,"y":5.59,"z":0.5},{"x":80.34,"y":5.13,"z":0.5},{"x":80.34,"y":4.25,"z":0.5},{"x":80.34,"y":3.66,"z":0.5},{"x":80.34,"y":2.95,"z":0.5},{"x":80.34,"y":2.23,"z":0.5},{"x":80.34,"y":1.3,"z":0.5},{"x":80.34,"y":0.25,"z":0.5},{"x":80.34,"y":-0.39,"z":0.5},{"x":80.34,"y":-1.18,"z":0.5},{"x":80.34,"y":-1.93,"z":0.5},{"x":80.34,"y":-2.37,"z":0.5},{"x":80.34,"y":-2.79,"z":0.5},{"x":80.34,"y":-3.19,"z":0.5},{"x":80.34,"y":-3.96,"z":0.5},{"x":80.34,"y":-4.28,"z":0.5},{"x":80.34,"y":-4.56,"z":0.5},{"x":80.34,"y":-4.88,"z":0.5},{"x":80.34,"y":-5.19,"z":0.5},{"x":80.34,"y":-5.49,"z":0.5},{"x":80.34,"y":-5.78,"z":0.5},{"x":80.34,"y":-6.05,"z":0.5},{"x":80.21,"y":-6.21,"z":0.5}]}],"color":"yellow","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aH","typeName":"shape"},{"x":667.4173943474846,"y":172.88932966727674,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:DMYTDgc-dY-Crd2LFIwQT","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"red","labelColor":"black","bend":0.057413327977390266,"start":{"x":0,"y":0},"end":{"x":-120.0195710603657,"y":6.6232522880369515},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aMV","typeName":"shape"},{"x":240.55159125157888,"y":313.8146236957436,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:DgKNN5LS5b1V86TcA29Oo","type":"text","props":{"color":"yellow","size":"l","w":139.78125,"text":"ZIPPER","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a6","typeName":"shape"},{"x":222.03836956068295,"y":-28.348303564195675,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:DkuFaBtZQ0VD9_amGhmUd","type":"text","props":{"color":"yellow","size":"l","w":138.9921875,"text":"EDITOR","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aA","typeName":"shape"},{"x":1038.428181014388,"y":556.375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:E81ajhccoB7ylytpBTALy","type":"text","props":{"color":"red","size":"m","w":111.59375,"text":"posts by \ninsane\nrandos","font":"draw","textAlign":"start","autoSize":true,"scale":1.5718421191653842},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a8","typeName":"shape"},{"x":896.1267463607151,"y":686.0459687613017,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:E_jgiIBog0wnPOPSKLDah","type":"text","props":{"color":"violet","size":"l","w":109.21875,"text":"TERM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a4","typeName":"shape"},{"x":1712.8372264258564,"y":805.9617283251218,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:F9MGlgV2XN_KYppPNL-2V","type":"text","props":{"color":"violet","size":"m","w":45.09375,"text":"CTX","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"am","typeName":"shape"},{"x":1489.4909100232412,"y":798.8736753199454,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:FBgWN8C_ui9u7PCtH80go","type":"text","props":{"color":"violet","size":"m","w":64.390625,"text":"INFO","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ak","typeName":"shape"},{"x":1181.6577679995764,"y":-183.35033571018369,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:FVtG3gQMntrD2E4ycx_39","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"red","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aS","typeName":"shape"},{"x":368.9651153553524,"y":688.5995027965068,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:G3wu3DUUWZqhJnbduYLSW","type":"text","props":{"color":"yellow","size":"l","w":182.015625,"text":"SEGMENT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a2","typeName":"shape"},{"x":896.1267463607151,"y":686.0459687613017,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:GCT4h5nilU7tiS9kaB3Rw","type":"text","props":{"color":"violet","size":"l","w":109.21875,"text":"TERM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a3","typeName":"shape"},{"x":1355.8185735321829,"y":468.1220622200499,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:GX_ZeICc5QxlmVYTpKfeA","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":9.339806240718158,"start":{"x":16.4718786760468,"y":-124.2336626529418},"end":{"x":-22.415379218337875,"y":-163.5461437668996},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aHV","typeName":"shape"},{"x":1096.61328125,"y":614.68359375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:GaQeAbQNB08qdotxv4NfD","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":18.563388100136756,"start":{"x":18.623482563644075,"y":-9.535592758221128},"end":{"x":93.16015625,"y":20.625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ELAB.UEXP","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aDG","typeName":"shape"},{"x":536.2742526106347,"y":149.5605413587541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:GmRUY4iwreO9v3UqO5jYB","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":68.12583199333677,"start":{"x":-52.61328125,"y":2.38671875},"end":{"x":-305.21484375,"y":89.20703125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"_.\nSTATE.\nZIPPER","labelPosition":0.5125135168482452,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a5G","typeName":"shape"},{"x":-14.50180790508523,"y":943.27108896244,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:GumY4KaHK50n_HXUuq1WX","type":"text","props":{"color":"yellow","size":"s","w":106.2109375,"text":"PROJECTOR","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"at","typeName":"shape"},{"x":614.3132596894018,"y":342.06234582729485,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:GxtwIvm8gVH4psG4l0bei","type":"text","props":{"color":"light-violet","size":"s","w":102.71875,"text":"MEASURED","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aM","typeName":"shape"},{"x":1150.4931847002063,"y":1616.759869717876,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:HIk2obfXoDdVROC3hEIz1","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a9","props":{"dash":"draw","size":"m","fill":"none","color":"yellow","labelColor":"black","bend":11.973190323909595,"start":{"x":0,"y":0},"end":{"x":2,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":1096.61328125,"y":614.68359375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:HIy8JzhSCmCE2ciUS96sR","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":18.563388100136756,"start":{"x":18.623482563644075,"y":-9.535592758221128},"end":{"x":93.16015625,"y":20.625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ELAB.UEXP","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aJ","typeName":"shape"},{"x":568.6883541939209,"y":455.4336465607572,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:HP2MVb0BCPxAndSoiJRfI","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-72.70949589215138,"start":{"x":0,"y":0},"end":{"x":344.6831555143432,"y":-438.84632537640823},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aT","typeName":"shape"},{"x":899.7265625,"y":389.7109375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:HY-mcU_BBBbvvGOF5Idzi","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":0.12,"z":0.5},{"x":0,"y":0.71,"z":0.5},{"x":0,"y":1.69,"z":0.5},{"x":0,"y":2.78,"z":0.5},{"x":0,"y":3.9,"z":0.5},{"x":0,"y":5.43,"z":0.5},{"x":0,"y":6.96,"z":0.5},{"x":-0.67,"y":8.49,"z":0.5},{"x":-1.34,"y":10.09,"z":0.5},{"x":-1.6,"y":11.7,"z":0.5},{"x":-2.15,"y":13.69,"z":0.5},{"x":-3.05,"y":15.72,"z":0.5},{"x":-4.01,"y":17.76,"z":0.5},{"x":-5.91,"y":23.02,"z":0.5},{"x":-7.04,"y":25.86,"z":0.5},{"x":-7.92,"y":29.14,"z":0.5},{"x":-8.77,"y":32.45,"z":0.5},{"x":-10.35,"y":38.08,"z":0.5},{"x":-11.11,"y":40.76,"z":0.5},{"x":-11.79,"y":42.79,"z":0.5},{"x":-12.65,"y":45.14,"z":0.5},{"x":-12.65,"y":45.98,"z":0.5},{"x":-12.85,"y":47.01,"z":0.5},{"x":-13.08,"y":47.78,"z":0.5},{"x":-13.13,"y":48.3,"z":0.5},{"x":-13.17,"y":48.78,"z":0.5},{"x":-13.18,"y":49.2,"z":0.5},{"x":-13.19,"y":49.6,"z":0.5},{"x":-13.19,"y":49.99,"z":0.5},{"x":-13.2,"y":50.34,"z":0.5},{"x":-13.2,"y":50.68,"z":0.5},{"x":-13.2,"y":51.06,"z":0.5},{"x":-13.2,"y":51.55,"z":0.5},{"x":-13.2,"y":52.73,"z":0.5},{"x":-13.2,"y":54.54,"z":0.5},{"x":-13.2,"y":56.5,"z":0.5},{"x":-13.2,"y":58.54,"z":0.5},{"x":-13.2,"y":61.14,"z":0.5},{"x":-13.2,"y":63.84,"z":0.5},{"x":-13.2,"y":66.04,"z":0.5},{"x":-13.2,"y":67.74,"z":0.5},{"x":-13.2,"y":69.38,"z":0.5},{"x":-13.2,"y":71.01,"z":0.5},{"x":-13.2,"y":72.16,"z":0.5},{"x":-13.2,"y":72.91,"z":0.5},{"x":-13.2,"y":73.64,"z":0.5},{"x":-13.2,"y":74.35,"z":0.5},{"x":-13.2,"y":75.03,"z":0.5},{"x":-13.2,"y":75.33,"z":0.5},{"x":-13.2,"y":75.7,"z":0.5},{"x":-13.2,"y":76.08,"z":0.5},{"x":-13.2,"y":76.48,"z":0.5},{"x":-13.2,"y":77.15,"z":0.5},{"x":-13.2,"y":77.86,"z":0.5},{"x":-13.2,"y":78.3,"z":0.5},{"x":-13.2,"y":78.74,"z":0.5},{"x":-13.2,"y":79.45,"z":0.5},{"x":-13.2,"y":81.62,"z":0.5},{"x":-13.2,"y":82.68,"z":0.5},{"x":-13.2,"y":86.22,"z":0.5},{"x":-13.2,"y":87.81,"z":0.5},{"x":-13.2,"y":89.4,"z":0.5},{"x":-13.2,"y":91.82,"z":0.5},{"x":-13.2,"y":93.88,"z":0.5},{"x":-13.2,"y":95.89,"z":0.5},{"x":-13.2,"y":97.98,"z":0.5},{"x":-13.2,"y":99.78,"z":0.5},{"x":-13.2,"y":101.42,"z":0.5},{"x":-13.2,"y":103,"z":0.5},{"x":-13.2,"y":104.62,"z":0.5},{"x":-13.2,"y":105.78,"z":0.5},{"x":-13.2,"y":106.9,"z":0.5},{"x":-13.01,"y":107.64,"z":0.5},{"x":-12.82,"y":108.36,"z":0.5},{"x":-12.56,"y":109.41,"z":0.5},{"x":-12.3,"y":110.46,"z":0.5},{"x":-11.93,"y":112.13,"z":0.5},{"x":-11.84,"y":112.92,"z":0.5},{"x":-11.8,"y":113.66,"z":0.5},{"x":-11.79,"y":114.41,"z":0.5},{"x":-11.57,"y":115.19,"z":0.5},{"x":-11.32,"y":115.93,"z":0.5},{"x":-11.29,"y":116.38,"z":0.5},{"x":-11.27,"y":116.83,"z":0.5},{"x":-11.27,"y":117.21,"z":0.5},{"x":-11.14,"y":117.37,"z":0.5},{"x":-10.89,"y":117.5,"z":0.5},{"x":-10.75,"y":117.8,"z":0.5},{"x":-10.56,"y":118.18,"z":0.5},{"x":-10.11,"y":118.91,"z":0.5},{"x":-9.51,"y":120.44,"z":0.5},{"x":-8.92,"y":121.97,"z":0.5},{"x":-8.39,"y":123.02,"z":0.5},{"x":-7.61,"y":124.71,"z":0.5},{"x":-7.42,"y":125.25,"z":0.5},{"x":-7.19,"y":125.92,"z":0.5},{"x":-6.98,"y":126.39,"z":0.5},{"x":-6.62,"y":126.68,"z":0.5},{"x":-6.29,"y":126.76,"z":0.5},{"x":-6,"y":126.78,"z":0.5},{"x":-5.74,"y":126.78,"z":0.5},{"x":-5.44,"y":126.78,"z":0.5},{"x":-5.09,"y":126.78,"z":0.5},{"x":-4.7,"y":126.78,"z":0.5},{"x":-4.3,"y":126.78,"z":0.5},{"x":-3.91,"y":126.78,"z":0.5},{"x":-3.18,"y":126.78,"z":0.5},{"x":-2.11,"y":126.78,"z":0.5},{"x":-1.05,"y":126.78,"z":0.5},{"x":0,"y":126.78,"z":0.5},{"x":1.21,"y":126.78,"z":0.5},{"x":1.77,"y":126.78,"z":0.5},{"x":2.24,"y":126.78,"z":0.5},{"x":2.7,"y":126.78,"z":0.5},{"x":3.13,"y":126.78,"z":0.5},{"x":3.53,"y":126.78,"z":0.5},{"x":3.93,"y":126.78,"z":0.5},{"x":4.33,"y":126.78,"z":0.5},{"x":4.66,"y":126.78,"z":0.5},{"x":4.81,"y":126.59,"z":0.5},{"x":4.92,"y":126.39,"z":0.5},{"x":5.22,"y":126.39,"z":0.5},{"x":5.59,"y":126.25,"z":0.5},{"x":6.64,"y":125.72,"z":0.5},{"x":7.35,"y":125.5,"z":0.5},{"x":8.09,"y":125.07,"z":0.5},{"x":9.12,"y":124.55,"z":0.5},{"x":9.89,"y":124.07,"z":0.5},{"x":10.68,"y":123.59,"z":0.5},{"x":11.74,"y":123.04,"z":0.5},{"x":12.5,"y":122.56,"z":0.5},{"x":12.9,"y":122.36,"z":0.5},{"x":13.28,"y":122.16,"z":0.5},{"x":13.66,"y":121.78,"z":0.5},{"x":14.23,"y":121.47,"z":0.5},{"x":14.41,"y":121.28,"z":0.5},{"x":14.59,"y":121.07,"z":0.5},{"x":14.59,"y":120.77,"z":0.5},{"x":14.77,"y":120.61,"z":0.5},{"x":14.95,"y":120.42,"z":0.5},{"x":15.12,"y":120.22,"z":0.5},{"x":15.28,"y":120.02,"z":0.5},{"x":15.54,"y":119.3,"z":0.5},{"x":16,"y":118.58,"z":0.5},{"x":16.38,"y":118.2,"z":0.5},{"x":16.68,"y":117.89,"z":0.5},{"x":16.98,"y":117.58,"z":0.5},{"x":17.62,"y":116.94,"z":0.5},{"x":18.41,"y":116.14,"z":0.5},{"x":18.89,"y":115.66,"z":0.5},{"x":19.22,"y":115.32,"z":0.5},{"x":19.62,"y":114.92,"z":0.5},{"x":20.02,"y":114.52,"z":0.5},{"x":20.41,"y":114.13,"z":0.5},{"x":20.8,"y":113.73,"z":0.5},{"x":21.21,"y":113.32,"z":0.5},{"x":21.41,"y":112.59,"z":0.5},{"x":21.6,"y":111.88,"z":0.5},{"x":21.79,"y":111.49,"z":0.5},{"x":22.31,"y":109.92,"z":0.5},{"x":22.45,"y":109.36,"z":0.5},{"x":22.61,"y":108.61,"z":0.5},{"x":22.86,"y":107.62,"z":0.5},{"x":23.31,"y":106.6,"z":0.5},{"x":23.69,"y":104.35,"z":0.5},{"x":23.96,"y":103.22,"z":0.5},{"x":24.22,"y":101.64,"z":0.5},{"x":24.57,"y":99.6,"z":0.5},{"x":24.91,"y":97.52,"z":0.5},{"x":25.25,"y":95.46,"z":0.5},{"x":25.59,"y":93.45,"z":0.5},{"x":25.59,"y":91.44,"z":0.5},{"x":25.78,"y":89.86,"z":0.5},{"x":26.11,"y":87.85,"z":0.5},{"x":26.25,"y":86.1,"z":0.5},{"x":26.45,"y":85.24,"z":0.5},{"x":26.68,"y":84.18,"z":0.5},{"x":26.73,"y":83.1,"z":0.5},{"x":26.76,"y":81.99,"z":0.5},{"x":27.29,"y":79.95,"z":0.5},{"x":27.29,"y":79.27,"z":0.5},{"x":27.29,"y":78.2,"z":0.5},{"x":27.55,"y":77.11,"z":0.5},{"x":27.82,"y":76.37,"z":0.5},{"x":27.82,"y":75.17,"z":0.5},{"x":27.82,"y":73.64,"z":0.5},{"x":28.01,"y":71.46,"z":0.5},{"x":28.28,"y":70.29,"z":0.5},{"x":28.39,"y":68.7,"z":0.5},{"x":28.45,"y":66.7,"z":0.5},{"x":28.81,"y":64.13,"z":0.5},{"x":29.19,"y":61.45,"z":0.5},{"x":29.25,"y":58.68,"z":0.5},{"x":29.28,"y":55.34,"z":0.5},{"x":29.29,"y":52.52,"z":0.5},{"x":29.67,"y":49.78,"z":0.5},{"x":30.46,"y":46.53,"z":0.5},{"x":30.89,"y":43.16,"z":0.5},{"x":31.23,"y":40.47,"z":0.5},{"x":31.56,"y":37.84,"z":0.5},{"x":31.89,"y":35.21,"z":0.5},{"x":32.23,"y":31.54,"z":0.5},{"x":32.48,"y":29.04,"z":0.5},{"x":32.77,"y":26.9,"z":0.5},{"x":33.11,"y":24.72,"z":0.5},{"x":33.44,"y":23.03,"z":0.5},{"x":33.5,"y":21.38,"z":0.5},{"x":33.54,"y":19.7,"z":0.5},{"x":33.55,"y":18.48,"z":0.5},{"x":33.55,"y":17.67,"z":0.5},{"x":33.55,"y":16.88,"z":0.5},{"x":33.55,"y":15.8,"z":0.5},{"x":33.55,"y":15.08,"z":0.5},{"x":33.55,"y":14.69,"z":0.5},{"x":33.55,"y":14.31,"z":0.5},{"x":33.55,"y":13.8,"z":0.5},{"x":33.55,"y":13.22,"z":0.5},{"x":33.55,"y":12.73,"z":0.5},{"x":33.55,"y":12.29,"z":0.5},{"x":33.55,"y":11.87,"z":0.5},{"x":33.55,"y":11.46,"z":0.5},{"x":33.55,"y":10.77,"z":0.5},{"x":33.55,"y":10.05,"z":0.5},{"x":33.55,"y":9.62,"z":0.5},{"x":33.55,"y":9.22,"z":0.5},{"x":33.55,"y":8.86,"z":0.5},{"x":33.55,"y":8.54,"z":0.5},{"x":33.42,"y":8.25,"z":0.5},{"x":33.13,"y":7.97,"z":0.5},{"x":32.81,"y":7.8,"z":0.5},{"x":32.17,"y":7.55,"z":0.5},{"x":31.49,"y":7.29,"z":0.5},{"x":31.04,"y":7.25,"z":0.5},{"x":30.61,"y":7.05,"z":0.5},{"x":30.2,"y":6.86,"z":0.5},{"x":29.45,"y":6.83,"z":0.5},{"x":28.72,"y":6.82,"z":0.5},{"x":27.99,"y":6.56,"z":0.5},{"x":27.25,"y":6.29,"z":0.5},{"x":26.54,"y":6.29,"z":0.5},{"x":25.9,"y":6.18,"z":0.5},{"x":25.35,"y":6.02,"z":0.5},{"x":24.68,"y":5.95,"z":0.5},{"x":23.97,"y":5.71,"z":0.5},{"x":23.24,"y":5.47,"z":0.5},{"x":22.76,"y":5.25,"z":0.5},{"x":22.32,"y":4.89,"z":0.5},{"x":21.9,"y":4.67,"z":0.5},{"x":21.48,"y":4.44,"z":0.5},{"x":21.08,"y":4.06,"z":0.5},{"x":20.67,"y":3.67,"z":0.5},{"x":20.27,"y":3.46,"z":0.5},{"x":20.07,"y":3.25,"z":0.5},{"x":19.87,"y":2.87,"z":0.5},{"x":19.48,"y":2.48,"z":0.5},{"x":18.8,"y":2.18,"z":0.5},{"x":18.64,"y":1.88,"z":0.5},{"x":18.36,"y":1.6,"z":0.5},{"x":18.01,"y":1.39,"z":0.5},{"x":17.68,"y":1.07,"z":0.5},{"x":17.29,"y":0.68,"z":0.5},{"x":16.93,"y":0.46,"z":0.5},{"x":16.56,"y":0.25,"z":0.5},{"x":16.18,"y":-0.12,"z":0.5},{"x":15.79,"y":-0.32,"z":0.5},{"x":15.01,"y":-0.53,"z":0.5},{"x":14.69,"y":-0.72,"z":0.5},{"x":14.41,"y":-0.87,"z":0.5},{"x":14.07,"y":-1.04,"z":0.5},{"x":13.65,"y":-1.24,"z":0.5},{"x":13.28,"y":-1.42,"z":0.5},{"x":12.93,"y":-1.42,"z":0.5},{"x":12.53,"y":-1.42,"z":0.5},{"x":12.11,"y":-1.61,"z":0.5},{"x":11.74,"y":-1.8,"z":0.5},{"x":11.37,"y":-1.8,"z":0.5},{"x":10.93,"y":-1.8,"z":0.5},{"x":10.2,"y":-1.8,"z":0.5},{"x":9.1,"y":-1.8,"z":0.5},{"x":8.8,"y":-1.8,"z":0.5},{"x":8.49,"y":-1.8,"z":0.5},{"x":8.13,"y":-1.8,"z":0.5},{"x":7.5,"y":-1.8,"z":0.5},{"x":6.8,"y":-1.8,"z":0.5},{"x":6.11,"y":-1.8,"z":0.5},{"x":5.71,"y":-1.8,"z":0.5},{"x":5.11,"y":-1.8,"z":0.5},{"x":4.74,"y":-1.8,"z":0.5},{"x":4.41,"y":-1.8,"z":0.5},{"x":4.1,"y":-1.8,"z":0.5},{"x":3.61,"y":-1.8,"z":0.5},{"x":3.12,"y":-1.8,"z":0.5},{"x":2.74,"y":-1.65,"z":0.5},{"x":2.05,"y":-1.48,"z":0.5},{"x":1.34,"y":-1.29,"z":0.5},{"x":0.88,"y":-0.92,"z":0.5},{"x":0.45,"y":-0.71,"z":0.5},{"x":-0.28,"y":-0.68,"z":0.5},{"x":-1,"y":-0.67,"z":0.5},{"x":-1.32,"y":-0.67,"z":0.5},{"x":-1.46,"y":-0.56,"z":0.5},{"x":-1.6,"y":-0.37,"z":0.5},{"x":-1.88,"y":-0.3,"z":0.5},{"x":-2.04,"y":-0.12,"z":0.5},{"x":-2.21,"y":0.07,"z":0.5},{"x":-2.56,"y":0.28,"z":0.5},{"x":-2.95,"y":0.46,"z":0.5},{"x":-3.27,"y":0.59,"z":0.5},{"x":-3.55,"y":0.72,"z":0.5},{"x":-3.89,"y":0.89,"z":0.5},{"x":-4.11,"y":1.2,"z":0.5},{"x":-4.14,"y":1.51,"z":0.5},{"x":-4.3,"y":1.68,"z":0.5},{"x":-4.57,"y":1.68,"z":0.5},{"x":-4.85,"y":1.68,"z":0.5}]}],"color":"black","fill":"solid","dash":"draw","size":"m","isComplete":true,"isClosed":true,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a4","typeName":"shape"},{"x":499.5512514235004,"y":283.2680862285424,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:HjbclAjtUOP3RDxmGnGU8","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"black","labelColor":"black","bend":0,"start":{"x":0,"y":0},"end":{"x":592.4082648263154,"y":-155.65060005121148},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b08","typeName":"shape"},{"x":319.6308592110845,"y":267.9124209147086,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:IhuNjv5Mnh2-n1VmSAmC3","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":39.30611087719536,"start":{"x":85.94476118180626,"y":79.52081640383915},"end":{"x":171.5625,"y":396.65234375},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ZIPPER\n.UNZIP","labelPosition":0.3822000097269573,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a44","typeName":"shape"},{"x":-134.97982157513655,"y":1376.6776786849894,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:IlObtdZpL098NiPei2tfo","type":"image","props":{"w":1930.5721072134013,"h":856.042177410024,"assetId":"asset:748446367","playing":true,"url":"","crop":null,"flipX":false,"flipY":false},"parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a8","typeName":"shape"},{"x":536.2742526106347,"y":149.5605413587541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:JvuduKzEDpwvRUs6FysRj","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":68.12583199333677,"start":{"x":-52.61328125,"y":2.38671875},"end":{"x":-305.21484375,"y":89.20703125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"_.\nSTATE.\nZIPPER","labelPosition":0.5125135168482452,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aB","typeName":"shape"},{"x":1096.61328125,"y":614.68359375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:JwVmPFsj5ObIFx8uRv2iK","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":18.563388100136756,"start":{"x":18.623482563644075,"y":-9.535592758221128},"end":{"x":93.16015625,"y":20.625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ELAB.UEXP","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aJ","typeName":"shape"},{"x":775.4145952017032,"y":-26.897500918994325,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:KQ6XkjEbAq-r5QtfNrsFO","type":"text","props":{"color":"red","size":"l","w":85.1328125,"text":"DOM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aD","typeName":"shape"},{"x":721.0358046589123,"y":326.9484544982412,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:KTRXw1PoNbWLo9uBO1TsS","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-33.958690639019615,"start":{"x":0,"y":0},"end":{"x":193.4908744490475,"y":-327.81093676404157},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aKG","typeName":"shape"},{"x":328.1390825207693,"y":-43.16529159626691,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:KW9KvY9eAI5IZFKg3h7tq","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"red","labelColor":"black","bend":-129.96925147363697,"start":{"x":0,"y":0},"end":{"x":190.09703734410175,"y":0.20236544228248476},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aV","typeName":"shape"},{"x":1108.01171875,"y":394.6015625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:KjKsYp5J7rHrrmyzq-Xd1","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-18.69204883066081,"start":{"x":0,"y":0},"end":{"x":-10.10546875,"y":205.07421875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aK","typeName":"shape"},{"x":959.98046875,"y":511.4140625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:KmrmEDwMiduQa93gpqcAQ","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":9.631114370101947,"start":{"x":0,"y":0},"end":{"x":137.9921875,"y":113.0078125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aL","typeName":"shape"},{"x":943.6640625,"y":515.421875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:KnqgjuKZTHj_8t1l041nN","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":0.12,"z":0.5},{"x":0,"y":0.54,"z":0.5},{"x":0,"y":1.36,"z":0.5},{"x":0.39,"y":2.39,"z":0.5},{"x":1.23,"y":3.4,"z":0.5},{"x":2.07,"y":4.89,"z":0.5},{"x":3,"y":6.46,"z":0.5},{"x":4.43,"y":7.74,"z":0.5},{"x":6.09,"y":9.44,"z":0.5},{"x":8.06,"y":11.7,"z":0.5},{"x":9.88,"y":13.29,"z":0.5},{"x":11.2,"y":14.69,"z":0.5},{"x":12.95,"y":16.43,"z":0.5},{"x":14.51,"y":17.39,"z":0.5},{"x":15.55,"y":18.18,"z":0.5},{"x":17.08,"y":19.04,"z":0.5},{"x":18.19,"y":19.48,"z":0.5},{"x":18.91,"y":19.93,"z":0.5},{"x":19.84,"y":20.44,"z":0.5},{"x":20.68,"y":20.86,"z":0.5},{"x":21.75,"y":21.18,"z":0.5},{"x":23.48,"y":21.61,"z":0.5},{"x":25.05,"y":22.18,"z":0.5},{"x":26.57,"y":22.44,"z":0.5},{"x":28.1,"y":22.7,"z":0.5},{"x":29.52,"y":22.95,"z":0.5},{"x":31.14,"y":23.27,"z":0.5},{"x":32.78,"y":23.54,"z":0.5},{"x":34.8,"y":23.55,"z":0.5},{"x":36.32,"y":23.81,"z":0.5},{"x":37.39,"y":24.07,"z":0.5},{"x":40.52,"y":24.07,"z":0.5},{"x":41.7,"y":24.07,"z":0.5},{"x":43.73,"y":24.07,"z":0.5},{"x":46.2,"y":24.07,"z":0.5},{"x":48.88,"y":24.07,"z":0.5},{"x":52.09,"y":24.07,"z":0.5},{"x":55.44,"y":24.07,"z":0.5},{"x":59.64,"y":24.07,"z":0.5},{"x":63.78,"y":24.07,"z":0.5},{"x":67.97,"y":24.07,"z":0.5},{"x":75.66,"y":24.07,"z":0.5},{"x":79.71,"y":24.07,"z":0.5},{"x":83.73,"y":24.07,"z":0.5},{"x":86.29,"y":24.07,"z":0.5},{"x":88.85,"y":23.76,"z":0.5},{"x":92,"y":23.11,"z":0.5},{"x":95.85,"y":22.68,"z":0.5},{"x":100.66,"y":22.1,"z":0.5},{"x":104.85,"y":21.28,"z":0.5},{"x":109.05,"y":20.44,"z":0.5},{"x":117.95,"y":18.49,"z":0.5},{"x":121.77,"y":17.65,"z":0.5},{"x":125.29,"y":16.79,"z":0.5},{"x":128.13,"y":16,"z":0.5},{"x":130.28,"y":15.63,"z":0.5},{"x":131.8,"y":15.36,"z":0.5},{"x":132.86,"y":14.83,"z":0.5},{"x":134.74,"y":14.57,"z":0.5},{"x":135.32,"y":14.57,"z":0.5},{"x":135.81,"y":14.41,"z":0.5},{"x":136.25,"y":14.25,"z":0.5},{"x":136.66,"y":14.21,"z":0.5},{"x":137.44,"y":14.18,"z":0.5},{"x":137.84,"y":14.17,"z":0.5},{"x":138.27,"y":13.99,"z":0.5},{"x":138.67,"y":13.8,"z":0.5},{"x":139.07,"y":13.79,"z":0.5},{"x":139.46,"y":13.78,"z":0.5},{"x":139.85,"y":13.78,"z":0.5},{"x":140.23,"y":13.59,"z":0.5},{"x":141.32,"y":13.13,"z":0.5},{"x":141.96,"y":12.86,"z":0.5},{"x":142.89,"y":12.6,"z":0.5},{"x":144.5,"y":12,"z":0.5},{"x":145.99,"y":11.19,"z":0.5},{"x":147.33,"y":10.37,"z":0.5},{"x":149.15,"y":9.57,"z":0.5},{"x":151.14,"y":8.86,"z":0.5},{"x":152.67,"y":8.52,"z":0.5},{"x":153.88,"y":8.21,"z":0.5},{"x":154.92,"y":7.95,"z":0.5},{"x":156,"y":7.66,"z":0.5},{"x":157.06,"y":7.4,"z":0.5},{"x":157.78,"y":7.39,"z":0.5},{"x":158.46,"y":7.39,"z":0.5},{"x":158.76,"y":7.39,"z":0.5},{"x":159.14,"y":7.39,"z":0.5},{"x":159.52,"y":7.39,"z":0.5},{"x":159.91,"y":7.39,"z":0.5},{"x":160.28,"y":7.53,"z":0.5},{"x":160.45,"y":7.86,"z":0.5},{"x":160.45,"y":8.23,"z":0.5},{"x":160.64,"y":8.62,"z":0.5},{"x":161.02,"y":8.81,"z":0.5},{"x":161.4,"y":9,"z":0.5},{"x":161.7,"y":9.19,"z":0.5},{"x":162,"y":9.33,"z":0.5},{"x":162.46,"y":9.52,"z":0.5},{"x":162.87,"y":9.56,"z":0.5},{"x":163.17,"y":9.56,"z":0.5},{"x":163.38,"y":9.75,"z":0.5},{"x":163.56,"y":10.08,"z":0.5},{"x":163.7,"y":10.38,"z":0.5},{"x":163.7,"y":10.7,"z":0.5},{"x":163.7,"y":11.34,"z":0.5},{"x":163.7,"y":11.64,"z":0.5},{"x":163.7,"y":12.4,"z":0.5},{"x":163.7,"y":12.8,"z":0.5},{"x":163.7,"y":13.18,"z":0.5},{"x":163.7,"y":13.57,"z":0.5},{"x":163.7,"y":14.4,"z":0.5},{"x":163.7,"y":15.2,"z":0.5},{"x":163.7,"y":15.6,"z":0.5},{"x":163.7,"y":15.98,"z":0.5},{"x":163.7,"y":16.37,"z":0.5},{"x":163.7,"y":16.68,"z":0.5},{"x":163.7,"y":16.96,"z":0.5},{"x":163.7,"y":17.3,"z":0.5},{"x":163.7,"y":17.71,"z":0.5},{"x":163.7,"y":18.08,"z":0.5},{"x":163.7,"y":18.38,"z":0.5},{"x":163.7,"y":18.72,"z":0.5},{"x":163.7,"y":19.1,"z":0.5},{"x":163.7,"y":19.49,"z":0.5},{"x":163.7,"y":19.85,"z":0.5},{"x":163.7,"y":20.5,"z":0.5},{"x":163.7,"y":20.8,"z":0.5},{"x":163.7,"y":21.16,"z":0.5},{"x":163.7,"y":21.49,"z":0.5},{"x":163.7,"y":21.82,"z":0.5},{"x":163.7,"y":22.11,"z":0.5},{"x":163.7,"y":22.38,"z":0.5},{"x":163.7,"y":22.67,"z":0.5},{"x":163.7,"y":22.98,"z":0.5},{"x":163.7,"y":23.28,"z":0.5},{"x":163.7,"y":23.3,"z":0.5},{"x":163.95,"y":22.68,"z":0.5},{"x":164.39,"y":21.98,"z":0.5},{"x":164.59,"y":21.56,"z":0.5},{"x":164.79,"y":21.16,"z":0.5},{"x":165.17,"y":20.73,"z":0.5},{"x":165.48,"y":20.27,"z":0.5},{"x":165.63,"y":19.84,"z":0.5},{"x":165.84,"y":19.42,"z":0.5},{"x":166.2,"y":19.01,"z":0.5},{"x":166.41,"y":18.6,"z":0.5},{"x":166.61,"y":18.2,"z":0.5},{"x":166.79,"y":17.82,"z":0.5},{"x":166.98,"y":17.44,"z":0.5},{"x":167.17,"y":17.03,"z":0.5},{"x":167.18,"y":16.63,"z":0.5},{"x":167.38,"y":16.23,"z":0.5},{"x":167.56,"y":15.84,"z":0.5},{"x":167.94,"y":15.16,"z":0.5},{"x":168.12,"y":14.64,"z":0.5},{"x":168.34,"y":13.99,"z":0.5},{"x":168.55,"y":13.48,"z":0.5},{"x":168.72,"y":13.05,"z":0.5},{"x":168.9,"y":12.84,"z":0.5},{"x":169.1,"y":12.61,"z":0.5},{"x":169.13,"y":12.24,"z":0.5},{"x":169.32,"y":12.06,"z":0.5},{"x":169.51,"y":11.86,"z":0.5},{"x":169.68,"y":11.51,"z":0.5},{"x":169.84,"y":10.81,"z":0.5},{"x":170.02,"y":10.09,"z":0.5},{"x":170.32,"y":9.79,"z":0.5},{"x":170.68,"y":9.23,"z":0.5},{"x":171.17,"y":8.31,"z":0.5},{"x":171.63,"y":7.56,"z":0.5},{"x":172.11,"y":6.78,"z":0.5},{"x":172.58,"y":6.03,"z":0.5},{"x":173,"y":5.55,"z":0.5},{"x":173.42,"y":5.1,"z":0.5},{"x":173.82,"y":4.86,"z":0.5},{"x":174.04,"y":4.64,"z":0.5},{"x":174.06,"y":4.56,"z":0.5},{"x":174.06,"y":4.8,"z":0.5},{"x":174.21,"y":4.96,"z":0.5},{"x":174.52,"y":5.16,"z":0.5},{"x":174.88,"y":5.51,"z":0.5},{"x":175.27,"y":5.88,"z":0.5},{"x":175.66,"y":6.28,"z":0.5},{"x":176.35,"y":6.97,"z":0.5},{"x":177.82,"y":8.13,"z":0.5},{"x":179.81,"y":9.17,"z":0.5},{"x":185.77,"y":12.01,"z":0.5},{"x":188.48,"y":13.2,"z":0.5},{"x":191.15,"y":14.36,"z":0.5},{"x":194.4,"y":15.58,"z":0.5},{"x":200.23,"y":17.85,"z":0.5},{"x":202.38,"y":18.45,"z":0.5},{"x":204.55,"y":19.13,"z":0.5},{"x":206.63,"y":19.8,"z":0.5},{"x":208.37,"y":20.44,"z":0.5},{"x":210.04,"y":21.07,"z":0.5},{"x":211.7,"y":21.72,"z":0.5},{"x":212.61,"y":22.23,"z":0.5},{"x":213.45,"y":22.47,"z":0.5},{"x":214.2,"y":22.51,"z":0.5},{"x":215.03,"y":23.09,"z":0.5},{"x":215.41,"y":23.28,"z":0.5},{"x":215.79,"y":23.28,"z":0.5},{"x":216.47,"y":23.77,"z":0.5},{"x":216.78,"y":23.93,"z":0.5},{"x":217.43,"y":24,"z":0.5},{"x":218.11,"y":24.18,"z":0.5},{"x":218.83,"y":24.36,"z":0.5},{"x":220.26,"y":24.39,"z":0.5},{"x":221.93,"y":24.67,"z":0.5},{"x":223.48,"y":25.21,"z":0.5},{"x":225.01,"y":25.54,"z":0.5},{"x":226.44,"y":25.84,"z":0.5},{"x":229.07,"y":26.58,"z":0.5},{"x":231.97,"y":27.41,"z":0.5},{"x":234.6,"y":27.75,"z":0.5},{"x":237.85,"y":28.15,"z":0.5},{"x":244.15,"y":29.66,"z":0.5},{"x":247.38,"y":30.36,"z":0.5},{"x":251.39,"y":30.87,"z":0.5},{"x":256.08,"y":31.4,"z":0.5},{"x":260.92,"y":31.9,"z":0.5},{"x":265.31,"y":32,"z":0.5},{"x":268.97,"y":32.07,"z":0.5},{"x":271.9,"y":32.08,"z":0.5},{"x":274.87,"y":32.08,"z":0.5},{"x":277.15,"y":32.08,"z":0.5},{"x":278.86,"y":32.08,"z":0.5},{"x":280.95,"y":32.08,"z":0.5},{"x":282.48,"y":32.08,"z":0.5},{"x":284,"y":32.08,"z":0.5},{"x":285.53,"y":32.08,"z":0.5},{"x":286.64,"y":32.08,"z":0.5},{"x":290.18,"y":32.08,"z":0.5},{"x":292.23,"y":32.08,"z":0.5},{"x":294.19,"y":31.92,"z":0.5},{"x":295.52,"y":31.68,"z":0.5},{"x":297.5,"y":31.3,"z":0.5},{"x":299.11,"y":30.71,"z":0.5},{"x":300.75,"y":30.41,"z":0.5},{"x":302.77,"y":30.06,"z":0.5},{"x":304.38,"y":29.45,"z":0.5},{"x":306.01,"y":28.83,"z":0.5},{"x":307.54,"y":28.23,"z":0.5},{"x":310.12,"y":27.1,"z":0.5},{"x":311.23,"y":26.65,"z":0.5},{"x":311.77,"y":26.3,"z":0.5},{"x":312.64,"y":25.83,"z":0.5},{"x":313.38,"y":25.38,"z":0.5},{"x":314.18,"y":24.88,"z":0.5},{"x":316.32,"y":23.3,"z":0.5},{"x":317.43,"y":22.46,"z":0.5},{"x":318.52,"y":21.65,"z":0.5},{"x":319.65,"y":20.79,"z":0.5},{"x":320.75,"y":19.71,"z":0.5},{"x":321.8,"y":18.66,"z":0.5},{"x":322.87,"y":17.59,"z":0.5},{"x":324.97,"y":15.48,"z":0.5},{"x":325.8,"y":14.64,"z":0.5},{"x":326.6,"y":13.84,"z":0.5},{"x":328.03,"y":12.67,"z":0.5},{"x":329.5,"y":11.49,"z":0.5},{"x":331.21,"y":9.83,"z":0.5},{"x":333.04,"y":8.04,"z":0.5},{"x":334.39,"y":6.41,"z":0.5},{"x":336.11,"y":4.68,"z":0.5},{"x":337.86,"y":2.89,"z":0.5},{"x":339.15,"y":1.29,"z":0.5},{"x":341.15,"y":-1.01,"z":0.5},{"x":341.63,"y":-1.75,"z":0.5},{"x":342.01,"y":-2.14,"z":0.5},{"x":342.39,"y":-2.52,"z":0.5},{"x":342.69,"y":-2.82,"z":0.5},{"x":342.86,"y":-3.14,"z":0.5},{"x":342.93,"y":-3.5,"z":0.5},{"x":342.95,"y":-3.81,"z":0.5},{"x":342.82,"y":-3.95,"z":0.5}]}],"color":"red","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aB","typeName":"shape"},{"x":-81.32538590485422,"y":998.3097762752161,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Ku_duwlbWyLZT5bxQZ-Dv","type":"text","props":{"color":"yellow","size":"s","w":64.578125,"text":"GROUT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ar","typeName":"shape"},{"x":290.7672205116415,"y":339.48949917332095,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:LEBck_Z9DJvww7jr0Bi9y","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"black","labelColor":"black","bend":0,"start":{"x":0,"y":0},"end":{"x":188.65940232940812,"y":-55.008277126012786},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b07","typeName":"shape"},{"x":252.91,"y":261.72,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"parentId":"page:page","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":162.62,"z":0.5},{"x":0.49,"y":162.62,"z":0.5},{"x":3.55,"y":162.62,"z":0.5},{"x":11.59,"y":160.7,"z":0.5},{"x":26.59,"y":150.7,"z":0.5},{"x":51.31,"y":134.96,"z":0.5},{"x":80.07,"y":114.66,"z":0.5},{"x":107.15,"y":92.66,"z":0.5},{"x":155.17,"y":53.69,"z":0.5},{"x":185.22,"y":30.7,"z":0.5},{"x":190.73,"y":26.29,"z":0.5},{"x":210.29,"y":12.32,"z":0.5},{"x":222.58,"y":4.44,"z":0.5},{"x":229.46,"y":0.38,"z":0.5},{"x":230.22,"y":0,"z":0.5},{"x":230.61,"y":0,"z":0.5},{"x":229.78,"y":0,"z":0.5},{"x":227.77,"y":0,"z":0.5},{"x":222.51,"y":2.29,"z":0.5},{"x":218.49,"y":4.97,"z":0.5},{"x":210.02,"y":9.54,"z":0.5},{"x":204.76,"y":12.51,"z":0.5},{"x":196.13,"y":17.16,"z":0.5},{"x":182.59,"y":22.82,"z":0.5},{"x":168.47,"y":31.13,"z":0.5},{"x":147.51,"y":40.91,"z":0.5},{"x":123.99,"y":54.22,"z":0.5},{"x":109.42,"y":64.08,"z":0.5},{"x":84.41,"y":81.22,"z":0.5},{"x":73.08,"y":89.09,"z":0.5},{"x":57.1,"y":101.68,"z":0.5},{"x":42.33,"y":114.26,"z":0.5},{"x":38.5,"y":117.14,"z":0.5},{"x":29.79,"y":125.85,"z":0.5},{"x":27.11,"y":129.86,"z":0.5},{"x":25.54,"y":131.96,"z":0.5},{"x":25.01,"y":135.02,"z":0.5},{"x":24.34,"y":138.08,"z":0.5},{"x":23.67,"y":142.09,"z":0.5},{"x":22.34,"y":146.11,"z":0.5},{"x":21.52,"y":151.37,"z":0.5},{"x":20.18,"y":155.38,"z":0.5},{"x":19.8,"y":156.81,"z":0.5},{"x":19.8,"y":158.25,"z":0.5},{"x":19.8,"y":159.01,"z":0.5},{"x":19.8,"y":159.4,"z":0.5},{"x":20.05,"y":159.4,"z":0.5},{"x":22.06,"y":158.06,"z":0.5},{"x":26.07,"y":156.05,"z":0.5},{"x":30.09,"y":153.37,"z":0.5},{"x":34.1,"y":151.37,"z":0.5},{"x":39.17,"y":149.5,"z":0.5},{"x":40.22,"y":148.98,"z":0.5},{"x":49.02,"y":144.1,"z":0.5},{"x":59.33,"y":137.76,"z":0.5},{"x":71.4,"y":130.04,"z":0.5},{"x":83.69,"y":123.12,"z":0.5},{"x":95.83,"y":115.4,"z":0.5},{"x":106.14,"y":108.11,"z":0.5},{"x":114.77,"y":102.36,"z":0.5},{"x":126.1,"y":94.48,"z":0.5},{"x":136.41,"y":87.19,"z":0.5},{"x":146.72,"y":79.9,"z":0.5},{"x":156.04,"y":72.63,"z":0.5},{"x":166.36,"y":65.34,"z":0.5},{"x":174.02,"y":59.59,"z":0.5},{"x":182.15,"y":54.04,"z":0.5},{"x":183.59,"y":53.14,"z":0.5},{"x":185.02,"y":52.23,"z":0.5},{"x":185.78,"y":51.85,"z":0.5},{"x":186.17,"y":51.08,"z":0.5},{"x":187.6,"y":49.65,"z":0.5},{"x":189.7,"y":47.55,"z":0.5},{"x":192.76,"y":45.83,"z":0.5},{"x":194.86,"y":44.25,"z":0.5},{"x":195.77,"y":43.2,"z":0.5},{"x":196.15,"y":42.82,"z":0.5},{"x":195.9,"y":42.82,"z":0.5},{"x":195.21,"y":42.82,"z":0.5},{"x":193.77,"y":43.2,"z":0.5},{"x":193.01,"y":43.97,"z":0.5},{"x":192.63,"y":44.35,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"index":"a3","id":"shape:LZgHI0JNADpGClSOzp3h1","typeName":"shape"},{"x":984.6294410719811,"y":216.18710242229878,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:LkMVCME4sYU7p4tjjqxMQ","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":15.141163058052992,"start":{"x":0,"y":0},"end":{"x":-425.1993058624836,"y":-323.067996710546},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ae","typeName":"shape"},{"x":-232.09311144573132,"y":981.1660081301618,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Lx__D4gi5uGygmcw7LybZ","type":"text","props":{"color":"yellow","size":"s","w":110.390625,"text":"SECONDARY","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aq","typeName":"shape"},{"x":729.37109375,"y":590.91015625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:M2qtJOWVkk-28rM8rniMx","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a4","props":{"dash":"draw","size":"m","fill":"none","color":"yellow","labelColor":"black","bend":-17.10757979714711,"start":{"x":15.625,"y":24.01171875},"end":{"x":-140.1484375,"y":95.5390625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":432.48477932624616,"y":712.2853410963876,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:MA_5pNt4JARnYuEW8OgmV","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":61.08437624250264,"start":{"x":0,"y":0},"end":{"x":262.5944570417991,"y":-216.9231062866727},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"MEASURED\n.OF_SEG","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aN","typeName":"shape"},{"x":386.3515625,"y":228.13671875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Mb4MTj_2d-orQK7075vFH","type":"text","props":{"color":"black","size":"m","w":813.706026193634,"text":"just give me the two sliders","font":"draw","textAlign":"start","autoSize":true,"scale":2.3183023872679045},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a5","typeName":"shape"},{"x":1712.8372264258564,"y":805.9617283251218,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:NGYRIUJHvOunH1gOIT-bM","type":"text","props":{"color":"violet","size":"m","w":45.09375,"text":"CTX","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"am","typeName":"shape"},{"x":825.5,"y":344.82,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"parentId":"page:page","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0.3,"y":0,"z":0.5},{"x":0,"y":0,"z":0.5},{"x":0.25,"y":0,"z":0.5},{"x":0.63,"y":0,"z":0.5},{"x":1.39,"y":0,"z":0.5},{"x":1.78,"y":0,"z":0.5},{"x":2.07,"y":0,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"index":"a6","id":"shape:NHWSYPrXlA_l1nc3a5hUn","typeName":"shape"},{"x":103.4453125,"y":192.41015625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:NOkW-sCNuPTXDteuAnhwL","type":"text","props":{"color":"orange","size":"l","w":8,"text":"","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aF","typeName":"shape"},{"x":1594.0255775017756,"y":983.9324416231225,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:NaIfzDMN_Hx2qabUkwf8P","type":"text","props":{"color":"violet","size":"s","w":55.078125,"text":"MODE","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ao","typeName":"shape"},{"x":721.0358046589123,"y":326.9484544982412,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:OMpd95aqJpvJf3LCse4ni","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-33.958690639019615,"start":{"x":0,"y":0},"end":{"x":315.3947542931545,"y":-186.04816694621036},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b03","typeName":"shape"},{"x":99.01171875,"y":561.87890625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:OQ42YufY7SAWLHZ1-2oRI","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-15.248752837123526,"start":{"x":0,"y":0},"end":{"x":172.43359375,"y":-284.31640625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PRINTER.\nZ_OF_STR","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a9","typeName":"shape"},{"x":1250.1729104620672,"y":336.4857639200817,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:O_ftP9qRmzA2WhjPiXtLQ","type":"text","props":{"color":"violet","size":"l","w":118.2890625,"text":"DHEXP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aE","typeName":"shape"},{"x":273.8984375,"y":492.08203125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:ObyZ8daDZKqe5DSavd_ht","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a6","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":0.13628023058255395,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":-136.54386239641894,"y":869.4969042483522,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:POkzjMY6AYVTYiSdbj65x","type":"text","props":{"color":"yellow","size":"m","w":75.140625,"text":"PIECE","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ai","typeName":"shape"},{"x":532.8615538854392,"y":-296.1392035049146,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:PPzX2E5P479giEIisnpeF","type":"text","props":{"color":"red","size":"xl","w":367.75445554638674,"text":"MVU LOOP","font":"draw","textAlign":"start","autoSize":true,"scale":1.614839461747427},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"af","typeName":"shape"},{"x":711.1578415074989,"y":321.93569385503565,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:PZXngPCGkpbZ73Lvpx98P","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":50.74318488524299,"start":{"x":0,"y":0},"end":{"x":-170.72054624555471,"y":-220.00496333476622},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aM8","typeName":"shape"},{"x":240.55159125157888,"y":313.8146236957436,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:P_D3IRLK5vIhsEh8uEUZV","type":"text","props":{"color":"yellow","size":"l","w":139.78125,"text":"ZIPPER","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a4","typeName":"shape"},{"x":1158.0920071098446,"y":29.19705375376074,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:QDAE_spq4sBhYIdeRcllK","type":"text","props":{"color":"red","size":"s","w":43.0703125,"text":"DOM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ac","typeName":"shape"},{"x":883.5899568774231,"y":734.557470523645,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:QXeMdyT_k6RvHrbPKBRhr","type":"text","props":{"color":"violet","size":"s","w":47.1171875,"text":"UEXP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"av","typeName":"shape"},{"x":959.98046875,"y":511.4140625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:QfDuhemlqGocpv185La86","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":9.631114370101947,"start":{"x":0,"y":0},"end":{"x":137.9921875,"y":113.0078125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aE","typeName":"shape"},{"x":569.7170451921901,"y":453.0221250402243,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:R2d7nyNKsqBWNCyW5sgga","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":32.56459342955796,"start":{"x":0,"y":0},"end":{"x":-38.05735098924822,"y":-346.8880956458792},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aMG","typeName":"shape"},{"x":1704.3258876053353,"y":2746.825586274692,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:R3b8t1WRF0i-viHqDIavf","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"aC","props":{"dash":"draw","size":"m","fill":"none","color":"yellow","labelColor":"black","bend":-13.002812916952363,"start":{"x":0,"y":0},"end":{"x":2,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":240.55159125157888,"y":313.8146236957436,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Ra9uqsiCo5d72aJDvbqby","type":"text","props":{"color":"yellow","size":"l","w":139.78125,"text":"ZIPPER","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a6","typeName":"shape"},{"x":240.65625,"y":811.14453125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:RbXkv1b6ZP7AsTliXpzyn","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a7","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":-21.414681231256715,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":432.48477932624616,"y":712.2853410963876,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:RzmUL57GZkZH4iB0YBdxQ","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":61.08437624250264,"start":{"x":0,"y":0},"end":{"x":262.5944570417991,"y":-216.9231062866727},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"MEASURED\n.OF_SEG","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aFV","typeName":"shape"},{"x":311.62,"y":131.18,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"parentId":"page:page","type":"draw","props":{"segments":[{"type":"free","points":[{"x":133.58,"y":175.22,"z":0.5},{"x":132.85,"y":175.22,"z":0.5},{"x":127,"y":179.43,"z":0.5},{"x":115.96,"y":188.56,"z":0.5},{"x":102.94,"y":197.97,"z":0.5},{"x":89.19,"y":210.47,"z":0.5},{"x":75.45,"y":224.22,"z":0.5},{"x":61.7,"y":235.47,"z":0.5},{"x":47.95,"y":249.22,"z":0.5},{"x":34.2,"y":261.72,"z":0.5},{"x":25.07,"y":271.8,"z":0.5},{"x":14.07,"y":280.6,"z":0.5},{"x":7.37,"y":288.27,"z":0.5},{"x":1.43,"y":292.72,"z":0.5},{"x":0,"y":293.63,"z":0.5},{"x":0,"y":293.36,"z":0.5},{"x":0,"y":292.31,"z":0.5},{"x":0,"y":290.22,"z":0.5},{"x":2.1,"y":288.11,"z":0.5},{"x":5.16,"y":285.73,"z":0.5},{"x":9.6,"y":281.95,"z":0.5},{"x":13.62,"y":279.27,"z":0.5},{"x":18.88,"y":276.31,"z":0.5},{"x":23.33,"y":272.53,"z":0.5},{"x":35.18,"y":266.13,"z":0.5},{"x":43.81,"y":261.34,"z":0.5},{"x":53.39,"y":257.5,"z":0.5},{"x":62.97,"y":253.67,"z":0.5},{"x":69.48,"y":250.42,"z":0.5},{"x":74.74,"y":248.93,"z":0.5},{"x":77.8,"y":247.74,"z":0.5},{"x":79.9,"y":247.22,"z":0.5},{"x":80.66,"y":246.83,"z":0.5},{"x":81.43,"y":246.83,"z":0.5},{"x":81.81,"y":246.83,"z":0.5},{"x":81.81,"y":247.09,"z":0.5},{"x":80.38,"y":248.52,"z":0.5},{"x":75.55,"y":254.02,"z":0.5},{"x":68.84,"y":260.73,"z":0.5},{"x":62.13,"y":268.39,"z":0.5},{"x":54.46,"y":274.14,"z":0.5},{"x":50.02,"y":277.92,"z":0.5},{"x":46,"y":280.6,"z":0.5},{"x":42.95,"y":281.79,"z":0.5},{"x":40.84,"y":283.37,"z":0.5},{"x":38.74,"y":284.95,"z":0.5},{"x":36.64,"y":287.05,"z":0.5},{"x":34.78,"y":290.11,"z":0.5},{"x":33.34,"y":291.54,"z":0.5},{"x":32.96,"y":293.35,"z":0.5},{"x":33.27,"y":292.41,"z":0.5},{"x":39.55,"y":287.1,"z":0.5},{"x":45.82,"y":281.78,"z":0.5},{"x":53.49,"y":276.03,"z":0.5},{"x":59.76,"y":270.72,"z":0.5},{"x":66.83,"y":266.23,"z":0.5},{"x":70.84,"y":264.23,"z":0.5},{"x":76.1,"y":261.93,"z":0.5},{"x":80.11,"y":260.59,"z":0.5},{"x":85.38,"y":258.97,"z":0.5},{"x":90.64,"y":257.48,"z":0.5},{"x":95.9,"y":257.48,"z":0.5},{"x":105.63,"y":255.86,"z":0.5},{"x":110.89,"y":255.2,"z":0.5},{"x":114.9,"y":254.53,"z":0.5},{"x":116.33,"y":254,"z":0.5},{"x":117.1,"y":254,"z":0.5},{"x":116.11,"y":254,"z":0.5},{"x":114.11,"y":254.67,"z":0.5},{"x":106.06,"y":259.17,"z":0.5},{"x":98.98,"y":263.67,"z":0.5},{"x":91.31,"y":269.42,"z":0.5},{"x":84.22,"y":273.92,"z":0.5},{"x":74.46,"y":277.99,"z":0.5},{"x":67.96,"y":281.24,"z":0.5},{"x":59.91,"y":284.79,"z":0.5},{"x":52.25,"y":290.54,"z":0.5},{"x":45.16,"y":295.04,"z":0.5},{"x":40.28,"y":299.92,"z":0.5},{"x":37.89,"y":302.98,"z":0.5},{"x":36.31,"y":305.08,"z":0.5},{"x":36.31,"y":307.18,"z":0.5},{"x":36.31,"y":307.94,"z":0.5},{"x":39,"y":307.94,"z":0.5},{"x":44.84,"y":302.77,"z":0.5},{"x":54.94,"y":294.58,"z":0.5},{"x":66.28,"y":284.5,"z":0.5},{"x":76.21,"y":274.57,"z":0.5},{"x":93.27,"y":259.05,"z":0.5},{"x":114.87,"y":240.54,"z":0.5},{"x":148.01,"y":214.76,"z":0.5},{"x":183.83,"y":180.93,"z":0.5},{"x":219.66,"y":147.1,"z":0.5},{"x":255.48,"y":113.26,"z":0.5},{"x":294.79,"y":76.09,"z":0.5},{"x":328.63,"y":40.26,"z":0.5},{"x":345.99,"y":22.31,"z":0.5},{"x":360.62,"y":7.68,"z":0.5},{"x":366.44,"y":0.38,"z":0.5},{"x":366.83,"y":0,"z":0.5},{"x":364.54,"y":0.67,"z":0.5},{"x":359.27,"y":6.89,"z":0.5},{"x":355.49,"y":11.34,"z":0.5},{"x":352.15,"y":14.68,"z":0.5},{"x":349.76,"y":17.74,"z":0.5},{"x":347.89,"y":20.79,"z":0.5},{"x":345.79,"y":22.9,"z":0.5},{"x":343.69,"y":25,"z":0.5},{"x":340.2,"y":28.49,"z":0.5},{"x":336.71,"y":31.98,"z":0.5},{"x":333.22,"y":35.47,"z":0.5},{"x":325.55,"y":42.18,"z":0.5},{"x":303.79,"y":65.49,"z":0.5},{"x":277.21,"y":93.75,"z":0.5},{"x":243.38,"y":129.58,"z":0.5},{"x":207.55,"y":165.4,"z":0.5},{"x":175.71,"y":201.23,"z":0.5},{"x":147.65,"y":227.62,"z":0.5},{"x":126.04,"y":249.23,"z":0.5},{"x":115.95,"y":259.61,"z":0.5},{"x":104.18,"y":270.27,"z":0.5},{"x":98.87,"y":276.55,"z":0.5},{"x":96.48,"y":279.61,"z":0.5},{"x":95.72,"y":280.37,"z":0.5},{"x":95.72,"y":281.14,"z":0.5},{"x":95.72,"y":281.52,"z":0.5},{"x":95.97,"y":281.52,"z":0.5},{"x":96.35,"y":281.52,"z":0.5},{"x":97.78,"y":280.99,"z":0.5},{"x":101.27,"y":277.5,"z":0.5},{"x":105.72,"y":273.72,"z":0.5},{"x":110.17,"y":269.94,"z":0.5},{"x":114.62,"y":266.17,"z":0.5},{"x":117.96,"y":262.82,"z":0.5},{"x":122.84,"y":257.94,"z":0.5},{"x":130.11,"y":253.64,"z":0.5},{"x":136.62,"y":252.01,"z":0.5},{"x":143.12,"y":250.38,"z":0.5},{"x":148.38,"y":248.9,"z":0.5},{"x":151.44,"y":248.23,"z":0.5},{"x":154.5,"y":247.56,"z":0.5},{"x":155.93,"y":247.04,"z":0.5},{"x":156.7,"y":247.04,"z":0.5},{"x":157.46,"y":246.66,"z":0.5},{"x":157.84,"y":246.28,"z":0.5},{"x":152.41,"y":251.16,"z":0.5},{"x":148.63,"y":255.6,"z":0.5},{"x":144.42,"y":261.44,"z":0.5},{"x":142.84,"y":263.54,"z":0.5},{"x":142.84,"y":263.93,"z":0.5},{"x":143.83,"y":263.27,"z":0.5},{"x":147.32,"y":259.78,"z":0.5},{"x":150.81,"y":256.29,"z":0.5},{"x":152.91,"y":254.19,"z":0.5},{"x":154.34,"y":252.75,"z":0.5},{"x":155.63,"y":251.32,"z":0.5},{"x":155.63,"y":250.94,"z":0.5},{"x":155.95,"y":250.62,"z":0.5},{"x":155.95,"y":251.16,"z":0.5},{"x":154.9,"y":252.21,"z":0.5},{"x":150.83,"y":257.91,"z":0.5},{"x":145.08,"y":265.57,"z":0.5},{"x":140.58,"y":272.66,"z":0.5},{"x":136.36,"y":278.5,"z":0.5},{"x":133.83,"y":280.89,"z":0.5},{"x":132.78,"y":282.99,"z":0.5},{"x":132.78,"y":283.75,"z":0.5},{"x":133.05,"y":283.75,"z":0.5},{"x":134.1,"y":283.75,"z":0.5},{"x":137.16,"y":283.75,"z":0.5},{"x":139.25,"y":283.23,"z":0.5},{"x":142.31,"y":280.84,"z":0.5},{"x":146.76,"y":277.06,"z":0.5},{"x":152.6,"y":272.85,"z":0.5},{"x":159.1,"y":269.6,"z":0.5},{"x":166.19,"y":265.09,"z":0.5},{"x":172.7,"y":262.65,"z":0.5},{"x":177.96,"y":260.5,"z":0.5},{"x":180.42,"y":259.98,"z":0.5},{"x":181.19,"y":259.98,"z":0.5},{"x":181.19,"y":262.27,"z":0.5},{"x":181.19,"y":267.53,"z":0.5},{"x":179.56,"y":274.04,"z":0.5},{"x":178.22,"y":278.06,"z":0.5},{"x":178.22,"y":281.11,"z":0.5},{"x":178.22,"y":281.88,"z":0.5},{"x":178.22,"y":282.26,"z":0.5},{"x":178.51,"y":282.26,"z":0.5},{"x":179.95,"y":280.83,"z":0.5},{"x":181.43,"y":275.57,"z":0.5},{"x":181.43,"y":265.98,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"index":"a4","id":"shape:S6MASRYUyrKeKbwGdPzBA","typeName":"shape"},{"x":546.58203125,"y":559.40234375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:S9FRwwwI2zMljJUhlUEU_","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-37.36625356480154,"start":{"x":0,"y":0},"end":{"x":-401.796875,"y":-14.30859375},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PRINTER\n.OF_SEG","labelPosition":0.4387003208615986,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a3","typeName":"shape"},{"x":1108.01171875,"y":394.6015625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:SNJOEUTwLOiA-xGZenMIM","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-18.69204883066081,"start":{"x":0,"y":0},"end":{"x":-10.10546875,"y":205.07421875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aDV","typeName":"shape"},{"x":713.7109375,"y":529.1171875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Sd-CA4R6PbDPYht6YB075","type":"arrow","parentId":"page:g5nJZnSQA-22SNUHQIPyc","index":"a3","props":{"dash":"draw","size":"m","fill":"none","color":"light-blue","labelColor":"black","bend":-26.179935612085533,"start":{"x":-5.684341886080802e-14,"y":0},"end":{"x":1.9140625,"y":100.26171875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":667.4173943474846,"y":172.88932966727674,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:SgdF5TmGxAGa1Z15kjVc9","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"red","labelColor":"black","bend":0.057413327977390266,"start":{"x":0,"y":0},"end":{"x":-120.0195710603657,"y":6.6232522880369515},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aa","typeName":"shape"},{"x":1000.4460651973067,"y":727.5325127791702,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Snk8v3w6W2hVF9-a7hKWM","type":"text","props":{"color":"violet","size":"s","w":45.734375,"text":"UTYP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ax","typeName":"shape"},{"x":749.2430026106347,"y":18.193353858754108,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:SomNgLAnnWcKJar0oZb2e","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"red","labelColor":"black","bend":-6.392450227837613,"start":{"x":-219.85109330541002,"y":142.0743591139133},"end":{"x":-264.5750187338199,"y":54.59646845968189},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PERFORM.GO\n(INJECT)","labelPosition":0.5017859733525604,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aN","typeName":"shape"},{"x":1022.0080246402404,"y":303.33915289861886,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:T10a947UNSBGtqD9wmnfF","type":"arrow","props":{"dash":"solid","size":"s","fill":"none","color":"grey","labelColor":"black","bend":8.491650279312713,"start":{"x":0,"y":0},"end":{"x":-30.477078797083777,"y":-70.6845626105835},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ad","typeName":"shape"},{"x":749.2430026106347,"y":18.193353858754108,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:TixB21lRZF9BAYrk5MOhf","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"red","labelColor":"black","bend":-6.392450227837613,"start":{"x":-219.85109330541002,"y":142.0743591139133},"end":{"x":-264.5750187338199,"y":54.59646845968189},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PERFORM.GO\n(INJECT)","labelPosition":0.5017859733525604,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ab","typeName":"shape"},{"x":250.6484375,"y":474.4140625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:UJWvaH7-R5u2UNRgKAgys","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0.5,"y":0,"z":0.5},{"x":2.63,"y":0,"z":0.5},{"x":4.86,"y":0,"z":0.5},{"x":8.2,"y":0,"z":0.5},{"x":14.3,"y":0,"z":0.5},{"x":18.36,"y":0,"z":0.5},{"x":21.76,"y":0,"z":0.5},{"x":26.25,"y":0,"z":0.5},{"x":33.83,"y":0,"z":0.5},{"x":37.08,"y":0,"z":0.5},{"x":40.47,"y":0,"z":0.5},{"x":43.07,"y":0,"z":0.5},{"x":45.24,"y":0,"z":0.5},{"x":47.9,"y":0,"z":0.5},{"x":54.89,"y":0,"z":0.5},{"x":57.5,"y":0,"z":0.5},{"x":67.84,"y":-1.27,"z":0.5},{"x":79.25,"y":-3.24,"z":0.5},{"x":85.08,"y":-3.89,"z":0.5},{"x":90.96,"y":-4.52,"z":0.5},{"x":97.85,"y":-5.11,"z":0.5},{"x":104.06,"y":-5.66,"z":0.5},{"x":110.16,"y":-6.16,"z":0.5},{"x":116.1,"y":-6.2,"z":0.5},{"x":121.94,"y":-6.21,"z":0.5},{"x":127.69,"y":-6.69,"z":0.5},{"x":137.34,"y":-7.17,"z":0.5},{"x":141.13,"y":-7.17,"z":0.5},{"x":149.72,"y":-7.17,"z":0.5},{"x":154.01,"y":-7.17,"z":0.5},{"x":158.25,"y":-7.17,"z":0.5},{"x":169.97,"y":-7.48,"z":0.5},{"x":173.98,"y":-7.88,"z":0.5},{"x":178.84,"y":-7.99,"z":0.5},{"x":184.54,"y":-7.99,"z":0.5},{"x":190.35,"y":-8.42,"z":0.5},{"x":196.04,"y":-8.9,"z":0.5},{"x":203.97,"y":-8.95,"z":0.5},{"x":212.72,"y":-8.95,"z":0.5},{"x":226.95,"y":-8.95,"z":0.5},{"x":234.73,"y":-8.95,"z":0.5},{"x":244.36,"y":-8.95,"z":0.5},{"x":255.12,"y":-8.95,"z":0.5},{"x":273.92,"y":-8.43,"z":0.5},{"x":283.09,"y":-7.34,"z":0.5},{"x":293.26,"y":-6.05,"z":0.5},{"x":302.72,"y":-4.75,"z":0.5},{"x":310.14,"y":-3.56,"z":0.5},{"x":317.48,"y":-2.91,"z":0.5},{"x":323.34,"y":-2.41,"z":0.5},{"x":328.03,"y":-1.96,"z":0.5},{"x":332.9,"y":-1.46,"z":0.5},{"x":336.25,"y":-0.99,"z":0.5},{"x":339.4,"y":-0.99,"z":0.5},{"x":344.09,"y":-0.99,"z":0.5},{"x":347.61,"y":-0.99,"z":0.5},{"x":350.27,"y":-0.99,"z":0.5},{"x":353.12,"y":-0.99,"z":0.5},{"x":355.96,"y":-0.99,"z":0.5},{"x":358.71,"y":-0.99,"z":0.5},{"x":361.09,"y":-0.99,"z":0.5},{"x":363.68,"y":-0.99,"z":0.5},{"x":366.17,"y":-0.99,"z":0.5},{"x":368.39,"y":-0.99,"z":0.5},{"x":371.14,"y":-0.99,"z":0.5},{"x":373.83,"y":-0.99,"z":0.5},{"x":375.83,"y":-0.99,"z":0.5},{"x":378.44,"y":-0.99,"z":0.5},{"x":383.08,"y":-0.99,"z":0.5},{"x":388.54,"y":-0.31,"z":0.5},{"x":391.34,"y":-0.24,"z":0.5},{"x":394.64,"y":-0.2,"z":0.5},{"x":397.9,"y":-0.19,"z":0.5},{"x":402.78,"y":-0.19,"z":0.5},{"x":407.89,"y":-0.19,"z":0.5},{"x":412.21,"y":-0.19,"z":0.5},{"x":418.12,"y":-0.19,"z":0.5},{"x":423.96,"y":-0.19,"z":0.5},{"x":429.69,"y":-0.19,"z":0.5},{"x":436.31,"y":-0.19,"z":0.5},{"x":442.93,"y":-0.19,"z":0.5},{"x":448.25,"y":-0.19,"z":0.5},{"x":453.95,"y":-0.19,"z":0.5},{"x":459.77,"y":-0.19,"z":0.5},{"x":465.48,"y":-0.19,"z":0.5},{"x":471.41,"y":-0.19,"z":0.5},{"x":476.46,"y":-0.19,"z":0.5},{"x":483.42,"y":-0.19,"z":0.5},{"x":491.19,"y":-0.19,"z":0.5},{"x":498.22,"y":-0.19,"z":0.5},{"x":506.25,"y":-0.19,"z":0.5},{"x":515.09,"y":-0.19,"z":0.5},{"x":522.08,"y":-0.19,"z":0.5},{"x":528.06,"y":-0.19,"z":0.5},{"x":549.24,"y":-0.19,"z":0.5},{"x":556.86,"y":-0.19,"z":0.5},{"x":567.78,"y":0.27,"z":0.5},{"x":577.07,"y":0.81,"z":0.5},{"x":585.95,"y":1.4,"z":0.5},{"x":594,"y":2.45,"z":0.5},{"x":603.04,"y":3.67,"z":0.5},{"x":612.3,"y":4.98,"z":0.5},{"x":618.92,"y":6.07,"z":0.5},{"x":625.57,"y":7.18,"z":0.5},{"x":633.56,"y":8.42,"z":0.5},{"x":639.59,"y":9.5,"z":0.5},{"x":644.56,"y":10.48,"z":0.5},{"x":650.34,"y":11.52,"z":0.5},{"x":656.04,"y":12.07,"z":0.5},{"x":660.97,"y":12.43,"z":0.5},{"x":667.06,"y":13.36,"z":0.5},{"x":673.92,"y":14.05,"z":0.5},{"x":682.5,"y":14.25,"z":0.5},{"x":693.14,"y":14.36,"z":0.5},{"x":705.01,"y":14.4,"z":0.5},{"x":715.66,"y":14.93,"z":0.5},{"x":723.68,"y":15.57,"z":0.5},{"x":732.1,"y":15.74,"z":0.5},{"x":741.24,"y":15.79,"z":0.5},{"x":750.39,"y":15.8,"z":0.5},{"x":758.42,"y":16.34,"z":0.5},{"x":765.35,"y":16.89,"z":0.5},{"x":772.11,"y":16.9,"z":0.5},{"x":781.01,"y":16.9,"z":0.5},{"x":793.06,"y":17.71,"z":0.5},{"x":800.12,"y":17.71,"z":0.5},{"x":806.24,"y":17.71,"z":0.5},{"x":811.72,"y":18.13,"z":0.5},{"x":825.35,"y":18.73,"z":0.5},{"x":832.15,"y":18.78,"z":0.5},{"x":838.98,"y":18.79,"z":0.5},{"x":846.25,"y":18.8,"z":0.5},{"x":853.32,"y":18.8,"z":0.5},{"x":860.06,"y":18.8,"z":0.5},{"x":866.91,"y":18.8,"z":0.5},{"x":872.71,"y":18.8,"z":0.5},{"x":877.48,"y":18.8,"z":0.5},{"x":883.29,"y":18.8,"z":0.5},{"x":888,"y":18.8,"z":0.5},{"x":891.79,"y":18.8,"z":0.5},{"x":896.52,"y":18.8,"z":0.5},{"x":901.38,"y":18.41,"z":0.5},{"x":906.33,"y":17.99,"z":0.5},{"x":911.37,"y":17.9,"z":0.5},{"x":916.42,"y":17.85,"z":0.5},{"x":921.38,"y":17.42,"z":0.5},{"x":926.49,"y":16.95,"z":0.5},{"x":935.79,"y":15.95,"z":0.5},{"x":940.96,"y":15.37,"z":0.5},{"x":946.76,"y":14.32,"z":0.5},{"x":951.55,"y":13.84,"z":0.5},{"x":960.13,"y":12.88,"z":0.5},{"x":963.28,"y":12.88,"z":0.5},{"x":967.35,"y":12.51,"z":0.5},{"x":971.95,"y":11.73,"z":0.5},{"x":976.68,"y":11.23,"z":0.5},{"x":981.16,"y":10.72,"z":0.5},{"x":984.94,"y":10.27,"z":0.5},{"x":988.39,"y":9.84,"z":0.5},{"x":991.81,"y":9.05,"z":0.5},{"x":995.32,"y":8.6,"z":0.5},{"x":998.82,"y":8.53,"z":0.5},{"x":1001.59,"y":8.18,"z":0.5},{"x":1003.65,"y":7.84,"z":0.5},{"x":1005.66,"y":7.84,"z":0.5},{"x":1007.59,"y":7.84,"z":0.5},{"x":1009.67,"y":7.84,"z":0.5},{"x":1011.83,"y":7.84,"z":0.5},{"x":1013.92,"y":7.84,"z":0.5},{"x":1016.55,"y":7.84,"z":0.5},{"x":1019.64,"y":7.84,"z":0.5},{"x":1021.9,"y":7.84,"z":0.5},{"x":1024.17,"y":7.84,"z":0.5},{"x":1026.8,"y":7.84,"z":0.5},{"x":1029,"y":7.84,"z":0.5},{"x":1031.29,"y":7.84,"z":0.5},{"x":1033.4,"y":7.84,"z":0.5},{"x":1034.93,"y":7.84,"z":0.5},{"x":1036.51,"y":7.84,"z":0.5},{"x":1038.04,"y":7.84,"z":0.5},{"x":1040.88,"y":7.84,"z":0.5},{"x":1041.68,"y":7.84,"z":0.5},{"x":1043.05,"y":7.84,"z":0.5},{"x":1046.16,"y":7.84,"z":0.5},{"x":1047.74,"y":7.84,"z":0.5},{"x":1048.93,"y":7.84,"z":0.5},{"x":1050.51,"y":7.84,"z":0.5},{"x":1051.75,"y":7.84,"z":0.5},{"x":1052.57,"y":7.84,"z":0.5},{"x":1053.79,"y":7.84,"z":0.5},{"x":1054.19,"y":7.64,"z":0.5},{"x":1054.59,"y":7.45,"z":0.5},{"x":1054.97,"y":7.45,"z":0.5},{"x":1055.16,"y":7.32,"z":0.5},{"x":1055.3,"y":7.05,"z":0.5},{"x":1055.46,"y":6.4,"z":0.5},{"x":1055.46,"y":6.04,"z":0.5},{"x":1055.46,"y":5.67,"z":0.5},{"x":1055.46,"y":5.32,"z":0.5},{"x":1055.46,"y":4.96,"z":0.5},{"x":1055.46,"y":4.27,"z":0.5},{"x":1055.46,"y":3.92,"z":0.5},{"x":1055.46,"y":3.55,"z":0.5},{"x":1055.46,"y":2.77,"z":0.5},{"x":1055.46,"y":2.43,"z":0.5},{"x":1055.46,"y":2.04,"z":0.5},{"x":1055.46,"y":1.72,"z":0.5},{"x":1055.46,"y":1.45,"z":0.5},{"x":1055.46,"y":1.17,"z":0.5},{"x":1055.46,"y":0.9,"z":0.5},{"x":1055.33,"y":0.76,"z":0.5},{"x":1055.05,"y":0.75,"z":0.5},{"x":1054.78,"y":0.75,"z":0.5},{"x":1054.48,"y":0.75,"z":0.5},{"x":1054.16,"y":0.75,"z":0.5},{"x":1053.87,"y":0.75,"z":0.5},{"x":1053.57,"y":0.75,"z":0.5},{"x":1053.26,"y":0.75,"z":0.5},{"x":1052.97,"y":0.75,"z":0.5},{"x":1052.46,"y":0.75,"z":0.5},{"x":1051.56,"y":0.54,"z":0.5},{"x":1049.88,"y":-0.06,"z":0.5},{"x":1047.96,"y":-0.95,"z":0.5},{"x":1046.2,"y":-1.83,"z":0.5},{"x":1044.09,"y":-2.92,"z":0.5},{"x":1041.97,"y":-4.29,"z":0.5},{"x":1039.32,"y":-5.79,"z":0.5},{"x":1036.56,"y":-7.35,"z":0.5},{"x":1034.89,"y":-8.62,"z":0.5},{"x":1033.82,"y":-9.69,"z":0.5},{"x":1032.77,"y":-10.48,"z":0.5},{"x":1031.71,"y":-11,"z":0.5},{"x":1031.07,"y":-11.38,"z":0.5},{"x":1030.77,"y":-11.54,"z":0.5},{"x":1030.37,"y":-11.76,"z":0.5},{"x":1030,"y":-11.94,"z":0.5},{"x":1029.66,"y":-11.96,"z":0.5},{"x":1028.99,"y":-11.98,"z":0.5},{"x":1028.27,"y":-11.98,"z":0.5},{"x":1026.73,"y":-11.98,"z":0.5},{"x":1024.36,"y":-11.98,"z":0.5},{"x":1023.16,"y":-11.98,"z":0.5},{"x":1021.75,"y":-11.98,"z":0.5},{"x":1017.14,"y":-11.98,"z":0.5},{"x":1015.01,"y":-11.98,"z":0.5},{"x":1012.36,"y":-11.98,"z":0.5},{"x":1009.12,"y":-11.98,"z":0.5},{"x":1005.89,"y":-11.98,"z":0.5},{"x":1002.52,"y":-11.98,"z":0.5},{"x":998.98,"y":-11.98,"z":0.5},{"x":991.38,"y":-11.98,"z":0.5},{"x":987.98,"y":-11.98,"z":0.5},{"x":985.35,"y":-11.98,"z":0.5},{"x":979.46,"y":-11.98,"z":0.5},{"x":977.83,"y":-11.98,"z":0.5},{"x":976.18,"y":-11.98,"z":0.5},{"x":974.14,"y":-11.98,"z":0.5},{"x":972.09,"y":-11.98,"z":0.5},{"x":969.98,"y":-11.98,"z":0.5},{"x":967.87,"y":-11.98,"z":0.5},{"x":965.78,"y":-11.98,"z":0.5},{"x":963.56,"y":-11.98,"z":0.5},{"x":961.43,"y":-11.98,"z":0.5},{"x":959.93,"y":-11.98,"z":0.5},{"x":958.34,"y":-11.98,"z":0.5},{"x":956.3,"y":-11.98,"z":0.5},{"x":952.99,"y":-11.98,"z":0.5},{"x":951.8,"y":-11.98,"z":0.5},{"x":949.99,"y":-11.98,"z":0.5},{"x":948.46,"y":-11.98,"z":0.5},{"x":947.22,"y":-11.98,"z":0.5},{"x":945.73,"y":-11.98,"z":0.5},{"x":945.26,"y":-11.98,"z":0.5},{"x":944.86,"y":-11.98,"z":0.5},{"x":944.46,"y":-11.98,"z":0.5},{"x":944.08,"y":-11.98,"z":0.5},{"x":943.77,"y":-11.98,"z":0.5},{"x":943.3,"y":-11.98,"z":0.5},{"x":942.14,"y":-11.98,"z":0.5},{"x":940.4,"y":-11.98,"z":0.5},{"x":937.92,"y":-11.98,"z":0.5},{"x":934.13,"y":-11.98,"z":0.5},{"x":930.16,"y":-11.98,"z":0.5},{"x":925.98,"y":-11.98,"z":0.5},{"x":921.14,"y":-11.98,"z":0.5},{"x":915.94,"y":-11.98,"z":0.5},{"x":911.56,"y":-11.98,"z":0.5},{"x":908.31,"y":-11.98,"z":0.5},{"x":904.99,"y":-11.98,"z":0.5},{"x":902.36,"y":-11.98,"z":0.5},{"x":898.75,"y":-11.98,"z":0.5},{"x":895.15,"y":-11.98,"z":0.5},{"x":893.51,"y":-11.98,"z":0.5},{"x":891.86,"y":-11.98,"z":0.5},{"x":889.87,"y":-11.98,"z":0.5},{"x":887.78,"y":-11.98,"z":0.5},{"x":885.67,"y":-11.98,"z":0.5},{"x":883.64,"y":-11.98,"z":0.5},{"x":878.72,"y":-12.63,"z":0.5},{"x":876.01,"y":-12.65,"z":0.5},{"x":873.33,"y":-12.66,"z":0.5},{"x":870.7,"y":-12.66,"z":0.5},{"x":868.06,"y":-12.66,"z":0.5},{"x":865.83,"y":-12.66,"z":0.5},{"x":863.78,"y":-12.66,"z":0.5},{"x":860.77,"y":-12.66,"z":0.5},{"x":857.57,"y":-12.66,"z":0.5},{"x":853.66,"y":-12.66,"z":0.5},{"x":850.68,"y":-12.66,"z":0.5},{"x":848.35,"y":-12.66,"z":0.5},{"x":845.16,"y":-12.66,"z":0.5},{"x":841.6,"y":-12.66,"z":0.5},{"x":838.9,"y":-12.66,"z":0.5},{"x":836.32,"y":-12.66,"z":0.5},{"x":833.41,"y":-12.66,"z":0.5},{"x":831.35,"y":-12.66,"z":0.5},{"x":829.34,"y":-12.66,"z":0.5},{"x":826.02,"y":-12.66,"z":0.5},{"x":824.83,"y":-12.66,"z":0.5},{"x":823.07,"y":-12.9,"z":0.5},{"x":821.58,"y":-13.18,"z":0.5},{"x":819.92,"y":-13.26,"z":0.5},{"x":817.83,"y":-13.31,"z":0.5},{"x":815.73,"y":-13.61,"z":0.5},{"x":813.62,"y":-13.93,"z":0.5},{"x":811.59,"y":-13.98,"z":0.5},{"x":806.76,"y":-14.01,"z":0.5},{"x":803.44,"y":-14.41,"z":0.5},{"x":801.23,"y":-14.77,"z":0.5},{"x":798.7,"y":-14.78,"z":0.5},{"x":795.03,"y":-15.23,"z":0.5},{"x":791.77,"y":-15.64,"z":0.5},{"x":789.55,"y":-15.64,"z":0.5},{"x":787.45,"y":-15.96,"z":0.5},{"x":785.01,"y":-16.3,"z":0.5},{"x":782.38,"y":-16.71,"z":0.5},{"x":779.56,"y":-17.14,"z":0.5},{"x":776.8,"y":-17.57,"z":0.5},{"x":773.5,"y":-17.99,"z":0.5},{"x":770.21,"y":-18.05,"z":0.5},{"x":766.79,"y":-18.46,"z":0.5},{"x":763.27,"y":-18.87,"z":0.5},{"x":759.8,"y":-18.91,"z":0.5},{"x":756.45,"y":-18.92,"z":0.5},{"x":753.2,"y":-18.92,"z":0.5},{"x":749.17,"y":-18.92,"z":0.5},{"x":745.82,"y":-18.92,"z":0.5},{"x":742.7,"y":-18.92,"z":0.5},{"x":738.24,"y":-18.92,"z":0.5},{"x":733.59,"y":-18.92,"z":0.5},{"x":728.88,"y":-18.92,"z":0.5},{"x":724.04,"y":-18.92,"z":0.5},{"x":719.09,"y":-18.92,"z":0.5},{"x":714.16,"y":-18.92,"z":0.5},{"x":709.1,"y":-18.51,"z":0.5},{"x":703.17,"y":-17.58,"z":0.5},{"x":697.2,"y":-16.99,"z":0.5},{"x":692,"y":-16.45,"z":0.5},{"x":681.97,"y":-15.91,"z":0.5},{"x":677.92,"y":-15.91,"z":0.5},{"x":673.79,"y":-15.44,"z":0.5},{"x":667.19,"y":-14.96,"z":0.5},{"x":665.18,"y":-14.96,"z":0.5},{"x":662.49,"y":-14.96,"z":0.5},{"x":657.04,"y":-14.96,"z":0.5},{"x":654.31,"y":-14.96,"z":0.5},{"x":652.05,"y":-14.96,"z":0.5},{"x":649.83,"y":-14.96,"z":0.5},{"x":647.76,"y":-14.96,"z":0.5},{"x":645.65,"y":-14.96,"z":0.5},{"x":643.48,"y":-14.96,"z":0.5},{"x":641.38,"y":-14.96,"z":0.5},{"x":638.68,"y":-14.96,"z":0.5},{"x":636.03,"y":-14.96,"z":0.5},{"x":633.4,"y":-14.96,"z":0.5},{"x":630.39,"y":-14.96,"z":0.5},{"x":627.25,"y":-14.96,"z":0.5},{"x":623.78,"y":-14.96,"z":0.5},{"x":620.37,"y":-14.96,"z":0.5},{"x":614.49,"y":-14.96,"z":0.5},{"x":611.23,"y":-14.96,"z":0.5},{"x":608.43,"y":-14.96,"z":0.5},{"x":605.96,"y":-14.96,"z":0.5},{"x":603.77,"y":-15.26,"z":0.5},{"x":601.8,"y":-15.92,"z":0.5},{"x":599.73,"y":-16.61,"z":0.5},{"x":597.7,"y":-17.29,"z":0.5},{"x":595.64,"y":-17.98,"z":0.5},{"x":593.63,"y":-18.65,"z":0.5},{"x":590.48,"y":-19.7,"z":0.5},{"x":588.52,"y":-20.36,"z":0.5},{"x":586.91,"y":-20.96,"z":0.5},{"x":583.2,"y":-21.73,"z":0.5},{"x":581.55,"y":-22.3,"z":0.5},{"x":579.9,"y":-22.9,"z":0.5},{"x":577.93,"y":-23.57,"z":0.5},{"x":576.27,"y":-23.96,"z":0.5},{"x":572.52,"y":-25.04,"z":0.5},{"x":570.43,"y":-25.73,"z":0.5},{"x":568.37,"y":-26.42,"z":0.5},{"x":566.36,"y":-27.09,"z":0.5},{"x":563.73,"y":-27.84,"z":0.5},{"x":561.52,"y":-28.25,"z":0.5},{"x":559.52,"y":-28.58,"z":0.5},{"x":557.44,"y":-29.13,"z":0.5},{"x":555.77,"y":-29.42,"z":0.5},{"x":553.76,"y":-29.8,"z":0.5},{"x":551.71,"y":-30.14,"z":0.5},{"x":549.34,"y":-30.56,"z":0.5},{"x":547.23,"y":-30.93,"z":0.5},{"x":545.78,"y":-30.93,"z":0.5},{"x":544.1,"y":-30.93,"z":0.5},{"x":541.52,"y":-31.1,"z":0.5},{"x":538.47,"y":-31.43,"z":0.5},{"x":536.42,"y":-31.61,"z":0.5},{"x":534.89,"y":-31.61,"z":0.5},{"x":531.7,"y":-31.61,"z":0.5},{"x":528.09,"y":-31.61,"z":0.5},{"x":526.4,"y":-31.61,"z":0.5},{"x":524.39,"y":-31.61,"z":0.5},{"x":522.75,"y":-31.61,"z":0.5},{"x":518.34,"y":-31.61,"z":0.5},{"x":516.61,"y":-31.61,"z":0.5},{"x":514.57,"y":-31.61,"z":0.5},{"x":512.49,"y":-31.61,"z":0.5},{"x":510.4,"y":-31.61,"z":0.5},{"x":506.38,"y":-31.61,"z":0.5},{"x":504.8,"y":-31.61,"z":0.5},{"x":503.58,"y":-31.61,"z":0.5},{"x":501.63,"y":-31.61,"z":0.5},{"x":499.64,"y":-31.61,"z":0.5},{"x":496.35,"y":-31.61,"z":0.5},{"x":495.11,"y":-31.61,"z":0.5},{"x":493.5,"y":-31.32,"z":0.5},{"x":491.82,"y":-30.98,"z":0.5},{"x":490.64,"y":-30.71,"z":0.5},{"x":489.63,"y":-30.46,"z":0.5},{"x":488.06,"y":-30.43,"z":0.5},{"x":486.82,"y":-30.24,"z":0.5},{"x":485.62,"y":-29.71,"z":0.5},{"x":483.26,"y":-29.23,"z":0.5},{"x":482.46,"y":-29.03,"z":0.5},{"x":481.47,"y":-28.94,"z":0.5},{"x":479.26,"y":-28.44,"z":0.5},{"x":478.16,"y":-28.39,"z":0.5},{"x":476.66,"y":-28.36,"z":0.5},{"x":475.1,"y":-28.35,"z":0.5},{"x":473.95,"y":-28.35,"z":0.5},{"x":472.37,"y":-28.35,"z":0.5},{"x":470.32,"y":-28.35,"z":0.5},{"x":468.21,"y":-28.35,"z":0.5},{"x":466.1,"y":-28.35,"z":0.5},{"x":464.09,"y":-28.35,"z":0.5},{"x":462.08,"y":-28.35,"z":0.5},{"x":460.14,"y":-28.35,"z":0.5},{"x":458.08,"y":-28.35,"z":0.5},{"x":455.4,"y":-28.35,"z":0.5},{"x":452.73,"y":-28.35,"z":0.5},{"x":450.49,"y":-28.35,"z":0.5},{"x":447.33,"y":-28.35,"z":0.5},{"x":444.57,"y":-28.11,"z":0.5},{"x":441.94,"y":-27.78,"z":0.5},{"x":438.85,"y":-27.68,"z":0.5},{"x":435.79,"y":-27.31,"z":0.5},{"x":432.07,"y":-26.9,"z":0.5},{"x":428.68,"y":-26.87,"z":0.5},{"x":425.43,"y":-26.47,"z":0.5},{"x":421.35,"y":-26.06,"z":0.5},{"x":416.56,"y":-25.59,"z":0.5},{"x":407.96,"y":-23.87,"z":0.5},{"x":403.48,"y":-23.48,"z":0.5},{"x":397.88,"y":-22.93,"z":0.5},{"x":386.32,"y":-22.34,"z":0.5},{"x":381.18,"y":-22.28,"z":0.5},{"x":371.63,"y":-22.25,"z":0.5},{"x":367.34,"y":-22.25,"z":0.5},{"x":363.75,"y":-22.25,"z":0.5},{"x":360.77,"y":-22.25,"z":0.5},{"x":357.24,"y":-22.25,"z":0.5},{"x":354.57,"y":-22.25,"z":0.5},{"x":350.56,"y":-22.25,"z":0.5},{"x":348.96,"y":-22.25,"z":0.5},{"x":347.4,"y":-22.25,"z":0.5},{"x":344.98,"y":-22.25,"z":0.5},{"x":342.88,"y":-22.25,"z":0.5},{"x":341.2,"y":-22.25,"z":0.5},{"x":339.15,"y":-22.25,"z":0.5},{"x":336.61,"y":-22.25,"z":0.5},{"x":333.93,"y":-22.25,"z":0.5},{"x":331.66,"y":-22.25,"z":0.5},{"x":328.98,"y":-22.25,"z":0.5},{"x":325.7,"y":-22.25,"z":0.5},{"x":322.91,"y":-22.25,"z":0.5},{"x":320.76,"y":-22.59,"z":0.5},{"x":315.44,"y":-22.93,"z":0.5},{"x":313.85,"y":-23.12,"z":0.5},{"x":312.27,"y":-23.4,"z":0.5},{"x":310.69,"y":-23.52,"z":0.5},{"x":309.11,"y":-23.82,"z":0.5},{"x":307.11,"y":-24.14,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a1","typeName":"shape"},{"x":571.41796875,"y":555.828125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:UWTCarsDnIK-lu8yuNbEC","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":51.61586809715318,"start":{"x":0,"y":0},"end":{"x":-246.48046875,"y":-279.79296875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ZIPPER\n.ZIP","labelPosition":0.3845277028471277,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a8","typeName":"shape"},{"x":326.76953125,"y":588.91015625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Uc8NIhIkQKr9-mU1rtK4a","type":"text","props":{"color":"red","size":"m","w":183.59375,"text":"people i follow","font":"draw","textAlign":"start","autoSize":true,"scale":1.4897196076117574},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a6","typeName":"shape"},{"x":-136.54386239641894,"y":869.4969042483522,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Ud9Eme-S7Sm25yBXbMSxu","type":"text","props":{"color":"yellow","size":"m","w":75.140625,"text":"PIECE","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ai","typeName":"shape"},{"x":-39.21484375,"y":348.26953125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:UmxRaY6IuJGqPuw21yAu7","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a9","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":21.83162565879525,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":775.4145952017032,"y":-26.897500918994325,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:VET_kSFB-ZqW_fCW_Y1zP","type":"text","props":{"color":"red","size":"l","w":85.1328125,"text":"DOM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a6","typeName":"shape"},{"x":1062.1051299404467,"y":111.59385181572259,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:WENiQb6VBbHom8Wcwztnm","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"black","labelColor":"black","bend":0,"start":{"x":0,"y":0},"end":{"x":-445.01655421768646,"y":-101.3412940616198},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b05","typeName":"shape"},{"x":1098.3461717945909,"y":377.0086057828688,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:WTvQhWRKBwF53v-kJMo91","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":9.653317934039384,"start":{"x":0,"y":0},"end":{"x":-71.35911408485845,"y":-60.401868574605146},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aR","typeName":"shape"},{"x":1138.5546875,"y":626.8671875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:WtCdDcuHMnDlLkA8OVzuU","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5}]}],"color":"red","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aD","typeName":"shape"},{"x":511.6640625,"y":654.88671875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:X7bEHWA2G4z2NTtTp1Qw2","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":20.962718366331966,"start":{"x":0,"y":0},"end":{"x":410.3671875,"y":-139.921875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"MAKETERM.GO","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a5","typeName":"shape"},{"x":218.47347136063468,"y":254.6191351087541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XKKOTGkr2O7B2_QfYPQD-","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":21.963362265487337,"start":{"x":0,"y":0},"end":{"x":275.0546875,"y":-89.640625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"EDITOR\n.INIT","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a5V","typeName":"shape"},{"x":-14.50180790508523,"y":943.27108896244,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XN3YsZsRHvzz6TZNoc3HL","type":"text","props":{"color":"yellow","size":"s","w":106.2109375,"text":"PROJECTOR","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"at","typeName":"shape"},{"x":-314.88312845204166,"y":810.7928375486767,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XOEI2UpOyhH-QPiv_wbeQ","type":"text","props":{"color":"yellow","size":"m","w":31.4140625,"text":"ID","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aj","typeName":"shape"},{"x":1609.0640723597335,"y":447.2153457341623,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XOzfPbsy3c9y6DPPE7UZI","type":"text","props":{"color":"violet","size":"s","w":144.2109375,"text":"ENVIRONMENT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"az","typeName":"shape"},{"x":1430.5450171253233,"y":941.0556223077006,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XQhY9NSdGvhv27bIuYEof","type":"text","props":{"color":"violet","size":"s","w":66.1484375,"text":"STATUS","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"as","typeName":"shape"},{"x":511.6640625,"y":654.88671875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XVYpYm1e-oEgPTUjKAZC8","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":20.962718366331966,"start":{"x":0,"y":0},"end":{"x":410.3671875,"y":-139.921875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"MAKETERM.GO","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a3V","typeName":"shape"},{"x":952.5234375,"y":517.5703125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:XoliLCRhQHwDk9KF38w56","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-31.005116378497007,"start":{"x":0,"y":0},"end":{"x":144.84765625,"y":-105.66796875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"STATICS.MK","labelPosition":0.5007136168379599,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aH","typeName":"shape"},{"x":1489.4909100232412,"y":798.8736753199454,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:YHRe4SkVzvgNn2pR0nEMN","type":"text","props":{"color":"violet","size":"m","w":64.390625,"text":"INFO","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ak","typeName":"shape"},{"x":1264.1640783256196,"y":211.14898583272873,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:YM0tOYqaWzn0GuVrECrxA","type":"text","props":{"color":"light-violet","size":"s","w":62.21875,"text":"DHDOC","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aO","typeName":"shape"},{"x":605.2894878856872,"y":961.2152089356466,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:YNyn8A7mOUlCFX1ndT5_J","type":"text","props":{"color":"light-violet","size":"s","w":85.4921875,"text":"TILEMAP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b01","typeName":"shape"},{"x":791.7830353065845,"y":330.45011472792913,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:YPa7XKdHRnd-xF6q1btM1","type":"text","props":{"color":"violet","size":"l","w":150.2265625,"text":"STATICS","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aA","typeName":"shape"},{"x":596.499552655268,"y":878.0020214624974,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:YcWUaq_GI_MiRusTzpZEY","type":"image","props":{"w":999.9999999999999,"h":443.41372912801484,"assetId":"asset:557566456","playing":true,"url":"","crop":null,"flipX":false,"flipY":false},"parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a6","typeName":"shape"},{"x":-727.6640625,"y":431.25,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Z9KwXcTxaLes_YBUyeAhG","type":"arrow","parentId":"page:g5nJZnSQA-22SNUHQIPyc","index":"a7","props":{"dash":"draw","size":"m","fill":"none","color":"light-blue","labelColor":"black","bend":-21.75198363911072,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":1594.0255775017756,"y":983.9324416231225,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:ZItasAH6otykjA7R49BM3","type":"text","props":{"color":"violet","size":"s","w":55.078125,"text":"MODE","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ao","typeName":"shape"},{"x":-81.32538590485422,"y":998.3097762752161,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:Zt2cJqD9WNfcagoEhxOen","type":"text","props":{"color":"yellow","size":"s","w":64.578125,"text":"GROUT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ar","typeName":"shape"},{"x":1319.272914408472,"y":386.1914186630317,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_7N5G6G-rBelFSEsAwja6","type":"text","props":{"color":"violet","size":"s","w":60.296875,"text":"DHPAT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ay","typeName":"shape"},{"x":1355.8185735321829,"y":468.1220622200499,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_8qyzTRocBErJIyO-43Kr","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":9.339806240718158,"start":{"x":16.4718786760468,"y":-124.2336626529418},"end":{"x":-22.415379218337875,"y":-163.5461437668996},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aP","typeName":"shape"},{"x":291.40625,"y":542.93359375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_JWxhVlLsmzk2Y4wm0Dj0","type":"text","props":{"color":"orange","size":"l","w":8,"text":"","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aH","typeName":"shape"},{"x":1221.5380511244673,"y":110.79942838480918,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_SfXnshVM36jz15lr_ent","type":"text","props":{"color":"light-violet","size":"s","w":68.234375,"text":"LAYOUT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aQ","typeName":"shape"},{"x":616.0234375,"y":-33.58984375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_ZN8SXuGDTKMQEFFb3fc3","type":"text","props":{"color":"orange","size":"l","w":8,"text":"","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aM","typeName":"shape"},{"x":536.2742526106347,"y":149.5605413587541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_lQKqvWRP_Uyf5tvLMBsH","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":68.12583199333677,"start":{"x":-52.61328125,"y":2.38671875},"end":{"x":-305.21484375,"y":89.20703125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"_.\nSTATE.\nZIPPER","labelPosition":0.5125135168482452,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aB","typeName":"shape"},{"x":2050.671654171761,"y":2692.79801328332,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_vkXN_hNlrtMYPUif5k6i","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"aB","props":{"dash":"draw","size":"m","fill":"none","color":"light-blue","labelColor":"black","bend":17.345702165106967,"start":{"x":0,"y":0},"end":{"x":2,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":602.3841685724784,"y":-17.259713951013367,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:_w0MfFmvYUL4X_YXfpveg","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"red","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aX","typeName":"shape"},{"x":883.5899568774231,"y":734.557470523645,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:aOIER-NpTA023QpoD5mRc","type":"text","props":{"color":"violet","size":"s","w":47.1171875,"text":"UEXP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"av","typeName":"shape"},{"x":197.5914265552118,"y":894.4960246525936,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:aihkcIb_qAuNmw83s2exh","type":"text","props":{"color":"yellow","size":"s","w":44.2734375,"text":"SKEL","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"au","typeName":"shape"},{"x":261.3515625,"y":673.3515625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:bvcAbVtfTR94Z8RBerF55","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":0.12,"z":0.5},{"x":0,"y":0.42,"z":0.5},{"x":0.19,"y":0.8,"z":0.5},{"x":0.57,"y":1.19,"z":0.5},{"x":0.75,"y":1.57,"z":0.5},{"x":0.86,"y":1.87,"z":0.5},{"x":1.21,"y":2.42,"z":0.5},{"x":1.65,"y":3.08,"z":0.5},{"x":2.1,"y":3.79,"z":0.5},{"x":2.41,"y":4.52,"z":0.5},{"x":2.64,"y":4.96,"z":0.5},{"x":3.07,"y":5.7,"z":0.5},{"x":3.37,"y":6.44,"z":0.5},{"x":3.6,"y":6.89,"z":0.5},{"x":4.01,"y":7.72,"z":0.5},{"x":4.39,"y":8.12,"z":0.5},{"x":4.59,"y":8.51,"z":0.5},{"x":4.78,"y":8.89,"z":0.5},{"x":5.07,"y":9.57,"z":0.5},{"x":5.36,"y":9.86,"z":0.5},{"x":5.75,"y":10.25,"z":0.5},{"x":5.98,"y":10.63,"z":0.5},{"x":6.16,"y":10.99,"z":0.5},{"x":6.52,"y":11.38,"z":0.5},{"x":6.89,"y":11.77,"z":0.5},{"x":7.29,"y":12.16,"z":0.5},{"x":7.7,"y":12.58,"z":0.5},{"x":8.11,"y":12.99,"z":0.5},{"x":8.31,"y":13.39,"z":0.5},{"x":8.51,"y":13.77,"z":0.5},{"x":8.89,"y":13.96,"z":0.5},{"x":9.27,"y":14.15,"z":0.5},{"x":9.45,"y":14.45,"z":0.5},{"x":9.6,"y":14.61,"z":0.5},{"x":9.9,"y":14.67,"z":0.5},{"x":10.25,"y":14.7,"z":0.5},{"x":10.64,"y":14.71,"z":0.5},{"x":11.02,"y":14.71,"z":0.5},{"x":11.44,"y":15.06,"z":0.5},{"x":11.83,"y":15.08,"z":0.5},{"x":12.23,"y":15.09,"z":0.5},{"x":12.61,"y":15.09,"z":0.5},{"x":12.99,"y":15.09,"z":0.5},{"x":13.37,"y":15.09,"z":0.5},{"x":14.91,"y":15.61,"z":0.5},{"x":15.46,"y":15.61,"z":0.5},{"x":16.2,"y":15.61,"z":0.5},{"x":17.22,"y":15.61,"z":0.5},{"x":18.27,"y":15.61,"z":0.5},{"x":19.06,"y":15.61,"z":0.5},{"x":19.86,"y":15.61,"z":0.5},{"x":20.9,"y":15.61,"z":0.5},{"x":21.68,"y":15.61,"z":0.5},{"x":22.47,"y":15.61,"z":0.5},{"x":24.3,"y":15.61,"z":0.5},{"x":25.05,"y":15.61,"z":0.5},{"x":26.1,"y":15.61,"z":0.5},{"x":27.15,"y":15.61,"z":0.5},{"x":27.98,"y":15.61,"z":0.5},{"x":28.56,"y":15.46,"z":0.5},{"x":29.3,"y":15.3,"z":0.5},{"x":30.02,"y":15.11,"z":0.5},{"x":30.79,"y":14.7,"z":0.5},{"x":31.52,"y":14.42,"z":0.5},{"x":32.43,"y":13.98,"z":0.5},{"x":33.24,"y":13.93,"z":0.5},{"x":33.64,"y":13.92,"z":0.5},{"x":34.43,"y":13.91,"z":0.5},{"x":34.81,"y":13.91,"z":0.5},{"x":35.19,"y":13.91,"z":0.5},{"x":35.88,"y":13.91,"z":0.5},{"x":36.39,"y":13.91,"z":0.5},{"x":37.05,"y":13.91,"z":0.5},{"x":37.55,"y":13.91,"z":0.5},{"x":37.99,"y":14.07,"z":0.5},{"x":38.39,"y":14.4,"z":0.5},{"x":38.79,"y":14.77,"z":0.5},{"x":39.02,"y":15.17,"z":0.5},{"x":39.24,"y":15.57,"z":0.5},{"x":39.45,"y":15.98,"z":0.5},{"x":39.46,"y":16.38,"z":0.5},{"x":39.72,"y":17.1,"z":0.5},{"x":39.98,"y":18.15,"z":0.5},{"x":39.98,"y":19.2,"z":0.5},{"x":40.14,"y":20.03,"z":0.5},{"x":40.4,"y":21.08,"z":0.5},{"x":40.51,"y":23.01,"z":0.5},{"x":40.51,"y":24.08,"z":0.5},{"x":40.51,"y":25.53,"z":0.5},{"x":40.51,"y":27.07,"z":0.5},{"x":40.51,"y":28.24,"z":0.5},{"x":40.51,"y":29.36,"z":0.5},{"x":40.51,"y":30.18,"z":0.5},{"x":40.51,"y":30.64,"z":0.5},{"x":40.51,"y":31.38,"z":0.5},{"x":40.51,"y":32.11,"z":0.5},{"x":40.51,"y":32.5,"z":0.5},{"x":40.51,"y":32.88,"z":0.5},{"x":40.51,"y":33.2,"z":0.5},{"x":40.51,"y":33.48,"z":0.5},{"x":40.51,"y":33.79,"z":0.5},{"x":40.63,"y":33.96,"z":0.5},{"x":40.89,"y":33.97,"z":0.5},{"x":41.03,"y":33.54,"z":0.5},{"x":41.21,"y":32.89,"z":0.5},{"x":41.63,"y":32.17,"z":0.5},{"x":41.91,"y":31.13,"z":0.5},{"x":42.13,"y":30.35,"z":0.5},{"x":42.33,"y":29.57,"z":0.5},{"x":42.34,"y":28.5,"z":0.5},{"x":42.54,"y":27.76,"z":0.5},{"x":42.72,"y":27.37,"z":0.5},{"x":42.91,"y":26.98,"z":0.5},{"x":43.21,"y":26.3,"z":0.5},{"x":43.37,"y":26,"z":0.5},{"x":43.57,"y":25.63,"z":0.5},{"x":43.92,"y":25.23,"z":0.5},{"x":44.14,"y":24.82,"z":0.5},{"x":44.42,"y":24.13,"z":0.5},{"x":44.85,"y":23.41,"z":0.5},{"x":45.04,"y":22.97,"z":0.5},{"x":45.24,"y":22.76,"z":0.5},{"x":45.44,"y":22.55,"z":0.5},{"x":45.63,"y":22.35,"z":0.5},{"x":45.82,"y":22.16,"z":0.5},{"x":46.01,"y":21.77,"z":0.5},{"x":46.31,"y":21.58,"z":0.5},{"x":46.61,"y":21.44,"z":0.5},{"x":47.07,"y":21.05,"z":0.5},{"x":47.46,"y":20.81,"z":0.5},{"x":47.78,"y":20.66,"z":0.5},{"x":48.17,"y":20.32,"z":0.5},{"x":48.61,"y":20.09,"z":0.5},{"x":49.01,"y":19.89,"z":0.5},{"x":49.39,"y":19.7,"z":0.5},{"x":49.76,"y":19.66,"z":0.5},{"x":50.12,"y":19.66,"z":0.5},{"x":50.55,"y":19.66,"z":0.5},{"x":50.95,"y":19.46,"z":0.5},{"x":51.34,"y":19.27,"z":0.5},{"x":51.71,"y":19.27,"z":0.5},{"x":52.03,"y":19.14,"z":0.5},{"x":52.3,"y":19.01,"z":0.5},{"x":52.65,"y":18.98,"z":0.5},{"x":52.85,"y":18.8,"z":0.5},{"x":53.02,"y":18.61,"z":0.5},{"x":53.32,"y":18.57,"z":0.5},{"x":53.57,"y":18.57,"z":0.5},{"x":54.24,"y":18.57,"z":0.5},{"x":54.64,"y":18.57,"z":0.5},{"x":56.73,"y":18.57,"z":0.5},{"x":58.23,"y":18.57,"z":0.5},{"x":59.95,"y":18.57,"z":0.5},{"x":61.94,"y":18.85,"z":0.5},{"x":63.89,"y":19.5,"z":0.5},{"x":66.64,"y":20.15,"z":0.5},{"x":68.2,"y":20.75,"z":0.5},{"x":69.88,"y":21.24,"z":0.5},{"x":71.5,"y":21.69,"z":0.5},{"x":71.98,"y":21.89,"z":0.5},{"x":72.85,"y":22.13,"z":0.5},{"x":73.27,"y":22.31,"z":0.5},{"x":73.68,"y":22.34,"z":0.5},{"x":74.08,"y":22.36,"z":0.5},{"x":74.47,"y":22.36,"z":0.5},{"x":74.86,"y":22.36,"z":0.5},{"x":75.27,"y":22.36,"z":0.5},{"x":76.04,"y":22.36,"z":0.5},{"x":76.43,"y":22.36,"z":0.5},{"x":76.8,"y":22.36,"z":0.5},{"x":77.11,"y":22.36,"z":0.5},{"x":77.4,"y":22.36,"z":0.5},{"x":77.77,"y":22.36,"z":0.5},{"x":78.17,"y":22.36,"z":0.5},{"x":78.58,"y":22.36,"z":0.5},{"x":79.37,"y":22.36,"z":0.5},{"x":79.77,"y":22.36,"z":0.5},{"x":80.19,"y":22.36,"z":0.5},{"x":80.59,"y":22.16,"z":0.5},{"x":80.99,"y":21.78,"z":0.5},{"x":81.37,"y":21.59,"z":0.5},{"x":81.75,"y":21.39,"z":0.5},{"x":82.05,"y":20.82,"z":0.5},{"x":82.35,"y":20.67,"z":0.5},{"x":82.57,"y":20.37,"z":0.5},{"x":82.79,"y":20.16,"z":0.5},{"x":83.14,"y":19.94,"z":0.5},{"x":83.52,"y":19.58,"z":0.5},{"x":83.72,"y":19.23,"z":0.5},{"x":83.91,"y":19.03,"z":0.5},{"x":84.11,"y":18.8,"z":0.5},{"x":84.13,"y":18.41,"z":0.5},{"x":84.14,"y":18.02,"z":0.5},{"x":84.14,"y":17.29,"z":0.5},{"x":84.14,"y":16.56,"z":0.5},{"x":84.14,"y":16.18,"z":0.5},{"x":84.14,"y":15.88,"z":0.5},{"x":84.14,"y":15.57,"z":0.5},{"x":84.14,"y":15.2,"z":0.5},{"x":84.14,"y":14.73,"z":0.5},{"x":84.14,"y":14.32,"z":0.5},{"x":84.14,"y":13.99,"z":0.5},{"x":84.14,"y":13.54,"z":0.5},{"x":84.14,"y":12.88,"z":0.5},{"x":84.14,"y":11.9,"z":0.5},{"x":84.14,"y":11.11,"z":0.5},{"x":84.14,"y":10.34,"z":0.5},{"x":84.14,"y":9.25,"z":0.5},{"x":84.14,"y":8.52,"z":0.5},{"x":84.14,"y":8.13,"z":0.5},{"x":84.14,"y":7.44,"z":0.5},{"x":84.14,"y":7.13,"z":0.5},{"x":84.14,"y":6.76,"z":0.5},{"x":84.01,"y":6.59,"z":0.5},{"x":83.75,"y":6.58,"z":0.5},{"x":83.16,"y":6.57,"z":0.5}]}],"color":"yellow","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aG","typeName":"shape"},{"x":-62.33203125,"y":520.51171875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:c2H4ry2130dooylspa1nd","type":"arrow","parentId":"page:g5nJZnSQA-22SNUHQIPyc","index":"a8","props":{"dash":"draw","size":"m","fill":"none","color":"light-blue","labelColor":"black","bend":-24.607846553418543,"start":{"x":0,"y":0},"end":{"x":-1.68359375,"y":-91.53125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":511.6640625,"y":654.88671875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:cWIOgqFzysd5NSGkCjS0w","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":20.962718366331966,"start":{"x":0,"y":0},"end":{"x":410.3671875,"y":-139.921875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"MAKETERM.GO","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"a5","typeName":"shape"},{"x":-216.4287863909783,"y":189.90955645094954,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:cfDVOmFhy6ROTarSr_wqW","type":"text","props":{"color":"yellow","size":"xl","w":171.109375,"text":"SYNTAX","font":"draw","textAlign":"start","autoSize":true,"scale":1.659122834374268},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aT","typeName":"shape"},{"x":1264.1640783256196,"y":211.14898583272873,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:ctvj_gHuvkoOJI4qWru6F","type":"text","props":{"color":"light-violet","size":"s","w":62.21875,"text":"DHDOC","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aH","typeName":"shape"},{"x":875.9268044757587,"y":1239.4343370904676,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:d2pID3NwSpV1ryDmel2Sx","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a7","props":{"dash":"draw","size":"m","fill":"none","color":"red","labelColor":"black","bend":14.827620144929526,"start":{"x":0,"y":0},"end":{"x":2,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":614.3132596894018,"y":342.06234582729485,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:dKtfqKQq2KhcURGG5SvWf","type":"text","props":{"color":"light-violet","size":"s","w":102.71875,"text":"MEASURED","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aM","typeName":"shape"},{"x":99.01171875,"y":561.87890625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:dZo8zQVBwOxgy7eGya8h2","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-15.248752837123526,"start":{"x":0,"y":0},"end":{"x":172.43359375,"y":-284.31640625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PRINTER.\nZ_OF_STR","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a9","typeName":"shape"},{"x":-1143.15234375,"y":-12.925350522813687,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:dgrW3aui1oblnz88toNid","type":"image","props":{"w":1479.8686609100878,"h":641.4639822956274,"assetId":"asset:1833018429","playing":true,"url":"","crop":null,"flipX":false,"flipY":false},"parentId":"page:g5nJZnSQA-22SNUHQIPyc","index":"a4","typeName":"shape"},{"x":742.8340093092689,"y":973.7308556396476,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:dsTJmlzneEsrRPhaR0ac1","type":"text","props":{"color":"light-violet","size":"s","w":131.9140625,"text":"TERMRANGES","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"b00","typeName":"shape"},{"x":557.76,"y":450.27,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:e-qtQoxs8NFduYFQ55qqe","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":-1.66,"y":-0.07,"z":0.5},{"x":-3.28,"y":-0.11,"z":0.5},{"x":-4.89,"y":-0.13,"z":0.5},{"x":-6.6,"y":-0.13,"z":0.5},{"x":-8.64,"y":-0.14,"z":0.5},{"x":-10.7,"y":-0.14,"z":0.5},{"x":-12.34,"y":-0.14,"z":0.5},{"x":-13.94,"y":-0.14,"z":0.5},{"x":-15.96,"y":-0.14,"z":0.5},{"x":-17.97,"y":-0.14,"z":0.5},{"x":-19.97,"y":-0.14,"z":0.5},{"x":-21.56,"y":-0.14,"z":0.5},{"x":-23.17,"y":-0.14,"z":0.5},{"x":-25.59,"y":-0.14,"z":0.5},{"x":-27.67,"y":-0.37,"z":0.5},{"x":-29.91,"y":-0.66,"z":0.5},{"x":-32.57,"y":-0.77,"z":0.5},{"x":-34.74,"y":-0.81,"z":0.5},{"x":-37.07,"y":-1.15,"z":0.5},{"x":-39.12,"y":-1.49,"z":0.5},{"x":-41.1,"y":-1.49,"z":0.5},{"x":-43.24,"y":-1.82,"z":0.5},{"x":-45.9,"y":-2.16,"z":0.5},{"x":-48.57,"y":-2.17,"z":0.5},{"x":-50.58,"y":-2.17,"z":0.5},{"x":-54.18,"y":-2.17,"z":0.5},{"x":-57.4,"y":-2.17,"z":0.5},{"x":-58.99,"y":-2.17,"z":0.5},{"x":-60.9,"y":-2.17,"z":0.5},{"x":-62.49,"y":-2.17,"z":0.5},{"x":-66.35,"y":-2.17,"z":0.5},{"x":-68.44,"y":-2.17,"z":0.5},{"x":-70.52,"y":-2.17,"z":0.5},{"x":-72.63,"y":-2.17,"z":0.5},{"x":-75.34,"y":-2.17,"z":0.5},{"x":-78.02,"y":-2.17,"z":0.5},{"x":-80.05,"y":-2.17,"z":0.5},{"x":-82.68,"y":-2.17,"z":0.5},{"x":-84.9,"y":-2.17,"z":0.5},{"x":-86.49,"y":-2.17,"z":0.5},{"x":-88.47,"y":-2.17,"z":0.5},{"x":-90.49,"y":-2.17,"z":0.5},{"x":-92.19,"y":-2.17,"z":0.5},{"x":-93.47,"y":-2.17,"z":0.5},{"x":-95.07,"y":-2.17,"z":0.5},{"x":-96.79,"y":-2.17,"z":0.5},{"x":-97.92,"y":-2.17,"z":0.5},{"x":-99.39,"y":-2.17,"z":0.5},{"x":-101.46,"y":-2.17,"z":0.5},{"x":-103.53,"y":-2.17,"z":0.5},{"x":-105.11,"y":-2.17,"z":0.5},{"x":-106.64,"y":-2.17,"z":0.5},{"x":-110.24,"y":-2.17,"z":0.5},{"x":-111.42,"y":-2.17,"z":0.5},{"x":-112.98,"y":-2.17,"z":0.5},{"x":-114.56,"y":-2.17,"z":0.5},{"x":-115.8,"y":-2.17,"z":0.5},{"x":-117.37,"y":-2.17,"z":0.5},{"x":-118.89,"y":-2.17,"z":0.5},{"x":-120.46,"y":-2.17,"z":0.5},{"x":-123.05,"y":-2.17,"z":0.5},{"x":-125.77,"y":-2.17,"z":0.5},{"x":-128.52,"y":-2.17,"z":0.5},{"x":-131.82,"y":-2.17,"z":0.5},{"x":-134.6,"y":-2.17,"z":0.5},{"x":-140.57,"y":-2.17,"z":0.5},{"x":-143.83,"y":-2.17,"z":0.5},{"x":-146.42,"y":-2.17,"z":0.5},{"x":-152.59,"y":-2.17,"z":0.5},{"x":-154.77,"y":-2.17,"z":0.5},{"x":-157.87,"y":-2.17,"z":0.5},{"x":-161.16,"y":-2.17,"z":0.5},{"x":-164.61,"y":-2.17,"z":0.5},{"x":-167.97,"y":-2.17,"z":0.5},{"x":-170.81,"y":-2.17,"z":0.5},{"x":-173.67,"y":-2.17,"z":0.5},{"x":-176.44,"y":-2.17,"z":0.5},{"x":-178.53,"y":-2.17,"z":0.5},{"x":-180.54,"y":-2.17,"z":0.5},{"x":-184.08,"y":-2.17,"z":0.5},{"x":-185.21,"y":-2.17,"z":0.5},{"x":-186.8,"y":-2.17,"z":0.5},{"x":-189.27,"y":-2.17,"z":0.5},{"x":-191.78,"y":-2.17,"z":0.5},{"x":-194.51,"y":-2.17,"z":0.5},{"x":-197.29,"y":-2.17,"z":0.5},{"x":-199.35,"y":-2.17,"z":0.5},{"x":-201.42,"y":-2.17,"z":0.5},{"x":-203.57,"y":-2.17,"z":0.5},{"x":-205.22,"y":-2.17,"z":0.5},{"x":-206.13,"y":-2.17,"z":0.5},{"x":-206.97,"y":-2.17,"z":0.5},{"x":-207.72,"y":-2.17,"z":0.5},{"x":-208.14,"y":-2.17,"z":0.5},{"x":-208.52,"y":-2.17,"z":0.5},{"x":-208.9,"y":-2.17,"z":0.5},{"x":-209.29,"y":-2.17,"z":0.5},{"x":-209.79,"y":-2.17,"z":0.5},{"x":-210.62,"y":-2.17,"z":0.5},{"x":-211.68,"y":-2.17,"z":0.5},{"x":-213.43,"y":-2.17,"z":0.5},{"x":-215.96,"y":-2.17,"z":0.5},{"x":-217.5,"y":-2.17,"z":0.5},{"x":-219.14,"y":-2.17,"z":0.5},{"x":-220.19,"y":-2.17,"z":0.5},{"x":-221.22,"y":-2.17,"z":0.5},{"x":-222.9,"y":-2.17,"z":0.5},{"x":-224.46,"y":-2.17,"z":0.5},{"x":-225.51,"y":-2.17,"z":0.5},{"x":-226.55,"y":-2.17,"z":0.5},{"x":-228.44,"y":-2.17,"z":0.5},{"x":-229.26,"y":-2.17,"z":0.5},{"x":-230.25,"y":-2.17,"z":0.5},{"x":-231.31,"y":-2.17,"z":0.5},{"x":-232.95,"y":-2.17,"z":0.5},{"x":-234.8,"y":-2.17,"z":0.5},{"x":-235.3,"y":-2.17,"z":0.5},{"x":-236.01,"y":-2.17,"z":0.5},{"x":-237.05,"y":-2.17,"z":0.5},{"x":-239.28,"y":-2.17,"z":0.5},{"x":-240.81,"y":-2.17,"z":0.5},{"x":-242.82,"y":-2.17,"z":0.5},{"x":-244.4,"y":-2.17,"z":0.5},{"x":-246.44,"y":-2.17,"z":0.5},{"x":-248.96,"y":-1.91,"z":0.5},{"x":-251.62,"y":-1.3,"z":0.5},{"x":-254.32,"y":-0.61,"z":0.5},{"x":-256.9,"y":0.18,"z":0.5},{"x":-258.79,"y":0.85,"z":0.5},{"x":-259.75,"y":1.09,"z":0.5},{"x":-260.85,"y":1.39,"z":0.5},{"x":-261.63,"y":1.66,"z":0.5},{"x":-262.07,"y":1.68,"z":0.5},{"x":-262.48,"y":1.68,"z":0.5},{"x":-262.87,"y":1.68,"z":0.5},{"x":-263.59,"y":1.68,"z":0.5},{"x":-264.62,"y":1.68,"z":0.5},{"x":-266.25,"y":1.68,"z":0.5},{"x":-267.1,"y":1.68,"z":0.5},{"x":-267.88,"y":1.68,"z":0.5},{"x":-268.65,"y":1.68,"z":0.5},{"x":-269.38,"y":1.68,"z":0.5},{"x":-269.86,"y":1.68,"z":0.5},{"x":-270.31,"y":1.68,"z":0.5},{"x":-270.73,"y":1.68,"z":0.5},{"x":-271.15,"y":1.68,"z":0.5},{"x":-271.76,"y":1.68,"z":0.5},{"x":-272.37,"y":1.68,"z":0.5},{"x":-272.75,"y":1.68,"z":0.5},{"x":-273.13,"y":1.68,"z":0.5},{"x":-273.85,"y":1.68,"z":0.5},{"x":-274.49,"y":1.68,"z":0.5},{"x":-275.05,"y":1.68,"z":0.5},{"x":-275.7,"y":1.68,"z":0.5},{"x":-276.4,"y":1.68,"z":0.5},{"x":-277.13,"y":1.68,"z":0.5},{"x":-277.61,"y":1.68,"z":0.5},{"x":-278.08,"y":1.68,"z":0.5},{"x":-279.62,"y":1.68,"z":0.5},{"x":-279.98,"y":1.68,"z":0.5},{"x":-280.38,"y":1.68,"z":0.5},{"x":-280.78,"y":1.68,"z":0.5},{"x":-281.18,"y":1.68,"z":0.5},{"x":-281.9,"y":1.68,"z":0.5},{"x":-282.96,"y":1.68,"z":0.5},{"x":-284.4,"y":1.68,"z":0.5},{"x":-285.04,"y":1.68,"z":0.5},{"x":-286.29,"y":1.68,"z":0.5},{"x":-287.02,"y":1.68,"z":0.5},{"x":-287.72,"y":1.83,"z":0.5},{"x":-288.17,"y":1.99,"z":0.5},{"x":-288.68,"y":2.03,"z":0.5},{"x":-289.37,"y":2.26,"z":0.5},{"x":-290.09,"y":2.52,"z":0.5},{"x":-290.78,"y":2.77,"z":0.5},{"x":-291.64,"y":3,"z":0.5},{"x":-292.63,"y":3.27,"z":0.5},{"x":-293.84,"y":3.82,"z":0.5},{"x":-294.96,"y":4.14,"z":0.5},{"x":-296.42,"y":4.45,"z":0.5},{"x":-297.98,"y":5.02,"z":0.5},{"x":-299.08,"y":5.55,"z":0.5},{"x":-300.2,"y":5.84,"z":0.5},{"x":-300.93,"y":6.03,"z":0.5},{"x":-301.64,"y":6.48,"z":0.5},{"x":-302.67,"y":6.75,"z":0.5},{"x":-303.06,"y":6.93,"z":0.5},{"x":-303.46,"y":7.12,"z":0.5},{"x":-303.75,"y":7.12,"z":0.5},{"x":-303.91,"y":7.31,"z":0.5},{"x":-304.04,"y":7.5,"z":0.5},{"x":-304.31,"y":7.5,"z":0.5},{"x":-304.65,"y":7.65,"z":0.5},{"x":-304.86,"y":7.98,"z":0.5},{"x":-305.08,"y":8.19,"z":0.5},{"x":-305.46,"y":8.41,"z":0.5},{"x":-305.87,"y":8.61,"z":0.5},{"x":-306.28,"y":8.63,"z":0.5},{"x":-306.65,"y":8.82,"z":0.5},{"x":-307.05,"y":9,"z":0.5},{"x":-307.75,"y":9,"z":0.5},{"x":-308.06,"y":9,"z":0.5},{"x":-308.28,"y":9.13,"z":0.5},{"x":-308.31,"y":9.4,"z":0.5},{"x":-308.5,"y":9.53,"z":0.5},{"x":-308.88,"y":9.72,"z":0.5},{"x":-309.19,"y":10.02,"z":0.5},{"x":-309.49,"y":10.32,"z":0.5},{"x":-309.73,"y":10.7,"z":0.5},{"x":-309.95,"y":11.09,"z":0.5},{"x":-310.37,"y":11.74,"z":0.5},{"x":-310.87,"y":12.53,"z":0.5},{"x":-311.29,"y":13,"z":0.5},{"x":-311.47,"y":13.36,"z":0.5},{"x":-311.7,"y":13.75,"z":0.5},{"x":-311.89,"y":14.14,"z":0.5},{"x":-311.91,"y":14.5,"z":0.5},{"x":-311.92,"y":14.8,"z":0.5},{"x":-311.92,"y":15.06,"z":0.5},{"x":-311.92,"y":15.39,"z":0.5},{"x":-311.92,"y":15.75,"z":0.5},{"x":-311.92,"y":16.08,"z":0.5},{"x":-311.92,"y":16.39,"z":0.5},{"x":-311.92,"y":16.67,"z":0.5},{"x":-311.92,"y":16.95,"z":0.5},{"x":-311.92,"y":17.25,"z":0.5},{"x":-311.92,"y":17.56,"z":0.5},{"x":-311.92,"y":17.92,"z":0.5},{"x":-311.92,"y":18.31,"z":0.5},{"x":-311.92,"y":18.67,"z":0.5},{"x":-311.74,"y":19.01,"z":0.5},{"x":-311.05,"y":19.71,"z":0.5},{"x":-310.76,"y":20.01,"z":0.5},{"x":-310.31,"y":20.46,"z":0.5},{"x":-309.14,"y":21.25,"z":0.5},{"x":-308.65,"y":21.64,"z":0.5},{"x":-307.99,"y":22.07,"z":0.5},{"x":-307.27,"y":22.54,"z":0.5},{"x":-306.78,"y":22.96,"z":0.5},{"x":-306.36,"y":23.36,"z":0.5},{"x":-305.96,"y":23.75,"z":0.5},{"x":-305.75,"y":24.11,"z":0.5},{"x":-305.54,"y":24.29,"z":0.5},{"x":-305.35,"y":24.48,"z":0.5},{"x":-305.19,"y":24.82,"z":0.5},{"x":-304.93,"y":24.96,"z":0.5},{"x":-304.8,"y":25.1,"z":0.5},{"x":-304.57,"y":25.3,"z":0.5},{"x":-304.36,"y":25.47,"z":0.5},{"x":-304.19,"y":25.66,"z":0.5},{"x":-303.88,"y":25.71,"z":0.5},{"x":-303.54,"y":25.72,"z":0.5},{"x":-303.15,"y":26.09,"z":0.5},{"x":-302.76,"y":26.1,"z":0.5},{"x":-302.57,"y":25.96,"z":0.5},{"x":-302.57,"y":24.96,"z":0.5},{"x":-302.57,"y":22.41,"z":0.5},{"x":-302.57,"y":20.11,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a2","typeName":"shape"},{"x":1236.325320391984,"y":591.4378754788003,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:e0Ll1PtNQOykb3w5r1FAr","type":"text","props":{"color":"violet","size":"xl","w":267.46875,"text":"SEMANTICS","font":"draw","textAlign":"start","autoSize":true,"scale":1.574232430984147},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ag","typeName":"shape"},{"x":1098.3461717945909,"y":377.0086057828688,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:e_RDZBv7uM0cR17TOTKuP","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":9.653317934039384,"start":{"x":0,"y":0},"end":{"x":-71.35911408485845,"y":-60.401868574605146},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aR","typeName":"shape"},{"x":1000.4460651973067,"y":727.5325127791702,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:ehxJtQURWwC_oQ45VBxFl","type":"text","props":{"color":"violet","size":"s","w":45.734375,"text":"UTYP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ax","typeName":"shape"},{"x":667.4173943474846,"y":172.88932966727674,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:fJsTleAqlp7ZyBuz2onm8","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"red","labelColor":"black","bend":0.057413327977390266,"start":{"x":0,"y":0},"end":{"x":-120.0195710603657,"y":6.6232522880369515},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aa","typeName":"shape"},{"x":1430.5450171253233,"y":941.0556223077006,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:fN3WiO0rRxhQoVPfFlgLw","type":"text","props":{"color":"violet","size":"s","w":66.1484375,"text":"STATUS","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"as","typeName":"shape"},{"x":-259.77484532812116,"y":909.6969097365543,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:fQPTj9bLvu5TgHHXrJBbP","type":"text","props":{"color":"yellow","size":"s","w":44.328125,"text":"TILE","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ap","typeName":"shape"},{"x":1108.01171875,"y":394.6015625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:fndTqfRIPzHG0uHWdZT1V","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-18.69204883066081,"start":{"x":0,"y":0},"end":{"x":-10.10546875,"y":205.07421875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aK","typeName":"shape"},{"x":994.51953125,"y":205.46484375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:gAz5NMTzMLWb18FtvmIaw","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a5","props":{"dash":"draw","size":"m","fill":"none","color":"yellow","labelColor":"black","bend":-11.844874270900638,"start":{"x":-5.53125,"y":-0.6796875},"end":{"x":-100.39453125,"y":27.29296875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":562.16,"y":190.33,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"parentId":"page:page","type":"draw","props":{"segments":[{"type":"free","points":[{"x":19.86,"y":180.26,"z":0.5},{"x":19.56,"y":180.26,"z":0.5},{"x":19.81,"y":180.01,"z":0.5},{"x":21.91,"y":177.91,"z":0.5},{"x":28.04,"y":172.45,"z":0.5},{"x":36.44,"y":164.2,"z":0.5},{"x":46.52,"y":154.12,"z":0.5},{"x":62.54,"y":139.64,"z":0.5},{"x":72.63,"y":130.51,"z":0.5},{"x":87.63,"y":119.26,"z":0.5},{"x":95.29,"y":112.55,"z":0.5},{"x":101.13,"y":108.05,"z":0.5},{"x":104.19,"y":106.19,"z":0.5},{"x":104.96,"y":105.81,"z":0.5},{"x":105.34,"y":105.81,"z":0.5},{"x":104.96,"y":106.45,"z":0.5},{"x":102.85,"y":108.03,"z":0.5},{"x":101.28,"y":110.13,"z":0.5},{"x":99.18,"y":112.23,"z":0.5},{"x":96.14,"y":113.94,"z":0.5},{"x":92.8,"y":117.29,"z":0.5},{"x":86.53,"y":122.6,"z":0.5},{"x":79.82,"y":129.31,"z":0.5},{"x":73.54,"y":134.62,"z":0.5},{"x":65.88,"y":141.33,"z":0.5},{"x":52.94,"y":154.27,"z":0.5},{"x":46.66,"y":159.58,"z":0.5},{"x":37.31,"y":167.83,"z":0.5},{"x":29.05,"y":176.67,"z":0.5},{"x":21.42,"y":184.3,"z":0.5},{"x":16.54,"y":189.18,"z":0.5},{"x":14.44,"y":191.28,"z":0.5},{"x":13.67,"y":192.05,"z":0.5},{"x":13.29,"y":192.81,"z":0.5},{"x":13.29,"y":193.2,"z":0.5},{"x":13.56,"y":192.93,"z":0.5},{"x":16,"y":190.49,"z":0.5},{"x":24.25,"y":182.9,"z":0.5},{"x":39.12,"y":170.24,"z":0.5},{"x":52.87,"y":157.74,"z":0.5},{"x":67.87,"y":146.49,"z":0.5},{"x":87.43,"y":133.92,"z":0.5},{"x":110.96,"y":120.61,"z":0.5},{"x":136.03,"y":108.85,"z":0.5},{"x":150.46,"y":103.03,"z":0.5},{"x":168.25,"y":95.53,"z":0.5},{"x":179.67,"y":91.4,"z":0.5},{"x":188.47,"y":89.78,"z":0.5},{"x":188.86,"y":89.78,"z":0.5},{"x":189.62,"y":89.78,"z":0.5},{"x":189.62,"y":90.47,"z":0.5},{"x":189.62,"y":91.9,"z":0.5},{"x":189.62,"y":92.29,"z":0.5},{"x":189.62,"y":94.09,"z":0.5},{"x":189.62,"y":94.4,"z":0.5},{"x":189.24,"y":95.16,"z":0.5},{"x":187.8,"y":96.07,"z":0.5},{"x":184.75,"y":98.46,"z":0.5},{"x":176.12,"y":105.17,"z":0.5},{"x":170.28,"y":110.34,"z":0.5},{"x":159.97,"y":117.63,"z":0.5},{"x":151.35,"y":123.38,"z":0.5},{"x":138.32,"y":130.59,"z":0.5},{"x":122.11,"y":138.55,"z":0.5},{"x":103.58,"y":147.89,"z":0.5},{"x":85.06,"y":158.62,"z":0.5},{"x":71.45,"y":167.08,"z":0.5},{"x":56.45,"y":177.08,"z":0.5},{"x":48.78,"y":182.83,"z":0.5},{"x":43.9,"y":186.76,"z":0.5},{"x":42.32,"y":188.33,"z":0.5},{"x":41.55,"y":188.72,"z":0.5},{"x":41.55,"y":189.1,"z":0.5},{"x":42.12,"y":189.1,"z":0.5},{"x":48.86,"y":183.98,"z":0.5},{"x":52.12,"y":182.35,"z":0.5},{"x":64.57,"y":173.73,"z":0.5},{"x":75.91,"y":164.61,"z":0.5},{"x":87.69,"y":158.35,"z":0.5},{"x":100.94,"y":153.93,"z":0.5},{"x":112.35,"y":150.77,"z":0.5},{"x":127.72,"y":149.66,"z":0.5},{"x":140.97,"y":149.66,"z":0.5},{"x":158.77,"y":149.66,"z":0.5},{"x":165.57,"y":149.66,"z":0.5},{"x":172.07,"y":151.29,"z":0.5},{"x":176.38,"y":153.97,"z":0.5},{"x":177.95,"y":156.07,"z":0.5},{"x":179.15,"y":159.13,"z":0.5},{"x":179.15,"y":163.14,"z":0.5},{"x":178.33,"y":171.66,"z":0.5},{"x":175.66,"y":175.67,"z":0.5},{"x":173.65,"y":179.69,"z":0.5},{"x":171.55,"y":181.79,"z":0.5},{"x":170.5,"y":183.89,"z":0.5},{"x":169.07,"y":185.32,"z":0.5},{"x":166.96,"y":187.42,"z":0.5},{"x":164.86,"y":189,"z":0.5},{"x":161.8,"y":190.86,"z":0.5},{"x":157.81,"y":193.53,"z":0.5},{"x":150.54,"y":196.49,"z":0.5},{"x":147.29,"y":197.31,"z":0.5},{"x":127.42,"y":202.83,"z":0.5},{"x":109.92,"y":207.83,"z":0.5},{"x":87.83,"y":213.35,"z":0.5},{"x":62.76,"y":217.83,"z":0.5},{"x":37.68,"y":222.32,"z":0.5},{"x":24.14,"y":224.53,"z":0.5},{"x":10.62,"y":226.73,"z":0.5},{"x":3.82,"y":228.36,"z":0.5},{"x":0.76,"y":229.03,"z":0.5},{"x":0,"y":229.03,"z":0.5},{"x":0.54,"y":228.76,"z":0.5},{"x":1.98,"y":228.37,"z":0.5},{"x":3.41,"y":227.99,"z":0.5},{"x":4.17,"y":227.99,"z":0.5},{"x":5.61,"y":227.61,"z":0.5},{"x":7.7,"y":227.08,"z":0.5},{"x":9.8,"y":226.03,"z":0.5},{"x":11.91,"y":224.98,"z":0.5},{"x":14.96,"y":223.79,"z":0.5},{"x":20.22,"y":221.49,"z":0.5},{"x":38.26,"y":216.12,"z":0.5},{"x":47.01,"y":214.87,"z":0.5},{"x":69.36,"y":210.68,"z":0.5},{"x":97,"y":204.54,"z":0.5},{"x":144.74,"y":189.75,"z":0.5},{"x":177.05,"y":174.37,"z":0.5},{"x":205.82,"y":155.75,"z":0.5},{"x":237.61,"y":132.71,"z":0.5},{"x":264.69,"y":110.71,"z":0.5},{"x":286.31,"y":90.64,"z":0.5},{"x":305.5,"y":71.45,"z":0.5},{"x":324.03,"y":49.83,"z":0.5},{"x":341.68,"y":30.64,"z":0.5},{"x":359.18,"y":12.18,"z":0.5},{"x":363.57,"y":6.69,"z":0.5},{"x":366.53,"y":1.43,"z":0.5},{"x":367.06,"y":0,"z":0.5},{"x":358.34,"y":1.91,"z":0.5},{"x":347.68,"y":13.68,"z":0.5},{"x":340.39,"y":23.03,"z":0.5},{"x":330.97,"y":36.05,"z":0.5},{"x":325.22,"y":44.68,"z":0.5},{"x":320.72,"y":52.72,"z":0.5},{"x":316.22,"y":59.81,"z":0.5},{"x":310.91,"y":66.08,"z":0.5},{"x":305.16,"y":75.15,"z":0.5},{"x":295.07,"y":86.48,"z":0.5},{"x":284.41,"y":98.25,"z":0.5},{"x":269.78,"y":112.88,"z":0.5},{"x":245.88,"y":139.57,"z":0.5},{"x":236.62,"y":150.38,"z":0.5},{"x":217.27,"y":172.52,"z":0.5},{"x":206.6,"y":185.54,"z":0.5},{"x":198.35,"y":194.89,"z":0.5},{"x":194.43,"y":199.77,"z":0.5},{"x":193,"y":201.21,"z":0.5},{"x":193,"y":201.59,"z":0.5},{"x":193,"y":201.34,"z":0.5},{"x":196.49,"y":198.37,"z":0.5},{"x":204.19,"y":192.97,"z":0.5},{"x":210.03,"y":188.76,"z":0.5},{"x":214.47,"y":184.98,"z":0.5},{"x":218.92,"y":181.2,"z":0.5},{"x":223.37,"y":177.42,"z":0.5},{"x":227.38,"y":175.42,"z":0.5},{"x":232.64,"y":172.45,"z":0.5},{"x":239.15,"y":170.01,"z":0.5},{"x":245.65,"y":167.57,"z":0.5},{"x":250.91,"y":166.09,"z":0.5},{"x":255.98,"y":164.75,"z":0.5},{"x":256.74,"y":164.37,"z":0.5},{"x":257.13,"y":164.37,"z":0.5},{"x":257.13,"y":164.66,"z":0.5},{"x":255.57,"y":171.02,"z":0.5},{"x":247.32,"y":180.37,"z":0.5},{"x":241.58,"y":189,"z":0.5},{"x":234.87,"y":196.66,"z":0.5},{"x":230.65,"y":202.5,"z":0.5},{"x":229.75,"y":203.94,"z":0.5},{"x":229.36,"y":204.7,"z":0.5},{"x":230.68,"y":203.39,"z":0.5},{"x":237.13,"y":198.27,"z":0.5},{"x":241.98,"y":193.42,"z":0.5},{"x":248.69,"y":186.72,"z":0.5},{"x":253.54,"y":181.86,"z":0.5},{"x":255.65,"y":179.76,"z":0.5},{"x":256.41,"y":179.76,"z":0.5},{"x":256.79,"y":179.76,"z":0.5},{"x":256.79,"y":180.43,"z":0.5},{"x":253.54,"y":187.23,"z":0.5},{"x":247.79,"y":194.9,"z":0.5},{"x":245.92,"y":199.2,"z":0.5},{"x":245.92,"y":200.64,"z":0.5},{"x":253.57,"y":195.37,"z":0.5},{"x":266.82,"y":188.75,"z":0.5},{"x":284.32,"y":186.25,"z":0.5},{"x":301.82,"y":186.25,"z":0.5},{"x":319.32,"y":187.5,"z":0.5},{"x":335.72,"y":196.4,"z":0.5},{"x":352.99,"y":208.23,"z":0.5},{"x":373.95,"y":218.01,"z":0.5},{"x":393.87,"y":224.55,"z":0.5},{"x":418.94,"y":229.04,"z":0.5},{"x":446.74,"y":230.58,"z":0.5},{"x":465.43,"y":230.58,"z":0.5},{"x":491.94,"y":230.58,"z":0.5},{"x":501.81,"y":232.5,"z":0.5},{"x":504.87,"y":234.22,"z":0.5},{"x":506.45,"y":236.32,"z":0.5},{"x":507.36,"y":237.75,"z":0.5},{"x":507.88,"y":239.19,"z":0.5},{"x":508.65,"y":239.95,"z":0.5},{"x":510.08,"y":239.95,"z":0.5},{"x":514.09,"y":240.62,"z":0.5},{"x":523.68,"y":241.58,"z":0.5},{"x":541.18,"y":244.08,"z":0.5},{"x":563.52,"y":248.27,"z":0.5},{"x":579.49,"y":252.02,"z":0.5},{"x":592.73,"y":254.23,"z":0.5},{"x":599.05,"y":255.04,"z":0.5},{"x":599.43,"y":255.04,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"index":"a5","id":"shape:govJulOHr5v-iXfsVJ6SY","typeName":"shape"},{"x":91.98828125,"y":169.7890625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:gw57AABDJM78Nz0ZLkktv","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a4","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":-9.760790156612002,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":568.6883541939209,"y":455.4336465607572,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:hGKz6lYibDg3m75bClNmv","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-72.70949589215138,"start":{"x":0,"y":0},"end":{"x":344.6831555143432,"y":-438.84632537640823},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aK8","typeName":"shape"},{"x":185.084427042696,"y":-322.6933931081368,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:hHz-yB-8wx7EcZIWM4Ubq","type":"text","props":{"color":"red","size":"xl","w":367.75445554638674,"text":"MVU LOOP","font":"draw","textAlign":"start","autoSize":true,"scale":1.614839461747427},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"af","typeName":"shape"},{"x":1077.8697464406407,"y":-17.50059143134132,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:hRdJrZsZ69P0YFsm8XZoX","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"red","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aK","typeName":"shape"},{"x":559.8211276106347,"y":147.8496038587541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:i-K-zTAplWQpePo-gx_0b","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"red","labelColor":"black","bend":-1.1537474625142572,"start":{"x":110.26419275749959,"y":-186.41558210296535},"end":{"x":352.6583524159795,"y":-105.34374021343203},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"CELL.\nED_VIEW","labelPosition":0.49218246313661523,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aW","typeName":"shape"},{"x":432.48477932624616,"y":712.2853410963876,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:iOo1MtEuxU6JjyAWjJQ1L","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":61.08437624250264,"start":{"x":0,"y":0},"end":{"x":262.5944570417991,"y":-216.9231062866727},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"MEASURED\n.OF_SEG","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aN","typeName":"shape"},{"x":1250.1729104620672,"y":336.4857639200817,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:jyXGM-WuWat-W1dooE4u9","type":"text","props":{"color":"violet","size":"l","w":118.2890625,"text":"DHEXP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a9","typeName":"shape"},{"x":602.3841685724784,"y":-17.259713951013367,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:kI4Iz1Ot9uJyr5JiE3YaN","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"red","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aM","typeName":"shape"},{"x":-216.4287863909783,"y":189.90955645094954,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:kO_ZK7LxpVnc8b5vitYFG","type":"text","props":{"color":"yellow","size":"xl","w":171.109375,"text":"SYNTAX","font":"draw","textAlign":"start","autoSize":true,"scale":1.659122834374268},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ah","typeName":"shape"},{"x":328.1390825207693,"y":-43.16529159626691,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:kedB4DNBtcabj2ekTKv8D","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"red","labelColor":"black","bend":-129.96925147363697,"start":{"x":0,"y":0},"end":{"x":190.09703734410175,"y":0.20236544228248476},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aV","typeName":"shape"},{"x":1221.5380511244673,"y":110.79942838480918,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:lEPvpUN1Mdv_RziJ7oGLM","type":"text","props":{"color":"light-violet","size":"s","w":68.234375,"text":"LAYOUT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aI","typeName":"shape"},{"x":1609.0640723597335,"y":447.2153457341623,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:lScNFPMSx6KpF-x9YyEH6","type":"text","props":{"color":"violet","size":"s","w":144.2109375,"text":"ENVIRONMENT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"az","typeName":"shape"},{"x":239.61328125,"y":306.25,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:lZaFDvg3KW0zU_pmbxAK2","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a5","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":23.20479943163852,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":984.6294410719811,"y":216.18710242229878,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:lb9g-ewClq6--ZPVhLHAj","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":15.141163058052992,"start":{"x":0,"y":0},"end":{"x":81.91088601320598,"y":-63.17559778890353},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b024","typeName":"shape"},{"x":-730.01953125,"y":556.671875,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:mB66zbkLQ4JDjblJx1TDy","type":"arrow","parentId":"page:g5nJZnSQA-22SNUHQIPyc","index":"a5","props":{"dash":"draw","size":"m","fill":"none","color":"light-blue","labelColor":"black","bend":-26.179935612085533,"start":{"x":0,"y":0},"end":{"x":1.7265625,"y":-113.80078125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":1608.8030880679455,"y":862.4619276719143,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:mQk0K1t8vLfkqpqCCMF8i","type":"text","props":{"color":"violet","size":"m","w":45.5234375,"text":"TYP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"al","typeName":"shape"},{"x":601.64,"y":250.8,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"parentId":"page:page","type":"draw","props":{"segments":[{"type":"free","points":[{"x":88.78,"y":141.93,"z":0.5},{"x":88.28,"y":141.93,"z":0.5},{"x":83.02,"y":141.93,"z":0.5},{"x":71.6,"y":141.93,"z":0.5},{"x":56.23,"y":141.93,"z":0.5},{"x":44.82,"y":141.93,"z":0.5},{"x":33.4,"y":141.93,"z":0.5},{"x":23.82,"y":141.93,"z":0.5},{"x":18.57,"y":143.26,"z":0.5},{"x":13.4,"y":149.1,"z":0.5},{"x":9.18,"y":153.32,"z":0.5},{"x":5.11,"y":159.01,"z":0.5},{"x":2.96,"y":164.27,"z":0.5},{"x":0.96,"y":170.29,"z":0.5},{"x":0.96,"y":174.3,"z":0.5},{"x":0.96,"y":180.75,"z":0.5},{"x":0.96,"y":190.56,"z":0.5},{"x":0.96,"y":200.43,"z":0.5},{"x":0.96,"y":211.85,"z":0.5},{"x":0,"y":227.81,"z":0.5},{"x":0,"y":247.74,"z":0.5},{"x":0,"y":272.81,"z":0.5},{"x":0,"y":306.66,"z":0.5},{"x":0,"y":340.33,"z":0.5},{"x":0,"y":368.13,"z":0.5},{"x":0,"y":384.09,"z":0.5},{"x":3.31,"y":397.34,"z":0.5},{"x":11.5,"y":408.4,"z":0.5},{"x":18.01,"y":411.66,"z":0.5},{"x":24.51,"y":414.91,"z":0.5},{"x":34.05,"y":418.73,"z":0.5},{"x":42.09,"y":422.27,"z":0.5},{"x":55.64,"y":426.69,"z":0.5},{"x":68.88,"y":431.1,"z":0.5},{"x":86.03,"y":435,"z":0.5},{"x":103.53,"y":437.5,"z":0.5},{"x":123.46,"y":440.15,"z":0.5},{"x":145.8,"y":442.94,"z":0.5},{"x":173.6,"y":442.94,"z":0.5},{"x":210.77,"y":442.94,"z":0.5},{"x":268.19,"y":442.94,"z":0.5},{"x":295.07,"y":442.94,"z":0.5},{"x":332.85,"y":442.94,"z":0.5},{"x":357.92,"y":442.94,"z":0.5},{"x":380.27,"y":442.94,"z":0.5},{"x":405.04,"y":438.5,"z":0.5},{"x":419.46,"y":434.07,"z":0.5},{"x":436.96,"y":429.07,"z":0.5},{"x":452.34,"y":424.37,"z":0.5},{"x":465.52,"y":418.84,"z":0.5},{"x":483.31,"y":409.94,"z":0.5},{"x":500.59,"y":399.35,"z":0.5},{"x":517.9,"y":386.37,"z":0.5},{"x":539.15,"y":367.62,"z":0.5},{"x":553.78,"y":351.74,"z":0.5},{"x":564.16,"y":341.66,"z":0.5},{"x":582.25,"y":320.62,"z":0.5},{"x":588.58,"y":311.13,"z":0.5},{"x":593.37,"y":301.55,"z":0.5},{"x":595.96,"y":293.5,"z":0.5},{"x":597.44,"y":288.24,"z":0.5},{"x":597.44,"y":281.74,"z":0.5},{"x":597.44,"y":277.72,"z":0.5},{"x":596.63,"y":272.46,"z":0.5},{"x":593.95,"y":268.45,"z":0.5},{"x":590.99,"y":263.19,"z":0.5},{"x":583.17,"y":248.52,"z":0.5},{"x":577.22,"y":233.15,"z":0.5},{"x":566.63,"y":215.87,"z":0.5},{"x":554.79,"y":198.59,"z":0.5},{"x":532.87,"y":180.06,"z":0.5},{"x":500.93,"y":160.7,"z":0.5},{"x":460.62,"y":137.71,"z":0.5},{"x":395.1,"y":103.96,"z":0.5},{"x":357.06,"y":81.25,"z":0.5},{"x":305.7,"y":55.57,"z":0.5},{"x":226.7,"y":21.56,"z":0.5},{"x":166.8,"y":3.84,"z":0.5},{"x":122.08,"y":0,"z":0.5},{"x":74.37,"y":0,"z":0.5},{"x":49.33,"y":0,"z":0.5},{"x":24.62,"y":7.07,"z":0.5},{"x":20.31,"y":9.75,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"index":"a2","id":"shape:mrXyEg_2Z1IKTF0yx0EEH","typeName":"shape"},{"x":1708.835467285096,"y":945.4343587588223,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:nEASukpNU61UAyINNt7IE","type":"text","props":{"color":"violet","size":"s","w":42.640625,"text":"SELF","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"an","typeName":"shape"},{"x":742.8340093092689,"y":973.7308556396476,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:nLTApqNYljCZRnbf5RJ9J","type":"text","props":{"color":"light-violet","size":"s","w":131.9140625,"text":"TERMRANGES","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b00","typeName":"shape"},{"x":952.5234375,"y":517.5703125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:nn0Y_sIhrHEjwcU3CZuG1","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-31.005116378497007,"start":{"x":0,"y":0},"end":{"x":144.84765625,"y":-105.66796875},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"STATICS.MK","labelPosition":0.5007136168379599,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aB","typeName":"shape"},{"x":1022.0080246402404,"y":303.33915289861886,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:nymu8EpwlMapQnKLGUAiN","type":"arrow","props":{"dash":"solid","size":"s","fill":"none","color":"grey","labelColor":"black","bend":8.491650279312713,"start":{"x":0,"y":0},"end":{"x":-30.477078797083777,"y":-70.6845626105835},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aP","typeName":"shape"},{"x":289.46484375,"y":534.8125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:oIfRnFTyGiYv-1QQZll2r","type":"text","props":{"color":"orange","size":"l","w":24.875,"text":"E","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aI","typeName":"shape"},{"x":1088.5071727495674,"y":594.0342765571668,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:p9N3WGy791UdwfyuCfxCf","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"light-blue","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aD","typeName":"shape"},{"x":-263.96484375,"y":638.765625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:pHE52a9X57ZTUm5d-MOAG","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a3","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":42.301548486460185,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":745.4541771218255,"y":-103.77152000745545,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:pXml8h0hxq8pjZWnTxw3r","type":"text","props":{"color":"red","size":"l","w":85.1328125,"text":"DOM","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aD","typeName":"shape"},{"x":943.5242504734837,"y":741.6812010047731,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:phUfTVRsRT1D-TFzYr_Yz","type":"text","props":{"color":"violet","size":"s","w":46.453125,"text":"UPAT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aw","typeName":"shape"},{"x":721.0358046589123,"y":326.9484544982412,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:q1CZljtNHskj05uUYXtrP","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-33.958690639019615,"start":{"x":0,"y":0},"end":{"x":193.4908744490475,"y":-327.81093676404157},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aU","typeName":"shape"},{"x":529.2155118767964,"y":2517.679448507605,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:qKcUEKvOEdNw0RpdeF-vL","type":"image","props":{"w":1764.9663779398009,"h":782.6103234278526,"assetId":"asset:-11998747","playing":true,"url":"","crop":null,"flipX":false,"flipY":false},"parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"aA","typeName":"shape"},{"x":614.3132596894018,"y":342.06234582729485,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:qUGq_ge1ZoyvFAUZpQ-1x","type":"text","props":{"color":"light-violet","size":"s","w":102.71875,"text":"MEASURED","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aF","typeName":"shape"},{"x":-504.109375,"y":511.890625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:qdizTg67rw1R4wEyiw7VP","type":"text","props":{"color":"orange","size":"l","w":8,"text":"","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aB","typeName":"shape"},{"x":197.5914265552118,"y":894.4960246525936,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:qnj7sB6jV41lsNjy-jVqg","type":"text","props":{"color":"yellow","size":"s","w":44.2734375,"text":"SKEL","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"au","typeName":"shape"},{"x":602.3841685724784,"y":-17.259713951013367,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:qqTAenTwzcWNjiLiTOsP-","type":"geo","props":{"w":27.3203125,"h":27.3203125,"geo":"ellipse","color":"red","labelColor":"black","fill":"none","dash":"draw","size":"s","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aX","typeName":"shape"},{"x":1133.52734375,"y":626.4375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:rqkYPrRCHLJfV1vDtAWeM","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":-0.17,"z":0.5}]}],"color":"red","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"aC","typeName":"shape"},{"x":-60.10546875,"y":637.83203125,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:s1mZUi48L7J5hd7UTrbkB","type":"arrow","parentId":"page:g5nJZnSQA-22SNUHQIPyc","index":"a6","props":{"dash":"draw","size":"m","fill":"none","color":"light-blue","labelColor":"black","bend":-24.607846553418543,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":218.47347136063468,"y":254.6191351087541,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:s2QFCo-qLzoRoPB623UPg","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":21.963362265487337,"start":{"x":0,"y":0},"end":{"x":275.0546875,"y":-89.640625},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"EDITOR\n.INIT","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aC","typeName":"shape"},{"x":749.2430026106347,"y":18.193353858754108,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:sOAfJ5xWA0AXIHtQDfheT","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"red","labelColor":"black","bend":-6.392450227837613,"start":{"x":-219.85109330541002,"y":142.0743591139133},"end":{"x":-264.5750187338199,"y":54.59646845968189},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PERFORM.GO\n(INJECT)","labelPosition":0.5017859733525604,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ab","typeName":"shape"},{"x":706.3046875,"y":400.3359375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:sWgUDTi6FBKPiC2Ov0m5-","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":0,"z":0.5},{"x":0,"y":0.37,"z":0.5},{"x":0,"y":1.16,"z":0.5},{"x":0,"y":3.81,"z":0.5},{"x":0,"y":6.67,"z":0.5},{"x":0,"y":9.05,"z":0.5},{"x":0,"y":12.47,"z":0.5},{"x":0,"y":14.66,"z":0.5},{"x":0,"y":18.73,"z":0.5},{"x":0,"y":19.3,"z":0.5},{"x":0,"y":20.78,"z":0.5},{"x":0,"y":21.25,"z":0.5},{"x":0,"y":21.7,"z":0.5},{"x":0,"y":22.12,"z":0.5},{"x":0,"y":23.24,"z":0.5},{"x":0,"y":24.65,"z":0.5},{"x":0,"y":26.19,"z":0.5},{"x":0,"y":28.26,"z":0.5},{"x":0,"y":31,"z":0.5},{"x":0,"y":34.36,"z":0.5},{"x":0,"y":38.38,"z":0.5},{"x":0,"y":42.4,"z":0.5},{"x":0,"y":46.42,"z":0.5},{"x":0,"y":50.23,"z":0.5},{"x":0,"y":54.02,"z":0.5},{"x":0,"y":58.16,"z":0.5},{"x":0,"y":63.18,"z":0.5},{"x":0,"y":67.57,"z":0.5},{"x":-0.35,"y":70.41,"z":0.5},{"x":-0.82,"y":75.77,"z":0.5},{"x":-0.82,"y":77.77,"z":0.5},{"x":-0.82,"y":79.88,"z":0.5},{"x":-0.82,"y":83.02,"z":0.5},{"x":-0.82,"y":84.54,"z":0.5},{"x":-0.82,"y":86.07,"z":0.5},{"x":-0.82,"y":88.43,"z":0.5},{"x":-0.82,"y":89.59,"z":0.5},{"x":-0.82,"y":91.34,"z":0.5},{"x":-0.82,"y":94.63,"z":0.5},{"x":-0.6,"y":96.23,"z":0.5},{"x":-0.09,"y":99.46,"z":0.5},{"x":0.18,"y":100.64,"z":0.5},{"x":0.41,"y":101.92,"z":0.5},{"x":0.6,"y":102.33,"z":0.5},{"x":0.79,"y":103.1,"z":0.5},{"x":0.97,"y":103.48,"z":0.5},{"x":1.1,"y":103.66,"z":0.5},{"x":1.37,"y":103.66,"z":0.5},{"x":1.66,"y":103.66,"z":0.5},{"x":2,"y":103.66,"z":0.5},{"x":2.72,"y":103.92,"z":0.5},{"x":3.79,"y":104.45,"z":0.5},{"x":5.33,"y":105.04,"z":0.5},{"x":7.33,"y":106.04,"z":0.5},{"x":8.86,"y":106.97,"z":0.5},{"x":9.96,"y":107.43,"z":0.5},{"x":11.19,"y":108.1,"z":0.5},{"x":12.69,"y":108.89,"z":0.5},{"x":13.94,"y":109.48,"z":0.5},{"x":14.89,"y":110.02,"z":0.5},{"x":15.73,"y":110.36,"z":0.5},{"x":16.25,"y":110.47,"z":0.5},{"x":16.7,"y":110.5,"z":0.5},{"x":17.13,"y":110.52,"z":0.5},{"x":17.51,"y":110.52,"z":0.5},{"x":17.84,"y":110.52,"z":0.5},{"x":18.11,"y":110.52,"z":0.5},{"x":18.38,"y":110.52,"z":0.5},{"x":18.68,"y":110.52,"z":0.5},{"x":19.03,"y":110.52,"z":0.5},{"x":19.42,"y":110.52,"z":0.5},{"x":19.85,"y":110.52,"z":0.5},{"x":20.56,"y":110.52,"z":0.5},{"x":21.61,"y":110.52,"z":0.5},{"x":22.69,"y":110.52,"z":0.5},{"x":23.41,"y":110.52,"z":0.5},{"x":24.12,"y":110.52,"z":0.5},{"x":25.81,"y":110.52,"z":0.5},{"x":26.36,"y":110.52,"z":0.5},{"x":27.03,"y":110.52,"z":0.5},{"x":27.47,"y":110.52,"z":0.5},{"x":27.88,"y":110.52,"z":0.5},{"x":28.3,"y":110.52,"z":0.5},{"x":28.99,"y":110.52,"z":0.5},{"x":29.72,"y":110.52,"z":0.5},{"x":30.19,"y":110.34,"z":0.5},{"x":30.61,"y":110.14,"z":0.5},{"x":31.02,"y":109.94,"z":0.5},{"x":31.41,"y":109.55,"z":0.5},{"x":31.79,"y":109.17,"z":0.5},{"x":32.13,"y":108.82,"z":0.5},{"x":32.4,"y":108.55,"z":0.5},{"x":32.7,"y":108.24,"z":0.5},{"x":33.08,"y":107.86,"z":0.5},{"x":33.47,"y":107.46,"z":0.5},{"x":34.25,"y":106.68,"z":0.5},{"x":34.64,"y":106.44,"z":0.5},{"x":35.05,"y":106.21,"z":0.5},{"x":35.45,"y":105.83,"z":0.5},{"x":35.85,"y":105.44,"z":0.5},{"x":36.07,"y":105.02,"z":0.5},{"x":36.27,"y":104.63,"z":0.5},{"x":37.04,"y":103.86,"z":0.5},{"x":37.87,"y":102.5,"z":0.5},{"x":38.2,"y":101.97,"z":0.5},{"x":38.62,"y":101.33,"z":0.5},{"x":39.09,"y":100.58,"z":0.5},{"x":39.57,"y":99.84,"z":0.5},{"x":39.82,"y":99.08,"z":0.5},{"x":40.06,"y":98.31,"z":0.5},{"x":40.5,"y":97.56,"z":0.5},{"x":40.78,"y":96.8,"z":0.5},{"x":41.09,"y":95.99,"z":0.5},{"x":41.62,"y":94.9,"z":0.5},{"x":41.88,"y":94.18,"z":0.5},{"x":42.14,"y":93.46,"z":0.5},{"x":42.67,"y":90.4,"z":0.5},{"x":42.93,"y":89.57,"z":0.5},{"x":43.13,"y":88.72,"z":0.5},{"x":43.35,"y":87.95,"z":0.5},{"x":43.4,"y":87.16,"z":0.5},{"x":43.6,"y":86.38,"z":0.5},{"x":43.78,"y":85.91,"z":0.5},{"x":43.81,"y":85.47,"z":0.5},{"x":43.82,"y":85.03,"z":0.5},{"x":43.82,"y":84.62,"z":0.5},{"x":43.82,"y":84.27,"z":0.5},{"x":43.82,"y":83.9,"z":0.5},{"x":43.82,"y":83.55,"z":0.5},{"x":43.82,"y":83.07,"z":0.5},{"x":43.82,"y":82.34,"z":0.5},{"x":43.82,"y":81.07,"z":0.5},{"x":43.82,"y":79.19,"z":0.5},{"x":43.82,"y":77.13,"z":0.5},{"x":43.82,"y":74.57,"z":0.5},{"x":43.82,"y":70.69,"z":0.5},{"x":43.82,"y":65.11,"z":0.5},{"x":43.82,"y":59.95,"z":0.5},{"x":43.82,"y":53.54,"z":0.5},{"x":43.82,"y":47.33,"z":0.5},{"x":43.82,"y":42.29,"z":0.5},{"x":43.82,"y":36.58,"z":0.5},{"x":43.82,"y":31.79,"z":0.5},{"x":43.82,"y":28.45,"z":0.5},{"x":43.82,"y":26.36,"z":0.5},{"x":43.82,"y":24.16,"z":0.5},{"x":43.82,"y":22.04,"z":0.5},{"x":43.82,"y":20.27,"z":0.5},{"x":43.82,"y":19.26,"z":0.5},{"x":43.82,"y":18.68,"z":0.5},{"x":43.82,"y":18.21,"z":0.5},{"x":43.82,"y":17.79,"z":0.5},{"x":43.82,"y":17.35,"z":0.5},{"x":43.82,"y":16.95,"z":0.5},{"x":43.82,"y":16.57,"z":0.5},{"x":43.82,"y":16.17,"z":0.5},{"x":43.82,"y":15.45,"z":0.5},{"x":43.82,"y":14.23,"z":0.5},{"x":43.82,"y":13.66,"z":0.5},{"x":43.82,"y":12.91,"z":0.5},{"x":43.82,"y":11.97,"z":0.5},{"x":43.82,"y":10.95,"z":0.5},{"x":43.82,"y":8.96,"z":0.5},{"x":43.82,"y":8.18,"z":0.5},{"x":43.82,"y":7.41,"z":0.5},{"x":43.82,"y":6.64,"z":0.5},{"x":43.82,"y":5.16,"z":0.5},{"x":43.82,"y":4.41,"z":0.5},{"x":43.82,"y":4,"z":0.5},{"x":43.82,"y":3.61,"z":0.5},{"x":43.82,"y":3.29,"z":0.5},{"x":43.82,"y":3.01,"z":0.5},{"x":43.82,"y":2.66,"z":0.5},{"x":43.82,"y":2.3,"z":0.5},{"x":43.82,"y":2,"z":0.5},{"x":43.44,"y":1.28,"z":0.5},{"x":43.32,"y":0.97,"z":0.5},{"x":43.02,"y":0.67,"z":0.5},{"x":42.79,"y":0.03,"z":0.5},{"x":42.16,"y":-1.36,"z":0.5},{"x":41.71,"y":-2.11,"z":0.5},{"x":41.47,"y":-2.87,"z":0.5},{"x":41.23,"y":-3.63,"z":0.5},{"x":40.85,"y":-4.09,"z":0.5},{"x":40.45,"y":-4.53,"z":0.5},{"x":40.23,"y":-4.94,"z":0.5},{"x":40.03,"y":-5.33,"z":0.5},{"x":39.64,"y":-5.72,"z":0.5},{"x":39.26,"y":-6.11,"z":0.5},{"x":38.95,"y":-6.8,"z":0.5},{"x":38.66,"y":-7.09,"z":0.5},{"x":38.29,"y":-7.46,"z":0.5},{"x":37.89,"y":-7.86,"z":0.5},{"x":37.5,"y":-8.25,"z":0.5},{"x":37.09,"y":-8.66,"z":0.5},{"x":36.4,"y":-9.13,"z":0.5},{"x":35.68,"y":-9.61,"z":0.5},{"x":35.23,"y":-10.02,"z":0.5},{"x":34.5,"y":-10.48,"z":0.5},{"x":33.76,"y":-10.97,"z":0.5},{"x":32.99,"y":-11.45,"z":0.5},{"x":32.26,"y":-11.92,"z":0.5},{"x":31.88,"y":-12.11,"z":0.5},{"x":31.16,"y":-12.38,"z":0.5},{"x":30.44,"y":-12.83,"z":0.5},{"x":29.75,"y":-13.14,"z":0.5},{"x":29.45,"y":-13.31,"z":0.5},{"x":29.08,"y":-13.38,"z":0.5},{"x":28.73,"y":-13.4,"z":0.5},{"x":28.34,"y":-13.41,"z":0.5},{"x":27.93,"y":-13.42,"z":0.5},{"x":27.53,"y":-13.42,"z":0.5},{"x":27.14,"y":-13.43,"z":0.5},{"x":26.75,"y":-13.43,"z":0.5},{"x":26.36,"y":-13.43,"z":0.5},{"x":25.97,"y":-13.43,"z":0.5},{"x":25.25,"y":-13.43,"z":0.5},{"x":24.62,"y":-13.43,"z":0.5},{"x":24.32,"y":-13.43,"z":0.5},{"x":23.94,"y":-13.43,"z":0.5},{"x":23.55,"y":-13.43,"z":0.5},{"x":23.16,"y":-13.28,"z":0.5},{"x":22.76,"y":-13.11,"z":0.5},{"x":22.36,"y":-13.08,"z":0.5},{"x":21.66,"y":-12.84,"z":0.5},{"x":20.94,"y":-12.59,"z":0.5},{"x":20.16,"y":-12.55,"z":0.5},{"x":19.44,"y":-12.37,"z":0.5},{"x":18.7,"y":-12.18,"z":0.5},{"x":17.94,"y":-12.16,"z":0.5},{"x":17.54,"y":-12.16,"z":0.5},{"x":16.1,"y":-12.16,"z":0.5},{"x":15.8,"y":-12.16,"z":0.5},{"x":15.5,"y":-12.02,"z":0.5},{"x":15.13,"y":-11.87,"z":0.5},{"x":14.73,"y":-11.82,"z":0.5},{"x":14.35,"y":-11.8,"z":0.5},{"x":13.98,"y":-11.8,"z":0.5},{"x":13.59,"y":-11.62,"z":0.5},{"x":13.23,"y":-11.43,"z":0.5},{"x":12.85,"y":-11.42,"z":0.5},{"x":12.66,"y":-11.23,"z":0.5},{"x":12.13,"y":-11.04,"z":0.5},{"x":11.45,"y":-11.04,"z":0.5},{"x":11.17,"y":-10.92,"z":0.5},{"x":10.59,"y":-10.76,"z":0.5},{"x":9.47,"y":-10.36,"z":0.5},{"x":9.03,"y":-10.32,"z":0.5},{"x":8.32,"y":-10.07,"z":0.5},{"x":7.59,"y":-9.82,"z":0.5},{"x":7.15,"y":-9.79,"z":0.5},{"x":6.33,"y":-9.4,"z":0.5},{"x":5.95,"y":-9.23,"z":0.5},{"x":5.68,"y":-8.77,"z":0.5},{"x":5.5,"y":-8.63,"z":0.5},{"x":5.29,"y":-8.36,"z":0.5},{"x":4.94,"y":-8.02,"z":0.5},{"x":4.75,"y":-7.66,"z":0.5},{"x":4.55,"y":-7.46,"z":0.5},{"x":4.17,"y":-7.23,"z":0.5},{"x":3.78,"y":-6.86,"z":0.5},{"x":3.38,"y":-6.65,"z":0.5},{"x":3.16,"y":-6.44,"z":0.5},{"x":3,"y":-6.25,"z":0.5},{"x":2.86,"y":-6.14,"z":0.5},{"x":2.86,"y":-5.82,"z":0.5},{"x":2.86,"y":-5.48,"z":0.5},{"x":2.86,"y":-5.17,"z":0.5},{"x":2.86,"y":-4.85,"z":0.5},{"x":2.86,"y":-4.54,"z":0.5},{"x":2.86,"y":-4.25,"z":0.5},{"x":2.86,"y":-3.97,"z":0.5}]}],"color":"black","fill":"solid","dash":"draw","size":"m","isComplete":true,"isClosed":true,"isPen":false,"scale":1},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a3","typeName":"shape"},{"x":-167.09765625,"y":483.484375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:t6KgYJl5LAyBOlpEfHKiO","type":"text","props":{"color":"orange","size":"l","w":23.2890625,"text":"B","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aD","typeName":"shape"},{"x":568.6883541939209,"y":455.4336465607572,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:t99S409lLaI9YbcXY7rtG","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":-72.70949589215138,"start":{"x":0,"y":0},"end":{"x":471.97000594836084,"y":-364.07359394825187},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b02V","typeName":"shape"},{"x":368.9651153553524,"y":688.5995027965068,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:uKGPHzttKvTm0qoyO0NrF","type":"text","props":{"color":"yellow","size":"l","w":182.015625,"text":"SEGMENT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a2","typeName":"shape"},{"x":107.59375,"y":180.37109375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:vHtHto95HY6x60qA2lLLC","type":"text","props":{"color":"orange","size":"l","w":25.375,"text":"D","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aG","typeName":"shape"},{"x":-521.59765625,"y":517.0859375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:vijSpt6pvdpfmyNPfDMNI","type":"text","props":{"color":"orange","size":"l","w":28.1875,"text":"A","font":"draw","autoSize":true,"scale":1,"textAlign":"middle"},"parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"aC","typeName":"shape"},{"x":711.1578415074989,"y":321.93569385503565,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:vtt5PUApYFjL8lBjhLxfc","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":50.74318488524299,"start":{"x":0,"y":0},"end":{"x":318.2469104087087,"y":-217.80661753314615},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b02G","typeName":"shape"},{"x":605.2894878856872,"y":961.2152089356466,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:vuozOBPjRjRA2y5r3rnVT","type":"text","props":{"color":"light-violet","size":"s","w":85.4921875,"text":"TILEMAP","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"b01","typeName":"shape"},{"x":1236.325320391984,"y":591.4378754788003,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:w485XXl___M6nNJPNN8I8","type":"text","props":{"color":"violet","size":"xl","w":267.46875,"text":"SEMANTICS","font":"draw","textAlign":"start","autoSize":true,"scale":1.574232430984147},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aS","typeName":"shape"},{"x":677.3777420047625,"y":601.69140625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:wTlVfhB6nIlRB_mtl5rBE","type":"text","props":{"color":"red","size":"m","w":169.3671875,"text":"popular posts\ni might like","font":"draw","textAlign":"start","autoSize":true,"scale":1.6291312681172723},"parentId":"page:F3lmCiDAJ9TI-3Nabwuqb","index":"a7","typeName":"shape"},{"x":319.6308592110845,"y":267.9124209147086,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:xC9BYGCv_UVX9q8I3E7V3","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"grey","labelColor":"black","bend":39.30611087719536,"start":{"x":85.94476118180626,"y":79.52081640383915},"end":{"x":171.5625,"y":396.65234375},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"ZIPPER\n.UNZIP","labelPosition":0.3822000097269573,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a7","typeName":"shape"},{"x":-443.6953125,"y":462.68359375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:xMf3nWKzGmQIDWWDjuZci","type":"arrow","parentId":"page:i72uw72K4zc6d8qbWjZkE","index":"a2","props":{"dash":"draw","size":"l","fill":"none","color":"orange","labelColor":"black","bend":40.8075863567343,"start":{"x":0,"y":0},"end":{"x":0,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":546.58203125,"y":559.40234375,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:xPKkxuRa8Xb3VMuu3n1JY","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-37.36625356480154,"start":{"x":0,"y":0},"end":{"x":-401.796875,"y":-14.30859375},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"PRINTER\n.OF_SEG","labelPosition":0.4387003208615986,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a2V","typeName":"shape"},{"x":1050.2373022022405,"y":120.61915790263532,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:xWbfBexPdz3Nw852ZRHcH","type":"arrow","props":{"dash":"draw","size":"m","fill":"none","color":"black","labelColor":"black","bend":0,"start":{"x":0,"y":0},"end":{"x":133.77242716329692,"y":-297.7211601268227},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b04","typeName":"shape"},{"x":1264.1640783256196,"y":211.14898583272873,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:xpGah9sf5rXRTLVw1PY9R","type":"text","props":{"color":"light-violet","size":"s","w":62.21875,"text":"DHDOC","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aO","typeName":"shape"},{"x":463.49,"y":443.62,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"parentId":"page:page","type":"draw","props":{"segments":[{"type":"free","points":[{"x":0,"y":374.33,"z":0.5},{"x":0,"y":374,"z":0.5},{"x":0,"y":373.49,"z":0.5},{"x":0,"y":373.1,"z":0.5},{"x":0,"y":369.09,"z":0.5},{"x":5.59,"y":353.12,"z":0.5},{"x":21.73,"y":326.6,"z":0.5},{"x":41.08,"y":292.96,"z":0.5},{"x":85.91,"y":220.38,"z":0.5},{"x":106.09,"y":192.98,"z":0.5},{"x":139.92,"y":157.15,"z":0.5},{"x":154.57,"y":143.47,"z":0.5},{"x":175.73,"y":124.74,"z":0.5},{"x":189.34,"y":116.28,"z":0.5},{"x":198.93,"y":111.49,"z":0.5},{"x":204.19,"y":110.01,"z":0.5},{"x":208.2,"y":110.01,"z":0.5},{"x":210.3,"y":110.01,"z":0.5},{"x":212.4,"y":110.01,"z":0.5},{"x":214.51,"y":110.01,"z":0.5},{"x":216.99,"y":110.01,"z":0.5},{"x":217.37,"y":110.01,"z":0.5},{"x":218.13,"y":110.77,"z":0.5},{"x":219.04,"y":112.58,"z":0.5},{"x":219.71,"y":116.6,"z":0.5},{"x":221.48,"y":124.64,"z":0.5},{"x":222.73,"y":136.65,"z":0.5},{"x":224.94,"y":150.19,"z":0.5},{"x":224.94,"y":160.06,"z":0.5},{"x":224.94,"y":175.44,"z":0.5},{"x":225.9,"y":180.23,"z":0.5},{"x":226.71,"y":194.89,"z":0.5},{"x":226.71,"y":202.94,"z":0.5},{"x":227.67,"y":210.98,"z":0.5},{"x":229.73,"y":231.14,"z":0.5},{"x":229.73,"y":246.52,"z":0.5},{"x":231.42,"y":266.69,"z":0.5},{"x":231.42,"y":278.7,"z":0.5},{"x":231.42,"y":296.2,"z":0.5},{"x":231.42,"y":309.34,"z":0.5},{"x":231.42,"y":320.75,"z":0.5},{"x":232.24,"y":328.8,"z":0.5},{"x":233.58,"y":334.81,"z":0.5},{"x":234.48,"y":336.24,"z":0.5},{"x":235.39,"y":337.67,"z":0.5},{"x":236.16,"y":338.44,"z":0.5},{"x":238.25,"y":338.44,"z":0.5},{"x":240.35,"y":338.44,"z":0.5},{"x":242.45,"y":337.91,"z":0.5},{"x":246.23,"y":333.46,"z":0.5},{"x":250.88,"y":324.83,"z":0.5},{"x":258.17,"y":314.52,"z":0.5},{"x":269.23,"y":300.96,"z":0.5},{"x":284.6,"y":282.8,"z":0.5},{"x":317.02,"y":253.47,"z":0.5},{"x":336.21,"y":234.28,"z":0.5},{"x":351.73,"y":215.97,"z":0.5},{"x":360.19,"y":201.4,"z":0.5},{"x":373.65,"y":178.67,"z":0.5},{"x":380.71,"y":163.29,"z":0.5},{"x":389.46,"y":147.04,"z":0.5},{"x":397.4,"y":127.12,"z":0.5},{"x":408.58,"y":104.77,"z":0.5},{"x":418.35,"y":83.82,"z":0.5},{"x":429.48,"y":60.62,"z":0.5},{"x":434.85,"y":48.62,"z":0.5},{"x":441.04,"y":37.2,"z":0.5},{"x":447.44,"y":24.41,"z":0.5},{"x":451.94,"y":16.37,"z":0.5},{"x":456.44,"y":9.28,"z":0.5},{"x":460.65,"y":3.44,"z":0.5},{"x":463.04,"y":0.38,"z":0.5},{"x":464.47,"y":0,"z":0.5},{"x":465.24,"y":0,"z":0.5},{"x":466,"y":0,"z":0.5},{"x":467.34,"y":4.01,"z":0.5},{"x":468.01,"y":8.03,"z":0.5},{"x":468.82,"y":13.29,"z":0.5},{"x":468.82,"y":17.3,"z":0.5},{"x":469.64,"y":23.81,"z":0.5},{"x":469.64,"y":30.32,"z":0.5},{"x":470.6,"y":38.36,"z":0.5},{"x":472.8,"y":56.63,"z":0.5},{"x":473.47,"y":65.26,"z":0.5},{"x":475.53,"y":76.68,"z":0.5},{"x":477.59,"y":88.09,"z":0.5},{"x":479.8,"y":101.34,"z":0.5},{"x":482,"y":114.58,"z":0.5},{"x":483.4,"y":134.51,"z":0.5},{"x":485.9,"y":152.01,"z":0.5},{"x":485.9,"y":174.36,"z":0.5},{"x":485.9,"y":202.15,"z":0.5},{"x":485.9,"y":229.95,"z":0.5},{"x":485.9,"y":255.02,"z":0.5},{"x":485.9,"y":277.31,"z":0.5},{"x":485.9,"y":288.72,"z":0.5},{"x":485.9,"y":293.98,"z":0.5},{"x":485.9,"y":296.08,"z":0.5},{"x":485.9,"y":297.51,"z":0.5},{"x":485.9,"y":298.27,"z":0.5},{"x":485.9,"y":299.04,"z":0.5},{"x":485.9,"y":299.8,"z":0.5},{"x":485.9,"y":300.09,"z":0.5},{"x":485.9,"y":300.41,"z":0.5},{"x":485.9,"y":300.72,"z":0.5},{"x":485.9,"y":301.03,"z":0.5},{"x":485.9,"y":300.13,"z":0.5},{"x":485.9,"y":295.33,"z":0.5},{"x":486.71,"y":287.29,"z":0.5},{"x":488.77,"y":275.91,"z":0.5},{"x":493.19,"y":262.66,"z":0.5},{"x":503.19,"y":246.41,"z":0.5},{"x":517.82,"y":230.53,"z":0.5},{"x":539.43,"y":208.91,"z":0.5},{"x":563.43,"y":183.38,"z":0.5},{"x":590.5,"y":159.69,"z":0.5},{"x":614.85,"y":137.03,"z":0.5},{"x":636.38,"y":118.58,"z":0.5},{"x":647.71,"y":109.45,"z":0.5},{"x":664.77,"y":93.94,"z":0.5},{"x":681.69,"y":75.92,"z":0.5},{"x":696.32,"y":61.29,"z":0.5},{"x":707.65,"y":52.16,"z":0.5},{"x":719.79,"y":44.44,"z":0.5},{"x":726.3,"y":41.18,"z":0.5},{"x":728.69,"y":41.18,"z":0.5}]}],"color":"black","fill":"none","dash":"draw","size":"m","isComplete":true,"isClosed":false,"isPen":false,"scale":1},"index":"a1","id":"shape:xuD9DdOyrj6XCER-yL_JB","typeName":"shape"},{"x":1236.325320391984,"y":591.4378754788003,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:y8AvqyK3Kvj33cfhimQCg","type":"text","props":{"color":"violet","size":"xl","w":267.46875,"text":"SEMANTICS","font":"draw","textAlign":"start","autoSize":true,"scale":1.574232430984147},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"ag","typeName":"shape"},{"x":-216.4287863909783,"y":189.90955645094954,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:yAPc5PZ5K_xBfP58BqQ1I","type":"text","props":{"color":"yellow","size":"xl","w":171.109375,"text":"SYNTAX","font":"draw","textAlign":"start","autoSize":true,"scale":1.659122834374268},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"ah","typeName":"shape"},{"x":984.6294410719811,"y":216.18710242229878,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:yRsDj6Z0BcE9xpLJcq8pr","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":15.141163058052992,"start":{"x":0,"y":0},"end":{"x":-425.1993058624836,"y":-323.067996710546},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"aQ","typeName":"shape"},{"x":1378.7793150128225,"y":499.3589522947941,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:yaO9kAg7FGrJF3Raoqv67","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-154.27170889601194,"start":{"x":-134.00689226030977,"y":-62.550901825189385},"end":{"x":-118.76195122605145,"y":-108.25973792330524},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"EVALUATOR\n.EVAL","labelPosition":0.42732881966736536,"font":"draw","scale":1},"parentId":"page:SkvySoubPea6W7lX7AzgK","index":"aF","typeName":"shape"},{"x":1378.7793150128225,"y":499.3589522947941,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:ycJcFqMPHcVeL-p2tyQLW","type":"arrow","props":{"dash":"draw","size":"s","fill":"none","color":"grey","labelColor":"black","bend":-154.27170889601194,"start":{"x":-134.00689226030977,"y":-62.550901825189385},"end":{"x":-118.76195122605145,"y":-108.25973792330524},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"EVALUATOR\n.EVAL","labelPosition":0.42732881966736536,"font":"draw","scale":1},"parentId":"page:6tsLVZZe9YeGxE7_mcVPx","index":"a9V","typeName":"shape"},{"x":959.98046875,"y":511.4140625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:yiZUpNwiAX7eT0_lYo5Gv","type":"arrow","props":{"dash":"dotted","size":"s","fill":"none","color":"light-blue","labelColor":"black","bend":9.631114370101947,"start":{"x":0,"y":0},"end":{"x":137.9921875,"y":113.0078125},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"aL","typeName":"shape"},{"x":406.19140625,"y":239.72265625,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:z9yvyhFGdLSZPWO9naPpo","type":"arrow","parentId":"page:YvJWuTpdWd0OBPalFS9LJ","index":"a2","props":{"dash":"draw","size":"m","fill":"none","color":"yellow","labelColor":"black","bend":-38.90139242768875,"start":{"x":0,"y":0},"end":{"x":2,"y":0},"arrowheadStart":"none","arrowheadEnd":"arrow","text":"","labelPosition":0.5,"font":"draw","scale":1},"typeName":"shape"},{"x":614.4107589441164,"y":232.0910166882761,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:zLKOaXUf-h90REdz_U-Ti","type":"geo","props":{"w":41.34251790276164,"h":44.96754034935043,"geo":"ellipse","color":"black","labelColor":"black","fill":"none","dash":"draw","size":"m","font":"draw","text":"","align":"middle","verticalAlign":"middle","growY":0,"url":"","scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"b06","typeName":"shape"},{"x":368.9651153553524,"y":688.5995027965068,"rotation":0,"isLocked":false,"opacity":1,"meta":{},"id":"shape:zxOMqrymmUJ1uTBVlWeyn","type":"text","props":{"color":"yellow","size":"l","w":182.015625,"text":"SEGMENT","font":"draw","textAlign":"start","autoSize":true,"scale":1},"parentId":"page:IaHf_eN2NLHRSDsBf0loR","index":"a2","typeName":"shape"},{"x":0,"y":0,"z":1,"meta":{},"id":"camera:page:F3lmCiDAJ9TI-3Nabwuqb","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":[],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:F3lmCiDAJ9TI-3Nabwuqb","pageId":"page:F3lmCiDAJ9TI-3Nabwuqb","typeName":"instance_page_state"},{"x":1185.762437863622,"y":775.480394531072,"z":0.2123063336623935,"meta":{},"id":"camera:page:YvJWuTpdWd0OBPalFS9LJ","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":["shape:qKcUEKvOEdNw0RpdeF-vL"],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:YvJWuTpdWd0OBPalFS9LJ","pageId":"page:YvJWuTpdWd0OBPalFS9LJ","typeName":"instance_page_state"},{"x":1949.8376551479964,"y":259.1203439108207,"z":0.5488122936708625,"meta":{},"id":"camera:page:g5nJZnSQA-22SNUHQIPyc","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":[],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:g5nJZnSQA-22SNUHQIPyc","pageId":"page:g5nJZnSQA-22SNUHQIPyc","typeName":"instance_page_state"},{"x":1576.0685804593068,"y":627.7588418340138,"z":0.46921847847774084,"meta":{},"id":"camera:page:i72uw72K4zc6d8qbWjZkE","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":["shape:Bm4undZVbDdZw8-6yt7Wr"],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:i72uw72K4zc6d8qbWjZkE","pageId":"page:i72uw72K4zc6d8qbWjZkE","typeName":"instance_page_state"},{"x":138.60865379278098,"y":21.775454507618036,"z":1,"meta":{},"id":"camera:page:page","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":[],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:page","pageId":"page:page","typeName":"instance_page_state"},{"x":417.8435682583392,"y":461.4660930194586,"z":0.6957345639791179,"meta":{},"id":"camera:page:6tsLVZZe9YeGxE7_mcVPx","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":[],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:6tsLVZZe9YeGxE7_mcVPx","pageId":"page:6tsLVZZe9YeGxE7_mcVPx","typeName":"instance_page_state"},{"x":519.7209996006113,"y":348.0346207961973,"z":0.673531915638456,"meta":{},"id":"camera:page:SkvySoubPea6W7lX7AzgK","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":[],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:SkvySoubPea6W7lX7AzgK","pageId":"page:SkvySoubPea6W7lX7AzgK","typeName":"instance_page_state"},{"x":0,"y":0,"z":1,"meta":{},"id":"camera:page:IaHf_eN2NLHRSDsBf0loR","typeName":"camera"},{"editingShapeId":null,"croppingShapeId":null,"selectedShapeIds":[],"hoveredShapeId":null,"erasingShapeIds":[],"hintingShapeIds":[],"focusedGroupId":null,"meta":{},"id":"instance_page_state:page:IaHf_eN2NLHRSDsBf0loR","pageId":"page:IaHf_eN2NLHRSDsBf0loR","typeName":"instance_page_state"},{"followingUserId":null,"opacityForNextShape":1,"stylesForNextShape":{},"brush":null,"scribbles":[],"cursor":{"type":"default","rotation":0},"isFocusMode":false,"exportBackground":false,"isDebugMode":false,"isToolLocked":false,"screenBounds":{"x":0,"y":0,"w":1728,"h":998},"insets":[false,false,false,false],"zoomBrush":null,"isGridMode":false,"isPenMode":false,"chatMessage":"","isChatting":false,"highlightedUserIds":[],"isFocused":true,"devicePixelRatio":2,"isCoarsePointer":false,"isHoveringCanvas":false,"openMenus":["main menu","main-menu-sub.file"],"isChangingStyle":false,"isReadonly":false,"meta":{},"duplicateProps":null,"id":"instance:instance","currentPageId":"page:SkvySoubPea6W7lX7AzgK","typeName":"instance"},{"id":"pointer:pointer","typeName":"pointer","x":-484.2329355682745,"y":-281.4140305789309,"lastActivityTimestamp":1723516070633,"meta":{}}]} \ No newline at end of file diff --git a/docs/hazel-palette-august-2024.png b/docs/hazel-palette-august-2024.png new file mode 100644 index 0000000000000000000000000000000000000000..a4e45891181936432ddd72a4075fd52c151335f9 GIT binary patch literal 212730 zcmeFabyStx+CGecf+zw~f*>UzEmG15BGL$wQi8-Hr5i*ArIl_Bx?|BPDXlDG(GAid z-QRrJ?tQ>>-rsxv`o?(2aF3xZ7i&E+pE>XQy081X=JrvLlfcFz#X>fW2xT&}Iol^Nwc56kgG>s_*X}JRA=Fi=HfkOKHLK&Hb z=UWnd{EHv3EJSsT`^XYCju($}lD|w6KR+j;N7*q(_qwzc+;SA{grpO$VyTCf3xP_z-jI#{rzY zkazUBs2?7@L9z*ZT*aBNeQW+92vaXjh-MNaF0&eDc-hqYu6muC5OEa4`HNWhonm3f zM!ZMG)3cJ^dTL*igITWlg>;bgE~zXhVlt?BmdHoq5n|`j)l;AgLZxigQXigAc+Y_ORP3@UCZDpxSGgBzI1^q6FUK6cIt|wn z?}{_Sg_PR#7*`JMdzn~y`u8kc zU)LJhT5&U(e3fAK37N4xXGNxSjr3Mulkc4dDl4qx{DYStclBZl&M)3NFQgC|hf9}( z)7vur_2(O#FWIYJZS_>-?)RjozG*rhe9+w;%DYi@n_c_k`n|{3uF+HYDcyHs$MP8R zPatNTZl|iTehLJNRNc94(p7PSF=c|__r08gOfn^Tv0@B`(J zL8W*;Ug;P^{VpZy)E849v(V>vHLg0Ml6(>VWTQJ->$Ul@CNMX!b2EAubWVin$IsRb8!Z(9KB9?eWjMB7F(2feCz%_pPdxu zrWdTK6rWPX8-ogKvOXm9-*~$(YM1K2Fm|EloWm=t$P!`y#VhLJ)Rr*iAHuL>^9#a5 z*j^OU|bDp9`|A-0ZvXfeSQxY0gGI?JZm@J0nNy_xGU)s9Tk!OGeSO=QpQeRb7HeM{B#w{n9H79$iWJMq`Z z$OL}IT@pT5<1W9m!{atBUG{y=o3qd7JW)oknygA9FdA#fkTts{C^%zi zs3Ny9F}_otOMH3p_P$w3M}sa_-5BY+l)S84y&vl*-)J=Mx3;+>S8>C#A!i(C&HdoIr_}A6Nc@V6 zW};YBez(08q*5u(=*j3}Jv$Y7#>wA5?55Jd7aT8$lxm}rqi3bFpj@VnziE$4fsgU< zX0T9m{FJmWoz+9HM8z(?E{m>rAPZNbjbXg^3NOgt^ zh4eIsKeM#vjFO0dpe;4>z=BSP&LKotiSt%3fsPa^?VCFh`QeHZykeyiPMBsh|v5!l$etJtKX*@zpg>{S0Up2wr zB`HE4t=TTTzi&9*cMw&*Bv+`yVsd~F&KpOYGEVV4rr4IuJg+g}uWnp~Mai4{x zD-|mxE0x?tUL}ub;$^+h$y3vhXgnWqLpC@$%rKWu-ll3sr5zC+1iRKA+xW=}wr)IV zY-BvFai7JMrAQ@ErL^}(mVK7HxvV+Q(#@r`fv|xlc)9IuawhU3x%dvnI5a*UJE1w! zxjS~dWq!5`wmI`veb+w{e`xAsLJVd&h^>SOX$h+dt9q2WzdCY58>;D`?A7)C^57N6 z1veV_gB|~|z+2a?bnD5*y1#YY?s#4{u2RQccaBE?vjWZg?|h#T58N908qYQIHfHz- zUEhxWCUYQzPM0Ag7b%cpiip|}*wb)ksvPb9#@Y5*udD$+yipKUsQyXar(e5Ze}=%u z+bMaMah+)0{Sv+(I}r!73CprtFbhd|f4C`gr+QU!evwp>hHj5;kA9X>dl7358~sQj|nMPibrs#ly^jTjCas>w0GoaEozpq zhOzc(rDaoP7ieAA(kbmPUmNBw8@5g<4YJZ18<{xjsY8e@KAQc$02_~5R-f)~{-#%d zn~0;s1+N0N($Ix`bMME}xYiH1nte73j0DXDEg`|rSrY3Kme&uFeQgnwGyfY7(*}3V8?rgzgZHD|yY}VjA zK5OL@qqOLB%(5jh#v!*P%_J42Nh2PIYzXn*auT;zZAlG{Vu(=0Ry>~;084}?!k1uZ z`mdU@Zwv}{xM|Ln#7t&2$&-6Lefi~e#lafWDQ-)Ii0u$irUTKH&we8k=Jnes}@Hteb`H za^TRHim8gqU8&u>K#G`r$IbHC=K=KrV*O=Q4GF_9sZGmkOkG5-!XYM^SUmTgM0Nhxl-9mnp_SQph6 z^~8{>;ErKo8+U@Bhy8Z!H(vf(#hICo!^--!XX4F+PR;Alv)9`Jlv-o^Slu0-9_}m6 zPrSp7gyZVmQbSgKwfkNsKHB1FK-?PF!qigDJi}VGld+y->OrmX*3=cy`nL6T zs|D+}PL+*UqwfS^kZPd1dbMv=x>?U)55B5S>hlaF+&lk4ezK|g)Ig&h(L#9Ee!h^) zVL(ewOQo{6vS0d$<(PR%8N06jFx_X_=@=n%BD1POT3cziLS?%Km5JU@S@OlS=KR~& zCyS$(E)2F7dkj+zeJ|v&Fft7=l5Js*t|4i@vTRkJvv_d;p*E{fY>?A2^3zQ> z;o0c=;oQFEjkkBdS--Q&U4A$HF})66XR!J35WaWhz383Y*xeYIyqX+tm@rc(K^C-l z*TfnAGjc00sfnR!mV!dyk*nTV;*V#eX_-nvPw0w<1mmptoK4M4_oLo&%yxRm3c3Y4 zE!R7Zu1l~v>KK=OEkQnSo>X*;aTy#R9rh3&TK=x>(Z6mzNtnabPX3ucP-nB+d0yjN zVL@MiAKUQTvhP+LYcp9LR&iRzj>XOvv%~IoDL*=9%WanNmcxcst990DR_|?66nQKz z{rthVb^FKD!OuGq4iq*N)sBj*Q_|Z9DcvcAoigz~8zmcLOW1RjKV28smx(_SC+tfd zckdL;C$+bVd7MA!=}qVwJ(M~yS>2rA*|W5-uyYx_gUhixrgc=_xzZ~1!vneder;_i zWlFwNNPbszFMlgzsc*&-Z*&=Z2Iq?JUA@3XRg_oQ?QQ5|n^#a$(@?&R9r@o;sX7iJ zp&l)0!QGKptC9$f!a%WGJr*p&IU2S_&9%HfeSW{^1~yCh?yk*=M)Vk5!{o{xL54_uFkBYwI*AK2|^1m%RUftsYDtSky6c#VmI zevTC7Ja}~u{1G~L{h!wl&fP*mJ9!@!1?3G41^w4&B`aurao@<+qAW18-b>{!rZp1%-$f z`g2ZF@#ZQxJ`(m=%~nlThELzpob~B5OFaWtNAu^ z+Su0iIUgIFgM$OB0|%?6wGkUTFE20K?K^CD?y!JQu-G_R*gkb+v9O`}>mYw0=e~iB zzBTN*EzHt_5<2cvJxe=VL27E~MF0Hv*L4~=!v1w83!7iJ1#XZH`VAX9>ut7wjt#yl z0KLnn0CO}jQ@;;02V(}#A;ivems8;63;*`3f1UEwSJnRY)jN02e)ZI^e*dbnje)h8 zr8zjMt>voGp6KaSv*qlp4hin*9DaH+d~!Mm<%TIP4BSSXD?9`$oi>Kf(V#VBox-*;?f)W-0gF zuns1Os~^%l@c$}MdhgYRB&O^V>H=9VMsV#t@NPwE<2NLAwFcO1oI`eZrdUtYN@|a)P9<)AdasZ0?ogcGzoh!1ZYEDm*d(a(~_-#61bLi`)tZBU+>u}#+is;pH7;bDJUp{OjLORVv z8Fg8D><`+mRBk7m=2UVw+_hNQ+8VS>p$WW8t@ZrNd9T}j{YDAHBdkmEr;ZMlq1~P@ zYUId=&{Iy62cCh&^~4jLKT&kiLNp zTu1sOAz3R{Yi++$y-92ip(nO*Ypd$sxkhd-a98Iy0%7b4D8DUPD$Yj$w*n2WYQ24|-(p5jMtAA(aQ9}7m}bpn=QPAg!w zQQau62cC=O8vP!Pe|y+L=c!M6o_Xuwl>Y7vG{d+K3{xM2ZaXVz`* zhY@Wq;^&p@;t^*CL%X?$gZ|f$yBi33gur^6(i%6MI~P%4)X53fWt)3@Zbme)&a20^m`lIjoGB4_D6YUtBz( zE-tN+vtYzNJ=7vEYA#bz=5mM)Js`e!YVLW?(Svsn7mcQ99O`R2UYtYgvg^}Q-70cj zZ|7mC2G19UQ_oxE0}V6{rpi^TXNADPOTnsFYcIhH+PS6Ks&@3!=7SBCl4T^pzn?Uh zIWrL;@sMf7>~pSXnJSS=Fj2c(^D}#+6`GxNSVrFfZ)s zdVLY!dN_<{#F2)jYGe6-?mysv4V@!j~xw~w%ltfH3To<1Fq zxTC$k>g2nfJ2_q4U{)t393RY{f1@^^mNgz1#gdDkjd$SNZ^LM=s%a%o%4w{SWQe_) z;Bn+c%C2|+X>7m^!LpA6oiSk8vT^z528%8C=Hxx1jUwpGlMQrJRP;Ge`40ED<#k-w z#K#AyH$t1(YgzH8OsnGT2Visb!n=~Bcb+|@LQ&16;I)3XWEz=z^G2nxso_>5PP0k05t{jm2=6_qNnuj$UwP32N#7Zx5!fCHV=^R9?^TI) zqBqQjEp)1^+cfj9ckHZ9BJN?3KgOKrT%qZl-5DmDgr&sUo7h}q>$HMXon7l3uU^!2 zv^|f|qB*^ul0Vk?<05zKD30FQ58L&nGnrScHG1{KX5w9z^WFONb?FURNx03__}1Gv zTH_r|8TGb;Fb!-01lhI#N!BRFyhyU{4Ni`+Z5w-2VjYgKK*4bNN>z;W_HtZfAbCuG zHcJ@K&~vc?5UOmJG?r>QHm=2RNa@a|XJku($ETIOuafrY^_oTbQc>+4$FPBP`m>jf zE(M}dsQn|UQ}OT|D(`tdXWf)&k9t;dA`i--B%_w|#Pck<>tN9&k=rAw`hKb=WfyCz zzmCW*UoPVWqaJSBmFQ}Cd2uSvYWkBOs}w+G()c-z6ha59b?|ZT>oXcfX>0CTPQr$5 zk?;YN4CSGup%Tjq{SgxT3wIiO`iav%WtaqY#Q8XfW(8N~goSb9Aa<%}PJ`ncgYLd&Yq!oy<}^bO*|r zi27#$EXr++jW-$B2O7~1mKVzC! zfcFTEWYbl2jhqA918*RGqVnDM2Sjb$NhR8sqQ?Nr1V;8pq$+K$46N0>x+ctQFpEM<_8K*`|Uv#kbP?SR=_Q6>84SG zFH?48yvNaQaMl7tt__Hvi2!PZ3Urzf#y_vUI5+kRCmT5oV&^Wv#EPR;ZU}(Ll)uxG z3Tz?uVF6sdxB9mrv^;20Zr)sGLOi2RnxWwtH^>8E)*TzaN;=mKy{$~O8%&** z*}d$WVrQlUx*ZkQNL2iB%-Py??Vb%kgV(w66c*2}iE8O79)qi_Dgy8W=T2{2u zomv$lh3I@Hx+(GrLUV!q%c);;>#p!89&V2cXTiIqWCt3pMF7~-Zm1EpN^w~(rO&E9 z+G_~H&M}I$dN2Tj)pa5HRvtV)QbA{14foyYCuDT;BFQC)4*r!`??zaubrKNf%K(;_TGnZ=Rn>9hVkzuaBrGSp ztt(QtT(-bi|FpK8P{R>EcwRa$>coZ0@6;%|b~CvF>95f9 z;JSIJUTGe(mO=D>SkaD?U&8yDL6F+QdNoY5;7vDN66xa|KYiqL=Uz8UGE^M^G5eCR zN5Hl)SPck}Vy_d2xlzp8%%`O!E30a8wSx!mr8}V{FBrB3;)v$C+>%~U{cyB{)ngF! z@#X2I3_y)BBLJA)b@Znv9IkPah{WYZe{%jJag>y9gO%b@cQ0YRh;*j#Y3!lY9Gt0*LaL zT3>MyJgX?3PtWKAnN7OrZIr$HW`@o*mT2YHfN7e`_A>3hPptq|fb*rr`^Mw5!pBY_ zroKsidd(S_PW6H=3t7co0LXOB_nY~~J@}C9aeUMeB&)5@kg0Z+$<)ur|8~cnR%WFl z^|mqmkJ(Zj^bLyw>>TpFy(2Ypf`RRrtM^lry6izarj1>qnbl*vd^8DE7uB~HWO$J8d}^tV#M zNM~3*YTm|s*n&0vtcQ@lP2+0DjV410%*7#aI+z~|&<01i1+1#RuE{R~F`dW|!!Iwa zuwf-}(6U-E!-wz8RG}34@E#x$n#-1F;M<2yRB%Oz9Y+0`5KybJ3j(}02L@PHUii@V zY41Bw7nLl^+zHqY+OBlj&b}7UyZ7VsB@SiI(c;1cu+kT5nTeosymH|peeAml=N5C} zoi8{LzHU(_Zej8gCtYzJ_aaUPE4$L_k>7SJOR**uZqKKQ>hqxPGSJ&i6Oh(!h|d#v z^x8#FvnkU3XEQxQ^b$)bl(&L8(l~`Rn5|SyE*8%$34u$?KljOa@UKY{h>P@@E@B0E zccwU_Vb*H0F-(&>$EgmJJ3GIHvEA>9>k*ijQ2>MYe$qVm+XVQg2ui0UpQ~qv$kIa-G823IXL375@#wIJ7HztZxCVoU7VOuxX7{H z<(T?)!9sR<5wiO6y*555m_?+UC~kpIC$VakaWXKu<02WP4rc9+54YvnU&&<^N!)O{ zse1PZsNALU+Ehxj1VM>G9z#x*i!U85j>~T9m$alelT|U89Agm;L6x={h!>d$Q1;)c zl^PGA2k<|u2QZEh84*q|UZ6BbI)Tb0&9pDu99i&_)w24~o)m!EvdKXHE(lfowmuaP z>cP~k&)2{pdoD7Ke_-jS_KEK0ef9CE>lP(c=HMw1?z@h8VqkGxR5sfgy^xVp<@~fc zFLO(sqY-n_m8lqjSYkuzG`PTEu?zf2>vg7{cbdyeB~OF3lvBi$RxGUsbvS*lQjUJX z2pa#|J`4<7)?Lg%!7ZdM^6498GgY(a-|k@~0oYNxlQ(6W)L$XBocLP}-_lVip1<1g!(L zHM<5vRT*~a768`Y^=|>(Ee)tEN5hy@|0J8L?aCGCdQKADc-MNdc7!h9FvmcDWdEB5s4Z|%^iglduaf&W7 z#xL020P$Visq|%}7EP`AaJd6pU*bpCQMYYbC{NeTYE+R3I6m*6t~A`L>3|r)4p6{u zAQFz?jKx!4#M%!*CU@{v56~lulMJC#P8tO{@^-uM@qxjfpxm-xHm=v3FFrX#l?jMUysOkKIN8WTNRq;@J+oF z>jH>ubpFaj&?w$WB)~Y!Zu-5UJt|LFRQJgphS(25ao5sQG!Re(@LX-MUeaEiIvW40 z3)oVFW(Be*%GK{ zsC@-IETrx$Y>mR3ePBLBLgm{~(_3#Ve>G~Dvl$2$Ps_kqO5Z30Nfe5mP$d-Hr<73} zIs9xgfXAYz1lC#V2B3}?u41Xs0RG<#1z+wi6$JUGEt)ymf=F5i`1!jzg(Wf0@N54w zcVydL)A98^jZ%(w<$yQ^M}K{nc!ahytbz7TpwQkA2nbB^X&-!X0px-dpcdS+x4!?V zLBo-ukF!-=-fHlEVwNXfw$^yvkHU1X3?R8A2?{s(6#IF5sr+X|jV1kngC6A4?*cy} zxCe|s!#BF5XQPv*{n)A=vb!k!9lAGfAbCODM}U~GwHz+9{!^-eRdyZ!Im(#?L;39< zh}C>w1FWM@&;L|a&%kRSj@@!t8sL(R7vSYFW!51$7Y8V{>Rg!~sM-Nf@G;T@6x&h} zTK4LOIsk2&@h#@o-5Dfc(&vp)>!n*M+U$Ljl964OE?b~6#k+kssN~4R5>VA@kHZD{{&IN=M8}&^8iF!i79e~(LytU}_AeL|vHf(6 zoxHQLoX@_#^Ih`A?giYGZJ(Ay5`gy^YTfC572_W|g^w$eJzf(dVLj$Dc(LkwKD40B z3SnHnR`BC~F1?}Ed{>fm^Ok;7pe$1sT(P;V(JL%m*hF48MZ3vxq^4tayzWwCKxO{O z_F{j*greaq3>-O-se6eypd}Pm1kjl<6wSk;(|#umk^!vh;C$J`aykwe5}iC!N>TKy zjOI}8_EpzqGrc;QS)my4bF0r62mIG4M2BfIn`|zC2p&U?t^flNbk_R( zUB=CjVr^aeoNkYSX>xvcvB&-kQs;8m^&1I9O~N|#081Dp``0?+6-46)Uoygq$Xtpt zikHmD%$HIL5gk5HtoaUNt$dd_e_KxI$pPT9;Z{9NXD*x6Gmr?myI9cKHDuGNwRS`X zQrp~Hn!r>fD``DN(`3+;`d~ACLhO~hV=wY$Z@4VxZGxhZG*&Xa{8@Z&PKJ&8NeDPBqgm#1J>GLFqre z%@N<@b>}+94p*<*=UmNBka7kNY&Bd1zukL{qxZzBf$&n_)@O>t)KzycLY0T?9N)ko zkLXo50vH^?#aKNGszs1(H&WWX7cvXvoL9eKaDcTP#5)sdJM~_INI2Xr?v8;}w0Ti~ zOK-7}H-r~;+;fR=AvRUq zb+#iRg=q_~k(<0N>C+0k)lyE@OJWrJehYwn@57c#pMGbM?Pdl63RI08pJ^c0G1FGw zvUzO>70UUWSy?|2De@2mWn8ug?a5?J@5ckwiO@wDa__GNdBg&4paKr?RfHKx%E3uy z<51}hs{HKy%}3uqO9XAy$m4HV6hAs_umj}#CgdA>g1HXP((#~`%Q0*oIzN1V} zmA#-74M*Ue$`kX#d~*QVx8TimF`-$On(VNyMEF-~KZpQg%SDL1UyzL_vH$cLgoI}! z)sgHV&Xod=#F~5?&@=L*yB!WKMdp^eDWGc9G>c#GO-KWsiR4V#bzfPYVa{O?8QT3~ zTm$>fwH?R3+TJ~0Tm>9e;_`4gPk-^yo02{Nq8L@?H>dmu#^g3JbLfp&~bPhf5P&}FkoH>m9yf3Lh)^_aQ z6ZjGiUff-(Snr_SPi@L0p@+H@vwQtPA4b3=i_w!zi##_6hC;?F2Lv7Dgfq<;ezhv2 zd5mS1)7~_jM^u^ZT<~(${xX5EL!Rp>2-}0t`rHrqlAc(UCP}K7;;EUmK2nQ`@80^#QGbmGo>f3izek&L#y*mUmWRH&y zA%qbZu3?h40WxDE7!dA;J8Elh7JJR0?l~wXC$qRb6f7%rTt<0t7VmoyYuP>;FfSgq zcBuUE$&VztI>ac166@auVHxu?T zzPv!*Z6&Br8KT#l2G(W4?d%w?terK`xpC33Y3FJ!GPTsD=gTh6BbkK*c#zV|tWUg8 zP^^}10?J)BKyn6*a^PJxYb7es7?n(kaPw220(d`G$waU+0a@)OJ;ACOBErs?F@GbU)|FJOikr zsSc;;g&CNmx_8J@8utH=-ceeY7N7lur@8{dvW1nc_mdUjCB6O*GP)!raj7~ zkltwn$Hu;rGy)nCip{M2pktu)`lCrHHp!ivHtNMD==KxN^Dwi<-B>_&6N(vq&+aY) zy{_cyqs<(abUofQyI%Daai@`&fDG=(ga;0tIRh=0KK^h1#Tfsm-Q^sQlky zmHzE_Bj^)c^K)$JIYngWgf-%Ee7F&};+i6kP;0S# zh0PsFHwjQ)_(Q05vG)bX{o6zd)|n<7XpESF8qJKN@HE(_RJixy^9B2feE0R3(L`z1 z(!^RqmFy~z<`GN9qw&=50MEC`6(qQ&CKlp+d9l73YA50vI)f61w4<=nk{b}yoO<4}y69!xd{NDCi~<2(s1F46@}a(Sq_$gZ-e-0UUTF78%ouaVo(!O<^p zjDzaEr$wm~vlTgb)__V2lHv}U&d?*tC^7>W)>Q)l1?go{>13#mR*r+w*Ye>A?dXE_ zo+Ncc>35dk9Sc|(OP|BftQSU1sDOhc8Bm#aMQCS?yWQk_vE?YlY9>ub=u`nVide%~ z=9;IkF~yTgFcw2l^(du32}{XhYO04LGTmn=l%w|WP94}Qd?RFRRT zbcRQ;r7h6z48NQMI7-Z`N1$*wF^`x7fQvO&zLdNgJOf(*0+PSH!YH2G)|zw&x|z}B zr*+;*7QS{PD7v2)#kvWr26`eEekNW+&;o#2x~P_1VW zq?P$Lsel@H11Pb$pe|p-gl`VsjPI(}!O-+>oKBt?_Stn+Bf|>xAt5*@5oZ-kqgeNI zbpep}(rp1GS12{^D!61wES7mYn=^U&H zqu#(9*csWbiU`-VZm#vfL;8?tm?2at8&?36OxkGYKL?P6p!kj+C>!PTGQUG<8fsGh zZ1d)D%Sk@?p0bVfkFuivM%1bZkb{y}-`znFUx`Ge@iYPGEbIdP-{?UnP%_N{^@KEN zF=;*}O8CKJNbFnXdwlpqLRhNOdDBGc7HbEa;l;9*s(mbdYWL%Y&JDn&$MHEVYXW#Y zolSZyGpp6bx>t0jgaFgBAMlg?LMCUZ_1_ZwKMCQnGN8cHWBGmu+Ghv(*IfUPOZ-26 zQsjk*GLTNCx1@2L%}HnR>OZmY&n5q>B>pqXr&9i(iScJ*{FZ6|8jwE|2 zp#S;BpH%XHA(gnrT8RI>7r_63rv9M1GZXyJy#Bv1um8;D|DoFXGnfB`UCs{CA5{0R zk@*wk{sg)I7()M#PmFoBG0?k`Y-KGs+uNB88ng|M<9Cn)9Irz(VDeAwI7C1T4fNbh zNs#T$4#+}e-3EOA9qo&-pr7b!fQ4k5uN&Au!Y^QxhGr~5eDlv%wuJqt!4j)U#Ryg{ z>&+~@zh_fTG2q8WH5?@%PK;b;Y$2yw4)g`1>5PT}F%1X8tt6;@rfwKz5KShQawb^+ z6|Dvsb0LK_AZ;o8meDY-$f#=BDQ6eyH~LFLip1=q?>~TM$!NYe>&fyK=|4)R17P!O zdI&9W&nrx~SVx~|(x#1xeuQ208|pnZifD`;0)8`9^F2P`xs z4FvwR(AB@aA;xile_p77Lt=SPzN@L?y7a8uZ5*94VsEZweP(iC{P+9dD2ERJbQ3hN z6K@DQKYq6GcPqSzi5pUhI{r;&!{q==Xs4}#4=!GW{9-p_E`Edn;I837`PTEjhoA7@ zNIuUf^$&%faX?Vc1v(k-QO_Vt6y!y_Gsu}kfP}G5aQu26lnLO%h3K=Oss7>0c@q-k ziC_jOwu2#|(VMGs|Ni844e^c5b&Wt9L=GI>g$@C=sDX~HvW>f)>AZck-;T^L!t->y zE>+A^$}%qbqP3&UtHf!9-(7I)R+G=rf{cR$sz}QL#`0+W=KVV1$QV@znAS4dW zY-Kb9-F%hKaPW2JjIHjTi33wB|E+7th`+vQ45?%X$n6Bd#EbMnPbWuSEYq%ZPI^xx z5&qarR+m1R_=b?HqcaecbX~Wscz*=M7KwmZugqQS1%{~zsMP_7+Qiy@z}L_XEFbWn zEld#t7AoVA*DxDM(l>x?g(z?hEcFzixaJ~D0bT$v+%7#omT(nygD^-44`>5Bi+56exVG~g90*d9L4Pp!xuBr)hVjDF#gmY5W}$!v9TP`rU$J&xX+!0yBC#99nGs|4{{4L12ui|aWo!S$yk zWEjEHkui18TC2$2wJHB`oZreS4f)*HXXa9b4`JiHnvd(b-Yft=Mp!%$$8kQbeJ#50 z7)aCqS2f%Mc-LpX_msrzNR}pIqqTHBaV~6 zvYA4(ufpgEVh7X!i-(K^1lub>)MkFSxUrLUQeg6$@P2=%A`sp%+GYG|W*H|zJ*+RB zkXFfa4=<7k+Z=WQtdM2*`WZ4T)jp-!F#aK=9=cv1$r^mCuqkshsS!)Ae0Fh`fF zL`hOg@b3`)Yw3spLx8$x+|DO8bO9;zwF8qc=ZVc86#^wj5-^ZfiaQb9f2)5YePTRs zZ?ajD>1e%XPysc=A*n;dr~Dj9ItQA$*5gj9>k4vKDL_8UM{ZS**AV2@2YR*DiBBKj z0JBBOV7^R7lDzf^=D6Ve#>S6^=w(vC#0W2Vvk2RI?Ewt#-(+xa+bjcfD+$PDb8h>|q>&F?Mf%K!1NV?#+HyV* zSWgr3v163)M>58*A9fxe$QMK>Q-F!x3 z6+s+GdK?NhsYKr3rW)$b>KyN>`bHVGu)HB0Rq;tPYL#W*2kJKB@Rzr=yM<+Be~Pm`=z zWOxG5^HKRdcIqfvE~x6MM1eMc`6GD-pghaV&2$c_J$8TFuLtc&pn~z&*Jdn1FNNimW=HR-SJgR(!Wg&+{k`tARrYhRjAT@D{QR+4kBpjMOFAHP+i4@ z5(*0dGan3CJ524Mh~7FOKts0iisInI#80ILQXi-BC)V=;Q5`wqf%h1FR!=kgJrH5wICGNl`H^$^!Y^ zG_0FxnS^lP&b|UvNptZ4Ykz6YOA+0zzk@xYOjzotaL^HURnR2yiU(MdjHI zECen`1NYf=hw*=lGA~4~qk{mVrxF&qS<<})%+!gH6&za`XlzY=)t#iwp%m|H@EJtb z0L7lP?qIb-S8XDCJ7D{riXL`?JgbntjZvt{#P#D6_TqgJlg%DgwziSs0ovtBC!NlC zK?DGX8jc-(I~CE@6nCHN0?}qhG;zw^8Q^5^`cz?cPhir|C;~(+`SD#X0j0J9NYrWz z{6|JykA7vPDO_A+vuEN(C`fjvh_ImY=Z!eDWg|*$X7e$_k_Q7UZ*8uO3PYAXY&V%` zP6lz@TeWwliz2a8*S0|94-*X9X>!S=)iz-qh`eV6$t;JIL$?3k=p-b62e;21yjygO zji}yv4CrGG>+BkK8|vNz$x=2lv0(u+Lg>xV{BENF3ws|LKqzAqaAbrIumXiZZ9$se zFeDEM)_L#*D7X;dvXpkNY5>Gp=&VgNOX2y^kvqJw!KMTt|Kf386*%PPgPbvOg-XzUJc>=D2-QnHx6W>5w}T@4p0$4-ofxlv-}zhW;_fCELcj9g#l2Z8+~Rnax3{~fMp>;F{FDt@x8m7 z{UnusBJQ?EaV*Ptd^rC1J{=$LRZa&ayBiqs-T37{#lmm{u@Z~pM=0Mbwch!6 zVpm|l7I3US@3vZR<&ZrjAAw|Z&o+^H`UoketjGD;YRKLixwOMiodN~t8i+?G{4Cpx zAz_Q-h?<4z(fJx<;>nw}Liltt#(7T!Qv7D^l8Q3F^*|XOQWq&)V7LD7i^Q;9eK#~)4ka=ad{OqBvHagzVf0>(Mf2peSK-Ur2k_g!S*G6e%=6!8SrMwGl-R0?GPw<=12d zMt!EcCtG#c%Wc~dHBDT0#@{G0(-5{+M7Z=SnMh{p=^*x;)X9v1xA7s^oI`)@ovijG z-{iqW;SiB$eCBkV)Okxt2nOv!6uywJYY%F)2-oR9o>^Ts~*?7?$7I8Z%j{%lvYgpu6Yp8ZyRy%m9lXj(`RwnQM0C0FJnD7|DbKP8*y&;psKZS(yH|z6M|}-S%>F%% zniGF@cE^{7OX$*@az|i#WdcW|mp$0{fX#^-N?=gcK1haS=!f~#774NWWl#9&uaRYS z6G<00T^3M(!n{u){W5G2;0gd2ZMuMhS2@2`isK1|UH79oFj&l`E1*j6!U35&*zVB| zSlxyfd|H-~sS}_&mH{GW)u+w5){~!xem)5(Tl=Li`wHe>2%025RCuP!dum*;7o`;C zhjv@YV4t8E&l9qfVZT25!N;<1s(*rFtUV%quYt||k(w%B=TX4mePjBLYRE$_A-wk} z8p@@r#V0QIWRO{kLCS$JBxK};z%FDc@3*9Dc=ZWfPX)63j7j07@&fteC%XNKRv#eS zh(*Dwhupv)(w!t75v+sj$M&j0Q7W&{&O0s``O|*RU0!!{p^Q0)%bw)#CyO z`sYfr9%M}(S&HAOHSS|I2MZF4-W1)!-TMqz2p6@_52wvH!dWY}?DwHI55KyH2n?m| ziuXO5<*}QM;Tp9Ew^m&51Z}s|1d%PN#(ZS*MxZ4qm(Yo7%x^ht_5wVdN$~kmg5fo2se9GK{r|y~oD5#i}?<73C+^Hxyjo(3g zW+iz!#~po^=9%MputBVK=mm%4`l@h(Qi~UCC80PkBk*BVz!?m$UbW`J8|t~_OL7&B z3ze)ng&+!)%E5Gh0I8Y{`Fc52D*w~_*?ADTh%90d`(ujQWEdQ$%ur>%m%6yz-B-(Y;Ft@2JECI`;+d z>Nj5Q2Y^k9wHz3Hr+`mKhIe`U1#8SEu#kNP0`M4X7>r{zQFCmv2Kb*Tfzk6*5coeQ zLC@vI*}vW~zmwIK$obBeFz3&v9m7gu*Q2cJ6c-G9)|^MBkG|E&Wec+*xaWgc=Zd^8 z5gT4Ex!b1&JjT{dDL;{YU*+>o}>9!yuxcm`^kpL~S;+`!5YZ`BSX+G-|1 zerLll5taZJ$E}h6c(7Qr2&PZQ0QW01@Vgh_7~w%9Ld}e8uPafWK6ea+$gRl z3FHO?8I+Rit9I8RDvl+j{bC%<2oN{fxQfGNcC>A)kM#I8;Kq36Iuq<8Cnx&t zf$rdc<<8{*J9Z(B9=V$c123MQbQOQ!4)$Vb&#b|y$FW-@Z4N*}HvM3~rC5tZH$gyD zO#z4Jh5*IQ+|L}BdQuz?Fngn?8i!#t(~94H1l4^PUR=$QbWgb3kQWauCGL@v zg>!5>WwvVHWK-If0Il(@we-r_WquNdYA~OHO*1G$+H5d{^|SqUsK z$GZLlbo-XQ^*dT4Lc>NjT4lEH0sYZ6=RKRzAuyb8Al+%>ocj)qALQ*QK%NP~_Im;6 zjU>inQce$5Gz13nd|=*6A?rg!w-->q`}SmUy|6ro%3sx7a&lTqM$}TwMdK0!P%cXE zOIK}ad8qe9S=lm~4-D_F&q`1D^X2*V9(RIC$D*A6SW;lhIe|5|z;SH?$)g4*cRubf zFluto%T`JWTyP#%FSpP7;SB8UI1zw%XPK_B`2f;#wq2QJ*&H3TBE!3 z$p>kp73?fBX)f!|;kLJdoONq%iaQj$!h0VI6GlAKgf4~8!Vv%-EDU|g1?+0r%dJ$ zf~s7my|!`tfG9Hn`SSl`?>(cUTDo>o#ej++g31OY7y!u%0z#7%70F7Jj3P7{C1*qg z1SCjkGN=eh&N(Vb&auf#4h=|_(9N0c7Wey|?|r{}?vFdhy?6Krdi7deRjX>&tQnta zSeZ9bfHE8p=Sbg?4Vjd>e9KV zHfx8DVed8r?T?+eC^s7IY3lD5Uy8|a-j*unD4cA*KB1A68G-8RT*agCrLk|v68{^n zLLdG-uBvrqvME6=-$-@%9?}pjoW7cRcruz>`&k8v;V_=8=U49T&Bx;7B<~ zd@^BhO-n$^zm@C*o#2f@uungh(#P9GTi=DKXeu{FwAAr$fz49_^r~phw!U{_UOp~T z$#C3dQ@U9(r-L?VkLq!!qUx+7q5kjU!}BW7<3EmLW?}{kOsRJWlnrfTu0Fc8o6DAz z7FQ*!>Y_E3Cx;BE0JA~#@O^D~`FOVvR=H1DJHdIt2FY|G*A3d~^$Se;xjG`sH~|4c zo_O7|)dIGtn*V-pfm&dTcA#$kdtYh1O*@3pEVVhSxyf(erK;cAa(g_a=c^24km^Bh zb*z*c|0J0e&9lL&#X-&1**fWwV(tKB9WXR_@!4rtHoTuVU^0WO%YyS@wD$Jmohg@f-hp%b z1NMuin3#aB++R_xy{n)^y?k)i`hOD&@Rz+rcp0Fe`OOPjFq5v}Gb+*B@Xh43o~$lj zd7B+7&dsGBFup)&bLJ)z-Jn0qS*c@QzK#O!@M%deMEviw#_cd10muI;yMw>H!seE9 z0)v6Hhxa!rkw)kz45s3xHVZkC@;9~yq<6N7L+w|mBs@->)%XG)Cn0_iM>OhQEINUL zojn`Ktr^$S`7k1*&yuRw9^6R^+wud}(ZBlnFPrfDx$khOXFv8(OjqkE%~=;GJVkq6 zy-}z*a1^M_6{t)l>`Uil_O1zFFM6Y|BA+A58!^aE2}AkmB_YM61Dvl%jSQHMxw&@bnpcVNdgKwdmO-qgV#)^adrN*TFi z*ps5f`$Z4DkQR`8-#AoknadLQ@E-BH792xzg3XTq;mD&#cc{}?)L(e7{Z+CM4{nhI z9>1jM4fy^9UM5KD*tQ>#V2V+k<67G89|fgq0{riI&=F2k9dR*HumoDC1eBkX*Ab^q z)6K{|1)_j?hRc(I4%MJFDIegtjsuUkBlHswJQyJ2cl&k3T!YyVJob~lA7TBzRJmvN z{Wbfx?-tM+TPUlFzlQ~WirLlj0#WShKAvhuJt?920Y_h1@ls*W$(0=NSGJjX=hX;@ z$`jz9emya>)uG_Yo+l~Eh`OJ2-6x)zDSWXOW?C8L;yw+u6$(a5 z#?-fgN3FNlW-o2K{oY~!x)nr=2(a7h!H_Q6mD>ppMoj@5Ot{4&_>?{<90gdn%oGe>qCu6B>&SJ>%f6u%%Hiu}Yqq_L=1s(oR?7Y3nlX zO?x95%3=>HV}zheh6d#h8~5;+2>lJ!Jc9=q%bPKGn7exOja2|s!WgfEWIqPsC>^xS zrqv*Dbn0O}MB7g63uluAhi%wg56lSTIj86kf^FZ`<_K;*5aqZ`2lCJ%B_(A&D0MSt zxOjudbXkj<;~W>*@#A=x&^0yZMOtF`P#<&M1R1m8*O2Q5td zPLg5n?`_T@>qi*bu$-X=>o`TrdWj*-^aP3yT#STSNiqI1-GudUV94|emew$tmD zQdlIc(R*#5H1$F=w&pxQtM%I0dX#O~aq923ESN#44lC*YX-D{}U;Mj2f!uE3$WQ_c zv%KL@(K8HP4CURu4$e>>6ZCyRUnPywL?|2r(x>Z~tST!2$wj2yq({s8*~xv*a_`TN>A!rcPptxPe1cvRigNHfn2RKLHWm~bonV%8z;lN`u;g234{A3o4K`aNY&wlOXA*%K`hLI~c&rD;Z@DcHEju~fClx`| z*Dl5%%9>jH+JxJEut>aYl+gQcCW3#OhEICTPchkbji5Z9+h#|$Ml;JqUO!&0#d7=a z)8XJ@czu$#gZpRqfBEfx%c7r7z%0_`0H#F~ur#sxYRLP)j7QBiSbuPO|EGa?>-)P6CnL@9t&WbE#a< z#%@Ol+UH2e2=wHZ1H6(q26Fv6ORSCYR)`O#g9Xhgw;hhl#SU zneN?RssF3rZ5$^>XPYgdMzd2JP5Xa3qKOBvziF3?dHxSy`OhNkujRj6-@m{6vk3nX zoiqQ^bJ5$de{Wmquo<3nqmepVQeP^elT=TL4q7~o&VKTC zmT`Ymklu$~B6@>^=nnk9@>($niRUb|2b#>~bm~?JpD$jzPY=xL#FMuM@SB&c!0I*R zj8^fxJ&qzF9xnhyj^9e%1^%);eaCQL#;D?jW(xf5^0uXPnAFB^8oz)Cj!)GpeLDvK z>)xo5iqaQCyB70O3m}m{fTvH>`~~2ZI(0#A94lsE0bV&+@WBz}Buayl-{fA4 z{!O<|!~YYPLMK#V)UkwBD}&_d?A?QJcaEKT1zeec@=7H9<{M1M@xI`JUxS-9fNSrm zqIMPl-LToUe?YZ=9%RXYRn+tnZ8{DDX?pG2BX!_`7sbz%ZovP~&pwI6Y^drNvKmq}j!N$~XvXaQNkT4%Cjsy!?ER!Tubu zyy=5kyBquB-;s+Dq$zsTNB`n;5P6}m^$)zi1}6{+*YEi`@*44s&s8hr?mk(VfcHjs z@RfLKB|N}Go5vUqL(?(SIO`AppPo-X0s;troeC?uLEkxj7N)AhE&GEielBM&E-|{r zT%^;HDiOy|bz;;$zZMmRH8}XKhz;szBHmq%A-{Kq?g8U#4ymBx0o%pr=K39`dOAu3HRQ99xxxK>f{T@#d?`)el& zYCUU(K?dn?D@4buYe8(59oA(egjGcr?%znh|L#Rx(}@C;3rB6NoRVbXE`V=WWOWED z2QjA{P~oE(O6%6|=H{Qb(xFaPKyqvAa_QExMO@!v?c>>57?h;C{&7iQDu4A;eZZ4% zpDV|bAV`j-#kQZnB5qfI_oep=gdfzMDm3c9RWOk9$Z4-hB3N&#xgQ@Ic$QT;5aKH& zAS~*MSE7twuuKXQ1#>v|F$u=RG&Uy27OhoaK6I~uYbn)4Q5D6e&LM&ml&jzyM>y;v zS0Hwyq*ijT+)}=dM1Ew~@yg6bEn)nVjv$8Eu)YjcF`L2Ui0gv|-q(%LqP$#t8L@kV zOI-6_aZl!6M{qg!o>w)+mA)}cRZMnt{hBPmivu%OO zh`lx{^U9WabH~D|H!>+o*0MVeG(2YScXyjID>54He0zKx1I}hzsF4x&`u6syG1e9z zRl)(mT?wx#xfyl0bp847vM8th#mQ}hc^Dz$>f$6a69sYAJ~*eKB0S(K7a-Esh^bbN zLZ#qINFoe{;2v#Ay+n3=Z-kHlPCOO?X4)HyP$#9&+<}l(Elpn9 ztD+yAw$?%;+LC)CD~ZxHOB8W2Lh8Lv+sV5KTeIyIT4ZBiCa2O;8Mn*S5>s4Ak9qmo z(ZVgi7PlCmsja~tLDxwxL099J)y)8VTyOZad9ppug|BUNg)Od9CW2dK3xrCZHLZ?>Y&4&q~(1dku1zkduo1ScMa7{r^qL2#4;?_e{HM*G!9$l!`D z$N*2hBI@#Pwr#=IHv-q`1=UYLs@#a(EsYW|Gq2e9d^e2sdqcu&2b_TV1<`9={w5;oG9<;PRK^{;)n-oLF z*_qpCzw-T3K;5R4qh)i4ctb+iMzAvbCUd&ML@NapYE|G~g!F|9lM2;^*CP-%jM}Tf zC6?_iCoNm>v{XWl&GOt2mq0#SVL|DNAKU7E2~ZE|620CPhV17u)HM&r&3g?obxB{X?~g6Ay#Mw2 z#HxAOrOZmc&SVzz%r8)97a&b0AR=R9^5b5483aR2&ZR2E4f^p8)So@j>$6S^)qppx zPi20l@{zzTm3dlk3|Y!$ju{5I|C(%9p%58eVatvzW1wvxqgLCX^A@U{wbleHa zDLEzF(sPx zT~pgTE1zT;tt@r>S}m;R&lwVKHO=Nu{5V+HFm%NALr8JHIK`~v?gQpZkq>9`zJh~> zm~P_4lrIZUg@vo?wJ5bdj)(M34jUm#l(^Wyhi#0P#3d8lPx;er4>}d=_q*cAf6;5? z)E0uPYIU>F9>*9yy_9slZFFj9fhnEVS&?`65n-FSaep*F*MQTx+^b(H$^=>2+aWdM zgwlw?iy1!d>U-r!{iI0J zT$8x_n)mEcis_N|8vzp#=jmd&=fd?}f2qKe2K|i6rS7XbWZyU-N{=k7nZW!-nlXi~ z%`t|O>7QXXrPsRpF1WAPOV;8vnt%So_+%hfJ*@X+-&Tak?v+B}@2}X@D?VEfv1Y{| z(Q=p<>WHu`Y;kg3`-n@^dWDYhw^KUSSw|* zn9!#X5tiZ5RLqaSC(el9S3(M(55}-org%`3p^>>Sc3RJarG-@H(AwKWY<=;6%)`Z8@T^BKubJS7wu>tjXIYhM-b_ z0XT5!{<2)FjhHr9?p#fJ6tfZMbdj-V=8V*iKxcExuJ0BXss(aMqQv7WF5Sm_Mo%Eq z43bZ|S=|ixB&M!KIeb5H@d-J)!@O>uZsUcCK$omsu#fD}XEP?ZnA^k6OGHov@0)mh z!tlG13%SxlWxF}PlZn)XPgpLBEtbe_Yg#2EBPROI%TCxIvB?`!31+h6@C!|?@*i0( zw-vuvDmE}T_yX+%Rg=G`^VQcTuw4ijyt*yEVtjOzJ=Zmw^%0?s|5Ce_|I$-~753bL zy=t~qn@{9@0I>u}w-k z;$hp}dLPSpv6SNgUcW3bDbSm$!f6lX3pMI;`a7Qb;ZCmC(J_p=v@mAn0vb{cid2du z(CFB`u!~)KcUH?!qZ>AlJ$2n*DEa}Ir56xu`ebhtt(k*Gt&h8xIkbr6U@4sik-gp& zYI{@PT&C+)z0S5Gg&G!4=|b$fC##u(j(9U!KT!*Xg>?g4rfEEPTZmDB5Q+?PvJ~C} zN|2onGTj~*%iR{o5s{#7&z-s|;fiHAo3ne~#&4^6g<+K;lSkiESDg=h@cx3>yFUr$ zOs`$X0NatyBahZBG%Loo=M|6#nAx+qYtyjFqhxX;Bs|P|nzY7{+lO*(p)<$V=0v|1 z*!D`RkwFeb2s@W_r>pb1+`!m49I-Jg`gXKKBs{cWmQFeV5Ok`f@|VwZ470&oq?#8 zsrm=Y05^p(a9cvQpr}2E=s4%gmLaV7ZF^Fj>#RoXvXbUBc3ZucOYd1ucvwvdCa0+x zX<_`h?ZJ`UqeVw$0VU=lK6{cyg3bp3FNiGgxs45$r_mk#PnFXiUckrcjxsIFBu;*e zwixiLZ1xgpc&CR|oq%it|CYB3z*!y^6`2lppZcQhxWJ>L^AQr{Ad{YkNP@{RU8`K6 zAOyuRdDa8!mYlik#``yNhdBxz&l*u#rH9 zsZCVPLQt^(8@FLuUpfbuwTJxcQx}$0%vbddR~7adx*+ZJ`>?nJc7HAO_!vPQOTv6@smH_E7-{EMD7qqNmp zqe+FYl1as=uhn{}|3cRIy;r2@XM{E`JZ+-{)8^t+=3J94t16!a<<9nY{Y+?|e_+;Lodvod8FN3*^5hUK`cYv&8{7K*aOC{Bm|5{Tij zo|xq$@L+&YjI3JUUVY|3=40_nyMQMV44Es%Moo|ynUH10>;qYi#Tgy_Hrwm-VPw+n zB6kh1Ua_A|L|GGfkfHlC3@ulOTKrE9J~z$` zG0vzEtXL{5-mD;;+$G|$u+hy7X7ZyTF1It)t&<7F4xS&gW^rK~mgbjrvvQ*m+C#^S zO*V7O+WORLVUODQ3ywXdT;BH05U`rgtUUKc|0vZ)&C|Z(TWVCP;ZXCPrtg73o=_Ff zIp>U$PcI*zEA^jc6WAPj8anS@;Ng3&$zEmjD@#~WmqF7}i>`#ls{`Y0m28*lUQ4k} zIk?v4hj|}0A>$*iK3O!brCMb0VC)-uhog>;-HT>|MAxWjI-2!p{mR+-it-@ltoYCw zE;R+*W_hX^Y|hL?7p6jD=WZqOZd)J79(g40OcKPG`L%g>Yc&D1ujTiUf@ZZeqDc!? z(0&M&jo>q?R-lTyLyQj;E)!Xs4y-Z7ptBhdI0VkLv3o~xL|8X4gk7ff3GD|6k8zF& z0tD4=M_hzaWV_~A;)RcR{eV$AJkah&=F)M@L}*;p@4&z}kgEYCJY=VgEXIV43)U@6 zA90n8?{X+^%^$Q>u}6MYTGnNE&}IqN4{>Vk89nS^rbRciwOn|l^Fveda?ZB?uFxU9 zrNqG!|NcBN9b~omAZu1`^Wnd6vgA4+9d;JvzpydH6s7a#&T(AJoflB=xghqzhaX$7o)&ImlH4{IPKoKW#+#8GAAuzPmK_q7z5_hQDL3*%04n3fe*Sov*ICG1popTB zkK`Tf=^0@!Kx?=}sI0t`+pRtAq#*4U(^^N%AWrM_R?2=xp{+5zt>P(7R}Aa+TF3&m z`K7(xoq&k)iMWR!r*qug6&m>ocaPc_g-0|mmd;X5ub@+Lr4Ot51m@*R76vMurAw)b zWdpe06^P?XIj$;06~6wJvz_xR#=4^%RxEga5rT{SF*?>M<)wYAx)6%7WT%e7reY8I zG5Tz{PcOy_C4_9cqcaWF8N)!+7bpyb%xOvDRkzniUqzcjB2czoVl;L_g_xcJ)fedB zic5O;B-8ZMiz8E`-{wD?tJy$~>HFLhb8S>52}GEg*8)(c2nBge#VI|i$JVDa0hyrG zf7%hmw+iv+JHP3(10M(GtRpVI^4vwG32iP_(cU?N=%~|5 z`=DM}t$JMm1EIs>+^~`ZohDhxD~h}cV!SAC0K3j&is(vyvvi*KU?gW{$QQ?jvm%OJ zyILA9P3+@f69KXABSZuWXDRdxy2b>>R*HbSxv@RHbY+!Nkr;ciBqBn*aBHcOldiyA z`-SOvl4=tOCns}NbI=c*v9sJrc|9jjjq?M@dOdN1Vv{d&5J@jav;X)`x8#Td88@E&w>mb-H?d>SP8|uj=_h z3(e2nXb?izVrB2u9xShuwk~TE-l=)RI$T=15ub!4ON-muFXy2 zHjE#;;d5I%#Oc`guuHB`l9$;#>G2XABvco-A>rW3&Ijgbo-|7+L|b1vrT*x_AOv=r z-ZnV(JAxAmha&o+U*tTy-0X$Qh=?~a3qP<>(o!WeD*Z`qnf8Z%)oDc1<4j*|SIHE! zJV339C>&v}7I!&6x@14`&SG?Hczmaz{6bdlw@ZtBSqcqor^~&!R?Nl<8l4Pn4L_e` z$f)wSUsM^g3O4DE_X^>w3`T$=ApU|O+kcm3r%G0HbvIwi0avD9pZrAFwc~56kG5;5 zp5;_cHmhS55Id>`5$qYrZ|0t07if3>MN@YN>!}K z;$3UD0ef=HV_kg`AC^CpLtLVF0+YwbJh>^O*5ALTzPN3=*~yDNr1Uda&5W;$N-NJr ztvYLP_AHuz{57}q^LO5<#99b^4I|~rvJCbbT{wg7CwuxPUy{qoNDbx9+Pu$QgnCVb zXcGaY7Kg$FQ>gIxA$l0Ap_0wu>k=A~tMBXil&p}+Q;1Ddb}8EK3a%or%KzN?)rNch zh1N}I9#~{X8Jy(CfMcbd<64VxrZ6W>fWT*KHXpgk=7{fId;0gZiw<;<5u7w9Al809AeG% zT>vS2&Aq4MqE{8k-&3cxj*R4; z8hpT6z7{lZS3)Ywms`7aNy0dq&MZ-3B=CTr3gnpG6e!hMNtAkquc_AHbtzj;hl#9O z^wNHsgu! zU$W9VtC>0Dc#>Y_jXLt#&nL3}Ccao}9dXx9yvXOe$j==1eJij)$39LtXQg6i%@FZ2g)D zW~Q*)`lsy2Vbwr{L_k5TNdT^TYQtTz2<5r-CE^X2xgb}J0xR~`>``GCYZiIsGiGzZ zc`@w}8R^eCE2$%17mv(bo%kkB%V}+3bvIf|s13!+u>{1?f8BHol}-}UCd{dtF$3~l zSRE}56>FufFLn})!{dDgM#TZIvEA55zLs44S*zW_0g_>RR(Kh~*0jRc3D^Hu?gz^+ z?MQToUe#RhXsvbSqX3c1d$U2pUnf|i>tY_Cz+4&6KrGT@+xQWz4~P@Xa5yinF>HV& z`x0N4rS2Y)UX-VL$sD%LBdqoXMTR>q;t=ONlRD3p2>UrY@|qjf8mUnrr`HhDNz~bx zYVu&8yto+_^*qoFh%m#43nLweb=R<+E~k_X8BPXc^^^D_r!9+q09Vor+Ir6Mj0lmH z+npw!(R5y55Y)6WZZw;EK{F3gB&tW$Vg(Pp)Wknsg#6t3wqtiI!K*)L-eM#85Tf;2 zW*_9sH2^lsyfw>G9mF6zA2Zmue$kT}0=rnO@+VQQ7Kr*%Ytj?RlQXuYl=I}viMDIq zqOED)Hl@<%=3V0KXM>k5R{Z8&kiA3&A63Psgf_G02j=4(Zf4NoZtbEg5KHuQqtC>g zMhp1x#*rFexcV}dr*loLOu7;ht$E3?b-L=tC?>TcmtuqIwY!?7jYizLxJrF~1LP$T zEk0C`;dPO6{?^mbi8mm}Q?54LTFjcLH0H1k*;grh^?PnK*!b^$e8U&r%_ub_Gkar3ECYro z)A_WoNyVGQ%DaF)_CxdgRh*-F{RKk0GpvrI*i#Mm)0>u>eDFK}?OOn5fT?imkT0OHFz^n*tCO;ZL< z*&DUZx8<*~_Fs#0z91Ioz^khY(#c?Eh2os47Lyk8@eHHO)fQ^v^M>EAJez+u+mk(6 zRtD-yoU8YcYgc|w^6^FnvjL_BYOoZAHZPGQSsFFC_>k5OO;BhRZ96H2V)JeZ-~3*^ zcq+X5BnEFPWzL;3P$xX4wK?iO-I6y1XwVk3ie{ zz`FUdXHFX3K5PT0rw%Cq-TsPuCw&BqkPKBGJyRvHB`Y&`rX{1M5VgLed)uWJIOl-c z&HU!PNAnf;X3w8r!?0TPjPF_7B-oGN-;3P@`$RSYg7c~JDxO!k!I4EB0v7gGh3gU2Xt5O z>eNkjBrP2~gAd~WOv$P?Cq}PHs$U>c&ct~te>&E&@$jmc95{*Y?ERQBQL_PyzW0I| z0D5p4_p(ig%y20{DO2Aiq(c|vt96JN@v9TAis9jv&khpfspR}*r#2CD*7%zK28N$& zBExaAcv_q5V9sbvb!;Z22BMaA#U*0aM;$CqXgW1af<=ab&ePx{axtJwm;0*$WqP5O zd#&s;I@Qzkx>ax)nCR3nKRBCT6mYa?xy_gBOxnBwei%Ze<7*cDGi zyxiAVmscCiQQ-`}M%^jX0=rdMTZuN>MO7D#BNuZNUc1pG^dz|BbZ;TjH-W2e_LJOitt6I}lv@R0Qpn0mfZ{#qF(63z9<+wIj)6Tg0oci&!3jJrHa`gL6McTY+iuCIp$ z&tA_OA2I`2wTyn_&nGbe#YXX7B(|+0K`;ba%)__fB6q2_x~iCY#rpBw9lMTG#S2 z0JI;9H_I|lb=vawXMs5H+=(KV6|{twQ7YtI0-V%*qAQS;mRk&Da^Kx(9V5&Izmeox zfNg<^$6x4YwRiV)5L;kuGwNpIvX~HG*+4AuCuwBLopRL>h?D19eSynX3=8ah>zhl{ zTM?t-ygu1#hRHWBjMb+sq+Hf5>F(W)Ll&bnJA$DPXZ6C6Y<*M=7)Hn{wMMN3mTz$9 zniStZgjj7}5hE@f8L^Jr9HF_eK=N$w!GIF|MZ^~>w8TVDpwu8%4eWe8z8(hGn}f?j zc@Oym1i|PcvQewW)@C@dZ?dnkQ!jz=u;78LDPK-Fg88+FR<&eR@N!h+h$ z3AjzRG))2R460GQ7t_+|Ypi)I8F(N7UtdQ;6J;(Y26IrAcyp{7K`FnCsT7 z;>`m>V#R1*$E~W78CM0jHTcO@p5e5_xa`#X_Wg)E&7*bGtrD*k9GW?cRyB6f)-o2} zWJaP+uuL!8|H!dy3$3KHtLkexj`=VRWJrS9HI1!w1%n(Yn`Z@ME4`<-qGBgk3q7`? zQ)0G)lr0`2JyZ#>J+*$5qwCr~Bt-%{*l^li41Rl&Dq`#a&K;oL6x|>aBJe^I_=qD`KDI;X{Eg^+?}vw zV59DH<-`kPbDy(-&X)YR;@Sz>Gj$3*N4`?;K>w+ zx)dPDCETUc*dTZw&O1UYv)`F|X96K>%~of+HdmlYFX=o5^(XV`-ODj%MVg5%F-ue( zxg^G{r#2QCCR->9$qJ|MIdv0TkaGHNYB#;+<1MFhPE?gF zJNKdb;Xduz6G>$oBlqmT`Pm8@7MkYeYuLVVL%TUbn) z=Od5C*v232t27WKgisl_tye;O@8hko!*sCl(8xNdc`*dA9Qx4PS7IIK1h#VNti zmX?cllEAhA4z_;G%epsJvIIxXPm9v$zz8oQu3tA11Hj172E%|iTp+k@u-$)>><|JU zr4(ap!CKXnSg{ z-x)Ukq);=e)Sn-rqG6wYvP3T{*BEuXA55%#hyoGgUX%WeXyN z!Eml-@T04((Y5skLQ8n7#q+R@%hsfdVf#~cl~DGL5h=#kbPEFKdSW1o=i?H&EeThy zNGO}_dRT--Ugc#F#%^ai zZTE-C=4bRlL{?+FTVKQ7<5DLK-M(>Fax8`GOw?Ws0kb=LP4b{L|=Vc~#rA zb^=66a~Hs`Y0z};6&PQ+TX+?adi0Z?4d;c#kjvhno= zGme!|u)dZ+03rc=;<_gPTAvP|oUeQrdLAu7a(vb!%G?ZxSZm_Ucp6OGr|KwR&7zv~ zAmHD`Qh==8>_$WL1u3$vC`)Ih()irPWt2T<$7bF|t~0nYJi>%JwzFDkv5C+uSTic5 znXz1fZxc&fKBK`OkG+{;Y%+j9ALC;nnqf(Pd}k@)R#)O8b)=pzZot8KtB;LSap0~F zQ#t9+ZbIh`Vk>2WV?{Iz7S68j&aNnXt52%sPZSkfCOqy*@%GYtxAnMp&~b^~xMiBp zgaK$slFbhI5#A+7KAindkD5MEhE(58l{F7wDVe1n@fXUR#LQgNL_LNg53RFkV}(_* zZond@FOBTB7)#{-F+aWIC~T1I4Z{?Ys4&Y z_S5x&2yYN3{mz=FAqg7{4cnX$9Mg2S}6&;zrDM#5o0v z$4_@Iw-+o6toap;F9ZmqkXp{w)=q$5OIWp~pYA|6{l1@CTFVIFF^j{{XYTel!KSer<6J2F3mx!4;(`E~^8&-mcnUhF@1Hu~-|9dlk0Ms*NPd9qP9P0^&geLQ}C0*j)Tq8vh&0BhE|iXLc;x zW;t4#Pfcyt^>WHQobI32l4f50F19IAn1QT`ZSqt%H;)}29oG|}wSHN)k+PY_DErQN z6Y;QCE_?qNb#P5TJ=xOP{7o?C^4pCncdmz!%fC{=VGEnLzcHykK~?rQ zzdU~ZeDDqO0IlxRk7Ap{69H&4uA*1AsgKH^7hX_Y;_zwCez$#uh3OHce&J zd#!K9TgnUz&KKr`krRz5Hr0zgsbPYf1Gp0F`9^Se?UrgI2>^X|VlY*fX0@d--zpJI zD0B53rI@k)IskK)fgsv3jUced?!0rBi+yw7^=K!hoz+yVlUeJH>0II=>ix({QF{D= zoC8rd8+{l1zcsJwHTay(_;lWCW7Y!7w~W^v72Jv*`mrVjQXO|uA7y7&tG>l>a9dM1 z-E?i6H3S;$ZZ=jdJ5z%M*8lxM8*f&;ZHmP=5Bc?0go0T~b948et!KpcI#lOiHdzLg zQ^`}9E6Uufy9<-cyM7Qd*}UGS9Um-*!UC$l8MUjf@F6v0VfD3vDcA3APTlX^`hvW5oRxBESSu;)yQX>T zR%LlbVMNf?XK);YDq6D>x`A^eqzweME>t<~3O?EeIU<;Q?nkR*c*NVB9kB}T8>Snh z5H7pJgLhg_F4&F)UkVTy;Xmu>yx5=gq076j*q>oZP#D8JYqP*z&MfAg!>ThUDPXRjzJUPVFn=T}{aI$Tw~pSeLq8 z+L}HJ&fkQb#lPHQFa(Gc>ksxgBSsWyit zxti7<5dWiB>3QS>n-^Y3LuS z>{10{ss3Q>(JCF!-J7PR$tBh8dDMmkfyoMqqqLfe0>i~6P435ah1a{7=GzW>NA+*ha1vmMj^z-*y|!No8Ar#e^< zDs%`RcTewbLvx7+;CxP{j=HF$&OduO|8NZKBDaY*9e+AVQy_Nr#_DdUoC9tO)Ir5M ze~T0s+!Os58@Z>^s`FmHIbahO)dJ;j!XqYXN=-CO>!YcBows_TNIh7odYDJ`_ZoI} zy5R_{VHsQ6yXK1SVPM6V=|a;*SW)^woLqN@`C#0$T1pEjw!;u>QGTj4X4|XUB&^bc z=Ly!|g?w~Az(Pxp2>TGc$K4LIoq86VLYqzOg(R}nLmhhWTIVhO*DxLI!h!{b-4+)(jDX+6;8S7$c zOdFJHUMZ!|B)uSnX}u|*ed~xygo*9B-QxQk=bu^@e6du{c&Lx2yz%s{hE2boD*tR7 z8C7eCUZRz93D`5dangZBvz<;QFSP?re|-ODu|1nq%F**Si^DCvB~dSm*L030rOC!f zl*yi&>&ZRLbO;rXksZ!eOzb)yL2-IE-|(sZsIwG~CQXEhfzvV64h}n0rmp75xrT%3 zl-&CD8-vqJ>bVgv!qO%p|AOI-Ig=#>>ei-9hF;218-xr8e*<<)b}Tqsr-Q5?_ga|w z(RpHw!PB~am#a+$aY8>1ZW*lbwZ22opW`vErzvj@Q5aa97BHI!k|d_vI)PZY%+pL^ zLtfa4DoW{03Q#O(TF>pegTT=5g^wDS7er23Zmq0K3cF(mo8OiKj*~{_yvYrHOPwT7 zdz`d#5PeMo@#g}q1T>jx#{1>k~|Etmn7~K1?R?u5Ur&uP^o?mJSfGi0XJv z)5pON@aJGP88m{rynYy;@qgRTm{jy_8oulN8=GPW-0lI|l6TG3hl9rm5WOVM53HlB zWFHVG<;Pse(p_lpdbU4H^ibRcp?dAX6>(_R;;>Y{9`uqVU0kdh1jD{eY6JF&Ah>mr zpY8eyfQACgFjL>>?l=jU97dYfvp(?DElTErh+kj)M9BXc4oZstMp>T(x1HuJm+&#? zFBv3+ZsLt&55}ngQ`i_f)?;tQ0+tsUzJqHgdwE|}`R9viE7E|IQ?c666nPBu5V2-; zeqUCsmxNxGrO!0Jfo9Ktk~fXO6Q+Wh844zi>G(@cs7mkwZrvjx^1F4wO#?3=G! z!b}BAcv*Vj@v`pU^|8_a^~FC^d)UVA=n5W=EN*)U!3HCHBq1+H3jc3*7aaxMeKqL# z?;!eDFYz6mbkFw#9Ib_R3Z=T^m@_?3)dnf?6D>sZ+lZcn@8m4GhXsCY;#rF7iSU+< zAyH8bkkueT@Q4CxVc>fVs=gHubI=EObLEaJ>|+5~uuEejV78uge$#jdi^&}F=6%es zFV63Kg`R_%G}g@tPiaZQn

    &%7;PS7*DtrS+ zHf6TvS+L0Cz^7&nQhk8iDY59qs)CBIDlo8L8X3x{?UI~S5Y<73Z`aa>Jg;hfdwD%r z9GGB0r13G*E9!6RlO&|CY8X(g%z+66TL#4j0#;yT1F(*whkMWldM88VB9$RC8 z;&&9m!6%^BCG#=m!h{oW*fyGGksNf3At9wZPI^xs+HS}R2MEMFMBtBPPupXIdu%kO zN~cND$&v}p+*0s_l=$y*ieSqdb$bNuoKzS^yFp?3a>}G-l zhl8LJq{RD^elahrWOb#qQ$2_<-6_$2ny>Mf=HGsmaC57Gciw(%A%7EQ;>f4D0!8Rv zzL>ZdU$*by*rkI6642LW)pNlYMc*30z4spLaqw2b3GwMH@Druv5PSW|j!~p~wf+pkIeUAK+^;X>%iOrOOq?W}uB64v{E&~^h9Y z;W>OP1m8+Q(eg3Ud$(Zry}7R2kP#sK*qzhQabzi^TJYLj!(Wzr?3dWxhIN?rZICzu zGjZl{>YzN7*p{5+edq-vCwvuf_}FFWEBJ}3G>AU$;hxXAURM;{L-`k^z|tuu$WKN5 zJ*j@bURo5q=}T2t;aSgQbIeU>_oSq}h&{a4%Ew|)IHciD<2gQBSRZKM@&nIW*;_hE z*$J6FpP|aJQfn>8UHoO?(_cl`MYUnBov-mH)5Bc7(6Lref$o!sj?Tks%^p|=;pj57 z7{ul)ahm>q9^C8ryxj(G)zI0Yd=`F^qSz?-Yf|w=dVh`*QUYoIN`y^vb=^QeoM>KM@oOc06z7P)m{>%KaO9Y#&)#CG0gRXwS2XrD%teLe)N~0m*-^vZjE#X zC_Rajk?HJZn0?YTGpVz%X+j5eXkg?t^ulEHfghm7AiZnM1c!aj!9BHyd%yN?%0>7| zsAL54?@8tT_0k6py3te~sy+joB(Wl!5N4SBiUf87c2-0D6cxeYMtm#kLw2w}_)3Ad zDX9?0-C}A{70N^u=wu~+>Qb=h)S^Z{@7IcShILr`GV$RBtiy>HJ*LSpv;+(4G%*o95%)~&qX`n-W{TOk-zt^x)S^(MV@)J`R_@+`|G8l?)$i{PB=VU-Oac0 z79KjvkQ^rn*Y@2SV$VhU;gg;(bpWgn+zYxQrpt68s|(%PXY>tfq_QA&DK6nJ)o=W& ziv5-o=DH$0S}_pj>Sk66yAljd(ahZ%sKn~|k9*HWgP=tT)Rzyy&eY(Z!J|J+@efn{ zxugFu#Xn5(4^#ZZ6#qzyG^T$f#XpkbA4&25DM|5{0`a?U{eS;(9nXe4CJXI;i}L^Z z!@np)zqjpw`XCw)Y7UjAi|@XQ{@=U)=bL}@{XYZVS2zFD#O~{@&;QKuzJC0NhWCvR ze>UAO2J(j_{*c7J<>wDc{5HG){P5@C_;YalZ_>pdlK6iuNmNxGF{{{`dfKOH>w(Xo zSziJ`5n?IMa;t}Wp-O6d%4&uQSyco?C!I8C$oAjjAJO_>zM=o^G7x=U)qVux_uoIA zia>gDx8ArkWIr7f+=`6QLmj6!D|+;!87WN8J7PC3(MIR^8ILoRQL#Oj?KQ9iAaYu0 z9e3h^xYVNDE?I=fD0b0SGYJN#r;p1=Ixg!qqPqPw?-1m@Ga`rf0|jFO*1 zkyS7LsqpyBRk<7AUS1@RFo?(KpZU|BJmZ|A%_*|G$q`37v$> zRyidRNhr%qr%tJCMcEl5vdg}WNm-ID36Y^fl4a~;8)V;=ZN{E;!Z3!$48zR#8gxFV zPWK=1eLU{p<{D<^eO=eo~m|(;l-GRaUq6BXAcb2+l`V@i1ieFSOQ4T92*tc zOk~`&1bGa39V|07dy~sgB+2J&W>LTOC}3$2Grt0a&PdmN$kluKbPmXWEX7{lww3?* zTe-fz%A&GUoo>NV?&x1Qvt1Tf*ajnkvvY=tJCr4xRzq^?^lI-Y039umD z*S>&4WKK}%t_%~?H;=qhz1SitL|;Z%1~dqIXQFI+LGdwDPAKKMN0`5jm3$ucqaFim z!p+;rg)5nOu2K!EnG;GD0psXdLzmB2;_#t%2XKcnOp`YE_K7(oI0AA=^;MU|jO@}=nSeBL z&Zc30H`vqAb@=xg{ogrzpK&pG;aeoq1n6LY=P~veO`ID#yxpxd{rpxY zs#^^#f<1R3s5sl*t$HNTK1TO$aAHQk`v|-S5d012E6EN5ZWmJwxwmESTx}ZFhgu^v z-ycyGUZswO?cMb~MfNv>%W#1;=(Ejlt9I~RdX>1pa&1zwMs~oqD<5O^0+^*w}5}i6ep7^0_wia|4ooRh3m8|2;6tL=Gkwjdf zl7k7pju*Dqxm8LT3)$uBxX-M7wFkw4HTJf{iXsv871Of0#a(VYr7E+zoS*%DsJ_22 z`NHDKqVQlpxI6s*6VwM{QJshxC^3IC6z?U-ciSYb)mzI|Aj2~9+}2`t0hy1JeZ#?g z>etu&*d&UN*cSF^D+Lt;e%=}&B_sLp6w}^Jy{sibqEr!idEA!?PNPf)M0eYX%YdE& z?5D;kV1{64qSY+7@qj*Rnw8(0Y#2R~96@xDC z8Ugpg-^bWrFhx+NzEed~AV$w3ZXcrFL8k6mTZS?DL&d7lZ4;4Iq;va)(Lv`9JH7Do zdhvD}fJ-(QC)*$ax7~o5!F5V2YBj##-}1VBr^GY494=yzUFG_+5kCLpPCkFC{A#)_ zSRuqp3#?i+Eur)9YzKnwTuiFx8=$n0t(Wv@8)Uh{PC@2GhB;fxl)yO~E$C8bW1h`f zL8EdJS+~q+9pej`#bZyiXr>PmC>0b;*1F=j67|dD(OppLpT(f1t{RXp4bypvto7dZ zVp#>6v%_ZPl%hHw1AnCZ@CEVWFONI}oj_d!Q>@Nx2bgg5HQ#gQ7OwIZ&t{kDBRrN% zj}7mpeva_%#tOYv=6~?l6OI00Vyp4}Hv#?7aXRQK7F_PPL1ovd^5BBy1VBqrCG(zY zH;gagqfW(QG+^IRzrVwyUXWNQ#5f5Bq&o)i254`bWOR7PHC$JN(xC}d7zfSLiFDcmA*>|8X4mAkKOp`D9Xu4DytW^&j4dUM~+h-o-E6LiSL@}feQvl8N2!hee zJF{BhxExIM!7J3HLCER*h{DVHN^1)>qc6?ES$FX}UWBHhJA!5UK?i@02y~^XqGAG9 z@rh$=x)7RlF;Z7(bwIhNyYeVbT&<14iF2~ z$dMvwk!eledPWIRzRUSZ0df_ju(-4aXzRF~nHMJe)Y6z#7+4r>9B7hk;6GHUfUIig z)-n9-)uW4gB{Qykm?0V%>q`oO`EzUQn)*D}_!}AiesTHt#yx~uk=qR-J%&zA$GN6> zh)aV2`MAQ9Jg4Ha(kfK%zl49;CPckR1pqvhCHjpE7yMiN!Ng$L-j=eu2jPI~`V3{z z+0yNI*b4V$NEb$fH|azL5G#vt?gkvtxZZ)uXC>*C^|~1_#ws=r=1)iy!fzeuI-n^J z%x1VVW$WO>D(HF_v`|obKtqQVt;K{a1H?sC*?g&KcFEKXKCjg|57a91TAZtQD619e z`sVf5+;{|3aBSRDvW$=yYP{-Dx-#{uCf+8ykNl|I56M_bVpv^ppDXBiEM@Bo7(RmT z=ol4th$Z};`TyG-x%r~X9FWbr4;7MAChf=Fyw*d#ViN7n9ssvAwp>;U=}YX$7f}SUErwK(T2}EC(U}@ORQ4& zF(fhJs8vMBRUotFBXur?`XTR6|BO->A}Edhd*?S_Tufq#+TnJ$(E`wc%=ZsaDjDlJ zfa5sS#=tC0rZiAv3{#4r;}IN0?-5!(61r%bCqk(GPg{CgqP){;0RsH+`j=hM-2n6O z{uSU_h2jMiV->{}j#t{3bk$|cm@~V?tFD{ra~#e$d@+3U0YaelqYmtnPEk1$`Q#B%iGS>GS%0g_m90 zvVAXDVxl+X&i#~#r4A_67Cq!9EM%~uZE`+cVhdA{U9P#xXLsOk&dCa6U%wqZ_lFb| z!3nF;@Li0`O;f`GGniJRsd8Fow0PU*CRQx~Q#cT|O_~XOevs{B-fzwJO%)B;&yEwC zG*)5}E3q54Fd%tx>x`nY5^CvVa@xkEr#b}{0@60UnG5+z>*D3pY7Wf=#;`Y$U1~zw zjRt@ZyEJfxRDRI#X~dcUO+JfS`wH|;oUVl~d)tvnn4zNdoo@E!r21a@GBS5W9eE9$ zlf6UJd6WyW{_^fT=P@|y6V4XlTr z$NDS`I*)4%qJATN?XwHfAcenqV>|#D>-+S*QEm;JR+ZlD3NcU z2h5de{J1!Rv4KzXH>)%xk2VZWW*x8hwj{C2kXX-SiZtLeTBG1D4m&v*uo+(|)~4+h0Nux?qXE40GCjS? z?n1y}$etsy$^yEHHGigPj@cB?15sdIuieJf&K-QRx$8{NLh4JmUCSPbtHOxXzt8-~ zJwU^ifadRNZO}61`sJW}Fva8U6LUb&GrL-sMGYutuJF-W(Jl_UjZfkDT9L1rg}wS1bxx_hOOX*iDdZP(?KJxiD8uK8 zMqBXc8|vYVrlKfydC?7A_tf9ZS0}Q+?WL4i_4>ykL9h3&LL{*4o-G(lk;9wE$1jCh zh;}NdiK#{}R ztcF~%0*9=tJKEF6RnLzyIGBF@Xb5cWE^5lLO$J+#^dX8{afWaN5-buJITq!@G{$ni zb*i{0K3}=8GxF|{^rX`jPa!+q$8=HNL$lS7*d%Zr_u7wcD)aqZp!_fM$UET5{Klfi z<+0c#QiJj(XY`_-?mE81M!`3=G=|A-%PY!spw}uhm;$30 zt8u@KY1#gk3}i`>sclBzhDgLas-w4=30+q#f&*0qu)C5R_9hn_F%%)k!=r!yO>R*A zT*E7V;1kXio0$Rgbx#}MiZSEt`*)u6R_o`@7Q_~023rw;Lopv<*ZBXhRamwEP zd>GQ$IpJ!o#PPo^uH!2FRt7m>s@*^DChAv{9P0Y&9+0!lp+6n^<}3UNFy@$r%>O@`X#Y+$tog za#BQhQ;~+x7}sbEjK1jK1uRigIz(@T5R9x-?y7g-a2)_|G1dEqa{_`yopYU{LLsK_ zWO{YYs$I2M2|jZ+u-TQl_pAc=^FUFq9j#r#{YxEgZ|409+`uGiIWVE!kS66xu2sM7 zasg`TVK7WJ#GseAW~|FI9E6-6z`-R8e~vmQ(FTjngoVb$`p3ocSBLWEgWv=+AvUJ* zdm%f6>Pf^<1l`3uf~ftO{_J{U{lQNxLw*i_*eN7$Z4bW-aYH3jHRw(f?0N6tb zsfim$q>6>fx$MEjpL{G%u+r{q^jw&Ok68!QiC51&a^Y)og!Fb>%o1q?+LdG!O;^TWXLSi{bx9$hmUkj}D8Yj@4~#ptd1%$UkX?9w?M zbf0V-1r}gz@2TyPVVYp78XyuVxSJVs?@%8GiZ1|!%#$s>(ShJ9u5-1}z%o11bs6-q z*R21$v%r0fM3eab#Lyc@%%jxw5icckYxi?a9pV%R{%e*_kgH87Vi1*6y@xBF8JN&e zc&d&mij%es1i_e0o&52CD_&MM)#EwReY|Dzu_Zt-(U(Mo8`2Kr0Cf9u4KD=Bg&IOe zEh{zb6K#j34szl9iObb&lK#{QB=y^C90iDO_Y!>&2dN~5IrvBTObDBCs+BT8cq{jcXvV=j$ia5W6md+NfLs2|$|>t-Mcq84F6 zWJMhZ?sW5(iBRwbqK-C}k(vMUk`wRSrc%=v?$Cm0to5Z4;4RolTzG%@JKxKaybb~)IY6| zjpYFWAAq&BBK^#WExcoSp@x$aL_3#C|$#L~cNAqKUfj7~DJFcH~lTm%Fu zaW)LGK89Fibl$vCHk zutGHyNwqlx_GN14Ax=kZT0PnUf)9B0+!>6}$oHfTj0iG;CYy3#JYy92tQ{WK9d-cU z_mG;PLw~DJrwq}ZK9JSV5k-mJU2{zXSVL#ES-KwDcPzK5TI+j2%iCyvtE1w~AIzZR zN4^;5X0LJ;Q^!JTfaL_4ZjySx2<%Gv@-c4IZV;e$oL!@`M;+9>0HW44AQz@&C4`h? zzbbK3I>&iBH8zmip8*`7ZacXM>O_2-?11ScjGLh)UxT${`g=Q>d6%KmJ;0Q+hBuuV9w8JVy=Kx!kwhQM3{l^{ z933dh-(!S;hcY~0f~b3$E4LtsLo7UxEl;sAP{hqP4Jb)|+On`-FdKFD`qk(6w8 zAOnDXaiIg;HFB(0#4}<@9b^kzMJ_dXyOKmNkghA5ZM(!wL(E3&r6o8uE zs4EMyn~5V9)90124VhT$=tH>RC>RKnoiMW5J6!9~#>|_<9etU5&@$n{RjiJMnoJHC zEmY%lzgdJ*y&E)Z-L9zbovX8{KC<}bzgECReUnywCnU^;?f?Iq1bucq`v`Sh_ z{;j39@w@~;!XX4Z>iTg9uX%gQKvdEa*zSu!3)|v=Mn2n+aKkKt!Gs_3b80hH4l}K0 zG_c4YN~z8U>9vgjU$G)2SH8mD_vXNfSGJuW+L%F}_Y&j{KMx$eo1la6;mgtuRK2@H z9kMc!1B8#m4s@eAwLzOpEa4 zO^~4VP~(#kNOM^o-vQDc-C0zn@34fS^51FA?=Q|A@dLX#9d3R#H>agl{I#rx^TlVa#qmN^n!Of;7{g>;! z{ebBr#7uZX=PF#bPV52D6{!`PVa$v~y*}axw3#G7$dZi$<0`RtHwfGsQ~R+MJhC9% zcAX}wki#W%z#+VxoaMkyYPz&;FV*@Dq`V8sa|y-~Lt&#YK{U+AFxGRMLT(g*o-;l( zT1k5t>mv-M><(W@CNp2wD&4U+m*@Xl_`XL;{6^U(SP4v0D6VOdF^GDlju|=dlyKilKHYo{H0SkCflN=|@8h1e zl@5fxlHfA9j3wzC@{_P|gF|aA-*#r+paxhV?W`j+hc2L&@H_czKP^SjM}U`Ong`7r z7j_;`b}q96c8EI8G)SOSCV-lPbb!wqWKp~+d%o1Np@E6oE40ApQ2rnzDZ=+#@+jX3 z^(q#^32rB0MGZWClS&0wsu-XjYM_@SFyA`0|1&G0{O1H|AmXzB;%-ph?8U15MQ7bNA0@kO>EW~t; z$_=?_d3^hu?x|SzL6CXQX9jXaq&m(AGoyL6?$1Yn(SCIJ zOR&b5IH0%;My7&CzUqM}K0IF}&N^=Q-%Gdk;0sjfX#qH2DmQBJMPT;3ba?zykDKpr-)Eqh4ArO??@7?91+WHF=Kg5>W>4&{IF0i zV%d;$hf*g2jE16ub2% z$Xe*tS-o;r+a69Qj`W%zkNI=cz*0StgZE5&NjNaKeGiuhd3Bb%7ah*3dSYR85_+aj z6keFLG9W~8O^n)o;OIgTw$k;;5S`Mri!((Cxvx>!k?sj?agMXuz4xy#%4usBN7lcl z^aF#wCmS|rDVd{1+b@E-=!Z;c(V{i661ppDuS?!E5t&}>_H_bH{gSymHlkgAOag^h z)$RL0z9sOXedFd(Jpe?2P8lj{IRK`Q0#U-=KY{JJ`ztGlXik*LEmf=AVAx%4yaIl1 z@)h5MUk(9l1hA9emx1pe5=&TK1?1-08bg+VL5s3S&J50?(DvSWNJo@8Ov6C@kOi|^ zy#&wz^jub50(irQwi1T{y+HfJBd$?Qb_3p5Av*zQgY=PWLlaDPgSx3>8`j57CNIa0 zm@L^S9$dPbs8|VLrM?l!qfS^Bb_!nFdA{fG0EdhPJc7FNUx5 zHsahM1hYZ(ApH}2M#>35N1=bE^*fu!-c5>oByIV4(Z!7!d;(Q#R$912kHCKI`^4V2IZS6xBp}3c#t!U| zYyk2oSjWA;DSZSak^9A;iiUy8m{5J37%;@re4K^De>vQwdvWCjm7v}MUB)1#)K5;Q z0Wp~|9<|8SFiAV)noT>kgE=g~isVGO!JFfefDx^;zKKb764G{M8xWR5`%>(kz=llR zb^iPi$i>d>>8}jIqLkna|Jpc;rvP(`R#RS&MJG5KqW6yT9%ByUT(+oHqQTCjoA+5u zTY)ur;iS*@J1&kVDI^5U^B?>mKhcGJA8t5{M+CqcxLAL#jRSNfxiiz5dL|-B{g>B$ z!P{$Y*{V$TAEf@d2Paq*)G}9VW!MO+=N|lV6#Uiy>F26+@S&Wqtf#?;-rPOsc#1`V zUEJ%E3J>o3`-AT;ZOmW~^H~n+QsTh0;uH_FZ4Fbwn!l*FefEeM(cRe#2Sh6BCp63s z?{GV;HDfISDiGscGg>mi0%|r{XJ7usP}*i=i=S=r6Yczw-z2^pET?A1la(#LllV;% znY{jWP#|39TbP8YQlC>v_{Ors?YV@;oCrAm|H37nYa26QVwc?>h0A~|<`7Hi(Sgk& zH<(DeBS{ql*mAnwtA{pU--?3{8-?q39--S((k?Y{ui zM!50faVBQ!74@s?o21F6W=>pU4rQa}H_2~unUpBe;s$mnz=?gOscv(WMWJiV`N2;N zF25dbR{ft zH5Rp;4|sCm!BNJqtJFIu)7K}q{~MQZEE`2E7n$5yYNnRE!9*@!lr!HPrd5L>w?tw( z8thR20k=TFhaRjg&VKPfe$nvrSW+}^y&r1IbF#W!% zE`L;4(T3ozwc{-oom=!o+JMO`?fJcowiJNPTFq9c|1z=E_mPnJkxoMF*TYR^-~vRt zGyMt|xMHiT_Cs1ekP;Vb(-SLTX%+`c&i;r~Tv%~%*Gz4sKlsr8Q&+d8fe%%^6)6Cf zg#W^&mwPs5a8egMqKV0nCBSp@#rxu0!`Q8u?2kAVW_18(rJ9~maue)yZnVVa@#qo9MC*m|sW>rMiv8nGwYMVgSWK9vy(VAQB@m*#bJr6qBz@C>X z7A67K(SPBR!I6y_-2cJm3AEiD-eyjux=xz>gTa*e<=JLB{VG_$tEUOk;4ErYl>Dyz z%i%^m-LDjUVK=7Q3I%Q>m|N|J12F-(B;6~L(-kU@g-8DrrtY-?Ju7ZCzGd>f{f$|p zwOdo}zW~!_+UiGjmG>N|E1C}Br)CX+BK=OS&yPT*H|GobaEvPZ zJB*n|kGhv1pe%?@TaE&!|7Tpf%eL78^n=Ya^lWRm2h8hsvB$e%pw<4*VB+Ej*C~E{ z`?B*ru%F%sU>1S!G|S12{c@dK|dBy2U|RO7C(^>UI#rcB85+1 zekUW`0;-Imh${8MSshv*a72D~#(u&jTX0nuaE)L8VDs?hZ4R|e!MyhHc64u9NSg+e z*Q3k8FxNexbr=xZ9V*PxsQ}YlnYzmV%i(6Ie?|g;)&F^46d)!5m)dlJl`TDENV&7; zA29VoMgb5iriA?$U+iaKda|J|Z~v&SZb$$R>iIqC=`ChTu^+7N$pW5ZInt*gyu3_e z#Q&pLRq?jFPURq8Uc+Oc|Ir&FKz7zX`fXwkc| z#oyZ!w|uX^=^@hr&ZlVqzVw|gaucY`3uyq#-PWz4-oJ3he!`{Go83qS08IY2d0Z|R zZ4OT{Co(z~=kEW>90FhXf8N&&1c*tg zPVpgNWm{cE&Q{#`Crss80Q*0t;K6_K#eN2+O?COBy3%U`>I!JD6GNNap=Li?-3h(G z>V8*;ANz>_^VdV@hQ7b{gY)Gj52OU(lErgohM*ED*7XBUK^_42pG%GZIfgAL% zVQc(`kpAd<{Y~I`LIwau_o=&(AAu^<4f?+z(f@)(-(yDq3ljY=Nc6uT5u5j>#r3}+ z(f@)(|1_BX5hS|VP}L4H=|a9Mvl+^~efJ!~&nUkH%~;heY^}U8`c9v7dS}D}LDN-o zOB@3F4H|1CBysN$v!_M!P>iutZtGH+41J<}B(NcgN;{vC zoo9%fa77W^^zFiXq;i(lmL&a0U~n6^Fbl?qHYKc~X~l{Kqe8sYMAx(Kcn!bvH~Mn2lm;ZK51){aU`!z`vvU?MEp^a`3|y9pqnG0F5$7OFtk3mv$Fx0z1tW0O=AO7vcyUZ5s(26_`KPAfW&z`T~_icG^V;P;B5O6_&w zbLuK>8{ybXO3H-B0vetlNXvLn9DixjZ1=G+mG zmgwWNOl*SHuw&OWUPhB>=$_@Wz$-lP>mBsFHJ~YlFA+X9eP(HtRt;mURgOBi55;); zqUzf$%7rtFdNUZPl{&{6cMeVsDA@zmB?bqq`JI!}o*RDind87FA{pizzvQO7ts_T= zp+j7WKGfje%95!#1@Y3syQY!%c-d95a#eM$3sW0lFGyCsOZn9`?vMk5t1XYSXg5@{ zOI>tr1L|t{4^dv8EzK~Bs%ob`Z;yv}e0|qqzX#n>;qdJ%Ji=d@i1?#bi8yGQ9xK5W zV`!D0)0|;^Sler|d0cX4ysIk$Dj-4oe0)wCR@5X`y=as5i9XmZ;D@|>iqRdV5s)ES zCO^0W8nJ6Q!B2Zni|uPKbU$(C5o2v)ZMjg7M8o*C+T&wWdnt zAL5u+mFgB)i9WNq(#!2Is&aBlfmucFA%w{8qb&34I#%RNJP+xZ_YQ7dYLJC2eaj!s zRv@y2^7?gC(D%t9hRXA?@ips6ANSQ_QOL+D)%I9gW*h)59(8?WBcEjkT^iv5dK9WL zlpz87B6gsr!}o!OhsV@oB^7=YqUPPevTX#rWUJRvMLF8=OmalqUi6T!RxwEfYmqpT zMUt6aH^VKmJ6OxX@!l{taJe*s<~#&AKxVW*`^^51Yr;=`c)oq+Ag+Yy7iT(dM~Qp> zrCCfuV3?7eRYP;{E9EYqF86qagbLVKjwiO)#3f-3;Q8?Q z9ySXcz0_E^6^@(?OVn(#z${!UUZ2XSz5tc?a(jj^Va3u1=pzmRRwvGx^FLWPd@$WN z`kbv|gq(S>+ml9v@M-JK-7%`Uf*$nnJdZC(zLa2KgqGjwrmbt$mP7O#L25SL#myp6 zm~%cfK3W^cufEN(@nSV}-H_Tv3|ML>Fe>XZvPz7pxU_~O1ddK*r3}Jp zFY2?KLE4ge`NC$Zcp5~n)`k|Cec)K6t1ETLU6Q>+NrvR`CAU)y#pulWD1l-V%Pi}} z)o?8{Ts{ibpu*Rt{l}NY&p6|tO^8-maa{5>^-Dx_S|4{#~w?82Ulr0S~%4NN5DATN7&DVSGAjnF($Y)0;3{m z_SES^T#Pd8g-%%oJFelP+4igjHOqlUJRhn|%7;;@&Wbhi9BO>?06MZRN#sz#&`z6H zggVw0vsthHX_8i1J?u_=JnB6H5gBwGYK!Bo&1rXY7#45EStRFtc?1}GD9tSnyBh?$ z)_te^qZq_0eMtiuTiQFd8XIHUqH&r(uf@pt+GkE*9$!+Iib%pz=N+BhLhHD)v;%8# zpRSMXni0h5QKDyqGzjpUy5^%-q{V(`Fp{w&j(4d22!X?b9$$u8@f8du#$h+FB?+!@ zO979Wbdl;3sFKp!mjVY1<~j_FC`yVKe5sx@gUPQ&jedX{_RRuGcu8rIzg+>CiYuTm|>GRJA4$&X)q2}^q`x2nGr~p z+)76>|80l;QXsiHXrz+tACwFVAVa^E(7Y`RsxJyBjd$QJ5XrMu!s={t!-}gk*&;ZB z4)G@JlU-?`JM0g`$dcjUm$|*Z`ju6qD~mLqAkK#lErMuxcI9+LY=E=6lGB9QEPjnm zV!zvZ)SHGN)abyd)`25oHgL;Fzx|B}|6y%oySpBwrz+XIVf~aZ*UP-7<1+$lDm^`3S}tqNy((oT zs2Z=RFz_=AS>qZ>Yqe6Awa;2B5f+qQzJvAr9H5V17>oFtOx(+7r$}N9A(la%Ai{+)C-wen`9p^fPq<&CgGF8tSgTD?B+&3!(+;*vircKVLIg^Q7HjBw=U| z-QV7)L41RcVBDXbI`Zi0+mk#8a^F1S-nZk{hlfYh_NAPB6p(#QD@By&uZf)pt{h;~ zjz6IA=)mv$rZKC82}RHb+;$Y7GB>}r=VG>*Z0E#<7|gCKu)1ulL&awN<2rdM{QixYWn|Cd27Q4V3UhCTYV@Bi4$lDReC& zM!a6B!WrK#DI-}aWgDFe_hv+kl*tv`mN=J_Z;5r&TOMM8B}s=eysySc!-;8~_fDzQ zo#GA1dWN3vNV?bkr8mZTC-Jrt!^yLFfbFB&l&qgX)Fbw-I~yHyAI^j3pa%FUsBg}x z%ttcw<$vA4o)q5EA#qY9BI&tZCH-{E@R~ZuTG>b^`s;NTogya#v2?$ftRW3zQE_DSxFtub{N8 zP9hp%Snkh## zjoS&uh9PWo_)*#&R-GS$Z!1#xMU6ic6GqBlF>uUn3)Ohj=`^=_YhSeDC(>{E@a1oP zi>t-hR(Rn9%Y21Yw;{0!qMCtuyMc2}Hl>|cI*b^Sryu_L9*Fc$+{hR(Q6lM5pB_uS z!5j6;zT`%?a|Mg1Ii(%*_LB67coALT8nUFt?DWK=!*^Oka614$+D(lZ>CTD)IXZ{S zOt)xXnPsI<-WP)vn{bXlP1=mZZ|h!|lLP4W3^#a0e5`iVD!M1K z?Nw3Jtkx9u6}%&BK<>F%c4=ehRDgiwPB)47##)I4K00!YG~O_o;lR@@S(z1C$r%1) zvPI{4AbMD=E+l%7SZZllPg(vp2BZKK9wBD$jVrlVQ;^;<(%qETmaFZq8TMYfiD z?JIMXq^2jlNd*PzNX_FdjSnHhsn;UMOi}4OSrm%I&v~hWtHT=h%oI+4-H(ftT460o zxq5G4k)2=O$T;bD>O#UmvHNthWP=|4EAL^PXQr00)ySgkz>*!q5^dbKJZAG8hSrpzJo5!Kq2z%$dZhz3`U~rz5NxtqN{+ttPWTmd2 zb$_WJryetK7aXQewoin9_{Dy*N1b9)|NC2*gm1(L5h%Mh$ycERrWhMf_+p5_AF$yB z3j+q;vQe_qL5gAn)6^66u3c4jS-QgO0G@tjVm&y|tFNIb+WNDp{{d0Kg6#&y{+(O?)IcsXJ!)S@YpPl@0gYuh}xLpv(d{jlmu&vb+(Od@74KW+s zGn+~9LoilgS{>Wn9?9UY{%7-!QuLm${J6ft2WjO)58_i@JfBWPze>7)q^{$%m6eXd zE_Z=vfb=JNJSalX*aqA$_w?XL0rL5BN{(s?qI{A(kXWkK-1Fh9jR9@aA^<*PbY5|Ccb?^qH%qiR z+7K=%+wgVcdl}jgoU%2HOZOIGqKRu!w@f}}|Hd=>_!82dD=AAX@r#5DMJ3LmWGIj2 z`Y9f_+OypB9HZ{NstONyEbv`pr9W)2=oy^%^cJMG=LI?`*vk)Y`C^uS5Os!pErrNtc9JQKHmcjPH^ zt(Ec{odt97iiZ(<&b!zRUy)^$^eIlnkvf_^W!j}F8iz;JWU|fHvlr8Olb*BL^qir6 zE%?)(1CC)c9&1$AL*0mkHO%q3AiwAjFQT5}6Hcqm zSJo+NTxC(1c`b@67lBC{n+n1xt1T%jm;H#P79EBsg<9GD{UtC2AFGiI3qu)3uSGO3 zHkLnOlPl-JiQXzN2t7oON!_m;AsD$!AB$$kz7H>PnvA(Vj*lO$t5N1?>diu2M^)Ih zE-__-L(}Z083{`7&-=4<*>-e>m2`;maXcDyBviZ|z z={CrAH`P5lcFdo&Pn9+Q#;;c)zwl9xx_pNo3}ncxd_6@C&1!K(8Chc=z)v0?K{Ik3 zjz?dr?|l6+0Bi}*C4lfE3f z-K`s?R?6|xbY-7oRdHLd*im%fB21EcVLZo+ty7nGEjRm*`f;9~ViUxD zQp$0jiqo4+A9X&iQSrz^X3icK4JN;Oujxr}NEijivy|XXSrgMB?}i;EjJ4Q5`a#RneYN8CP~PL?=hQ`eB~BJQ@tcUZ4F` z`=~1Q!_t1pu8N_~xtx3BJkvg~BhTK;XGA-8KRrLK6wVJhHh{K`(ww~U3h}aN7D4@F zYF0O?1fVBG-`>4&9_!kff5#-%%atIOFLGGyFWy{*F#N!70xs5rgl{qLPhsd8`;;RL z(rx`6JG}{g7+AP~!ig(SdCu88b5rS!2vs1%L7YO-i4h#p!ph;RoRqBaWbGyr^wKsZ zc4Ddee6hm9c$1w0L&iRi{HU^w=!px#q?o+%iIGJUJx=FzrLS{oQsP%*@>CNPHFC0j zlA}eu^msw#1($ezkq)>L-J>v1FfJBo{~)2#J0A{OS&?s24k|rZd_fq*Xjqg}0&Iu# zYBbv@#(YP3wbAtcQ~g!#l~=D>*5dTeE+Jt0?R}W>q0U^_FPwq&s_;FF?;k!Z9Zs1R zYI07tc-infPD<3U(3BTfvec`uS>)0mbc3AQc71#u?any5G7$n8=o*Y$))I+`%G)1q zR(JB)0baLU>vn_uisu@7 zd@`yq&uk#cYEt^qUQ3G$T2A=WC+~?F9ywLOwMM&L)prjAj6@d2#)@Tg$sTRG_pOs|Dh$tb^F zAK}s686#{dc<5WTkIF@SVJxj>+gxIiPvh|%GgGr&TUWOmo_cL#f^V#-IlBUxwH(Ok z?}Y9&y&DaaL+>DhZwEpDOv4tL!>;3vSR%Az29^3Z+# zJda>S2Gu!6I8aSc0)Jbnp_7M*#5Q0~Q>8pE=|VZmA{?Q_Jy?Y zV;hfZP2zZHs1v3i)Ob@7!rrg`>UPrWc*m>zq%In0>Ix7%-jd zD;sdq=ZACH2!BZ@C)6VvDRXY<+gbd&MzsjT`zFeTyb>?5ltosvIGkC7 zdZX#M(tXNJJn~Ft*hD+BX8xYa0EtUvvhP;@J>V3yy1A~YbQHc|S=mN}EnSIan*YHc zRIffGL~$BN_q0GbW(5!9ZV9L(<)>%Uw9j6+YUaD%_g0oY762 z-`f(T#dt8Ihor;}hneFm5xeA6Vnt5eSaEKb1K|wUl2C!(>sKpQ!zK*@ydV1qyqE5D zbEB7Bws7$p(kwAp9XZNvZNT`HN&k-%A!i+L#rSAxp`?{((J?b%q-YwM8HesQ%6f4Riquw8OP>AxNx~%<}So! z3gm@OVCCHlwliy1^%0JlVu*w@_R=oj?wbVs-trrxGD=vP;}%0gX=pr%==R{0g>G?DW9UX`LR{H3z@Lu!i1kZP=cx zl;P8<`mP{9qAOqQ*Z>Nxbn0987gmQc-e_l+5I@d>{HpVC`O0zcbqWY@e!t zIWJC1Bc?sDR6wWFFQPGtuQ!lfn*0&I__?~TzA|ka0|Q)*(BPfy+jkT0-!zxgh^$h7 z?G+GqZ)eii;oIHKvL9O-(*@o9kX4b9=;jv^r!FU1pDz4=?7d}JRa?{ssu&0;D2Rx( zNY?=gX%rA?>DZ){(z$82h>A$Jw3KvrBhpBBgLHRp;?50tKK1B#zI&hh^ZemquDSM_ zHO4#MF~(eT>0b_d=+PC14ZYh?n8KX{UJBYXZ{Qct2uxw%ZM8X8nlZ%b%i7KyrBP$9 z;Of}dO_C=wvZ8{ky-1@@y>EU1&)#&k3Nkhd?e*W^qR-B?MMNS#`ce0Ntm1H=mRx^> zkCgFx6q9B*Z!=#KS2Md6M=UT4nqiFV;0oa+a#sv^p|G9Vhq~ zG?6$zq2gU3et8b*3h@}(c|aP%6bu7w5A~Ep`k!|lN~emThz_dLur&;o_Z;iyTK)xX zR8xL<=W1zF??L-mQTEYbCBsz8s9m%Qy#87c|MXTESs1MEd46}{0%lQibKZ2h1Rjuk zr=xE|wrl0%LDD-R$8iA_iLc_9f@^pi(00&4IBhvxedW;{SDF3u9Gxh@_rDC0WNJxk z>rbR9j0A+p=qYb zt392A60CbdEt|(W)O4Y-3=S1t*tUKhNR_Luh#dPc%`Rtl1H*wqhc(k;x1J<~)iKo}`+4LrS=GRm z#n--VADuyH_1gQzX)4S&vgF;LRh7u8of_wJ%GZr0;z5-KK$f z-XWXWX)x5NZh$h8B{l{AqF4NQ3cpFMX zNT=$f4<9o0nT+)A<5DTdgs+sB^;;+^m~)sNB#Jpi$Kvx8wjOEV6o8I1jBKajY0tjY zoz4)E_4c?7?ZP2gaDtG?)a?YikZ5Lb*`n3UkWMQZ*Rbdq5-F8^v#_E<;^et>gaITC zA#OI}e7%)k%HxmIEU^xruWk-YZ~Lu(7Jr7bn1ztC9$JQLmxq@Oj!fI|_clr@F;oF! zSVY<=ca7RDq+qd13U07E{EBg2t`f$cL!5W3dWMBj7LCK9MltqEK@k@OBzm@e3{`s>Rz?TLH}3ggzL zm9k!KlTxbCOcDFA{;+Q;RqalPlyMP>DQvB+Qlh(2C+^vv-+F;rMn|9ll6u$fDAomg zUgG9Ey&Ef!x5P9ksLAWBv(XlFi;p>y6zP|?^%6X$^1Jm}=UMe3`OAL&8^LdfTatxb zFPjUdRl)*5z`Ze$iaK8OW&q67KIXXG*x-Zk;B;?O^OpYWyg?RxmMV@fwO<1Rd5tqm zQ{`uDr`3K_1r4?522c5TF32~f z_980{lxD_)gjn}_tM(E@lLMK|j$%s?UCHFv2!$4U>vUQ6j3Bb`L=MODG4YU%7ExU{ z{tKM?g5e-$fj3jHM@waJ==YRh^NXM4WL|Juh1hyjYH#J7^!j3@Usc87W|`RS{_bNY zX9AhOL+7i0FM-sRL3Zl#jL0D(N(CF&q|=|fGXTV4`VRkJ?`c*>BdVIEi+~d zgX?R_dlzWKGn`xJtp#@cVVXR@5+|AB!&;X#$Q8OQr60x=&7E5^a;0Kej{D3LS}LG$dl*7K+^!P)Aq^$ zf@A1Jw@)BlgmS5A6i7+}cfq4UvYw2EdN9afaC_L?B9?+SIzkyo!M8wdNoyO#0l0dS zd~;1~!&bINdyRaB?7Vz=*^KYQQ#@;}yL|Qb^Kw(WwC1iOuQtCoaP3sL&k8Qk%#VO?0BR7T5Q z$9Oc}m!sQ+LsZg=2>~}Q+a)V#QOOcZnp(FSEu03J%Li5au`_LwEaJeSX`ruKwQ0_^ zT)kC`fN%B}8VBC^h`VU7ddct(^Rls0mOxpi{fvAFM}CSw_~k04)^dftAh|)Qs)te zd(UzOv|*mznRhn{hmC$u29XI`#3`+6!O`ONjhfD2RZo#kct6xt;#`!$3V5w5;J054 zONt~fu+Pj_dYga6VeV^V$+TEpWt?-6;1qq60pe)P1Vcj|`Agnu>vJhYkbxdr6|xdf zBAY#;)Xa(C`dtus@Cds^l%>0O$2L31YRWsZb=!|-UhT$^c#u<`ED(I~YmIHBCZ{++ zzus64SQ?NPuu8y}ht2O^vj#y19LMEFL8hHD!5|zVuQ|HCbx1|)(X30&`U zQIY&{Hd&RUZ_K9}>E58;%GzWfM&%Uu$jnf7YgjhZ`=Z-%Q0_{{aJajHvEDUC4^nI3 zSb*reiwoeWUm;iO5*tJs`29}bOSkn3jB-YrB;yx(`fD~8yk#I_oU7RhEgDZB(S;p9 zHqERXy)_q7DRB?iI!})|Ggfz}BZa5|XY`_U>wJ)WhWCQD1lP%ry01i7E#I$M1Plm$ zdw1}lRX;F_BzER?T57C3(tPhBVM8#R!xZXqmYOYjroVhck7}*R(W@FH9Tuk>f0=7w zowhBT|Lsi&<)m6uGWUbN*lm6yCC@+Gpp8P zM8U$uVW*G!C`lJS8FNY57ZllHRS1<6XUL4@kV}#m<=D(TB6*yLjBMZK^hN}yG1gH{ zJ`C5%uz$1UD$%aSTW^c?^B1AvDg?D}5mfahpTi}~Ym1aMJMapMFnPnwmpq&MU;I*h zw&Y8L&}&-~NO}B5Z(ZVvMMj3om*xnRhiwPiK3Pj9n~J>ALv&lrkomC}p7XWiiS+0l zk%oC^bxru7l}!&zW~@Hv{?U!~&Y2e}!}|u@o31$bU~9Q@I0r`2tulm;g5~yXs{~}u z5l^FMcYt{|(dpgjYuD=7EUv^rm5X{mBOjpY|28bevyUKQKzU@_XK}c!*P)+26KjrD z(VMGXINijw%r)s zXe+V3g62?RJEt=v3U3j2?7dQErQpIj-x%SE#49_v-V3$Omeh!UVbw+>6BR_Or@Kb5 z5_pUd$t^1rfAl57f`A!ss|t~oqn=DeR>ER@FSzj~#bf1AEf9dkYIc~gAbonvrebj* zkAJ|bxX#@3w^C@W9yX&rhfxt0_!V$ef(I+HEAfy~lxg+@Jd05Wk>rRlC?`EEZ1}!2 z0VnoOo(_3t=kXrydeaKzYlAM3Nc4kwxcbza;F++QRg*xO)fnAV@oy%de)rVY=NXrI%!FU{Exhy{~D4ZDl}f zAu~BA= z4|4Q(zW@ng61xSh{Gg}iCrG5Iz&OX6S<+RMC84Me`vL>su$yLMxo?bX**AJG+BqUE zte}x}2guu4h@D`^2q#YJ%XCGUK<)rZBAyw;BKq8r2U&$Au{<&Q;F z6daIVu!F#MvB7qd;boEGZR%Yqc(Qw(I6QYHX~gc(aUx%7G=!nIG&j_8(Y&Il;#q$y z({c@4^I_?pc~fGR<5$NFLlAEDClkG8YcP;do4lc?EW)hO7Q4Q|KtpHrnKM|$;Z35P z^(&$*aGu32N?NSCW^|s2gB-1}HA1w5+r8`Gj#sYtWywT0F92Fls-_v-D!EhHBCJJK zWJ}~kq5mdgtS*gBjXXALMT0fM_zeN9uEpEiAA?tE9;6!-(o`NFu^kF)k)bRc+dw#Q zfyg`(94d&!niI=_dv%Zb40O&X7-0EsA=Px_;)HLZcSVeEQ2UFy$K$9PPKPb#;Nlyaa(tA zPQGu=+OYRfr@_B<-+A}78E3Q^zjCA7gplJfIHW^&33BMV8#x*|q<%EAnPLLJI`O52 z)LSy|;yZMLAsVc=d0F@qZwNqEL@zR=8z;ADeSnj0YADB`G>8o*4ePs%IufJK)ql9;hC_Xz*i5;n4$4im(`f@pw;_e#DNfA_Uz-#&60Vu{^J!M z(FTT+l>DLNAs4^<>Jp-GUcCIK@EN^^>>^QGu#t!sA9nz3fg+(FY*}zprQn8e-`XCy zKtSZfxm+RBMU>`3#GAe=^{Jd$u;)0Rr?4Nhk6r&FzFpojRoL;6;asNjHR(S{meIYy38E}| zJqg*Xv6bG~-Ft-3ZCzC$89@U9I-*ViC=6vwgWJbZ?O6LF=|eA$@%}m}YFJ-rbv`~e zZ?*~+ahG>qsX3@CJnT1cCXn;4D@OMl2v#)!2jKXX-8Xpu)xjh=o*R;H*paVeU9>y^ zp-mZ2ln4Rw&`gQZI#-cB^FX>@<%6w9wq~g;0=jb=i`V;5ur<|@&m(bi$oAJ*bdhCR z2zxe4r#?TQBV8vM?lVy**|>iVqO%c1pj!f)nB$?FJbLU54;8}e>wj^tcwu<05TDDk z8b&?3G4VJi&&VA@YZQGZ>LxgSQZ&6cX|ET;mQg04vJ?{Geia2veoLH4O<(r)hSF=U znad2L9hP8%Y{5!7e@9Zmn$D!J)^wKsgfn?>J;4^kRvrN-^byCVot*4wo6z``o!Ydg z>4}?8UG_vbEm0QnIqej?c#m9BYqT58KWVo{HYuvHa6Q>w2+hzwO2s)GCL5@f7?06w zav|^}oq+j+-ekP9Gv@_{AQj;8!rQ4KaFoWl)Ta+Ai6 z>+LkTZNj?%UzzDvZ>q-mQlY}ka6OlCz1xJg4r2~hVF-t}ek2^}zn3`?q0EGJnmm@E z_-LUa)NiPkB{jVjgAO~7iGdNF{ZN=M-p>C>vNJZrMetv)z+ImtR8(Cp)qOvnsoom{!Iosm1H%W z$N*{?=_6M8uS)QZm0FDKBlLxYJFgV_LXMXmY^~z9>T;4L$Dh6F_Fsx^dYNwS)VyJ& zzF|k|98r(WqjPZEe)hiqr1vP>TPteytX$bdoBYY z$zh{7Nqn`!qz4v@eP&VxQ_|59ZFQA19HMhM?(k3yTo{Gj=J@9z`tFvDdt1h-OPo$e zr3|zg+=mCT(#e*)`g=hV^h0aUG=v;8*sZ?7YcW1rypfxnZ70n>j7l>ft5l}RMVkKWygMu`NJwxOL?y4eb!>!!AGPxkv8?h3U0i3-HO&0JBZs-#O zDiD^XRX&LI2wTspU{9WTKlQ$$jUr5_yH`8{h`e?jIdxyGu@pA`svB!&Y`R6WCq{j| z!Z0DU0axa7eUN9x?f@R|Zd^dp_2FPzef$a6ydeKt5pFemkcen_G7J)=&r{PaT*=0; zjKD_C1kDKv=?tfwOwn@YIG5C8M;%4`=Rgpi-q^lzmit9RDn^FNUJEYUil7ZKKHRc@ ztPjZ;Y?j`7J3mbVOB=dp0WUXL78-aO{n7OkFKxfMwtH92#uDO3&b+r-6sFPb89MWv zOl9$k)<;r0xt+w^rLw2}D~(#iFbt@yLRG_-897RyXi)IT@i-k6UY$EEP2GhGevJ1s~ zI^L3wmD}UpB65wwGsewi){(i`CP55)!nGBf@~=k{Ov>XwvzWJ*u_B7{wGXG_Tpb|I#Ckpctr^g2>Zcnj6>u_jwT0|@unU2**ta$< zs~n|>rKbi*)~9@UdHs#8Y$63I*outXE@CtqQ`6LNf#9v4{&oHMu-@7oAJt>yEPTK+ zyf`wA3Q+vmDz+4)Trrk{*Z3iOEh+K}F9xkjCtDzG<`HcK*d4Zd12WlGIaciZZBE9+ z6q#CSLk<2E4xcMw`N}YC#C8FW3I8ug6qiur58pSy-nbxdKdGRf%P>#a$Lw2kU-LNe zc+MfIVS*l+_ zYwu|TG`z|r6A&eZFz#Xa*Z}fELz=2dFjCD0nzuq6Z!5jZt~wLg2Y<~?4iwXsuoVK^ zDQ|3zvs+9B*h5BX*hb~lv+)Y3q`kowOdn&qyD(nDIdG=a-3EbCo)`P~+pVEWt^CLs zO>x0`4ar1Ko_3Rh?$~~{JKe$V4D7AhBEq!J5s00S+Yw=JhpCr$*RYrz8&&q~%s>eB z^P{~uNQNs{QLz{Gdj$}bGp>0bTu~K2dbj2Pfc-}hXb{kP`x(FTJsPzoz+#g=HTVhB@x^sONhm&J06Wf+S*WVSK23K>xk>!rCs)P3N4G~ z(4tjlQXniJlf6M6vD?IDoHjwQ=W$6{+XiD9vqr9SmZCbh&Tn zRnVf1M(JNqV};M37=S0}0kCs z9EKE?b%9#|HGrNHJ3aB9oJlG@*o%DgK)P=`h$U>wJ($Or8v=!>(Wpcxs+goU%1q*~ z40lv9wNpZ`EMD|MUmRc%opE4L7lYh`z%U%@ZqJfPmp(%&nhg?lpqURylx5nDw=Ag3 z!>3ERb@Ax>&@*j=qU0A5mfr2-g5c{(8S6pfkjag`D7WG?5Fm9P%s^I8Qufpbfq%N9 z^3T`&D56+acc)%4OuccIax%fT>~JF87j34|znnLl(}2p^-mUD|8V9Dm8;7RjT5aOf z=9*gG;O_EDMeM1snf@7y+c_TgjKwSY=C>c_9$Z=%3CSj#Og7MO+{2Mahx1VHB1JhJ zM3nN*GD!r23i-)_L*+xjN8Nawo_CDB4ks3Q$ zDgVGAgu~GzaZvXSPbiC{;&L&!!`5n>lRod#wjqV~XgPQGm_Iv{{j#Ohc;jU2IYafG~8I_!9eM4zR-Y6`VUsi;%l@5#({ zBelEWhx7dQ7>$ue_8u^36T3OMu#GxrMvzee5or4C1%i%?4#avbys z9KE=Z0q;gxoIOH+vUC8Bg6dJz2kT_dX+$2cvB8p|4 zpg5A2CUL)$3Y1lcnLyb%N%mQtum(j|c{ulDFbj-G<~Cx$iGKENV(d1sj@4J{#~DFS z+}ylfv~B|SNlNTWdYb3G3vQ>U4nlSn(Wr9~v}zByvRIg?c$FpQoO8rG=F+jB>zk`V zy*833zaIrKCbm5)R4U-CqCyn91}tEYxD3*7(u3?hc5pA^%HFhJ{TPbcw{0ABmgqs}^l!};ubM|tg$IGs=;38?rq>U?$Db)Q~@ z=2GR6Qh+}Gqp11xG>3Rk0C7f{BKwN~&{oXr7|0`##lQDD(4SlhRQP=^Qu%)2F?cM6 z2&K0*Y39TlQi&sY3vWp6p|v+iHQ&P55Q-z z2x*hu!P`%Df;G<)Z-A*nBr|`m*C$839fkEA-;WE-U_;Kd$T*n6D)HySk>IJ5N*3{^ z;QBau?mbD++Ingc=IKy=79HO19B`EEJgVuT%@xpD*Sj-M^1#n!75G-bu}1ABM@Riw zeQTnti%-DAylCB7U4T}JClRnq{icZKawfhcpeLABjl!`A-66XKDUo(sVvx`ff)~7`I0qPXjK_fFt4gnJ z6XyUVATv}ITJ#bcb&T;E#85EGMcL<~L0~4eg)Im;!62d3xn!bXA+qC&yduCuIk5-M z0;Qio$)u;7F6VCMM39KBMK}oNDJcx=3Tg-yytlU~KPeV`eP8JXp$_ab13RZv8T7oR zz_UDF;uHFVHa_e=clp?Pz;y%w3S~Zr{y+~gNWI***O)^T1(nBQg<~lq)quvj|xz+8&Lrarg&fOB&xCmCIjHq6Dsh8fOP|y84~9}#U-xuKzOlq zx|}cphQrX}Zi041_6RIMtryj$3umwd$wn-MXy`&8zzh%qrc**J1X;7yBDmg{)OMQa zdC3Nvu*pd`4#5Uvmu(E208yRh;(1mYB+g>Fp|B0IA3!as8i1O_Ge>rN5AdvK7bjOg zfM-=#*M0sIjGd}sr69OnMV1x=9jFts`+N))070p&+xh}vs&2fn`TTQzs2iwnxOm6) zJ1j{Tg7KSTDgVhrzCO)a{VY0?TZ@1J6eFqd5`xyhMc1=S(*a5D#%_b}UxaR^SHOV9 zJiz4Qlm>E7+7#3L5zMuWzK}$~Z;DkP&&2l~=*jC$^A1V`;Gzf?yatdce1(QWJR4Np zbFnD;e!&wwRwCdj;mTu;x`|6r_$D9$Wv`YAd7TNYds~-cfr$MB#p-uYjMepbKTD2z z?JS}-6G6!tgc=wd-Bvm?k$MN9qI$H;6YSHUs7-#stc%2X2Yb+22CQ0T%yZ^@zbS?# z-9^xp=fLU$oZ=HX5A-cS9qtaG{D^K01(?7{%GhoHAMNGJ2T*G!Ms@q$87%pcftgh5 zP^tU9g=9Sq36>(bMwpdV6EJ~=@zNvs6bKZPD*z_2J?+~_IKz*iMg|3-hPlwx|D8J1kX!8GIeq_9qKTb~==wMF*Cw2M(+4#va>WyAD7PL$Jjc;cg|RzZ?OluE$y* z9s-Lw5j@uK3nUL;>6X!D0Mud9oaQmVD_(wcD!#vPsbaG4?8^^y@g8n?)87|P>Damr z8z2D;nS%*J2s&lCvx~A=SmI<%#Qi%ItMxu@A}0_P zN1u$jNSz7TZC(HiD+`*@MXdI3Z2pJ41%4NZN4*~P(b za^VN+^f{*ZxyT8My}g5wNP#pX>E@ z1&CrpY3?Np45_fyrOk34XM(bYl_;>h6&G8*5OlLX`}uuJFxLSCzF44-|0w=Nc`ClY zaH)2>@9fK;7A#T2m0Z#^iL` z$}f@=&UnVYI*WiBghTKi-#RmqxG*sPYiw2%AUar>rGLjWq|)ng4RlNv@a{~?JJ)~; z|D&jzd_q$Oz-0UnRqs9ec47i;kbv+~G$tP2`_W!!}8Pvqq1z+c&CCbD%GLFg-z@LHc})OpHvKL2_V%1oVqAp!Wg&VudFpZuoCDkF&S z7TSQ-{eh});{Yf>gj8Yymyt{A@e;+uAME8QBdDGDApO_%KM?m{E#xW3wvho%{Ert{ z$_~6hfMUjg*T+I?%GlL^1T~RG0BZMof^+`l6aETgrl)GC0t_c`3fIS;0uanhqz?st zF%GtS^kaml<@*-rm->(onBY|Lk7iH)MBIP1kf%fWS#*wN0Z|8%RJk=l0uY7peK_gQ z@d-Gvm~{-Fb4Y_D z#D8@5_k&smp-Ygq_%L_sE&X9;ei+#UkOA<@ng9I!->2uaMJ|vY1QEvnmf?R}?*EqI z{~)jbX~X{}Lf?Vv{|HLPXr-j*&e5C`7I-N8H+=mEP=8Ow|AMvu*@=I*rC0v56aQ{Y ziT^X#|BIS^CmsKR(tn`zA9?-%NgGVgtBDZ`AQ}x6VD5Y4fBZAd?;NI7631`o?oa^Y6$P@{r zHlK;G7J+Xs#Xow3ny^GPG`>A(5)4}BDQp;$@6Avx$uDZX{9E}pzEwE)DNMUNS?)%{ zU(c$qycj99t?sow|D6N12?9riK2SIEWM+7rjRx}@?zeK0YSnr)X8YeA{b436 zFCcN-ZTk3<3PnQ6Y2;IV+!@Mua}Q_#HWfBt4G?sM$O$wp!3#t~1aA zLVZG7u(P2V_c!EU4WPGq1hY>Hw--A8dC(p!o zva(T?J|z5c)+-|@?e$@78L28o($w;)x7Wb#HIU{*`pwF`6uPL}5>6!^%Is#xO5NvA zAsLwn?>w0jM2}WOfkT-g7qEBIpyI__3~IE!Di)scbR(Q#b^|ghj+D(O>ox85Pfj5I zdv3qWH!uh`PsTol8T-9K!+Fdd3tp8FZ3+UXqDu;W7sX2OjdN(JywtP{!g^?+E)EsR zB+I3cA0KRZ_v;o!%Qw6j%uh=kYZk;&y$2RCz!Q(H5!|5N_VHo1)1h6-7g{5kPh!5V zgm&QIWpK;}*b0IBU95gwEqA1Oc#cI2I|aW?id;$%ty1}=63o=GNIMFDP;j-@649Ss z7(4NpptJJ@Kda5UUk@>aetoehORoX@Nh@U^Y$2Npj4w45gb-=PKW#EpD*Ej z(7H1Gf!iJ&@}5tZ+h33&k0)Ixw9!{=m2$8GJI+~3ekEWuklWyswdD5vciLf^TIovU zL|HImXHdPCw36Ndml`g2gbQpn)NAc;&gIX@jtX(_j)8Ys^;#??6Xb_R@(hBFqI8=> zh07iGs?^*!9hLjDb*AzMjs0a3BpMF(HgrC}x>UZ>)MaghO(TDEYgohm7G2y!m&-RQ zC}c)E%eDs$)+fAq8-wT|+F#yYi!r|ciSYC2VbaDh7_|A9Yizqtskd35+&PP-RLTLt zR*|E>?2ee?>uHr%y{Z&Zup`^*<@uw&c~*H`+r*8ejmx~rvPs|IFH;{eAv9|Vc?!JL z#A&@8aD()5{Rc)Z!;05e2t{Y}QOU~o=ToG?thWVE&ZlGq0o~(BRb@#W^WJ|(9Qs%1 z>iCya>y;p+OQ-@45jejK>2<{A$x%lc4u@Lw|G*`FnCYT`ZI^j|@K33^%_&m9_pP|=+-&FDvOV&)`> z&V$b7^x}DHDd*eR z#_YqSInD&w&?HDfda7F4zGd)}ovk8^84<89bdKbbk&AH5&mFgOH^BFDc9EVu6weQv zZ$h)8`K!cL+4sqzvfJ7F4Byr8L9i z#$ef4E;tP~@@X?mnb68e*;LU?&;M)3!WH>3;`!uUO=9##WUG-9P_Gs z*^{nH6G$z`B$)@apGqVPc(0>`HF$ShfI zXUhEJu*OK7!EB0n6LQ~ec`__fCg6tI5zUVr@|WhLYA5Q<*jJqGJmEL{+@N1+6w)_` z2}QRQQqHMD`*j%KSRM4r@k+?@CN@QKmsGgveP1y*uwubC-)o-0y#T{s&_%_$t|Xc2 z3)9VEGbMVK)#zqUB;e>5y+~W~^ynA_0=_(df%d*k)3ihwYcoJ;shwK+oi&M-d_{)R z)mN4aJdF#DK`gnk#e51>^YG!+M;Zdw4f7wiOs?eh;SLLa&G;Qw-tZHLh(Yn`xZ0)>Grg9 zNZI#37SntY;QGs-K^q)-VLTUaT(SiwJ)GNTZ!=2z;A|N&DUAe0LLD9w2mK zG)n@ZDdtZB>_FU-R+xh6RqrIFWT-|!R9(KybRi&b?!^N z5|La~Q%%9a6-WCth5bVkE5QIOjQqgeA&&fPOvN5%vulf|`)0l`)al|qfPA!C=wY&5 zpM2-SWwZKm3ZBxLM#=r6Y%b=y3pvGJSjMyLa)Aj8OvRisAxA?>fdaRy)-@;{a>jJ3D))yi#OgXTD{ZasOxfAn#&dZ-^so&mFf1P5|wgp;@T8* zh~9ix5|5d4C?romkZZN_0Iz0zti-qON zh-&%XG~QtMTUO&CN;fyR$Yh=h3I7BAu0)cBp0tgm)=OtYEL4B_nqUV;YWMEMY{l?( zeiG+benDP6&7V%FU*$D(9(K4Dyf{(@aXQ-5TZl@(8h76p6`Oi8$#1T}biB$hC@3gN z1Q@0P&k(lSvRjDK!sTBd_)72R_)b^;bLtQ-@AeyYm4aG)>U5QUlC?1MszY= zwWP;P-fyP_L9?mlk|$NQBRJ_2QbhNTj^HbPys#q=IJ0w|J?^MSDB2b`Nz-f7Dj&H(TS*R{99KC>Sk=bNK3u4=Pr&a6*0WotKJhVa75XU(g?vEt|{Ld9kB;NWkjVf(djf^|muLG-HBo_AOp z3p0TKmJLAJ!(hd~KSxh=FyE-m{lV!=0zbQ3?}(jw9QWUKQn#u*?ZpoP`(4Y{lNGzQ z(2F-wJluoEP^#f!K%9cYDKXe+knNF9JPDf>cp&~Mi}Ui;+r*@gJu=ZQ(RLawS`C@( ztxv@ac82AbSnI#ThK5_dJ59xnsR7^^f*Z}^BGioU1JV~)j9_3G@2se0YB=XUZ?C#- zjrx53Yo0+bK9~|kOI;jR>Kb-cx){d4VmdXi~Xc#W@h<2^X6at$;Goh=bR>i zyO#e9$hv<=yy#$0=Ocorl(LCFj1oVO?ok1a1PoN1z3W@pu3YMY~F z1=h)fh*wR`ZjP*u2aarIt|~3`ZDoNn8#|itBOPAW1B|z?lzm8ZMED&|Md~I^F z!Qacs6?3S-B&xc$c3>n1V$hwc)XDlubUu>DQ5p3nr3TqD!nw*<1EGegFBrVJo>C`Z z^s{{-_JLoT{u)A>1}SJ+!(mJ_pRmo8scHeI&&L7d6q%e~A+Zw{xs+SglB$$53AkF0 zW00yQl(V+Fx;~oUb&*i;WGw*76)FPA!-3%!pS-1VJ+cybKV%#n12z_bfZbzZ>AuZ& zX?taq0my~*C)30It*H>b$Q#2c%Eu43c^`@Qv0Kdt%!6VCv2hMG9O$n@- z(goWVEG#U+g2Y}%@lJWody6)?yC-@!t)c?Qy)z@Mn$^%Wm-%%Vz=`)c6M|egk_~$ z4JLzMioCx?r;peB`i>0ImiInF0Y?(vNWeB1#_HeQAdN$KVmlajn4kFh`x|N9{9R;Z z(#aW+Q&r29J=nqr4y$A{LEHpJZdC$hg;-VsXH0LzaDlg#x1To`61fgoR|7u=_hix6 zO?V?sh9cJ9`b=vS)pVB$CX~rc>Qp!Q(t(arC^(RFoVWtllV84oQ?EeZq7zVqSO!!D zNnt^~%uX(p)rflEwP3D|_r3MffKEx37$piPAb2TxEP-?E08loRr0PmWfU`;k{Oc5J z-&Wg?uL;tIQkCxS?Js0FE~8C9D!ARLW6S387he8+B%Bd`7YbJrdV!zxN5)7QBf& zAJ|MHbM?C$v%Fw!FIKB7=zD)hQi>$`C~W2g7&_a_9qs2j6TGPmAt10}l>}m-jBAfg zP$_I57x*2IxnOv-b{T!LjK}M|(Q>~6zRan`Cv!NQlrtV;~K(q2TeyZf!hqt|a-i&^&NH3S*d`-(6v0VK0}< zk+rSi>{?>`C}f&?O9Oc^gK8n@5yBwK5g|4X$d~d3e1NP?H#cr33dM^Aas}sCIOk7h zm&}#zjQA6B+x5MnJl*E|vmF8Zp+V@Q5d=y+O|p%LIobt2JjF=3che{ZQeezv_N`j1 zxhGk!=}t-0&D~?961rqSHpm$&4zgzzgF1cvQ8-P?wt`AQ6eZugmu}9=FatysLcXOa zWaJZIZOYP0#k>aLsw#^HhBGEQiHRWF4X!a^Co3?H0>}VAhvn?`k>-aZEZX(gC%)b` zx*PC1B1fbwTW2S0no)Mm?@~S%8bHLk{C#%~(iQ_GJ z&n6~PYHa`kevV)PJ%)F*Twut|Yo8Rep7m&a0sclrvTn6y2~7fB4i~lyF6CO+wOrYZ z1j35nO0SH@=4^XMhB~j-jK9CX4xn$fHXr#OJ$ePKRgIz%P~MIt8Hy;IkJUI)jU;N5 z+Erf05V?HA{+HazAmlRpo)2i4*3%T2fs0r&TD{1bgR4S;&`ll`f|J*->y4c^H!bHz z%1Xq-Sm_{PJ-7_OoAQGg7u949KgEI~U3>L_=POC#eY3|Nx5uAOMES@>9Ve0X%<~lA zWBRQ*oJ5&TrUNF^GF&AeBs-FxMnCFf-~}F~!D36-OJl7H;Jrnyf>3j+u*qi$?TsS# zNt!JkfO`w*$=MC~UJMmxwK{Uxe*%%gZ1X9RsP$B}*?hU;*JdE5e}Q!i z@MzK2NN$3KxsEChiy07Kv`7`Y{yVE@jp_hGH|u>`-ng9VIlAIXIl7*VgkodBEikVm zuznyvocqF`3&b#atN@9oEZ(73c{hU=Cy#8 zA4sJ4hIh$GveP3k9-AJnc=6&$bHNS}edz=Vg24~g<4H0J0>}*EUO4Iw zQp{Pd7k)Q5rb|dhEWEbs+H*ri7D4K2b$Pn2kw%6I-?3s%gFM1^bh8>uvL3{a1pOWD zHfP5P8XvUIy(Vz@sq=;;WFZ;#+3F(-_HZuicxjY7WSl z!B!ZEc0B=hWC{eUzHXPRp1Kh_VmCV;`T<%2%t`-|>7CyN>G_BS&Z}lA7qoP!s}`ML z)opbkNAX~sB>CGba=iB2sVvLDCqzW77kV??$wlTwMmcV*R^SI8?A)|DJ0gND0eHD= zGuAU{r_QzM%`3U#tH6S$hH!g%UjJ>&KiVz`m<~fF%G3MCrm+hh_Ob&Q)JM#Uv{dI3 zp4Gf(W56^yeOK=LivDAj`EFeV@Qg%Qa7yK_zd(ZTtONs%6BZG9zt)Y2qZ{<3GS;H} z}G zWsRML6V5q@iHwbXc9Bk3De@Vy1q`_Z=!MU6G}D=d{^L-0QGGHe7CvL2-pA(22f`~i zDW4M0?nE%Z@B_{r%j~}Fzb>0S=*yxi<*Dy7_USq$@Fv2!Y&+IeLCg|r3zE@sfYW$w zUHKim{;_X-rbzb|FU|5m{sioovv3Rp#4e7sJnmV-lSbxn;hNKVEBrY)VR z@!8`x#qVtAkJo%yKo7I0>xNG+3V2ik-wtRdjdbpFDYy6U-+$QoCivs@{wS1Z2FNrF zh=Vcw?&kNeV*Shge8e#T)7@rUo0|TwyL=19fqz@zcw_%0#rlgE{k!7zb}(N8n=?~W z|JIrB0~#U+NIY16Fm-qLH`dL6oY3EO=KD2cED(M$Qh$B)N{=aF&S>Ij`0u(VD z#EItpzYhBb9bc7%08C8{{Wn(jcLS<40*hC;u6~ z)c&eie;DNmtFVtOS>gUtZXK1gGGb8Cx-bQ69kEZ#>$QVn9JU<6T1NaY-^myge2MtH z{gvxy-?{(8KYS!e{@~zjGbrZ2-wU4Sf&{*>bLC&3if9@2=Jh_R>w`&GZqlvJi+bO5 z6qzAyyJ<5Q9~`z)M)EYbQk0=gc9SZ?n@?tJc!R#%VddHn{q;o~+L4_^%PnO>8+rhz z)rpKO5~N>^WK+T3L#503ij-5XQ^O?LIs}I0qXb^Jy&w4YVloABrc7CA4YL+F>?c{N zEbq#qY=$mlv!VvYCw*nKzn|_*4@RN-5`Q@Xy!y>+s!z z8eDl|G;{Z9Cb;GEm_#rpc-z*jk5Um_*Dy^GMFA&4&DfEK-0Fnct!ix^}YtNcoOG%@YDb4mAnZZ5@&aclGy!QeQrsiJ&*og zw2$tfWgKExI2Cbbr=+TuH5TX``J@f+rHj!0Bm+aF|A)OdkB54F|Hsb}*+NoePqs=Z zl4WeA5{gQZoffk1V<*`vArx7LO15lcUxpb=S(1Gl#+u!XeK*Yf?$LHW=e*D7_x|_$ zdHC-&!@OSi>$kzt|3|wuDL`O!}TXw47j(Lruo&k?%=1tN7bbl zT&ccl!QAnJ0($RbO5yLJ;83ipB?(l&*r<34Mhl4_%fbVJcyOg~GZ~44t|L?ge0e|?GZQG!|JF3g_;BcgR zTK%PQYTT=G#T4boil*QOUvIM=N=pDg{WU7n)$ZeenS68M->+RpMTK+v)1f30ywpyo z1XL2-z~*A;x+a**#Ijle#kW_%H^&QM!HQMjUnu+_2C85-Kbs^OgYTbI!9@7MnMvQ^ z7k=dn&o7lJ`FDspOuQ-1TdFUUJV% z?gj3>z`chh(_{Cr|pEbdI zqSrp!J0>}rYPn@S;Wn|y5U){!Prz62W02?I^1v;gsl(+<$R{laP)sCBmQP<7PwDIS zN&-Je8QNcW6{wrEP3LD}SZ;!}q=mJC?NN+2Fd1Rl%`r`rcNCKh^9HWI3!yIMUbhit zfE+R%FIc%n{j;iR!GB}1vN=T4md-`N&NlynWAl0CyVjdW;xN2J{dO4Pkp#+l%ee&0 zQ0baejb3S`J4-0Sk-0Kr!US~5^x5S>mcfNU$q#F*mZPOC2@F2vxQNb$;L~usyIWrK z8neLkg>6^3LC`pubxnp;4^^;&>F2a!B zV0)gy9TzP*xFfd7B@jR7R??t==a{Dv%Fesy=rIJ zf<8i!$GlrwDXd(_YLNoJw5bLgBcA8-!8I%tL*^Jn6>uYVtcbqQ`} ziPCp(d-+u|B^ppQbQLg@t%4eJy30G4%0I9s<9hbl?+3CQQld23E!Di=*T0A zw-Cfnmrn&%FN>C+arK;Nh^)~J)3EF<%7$RM&^p+p!~>H3u8k#)#GM)xXAx$t!*7SU zoJjN^+97P)4Oa~@tSh`Ev`3$NW8JM&{f=^;Nq%vWjuQ1W1pk52In%?~%rB()faHLz zbN>;!mA78iKDHHZ`NYrB*Qh-_9}X>yX=+HW(^YJ)q@Jh4do2r%Sc_|L_1(dv$RLG8 zsy}`;OwuA1KktJea42o5nNNulLPgCVE&XXVWRptemYV2?(7YTTU!FA$uxFR5ORZ0) zo-0n(_qcO+N0VKmI8rjq(97eEV^OareyeaXGE#%e=#i%~CqZ|+A~-PJr`&TR`_Z5_ zm>_ht3w7$wN}8#hmcAuyVKiUV$|lUyaX1^|Kg8u@<+yHvwLa?YT3gyQ%bxS*koUwiAnkb%FO4XCbf|0A}BrCvyS1xtt1Px^W;gcy3;U;B>;{oI0TU8 zcpU_oZr?{9>Q|RRfn5O{2`{_Y+v0OF-hFF@II3@KwvuXSoa*8W^Fle_-DtbnA({}< zO&F3(9J0w+7^qpZbt%!pQ$XEW(3^`I8jt)xhfZy5x~(H7sU~5o8D}QrKkGl9m5MpU zaTtB_0^>E`UtKQ6o1l81OoKaJQ594p+;N5Yc>IgFD3y@+u-|2`Q#6pUN_EhkQR067 zIZEd|hYKOuBqe6(d_hK@4+T^}9`4wi+!MfAWW8NK_smLz?e0{?a-gO+z5-r(aryR| zqvSbzUlXjE7xLMMfxxz93-S$+HSiqYqX zGl$K2ePLH=Ep>i3F?2yK^_2kJamQLRh{2|RE4F^J2raXXYvnHZXq*g)qHl}BBRz-Z zi@MH_=!I}!y|cp)7ti&DS!S2>TWy4M)^4BG^?VjkL*XMYQa+w#%jGyE<_!8oni5|F z{_vFrl5<;G;lHtKwFLLgu94|fWx+-T{N_MxSe~kCNw1&+Gr@BC`jtD5yKcD|B4_T6 zwRZ8hRw%Z-N(cp~jlVcd{SJ6wp`5bp@k!etQE!Rzh3eqz@avMj$E?<#tz^BA^ivZq zb#-m=n4nMWzlT^zRZBgG5e!3ZwTlp$v<$|TM)FQ-2h4lUr**noX6LGI4A`naD$2pe z0aucZoCsX_D&7)$ikOX=LQhw8BKM$pi++tu*HT5Lx^SaS+b=0Q9|01%ZfrI- zT5-jjFA=#ox6oXSx<59jYDV!k4d8Uy%(;orC{Qv^RqX;yOyn|P_MO`8UnqX2nBhX3 zYa`c1^W96Z*&cC03>)2senjrpCQjZ#*?|q>%HXD&N04~4tl6jV={Pb-hj8FvmmFMt z?99?UrS|qCQW%XztnbuD*Ki?b(fwS639zJx#<2ypvS2V$oJu^NSvc{r$t%cfJDLGGipvXwMi>d)(&rY5;vkgUY$4JA zbF{ATkp-2x;gyjtZ8od5PR$m7{%C{yuF(sPqhSZIo_sr*8@K&pt*CIFA6lbSemB+_ z!3113o=m=S=3euWL6!uc#eky3Ms999*NtkeL~D=o=al5oFHGoOH=BSL6YS>1LwQa#@PR3Bd?>(^gbP~|GcyAU1&g|9>bcC z2L<%XG8OK{d6l&nz}{BZ%uSXxh#DLCA#O|hwJ>EH23z-z7frJnITbvah^o|B;JKB# z%lXU4g>6-4GcbXb>e%OD{P4)_Lsor5bAXw6p4Mg1S;G~#C|ErLcHV6rN7a85N+pw< zjCa0ucW$3rp}bqj8V#;94IQQWOKiZ;9`=P9!B*oIV&ssm+p^8F9b@n<8liw?k&3iZ z+r@PewiLqR(ggH?EjjcfBid~P=}}#)CKA6@Z(uiBW3pB{p+1|@7g*W+i2^z(IkbPI zK`=$Z;28C=zVouVNg%84P@#Enhzo7Bq37zb@@aGYh(t64o^$*2LQ(Pc?7q5eX(L~l zK!7AU)opz+nr{^6yvSgn8LW#Pqr+KkEz(s(F*dC7Yl~TNf(Oy&x6Tbw;m)1BWm|g) z%{ud@Uv<6LERnWF7H@Ue&UZ5q%0Q4ySuA;9u`UfpPuLt}vMHO3n1C99Uln9;gRSUU z${Rx!4Q5L#;?493pNB)H`3>Sthiy;~RWY>tngS(UdEuIV$Mpcs*bn3O~YQHJ2vxI-0G?9iwRT zJ%=mO>mFDaZ)%N9)^G_Y%-pUDL6boozshN#-J|9Dw7!*V`Wzv_+2suj>}%jSYp=xl z7b+lohx;QC%!0)7e%DKw0J8)xoAP_Aj?E2m6-b}k=zDlkAbNY=qRM7{#}+Om+)`#t zvRniuJ^rMswXqfH+#UC(ve~((pSjy;)F&|I?8f?+ICWZDQ88N!BOI{VTy69gRi`pg zK>5O=b~dmmp+IEo?mkG19MQ96w#eLM{B@Kqz3Z&ABsK1wgf5B^Z9d!HSlL_^L^$R- z>7kse?o?~8z+jnE=x$-eDG7wCEoW;y8IDq5i!w5=xasHfFbq~bhp^!WCr+H3xy$JS z99Zs5_qCsvctg*(o(yt7>pm+P#7JSg(ysoj!XtG#YEHR@p1A$o)7yng>kL8M9=Dh8 zE=^3c&(qI);vu*2AIli^jLkBgPiPtoV*A%+zD>bD6LGH!-O@3i!B%UbwM!Jxh~ZZC zM7)+o*}5Dd^^Ds@amw0fBoCa)BOohG(F>T`jHabf);j=Au&tVwc$4puhb(Kh0i&;1Nd+Hd4D zP*^SRG0(+(_pKpnjFn>12hf4{HJ~+qzN+G}i@>6&D{7j7bCa17k->XSTbdAS6&kP; zkd(lO=eO-<{9K$y-M^^og%NDxEN+JbOtjQ*B8XKso!nudPb5@lj|hh-2Wyj{%2^k* z^!D4tpm~m!{LZ?`XVKZ$tb0s=71G}+xVY>O()rZ$k281 z^Taa&Ns)7~9RyR&yUO+#r^#8bUk`-xMn2ETrnyyEkINw#zP&J{K&7v;7SZ;^*txKkt+v+!}IUrtswor5ph!-tnV z>gt)(fu%IMEC$A@g=#tLKorbP>}ZuIGAaPzV4p0j(+Oq6`|Ae^2bj_323zI6u#qHr zJWin|wWyD$-yOr*G?0;9eo<=Y)e42*L={^FBRc(NuJG&Mc>94bEScHEM{4dRZ(sK+ zMnOh4-evl7)98*XUpE(}w>XFW_Sq)K7oLs{4Q2rn+Pcnm>$SxEJ5rMxK33;r+)^4w zo){$z_NxzacztWB$!U=nFPvWzCmhr=ga&jXPuYB8M!U@)QVX!<>LQd?+Xs0=u9Xg# zo2G9qUd^1JEmW4;Oj{$;Z?7;!`;TiIIo>ul8_g=F;~tuD^mAlCdXy?>8$Yy*(73#& zd>7(IL#fx*5f#$&V@;`0v@~wBf>#s&v4~`Pi~P*=%G<8^B9ODQmI1H6>o-d3<$IIptiL(#Gs!-TAQSlYmll#sZO3 zK<~j<1v8MuoY2QdtHnBM4C*h2vDCy3ZFK|bTLbCqjPeTk55+In6!C8?H3tPSg(+mX zdA=uuh+p@%+?cYMuG=zL=^3pNYeeQq7l+$&d8{puD$ug_dJl0wJ}cMpdZOkodVK;POlpJ!n)s&(&0GVH^N6+=eJKtJX$)M>FDip zYok(3EoBWub-_4wHPsksDA<`OSKe7t@=A8iVgtMABg-le-&PKsr}+VoMiIubY-!aX z6dVyrNdINW2ajfe=e2M@d%a2z2_lRInas~~oaufpfl=@p9TNQTO76)c405Z;zr1`GGt77R(0TSmZsdN9ZV|$L-|bmXlobL z7j*B&AZ!J2YnSVo(9&2Okai+QLc-XAGSabm>&{)Pw&|7!8WL%nB(TU(3BZrbHG~j{ z-NJf}*Sg$MF4u*TGuYGfG(ARMCU5L(r%{z|WAkBwWCU?PA~` z0G*xt??RU_SiHAf*=#;Z5Ye~O*;41LQMm6hyOF#wxXE&0Ijij2)ww+J!Jf7uf;!q9 z>-6|u`Tgs+K|()B2^EoDF0lK2nWaE@y2xly=qqvXva;Nv3_asXv=Wlj+o9Dv-QLGz zw4f^Y7DT9k2i}3NY}PT;=O8$>-LY1nFxp!32?}6|k<2XXj~cOc>5sOMoUK}}Ih`L$ zKP*e^4-ToLvSH#XnGZL`>zH|%m5k5jv-fP8KAOwuWA}x9yz|wQ`rsq5+_OWy)|-qG zq~Qf3?}4F38_pj=n+wZyS2i2C4E0c5`rvam{Do)ND+T}0%pSJbNHmrnVlBV#J~d8u z4Xsd}$E_R(r0Kk~CxDZ6AN9n4 zAt!6#THU$O4NE#@V_!~=@akE|T9o0TMpW|###Noj5q3Or7`_menqW1jTh3VaW~;6- z4s!?G1_(mEyQM0n@iZG(3BK8MS=|>FmxDa+xrsVYr=hSIW{QsyXyFj?SV=T#|De+3 zb;sl9k1EHb2M)?32U#?mSd8wC*j1kl@~2>qO)VuR5{c=wI?a+8p?q&=y*n;QLcZK#qw!Tnbz2=r zqD12+6$3E-o!?eqTZpd!hwbT5N{~T zZo)h%huyYhF{tK{n((0n_oW!SnFb#!QCVX9f{ow2En+>M1olJwjFLIYAa_1Sl^#0Q zssaQZ8G4`mlnBt&vd6&24cse$gD;!{Ry;eG-Qhkq?J`O9=!SQSO?6;Yxb2qJNaF_0=2lFWY#A2;r1$3&VajN+6N>Yai z^3>@v<8@^ph1IVeCf(!AF@w2_Hj_kx=T$NVn4!ynkL}$DSx!=Bm?n8n??o6d#93(d ztS=0dZZau2u%qc$_Cxa$1kI!S4JHdRY^fcaB#C#+UT0@js;>jxeQ)5_VeS`J_N7nW ze0^#tk;+nn%XxK-spUno9;t}P-mPQ%`t0h-`(P2anAYcbs)I+v9#=NIcCPT;U<4Z2 z9dL+*x_@}QLul!_NfeFI09G%Hat5w#Ea=Lo71vS+KzqZPIs)zkocQOo(Xmhtd1~zT zHhMm&OUuB1?42$+OsO*u$9(;#1a4@9TUYOcC?~Eg!b@#%;j-*6!g$fyy=>11L@NXZnLFPUPgxeS3Nvd;0&s~oWyGeuf^9*y#s{=La5Gzc-&H6-2 zTx#GBatCHN>zqV{6!!|Ar@_xHkAskKA7O2aaQqB6G8POxrMvH^@A|{{1=$e>9L{@K zeuT1)_@NZ-tZgKuZ&y7{>OnxaCbVnL3KHL!;_q|oNXC2hH#E%(*^~%m=JoDxn$0aQ z#kceX1WdqCmeH@}OASkAYO%4i%<(QryLC`M1!rqWtQUGj%3cw2i|=0O5k+}8ZOm(U zT5M#0DbH~?ods+ukX3cn4C)GqQm^GM zZT}YU2c9nU()eyfjV$fyPL2#rT$B6;!EU|)gOFe^k82()M#+7ZUzar*FYKX>^Rfv# z)5zfnoz)K5e+Rtbav`^WBA3KYA2!y~=R~~s+Dgl4J)7sOT2PP?$2w+W&RO!V#P-aK znmA04p|d60ILpfAqYZQmCD}6wz4FGVs#JNdx!kLpl_iMDdktZ?9MYjHPi7eeQ#gVw z!Dx*PIDU3CvjVHpxf$rdo`F&j*moEEFM)V8*481J1HLf4u(Q1T(Q;_Lbkc}wePCVD zb!OVE+H<+NV`EYd)K&)3NTusxAd@Uui2AM28otjdp))!Ku384GfEM_5+NA17F7&fp zi+%g{jl84eqH`J8R2-#*Mb^kJH?vN>af||Or*fXMao`-ZZ_ysVp$9CYFKVzFdkmxl zL8qc!LdYQFS=TvD1^)6eB!=;4vU6~X^a3p^bZ-p6>UYHJs0tQP$gfCe%m*v?9~8HP zlPDd))hmR&sq(RC@UJ5BFh^htW8|H3|MMg4r^kP+_!=apA8%((O`L)=8K?*q9s`At z*Ft3tdxPAQi^ZS_^TEDbFIU#MGwC(1THEXn;q|j zMgA%(|NF&mhp|w&BH(xD|5tVU9~amBL0jrl8bt6{W8~j26iNMF3q5yQ!CyVMf4_J` z1uE~)Zn&ubUc>SGb^i9IzI`C$=`31dR{z<_`uF=DJHrSXs7&wX;{Ww_e|dvKu$DR9 zdRjRC-^KOok;cbCnO@-Hfb@SeAr?ZQpMYuCllsfU{%t^&mq731ntz$&p?`?~=XRUl z0_oHOUCg57V!QuFZqLAquox=mNxuI@UO)eomIb;M)@rsR|2E9Oiin8^tk7hfY5u(^ z`Ingfaq%lm{Wo$G*i+=60^C#NU$*1Br^vrN!JbF{X&{Pw9{G0=*z?H0g6AHz_!X-6 zpv7-A^Zz!q=)6rLygC5*HSywE-rYK8bj1Tuy*KB~Z>6k(1LyV8VDqV1;Q%;UxkeJT z*>uf1_))=PEqhQ#4zg@K-J6IX3Ob^#pF5rlg#c<8ur-{+u>fMF@GHdrxH!h<3z;k7 z&CIQ3^U`Z+R}k?7Iyn0e{- zT@4i}LDEAnMNe8zq-aY~%Z8SoNlU6`L2Z1_j&xn^(pFkhi_OddyM$U~m#;|;Ki*f( zsLXNp>P!8n;9%4(^VZP64LvOnfcDoJ(Fq<3VAHPIUCXS({XRHJK-~Av;O6!b^t1Ob zn0HU)lpyUmw_g+{CCQg*Ur5078wBDWlv!i%Xd4`f&?`6f`g{ltwk7sdQwzqQan*)R zCi);tJ%4Oh`vpEo7m8yb!CE|AlIRP&Wd8b&7B!HTjcXlbkdZF7QvF!*aukF+ z4*OCD+Io(%Tc>V)3lq*WL$?qnA4>+8D!XnGh1WAI(tMs$EU&dL=W2479G`!n0Qi?hw~o&urL z6K|kFLWQXM%4Xr>{`NJINpMWClho8(zf%v*@^+v6_5hfrhiOlw!IZrfARDE|Wft{W zjN~1w^o#|mXPn$gJh~&= zsI5C2I5P!Iy3Ve}gM%XmbFbf_XJ$pGKY!-7o5cE_0z3C^r|V9D?U%mKXhYUYO>mS0OvhDvIDrfAT~PP|6JH8u zD$AUTwc!Eph(DU|8tUwWXvi*JBDuExK}g_`YwYVdd)Cg8e5q#L`F^{aGk|(IWi6zi z_pTQZD#{A$HhNi*(fThMmJucxH1={{h@GyxiE>*8uh1bTc}9dHlZks=1*GL<6n zVe*tBV`QO1r2*AQBD=9i! zrw{~sI3uxvyhb_YOR7>M{!F?AM1=mb8Uc3Iuz|NZyL{=3-BN>K(Ad!QSfBB?^7`Y! z{tRAIN`Ayaz8*?aoU-3}ELMuY<&Cr-C0Xd-i%zRdB{Ls0WDGSQ$sWp>JP{_lbQR-x zer~_q!a9oR^|oU*VT?`L!TRAC7I1fRNda<7OsE_%zPte{;sL&8R&2%)m}Hs64?BQO zXUKl`K5M?c@?7YBI@H8@hkn4)>u@anek%5LmPI(u(qDhS4Pv$^Tq&i* zLdM~%7N%kKlMRx0GF(4(c5QyNwKM`-`>Z9ac(4yDA7b2FuZjLXFQd#?+us>}cajHv z)s0#sZYVDWSWY#zEucb-5C!o@qs_v?7(uV%Uemaux;%0y8;Wog4Y;&1p=Uk4X9oo* z&A0ERjQ0o4<5mLfH$MA$lS8wCYqU4;yxJY#$=^uvj=d$xARd61h^eMjX}!0RVV^p3jpw;mk7|Um%4jxEO%Qei`4oGBQ?PZySacsm zg;Q6DZkFA<$$G&}jiYhtly6 z7rX#42tlBoV2xLY#+C<5Mz_*73;Wtils4bg+4gst9itWsk)3ZXs#F&;$CJv8#^q#O z&$>2@?uwEIeB#R64&Ge0ccI{b4o?BTVx;w|#kQFFLYrny*enPpBWX!sLq^6X0WcwP zmRHz0*1;u1j$M~ps^<-wRY7@8#F$mr$*<+MZcu1#RZ0~B(}ca0J!G*o)?n>n=EbKK zHECN6Q5mI&@RVj@7qmxv`2C8poJiZud3Kj_Y7#(%*`Uf>FVaeI=SVng*RtTMFqqK( z#D@rbvxJ3gmkJ>@P3zy~(Ou8xdzC`qTln1u=a0ajdi1|5 zJ}v6e$V*6LyvXWVppm+E*??i@ToAO*ee-IjdQVcsvLqR|UziBHd^C%ptI2}>ddNZa z!oa9^qHMSMNB|307b-e2@xw&JXq#?DL|vm12o&i`u3xg#cGEd%G-Jcp*;?M9V7-!a~1?-Fbb9kVxR;4P2=cd?Y1n;A%NC<*0H z?5G{^t?kkl+*O$~s>bCi+&jDPSb3MC4D5605Cywi$6wt{wRD+`D(u#^JmyAzd(>w| zm(Vdw57D#Az1-+MTZ=97S#FZ#ek9xB*|{AAz4nO{%Et1f*4Zph%knzcpWUwXE3FP! zcC58iweE*J9J)Zsd2U7@`p?*K0>cT-)5oAeT#37^nw_4Bm@AVjWq#f7#^=^~2caF_ znO?(~^ITS0nAxYMjhUb#8hzyPCO`yB|jUZ~{Fl^K@0L_%p5 zN2Zw3D#)uL+hpeoc1l~kL?mMH^C*-xW~^})92L-z6cyOq+lXpl`3B8-29O-jdmF5p z4Y6!GCC;=g#Bo$zc{WP&OjM=%Xy~PVAqe(|?$@*(7(Z&>NSpQN_*F&taq*rJJZ&1f zlQggha)_L)n}d~?N1Kl|<%Y>`O=b5yil}=g*rV2c_kKvWb)=>Atl?!t1`Ej`b^J0w zyx2=BZ{8bR4_XsU;Pug8&+*w2(yZi7zc4B?vadlR^W9?Kj&=V?%D4k?ehqAB74HMR zHVI02CZc+dHzhQ}(o08SvLQaQ#Sx($)p9|s_Ebiu7l^SUsmQOr zLm=+>+LK@=pPztHL?Cke05Q%poQtqEF6z^pXV5OV>HOK145A^w`2ce^Xd=SXej5N# zF+2QhF$35JOymOS6tX|Uj7Jb3)K`Fy+kT$jC1hzlNeb(`5Qezf*Msa{^i-M+B+x6k zh)qHrudNAoM;p4ETYPMAd>8qL2Etn<5jqkBHo}cvtOE?N{j!rnIptyt9f^d3+0DR- zaPs2vzuW5;&595_ALLbqmpRpjk5fZQZgF3T@_stQ$w#t=p2Mp>M%)~bQbM@CCTm%9 z+l=iJZ~D76mDE~Z|NTmIS$*`gfY`h*t(3(}?olVX7!J&tGzf8&fduKDl@7`XtRKjC zzbY;%m0B0|3M_}!u7OPMX8yF3@L7Ag)lN-HLl9zaqsH7Z0DKSSdZ*J9i`z0kv`GD6Ii~;>SGw{aUIj1 z@obQ4Ftc!tgU*93gz1=Fm^li%O{_Wb-X#Bj#?%*xNZsgbkdf6@GOk(Vxr*(j#!(s^ zAB$pNNDNNH`v{0Q>jnBQhd5Zv7TRrI$gTJ1KO6#1egqb&cpb4^fX|cZL@j2{6nRCS zokz?g-=(CZRNkg*o|%3hETUS--3O%5>y4k)WJw6z;`fQXKieIHL*eoo10~lJekUfo zCYBbX2%u_%^9MeC@$J|85NQDRVi6JCy3S>D;p9}{-Tu&6y1D`N0?EE@=#19N>f4)4 z_3)$)=PIZrXA9UZ?8{#p?LV#g;;qlpHw;#o+9ZNOc+W4fELf$j7%4u?M<#K>lN0#O=Pkn&VS3 zi(*$nk+P4p=`_@{o>ufMfd=>DUcMjcH5^D=hblXE_uSVCyyS;3rz-5E&qlu=V-ar< zDm~FAA{DW1anj9s>&{mIu4U1tW5oQ8Z^6ZKE=v?y1}`5ziVxy)PrFYXW6`YfVU+01 z>0oIAwB0^wIy1I_o8-`x`FcQp$816*HJ=NMMUM-pw_Izof0P6^K&OuaPG7lBr_Leu z#Fz(Mvz}Mz9#H;0drce+_~=E)Q#=BgRtpX#uWAfZwm-& z0ERn+s^^S__JQ&aW|-4?4cMNqfy;pNFsNtDcP7s|e;MoR8X^+bZ+hi_m#HrV;AyN4 zY$oBWsGGlTMr&i5iX?P}7wllam)VhlNh(k9m@Bnf^hxmQt4a+0yVhkJ_`2E5lSf|+;FufekWj0`wW@6%lVSvKamsLag-@(V! z$90T$sBjz}xLi&RpBg&Jf(quCOp`H#%!n$P9S?hu#Y1I{9L~6P>Ig!7VcGs{q&Qf4 zlw5${nw?nl1IBNOw3bL6B$c6}Ce8KVQiarAr{mJ|TJ5TNbyD+6q2)H&@pB^Q{c9nq92@{QL|^L{maV3tBIZ z01tS5_lAHgxpYJ+PM8Rt87h%*LVGSZ>8<@N!~KefPmP9WGI9t+9E`f3u8a5>_5POX zEnWYJtXHas@|25S`X5&fM{O0hWy4fI$erpv^yOCC)3pz{TQoWm{A$nn5bnfD{R!lH zKg6+kUBq!-c6rlo^0Z^rBqRzlFFtt{u;?+#w}I4GGr@=8hJo_R5#8oWCqF2MaTWFG z##p>&ke(|U&3sUwdWiLd{b()ErZ4Nvty4qCpV3l?%q^6FXlt=jDfghdxC)XKC$VtW7=zn4;KSyu5?}MSJ3hc zzh~K%k1q#V`opQ#chJj4ZWa(p5>L9d4q!g?vU);WBgfF~Y}OoqQk8=S`86^0lWJWu zpu#0=Sy+mmyz%z20;lKuqU6XxI`;i$K_4=1ryo~krfKM5-IDhLRUE6vdjCJjkNxo{ z)hE?IOa!&=bq0|>`j$}p;e)n(Ib=_~>(>wrPr|g`QUz>#SrgUX0!rwc zLV0Q=5>9-VsBMB>HFfBCRduL(kjJzGATD$OIfHbO*^vUv9`)KVZd?8k4S&vkl+;wD zvDXXv9@QFscWPIvipMm_-}fF;b2(^(5L^wYw^zBf+8yrWnQQYbnUALqDx{S;Wh)uW zw0fp4SGZ!{d4Vw-xz*08KM+k{ch&1;VZ{}*Q)e6Ot!9Xa-9!Mp^UbS6BT+61pvHc6 zXZXNsRQzbkD>#!r?A-UK{SqB%BwWW2nyZ~IY`<1*e&S^1qE3J}@_q5*Gp8xD6VF_k zM>_#-c)&?g(N)eyGsB`!w}c!g3@+=6n8_?;}s2@AsL%bo^izJl}Cry-xI!Is=ar0R*yH z?u(h#%_ORFbn4)`RFslWn=_l)`rLq0tZFj61CS2aIC>5GiM7s7)l0)F2mq@!~A6mBXv!%rtJLf@^J4NEXZd;=jEgvo^E^&t_pSK;f z>STy+Z7h)yj?DOUjKmpk?^Yt5xRO@{PPjTdgY_R2L;xM<*_2Td#edYnaPnSx@si!9 zq$>Laj~k$3cdIX{wtkj8=(O}%Mt^c-j-u!jjdG~i--Y#95u7_wz#pY+qAXH67UBQo zX+biekd7N81rJQBuG?k6PsviGZb-AQcvhuu`K@bhc3tKN&N{WOmMV_MCEd4L?u*v2 ziIr=jC0?sfV&_@!)&$Ze1CrVIpCX4(Aqxh#G67NT6`kXA+!TKtj7eu!|7t0m7_Gwryubv$s4&(^WU_6baXTQFtp&9W{#m; z60y=>_qg;K*5yr*j0##%-y1Ens}7CIv*`Nxu#-Xk7>=BY=buXW`0?e+km}~OSxmCs zNOku?YXx38rS_JvQ@7KMJ*>~g=TF&-yC!nFz+>>nudUT%j&)04n6W(E*+_c_cT?r*MXswYu4N zA0?j;VcU1$=wvPpWQ*12-Nk?x=gF8N1vR1o8T)?I-UO@yq%m5wSXc?2`}v~4u5x}- z0g*x7PJjQd=yI8!UPeD#ImT164)ox;E?IXXX9isSe(iyDz~xQc8fHSgzW)R}<@CWG zdv+#wKNk>{R*s?Y7TvMb(Hs;Z0_1be=~CI-b_~J?q2Dfkx%^MZPsMS3_=<_L^*Wb* z;UT$gyNq)fIi=^4Q@~jrZn@jRkHhumE3eRC)HB99Gj%izG99)T>oDqSIVme3?Z!k= z^{>=&9aM{;c`~tddv@0)O^EAYHh7WLH zABfkg-vsQ^$-0FWJeykkt3xk8(b%2t-?)#@LLd7eOULnu@~ z$cYHJy8$r3VXpN2h|mN|e&Yj}{P)~{i~~uQ)F*Z~F3s>qbq!7v%7-ISL;~aiMXako z%0I>>$^`ULoXv`cN8zEsgyBPlxG?`oabQjVyq73Ri`0E z>EFR|_p+Xs#EZYCrf__7z&LUg;=8 zb$%4(xqm}XvbVd?Qb|Rub~Wirh(q}r=!8nl=sp9fc>5yTz~sV6P1eVv#F4Ge9!Z;i z^jg_+Go&TgXf+wL##Try8S=3QN4xJ3F#de zF{Pw()C7O~kn(MVHC(T_6{L(ibrjSL4wPysESCb;?ARG>Ee-sagvj;PLb05jZ;-Z>{yT6wDCBEr)QaG+J5rDOGOjU%3eb) z*dj#@0evpRPXsRDLOE8oBHE$}_tH^mI`{3jI*kZm5DeGi{W(|H?xG2xQ_SL{ZJ{&7 zvC}9s2=G0;XQp&YG_9&mLt*Fenv8Hanv)6wyV#N3KhEFdth&OaX2x|)sA1#rkpz!v%V=Re zW(RAT0GO~|(byEeW_mN3*%p^TJEQX8IeZxuTHfNYW*b`{ZA_MjrVVV|r>0BM-MXsS;jYKzv4AUSj%ZZ+OsU<`vNMa4Cp zy!rmpC;3&Dvbh1ooNw_p@!D{ z92z?u*HN-&oVt(NTD}~YGwQHzhCzDDz7k{9O_UkFf$W?PG8E3Myj92M8ga5Zl*{o$ zS4Q<`$Su}t^0PHj_F7SX;PF;n(7x|Od+9`m?aqn>RO-EJNnG;vAMa$m5UVg+ z25oKYv0naHQoJDHkG^@%edWGdoMcsy1&x9e%eT4SI` z_7W7fYl_lA#bQX?Mmuf&oeek>>uR_=`;}LUOcC?1-mS}OGsta!w!ojd*&eO{>tQN< zmFWqbcu^B6ZS8!nQ1lQ4c;Jb9qjX}NXF3@TTIOyrD1WfV6hSYKUHBh3cQ<|v|4F9$ z;pI$M2Bi6RR>JXUeTQfF-DD})&s)9hP=_=v-YN_UFkOax(4Hy39U2YJ0yl;4;)Ok0RPU z4BELZwK!Ip~_ywobykD~F1!R==rW zA3D8$`JjONjd1`>ku6^7pOSugl`IBX9cpS17}EvDSVO$ClZufJGPgEm>&*|0EOitD zjq3nS^+@Jk$_i9iJvn6RTcVeq4vdkG9Xf2R%1nT4my6sO^rrLO|Fk0^hXrwGe9n+0a z$k7@3?!poIRgNyLySG3>Q)e+Uc;j9Gr?S=IzeQP+tPfK7UNbUL)>s4qJW|AgLc;wrtn$u- z_KNDzglFD_bnS#&)p4VrR!%{-N)wzPw9`Pk-z0)M%gfijSz@Ug{6Y;wK15;AD1L5z zq;OpS(_~i>OT-T_3+H`F*&C$B^BoYJWqb;x$0}~>@5S`~axinz{rW~4h?bvP)aizs zYIT9LMmrb_y=?9My1DlPx^AOe?1aYC9$JIA;}NZ$dAF^IIBY+C#|9S)92~E*+`;D` z=@93^YkD9|Lu9qkXYF48P`1B{<(Mydo=E^_h*HJNs1B45u_U2wsw-^O;&>ZZIzVZ& zcge8Hj$q2@cW`3eX1*{P=P$eYW9Ws2d~u;HLnv*$X(&6;!+o(5mQkZ`R?%HrhP5T) z)&ZQB3#!#$ZhpIsE}hw&ISR_|2xMbtaD3?MYw`yYO@h1bOYv9>Ir@-L3zhkI1%1yC zH}4Rr6P3}`&4sMos_2f^LujOmUbXOfREM1dF%OY#wY*Xj0s0Jl$`!CNwBc|`?0M^0 zkS#i4isHpAyECWJ&;^#Q;q%bB{+Nym50^S@R_=5Vyr_U$hQC5@LMg{iSCdg)~>2LpdSeW<+9I{Jyc?KzZ+Qlv;45 zORX$tSNTx}9kFvN@3QEYj!ks-_mEG$oLR{mzTU!O+QY83$aAoG)5n`v%Vvz3fiOQ76$xAdo3a#*1pSYGFE1hb9fFfCr z30JA29-#qXiZ`hV9Jd-m4h-Ecwi)2Scdb)?&sPvG5KYHXV5t0j=xH-Pl*as?gV<>!aP zBQ@l8I{ny(N9I|M7uNE{-)4IJxEtiQqVHL0zVp9S8LHs{O%b3fjjuZ z9&hoyoR@A{8gKM!dAs6x0+yQC^y<`|FYD>WLNtQ{@(GNKvL{~kCCGU^0Ohmy#R2VS zTlM&+%^s)1ps}6V26_O%GrKcN>nJH!Y@e{8aKUW8U=_d8S8QvmcjbFFqRd&vz^TdZ{FmcJC z@|JhMF7%}s>|OC?Ou1XWHEYawefM>xI)?kC6k_=w@|Ax$5^Y9wzF8QDbLUOQy4xU~ zPS-EZ%bDxW(t8L3X(+~6CuDW1O$js$q=g!OTmC`l(ugG@ij@eN0f95 zEndgFO~g>!M(^LX&`JdPL1;Oajj2W;d)Tjf2-5 zYUc|1;c-s`jbo;k{||2E?*jGBJodI2KGT*ItHMU_3P`s6>% z^%Bs5Lp)#pn>)VXgPS(7#hf#bAekhyur41k=v-J`ZXK7on>vcV!870(^1iD^&eca*vQk1I*ZK)|Sf`-TKf#R_{F3Kt(`AI*8N= zD7~l%2q;MJO`3FRp$0^XBE8puQl*C80|?Ta^bXQn=!8&{J9(a?=e_s$e!E}Kr~LNL z-m_=c%&b}UzZ!`#PlP}h(j&!S|EO{p{QF)(#jd_rgvajbZgmkEwh9;ZEX6aRj2#@~ zsV?yNfM!j9u+B>b6h_+7cjla9L>a3Jhze8sQuq3c<=zh|j8vWNs%!_J(P_K$@DH_K zumY|hHJ4dJ2S)Yu$qQ2^a2<4=%7>WYeIe-uU#1ImVfNrJR_V=P;+xRgn`RX~w+vhJ z!wq$cfSo45kKAbr_#wfKot8>)Hs3Te{afV$w44JJB83PR$o*}O4R!?Mka51SB7PGP z=GN12K49Rf#hZJsi5569y)T^qU}_^dy}z)93e%cmI8W;5XX`M}#CG z-UJ;SG}bSZQb!6dSrnPfS$^LDhvh5q#0ecMcp~CMv{V{sf|U6|PE`UpW^$XFex?3> zgV_(zPpPo~!5_l3-36o8B<%=Fy3!~w~G@(MUn4OysC?(L5`^!sOdC)*oTUd$=_~l{M3K|Lk116;edXBdW7>5j*c_`YaaK7k$ zjaBs(VXkXenga00wa#c|n+bSDhx|q;(PhI{qjP4}f4WU41sdljNOOAzD8O`^B{%~# zDxc6WVEy|Bu=3d97sdIzvCn}xMH+weafCGJtE-i{pc80TsWl<_&kY_hy=_6?{#Hl8 zYN>q*)=_7l0&emqw4e68RG2gPo~zl5YpX0^qhaqnB)H-N2g4ZIde78NYseyFV9v(| z9#J$*jpzhjsuX#09rE`Lr3kR0mdnzNMZHq%~H=fLly_4*0w)F-V-+PK>7zBm;jhGI|d2Q`{1`d{Vlf|3mCY( zaU1acE8$nYYP#q!Nn=PW!DjI)1FDjP?m7z>c*4$bo*@?hs^$|BzI(pZp%;@@|Dnho zF!CQ)g4PJ}jO=yNqnP{P6>|cGir+VY|L6yx5)1KLom=sMHpWteFK9qt7m6|#2l2~@ z+R{z-_l-6%Mh4#0e;DyLm|<#&wD_5W^r(#2^*c|e!S@#6^qlE<9(ZijaE0!d6ZoQD z{rQMTUcPW9?~Ji;V7$-$0%W-Wh30qv;;#LDLk6&;NT$L^*Z#<)#lE1GmA<_ zU%ib+FM-dUzZ`HKKN|e?jW!0*y5{Yd{I4$JXKZ^~13!U#R!Q8A@_bT5?hemJcl5fZ z9vS&k^Go^^{UfJh@FdfJS^J0qKY_yT%byD)kwxhKF7W!qvboNs{#%yf7>RjvqA z(l!PqgRV$@4E;_EdfAj8Mg&MvO#eAv__8m&E0~(`KM@-L>3B9B=-kzg{aL{FTLZ2i z#e-j#$kb*HI2gDJn6x61na1|#6r0bQT&{d zX_zNyYc=#7-U&=@SVqBOV9;^@fa&UoO(otpRp!)qo?=@EU{|=r{W#e zt!}_h-MO6yf^I@5Zxgi;{8=iKU~H{0?w$Tm_zB!V!P&tX+%hc3D>1sGR2t8IVG=k@ zTj6%?hl=zlV~;DmZlEia)MA&s07oFMc*ci6qWmA2Zr%gjlph*&?~ijJ{R8M6+k=6R zq+s!}@GO|!0_1)9ncT<;jC20EzXx!wsDg1QNsb$x0n%{%;!5NK8V*6@yE!~1DEPSS zDZ#6;7k?NvfzfC*#B=?j$ft17cu>Q)-W>SxNPc%5Pyy`mHqllv*r)E? zy)BeLcrj8z^0VOi@8m09DLgyAbL|gd-q8Y*VVZx)F@hbeR9fO(02Tn1Hl+JHp8uK_ z+<3>U-{$*iG$7UX?*6kOkE?{1D#ij;6+; zc1)s0_n5Nv*Yg_QD5Nl=7C28W`BAa1fh5z~YH}?=j0g z7JEHcUWh;$G_5TMZEBOPJb0$s-!*EZa02CHBY zlcYNPl2ug+_Wi05pVg_Z=c##>IHs^^SH|Z!))ywfgh0KEkT*2zBMBTjJIZZpYcxyI z{hE~I0NvcHQ4qr^mE(|%C`ln=5JRKVTNC&qTZwrgDsqrQ<0E52kvX;+X%s3bC7Z0K z)12pfFEd$poSKTyI>OehcaLJ#QoF)x6GS8C%@it{_QJP%hmCB9YU9N>98*s;tF5X| zD~+>Hw+C(s&Rs!sWY3M+s~y>|)v>WOD=6x3Hr=bipcF9$M|4jepb4?M%HNGDa_6I* zpY_dWc*3>hn?sJ`*-*FHR9?t}7@@3hl}Rph0d+2CAk2BUmDZ~b1jHC`jF*Kt45K@v z*_Sm6uG!n$FEn_cFIG4cJp)CB+wVJhtvJ-AX%xLtD!07ra6h|X$YSf@M<(Gui)aHOsMaNIV3G0cKpQ(lW8?LEIZc3Z61{0rY+V}Gc z_ddR;ahLEpJs7y$obdD3O|&{f2Uplu{mOK;6BC%^^|j!|e?FPTc)4K8@bWuLjC}uWLX7>(uW7+< z+SpMxq68?lcSONh&CsC3TiAXOlFR4~BM z^}`Nv*A*Jjn&P234S&>K(8h=GoLcK&JTAA_%h37WRG!)~DE^BEH!V$XRFXTB;h?=b zUFHMwhi*#k_y!E5W0WCOuDoKd!p|d)0k&4gaEAKFA33lZ^4$i}so-^|IW)a(XTyl} z(O%i7{f*dpUbWF9{oa$olDFtZo{;%Enu<=+(EVL~%_56ennm`};?&*kV`LpC<8R0E zWL}_!H#eAlrtgqP&~ixx3WrX5RZLEzTf*GurrK#c9>X0{iq@eA*sAY}zOKtt0sYzQ z-BQjc6&GQOBoE*_-5jfK>+s^^5gkR2FQZ=LwK9y9haO(ic4kX?f=cycWZ2_lrKU#SeJ#HH_C$$#SD<2s+9Vi(DG_|iZB!v z1`@_PL6nt5N3J@83k34&z3@yA0>RboSt*`u$GqE>3lVY)Ahm_4>+`XW+|wq1Kir-@ zz)5=nQa7HBCp|R$uyOi~E$2EX-(wK_9Oj8yGxuHr;ocZR+3$;B%PMSC-GL<9{Kq1amzD zM)ecw!e1wkl`15?(!Rc7xyLTk^xAH= zHy`(6z8un4Ojc!ULXWz0c)_rB;ike`bNIwUvZr>C90Z~M;y$rRcU#FVMBQ2JHPT?wsIYK~cBz42x3&b^yA|u{!s)o!XsPfoR;x*;uRRvYB_z`>H z9w)b3`XBxn#;_NL%fW_5i;L>gQlfux&R&P*BX*j4RS1Qxg(lhD788CM4HlX)etry+ zyVPhg2dMkh6Nx+@R5QiVle8Oqsa>Z~PXp-a-hdqZzJjP{tcp;@hx+Ny(e)jw8@OeK z^+W+g-2NL})QYv%z8UzwogAuFVY8tv`QRP#vBy-k(=G@Xy9hFy+0_d;-29R?LIOxxa#BpFC{mIK(xg1r&fwqBw8Qds6CjusDe390dnv|?Dq@6K& z(A&!)ed)2~Vh!^Wxq9R!`2FrRa-M`iZ5{ZKaT)#mJ?)i;nn&j5W%e?jWydlhDwZW` z~uO&;9}t6Z7=Br&yI3S0wZ5p`Ucp zlF@5qj(PKM7o|eHq<+}LXkn@gfv#%ihrQ~ww*|9a9t!C_kR08478TF<$0PD7e9 zylSs5wxD96K;YKKr)sDTO9gH#>??vx)~~R{cvZG)san|Tks5Oe*iaQ^Ok>jtjsJ7I!2{}pF0=NVXyV#YmKcRZZA7>x0SMaL!R4w9!a)w;S zse*~z9X`}wmF`?{fSg1z&- z^NZzPI8RDJ`}CFinf&vHtqkAsaj4#Sx6{{`Z8CqILtGOU#*Q(YsaG)=OD1iZDZD-z zjyWKu!Av`r{m4A>!{ThL(q5iiK6M(-pJ6iTt(i<2W+9mxd6l4}CMOjNXF$|(4?oZ@ z--fZm{Lj{IN;PwUtWl=>mAKOqX|^HHm*uC~o)P!naU7l+X1_kT?bYLpp?I;Z{qbnv zINdU9e77-j%q9ELqC>*Q)MBirL`m2;$pH_bl2XouvdE& z#QE-`eh3?DtcqA=bd2J!ufDN>x0!OTJHjTfyX?GSU`)9o$neXrz)bq{OKg80M#DK= z4k8wp<(C}uw6}XAdnkxXpP|?u-WJ$#lQ;^-h2XTGAu@H>dr6OS;a=;a{Nn+Au0W^Q z*fT}49~~+VU)|EMjdg@&<)&Li%i8yhEgHv;GptAU)`zp4_+j7SYR0xs)X&TK6%JtH zM;12hXb)TOdhqO(6e$6r`uiBxv9K^rGG4n{mmQZKTSbf#r>lW(g_o^+Mi$Ly-RTdq zd4l-FYlosUQl*EB8~+e+HUE`(JSb3L<4`qNo&GsWEG^w?s$4hbtX5V}SzFn9>Nr+W z0ipKD01-$>nkVkA6aO0>X%xe zwW^BYRgy|ym=+Ls<^vLasgaVZDIXnDq(3Ig`q`Td?QPg&*}iMPDMJ=#=)i`e>+H`W zQep@Wa;@Dx_3D)L?i?ndUTZI1pmCnr5nnwSZNlam7-s2=@#LJ+ry+6J&hVL`HEPIp zH&J8uoQ`Gnh$?;0Ia>%w_~kEIeu2zfx)xmBbtx}q|iE$I3nSJ4`6=Y$pZjtGq(o3cD_ay8MPj( zkAeR|0P$^)0BbjpGlS0p7>ikbSyOaLEt%IWWTi-$n&|GMFdmbRJI!u#2oOWqlIfkN8n{8?5ak7CR2s9v{C?dy2HEv(9ylneMHAwix3-m{!qqY`5vIv{30I zPB)CE@i;Z1+@8AvTNCEW@d)WU-G4Ph(|#--O$M>ZsEa!_C6mLkxV2GNIPPa5T>z7* z{N}Yk7TSMssVq;T!Onc6WZ|suvU=cnm1Rnj_TEj2wLWb#&f_&j!Gd=M-@a6IRi9xi zByGzU9qCYU#$c<`xXOrbqsU#MqkL%rV$R7AFjJ22u6>u3!*n!TceyJg8q(C~ibBME zuu)>?aitMT8>b(5j2v0f&O6^ZkgtXbDG>Xy>yZ?+LNYcs`ajzCv>MkNLqagQ^UtS~ zO{MB4R2isAsw&wB_x!m+;}_j7(jaezI$f}hby71&LoGJIrjN!MfEkl{B`qzCzJN*Scw^8(ALBH(+g68@Ho-y?hP8 zp7zUat{c`%Sl(hkoch4;hY-EIST1*-?-qC^5mrpgp-c z`Wi!~ujVSD$LUjF*H4GG!Ex&}_WCQ_V#g}=VfiKdY){-C)2)MDQ{tt)IrB8J&UQwO zlKai`7uKBUw^c0LhhTp!3@A9@h`CSmeoOE@12XqrQbU#^!!5_X*YN@-U;9>8Mr?rHha`@XImh2E%JS+~P3jUXc9uR*Cy z*u_~nGd|O9_71Rb*PhK1<6<DPisbeW?e0>_f@AdZR_Sd3cwR{!;seIv(tk47gqctj{g`w|N=DJ@@ zC^@?YsNMYFZn7d*MF=L&40m`|UFLPYo9m)s9Z9a$5L>*Gz2QZ2chUQ|@QyYU-PwOa ziLu!%fl$v-T)t5IbQVE55kTQb{py=dWX$eHQkADhbWiq!Yi6FC3at#NmB8bDDmr9J z4-(-tovA9f=$qQQu8g+AN>pV!sLxcPC#J>ueLp=`8x!7=S7Dz^WM{i53(@b2V+}57 zgYh8{mIFC{wW6m)xdCAc$o`+qM2Q`zet|*7CKl0f9efZVATN)NSuThFD>1d!T0F=Ov{j{qljRmF1G`nWVw(R@(w4()qaPkQ zX~wnK7wCY3l3L|f=KHzJ_CZ>+tlM!wJw0}JvowgoiD-=WVRqxVjh+XJeV5LXhc9e5 zkzn${FiR)U=trve8F4J`dCzij+2-MEa5OeT) zpR3+?w1RwUuW0R1^M$;7t=(6#*Z=v~=YE|*sxD#)0x!7owY&9gf2_3cdR3qgvd~Zs zH*F3G?G@pGU~EhGM27v@bPJ!F8yTFWW%B+ImAHxHaBZLKZqJRq?gzT`8l$d%9>HSsxgp*HO~uej0($dD7~JRaR*kq`YxA4zi8aKz)Scj zoz$e`2ff9$_@*;gD2tnA-cv*<&*wTUin?rkuc+8|#5ptv4{FpdH_Gq&!a-j3-4DY6K z@XZlg9le_pA-@l!asglj0P?4`!dk_ED#c?rK>sh4CxQo6pY&ru4XQ5C1C%hZG{IdsORxIbSTF1YV@(Z6Fz`|eq(?Z`8l z%B-4jvsjJO`Cj`CqNUy0Ij@s%Q`rb7@>8d;SL;j&NC z+fAGXJ1vD5BaW9yDq3r^@2FolL2Yq#;H4Pm&naxW1zUIQ7MKS~aKg?iwx2HC>$3?c zJHl}8Zj-`H4z-u|nx{#oAS9DcS@q3t{or1MS825d`_Sh@kDV;qTO%F(ID`$eyi%lz zycxHT1@|c04g;1t3%%J>k#&wp{_z`T5JAg z^*x!G!o8LA7y+X8wvmar)gi?Yfy9f;a7M@1FwIlwcSqk>r#THps@hH1&b0MO zla)p!1Aq}3k2c&1MEY)-tGsD1uDNJu`M5OFW@My{Q@`xkd4|H5xA(ykM0#{5tx)tS zz*36H>U!mMFU%p~%p>>Ey3T!mQ4VW)tEfLDT9t!Q?3X| z^0bJ%CaU6FIRDjvSM?uf*k$kMgu>P92I0--0&Y|}<+3!Z(D@+??TAU*xV2+wV~Db_ z{E>IRtN}dsQk{95s2g+QDs9l~8O^5q_<9Ba7ItKjCn-D!m^-h&nv8e zKNn(u?qh-emnYuulMdylm{8A!eFC{^pP0hq|A${CQka54?mXWgfC~${-IK|C(WLzXfd!W+}8r? zJ1ugwS+j-8Bvnm@7p8e#GNuNwG`!C#*=LS*>OGOb;xr^XepMLTc!dSn&LcpEz29IC z$Z}S=eU;-7)NL@HZwUsdD`Yc>hGId7r8dmW1nx9PEniCs;3YP!g)F;u<^ybpPsv8x zH#txjVudrx!qWXxjcKk3x2MZZ0B-+xS{OVIgeAwd#b8eZbzZ0C$GbjoQe1Q}ZfRwV zLf<=9o}%^C;Zj|X)7SA)pX+0IeU{08*V`m zDkHb%q+XUOYj;}V;7cI8pzFJbFMQi$j+1(48oGM0Z937pwW_3&jB-u2j#pl?O(bc{ z7|D+uTE|eS&fWA1x>U>rM7&G(9U}~9{)w(?YvZO2xRDlFNo=izwNHln7@1RM#Xw)SjD^5M^>#$ONRZsbY5e~lD(a^azhnv zbF+VTjU2Db_UA=c?KUeTw_=uFk;w9Yhh5G@2bxf*SklBTCWa=*itVonxkbYp<|iO6 z?G+{Uku|g{>%GJ5v`B$phQRe1tuw{y%uI(giJh*NYu#)1W;{h(>e`22ciXY^5`wUd zaiE?zW$aUCb^i2*$Zp8xPz`PPQl~wO`@!BT#))$_GE0+6^@9&|q*z+5I!R;^^BiU@ z2Z_ON#a5U@XuS^n>NNr-wI23gZtO7-kA0r3lA|JHG5F2!(GfuSX~*O9)M|i*DPKBb z3*a~JDCj z63V3vIi$=$%s!tOd{1`jxbz#WQSuD|nF5#Cs50hmBt61TKXeQpJJ6o#di%PdK+ zF@>V`RaBXS?uOBCEC7b!`o^!3K!SwVK;?p~ml6p{#NXwXT2HC);jkZdphsva3K-1> zz4{~Dw;+B1nhnjpTsEyZk+}O~z-J*Bv8Kj5Qudbfkk9P@3-KaP@H}T$`I?f7$PE-$CR=6`}vCiDT&`3H! z1b;+b25jpc3llzN^1-m^8jA&U$K%&>@0Yj~UF0e(7ml*F2=hH2EH9JQceoA_d-j#G zU9=5AAE`T}uSQpBG}rYawHetu^(bS48KLT8_hB)KOy zK&eY%$dcC7`s<&xyM96@0H=5k)*<_B#oW`zAyD(S}EE+aU_`1KD3{r>l=Y zJ}OLdT*}Wtxh&S%jAf+4-HkEp04MFUB8yWqGru4i*pA0m|k4bWFZM5=96Q%SmI+(W(zadNDz z`*>Q(gs~0~#*S$2i&ivD8utiLj_@XL)7uJQ9%)6|Oms@{)qN9-5jpoBR^;MFp;| z4Fmm1IWu<3T}lqr+waRAZvWYRAgd)#XB|!)78nKJ3T-=9R_7^m;iJMkLi9B$=cT9SV{1II3^x-bFqyvG>S1q z;FQ?0=6}ax=PkXX`OwMw3ZKuU5yolmKsgo~!_jkYcAf@ZNh%dg`3B($7YW)))D9jZ?SwnV+g z1A%_u9(;TeO%oekf4aGq-g`bjy|p{`XrM0{aB~*FLegXfJz0JmLAtDwljgT`>)aXX z<3|T1&Ox8qW|`JY&F%AQ$F^<@);_8GB`1<7HA+ZymNFq(&~;`up*}lwS+b}7EK77h z^@^a|;x~5p&sHbG6>q4}N^2X`_5*q%APw%#U_9?X-o)f541Uzexy}>|NowRGY)4sv znDU3XuygyvGGu?)%_{NQ!RT?FvF9|aPKk&*cp<6$jj>Aez(+QHW6t?#?ZQH%iqFBS z{Qb+(oK)@eBr}F8fvTgLhf@muz`P(urF@?_Jc5~6me!4m4M`pC1l%rim-ba{X`c)1 z=kRMi2X?YWDmbo@y~$)Wk@QqmUTpQb#Bkq4IE>pmYFz&Cm-Au3mKR6pfoq?>exTqC zto{e^(CwMZtB6O5H?{@x&)zr8QuI0IF=?Ezd&LYaHFM#5_WGd{Fzd5Y$M{lYL13On zJe85|&nhE#*Ry6bi657A$vIGu^7Pfk+-&o>l)PHXWhy4z+D??Sj{1jfqk9od1NTE> zQ(Kp9xXq%+2!-8olLiwNbpXblMK-H|Upw|h?7SZ^hOaZ8*Sog@8F|*Xl^ZLA4`#xf zK~Pyy+!rgK_M&4GZ3HSsY=8}{p=ctQ9pP$20o_m80(E}cS_@`gz(k&mVC7X|zX5WVBO;$>=fYOD5-_(Jr+2vguy3cs!2)f$eyn`hk z@h1-iF<495b{vJtF<~LXn*x38sJGDX(s<1eKmg%^uqh?0k@OP&hkF3>7!M2%@XgN_ zS4EzV%CNwW!4dliB+qU7q=R(5qSm{)z)X%iC%Cj=A!VdIP5ppqeYuVk#7kYM0&!DV zA@rI`^lGHu-hUk{liwIoOtFX|Apph7u#@6?6FO`&3ULzlFUWIfQf+N-kXCqO0{`-k z9(CcIVtegXVfTZ8h{orGz2}1F{rVWTU@?hKJ5>zlqkhaU0?%z{pV{U=q9u>_^DDwy z4S1g)wkN4PqL}T%HHa2NpEhI_50(3xnGh-P&KGg!;+c3fropNs;EeYDwKI~fs;cLT z1jiDBnB!5@mwWgF1?U$@}+@MBeN*d zjbME}zha+UXSm4bOseX%qd<*kp#(TKdG^b)BzEV!w?7o7jpgZ}1CwBV%=B>t&B+ao z07Q%sC%90;iT@vUOpxjNCxvZ|WO;EWROaCd6ktNOORqorl53QzyrBk$R)oUKz7N4uiXdpNYQJCZ zOj3&jZ)w#pCj?3nMVa}4)Ms)|3uahKwK#HPu-tkg$fJe~I!6ZW0p|+*TW%xI0wA--u@Tx+yJ0Tgn0WrPX#jN zXk?J;XkY#X{k=E1lXUkHD3*BBb6eB(XlN2r2OsB;r9V%LiFMxrQEgRoE@geSwFYYp*F(0oY-0Dh`AdJ>BVV*Q-_8_oEndMUWzA8-us6+)(Gqwxpr*Q+Yj z#nT3MjP$~$W7K@28+2cX4=eMAak}QNP8D_^F-MY5h6&VV*I8hvDu2o6u$dJBPnP&N@jBBPc zvqqthck_Sz?fuf0naR?NH(MmxJIf`YM=>dknom`i;X^Pl;avBY+5xt%*@9*OF}0Ad z)!rlP@kg39K);fG1RP>Cxd8ji|3Nxry38^*=~DYwM{n;&0_1DZX(3#HzxSd z|0~}BfhiRt<(mFMGd9;>AoBLc=UEun@2J?5UJ-3`T=< zZo}m(ZtQsn7}_Y;JT06u1fx4OD(kvO`oE~Bpv(ZD2HGb*3?Ee0r01pe8UD7QpzuEd zGC~f4*$t}NU@E%c7^EXIBi1`j`JTl*ZC;5T7fMACs=z#RSNb?JYMitW6;_4Iq> zak*diy>`XS`yZ%7f3oZ9Osx`Y*1ahk%GfHg*|6we4j0Y<8i^G45F-{L2Gi%>b$m1V zEp{RA>erL&6_q)Od73BMFJSPm>U{m|_b$>X>{Bt#-+xI6NMFyrB9pC#Ch!tMu;|@_ zKFU4dpJXDv4>K^x1)^L0UbCYhD4utA1R%4kcXK8DJ2x=CHYw$A`g8>6_m!{*U?eO4 zTWjb~wfi}&aZ&8rQY|4a68lL6p|+;I;ZO_h!kLQGn{k}q?EzwS`@nm=bEiipkmI{_ zVQHHBY|%uI#nv=(7gS|AhJ;Fu_C$}`z3LQ(txu!~fIj2Z;ce$3@z!v4y@k(i3>SwSqDSt3%9}8b zA#vA9x02!QwPf|BMo1nc)$1xG}5;-SNmQhKm)%rN=VMskfDe zn)wd8qP_~Jqsf9jj(}&vO_b+}*y#gImEqU4&DG>d(qG)$+wEZ%GLuR1XB%%T3EDxtG2C8s*zP{&UtLo+@XrKgqK(M zH+E=JsHsDevGa&rg=Ejun^o%vlV&r0SA_xab;_ga)L@Utd)jHp`$Ujvl9te&WoC)d zBg+%0pmeveMq?j*jkAEOdYeG-3s$5{yYO}CCsL2M*=C!uv{YW?C|_#PSfdcu+a9hj zj{Q6pSda4Jf?&20j;Q{r2e!al8BQE~XIsTqaAQ!pNtKY5{q@2^Sgi}s+!O)Zc-`6v z0s?A-T+1#nN!nmbKE~JXeCA6EuQ&KkFav=VgueBo)~x_cQ>oU)4z?z~Kdb?2sD|K6 zLd2S}pjM)7QbjWrQn)~w>yLxE>I!Et&FM;1Af#^FcG2YaJ=r8s@c^JKK2Cf4cSPgS zZfQe$M)EI-Pz5>B%Y!pV040-f3@bM>vgdxXG3ll70ep~U+;z>fC4@Q`BGb{ApLkYJ zFS8mXh1WYr@zR#}Gc`O$$|!G;^k^T>yQWl=;t1MOD+}rY6 zBdRl#Bkx5zP;7HmOB0_Mt4AkjfbNxlL_wh*TVzfq$jn5-nSY$X%a?ihixsRr< z*1)j!+nxJg7ZZyt$dZ(Zb5Cj?ZNH-Ad7~3YjtT^VmR~9;>J)pol*wt!=j<8RFgwxI zKvPmy!9K_nkb`$Vt3V1N`ZamhaAP&3E)y-)B)>=$8PIcjT$t*X?Ff2$hs?k>5$5nB zo+$3@u1R&ao029kjXUBrGrN@ACH*ZsZZ~cu1WcDed+N+mM3Z0#g$G*eN6EceJ$k)b z>#oT-O#NQ=#8!cm>XCvm2DBqT;Gt=r3#@fpP#7?`(Me zS_JjwR*T{c!(Q=e~k67Pi!0e>Ksz_UURR6{rn8Cx@sNvMOEVTYQ{& z7IvuX(0(-QkfK{V7o+73|9tK4J&||IoQB>C7}41*DTA!<)~Z>XNVI=p8;(om@$_3d zh&Md@ghsIzJ*SnE^j!S4X8k!&Ouig$>YM&Nr)QUbYus^%Un+O z;DMulx*^KIc3M_;2cW>3cDB}xpFAOQnOs|J!N(d)fRYDK3b;20r z)wdl3rb3jXf+w|dO}Mia->aX!6*{s7xK|7&5L;B()7Z;wQnqymNpuqyD;(>%;W^| zagVDuz0vNMvYkKasLXxAoxy=7F82*>?wLGBY2TBRXB@m|y;;vH2!z`|go+$%jIL_C zADl@}2(u3(oC~o+mLKOsjt%3C2EXOVU4Z7KxTyLKEvh&A&eN`Dm6++e zR#D6ulLF27yC$OCXVT|0za7Tau5AOXmoJVtIgZxDRK!4$i3aFQ-@=jnS>V1Q} zbvtv+1jp&dY-=Zrm*ZiwAx5`OOU!0}w!31Qc;*PJIGePGK)E}vB$CB$mYkH&hS8$> zW4|2WdYB&)2$SiDhR|}99na2wmCib)*kmLg74WdkTEpxRmu>H4>ChgCR&I%M(PFKt zc6erg7zv$xq&;(3-T|e>G1Uii>{}nX*;TQ#6Zy+QL~=0G>V!b-Srw-7bUyi;YeCA-=$*heRq2x)4HwVa``Y54 zjh?a7=bg@E^{MOMm<84Jd|#>a{9TXF;0^)&I*O^YZVclKpMg8b2ppB}tzB}CU}^MN z>|FoY&4+z6B(LvkqNHJxpU>73nN`iC;GB)#o0Efld_0`((bzhch2!8jt>62Iu&H;h zv~7&4Kjb&v|MqUok405P^6PL?yTr2u}(czPV=&`9k(rA?L~vlM4Nd~=rfnwJo&aB2xw&#r%_ zWE=eBQ4#f_L#Na7FpRCYs5ON~UZ`w$h`kku3M-u3l_N?@-RMPLM_ngwzMd8LU13zy zYApH$TYD0|dt3UR$CFVrjBaPEkND}{qIx3%Ore?b)FN-;v6{>~v#l-KJ0YTmvMxs5 zL+V7aXV|>&15u%oS?}{|R%2#EM`ko=mde3+89*Xw@%tb!?29Ig9a&RLVK6|3K0ZXDJId#ZTs z{(0N{Lyrl#vtRUx1s1J(-q!Q5w*rIowB1aYP4^xlLc2Cn^ZWUcfAh3fNjupEu^rxz zyZC234DprN@s-UjvAjDV1okSZk*FOfVAm0uerdYCi>K3 z8wR0#58d`xyd^S5WSA9-v&sI-seJdzXF-Oq-BXI_>IY_pOR~u~9t|qk&m6B~L~~pl zdKcOw7s#~gj z+Ry$k<~&X-(HijdSQhH**(oybQ|JED6Nu~X@4)7fqmDw&MIGj@S#>`=0aL0T- zj`~jwvQApmepeh^(EO6<4Hu~ybr%AJT@}#Is3CAAK{=|oqFis@7;Tr!LPb8YyLbWm zd14}2?SA2aGIoW6Vl)8D{`$&a-tcFo+{X+TpsBd4`?o>ES*PSI|0&CU;fk>y=+7P} z+y14C(5q9^Z$Fcc24oKTaj6(&{oGK!=dFXUCz|@|Xd=Bq9_yx-PJIn^J3Db_n4yr= zb}LY&szE-yI=)`(0(5tTSNOj*#lca_3PzJzUUuo)71VWdyCi8aC=qCP^5y?tzkL5> z9E`#|P`VgY6lDtTc^gk4OlcitO(gfkz)VAjtLGb_iWC)Td-(+@gLx^>@2TdzdIeQ_ zWw|^Abjs1Uk4cpL#^|cud5)Qz-~%BK6MX;j=DTnKI^N)5`Tx*y1y5&8aQ;vH{r^Gt zKgD;S-5A~BT*&}WLD2bAtl%kmnS`uZ&`soE1>ZS>fcFg{TTj(N>(z}G{r3T-6MXG8 zGr=#<6iuQfnAI$q2eD3);Fmq`KJ(wyy)6ZD|1 zi~fC0^7sG0=ZqVyrXQ1M(<5Ak11B`2Pfx&?HmDN5V(^o;2ewaQ*C<9; zZ{?XM;=B5}U6PUlbk)Vj3W1;I%s8DvX7J1PJt5}54Pvp9Pfnq3?)G5!QjIKFl+j~ff_{(@;7Vl>c1io-a(7Vk%3vu zraJgDYsuiH1GifPAs3);)}VHlVAgDGjdETZuw>fgMnB>EKkU7EG?e}SKYk}FNh(QE zbeB?uN|p>pcZ(#Zl6{ZJF3Z?WlTac>$TDa__K|(xLiU}p4q1n>ufr_g*VRq$>fHDH zd_L#=&i8lD_w-L!*SN0N^;(|m&J~M*E@e9)6*oxX`eiUg=KE%CVD{sA4I~kui%t{4g&lw2NBn`#0PEQj@WT8E z8uNuCGR=kodA?&$kBJ?PLHS%X1T@ zy#?|j^{>64OFm5%a9V7U?@D33y^SUUOOF@B4><8v&`x z$xD2)2LjN{v9g8@;w|$yh){!Zy|2%KtFH*pr>PypD;?G&`!*)m3&>sJn`c8DHdbl! z6_^750fC;|;Q1FeVZMK$4}czN$k^64fniYDKz_X`_;f4spG zd(uHmb$v5#Q-AYTh7h2KqPK^fp(|j%EodAd-+Q!ecJbg4Wxz{W8@%=UA=Fi|FUw&Y z%%=^m5HoJdbOxZlPG3K6tKn6msK{yD!v;FSc6hf9ADA+*ilS&bFgg1_hN|;j)#H`# zduk;FaaX}pz+L;(66e}^Al6I23s^5WPhV)0eu>~E!&KgLQ`aHxV$W7VW4r6M=D-U1l5ijC-yF{lzOl_|mZ#_bh4f5WgzKTWOeJXwL81Dpi8( z`Hq)gvW{a})ysqAH+cA9Ea0HCrCR+PtCS=QdLi{V+k8W0o~NVN06j9P!y(EfQ7#cB8(;gNC71 zq~8f9M=9FKD1JX0bH@I7Q6Z4koeRfQ&R~^3r&Ov2Laf(#2e6*{gjeCFCHD!E_=S<5 zGmb;trQNH+0NFEd_<&6k-(z~>r2?3E^W_sO`TKCyZcMh?;A1I0#tYnl!&mu!E4JT? z?YCn4t=NFb`>oi1E4JT??YGDF+hhCfvHkYgetT@cJvRCs`+s|E|NldgkJdI}j}1&= z0}$Fk0ybcrI{+G$3+lP|-=5h7LDL`*l*)Vy{*NtfKJ|A?G6}#ojuCY7>Q22Dpc^<@3FpAm4v^__H9u|JKE1DF2hu#RJd&Lyg6`4Lsw& z^?MV5`WW@!p4tT9lmU`(H&@`=&lCUC3~c^sPdHoKh_!z4rDGh#ACCw(C=WMMjzk?xcrgyFLMV-Muy5t?M=A;VE+~kSKL@sKyX&nT3 zcW78oWCVZO4d%)e5Kx=px$FNt6ITJFoi;UIxE)dglH3hL{J`Li|QD{$r+wGG) z-Bqx^26mR(|AkGILF>vq+wK4eTyAgA9c{4ZK;TGzrnGTSzoQNOFTVQT%YWubAHXY0 zZ4IOEL4*!8+nhj@U08l7$_<(&jR$J)JM{_7&#U}I(SM%4j{r%IKX&dVv>WDw3!VrA z*UkqD5gYf%WTFAEs;F?lL+^(;^K;hSPJr&_T{HW-ald~Hoe21g>8FD{oBZ>WbVR=cq`5yc zo%9jx(t+8otpvmNbBn0=2F*gmNbdv4L1}n8!SA1^F9Ccn;rgx*V1Fp^SXNBlNkBXz z8mw^}_dE7{1iJxBffYypnRfRBnH~2LQ!lIi_iT%TwKgFRnM;FaA!6jYWeDcyn1iat zzf9i=(E8PTN3VjX_NNK7i-2oNbC~$X{nbY@5Lz2{X4^k&yy%Z$xL2plr6&NE3ugOM z8W^?#xA6klYlDdK1o{{thyA(vrvEIN(0rhEzI|IyLmJ|#MSKc`i2HSX-nc*goAtr` z{$~Auq21rC|C{xHYyIC^AA$UTN9*st4tLtD1@O%x_-z6Fe`ow3+qc??qOwMUY>C+x zc_B}B9mltesqDJ0=Uit?x9iuvIj5hJJG#@hQOe<M?MeT zU=|D4(wYOf(`uKG3xGJXmP-C`8IYohJm0oU^G|5dZy5qqwT`$D(_&uMH>rxDDnQKt zek4xcJJ#~=;H{rE`q6Y?=7d@(?B@hA0`KZQh3@FZ%?iADCxgbE>Q1^&7YeM}YC9M6 z7my9TZKvc)udV+2R5pvMwtaia;0rftkStRc8*V8v>*|E&|-j zd2zX)8$S<1X97tF*qlA+V4jv%7b+NuS6V0jVh2kyzRdSRMi5MkP4mfc$bCQ`ap*l4 z0dgVYWh6<%fe@`F8R&1Fims;TB%>Zyr`2Dp%38U^}2~*Npvg?D-SV0~)8uAjFjsA+>Zj zXDrgCY_II$y^$aW|Ie|D!!IwFp|^9Xtw^9Tc^4EnA&tK~vl%q%*$09~^))$__32=@ zGxM<(JBj2hna1Hjvl^FO-9T)|Pb$>qBwa9EQi;s)s0I5ZqE8T$l z#Gs^5eGuB5=%QeA59E9^H-a?aH%4J5raHX;;N5JDPx*@<_|~W7X0{VpR_$6Qb!>^^ zpFIhu=yHM2Sgo9I4u$&7F%q-!?t`EngSi^S-3!=-2ADVaeBPivg||_B$QKJGu5fpd z-3T!uUiO{Z*`v9ZAf1MnPC=you1M$9u%5;wkBg#hvLZ+5bBMyeFNP04@Q!->N8f@t zF-f~>E^qMNLpQ#VBq7)St^D%!XdEEiis{q|@XAXw^h&>r5Qy16Gnm<_lc-rmU7z9J z4I^Un#wIa1v(&;eP-qznh$s~%Hv*KsF}STA=OdxOIEUc8Zx@5reiP}NG$D}4{K z8b!G+w~!N)KHb29N^0ectq6S0ooR@Lf0zaf;FM)ljEzE}jotKiE+-*QZ{8OE0D?sn zWU^V0He~^N?0Iq$a*ffJj9SR9`-AejYj^qxfqJ#VjgqX=q-sP*VQl}iVj5)zqIBX_o)dV0aSklI))m~Spl z_z+lj?D?4%_}vwUeMpIgI^psy+YjG5pWveJ#~N;trM^1tP^|gseQgY;^lf=!!C{~2zIbzPxizP*ti|!z{-peEoBkDRT z9Cg~$Afh?{7`7-CpWYv{`>OkI*$ePw^iB4??Z8iIL z<;j%5i0d6{4=dQbk4STf6ABg@I4uk2DqC0`x4l@u`O~`4=K<%vRX}|~6oj3(`UaSN z0-$W*((W!@VL+Ajr*gf(VgOZOr_|XC(R5R=%=%l_e=`<_W9fj(p-L`F6*|txQ4%);XX$!R6%Hwp$1pj_ELME%brL(X`E#*(i zIhIto+)eS0!9zmgjlS0*zRGP}XTWIn)9Xcn0 z$m@T8x>tE<+kfaA674d)V8jyfCMknp#Jg1MmeirB*L$i&lN>-V!YPZ?avywLgw2i97w(=DABYZd zJA!5A{%Jj<2f!E@tgI_*S$~QO{~o!z;|d@^)=PmwK+B^gcS4nRAfqTTe~C#j=csu` z^ELZMUS7+>r4DS_PW}r8vCY*W#gxZ&tu-no&oBp#(WR|*#>8#u1NuzaR%GW#$)z?W z{psAXl)O09z*47fs$)(46Gqmud(QSW+QtnvaNd`Rw--YQ7@nP23X&j&%g}x zGVVK38b!^7%#yPp)pAL9TI?q-+cWM1XjN5Bq5A{42Hp~^1p(WNu{{R13ShA>Fphxm z(@ks<+5wS)(N!I`y@>;+?xf;F(nyH6ko(+oXa-V>)+VqW8fGHU41ly4F`mJQQaB*< zMLZ4U&U=A+MHhGw8FEw+r}^Qt?&Q_kX9(AKw15PBbz-6psKJ>qXE*?COQ!TjX%~_f zSYeGV@2N}yXY0g@=KQb?5|ej(Ln1)7EA2=?+-MzarXZ$MZ3(Y5vvLcaFl?_@t>g&| zn9PJV9jB3?fbzeX1olfW#Ut7^%fx>fahS}jtuV2^<+0hC57h!a0&}4ZWm>ikx9w?t zE7Aue-HPVz@sqxq=WfF4FDQ44aySmvXP4o*oQ_GZ;gs};pN5tjQyq%Vns(&q_zPfL z$2s?vt#iBX5iFYPK07|x;%CKShfE$(*%7t6`Z`X1C5l?EAoj#zJ@QT;Z6Ur09-?Uw z+KqTMT^!py!%1^hbsVqey%FO2ZYFb9)9qp5wGj4+h!Vviq@pva;_P4wT%_n@X_pCH zR9g+%F4SJ|HOowhk>)kXom85Xx5oRsXdk0@#0lI%VD|j2ey? zflXy76}HCAC4nSbOJqs)aJve~II~?X=cev?0jdFSG3JBscBi{FzZk~zhmz2M@a*)k zoFphG$uA|x>$I~O6yn()$u+;=!6JR|fV$zUKU3ue)$Ru=-zdcl$4f=g$YcCEl=e1y zK}bISur@~yoU+j~?ybb{K;_Q74X$vv8Q0P8Nj1OqkmllsYBp|W6J@5klG=UdS`p%s zNy3&fK55R|s}Fl~krJ)T;>T39KjDrsJyAkEeDKDs?sf5-yY{!y+ko*cwvZ`?-*LPu zliEf!Ty}9^U&nqaSWrDFvEiplCqx_9QH<3s@5tIOz+`vYQo=Sgn{kN|moIhw{x)v;Lnl4-fh!;k$qnvD=2H- zzyY$#RR(~tWQP2PzBS0`35irxT6tW=>cmKtTqmXv0#@1$Ww{bWbi{hCFTej(GsfjS z{x(5X*#e}XLGGfEZY$B7CnLRd8|M>XPr@LRf>B99M7dlOKE58VNLzr@TJMTKn7vXh zF_~KIP9Vs>m-Xjz?LPOzT7a&M=YejyeFeGRi7ELa=1WU6%6%E#H)@~QA}A049-K4G zJd5H`HszpPELcG6M%0~kGfBB0Ouk9GrH^7FUa+(P`M>KFa@^pXbj4H+SF)hXlfvxo zEYpH!nfd+EM|Q7Y5?`O-uL)r!zCP`>G??HGKiIM4l$)c8#<2R66~$?7Q7Y$%*hZFe zBba-fsp~+A%S;jLat~6=aiHX1T-!=B7@n2#p+s zQW}5vTyQ6+MaJzy%`gsbVWXSkU!NW?3)ZweBt8Gizpc`9pHJw^} zUtVSX@_c{?>C= z{)vSH(anYwUCLmpe#ga84!c-2Z{Uec#F_3GhW0J}wbPA(BXi~GEGVht1(bEJWsJN~ zp&jAb1$&`!*sIKvh7WRqWq*1f-uL3-=$mUjmTSGApRtw$*F@Ex0x2bI6_?9hKNg3h zP8J=Eyb*hXL4D@1Y-;|@?G8EXgdpCvU6Iy-3Zjf~3IS1$OEcIWW%G-9Dj|4lxI}S& zf4J&NN@9(9h#OU?fLa+oGRNGhE@EELKQS^yWr51@zOh|2r+5#N*r{DB5=ja*Agz~} z-qTs;?qUvi%yEs7jB&`#%wqJHnzM5V)t>Q?NN_U;JS zIZJ*&@#jl8a6HIMbuS=C+pmNdPOA1w)p7=yO*s(Jlg>O_LP4S9*lE&aO1>a@KBPFw zg$fc{nL&95$99q-v1r{CUPkiaPdQbnVmhk;iff)K{L0^D8|Tgi>WQ2MT+OF|!d3XO5#xf1NKJQqdNSu>Zrtba^FixHlwCaCi*cMbE(jlEK_e%Rack&tGw~L z4)!zw%NZM8!IPlV)p4kzH-8Q=+=MMWv?fn=W3DofqLx$$f~U;TCGXbrR&p zBs`NT0^)1FT__(CUw7&9r}NCjsjEYi9T5cqgpcp}Xa`jKo|{EnkKC0`hz;)$U%6|dgY7%hk_Iz6yo;)gMZ)QGv zW&Q&OSW&{RM1xFjSq#}C4mita4g=4JdF!3}q)cFqdk(!Yn@&rruN&j|0o?#L{w*lg z>4_02?$G)$SjR1Kwym`>=#bc2%fw)re5wF9FSolbdGJpsQy}){WHAR{NDunX$1@k@ z+z=<_T&}6gq>~boa=wgjJsHcVtCYb)2TQikXfJ69Y=mFl9Z>otkve zWgcke+v&a^4^F~!Xlb(LcY4e_P-+XHa)LtepW7Lbe?2&fUGO)K+|iSA4&^z<-qClg z*HQhx%$S3i6sr-}MVAWu>QWJQ>d6RlAf@a>2yLDHMhGybX3JZtY7hG^7E7OxSZkdL zsXCzH+GSmLG5fXu^VLgwaZk0CS<$Wl#28N0MS^rK^hbKgrN-9qC0o3VlHFH#NX$|T^2EzO-hN-xc`~)&M&t*j$uUA))NX@H-+23kdqkj@nN)S0 z?&px_Yvof@Z@lncw*|gSo0~{SNp7Uua@VXkocuOJWj;SB3c|r|0-G$kcY^EZRcM0J zhi%aq&FLI5b8P!GTkHyz(2K2aSodD%dNY3`x?M%%WQ2?9R9v9zWIlYCF$O+TU4SQb zbe1_dM9uF^208gsXYxlo*vxtz7G}y1zmJt%di&LI%WjadW_Aw%5OZ-#ZCDEOeGlgcf6JYjko=XDD zTF-!NAXn%QW>+22%EGucIIWjm$o3Klj+!^FuC6|^Owz}hSIxXmXv{dX;P{&tc)J z!$Gw738Oq)w}GRPC@qr(mcYS#N&n6=XV5Eefh8w-aRO`QI>fov+lx$wtOvl9{5<+m zhRKO3d8S`n0+^m5Q;Db;UXJS~bpT_QQon^`?^g6Aue#7Wj8 zGl(7X0%_J2YOkPmnlu8rr>GT*I#g~WM8_?rV7ycpFF;($JW{T*-IX^2)h9AC*PPyP zfQ!Hs;$}DzUu!_&UfT+jr_3DFPc6EI*oVtqw_M7u_2It3)TxJRxcP9rP@xXLQ@skU@#$@YGD4>`S1k35?3#Dj8s>@PHg8ms+ZRTC zj6hL;8^x&*Bwwat(yiz!pd3#{A!U#Xjs9yVI6_4Fa?!FWD6Pe^oy&0m8(9-jAZWVM z=ODzOGEr*(HAsyGPPSHi@YZueU@x@g;=?l|@5er|40yiWHD#t>EEOwxF^*Q*=)Z32NPHHz&QktRcA7n_cli0p5Wtyv zeMxm;BSXXGq+*iEYT3@H#Dn}Tz-BY+Ge3c~U7E_iE6KpCPAavf?HN5HWt>9}hI{(0 zP>>Zyg78sQ{mdA+?z!N@H{FN)W@YeZX~CN2&*pRUxe7p%bW-!$b~NVgR+t0cP8o-a ztI->ZSB390;)dzw40+X-UBYV>zuO`kVPn5aoKIBs6_Ie9>2oOCqN^*`>$1KyQY$T8 z?mPH8k!z>0-$&QS2-4%nu3*8g9}l{8vGqdGaVbEK zIDt=|bQVC+D=h6~N}X`y6OY{zry^`>PKz|M9421T8{2SYDoafGrFqez&Tw{ZyW6-2 z@BJn)f(#GWCKV!$(yLE~KXIAPjT>dPb%*wuv>h<>Py00jAv|FafIErye8j?){y|{A z$Pu*m&2|CxCXbkiUvdV!UQ4O^X%z<&FCxybg5rK&hm795ohHc(=JF(E>x^*k=qSW7 z{vt9TL;31xj0U3Fi7XW2jc8cK(-df#+RH2<+HOkfD9FrMx0DugwQDjOo+8rKd1UA}yr5hJD#>4^G|nsBCQ%14LoIc!TF>XHQE!Ka=~H_=E$B zFO;@k=umD{+rZK9Jd|m}qN3r_I_qK3aGG0e?d21Ds#T+qcTY;;hp(TsS;PgCvfBlL z1uF?w?Vf7;m7}^~)kqT|eIW4f=nXW0siOB^JCv|`$T;F0F{4#+Fg=Q5e)?>HWEa>- ziDiU}ndE@2j&iVRctBB_H2gO9bkqzeuB0yJG^Gp>0p;7kTe4{PpugL75f zsS=&=Sz!BlGO%l5?LcuQQ#8YYk1lTa0_jZv2pdW5;dkdniDv;_`6S#jY<|1NR-tdZ z6=1tbg~J(~M>p9JsP&S#4&02Cb-QR)T{n?B$%VSDajC0XGu4;a*f0JRFSmux0>Hkz zj^IdTAz3Uel8b8UPU*}YyLb;TdCboRb@uNoTJxI;@egDvzDS+LPKWU;`!ciPoM;r5 zGIJ)CZJ>TENmk!a=q`NZ!@aMExxvmvN5SAWq>k&z$XR6J=|QYvyRQ38GSGmHy zVOBW>U)$)O3m$nPy*@ho%KxU)Ii1g2LF^q;S%H2YAl!ke?p+Wx{*Dc2nwVTRwveRKLTK@C4WZ!grq)_sRB4L$9Cj2X4YEG;C&6;05=q_%WRgC zrIpJLc3LfQ4<@B*tE#;>%#x8-xltYR^T8#t{xiB_t3hg3g-ggcw#}I}V}UH4x;A&z z>;@64zH9^l{AXJ37Q@;SFB(5_^QX+PzF$`*Q(jd)*&7u$Z*1>Co1$VH8~KXUy=Mws zaAS!*OZYo0*(IPBNuQ9c2P*&}wXD0(4R*qN^Y2x9_!pmYwTV@)G4Q{c10&DV_-IZA zlz!PK^$y+HuJr>fGX)eQal7my-YmSUeMNlNScDjPF)4f}jW3D%jsdxLf_zdYS{3kE zVL<7>A?VhdVs2eABTwPmrm~!wmgWTP|G~Rjnwvp zC5=Qh*mIOGyR;P*P@;hP@?cII4u}Dbpq<%IX8JnJ5(@~d3*0dg#&YlP!jE{@rM=S+iUfJ2>ejl(^V&F+{gpe}H zl(=ps1@{fJALosD&0F0C)J+G6C;%zvIo2w&de2I(Eh?4kn19148j6p(erRAttnu#0 z?Zpvjg1g36tbw1f;#eglcsSC{W)*c(`d-@`>$OaO?|At9tAwd`rb*vO7xe7=)>P*7 zI*E~}L1i&^bFk=o%*wmbhXD>fj5WyuAOTv90US4SI1BH--opAI&t$f5#yxv+{~KUg z7mc0=tIUJQBsDk`DcPnVx0!ir29z`b4b|F^!M1V|9S)9gg8LqUW!;m!C=L$5DF+zF z9g+SCnfVDUGp*-v!&T93PgC@|T%RQ`Oq-#&b{P|D#H z{u3d~#hcTzDBo3bl?-9TNf`}UBMa5uC`niCH?ftpYORO2U$8*-bU&DeY{aUW+DN#r znZ?_pd_k$TC)mpKN|C3O&5of#g%%C`^S70toSxIHP_|cLRuUk_TMI0baOyCB`IyQ< zG3!$WE7P#S0d3JF=T8k}CZR)>QFczisXWe~BD4mqiDp=mG+h@|-^Sga_$}^w+YTO7 z;sDrEdU*XW5e!w1?l{2V?JCS-O_R@o-54+@+#PBLexOdCSX)@iNE)z{MW8SVx0!t@ zWX*lmW^o-FiSxHxk_7|kAE;<&&P&a29g|pWx?Fx~`;iOQA7dKj1giPJ7)2G%xdds3 z^(sIchW~+e^`KHYl#&J~cHJY$ei!o5v{4rLx$?!qSNTGW+!$ncivk|DXgv72Rp=A~ zlG>j5!zf46YD*$@e^%epqxrd~>P9l01a7UDVB#y8EFj80^>OEa3&oM313cw&TFVyf+JGZE zNQ3pFJ!c>vPQUAZh{Z%K&?5nIQSNJmZ;?508mUns`IS}%(5c=ax*==PF5EdaIS)W0 zPH0-q#aJ({Ho)U^ z?s-T_13)Z!3n(B;U0R#e&&pIuQZwvhE85ecVd?3UhTcA=WqUtoBvq-%yE>Owu;^r+ z^gC+nwQuw9?j1(yHP;*S>!h-YsymPRn1pCA$?L}l6|0>SogMJ1ZP>kncWW(qYdsnj zDOmiK?;@?dFgrmUj-+~)H#X#oxVn1LsKU8l4e7Vj!S-HIe@1^E+M}M^*2M*Z)E5q1 z|Ld4B#$E+NM#_)-Usw^u4~rl;&9Rrj8F7iJMb6hFr_V=3v8igE>$RyB5V4A9kCqcu zjLfjDIUV-|n3J$JrU9N#KTfff{g2c^phIB!x9|^L>U>B{qX!M3acj5xIxS8hj^|O= zCd5p3+^gHaJoD!toSaTJXD_GNPawnzS9czYj%CF}Kd$c##I?eQ{jcz6bx6~|R z?w94pQCA2&v@o*s8>?!2{)W^~U+?HwC5!ELppBGT*9kR#6n9u)i}Uo9mO@mhHGlI5 zA3$|ot0k&gk=v-fHuE!OV+S-G2X0l2O-|<>PfD*6NcCp?h8Db1fgAA9UOvR#P&hu}Gnk(WLnEuG<3+Xl9i5q;uzv()X}PjWkTj~6UX@Q-T>Y*ZOzCxt@ji3!xFBz%i(S|0qOZ2ql215o zak91i{PQy^T(HFtL*+Eg+9deapH4R#aJSP{ecL4*zvdd3(JWO+&e_SG>hOqFkIQD- zT-5nle3?xTg4EdbCDdp)Lf2Wl-t4*fYT5_`QiCv=+^MyHH>KkwTei+zHp)9bHY`CB zxt6xw6MqD#RM5#adw*~Bu{Vhj>b-z~b7gU^5PXz|MAtM{Yb`pxP}HGNpSicY52)D@ ztcgz9EcWUtjV@*1YAn(3go@xj73JHk2=;v*|Nc)H+tYK{)+7avPAOU$yxfCjg%Z_x z+-N6L1KeSCTsBU@psOwk6lM!m!CmJBlw~oHD*^=@g_?N!fjv*4b-O$GBYu{Y8-)1~ z*ngk9R+8=tU;~2`ak4P*+SGWi7=){-6P~z%Kt}L-e}CdXzkVCMex+-MPhjNfh z>gz9=0Mz}#9d!07tkS^fX!Hd%=J18;1K-iMcTjaJDu0s_sO=m%uUT*zsKO(UFDM|O z57bzJ0-|eBgUr7h{5^-i$>ukw{1y(s<>CJ=okA-vbYaO(1PAj{M~D9^JE67j>7%ne zT6ARyJ2Xb4@%&6PGJ;X)EmiycIj^YlTDh>x3IeYgI9Xav^*1B{u=@{uenk^W$S!1t;t89Fl9*0t;snJx6Nts@Q#(u_NhYxIQkTiNyy zcfH2fGwvDRu>)DayyJozcyM5Fo8yI2#YcaNI6i-j*~TJP@}3b%x9bNntRZw1XF}1` zi~i#=20fqe6h%)Db9-zTir)Eme*s1ae(B#v&v6DkIBUICGE9%RSP$c_16|89nn2LVzrfy`M@6H z1;?B%TnboLz3a^V?|vBlr>mQLMd%Ku9Y_t@frF&c&-z{ysL2_OZxT415jxfxa7j-UMGK_3%09xBv%|nOhmFRQ@*Of&634 z0p@%!e?DCN;4SlKo6PvAL>zFj_#W>dAiVfSkm&*7y%VK*<}rZxZshiXBL^74FRamO z$C~zok8JjEtmCyd6Ef_4^_#{&anCM_<^M-|hky}lFQoLe?nF+A?p^QN3qJ7TBPl!& zh+XK1KbxdML+eJ<&olw2nlxk0RzE(*aO{q`s=1Gt@c<{{dbd=O+54XS_hHjlf>$fi z;z=8m7zExs&De3D9|-WfHB(0PJ8m95iVOXtVjnsdNb>K!%8n&!U|V0yRl4pjRjkYH z68SFD@}Xr7bLfjy!761x!!?2vX^_Y(_4qaguuR|w7W6XsWVe_tqW2i+>~k;ea#=QF zoAoJy?tmZYV87-s88F|wEW)~n*k*n->vD7ym`HciJe5>%)v1WUBS3p_5$!}(a813} z@Jl%L_Xegw0~uDMkvUhvd;eKEjf@jNb|(vD|7;HGr~jBj6x=0a?kxicLYdNLm#hP> zg+3RHf9cP^6`A{A6Vgwg-_dpxOk_G5w;Sya2x~2#piu~}&TO{szx3zd%Kc>^fL169 zb@_S#EQH1dB8PN>UYyruljh(b=^D51A4d;LXM_SOG}@YWgpRTwSPx3Ana+S%7WqcW zzw}4?UmAE21sZS@UimBl@!WT+Y0r;D65~KkeH`8v(KjWB!cXv8V(l5~0vJp$x8xZx+^n>CbnH`}sf7 zZlHnX`d-%T>)^fbqVC4?ES?{Dwj%haul|P^W$FQkiEuuh+A|&pCNe54r9BZ`RnLvB z{L-KApvccH{qH63Pk<0Q43Lef=$@WGn|@)qnP2+zFJ&Qr3xNNvCiyJ@ex%?Z1whlV zp7ChL+eNXe2D!_D^Y_9<<1*eZ&^r9h6%$2$KUDCGec%j9kz+~jehGJa9F)zSYb;^Y zu~=s%?MiuXQeUYMnmJwS;vb6Hjk7nkEF3Qrn>nJ`DV>owPI%j3b`QJIt2z^e#AFUF zQ0tE)Vx^Wb!J$JnvQam)wJDB97UWWNW0%Mg$3?-=5!q>t!0AHLGrRGJ!mSaPjSSth zm-KAM@E)(25fpsbpdVq*JMyM~Z{bOcX)>&3G3se)L)+W8iz`)R_b^G5$25I@aqNP- z{bgsnsfoq4+{PPK4gFSS#TUcK7KyD} zhRVXHZxxfWS7N-U)r1FKIB40ag-M>^d`RvI35nIE4$RqgSB=F;t>8_{iZKt; zIA_UUUHoG>i;B$O>53T%+{32N_-eP7r=nJ7E_ejG+c~W*Qyk(Lc%xpuz_}p@&FqIT z2%(&dZnJn4IRmxO9#SM)sNer8)V9Ol_X8m$B1C%y!>{0ov{W1zekk+mEIK+h+a+0x4}jhLfL>D^@EKq}4Xm&>ZI? z7Ippmcvte-Ca<*+nb?Or7+@Czni)zPPF0LQ&rju^riTZ%^p4Gl=5@HG8I4pfRurqf zQSWiK{+hpn@IDN)og55CN%xaJM5a>P3pI6CIEdzjP4A+lUKOp!Z_nluosN2p>3@t# zwt8e`e=jN!*4()4-cdxLn5+$-&ee@_?+YS)^~^Q`-#xT@`_KC4KdR&pwC^K5-txgm zGU<>d+PHw`75%VPsK~ZVS5Ru`=>_94GRk*4lH6i-rpC=JNYD7MN&(=x7bu9~NP}bC ziZiQZ{rL6jiv}pmwc^^=dR4MB@lLmGu?YszbWuDejXR~4gnN}*uo8KpfE=Id*wd^R z=kneX+sf<^wt5`bl?G07)EVCf>$5f{BUS?K^P;fA&5eEK{xKv~tv95gZ+-ihRRG0d z090Wpet6G=V40rB7;b4SUtfWpMOZK4XsiPj@1CzHhq~Zk6ej9qJ~i9st4m2fK}a~! zb!(8cUUwbtQodYlG|9`7s#v9)b!y?{#r2EnE!2F)`XqZ6>DjVEVZW!uS1TWc>RK5>$W7lAo_pr8${L44WF z+YTph6ssCph#Fl9mx!V+dOGxDBDK;@?A+cR9P3ErlJC@+A4fKJtp%y}v7SU=UdPrS zykWaL^p%m6FfCKPZ+wg&<@bu{M>b|r$st(+{~2 z>-MnULhOS=c)srA%qiogN@l{0yHj75r%bBr36*I5u3rm!ZOW8`FM&@cGixayy%U|q z0E^S5=;f_0R|#jd#@)O@qk3I#O<%65+!;lw@L8Njxry6OuP92K!Z_YqPV}ja#Kte+ z102?Sr+}!oxKx3|`@0oVBi^5X+r%=h8KkpRUtxeSAy1y%2J7MMR@ar5RG2R4%%b+9 zdL|Yd$NGzxtjkc;E?Jfv>viF;NPW0s*kVp7L3zyZePm`iXKRJ={bC6-*S2)a_Umh9 zp(KRt#o2M~7H-r)NgXBcRTIf7ar!PFAp>B^rkUfRs7v$~z&Cd(C0s(&qnI^*Zdggnnn58Fee=X^8u9clY6eZKt% zy#+{~ZI7md=@WnrEqQ|CZR;SfTC^O!Ykl>RkIr_8pd82&IcF zqay^5PJwzYvv*rd6>mJo#IYce{cbm$CyiO;E)Pj>nc(DB4+!qd7cCrmN79r&VoY40 zoTp_O*77d;YV>?P#L{wDp%6JxN5Dwa3~0p?Og?tr^^O7-_Ml{PFJCjE<{ z2of7055c56GSeQI%yHMK?~I8NmJ%Zab>w2FM(ee}nO?EH<;bym#VGf#BJdIRDs5-0 zwdSY>1sHJOBd3@E?MW(_7is?si-JytJ^}sz=tkEPUrpNfCo!MoUKw~ z%yDB8IjWPW-9|X6uXY6NOppL25nHSNJSuCethN@ULKH)vycm z4XXDj(F;Lp2K@&JX$_sm^&AUJ>Z#o*oxBOQIK%#JGkJ6C1nz0leT}8c;s)|m*>X}z!93zy?lT|%?h zGwf!1MvWT?m6ClQ$7TzWHyjE`*t!|_mfWhj5P_P_QE!8#N9HO?EcH5tzBD4Q6V{{L zP6-q|bR^FQ56zV-u1qFd7MOPh;}t@sU&qdzzc?l3;M{FRZOAP~jlU2fgroAO0%L7> z>2-jn@xV-XYPzkCb()8c3o6CN79zu5y$D_MwIfGtwNWZEB2WlV5~&aEC~Guw@Z#6P z6>h119BCLct*Yy1-XGz<7M2~u-q7GK(bZcE4*^2>qBC`s{V`_l7?gzm9|HJMJ&OX* zzFXYBv6ll9o>#ZKR2fXRrWe_)j1yShd>Xds<_JsWn3f0Ia=BOSHNk7g`bHMVFHBv^ zk3zX_Bo2Wx|KlHR8^P_Uj@jPIkvU-imuyI3?acg(r2H;^k=Cd_*G-`riDC@7uQ2D z);6Q_y1E5NF*fzt=gkaQ=wSvT1>X^?Ux(EVJav=FVJQcGU~iDl!LuxR>TmiirgGhC&%sHEDf>tSbu?}+iYG;XlB~>$45#Pg-RPf zynWq2MqJ?ouaO*7423$Pj{~fX0X9SH z@^7J$+x_0pJn@&Fxlbr>B>6+l^CBNd&d@~130$det?R9e)jjVjmyRFTlt#y`=RX5X z&l<1x&jq)EHQfy`A(NiZQdWszTs@V2q+1boOKyoRny6VBXTv2WUC(yP6ekP*xVFu` zWqy52M?;0Rmd91HG{=zm%Y;CodiRl9AH`MS^)iO{W4@?AaeIl2`-paUxHp%WaN$IR zg)Xd3dvcpdA9j@B?#ztr*ll%FOq)8nn8ywvM6x;H&`w%P$x)d$+XV$(jE|i~Q(T0uDq6 zLx`BDwSSM`55~&ZD2`7nzNbyPLS>1w;a~H-J3rv_iT#W;9qe)3p}W`(>j4PTBJ;1Jlu}44(=)&W*~j#6o`4J!z%T_4=gC_7Khhf`7)z1a zWn=qdE!O>;`%;_pzD5T1P~MMC2_LV=+s4(+G_H5eFQTK)K-Mx4E`S@Sb)Vm0r-v15 zVi)?4>%Nu-xroL_$XWyc*nE|gFG+qqT*fp3J-PPk)dfnxLKfExsuEWC#vsGL z_@hUg?m-B#_e^s**ca@g`XVGBWG@y5?yiZLopSMRm803{8d(raFA2xRRG_3$#5)>k zmOS-E)|ZTuU5@@bF%>9hq{M^HK3U@q%9S*!qP60dS+Aw{W<$DK>l0!z_;6bpBa-iA zakyaKI(w){siIf;mVfOSvV?rV& zaTg6oBTWXQB7zPLSojOcH&U0`A@%z^vBfb<$M<+kRMK|oC$a*_^K@biX&{+yk zj^hE&ttb1x64-Nyz_^NJt%_sEF!J5e2|~UEpvMc7az8r?QF!u z+{mlOzUp!WvZm^XbQIaz$l{&HH@Y4>92&dJqSj5+zKGvw-q^A>qG&qeeT!mXHpX`3 zD{qTgQ6Z15Vk?Wr5+h7^!nLfS&0;~vrZ!;_gOF@$eY(<(id*#ZZ>%NPx3fz|Os`ef z)OD|VC^ce2jE-OhUaG+g&S|@Ll+DFuPUpy#Hl#1V!C1lxzID6skVE~P$*LZrjJE2JNsnnJfrEIqVoR>m)3ovly!$lp64^9$Lf{t^~2$%)` z>WD>BzLlJ@4y~{`(_f0V(z^YH``q}$m5N~@R8rHDFzW7*N4*v0mY;*M*}u-@5uju2 z-#nJub4o6{x>QllP_Rc9Ey@6MGqjEWKeOXB(F9J>cAgH=0M1ef++K@T!od=>18|1f z@4`XgCDKa3G@|5nPSYDWs4;ELYcXJ_S|qT@FA^xcDJ6C~j^4Kkuw=SCC$dV2$r5N# z-w~%)pn9&2ceQ{+ng!!tw1OgYfhEw(&(2($EN}wo%pw&rE#NFnNXOeS)QIT95pgWQ zx`jn{POh*9YEb6^=Mwz{Ri95$1;&8)wNe}n0f%Csm(R{zs;)QzIE(hgLkE`5P$NPV zmd?;z!2xXlaavj2RtrE4>bq#E5J%P6_zW0fvy8p{ofJ^h*;AB=(8dvQ0>DX5;gSO2 zefMZVjg|^wS9znSytBXvGfAH|uf+j1ot;9B2pkco09=Hj{^CK-YzMTU?nX_8u*=U; zatts$X91U5WS-NpYk2e;23&QF*6^b> zJg_M^+N2+C(xddPMw|3V1M|@C&1jQ;r1#;`yNH;550)fge?RHm*>yO2)F?e<_}IXx zxsWlE(Qp_I2Vh}4nlB*p!=vFa8V<-qtE1^*G(C)_2h1Vw(R?wQFGlmlXug2tg3)jo z4F}}XU^G39rian=FghO9$}rQ7fq_NM)5S4lbc_x(5ScVORtX;E9}Ndc4KW%HuyFWe X&l9Q`%;476!2krFu6{1-oD!M2EItke4hRIomzR@P1A*=jfk3z6 z*na_6(9}#6pj%%3^3pFgJW@9={Zc7UedaxVxhP7~l)Mv^p2uT7Q_nWYn2;Kg|MsE9 zc&yFK22=51kUZoOZPs*lpQ>-sC3ho0Y-*uW~p31q(5^cA}X zyJa^X!tH$u2ixkJ=5hE^lx_iY{b%f~gvz`B`wQ^DIaw0Re}6rZUAHn%Q!16!La4qaq@`%71f_X(}BpYz;9Wv@)t6`)$pfAZ~3C$iJ0^+fSL_ z57nk`%5CtEgD`)5W7W-ck9BHQU%S577K($fE)j33z_pZ{GG2&gJo-H;Q2BD#A0P7d zQ7CH6+;_NvND^CBndScFV%eWNnv340-?)|BmqJPle>{r+lr-R563G#%du_y-Z(cm= zOLQh@BgS`qF_lcT;?gPIHMW^j(fG!ww<2DB(@%{BHT?OC=aoFFn*gqNZq%Pc@^i9i zczSwd72(8gTU9gBK&k5_$a~pI)zPy^^x7_%Gd8+t#n3YCJoC^~u@z(Awn?Zp3N}+W z`5c203&(iK@)WLP>6#bM6gpNEG3Hyy8=-h64en0nNYDg*^O12{m(HATM^3sFX&gGW z*eJWpsh-8=nw_N96va^$z5Ya&(bB^qVJu9;plv%{x$b6!72-euB^YS&s%?2 z@DM!s)mrTHn_AP6{KEqgWQeF+m(@;M2|Da(!qwm8_(}_1UEcMG=eLNyj^6>jlhG)5 zdNH~kq132l%Ma6;x|q}Gs{E61?K^9P`C!LiQC8LS4G7$~1XLEPiOhzl0L-HgspjqxXsW zuF?i^k}O|rneCw(unZb(i027bD*a1T?Z_&CTuZG^j0G3+iENR&(zecfh1QOHhOVA3Id?qa2M{BjhB z6lHj%mU0_gE9b+}#UAk|*DLwIQcj`yCPT(_*G2#NZxqP z%^r_ptQ|QFa6BNpcBz2|Jq?@^Z7DRr7hY~POl*4#M3%S}ll7^oy^QtSrWu2*kY1ry zN}qW-xQfPn;8!|-m^wv5|5lxw*+6&P#BBVTVw{ck*`@$*(CUf?bKL8k@U$XxHW+=6 z&XRDq80^gvUd4QL1*=ESzN2C{GN9etDo{6lNIYmt%fDFmZ-#YIS$4&blb+AY3d9z3&oYS?YGP0E$8g5{+-J|XQFJjQ&Ro$cC0^bE8$zd<@0o#jpx$z^J(EZX5&46+lcD(C6Ibu)PCp@i|*6Y zb7xY`*6^m5tvzenFx&~5W$QWt?)x+1gr1WFHH47-=XkA1p7(Y3Yz%lA=Oj}MWblH~+B7KL33)cEEL614n!6IvRu_>A)zdqz7(t$MthPde1;OQ2s` zs=7}D@|ZqpITgB?e2KhI2Oc|@NOs85!09vJm?-)-%(nP2Il zBvsn4EEkB+@_~L}mL8nx0R=g1rn@5`>O9KND>+s@eOh*j!pLuS#GgqL2ugw(UM(Na zHAiG8#ygkVQqS}HoGQVWA=M};YlXGxuZ3^FJ|8;&(1=DMr|UH7@D`<>iN{94S8Oz0 zJ@AYNEY{tEzdI@Q>kJa;w!u`FM6-3cB#O;1y0e1r$SM5aY;hMcK&_EP->x9BG z7=q0{@FaGiZ^krdH>xiD+k{L2Q8xKe0Lu9IVGV&v8!KCQoWT#pG6{pdU8JeqL+WyI zRJnj7^{cphs&X&Z^}E!UZX>lNkf=s5555~Sxa(P&OKY`TalDYdZ>me-qh}1%3rE~( zxkZV;GnGWDRREa~u%g3RN7^WQdh2|nVZ=QLq9Yn~3TIC+VlPsLL-~7Ne{Fy4^?dz) zCJA?_qztxDoS3_puee=#(K?alcFJGUCBX|8hPnqjJ#uGhv;0%WRkWq)qpoC6`K9Qc z8N(U1AypQVX)8sCDbzwVh-9cn{zaJ;rtXreb3v0r+B&(SKn)>jj+}`w%Qy!^J6%8C z6RC;L=_v?1o375SYxNIBw{36u;?6`*yuU)_`hkyOS>%pJ62HBlKe^P6-c{4@qn5+d zS;=VE!AVI=0#4K+@$%2^&9>DR=46&i%CMMnOLi7)u4vB4mPYzVNhMZy5!A)Y_Yzhg zf9l+;x*y0=Ggi$N!s^%aNL~3wAuO(^uF8JC-d$zHroTa8B>}}2iY`u&w(Hf_GF@*+ z*!P=_BB#cJaGH)b3b*!S*fNcw=NlEK;Fl_PqD?7hj6ofo?wwO(x58X6+z*W(9f8bu zZGQ)E|IBx`#-Qd~kCP-U-aZ(v4uE-@M_zZ1nUO2@gmW~Byj26TmzBG^bYDY)VrO5B zTT%7XdGHk7eZ?rUxkOc}^H8VOMps0)M>9@Z6h;_Pp12ZP6M2kN+{70p6e+O1`e1mOmy|0EnRT0iZn>4rA6V6TKd_q|Z z`oK&nPM6{0#MDZg!a`5Ux<0rB&oS@~bE`7wxq3cg5&q?=(EZKq;gBUSMZ|N(sP;!r zg$KIcMe+thaB1Q|r0DB-Ga(=XnO3n3%zoi>WLsIvWRj!aI&CU_D>ZRGHcq;_-o3ZG zw)}KrylX3MP-LfzB&*)BG*6DVXURs4vSZ84G7$f__0`ke7@uYIsS1UJHv24lSgz~) z$cwJiMR+evBBadXmwDmnL5my1u$(tj34aPOb98L9Wzv2PU58&IAstsh{!i3Xv0#bK zsJYtv2#e;DC@Rd{rN5*K!I#Dsht&dl=V!Qgft6*=W`1S!Q#*Xqa*&?b*ah+ z&x;8%m)^j5vG*f>R+j6odaG=J?;Fhg$X;pmvI{xZga)}e&3vfsJH`#IXc`>@CjLZ9 z)Xn|Y=hKDx!`}-C#shG}!n^W-VtCir+_=EouZoupwYVM{ZJ0kR<4fi)N)v_TdVP3( zY<#_n`H^faN{?`|YdEh^*?%OW6R$p{hA3F|VI8F?Qm;Nq?GLPxVjrV#yLU|vc>v--H&f3b6MexB(eilY8KACFfz z*0s?4)uF;3Gv3RBiNosC9XlU>ds4zKx2mU80IX(sSp;!EvFlUKY;2!q0fO}6ac^pl`cf@?~ zY0dZeaaQ#oRM0oNJp02b{QH>^{wto5Rs+m>ds=_usV;x>m90bVKQrXIfu+6a>8K7N@3tB9`&f;hE4hoe4@Rw` z2;*3uJwof}rms-G+Nf|8Qbo%SxzYAcIK3Wi<1{IZSC_ok{hfAV;{%^0kRFTe^IO-D zvIc)~-Lj+`a(;%GCAE-z?L z645XsNx*fv6wkg610(c>!I8RNpMug)B?1Ft_zxM#bM z8AeSc0ox+^=wWvcLjxs%PB2+u%+H$Bkn=<^fGEC)e*^ck{3Ts1MSBz$|7(N#XsO+J zo4WLr^slHyjv))Sgsz|XRXwHwiljwa)q=DUGE$E}XT4ar(+rna$u;%lw}4-i4Lc{L z0Onhuje_%>ZRQ@`EmAXvQ1*HzznpY7Sufa`u_Hkm-#36Ck45k8Js!MX&OJ}nH~v~3 zzqch7R-(^ynEAz{W|PhZ-vjahS&Uu?oI@s5RZXX_U&5nn^`6?TA8M=x!Ppv?sJNJXe`mPD# zCyT8Z+os#pEhdC1b?aNIe6Rq?;*!LL@7n}EZK6~*OtxMTa$85~kc6JLK~oibxOQOP z$5KqsaOdBePx5R^e$lk9CH9eZ71&h9_D!du(;pY={5*Hm5g{vjZO~tW$lAP@!?^5T zS1QP7!qn18c`$y2z`8`c4NhbD$#<5I;GEXyN893twc?#yKWAL2PbSYX=;WM4lDhXh z`hOw?)g6G@^iNtQTNL!(u)Xdo?Ljp*&{kT^LCa97f5ofOEIqG#o+`0Nv+(YWT6aF< zNhjT8#5W(crD5nxo(TY@zh*+NM&6@3GMLE_nGC^aa(1mzY)`8JJZ&M0%W+m7+PXhh z+Gyp#Z0-4TkbA^ZKA z(H|n`S{uEPV1;$iw##qVMs=r%4G)wkADu&)6T9gnrnSG=m>!jAWpnl)c2kZ5l zr4d)ZPOE4<)|?lNRVK}~TdBF4bQ8MPrfKQecydu38eTGIYChQy+8imfttP^3Bi(5?$C>jH8u|jC!4b`d}YsP;SWaHJT|;YDhYh*f{64SeR^rSBuovDkhO; zYZ_vJ3%t}Fro;zL{LIo*0IXJ?WBBE!?d}Q`v4dCmTq#`UW(W z8o;y=BmStr>7tLm)ZU}M_z)@f&X{mdON8X#r9L0E;b)w~0)g5yQVAFop_z39`9&+S z`Ht};JF7-C{Nc-)7EB*TF-zVptM-qI;^@_KqWh8UM0g%X0B!_^V09u2h-_5dRefLM z+XX0b1!uu^0ul0s7eynZziNn0)(M01F4!=z-*pe=@(nuON{klH>4N( zl_!}?h3%Q-@$zVma~^6nfQXQ0w$ZQr&G!qPI}>ZMPIV=X-9o=TFesSxCYRWekMnvy zb&D*nb2wtNFW>VqESH40kFJ(jvR|u4#zF~5#YB16mH#YL5$`v8;ojpLrg~RTuK-5G z#+h-H#HrU2BHuSIhXbI@TU2`a4-ZMeb(0s;(e)JA6zJL(k^_%y((f{8+G@daY?v92 zzm=4+=IN4Js`oKwnYx!}L5vs}fE@!yutENmjdCsFpO@bJ%L%*Lj{l7RG2wtH{x6yE ze}(tI#{fzEuc`(J;s5!n8bOIJJ3K%#^Gi(sSn^j4o|fDOf$#FE(XFFM@~^!hV0&fNm-6vZn*n>Doejz~bVI7!XgCHI5)zb-V>G3irnL{67Klx0$sj z&nlTnGKBcY%xBiQPNW2s$x>3;OnWKw&Cc@=Nj$yQ8}Gi)l0ToL{u^7x{;hsbdEox< zh}8T8ATkzqKC`ZjLA3>*i=8!g)m;s+jAr|Kl6PxpTDJD)7f2M+*Yo=@8WhB_=uv3mYZ6FcQF=gp=Rx z{8OX?wKfAE605=DoULA|N(#S{&vRZ$K8#y&IY$kJkDnUS8PBo=ic9jgOMwV9{Wax=W`7EM3LCqdj1ydo?v^-Or@7ZAH&(l z9BEsMT?Zvk$~h}@!6?jd4iaBPg1L^@x`8LL-=OQTUS!_zo@LwU!ouOx?)7xxswT~r z7lT`!M@ns%yslLheyw|cY{$r05)Rp66m_Mk4@;o@=}IFC29^l$#TjrY6LuHMGYS@V z|HjpbHYW1*yLPecbJ~U2+h!b7G=L0n^qR_(kZwVHTEDmU>);*#Qkc1VSxKIo@JLNM>NRa?w zSBh+Koquv2Gc{?ZC#321PRz00_8hKKFcyFvSF?1-5+nz z!i72v%Wu_vRN{IDP^fnHCGU%vC?tFXmJlUd7nAc+_Cpm zeZgT(yL%cEi;ZOE2>oS3B<9p$pfsGIMX&R~q0UtwGRSKb$KKTERyD;qef4=;`m7?es(r4B(_PiJQs8x3UA-_Z zNtW(hgAaqcCEuHq77Uo)`3qxpvdV{q5jabpQ6k5IO_4o}v4W?)=aSC-&T%K+h7H1c@|1sO0yJR}vd<$S=Gbik|Hi2MTPTh+8gP zQXHQYAMee2H;ODyV+=SJ9oXJI@v);OMa2$+sv^hvX3`v)ag9Z-Bb)kgI0TwKQ;w58 z8e^F&kn=c3orf2-dOZf~7aOt64UgT~6Egplq?6W+z5dG11=j6Nze?hV&u}+aUC6HFnvOd(r346fyor{I zLekeo+I4Wu$HsLj)R|1Xb?awo zv`dpr@{f%U&H=;#{9)fMJK2fNRjTCGV4Z$f#ArI3B{s5tz!`B}Q+4}+)42Du_!O;y z9AhL>gP)<>oHKnO!S^ZIiO=A9*T!XF-m!rS`H8_mr9bDFbiH6>IUo^zO`u~(jr2`H zr1J0Em;3l>ufwIPjwuq)G5 zW5u>2{Ypl$E+CG9$_Xb}PK&vTq$a^?D!r7$P`zXD=0{5`Hf}@LN5fUo{)Z#HGJBC} zf0s{D?YNDm)Ef}%KxIwsN{l@# z6Lf^`-_qS1tTEe60mVPa+h>>H+1K{vZlsOtkH^lPIkx%OUDtLf6AmBHG*I64h1~=i z|N9=2pk^`vxLEr!&_+!+JmL29bg#Op0Vbe6Z7XA%a?QV(|H`YQRku2ZtwPsjlWT2e z0y{5ij`H3BWj5Ufab*U=yz?=&t|ONOd-unwU&~>YEbXu2?OeoT$|Dzc?#-8e{6(vx zV`x?$lGR8_hY?$wQaRPTjM}xOhXQNiu6`qnpIO9=sDI<-=_;0Y_uW=x9%k=yFYuNqjoNy=gL>==FOe3XgK__Te(mDbarJOh=HG+0!On1IGa%U&oU$mj z*(`va7X=L@qHmnWFP@dSe>B%ggtmBF)%~g4LBwmU=Z&7^#712j7GZ6g&C(PN$v(6! zfC_^bG+N{^!{8EEF0g5$hZov${6j_fVmCV4yAREWxilEKnx&jSM7nyqzw#S9*M;^P zU~_fCTPN(x4d<=J*Y^yG2izamFg+VKqYHRpuRp3Abz3>^Of1y(g+1cNN;ug89NgZ$ zW2H}*xlDke!uH8sF*X;P(;R>Xkw5PgM{|dD(^aNt{ct~}D&Ky#5HCg27p2d3oD`NO zD(=zm@xDLjR!LXulL#_Z2@?|xHvViZ9-#fClod@esN`_}j{ z@knDLuW_Lvy$**B&c^8^Y`y9j*qD>{bjLVQu^ZN7yO~osZW4?C?y!X01AtnT0uqWb zf_DePdnyAKpB&Eu5a+d37SHhylikp`|pP)b>|+7A8A~=!PWk4=fn4xr>jGcV9(C;j(kPXK4mLwF)>RryP0H zbg^fP(w-(j7&{-gy-z(mFnxgt^S@W!Zaa^~wUoO&&Q*V$+&R3Wk$aBLAd+l6LeSL{ zJJ;Rt7o285Y8-CxEZts9C2xQcr=3uq7oK4is3_A}U|mvd{%~Y(s=^4+XD6AF0HT}9 zna4KjHDWF$?UnLC-@w^W?HZ)EJVDza#!ZRE(okHHCkMvEfAWdSgr{Xm=aQ)e9SRHn ziD!X*$iv@gCtJP+qVC2M2?z{kdUVq8Je?y4=RRRn$30*s{^adII`N$T;Q*}99071z zrajqB6)itc*KT=?TAND8bS=x^*e&-%UrT!aS-YgmU2Kx)ru}$iybxm`o;A9OSQVE ze#OfbJFd0rbxJB4`!8hT?PAr^+EMA8_*cYd3kkXJchnh-IY46}&HP^FZCpQN1;)3*`yalD|2a0N@7->`wgfMqS%+|~6uV$nMQuqS4BJNyz zSXYt?k5@}GdpCaj+LK{B=0-lbK$Xhh3h1tY>Exuf0%3v}qx?5Q|17X3{CPm?>!gX% zIH18w!?y6$1&~qMGurd)~Qm&)it6ChY*wVaivEX6767ZbanTxi9kZHMKobprcZ8zi_c=DL*QP zMp5+KGy{ef&|I9XA4x~aGjd@iFYY=zxfQXn~RB#+1a$Z~<9J1ddZg9n0YRFAhew3_47x1MV z=13P1QlkGgIHs0h1^)O(gh4l8Q7~@g^-Qk>91&$V>YON1M&M9;NSItnkltZFMzz&ab0F_48h39KY;sTyvaKSQFmRlU)En&Zi)OU!B9S^yIC5 z=YjvzyEA#|TSAg^t&*2evg~0L{mYLgTY!pMJ2kQbUaLquRYo+d8KUSfg6 zb}T*m{7uTT73SwjDq=h~SsitR*Y!2xbHrv(6%s_C3_yE>CGV(|>LUiR zvFLa2g7P!Jym1m6DFmDOP-Mxa@pIsi4kXm7dp}govA9x(r)oV6Jd%X&)p)jIdGhd_ zoH0gbeF(Gga6UC@m+SqO1=*zRC?g zH*#`AT!Vw%BI++B=Vfv;dSvGa-%i~Pc|5&N?e|3H z`oLQE18pkf*&?R#jrgpm0(%xDDs83=`Ug%&k4298OQyG&xT_v)_=TsRS&>QRam7cN z%r@kjH_#uR`}=A{_DU`Jf+Jef`O-vn;^7P^7ea2Np|`;MtxX_dW_5*vXr)J`QGgZnU&*qSl7gs(S)!bkEW$E^KH5Px}<*W<8kWKzUq40 zaA~e=b07UB*vNymN@ixy(#vzA^~t?@SG>ilDdVf+_pC2xM6ws*!U${cA8(N08@A-# zUpFz)Xr5P5IWARPoXZ=>-DMz+AH>3lTNVv%;^HSOU8on}Gyw$F0QatFs zQzFK>Gx4W*%r(1eyhw zlv$Qv#gA@$QtK8MPI-<(k)EuS$Vl3Ykt2iDHN@tby2~h^?KXloyh1&U8*F}`) zfB{P1OTZ4l@%b6PFY0jmXM{X~@3n~wd4}=k6&!0!r#d%R&6KG`H@HM|N@;BWWBU(^ zB!^3?=g~P6NUu%tQB{;8KT=F3mra4N5bVoD9}ep~!$5TpUD$3aO$gNA)Am35+}t_A z>3-1NL-CN?t?T2e@WN9?4ZOwi#XkRSKE!Ms<|BG)%%gJ=NoKUQ+MrAbCz0~{192R& z`3#_Ge}Q(g$9_6WbZ%5OK86P6_A9pIbrx3%~CL+MA|ppl)1+%c(IvhG_uX=xeoPGq5 zrEdnMGvDn?3dJ=yH z{AXOJr@CN)!e6grHF2%8-&}4sj`ld)R;>L^D!sTe7N`*kyLklwjn$wpG$z8 zhA1LUTPtjvkI4YE_UT`lE)7ji*~zk75Ly=Ux>ATtgnd9w=zhraRhP?gy*AIeph@Gemx-6o9M1v?K9I6cf{-! z=E3#wi=a(e_8dJ0w<;@Lvfqh^{FwP|JMVJw9@X$Oi^PdQAcc#&elgFe#axdRoyt7n zC6StyhSN4;9a=iRK3wB=sBt$~66Tl{0@h$oOK@@fc0%dj-k%e9RM-#bgu!^L4KH(5 zvHi9?w06xtO5CgX_>J!5TZJI3wQ%ujVb^_zOFgeJ$&mJb7TC|@WJ$ruI%HmVKYXj< zvi6iyIW63iJgW5Zckw&JEoZuWAwE$yL6b+pX^*{0TiXirw*yzT&Tk37t8V-jcnIry z+AqRo@VVhoAf{|rmj?FJOMNmvc%Ek3CK4{ zuFNc{8Ax>4P!~ZORh?=F5=`yXw|L2xAP&@D#_g?jUyk4;g{Lylb=C#MAEj6W`7O}N zs%&PzoS^@7Ko=8e*}kXuF_)x5n(nCutnj=&NGsN|{piWVK;R*tErdtxv6bR9;k@U5 zRnvL@G4yIp;%c(|D+bq`@bJ@GBFW1FKNzZ(z_u>+-%|NHSX2%4)1+lnaKKO2JWVXnUPIjDaG9fa z$FnWBdCW@#wj-g)0=9)))sfelRillRb2riSbI@@|>&P>WSG@gIt_>c2hEH}kdUUNngza(%gm13G%E z=dl5RkkQ!0ZniUl3Q79HWiUZXlMPb8(yo{U=-@PPoAqPM>owrLTim{dP}JxeOZJ(F zdC_EpqyM{UQ_Tx_>OCf~sFe$}wAbG^=6yOd|6suH3t>2?;BSFoe>{6hG)nl<1GPGz z=UZPmyMEDeW;wY~ONbw1b&9MEoPt6ku0>P5kHq zgf}ME9W3F19+e92bOmoi46bk>Z4>4y`>u#;r!KEgYeThNMFdV?xrPR+&e!kxOMUh% zRxeIfcDb!Cgg8fd(@$UOz*EnAFJ2+09!cJ`m7XHW^MIa~!@lwy%62|)>y_D4X%?(8 zoX~@Hb8%$dwJye627S@;F6oUP3u?T?6i0XUg4FbQ{t$2Odqp%U0syfuu;~KacD*t7 zkTgDAy!kq#u6Yvr1I4|ZwsXcg(%y9UCbbOT1~A@ch0i*KQ81&9Y3K7ZHygimFSN6-yqa>F7&&fmAg9G( z9NezVI7y}I1w|ZuObLO=MvHKjl;0DhnsXI1DceM-PSqd`G|)fMGclLrQka_Bnqlz! zAJy#^*=2}fom`DMq!2N>l1NWK3=!4x-RArDefK!Hwbw(Fq`}GjP5pVBsMt$KUbjjS zKfMLR=Bn*R!A{{SlV!7uc|mG)+OcRnGuS=L@M4&9poZ;NU6YT2Ej-q`ey|>|x`dm* z*F|%C_ENuhadgAa^F44_1bxIUe1$XPU`r8?@0P;2)$IWG@-nXGM{lf-%O9J48|%}g z+x%Sb6Y;SN>&RZUCE|Nm}(9PMP2Td+k1}|JC34aO@M!J37 zEj!^ldD)ikPc_xxuqU#=PVG1xui7>U`ad$W@%)tA@|xC1-GYsY@e7K~_XR_IQ|)SF2gE^|_>; zd+lJV$U;dtK99keh&%O}S%|(8ZV}^O zqb;Vrups&p-qe(kw9R^lCaxb{9U#uMPW?QcQ#VFOl7gP2eF*@tt8Z~YBq#Q^K3X2l zTm+@pA}fOc!hnR3`i(-tml-3=^*Mlf;a9g3X~3SMxx-1bJzIZ7{ovtZ;DGNk>W}T% z+4(X`|NlhqpStRPC`e!RxTwN!)mqT)b@H2&!4i`J$W|g+oeh7f!lB)5PXkCE>^7Du za6HTtO&DX#j|^}bCl1>Bv{oX;RXN@bq{+N+Q^N!m6Uu&dUR&DcegyrJCZ+ADv98^` z#laYteuxsi@}e2zxeD_9A}Ms9wRJ~>L-X6j^*U;EraD7AT4@jV^)Y|3mp684>FwL` zrB|0%nJ_LVpMKG1sk(;nUQnP|^5B?@tuRRz?q>@*+2A{cnrZ|K zI5$u#m)h2mk{Ox~Mt_P@iX?xPshrUi-mpNd~ z=#|&yOdhyJ|CKvs*VCi4xX0{*?0D#2S#m~^5*`i?n{s54^RjToOi!m`ktNPr%owK3+3GqqAhI*X*L)k|Q zhUYB6dCFbQpyw6mnh6HCp6;~HpBiY91liA>o!0qJH8EBcNV(JAx-)V6*GuqkWeHZU<)+TYGcaFiB9Nk7;pvGauX~ z!y@gHKZ<6%h@BN9_T6Yw+t+P}pkm$GY|eRRZTD!SB{B^pvm|Tp>xp^*%lg46bt&5C zN6Gc#|8O)>v}ex*t9OnDXO14R0K0M?VO+#M`}hgr1gcy48%nAJdhcYFBB7RNtVz!f z(#tl3*Q`xW**J%9Fh_d`VU}4IesUQld}fexR@okHSYhEEx^v7ubV!6LT{<9L+Br!?a1no;ETJUgEh$)Z~rHXVQ(-#Ic9DB zHk8lH?2ZwAbbfvg9E>hek#`U&j3jpoyxfArMfyu-X_0bk<=gj!1jHf~Gf+|jv6-9* zft=#zBuh!OwSEn}#)vklC>yqXgvNbel@ z!L5n8Ek8Y{(CTjA^J!{(Mo>9zgC|;q{+YPTt~PXKo0W@G>Qb?mCGjPY$z=Ev-MN`5 z)X`F-ve+J`PRbjOFgdKPx*Vmw`a9(5)9rqcc@;{E2XR+aq+WX{WSAXFjoqOvKc7F5 zB9;jgazfaG&w9+yAeQ`P8z4~iQ|F%*yX7(53o7WS1BoveDYU6BDx6{e)vtO3W_5|3 zh%@qoi>)c9IAP$3LLFn)zg~kRn@0ULAW)_lbc7gnkGO|Vu|&2AtY5uy~sf{=vw7%JjU`^|d|6y+{0@W*%;BvT$CEVqEg+$yzejz46nh zmpnJ&$>0ZG)<0{dy|bGwVDFPh{%}B5V&@YulkRvLQMvBDz@JEu_uPbQl#q_t6#zX- z**faqEdI^Zuya8H^MXz`s~-R#yAajh366qC^#>8hNNb$mh;7diH}faiD%Y9J zR$BIy69Nf(y&tCb|N7e^k7-6fRxCU3FS>#fGiWbQw&p#{51yt#E3V|O$*<&S+5an~ zHxk$_aNpOX19AYcMJVrl|6XdoUwRdwXxkA)MeR#)Skpyzm-=&izneuCwBoz( z;k&U=k^Mm>C-K#`K$8Ilc*WZWbt}ICKBu&+nI0FCql3BJpuGbNkf0oZCjd1O-r)~w zs~A{CU>yq^r6-pAMHU`m7O2kj~j}uUf8r!=MEsIEH~X7pW)v1zfb3! zX1F_2(4XM@>vc)WgqwY(-|2&bkz9lyKHDR^1T2g{;(~ zDh!6Uel{8x-6;|_e)}Es4d*YOwcv(YFis070)OoVz-<5Bp63G$+nkE;lR*=aViYX| z2ZQo+NJoOl6e4=IB5@1%Elv`b8C>{SIl)qd1|5_8nLGi$KlLJ|h9*5%MmP{QQ;n9J zcZ;r-KAF6o%Aeg3k9K}^z+N3xd|4=0axFkp!^>UBOrcC3Y%)-FFS}9OYON~BH)*5O zj>E7g+g?MwOQd{pdKMi5N%(S&wD?5D0{ULjFea}Hoo_d6aZme_R8KlyzNJYMtzbH`16re9>?^$ z)m37vbS}UOkW{^ECS#lAU!a5R%#@D(g0#NH8>2cC!qZ&QQnj5TRgs|ffSy%|qP`XI z9oWIi%xfdzsK-)o7bgV`Mwnb+vu83WeHKQON)E@j6jk#tj@aIH;2*wnv^Ck6F|#%s zVL(%Tbl8lgsTIDHYj`8M8Fy+Y850tG$l>INp2^DF?SlxlDeE|eYpWu0dydO(h!hJU zG*B$oH9G>~I9JeIOxi(GQx?GWTX^7IZ+Ykjh2}8B{zg4w4=9GX=OrGQ=k9tlk!-Z3 zss7~tP@&b&q$&m+JcOsm1bv0BT{U<%Sk4vXWs*v^J?4mPKs`PSpF2z6=hf7{d1$ZfXPkl_ z33?q_TT$SqTq)$l_bu}9R|3+*bjo4yFSjI=Re6qa{Ccj{rk)6m;{tO4(c3+zDcc^l!Z1m~2{CX$Q?x=IFlO(vOU z%ya3lrtLPMjC=4to>0r&a)hUIFkIvuT9?n4GWS?lX>F!wY6EtRTE(?fH!y-YY(d>4 zv*sfHZ70l)G__}aQ1hM_c^y5#Ft0Ob<$Ye&baE*R1nh%ZqebGU9y0$DGQW+x;c#D@ zaV|&aF+lEpKCHD=`B_Ft8)LCzUvV4m<+zd~CNJcrfnC~EGCouKv!#7180NKVMj}#x zjUb^N4P)UTVUT|)J5bElE($cX?b8TX`W`LLyJIGwybq(qJ>S~NFr3wA!YQ!u+e$N( zBVelL#gsRw)5*sW9byP_0wc-^=US8G4`!cHK@88@A=`X`M6Lj7rWx~$E#AxhBIkKq;yzwW)*d4HRX!BlPrfz zN!sR0IQ14}Qj#^$k5&FyCSj7pq2pg^C>qUK&x!{q#UF}s_(Y}88W1`*~S zhs~0Re?BY)dIYg$XE{$PTpz6{w;c&pjVF~&sZLH`6+XCs4&vNTL(739%~?2-C@(9o3n8@e$WPB`NCM92|htd5WQ?loPC}EX{DS$kjPwJV+yO zj4=W(*i7bFMkqCuSKYOTq(~3+onK$%9qf+^2YC4mVkzlHWsO8$;mhkxepiq*0k%$A zwuJP1PqELq1!Q7iQab}RLOPiUTk8x#js&Z=2Wb`tu9bgxSeQ|`F1!Dh<^!%?h{Ils z6;kR;w07Z(U{wn=E#5TJqE91*MJ`n;gB(}_8bO)~|I6e|b^ zE`tYF%UB`P{~vST71zYp_8Vm@C<-VF3J5AFN=JHEKoO*f^xg!d*MweFst8E$u$4|o zkP>=Rnslk5BOo;tF_6%6R&eWn-|yo4opX2QW|vGRGsBu$&-%AVm+XSy8UnYjq?b@I zglp}yG+#vQGX|!1l#51RcWeofh}*H9CHZhSU}v6Eq7&RPs{bg9NgpJxSoWtSK|N2; z;0n7Pf3EDcmfXB5nVP_2ZsIYwjcV~#k+EH~*xU}EKcz-OQg1AKjo#HQ%x2A(PK-@H zx`d}7t+l#_f6c+e%nTuL8DUg#uQ)vgHZ7?_l0Kbo!4M&BmEn^6mMv9({EFR)nyuZH zYV*!vWSW=QNzxB*g8ELlERC@y(I5J7zwr2r%T|W^Q&D$#x*9Xoi!Z_yom&;LQ(O$; zNs;be_{dm&!niut_XmB<`e)a@P0AKE@iUaZ|5XkBwLPaXyWB8`o9h_P)$24e6R7XZ=#5YK;n7=(?e44lSa-&HT>7#$=>3<6F8=+~jdQ8e_JX;SRh+az64DT@X zGB>fPI_b~(4`t-98kV*@$R|xE4a`c4H=R%U`vOMom?U__#o$%H{g)*1ldc=!llniO zaHopH$!?H=WAf$FS1FKNx<|7^M*cwd!6WUkCEZ$$BuBtY{XjayN8aeimA3x~*gpwT z1LC3M!y9v$TGHrZ$l>E+ico<6hjd(1BI`^3E;@sRG+z31tVqY7tFKt(qgill;R{(_ zB#`@l;c3%jgwALdc}2h*XuY?Hnf~$eb^g}t=|opr;-SBNd@O$Gc6;)e_@ZtC^yHuI ze%{eSbdjenxI!0r5+XIod6f0hWO!P^~Q^iO^Y5rA}HOMAiGL zDlsrffP3T7!W%0mmGJ?7rGYYex4($r@mF0^c8*hS`Aoe|&U5~AvD(^Ks8=rUOg(Xb z*#%FY!H#)-t~7S^?a2$o{UOG1zV_`O50T*t=9ZQ=xzc&3;p=;!iDVUVxI(DTC1DET zfCRX6Nr~lN(&ui{nDt+23LiD91`J1*dB9gYhO-k4bw?*SXoe&JdJ&Rl8;F#ylK~V0 z#DXpfW6Rzko^a>m74G97R6{z;*_^#Wq48aJRCiPz1BOvfDr0p?JrB@XTd62lll;ii z>_He+>3q$AvUTRWB&bX`JbO`2a9ZD*NDX=#B1eX9q#8x7Q9!r@v{p?N!)pTu3igqh-u=Kf7AAf!ZWAVwa0T} zss=qSc0<0SPmOiomO(5(Kpk~g79eJiZ&P+=uzy8|1i>OsV95Lv~GFt4Fc1W-k!JZS!Xz{ z9u{5VXwt{|S1Bf&YP(u@S{;ZKb*6sw5BVOJO@|j}blSkIN-BcJn#RJb*GRJ$HR?wM zCh3rMl5JE!6g@EdLhsj?4g2a=SG`zQpeRGFeLDup+kwqq0braPw-%TGaD~suzF>6( z%0XBKP*uXSp9$V_GkjKAqKEB&>-9}nnO)WF8(Rgm0i@6XUJB=Q&Sz`2{f7h?4(I$L zfkt6tLccqq;qcn#0qJfd-RsOhm#fI;Hi*-blTeP~=jdbyZ(8}FjG>|KI8MsQdfQcf zT_;L?cD)46w-1t7bYPlVVeARzY!r6oF$ z%mV!Oa)4gQKEm`1f|te0`6N<}5Kkv__)Xc&l5MM|zqjgF_Ij8rc-IC_%(?67Y6_+G zTAO3yu3L75fye2x%(pQ{i-9Xe`Xy2@jFbE@b|BZHsdzE_DF#ZZV{iom>Ec+ZQZ5A) z5$jz6&SLsdj+QxW?m(aH1G4w#J&OyI!_#$c^WN-AcASsJnZnOr;H|4o9k%T6K*Jj1 zl|XYst;^Em&)K6(BpSh7Dy4vM8WT5T4T;zS)jiAz%606E1FK zxEk?z{Q*?2Bs?-}IE-`cdh)%x!ABlJZjwenl4px3r~Q7JNUMxPU!4!vcgQwI1p1oI ze56`vtSB)jyG|R=&7!nFR#mT4NPa`sVDjK+dl7f5^l;`_mEkH!M9oKE0gtT1SB}D0 z!&;Q>5w-;%;#6BFEP`-rmS&bUG1_`wcWLxI5LD8GVHIrh6&F;6v~`POSpz`zMwb}tE2DWBJ{Z>e;9I6UPAAjZp!@Vy`BhbQc5 z5srH6H*%-&^-@O_ggrfskfh&?UIX^qX2zivW|1uNA(s0fknn^1FgwHNAd$c>+NVW> z6YSO)3DN?k#piaF#GfMQ2M*mLu8EQPZVGoSuia)!#wubdx2tM8M$?-$z)r<#Q_@;^ z-?KL&$`dY1UUr#|e7Z3KrKhqoG2^sC%dTdbdJpYs)NJyswmEPuZEJZ+qs9 zkq*1$i1Vl~eYP5x&k54a+n5yCF79(59382zZ7NpL*Eb|?k{FYd>~L}t5Zv)_LA0&_ zFIK7_DYs^HAqgYCre0$Nwf|xtU#J|ZKfhWq7hMm~rpd3{dd%(x>^usT(_;s-4NHfS zczpfNbb8$$X%M07aHof`Z&X$veRMC0UEB-LzFQ+rrfD9){Tn(bVO0^|wLCI7%s9dm zuqk5=ge0j*WD`xelJr?dDXMdp2L( z&KU68)MM!hGG0NLFv93|9bp_dHGNn_nCeCO;aY{bU5BsQA1qW5GVprShb@bjQ(zD= zse`m>AGH8!xmiEFL)4&|@t>O|r*iamryfV@;8%fjNT(twiwgQl93rH4NC}bCJ73xx z_P#R_mQ@a`_72C3e4&S^X#zoVvpHjG--s~U^ID8>Z!5r^U=$xA`(c*V@80s13gSV= z!We6^z(YT&AET^I6YZHM33qdX(vmX85C5j1l({D+In}E!#Bq(^Re)w`poiO~<7>Fr zRBhQDAJ2B;SFjjRZ|tMH2}`35RR@8kgrNh! zEj~ic&a%{z5MjV?znk#$yVSwXXH0_+-f!P!gIa1gFhgt){h4WpAaHymxDTBYnoL5D zaP;eNaxq?(93*cF)G}zpD^>rE@o7=DG_O5>zK2SY^e_)2$K*HGiJqJ*EpZ8424e+0 zT40gKAWbZ09WP06k-rbcef|Vfd%E3Nree4fis47YP8Xhlj`qdV|>pGp6`{!3Y;c6SbED8=`&{k?Cbc4anqHdWFOp0r6F+7N;XJMOy~-rHW3gl?6?!F?cN zJ6O&*+U%9w&N!s?vy(g;Y}jYMsl_eM#W^7-?5!U1zNK=VHwD`R$k$=Y6;KV1Ttk1u zdhOfrvxRr0iBYy39o2(*7}L~UnyWL-2bB%MdzaaSK=Bm~wa~WRxP6M(*OU#leJe{w zliukS!Bg0Q-Y_~=EmyfUnwLAbLGLM|fyGfm6O^#|vf$lv9MYF_26%Fv;hR%(CBrZW zYk+f50Z0{H>-we4?V7Z)aXEw6%x6D5d9TsrQ7b*+18V07so}x*pWrSP_MUY7cDU57 zH+|v8=KHXQz16ImS65|!BYi)XH&u=%V`fJDw*5qCCdYRh8n%0_2}ed@QoE(S2eVaS zp(+Q9elxj*B~}(>@JkW>^MI6V@iYJm#0ICms^`5jPwC_8dZ>+5JkCx|@UszD2QrsF zo}Rt(8bA4Q-R`Xyj4Fb&zTU|hh`X#OY7Mn8P?Yv1P#NRiRxE)5VGN6^Qs$L#9lE#Z zf-Mk%B7m{1Z1}9SS%m(}B0_JducXm_Sb%|@vAFOH z=h=kiD;_qE&Se~o4xfR2b>~4%#;M!~6~djSgGM8>}Z*A_-f?jV4*a z$YXqW9sHu*sy;WxU1#tQ-Me&|;_|A>Y2sHY+$_!u*)O|r@KTghCjeat3QbENt}s80 zOBbm@z+04{4q!5oUj@@C1Qj;O_~pSAc0tNIVJ5OVPGv|Z3;b4<&S%En!COO@8o zGmkQzEo(;7Hu5-($S##>ly5a^Jd5Y%z@4rX7ajbJ*CmP$Y0W;-Y@ZJ{Yj4qZRt*8) z=oA*IGSnYE3l`okBaS1H62KyMrH1wP^+QUe+VS_~CM8x4Bca9Ufl`Yy7% zZtlkQ4eU373;0`s*>uRds_bI-3y>VBt`L7-D(W9sl~!sWxIoULHvs#bPItWB+Q zSsZNcP{GbY)HYr>RPV9NB`fvqz>dONN2QNvu+pml=e>3N%%@YoF-yn*t9K!_+`3TE zJK?L(p3Z-Fku>`Pl(5)rn;r`?iMW^r4HI@f_J=60fRcl~vDw+#u`x_F3f1!6F*i#g z*EE>d`Pz5IL&Lg5HB8da`Y_32q|wZesGfv~1b@TfdaXxb6eNN{o3GJna2EhBkJA{f zn)8E^W8DUAUxx&o!zITJjz+AIwusvFzE!`!AOo2EX82kpBFxAG8@%Rlv{U286e#O{ zV{=t@KWJI*_sgVl)kW_W%K3?3?Q(Ih&&KC>rE8PWi6ocrV+LDpU;TSo6V6088Q6HN zxJ#)?GHcCo4Xz0>iqsbtmkyPy^@%+j^_+j!scGJLm`u0mL|o%8fLBAqv6G5^vQ+c@ zdz%IC9+(u-;bfXDdW|-|fkS}fsXp*~jMg52Sb$G;v_XRIA36N3e*RyPceCKCGIm3N z7BJH6(EG>Y?MZ=eJpE|Bm2jU6qYaJ> z-9TdiGJu?NA~TTS@LKgUe+~xyGBBs0KnC%+PM+o$mJfYTDIcoFZc+Ulaj(zHMS?)k zd)*p{I2Z0NgVo!}Y;W;FtdywF2lyS9Sp6!C2~m&-x@$4L`0~o_&MEzhGxjHpP16ro zr5=0V=TDig+Kh8+9-ppb2f%p4VW*VTvc1V8@C5%C$>waXY&`4D$yI1y?`qX~$xna{ ztnA-xpa{1(Q_l!~0t7=LsU3R)tV>l7&{lkaw$g#oD5u*w7-)s1u(NY-SGq3uXCwSQ zY=vP3DKs<<8|M={Qiz;alcokcnjMyZ@i?raRks(YJ>gWSv49OTo{-O0RaUT*DRr)ld+tjjE;V3NzzJ_5O=5q z9#EigUr%%mZ05(YE5h8b3-ktEDsFq@nCzDSF!)EA4p{cRoj6(Sc*sR5x zbXMH!t2YSY@aZ0rts%jSyD~x^Z7fRR`imH>1epZtS*2&28n)0oU+7-{R{k&<>n>r> zT}v=R*}l^s*M3^9Chm0-9gg}I3IZ;hX~Ord*4oR20L`SWS0=9?NcEx5y>i+o|M_zd z69Z19{+N^R(>yO)A)2?>Y!UY3D?lCYPegK+wFx; z%wo|5pHk5&|NI~7v!$Wa`>1}r>{5c%76+4#+5JDIx#Ah0^cml#0Yxq1dI~j?)PcZ^ z?@#(Gf+7&$qh?Kt*<<_p6Jt{YZY(VFqAT_6hYt#(OT10`)&s+d{(v6w5zkH7t!0Ml zDx9Movt||4M^C`jVTXiw`yf3(eq>I{92kcU@qX}7+fX%t)%!Wy)s8Z3C)5^r9dTY1KDmI)V*&zCK%5; zd8+H9-`@90c{dZ$!=2#SyXjeE4Zl&ZwwV9oKDL@wt{tAL&{8j#tjiY+>|_}t3b57| z4cR)2_7zy$I{}2 zIpQc8n7`(&qO@o%;@OEX`g5dOf#-DFZ1vC0BNe4z7N|K|F>JnN02L{-tDU&3Va9Nj z>sxu`(oo*2$9ZDtQx1UYW8W|)j2nTT4K6s6d2yK&7A#y!T*f3~<=ROEtqC+{f0lRD-qB zv%JIuK@wvff7;q4O^#9;)a(}L(Q0w6iCd2~6snF|OKoeASjh{=!JPYyH6lY&f))6FKD{2tJ4~^^*gM&r-yePp@O#8x z;i)raz5Kr57$|IS(NRwP++Nx-m7_~54RF})frs*{5sYFUB?2+1zDlg4gAoElPQ~7t zp~9G?sKwjORx$Rz)>*Kf{{=YG9JnYg@gmL0++IuFD)`s4r<5+8737Xp8>RO+`HNo5 z(O>O)l|_RgI)f}t`L5k-p+O5q*cot_J8P+G4OKtYNTF5e_#D`hB&q&Zab6kzJS%XZ zSE&-*GssIY_oIO4%|I6s=Y}qtsAc7ED$~6299Vc}CzgkH-2*C*IYWOPD&=&8k?|>N z=~WFn?%Pf8<=yUtI66CVdgQ1QpQCYFDDjKnS@PT(Z09S!qT&?zy0r&a&mu3)AhACi zl~jKT{2riA25m*fT}T?=?zcDX$E=^U7?JY%xt>)+ylt9HhXa(s$&sv+}0Zmg4FSos(4 zO%o#J09n~po{lDZ5L6%coI@xoxhq0qk zgCA6YL)BoJKLi-TteV#{A5=$ef=&DLM+yUt=FFF9BHnR(QQz0rB;h@=(GN zb>LXO0sT#KRtb33k@|<49JeY0m#M9856u}%GnxAOj%YI6SR*IuTwr#di{__RbFHv& zKCxiOu2g2U&RzO*eeaY#iQYi>qLe33qFDl{7Wtr+lPHsnPmcL0|Nw$ehe_H8N^6gew5hxlq?g~<1B9t~6J4lvieZVH1&-<}Q= zCXWmjalR}a5EEw8-Xf1b8B9h_?$tIwI%Ii=E?h2+JFXN* zX_I#N=^Se>TZu=M^>@QFTMqj&odv*&O1Gv@l6KFYUIIBK*g zmou)g4T`x@VzE9ah??Bv3-nhd?w+AdU3Jn71h4Mo1|!EE#GU=_LhgV3hcnCB*7^tr z*~Wn^S{G64d(yiI zI3VCtGVvBR&QvANzIIZcPs!w;^%x3MlY1#d(EWl5>QV1l<_Aal|2SNy<;j5VWuN9m08p)ydqI@9&d@ehZvY6wT<|q$sg- z$@zlfyKlxx-!xjV*nJl|F&I z>32#)b_0*=Dt|sxbujbc^l0wasPIbbb>f+Xk6U)s=W&Q_`WD%TrKtxLoV~H)MKlu} zjGiQFvC}+)jLV-4oYnpC4&>cd#P6}@fNT@*oWFG%5LTy@*e~64w#M5O-TF{CLJ9FX z_>m^$w_mg2O<0aRnv0YWTdp_8{lOJ@7~{kW@H)ut;PW>=0~UQ-31xpIPb{);neTr7 z;Ki3C-c{-0qsHkuGKIQ&n5%~lD_ApJS-DG&p9h^&zdpo=O9eWg_**r=>|VGjxmN^nqjtp06=Wd-Fh0s#D-wuwKv=WG)}cwSQcJUl(qFts=itDv>fU z;Sr}7y%94Rx_0jK=e;3V(LtFrr07$94#Du64C9u4C_q0DYOB!w+?zeh32pM=c+Og{_p|2+&N-@TwB8l_Y8WwDq6Pze3(W&c73_ zS*RWCj4O97fRuq>lHtp2(obMS;ch;nmW zjCVELK`3~rkY)SrQ~a^TZ?ui4HTUSF$$CLH2^2cuxk`d}Y3!DXzh7Lk{l@8z7kwW5 zSpCREX$6?w{>8n!omzILiD%9`tEgOK*77sYBt=rlZRJfn5;HK0VP zU;|{o9=Ay3yFA(=d_zBJzn2~lg;`zYUPnam|PIIOw`O>Wk4N zU#y8j0FzmePO*n7JBV1)b+RQkmsvOI;D9h_{y#CY-h+UVh0!Ex2vsPL6=~{>t}O7! zpQbs_IT(g^GqvaYhN~#5NRA>tyfMX&+GG;k_N)3rUC#Un>zWs-sk!zWsi7VjSLQQE zM`m@sPHE0br*mP)gZL#^78Ky2r{>Q74Mwd3YdAmCe&Zp37^fj>^q>GcTNH;-+OET) zfu%4oEB_q~=}=CW4^J_I-C>c7LukxhLidhtnMl8$Xkw_M^W|ABv2x2hHuH@ZZBCQ` zHy=VMaK5C(%VU280UiRI6e9fHFnF`Ne=lxYi35G*NyLW?i?FZP)IL zi5RUt?M2r|`?}$q!@c5}n`>I?He98_0FHj{QnY>vm>xWfry|ri2hur(hJ=*cR`C~q z`}{ggZTA)_NE%sqd!a#bXg=N2?VP)oaOE!e2QAv+XM~xabr{gcY*)Vn zlQjoiBFHQZL*DCplx@Gk@5y>wqZ|pneVwgy`1BZOndI9IJ`$v15%~>H+uHi_^2E0- zpJzT6WA-lG1>U`oy9|1@UzaU?itaUb^?j^Wnw1tKr8AfZh;r2WYxB5yRF;zQlKDG5qe%C6*O<`{uC}V_)LXmA zPR&Bkh0pv7r-4M4fy2b)4;rp;3 zo_|dRl6dhsk`E4=no+G8%|1(5Tm1V`{M49I6>9SzlU4c4-OlXzPV56watP_Dn2=Bd z_1VxLpDm?+V*krw4Kd3q;#jpyhJQSC)hD|lE4+I~ZS47ZH#WDj^|v{EA zV%Vw|FK|V^vgH@;3>IZj6~=|m$Cr{QzF84t8Zjz8EyKW+I}@5V*!wk0b9Rtj`HtmU zuZggS$ph=fJ5w^i*K#DT7Mxq@$?#la>FVTlN^a+&qHmy-AMI8+&sry|g`g3vmDn8I z+#4X_NzekW5jW+Hug)c{Jq}irm6OFtq@nt%?^gjw4`J4kp7|SYGU$AR^Jr~#gj zK4RCkegb)UVF#Jf?{z9^A{C%Lp?l{H$!?fhR#RWXc)4+U1Tb0(KfL)NuGN*!@#wk{ zFyWb3Ddt9gYbvIQr2Kg8Nh!E?qSub4M&15x*M;{3a6m7=4nzVIbjreAB!w5A|4Z&8 zsV|dPePzOcqLEt^L2oO5bMdQ&Zl$ph-$>B-w`J0ed(t!ZAH@n&3pYPbv2tFPPPA7Q z^o|WyTN3R?8ymHLaK09N3#H&@~-c@lmf}W0a@xV2`*D(7xo@IA1YEI%zw}A zb7$|_Gq>7SK0$c$n2vfj>hDUwXWnesuh5RWK=Ln6ReRbe*(T$KAko58a`c1L7nhaG z>)UiiCOy;MaLh^P3AE9oCRnh`qNY_)GR8b{-gEFs=RId@>4=mo!WMBQV|HbSO0oC# zgb13M{(DCn&NdJfVVfc8FyGND5ihO-4|;lmXkJH}{p|Wt8*>n*GC1<*&P!~k1$u;w zx>IS$(!6I+;sT^Kqzj4@;UHg?_twZb1vme2{TH}m&PrR7e4o*?8$vuIj`oH428in07wbH7qF|sY+Y{VJ;x{S znLL+%A=!ciC-$_dlr^x#d&vCk*5Em3H)-?6FGB~y776(7QLdB+?uN{D2}M7z;FydQ zPZag;P)L3n^j0(Qu=*mT0r77kuEh@eGMdLMlWmxY4KDWkWG#CNb3j1uf8-BZJ~V+i zZo%@mBrcrw*~tXMi|OCtbv^P4IsO6#)8)@xtpWjd`{R0gZmB6Fl&L3!V`$@N2q!c*G0To*jyyXLkKPk2JexAi_J#2bzj!#dY!qsoT+LtR!t=GegAwTiQ zbvN42=jp2GR0UnYfrfHz3)rLaNnlYJWd4BEC{Aa-yqJ&wDvJ&Gct z-wN^DK_?nN2*@ubeV;z~mgV(I=O3=}*v|(!caq~G(S0#8JBBH802;G9(epD=AZ(y& z7Q6WpoKLX-oXd3v39nC;!pjL$S8y&cIo>ammSYrr&f9NGu6~dtf6he5+@M8yxH}4Q z6b3SBgD5bWF&TA`tHR^Zy+(Imq$L%NwY=DqvLm*iWrQfk^sv1DAKpIStp&sezs#)2 z3aRkUvD|fTOh=gE30G@$*gqP{Z7aR)*$&MS2bD*Ig;b_pbA06bBx#P$cDplA*5(5N zwa4v6e{hE4XUI)0^Ic4sJvqA>ME^CXnoAL^4!OPf<0NDPOuUaCE-1U!*W!(rVxBVp z3N(CHu#fm0$KYacfYq2aRC@R8Z$2lBQ~I?G2glMGmGVEcd{rVZ~n2kQ8#Ruj&af+VysYSpgTQrm)36$@Iq}rW85}0lNIm17W+-Z zpP;C3ZCaPvjR*>-M5iV{Wns|M-{6wd^Aj#a{$&TVZnZ2s7p&vALsFq7NEaz;grj^0 ztRbzpg0#xn4snvj4;bygTT9-&y&rlVy~Q8f#-Et%L`GkPnVE#2_(la59U7YhlOlP6 zeG`Jf4V!Tju}pG9}+GF0EBttuP1T+4bij~B%Rvaw1O+S4f` zuUgVMjO8L@n7*6zIuEs#ss#BoE?a8mxvf&;AJB<>J$|7lzw|;KEnXFeUxDmhcS+L$ zA*xsNkne2(e)w&x)LGZ+NhBBQl>b$t%?#Hz+)`A#+k_MHJD9AAl)hQ}&K>r_r)lfY zpVJsuh1k@t(pXh=iHnf1+cjCuVpy3Dc(H1WT2nvpo-!g*XJJjx<@^A5^Qf=zQ(~)S z|2dDIDT6kW7wWjvZvdcv^Vlc?R+mPm?)|TAL-aG~mBq6nbE^+qncJwmhC6eLe(<(~ zo|7Y^nrZY&t{#fyW~$*^h7z$UY>^-^su#>fnnbDCSVOk3ge@xG%Vhn-!iX%$H`HZN z8y|b^mBy{o_3$Ln+gl8(g=$G*qn-jE%K^S&4@o6mi|zHrsy=4eg)?~)vTA~^-aot^ zl6$epcY*oU-b<;7ZS1Fv6j!u=)8mXs-#s41%=IIHq<^LLYRBmJsCV;=o`0)yPdV?s zt#`)ITX)v~*tV_z!Mk|~bhbt4Ynil7w)(xj1acn|EE%K#(5rm3L#@drKc6s1R3D-AI^x66@ zwrWjXaPY$;sb&)hIBvp0R!!hlkdPB%DYZ|T&$MGRR;wq zx~+lk-Fmcx^!LVj-UB0plZLOGOxOxk4Q>yo6l^a}tq<+-qaPeel0YbOfw|)4UC_x} zOO#qvrFL)FCiGnb-eo{DVd$VzrrrJM6KXorLf4@|_x6QuvKyTxRLR5g3iCFUTn%Cg zj@pL8K(pw@H}*yYrN|$9p(Itb&+`?gPWls%jGzYHe&314Eq8*PWP-OPGCW|${xA-fTgUj6Zfc#qTDNcPA>*YR2nB_9eG9gnj7de#8nM8uC4b%p4X zgQ`z5m*%dVg<|8(=xr8|Dz@)xqHKD_U$8E09&Ax{EMU1AueQEdyfu*I5H17%xK$8M zGu$hwKk2Gt=-&AA%BKyk6Gfj)LOJa@#C7em2QzE5QtS)3t0vXc>`wt6C>>zdKD@ms z84TT_W)roJCpInVye4_w2_)tp9<&+m#W8m; zWVYgEAA9d49MJ)$iX9mk!?d~J!BaDiFpaorHlI+SSk z`^)k=FbA`bj4S&*z9HOqJLz95y+1c>E9~*W2&d^9KR8k0F}c*%7LN86b*TT_&2W06 zx?jh3vtXV_uX-BPAmON%#3Fo5pRG1q^VSy^-j80 z3VeQIFD@m}euS-)m1|l%T<#{QSAc45Ci)BrTwLk57OC*sU+DG<+R~1nr(WbL>ZwRM z;V-kE-)u?UfVaus2>r_Kw=_y}nDOH6$$y8}P1v&w1#GfjP!nz@y=Qoaejvc4UI*?V1R`cS=!keD`U(-ZSyt zWg(o%x+%I-8Vv&Sa=nJa1NFj9Z7etTF5_&CUN^0NDVv4^8lHGh4g-_zd-uh~fxX1- zaB^_njN67B-Laf!(mkb~->&}@NEZ*9q*7gJd76&eq^c#BxfFAm2v5aZVlK_l{=RJY zpF&3y%fK;Jx@PHzvz+wRAKi1s@V<|TQKuIxD$`231dvgZ9?DY?<0ZPuTq$hpUl2xy zF%M*`T=Cf(Z*53u7mO-d@%AR(P8)@)yE=FQZ_w%MB$M{P*(xV;?t?k;*-#D$G*e&} z>9IV067uayW(hi-7M|*DUt(~=Kgsb0pVt2OGD2i(YNFW*!(&AE+jS6#*PGXZCmPpE zKV1Tih0j8kHbUjyzWG1)NreKsn27skI<9)ill7f7V4a|afEgV)-yTF&QOJN+V5t?q z*q?74e++N~MMMK!Zm9l=M(TTL|L35w_`=+cDcJEZ`osUz3FoLe1NqK!mw`l@Gc`1-@}$39u%Ju0>}*c$RykE#*LJhMcu%v&@d@zQ0`qcU-I~OW zX2a}F(|cXHlt64aFfuxoz#<=#X}OEN4*9`#+$}EH>M5XP0&(d4$+n_fU-WtRkA6@R z9QzF#&+Ri2mT>=&V}5hJY3X1Hfc_Phez0Rh9E68A7?uuyxaH0kXYJ?XtxQ#UOh6u= z!Hlo;7nf}Q&pz^j}y9bDal4} z7iRM7)PL>D$ zX?z;A=(y#n5AMyMy&+xK@1f(r9Ebo5<)4j&*~JdT*nfdNLxV=;)N9Ado5!E}Cp}mg zy9~sI3aEOHF7~Ri=fLjxdo#W*4$>?YV~ADxRG0<-4Uo7lp=A(G@zIIpUUmAvCzAN= zIg)eU^^Pi!AN*Yi&8m?tJJBa5vqt^GA>}KL%Z=*HE^8rF$;YG7 zU$tO@jmR773cEO-1WeuVcAXC(Ac1c^s`f)5V18gn>btST-X6Fb`;n>(oqqOdtbqP=RZMAb{Zm==JrKpH9iO zP-~m^d+gIYSy?XgV}I40Ilcr7SrChINty~gJ3N)dtj$vxa*{;DE*BI~$5e&smM+g^ zgS7lR6N+(z-rmhV1;42HTr1s0Jy2l*^Wn;~+KsMpTS|cd?GGxhg*@P?zw%m24$&#|U0<6@Otl*1TYl0s86qRs?m6 zI3s`~b=0#9{*>r5B_Fk&1iF%b!$fVOcTs+PP}46CYop6uxJuLnY)HDP{1V(;EBW?M z1Sf)`e#)S)@9PHFaX4p0+6#WRIKUJa9F0ifDYopZjfCvHwg%;M!?$}dlUB#+o|u}1 ze|(S$cWPBf^Cw36a0ZW~T?h3x#?NmtHs-6bnx&Uh^0+ox<|&w&Y#pc*v)jZkUQCO^ z>$>L*2f2KEov{au+(H^In-$9Mb&JLs-F{4+M)C$*Y-2|1=SYn7n|Nc{KYy%BC@$eN zX!2Nd&8!giR7QB68J!ZBD`rM3?I&bleM&ZlRyM*L9g16&*=}gqomHKN^G9;^sN0*PCZhzS;!D;TFAag&&g2Uk;t!X2t>JVnAoT0K6@oMHiY}%6( z1eG7zh-6b2m&-2nwkK)6f%~{r#5=7k+u?I=>*n%8lN&E5>PmSpc26Izi%t9OWfFGG zdX=lW6D5u-NQm(shy_(H)vxKib+&l=1%FG_6v0@K&CBy(_CUu4)ND;o3HfE=X$Z_i zl>MGz9dcM`NW$F1?tAYSzMQsUic80Ip&5G3b84y_i5u4r*=q`-njxl)T5QZXAoC8( zX<;elf<@@@IyWXMG|3&D1VqikVyt@Os}czzkoIp2#qJ%c?biB{w1A_cA0y+90tyhwUpU$3mob9A72`n z4`{cw@NGL3F<_K|R*oxIX`e>gzOP|s?EbDfcA*67f_N9oMqwbdI_EniPL{(+_Wtt4 z2)jY&j){kA->g?(#)q<1=}u!cmF1}GEE~lmu-w9wneX`)8Z|;Rm&UB-7m!crhxXIH zXh<@yRj@;-|1*lTk>r;dlmx=}w{tFbdLXlIAQpHYa9SW7^y6eLeNMTNc|+a@jPls| zHGN$H?-9-VZR0V}K&p-s zfik{~Yl~qv-wvyPdOsYAjE7>=YgCDf!k_NC=jZJ2DywoMZ8ZQVUvB8kWunS$h*uAQ z8^X4hCB>X;yMmpH2bl!-j1UV-r#+cptkz!48v%;1?5DZ8NV$^`>d)fn2w*o=VOh|b zA+L&)wHPr;EPfKNljJeC+W9$d!g@kft|WE+QDFRTo=20nA*YL^kb}_Vz{je0YBffk ztXr9&li(utTDl1TQ(q6mX>q-36McX5$12UoSt>O}v3f7ow3W@nJ9p?TS;iTCy|$`f zmU@s`6W1n+4?0r`uU7Y_qjc95Sc57UgT7#R3t&!lsZL^Vy^MsX=_rAAp~l-&lJ4@& zix;FprqI*`f>Wf+m2-L>H#>1~-{vOCl@wz3DZ4CyTc3pDRsQ4YqxmNZwa)4Vh}~f; z*VI-g&VbupH~NJfR5#T1jj~hAGJ>+~kw8J7#c@R|#8$mrQ|#qiP>?QEJs%l(W(crH zoI+CTJfA_%eU0*JkJsk62R^)~-k#k~({{MyTBnU>UB2p9`yy2|2bf7j2QA1t6YzpZqJC@cR74f%D1t+8 zu$a$$PRcqWJ(JTvJt1mUqx`WdD(6K}vFAM+3UZU9xgg`*e4}v0rD+?x^`~YLY*9ppYo^>~;+>v$sC@YtyQ|4DWn-;c@a#227WiU{HSfN~cRV$9& zw@PQ|#l{wEh1c_3EF?CTfW~Fb{+Ud*c5R(fbG7-suk;UyHOvbp+iBCVQ5DnkzudLT z4gtruT08jK6#s3cbAdVnbl0&EU>~m)z2_%lo^HQu58d%8nA&i?tFaO)z`S`7UO1uK zSMC<^Tx2q>B!w-1_>@2MrZ>K_tZR2lJ~^m+-d024G*UVQG#<{ zhVy)AE}}aQXIjgJRj>JOtI?gJ8`_M`R$pW)SCj3;L(t!|>oau3+!?Bd^|4ec{ z_Scg@N*`q8T8ohgfH>i#@1@gAY1IP;I@+q2D2qzEp*2|`;W{iwm=zGbd9ENs6)vpE zPF_#~Ma0}8GQZi(|D?A1ET!Gcp)}rLk+?uKzP_L|_SrzrP2_skO^JGA>%m?GDK9_T z@kgGw-KP^?G34~pJ$@EHz4D29_o0xum`eY-OHsQJnk%*}D#F8L7{^o+OMm~4ptU%T z$K-it;;(hw^++!cKD%`K!Zd{1>;mQ7%SVP59H*}szwF7%BYQvaLVU{p?_1ZA+DMlB zJ)RN48z-a+-V}0cUT(-DY&?$F*1-FqH8h+Js@J{v2G~k~A9m&GLyM~uU275Br{lKh zjl8m>K7Wn4cDAfwS2ON?@~G`bZS>x;d9&R%pAOjZnWw?D7dyC>oN}0)8*3|cdhhXrA6ya(Q4TWk#=f}7)CEcvB`sx z>19mi$$sOW53=jH@~#iI%?uwlTF(fhXxmMddQ>^>B?tQzX5|Y~NwMOQ_N7lD^*V#0{T($QsWw zInEw2pAhf;UZ%AiRrP#BG{I1rW6BO!&%CVbtNubU08_jhIYp6(bk%c%E_iCv_3ri9 zW@k$dWu6~18Fsij3=hu_NOMVxf19tutzUD&m^S|Y_4%{sa`BAzht{@=v0Xw92l)>w zPGtt~Jh;?M33*HA(r=XDn)iV}*T~g#V4^EDD`$ZVZK<)f7mGGUT3fi(Wtu9kJn0am z|8}p=NquNefnEOIqIUB0b~Y5gw?hDzqFuXGuy?b&S+dsR zCyk346)eqTexQ|ye0R;DeKvt@Io=f&pt4Zi`E?RTUp@1;g`jAO$4$GJ=stU!wnalX z&zEMH$~g}k=PtoF5(&#GYU+F`X_pg}5$D~KyRNvLdxquaE1P3I;gW&7hz@rUE9>-h z@);{0jSuVG5YW9}&OQr|V79KhEvAg{;M=VHdunHlJ-p}|f#UP`YH4dzHW3R#tjrV6 z-0XVBir$y0qBd3MCW_+9Nl*mg*02`4`y6u@V7f+4?tS7R<7o#)>wi_o$l0ETY+V9> z)Y2^V=y56CbAnHPbV2!+$6}<>!#xIU*I6x+SI?O8StcJwblReZpBs7gqYfInyyv0l zGcJ}m>+@r?S=&1H@;mlL)%KE3Yf_{NTGi%?4{sYic{5(*xv;xs{kp5LK5c8y&dJoN z=u`FuYAvLvt-V6M&oqLb8g0+NKO;^RZ>skU+4ywtTd?~f^>`qV>TA|9r zx`*$=;Osc|&j{7fiPyuIO>C+N(+(j!ht~qyF+qbn^t8PyI?7>qrb2h7FF)^A*tB?F zNALTcqkUq;NUgg5-9qe+>nWbMU#ei0p0^wgZGH;mh6c}>wl7|`P)nnR)RfSEsXmf4 zU!P7NI3Mo}HNP9Z&7fd|_qLYx8V+g{88G}QU#f|Wg9Jiz zVfqr?Klkujy+*RBQg!(vX|f)C;7p6+T9r?S1VZfTgP{Ai+x6u_KjUp*m!oK4IQ`zJ zGpQoWx*ucV?9=y}MJwLZ8`R%&f(}Oni#Zgh?#+lP4ILEtT-K_PP2HaLEM-zt(~8s! ztYL)W3!595LUi^0d|8R94;B0npz}Kl;wOU$5t3~ais9mkCsJ&tn zBzBD2ZB=b*g_yNxqAfwp)?Tp*V$_NmYH#@-`u@N7{l4dNxk&PyljqEP{OA6Xb*;%u_RbM+=JZ&yU$ zP&DGt7JfA9`^vA54y-`ch&T1Vt?8QGApe3w+Z`G^-*BD0o3;!JsYxQx;=@(#_zD)lLj>}<&cU0W7UylwAp51;oUwNUsWnK3?rtvOc8ZXo_X`f43z5n$EQ{7iXE{3z8 z#X%suIuIq;6>kqaa3>n{0*7_3ng#(?>+M%e{JKbXw7w=OXe{@p22PbXSIS1gka~>E zY9(7maSX&%w-S{&#wEObol4zf6tWy_e>`MtHQ#OuTf*J7d;oKR7tZy0PV5gp-Z_$R zQMjisu$n%D3+f^OGe)3U6ujp0s}$F_-a0KCF&>wrk{TSS!SYg6E)5FS(QJ(xw&h0dAV?$rU=X7O`-nLhPGnW^Tt>)ELM}3eW$MJjqxv) z>H?rKDNGB^pzWD;5OANj;jA!|x98rT0yKmk1lk@%SPGb`)^rhgl5mtg%^^%|Oh--0 zEx!i6t_Y|#8~Vvc$7zS;Yhc3p!gMDu7kKSZm;|O4IL?3 zco8v9iScrr>x{x=C%R6;F4Zce=N8yPYJQGnW*l+kkCO{5;Uwtc z*v1zRV{-d~Hq_RqU)bhGwIC&0?#ZA%zWJJ~aL(&FDvGq(RK?cxhfqFKfU-+3t@Ud_ zJRl0H39+tCA9O4EjnlH9iBo(gao;EuR#pe`2#EW7demZAs>}5i-YIjA&iFdoUL2v2 zsWaxj`|7r$_Wg=hKza9Y#GLfjQzWKUi zQ?;d!$}*I7VQY3ykakbEx;zRZ8`p{SxQ3_IUr*I{$ zj6w-R(Rh}G*LD0_e7MB9;sL^7MM*1dAs|IHF&yu%bd3ug`qit9i*b--nheuguF?Oq zvNmRdw3dpfH#71d^%0Z9do9pkMg0>fhht;;6;LEf(u;)g|s zmHC5p*jE!T#H}$YAw92;a%{|tCzkOBi|Jq2mSSW0gp?BVKK!ORJrWmV$-bcHzPsB$ zcoq;gzE*jbf7fKACaqLTcoh*@7)0|1pYr+%PLZqLlpu4EWDV*Pj7D``r_7_*hA`3< ze_;z+km=ppTWyHq`C$nTkdN31S70ndsM3;hDGYWvvedUnT?&R?%umIm>Yii8oqKK@ zK7L%&k;IKtX8<+yQ5l6IZehX(r5^!#Sq}!@_Vl?r9&y1-`K7BEy#&f;db`{qs0eCB z71p3p8A5Cm;)*8=`FqL7a}YkB;+*6MT$vxm0-}fOZ(|*mC&V3FQ3-dVV|P?CmnL$- z$3HY*(lT2@>Bl@_ipqSRVg$*OlC(d$4_xez6x>ImQ2gy=TU<=nf8s5V!COV#0}#_g zuhq&yNbv+|*=Rg3taa`#hz0V8-17F|Gj&+~$+mZLGy9-zY09Zq0l>0Odt=*x56r^h2tX?Mkb@Ky>B> zpjO!ru9E7_dMEpm{XZxF*ir}gqJNZ3dMx)P_v_TxnPAuT6Paf5PludG57#8NIcC{- z_w<%J+?fni+>QgZu4HtC#U0S`>uTo22@qjnGZ|0uan92tmPPIF>OW016Z-yX) z)tcdNT(8@Gq|1|aGfKdQl!Fuq!Dzyhe zji#a)HQdpr2-X`z=-k4#S@bLc>Q$%yNDifowVxr#QF-Kk))4`c5S2h$WGbslRNM*e zO)O}%l6QN8y&c-6e;+`+ju+sj~ z+i{=uMUJg;Y?{^OQ%SSmIWpN6of+${l|-rl*>*yaRQ2WwF`Kq{s(NC*adkPUHVC@71sATyci%tFk{-V0YPZ+_MX0*n zZd3&5yX7x#Bgj2cXTReYx=%nau8uwec8Un?+C5UoaZo>`wgSjwH8W-;K^e(?)EFnu zKMyvMx+xJjHDG_td9sX1{%Q5+Eb8P(rd)L@G~$nQw)KL1DCsyir6i~Uke5o_jhb<2l-j{R1o>@fUgPL5f~Ggy?MThH(ZDLbL%?x3M4?R4r|>KFWAgxX;7 z3yhl$ozWJt+$}P{)TMa3KWDO+ue(fF3EYS4bsD^nfp$z>KwGd2v@GmB^oYh>Oo({5jAtbwmsZt1`5(cCwL=YF!@Kzk*V^ zdO@+Ki`8DJ*zLzr33_We6SLKq;~#7>eX_rIdi}87s6(?~h-`Y(erKsE%DEHKdHCCL zo0L3OOjn)qtHgHYhYJUITe&pV5To9ufWyDF|1|t@X1mpGyw(Z%`%oeysIhW5O9q1Z z@my&8o7rI$p2ckhzMqLWODqaJ7qQmY?Ty3(CJ=*;6FtzpoPtD7m>U|`U zv^r~ill`BKk?U!YH9B{x_bJV$ayVO@CS~zgY?hCvY7;W`{&Kq|)0+DhOION(loYPi z4w9cA92lxH(V4{=rZOYIXBoDcZ8)mO8l0cq)GR%-{HBjHS(UG>uT+_R0guQSgtH4` zIi)+FV})cXL8R1$5 zh_Jo60&rBWI%Ap1cJ=uCrl-S+Uxh6LZ(*<6K|q@lgUVFO`N1$KJv&yQykw z-b?jm$2FsQDgzOMqf5~P9qWf1NKWirzwB{=|DT*Z&Ze3bDzn6mF6}B)4&!<$yk2D$ zW?Z=DXi9IZs(eJ*d$$`RQarBRP)2u_E3z_L7~gC2p=Xzm3jfk5CbU2fM6GyUVQK@i zHq1wfBmWTPGYze^F?clY=2Uju5{|jCS$C~XFXWV{7|;&+A~1Ld>0)} zEW~8nWc9{h8;WvJ0#m3YZNP7bjI?gQf*R}%4&FIvN_gEgu<#p;2*=t#DF$RZ{Z3~B zInmZ0KMGsYdBXvTC}v%9e9+~Y7tTuG(=A?k(@^a*z$=n-t!i9WzIF|* z-65-ChU)DcV2Rz_2Qz2siR+}!_eN2?Rd0uTeOZMM;x-`=_dY%btBIiTNEev!x4;r) z@bKWGhaWcr-SOcD7gF`d^M|p+AUDP5PZ!DrUfoF6MU8MOE`W*~P2BG2{f=LI!w5)2 z1gCiQ2^VO63NwjD-OH?_(gfMtz0LaB&j>^mxz3<>BfzDaF-gUS5jVbAiWMu$*sfKHqUcDS?ImK)T8n>l&s~O3U@e-4Ev{>vP~S z7QBcmkLi^~^t~>j2$s9Pe?l5#*E^f4JHzZjwS+P@+l}9JiIzp<p-WthWxOwiMXsPl#SM38?`)DQD*xV)mQaNGZ6S6#2U$-PH+M<+x<{tM}MOCDFdX znF&}*qXF4M=%Bq;Amux8;qCUxZ2H@~7C)n0qs zC;8-+2bSXQLQKi}DqWh2ARdYn2~`>vZfXl9t~co;NA+7m*cGgFDQG8y z*C;F}%vgC2S%K_PXwLR9@0Ga|%;v*gR;kGCf1uUA~IUx=uUi_?{-G@+CT z{J490CM307e4d%Cyxh=ZfvJc=d&8)Rd-$G_65ZKn3ibkX8cLiJgjVX@;@3SyT(npdxKa~^<86)MAIF+o-ycz(!iXp5Bx+9Xt}47@MA8X z*g}#^nU4nl#nHPU(ShmxCr16BAAvvJ-EYdJ=Lg?q2FgKR6)AIYf8?^7x2Lkio8=ER zdbfy?%du7M`#e(+{T+Rsnuhh1MtPBX3ufdg%`RTRV$i2ik?tGXI|65BOb4TC#pj!T zi}EPg*Nk043OO0i^JI9;h%AYdT^sSoVuUS~k9=nci?Kc&D#5T7=Q;ZSl^4@6H!#JQ zoXNi5`gE4|s$D*CJj!O4WEuIKjJ}nl?CXd~rwh++#p}PIAFh2O@i|x7%?_Pipj=b^ zO6~;7_=y3m+UksTn|1RAdx4(QjL44kCJmrZ~m6npibE_@}`@Fqn z-q?K`XyP1?!k|kbYUgNts7pItoVNb_so3kHSjFmrUAzyIN%rqUaWgYB4d)vJ166qu z)sAj1j-S8%El^&*%QAdBLTV-#;>C~rvr|e&_Krv4z!KPzLc4soZbc}Oy|yjXD!5*8 zz5Z*}GXZ@ouVnATRf+hlwwoENz{tDreEV75KO>Kf%$fM#!ImW{c-neDpOyU$*FWWS zKDn99-L>P}(-TOv^*S24lh$&Y`{MMymk(z^OU!q7wl9vIG~7Q|MgZn7x_J8kL(xSL zU2+N>NT`H2cX9%orVAoZxtY^x!6^n=?if76AWzD<2yNV{)A z8REqHrsCgffBH9ipp<4W+yWAH{qL%f?nI{@<~{>v&i}n=#DK3S_n+b}`6U%(m~a2d z989i8NDAKnzn^?b^7iV!P9rniTsxF_kJkAl3&=lLC>gMs0e1fz6@R&<)0bs#3gIe( zpn`H0r!3d$Yx96g_c^HX0FNz%PWr}@kKFxV5oBbK{gR;VfQVFYbJSjk?(bYM*8dMm z_r&X@a^~B7o-BA3mN+)X*sNB6c9w!@0~=AEo=W(?%|)XIJW<9Hnsf^O*h#*TK8|&H|d4`L;GEd!1z<<0IH{iLd+<5ZQI>*kaC@jsb-9nuRXI2+WDJr zCc5sa)r<3{+Z)xFBpW5o-Nu&!(!V!i-z>*D;pU#xdg{PVo?@jpwU1 zc9GrnO*>2Sf>n+~_x;X{n!Kl!NoJpdRluNmZz(DBs8(#?WIBL89|nJ zGPuV=V*@H^kFvQFlE6R7##n(`(sP7b%o4C@uK^m3b3DAjn$@PIS{%@m%cD>!twc@P zgPxLf>Bg>EXhhtfMk=$IVmZSHUkrshPcMyByrp&aER5OoQjn4=L9SA0x4%yVmVz;k)NR11u z+M6o;_VVTV;Y@|WQF3#)7K9Y-w76H`x6BQCTAy_$7-bV=1%M7=R1hvp>AYS6tg%2k zuxXtbObI^YSBg`Zd$-wra+2X@ot$8eUHSA|`K}zFA6WxZ-1HiK89D`5Hvu*O^cml$ z6wu>x3>jyGkMjr zZP}LG?OdEH)Ml@w|I;}w2Ykq5+T-`+X)|BLtf-;3E(k9L8;HP6zA_}KyQ2r1XQV<91oFuR!6rWB8!`w8jRhlBDBc-#dp+m zE;NkAsDxTf)^KeWwYJ?|eNSh@GcVRJ?Ou_P3g3Ctu9C<<0mjwQ7aYleCL9*sy+5pa zNU;W&k39=p$2+~DiaOBW+}z2+&)pk zUukKtlcg4)%<%+Bb+GdhJ?lJoHCmClb5yFrF}k?yo28bg0luo(y1acP)=Xvb7T!^4 zOY+}eIr5kq70uJQ602as`t!zFfnJxJC>Oy?z-VB1V?!t4Rm41Qo4+8t7CBM7(-D&cDL0Sl5U!N0SU{!K`Dm9G z6vO<0mDVoRsUz*Y@LMyAkM;(PF&`iz5gRwTx5&b z2>$Y7Q67I7A>0-gQE-ovToO|l-pUt+diiVyL{x6SS_U5LMY_h;_1a9DFsPf(`m^J% zY#G6$TQmFnYLQJH%E7S4d?hi`oOcX2h~0`%w72zI_l6cLhmyEA>FtIX9Dl4nct)AI zSi2}#)O)1x9g+&nl3H;m#nomUk}7ofhRFQ9->fI2)4$O~yJhkN*T+ zcy@l=v%F$wiAR;!SF!Hg*yDeM>8~E6htqS8tHKEoAMC!NhNk-TG^3>@wvFm!ZQtms z8&;>x&(~|)l-itv7`lH^&)>VF$fG=$k$bBS@|L$ss9pw9Thh!$i&Ryb!ur(Mi-pu;p z44oU{zRMy^?+V8<0d6po-@Oe!z>H`Qs>~RGVCkM0qxd}as?!D$5!Jm}r5VmQUTr)* zb8&K^T7OGS=*I3sCz5I7MJdNxiVh?Ja64&PGHTvEH}6N`qw|iDcUxhfu*^a}b~lv% zukGmBm21<5Yq1`~OBNRVBv(Gg9V4L`g*kG}kuO(YrV%a0ydnh{;{=yY?$9XIZ6cFm-H3IR04UTZy);`~6>a(7dVG;|UssSsfy&$}74 z0|CcZ*yVOkSn{|l9+gNrAFss!CB@*yjr(r>;htH0vg{*1d3~MX?-(1sGgt9y} z#rX8 zQkGie44&aQ9hvKDN+4&!BR^v6s*}}gljYWl6i~pr|ALQ?ho=YOXzPU-74Nx=k3i=l z$k~D0D~X>hNPu*|E2;1O4b2^!r7yxlG}AjC2MY?D0aobMhAt^=l#lA63jR+^m z%?%3jCwjcU)r{Gbi{?>06u?h#!i!pXsdmaI)CXw&j@aqF&rE)B?UF{ZZu-iqa_uej++SXLOxS;Zi-)DGm*U*w2l<3%8aE~z7;BvD` z4`0FXf@i>s&IjD!mGB-G0Eo8>onkqmC(bcF9dIW4=_p=^xM$1nnaimxeE197Fg0eg z0iBouIUUSUD@Joka7aMHUT&jc2D1%Q-h4~@x$T(+7}Cu4Vn@80QHSWXM5$ZWVeQ%H zMf`V7Hex=6-}1V-xK$AD%i^*>*+&R4go!c%oFDz*STzA}N9MOVUXL^i3k!noUsxRqF zL{o?7^p0HZs>(_LOqOg+N^cOC>sLky1qJFitJi8ny8DgmoczzF^&a~2ZK1pH* zMB7HYttkk2ZKHvcpZcELcD?E=0sayZ8ZDhQWOoy&Dr>3MEc@K zYgVI3x2;uzD!d_6BVk|UwPB>;N)+~)+eC^prv#ha^kiK1%19NWTF(z3{Ovf*rVv5v zbrY1@+Dbf-)KhgQHS9g(Q@U-kfA*`2`0nKRZAud@;QWQZzDk)dvWNmijzjw+IWamt zQri+S7k7iJtT%5ZRV_vl%UwNz%7%}zC_bM6iE_(s)|Gnqyxc!M$|^W7ZZLE*W~s0YK;k}^K8f>1sW-T~ zJ3leNUYWf#X)93A!nsgjzj*MBUX(W5R~G8%cR0Mk|3 zIVi-$k+I_55;q48xJ7@2i&-UdD^5!got7tUy+Bwi19p1LZ+ky?yv7rozjojGBMGoU zg+f%6t>WT6Bg|{)#CY9)NPup;TZ+#Re%PqUa1GLVLPd=Ax*c<9q9iE>HG2oj3X8pW zVkrs@F2kL|+MHtSE)uZ$bWM)GFK;%`<5k;&v~lQ43!Eoy0h&XUTEY%43(X;Z}C z{&Xa;r&qva5?u=~gsp2vBw5Y-Azm*duqDgm7ON?&c&kFc-`+7aGNX520+y8T8jv(E zg~dBGoc|^4o@@PwunW0&&bx&r=$SB@8Qwuem?W0*ly)}#cx(MB*|{gOX=4Qan9D_n zIt8r(L~M+L^xL%$sP;_G)<;eL86G`a5A1&r7SZ$ndQ_82(-cC8GYETGo^gFut?_%N zCwa0Hoq4ZtMWmej&B$QVoCo(f{N0??Yx<6;PA?C8lgY>f zmQ-OP{s%^7!?ZVA(rTg=up8~LSSD^Y0=j|gf9Se%S;uFt^;QN1)B-)(btF{m!Fc{3 znIwI*j{&ZMJq6xsB8tf_k4}CCxHe^E*pO~JVUh(K=E>qi=T7*dQC#+jAd&tf{1{;p zcnxaT7I8|(Srq7c4xX!(Z3irBiO%{qIDA8gA#rBE z4mteMCfi{9k)AfV{0GrR3rCk(YD`&l-VrL{jLvN!z>sIz0n&|vrplxeJ8+9*D$5s4F zq>y=>G)GKBiC(`8WzV)EET}W~Mc5(`K!=3KEG_xne*oq7@i+pE)7v|#gN9Y&=GNsX zVD%B#*Gz$x()~T9bAGU1{!>8f z3EEbWob4L|K5JIDEXQv89(H`y|ET&8wDpj&UbFyAk(AiEUG$jX z)nve3Yl*lna(s5wAx6sX=$9WBJNrh#R^LVk7p%|jt-H7d5)q6W>VA8xFYN6=NG08x zHDGC~Pjy1?OnFLdEi}FzW#<64J!`Z>eQB2hS??1;W zvfh){?sJ37QCR}tC2o)3NOaKcSvIk?XWlNo_GTUZMH(e=8$d2Rfgi@4oY^q_oes6% zZM`#fu`qtqpL^XLyom>G?S6JwWN!YYcwg+OwNp3+NeZSLbt+i~6g?h9=%c40T$I`F zhC$_L`kC1j7?Tw=n82+l$#Nc9S?eSD>$l ztf5*{W#f~GeM@zsx=`y&9b1J|SCGDg+JkRSl*Ag>qy5;y9RNa{Kgv-N$!WqK&%RVQUF&o@ z+^kne(EXtL!NhtD{JC)CTzMoE932#d5VHlZmQ;1?EutOlEnUElEy|Z29vx0btkxX( z`s^UM-MHd*S4{Qn_DZS3&QIW7NIz5 z>7bJ>0k{)|aM_3fqPa!$$Qy$w!p0bpycdN?a z0Y^=yHAS2|`o_l{)w=7iv~3Xp!sa8aOVN5dhXd1+?!MF>7aJYg9~jbE5Hp*s_1Wku zl-T<%j}~AqQa8Uy@ehJIB_taJzl*yEnO?Ht$bwJ0-LjPR_?B+jl3BnsJEH4jg-p3V zXbD~P1_cRyBVsbW)@f?CgteEKTRi*xi1+n_irAY($oV=t+j8oU{0e(x>DeK< zdHuV?2n!Pf0Q2=ky%LpT#a*hVsrtJnf9-0)l)m8@pYVBs={Nkf$c^##b#(fwBB6Np znWvb|FJx9Pj*k_h+f-WMhd7{!eV&X-i6t3H0@{8E^StWF#WY#V+SSHtvJo$Wy%uR? zXg7emscWaE;E?ERtC@IoY)M*Iwmo5%6(aA6{v$hXNMi~G)*0v*A{sOlo-3IT6<_+L z%gaX0s|-x$7o?D|wi^`z{L3s8$_-+CcBU)PB8|lhhUvsO!Yy%_Y;Yh=){z!qJe$Bs znz9YNnOT(8d`v7;%<$;<_?4Ql`0Gg-aiK9+Ub|iXax|(WG-8ebca&EeR<5$3h-57O z9$hn`a!bASG|+ZjgoR9EcjPr;ZY{(x>JO>JIt9M>`Sk<`r|F zAr9h$&K*ckmD~vO5zjeGZo2s$K*HkzuYAC;xf>p^cIinldvgN9xyymBdqynljk2GR zv5qa9>4LWUW)%6=L?`r0t%Lns3Blw2DawYv!-p#l8wFcfXDrvaKnhKMZM_x`vw6U@ z`|#5~x2pT2ft&ehWc$;z!>ffSzI>(7DT;|b@99L}!>wp)vvhN?5uFwO+2Q|i&gggr z{+ixx#m`I4p=vd08ZIP_)OY9-kGD2p4dK3vlp+NnEq$dICvh6t6e1VKTO~9>6DAEK zku3Cyo-Pf3QO5=58(IE_pjPcM&tB2q9iORaMx{5puI|6Z9bDkgE=4;b3Ap=*_?5b6 zp(|We8%c|e=WrSKv(Smx-SH3Or!yEZM(Nuz1xJ=`7HFZm$$Gqv%)}}S{ETS+ebhNC zMU3kngcJT~5jpt1{xIuTcP8lZmT5Of*s8$KPKt~YBhu2R7RxWQpbtL*rxI&lltC)9JZ<%sO)MKf5g%CwU7qEL!uN$OQOB4zMb*&yP<#M9Il zq+ZQ&9kzZkq|%5m-$oo3JI2=y--KCiFrz@WK6{(5%e?a4W5%z&YM+6s<*|!8$yaRq zoHZjmQzd$kZ13e>sO718Z0}3@5ZK~LI$$siZOxK6uxVxtc^LpW_cy}0udewy0D&wo z1gR{l)?$xGA0tgvw#vP}dHlJJTzNBW69>%t(<1mCwF>o%w!ih_#u&{8n3PXr=v$0H3?*RhaM#U7lFx5uzOsFG{ zn6y%1#|3O@_FyW5j47<4Oz`<#SB<&KB0l0% zqe0|am3YpotsZFDP}hO-6c?+uKA2#Tn?_QQ_7ld=QEgqjemLC@hi(IDPSN+;1r`s(pYE?_s6cH6wMs|VD& zKX1O3l1c_RK}0CZd2~{8hI_K``O)bs zf<~S4brVX_KL%CZz<~QqKWtVgV9uhd)CGo3Y2nMyLdQ-OH`Vrc*yb!)X1Hj{ca`;; zdVKeWW$3k$%at|!xGg^e*Uv(&&_x=$HWYnGL};06<4U#cP_v4f(6t;BngKN*V)m9C z>YlcB`!sOuOi>a4wiV4*^}r6bSHKE~ytQrnBYTL3n3LPUxneMm|7fAXNqK7uBAYVe zsz66*M2D)(3E6_^kpd#u74_YJz%A}*63_q50ausX~ zdri>-QxD@UP#HQK*EXq_FctCf@w%glx;94#o14z2rth;p4-<(wif(MNb<5_GQcL#%V_*ghKiGDv0MC+1n!ESk`$X_akOG@hX_6#el5`^>13B2ksB4*Nv-zKlu8lj z918z-l+oB}9c7z{3rOz~KQJyYu?N)U8MQ3TmQLDt;sEW=PT^|+gpBtV*8j%O+bL;P z+VtbS1AyIiJh&Q}t%hbNO))}X~WI;;1v+~QA8p?zIpb;KjJY= zQvOYWv;p-5`p)eWLE*9HSL!mY;Pm{wHAhMzkv?a|i@%s6hbDSa8Pe$4J|81#z|!B1V4q$7Af~ z+oAAxK*(mIsl4O@5H!JF;cKYGS>(wgcN>GX;L*=qN?56G?r18jug=!)E#s3#KGnro z-$1n>vUOzy(MiQ~D;zGmj0PwuM2tP`kCvvU)W}(oO9u^L6-zoH)V>?2R1XPgk3oZA zv>|ZGArxht z1tS84TK))lhn*}!)!kH8 zLEdpmEBQP7aRQ`!f`Y|VxTRC4I`hWR+?)fe_PSqHzL&sNNpLrkqRrF9p8lZ>X~r` zJoPgMpipU@v#;$6wP@$}v45N(TwfE!3d3HaGtj>xpq|C&>^l8-dSn>@7LLY*v~M4A zaqQFNX7faQdtqkax6=WAe!Woz#Nd3J3C3lPc`25Wb$T0z+&GKf+ zzgw!4QG+YGxc?-a5f1J89J%6;UXyTTm!qa^?{j|#h_LaUUsXMddA!AUR3DNN?z%eZ zjqB>jW!-J-l;GkH1w6C<$?FT&zW57dG|z9*14iDzA=l*%8b6LZwI%YKBzzx{$qr0= z(0^Fu*o*|?J7S*iUoG*>aTv$yF12yPE^8 zA4<=kcZnWWVI?oz6(4=kod1q|==~49Hu9IkZW5jg7 z68ClhlDf3Xvt~(90Z6{%9FVo<7&LqB{=j23)JyFaOhVh$V*h7&O}Ic?VK6(;gc#iY zp9R{?7l;1>PoKl0Qi@c@Wqa?;S5w!w0zp2?|QU&C!IbNm@Sh4&T>m=q|e{Qp_nSAVh znj=J>#iKwMsa6j(x@Q<^EKm?w0WO+s#=|rB2PZPA6LEQ zyTvap&(f(qc3F;?kGNB0tja5Hc-G%SqAUt^UTJdj+Sc0 z0633~Y<`4V!qK~1iOj*Vdb3yYjJQQi!bUP!0I^C%*2$R>Gr7zia_aH|nTXpdO})OcQsLj-=2RL(G%<`~ao~pd|JD z>R~mH=YpS};C3>U07P?+iervVjT1>^2nu{N;lqynbLBP=9$25NMX?>xDTPDoas#VL zb50K7R#2qQE9Xp4o?gIYkShs9K32*yGEQ&U&)zz$ID1|SFj&JSP8itgVX`tx{dCvB z==Ad377XJRATH;Y$P6?BfUnh3o|D0qs83{us zdT|c#SFA@wsQB5y_IFL77j%NnPCNSKhW8;rT}(^9D+)@3H-xRPcSsKcpy`$JAdklnnIt@A`Y5jJp5-8HK>Z0~Ngg zkk^zxJJ|5M$; z?pNCPk2DNv5;+6^!J_~su}*kQceg3|qn0ALY;`rv=I`N8a|-;vFvZ(I`jI^?Jpky0 zJ=2k4t<~>$R#ivfF(te|lYgeW#|Gyj!T{Ut89|o9jaxJWhq$tmgup<+5ymhXE@cuk zs1*z>5Seg>nOo=VZh)@0kC~ZslT5CJ#@%(`ZUU!iBYy z)K66LQ(@mfD+~y=Jso-P164% z{^$Rog34l_sqs41v5H@^0|Ff=lev?Woc-rs)zV~*r6c4u0SVe1WZrR%NEIz`@dA^v zF!98>XQ_E<-6obNC^|6Qd*Xzmk^cuHbUA1^3GdlSgk3F)f}i&CHNAos&1B`!ZYke2 zkv`fBkEYMrwR~j-;$7yj3k=D9e~!)W7_+?aH9XY9K^f0CVSaK_8cbrksj;aA35-}Pl(r4x|QG=>l@?$&~t8com{J!qU7|Em9YB@fgwoG{poVSn?N z60BEtIKD|!-<+#e(DeN&%sS=lJS!I|7r-#~EFj}de)nehjxvB)8r{)efVq+6S86@{ z{RK!PesaxY79G9onAK2Z4n07RufPX)D-%0F9sr(sGsa_>6j%B%b)oun=lHbePrd|T z2&eY}P`S1ks(&u^@$3~cYDNCq-Z$lEUq%2Sqg&i1M^UO9#~dD?g>kA59{(_S*VQTI z0TZ%4$jBfGajD$#S1B>9Qc{4J?Pz;I0`NMUZ%3(cH{k=qr-E9>V1g|ppw2BUrs2_5Q?2QTt;<*7?42d91ZeCpCGMoJoJ>)Sb-a-f;?egTP zpw|fqJ11@ZsmXubmzvtsjk@Q;rE57_F22H3%Ym~f>){h#k8^b&p-H70^TIBOnAR83 z6TWE^{J5 z>_s;!IBCRyn9pmqi{I})pM?OJZ)4}jrv^A@1NOV8#`-1k!anVhvOyPbMRp(rqAV#Y z=LXWMx`?=Vy8^`@KHbx1*qutt7_3fm0Z_A^vn4I=GuX8D(N6a#FGaiX4`niyO2+qy zc|PM2YVAwkxgSwm8++1a$t++8ri!;s(|;aBIDc<8H$PYZ{lfR8l`nLTH3x%&r(9ms zI|1@%Bb4?0O>(gN3r%6-r|T$8%y2`U*4~{ZV{@+dHil~9!_-8Wm0N^PXx;1tzPMZP z`&ja!kDxkN0b@nrysS!Sks;%P@TCq;(f$)T3I5!W7l8#A58Ln#?@MJp6T!T79WAf= zk^thpjS36H+Oqo(xAu2h&o{+V1922~J4VNFq&;J+@CNM-5jj_{mP6qFs*zcx%&I^B z?1KW%%Qb2`32!i=MOkSKNkd&4`d8Wgp%d$PaC|hJ;zLS(?$Zvlj zHT|}9+PPGXI3Kzv1_(gjdb33dMz+YfA)hBetG8-bm!c!QWX)WVvhk0%;TK4^CkF! zE+sEPET?mQmiSt?xjQ)Oh0+biM-6*u4~u+-&wwS<11)qd?bOJ1^>lytbP@T_^G#m} z>Sk|LHX!2)Y4c5l!-3=a(#NkWJyOmNJNs3(@aP_ix^NA1bF>s)IX+u)dD@(5miM@O zIO6)?LA>?jpaW0HHA-M38qPmDaP)AMuzWoy+(?|Rv59M2zJ^w^EN3I?MT$0Ab*Cn} z7GJvZ8anHvVo#grQIAIeXUQ+~rxNKz056WJ;B&wGaj55S?~%4y#5)B5Z>l42m(UR5AHF|JQrW0dEegG7{nF zPJcyo{y<*Es8(z%f{kvu_@y(AuISLnQCueGW;0@hkrK`>KJ)0sca@E(=pDGX5v{W} zwq3!#tIs&HW;?xoDcftfdl)%yu zqGxp!*r(`5yY4Mhp+7ka6?{!CCW}(s96R3j*sD;MNnB1pTRqI_)tmb{(27!$%r#HX zi}K#i^K~JHyv?>}?h1~rAsWnsRM`RH@~l^tgAo8SyT7J}Up((FN8Z<(tfNrYnMEfn zSeqeg<~Dv~*PQcfzQae)E z28{N)a(#O^H-Bj#_6UnZB>QwOmlyAnnr#)W9u^qYNiuJ%?LW$k#ljWGow>k@=uNp> z>f@jUPYC`XAvFj?rY$MrvA!(Py7T1vK>6iDfYNCK-NlOun>U7pBL^GvmlEmgtJY8< z6X&n7OL=T}*hWi5M=Vs{s6|=$WZT2BwEzQLIc_LbX58oI?xdpotE_D~Vr%PFCn(fl zb6jvYg{djzsKNa2XsR-O++ePcCQb|E^1|FT7T7d8A0GGSf!nwg?tcsGkw|&3RqYz~ z=XI9ESt4#{0=XS_HdguS!X~HCrUN?i`{>jqcO}lpH0+m-M?JDikcPV^BR46)w@btRy z+7@Zth7v5h2nI#jv6r^rkjYu{*@iUTk=@(E=+Hh1=LIl(nM87U()LTqvvkhT_R*ub zhSDHSnNFOh4)K*lXo!n~n^*7WPWM@CO*l7yiW{-J`EG;3GN_+ci*&1Bp6NA!{kqOz z!Twu0uD~9lC7`Z7e_bqB8`!$Lpe2eFa9o`D1gY7QoyOntnkt9@m8dUv?h{3>UL(}o z{fANo{mT=Savw|KmgjOi?ij`{ZOqG%&+)xvVVMUB9FWi{s^Z?YZEEH>_^SQ$nvC8y zhE5b=4Z1x7bRvW=@3%2C<7sT&JxGQ2YxxDsQ?_-79AjJU8x&zrDAL|%VK*H4**du% zgDJlkUeF4QH<>2&Q3U=C{}Do2myw9|vea;Tp20EKLVL&|l+ZC`H)oHz?`q_+N+_v# zZOgR3+D#Xzu|Jt;XU{a-h6(QyCm{g_3~#0tQA$cfAIW<}o#CxeK6N~M&wWfMjCp&S z)IM=DaslSu!7e0u0W}&Q=RBRa5}_2gZ0EYq#SG@otKIdNek|K(`uS-Z&8ko?>`SSn za~dpf?Tv7De`SrUir!d0?l6hZZNn@T4?2Jz4WlaD^1{C-(ZC&Ca@{V z*mh!U|BYu)#V~^{bJ$MSeaUa?>sIHa5=Ww2A$Ph%$`U`SiK04i=QJ#9tbaY(dptVs zo7d5l4MtiS52=17+`0~(Q{G@0Y(`VWhCU?}7vs(}0f~y6o%{BD9lt=MZ5_+PXyyBt zoR!^l-&iwQ5`1bd?C`{0UgcRo8t+8a4wZrUJ(^!IUkoT&pt;G4a=7l2pom^PCBv24 zj;k+mr(s!#@zIV2k!F^fqgI;%FQhOom#f%;fqs61;JL+3XdNETh&^6Uj=4dl&Ei3# zXLnW$EjVnpTt`+WfJha=J${7x6gy*}U>XfoZ$8Vh?nVh2_xYhnn6=Pq@ zdV5@HpWsS7Os?80wm*5S+j$9AkYR#t=WrRzyv4yix_pT*Xy|ml7z?3-Or}#Xi}S`m z61=bT_8ispx8&Sy)X!igBOi7_9oJ4E>BO7y7JDeVO2eHgT6tSf-?^!BZdEb zP!-RVX`n#p_36(OAI3CtlPcln=8mDOQU~QdSEo3BzshHlqLF7}vO6=W|7PuIYCoa~ z9p3rhgm?T&Q6GQ)OL&JUJMK(`ACr-dui(CyJGP_5-9~w=XL6;p^-q)h!2TC@ub#;6 zkw``Ei$FR8O$gMsr)Z@Hvl*Ghql=38DJiuH4+!`|oSI1Y*2eDJZG|Ks@f0G*R$-9@ z99?4A6n05k>NS(_?pD{OXEL?cbGz+oMM-j)62y&H62$%j7^D~BD!>{|xk8?R3z*F| zakGe#MMxAcAMb1H{uTA{1qZdOg!jduVXlpuvB<}uJiJG<&`o6cc8z|FHtS!<6}5>p zJxVXVMNL%3X~uA}Oo;w`7~buZxoY&)(&doHroV!1P`RwmkX6d9wfu6a|G&+36aTBZ z&TOavxa>Z#lCuNw?_;ayxrt*^Hs&+ACc&?UpMq^u$21|d^ChUwh;V?;`-6;~A+Z8; zoR#}pFE6NBRxmC-+OvKBZZ$ST!+uNVUo0O!X1*d5uT^-@6o6om>p2*bPm4j4H-~jz zEcjGhgz*PFfBPis`Jdh=CHy!Gqf3CfW5CqAx?7^hIRD!DFk74Q9ePA%i&gQPkHJF= zQUc)l<>0R2R`EYA{!ver`(xz~N6eaCD3-WC_6D1j-) z$}n=s0%@)}v6ur!zMP$%i%f(B{R}T{!`iHsu9k0-Qapr2^WQIlw><%f7J__4DL*ZZ zf_N{eexzO}?YD1t56HRn7Qr&USd=cf&!X^)&8yEglF?n6 z#%AN9HBn~Y&B25CBZWghGLIBJ02YFv%@xfgQ9H4fa)E+DBXARxFOs%iVdti(xKHyG zoLWCL1uf+Vax$YV=Y-9Uf1-DM;-?|!?^GY%8jlcdX~Jh@r?U2yO9->Qp&2}5HdqMo z81`zqVwy_}?6}uwu$A|~x~!$VQBo$gNrcman`=WS*+M-^rhwRKO;a)Sc<}WefcGZ2 zQL@FLi`1VEJ44e4eLW_HU$K5FFH88nx$=&SCD1FS%l`Mvmz_%{U?cNj_td6zersVo zV#{nwc4zu2NO6n$#%D+-VS5csxWf?`*A;V;<<2-fY{q88C`i=;ZkcE3`@B2;>Vzh1DE%qc!I<^fd$y zPBYI5e+Ng0JW4s3c?j@svlK1~13{L@Lu%V!GRVGAJjPlP=L(|L^9y3wNp6)nQb16$ zGe2?e+rEU7!(ZNPgLIMs;3`A%!zWXmaKw;Z4ok`IuXf94!tHO16{)xn>ps=Gswc)` zDT8&`r0P!!x?t_VGVe|}CryO+(B+>H<9PeX(QT$X!2@$vJen0f;L7$^apLt@WRQ{v zJY(nEUDF2!$)}*I%CR$O(zz)L{rZo2oP8d1n{8ngf6;bt&iddC-cDD#est7HBAe=d zh9hqpzW}6^_L1f9#Ep;;c0F*CN*_Qh_m5c2#mbobQ{az)eon~8c5BZkR+5(Fif{J; zdQn$5cd&71cft`d7*KmWQd^}=57aC7!MA$?zTIvr%%a9?+i4CM)drU&UHG%)YbW~E zLk&epqqr_Mtj|6YG)SJ{=KW&su^_Y_Rpns1xVds!ysW+Xbv6CoNGKGxPF)?Mgg+AP zm$rx}6}ev>34pJSEbX(+Jee?rJMF-$oH*V4rWMkryDj)~n1%bHmx;S*G~@!z-il0Qas6}+DM43L1b-B&%=Pv_wEGk6eW-be^u3y7UYPm92@Ao zM|I@elHLHSLYG8lkT%Ithpw+omr$N^T@EG{QU@DfKAZE0?EZeA2T`{Pw!r+0H_r`r%4zR}IV?1ng zq>)m;AAkPu^<&mbKeS?5e7>p1P-m$yT7@+;94(PyG<p`X{B9oN8ndxzAkNx>TI~CO9B3t@f$N_8`xFuq z6Z^R1)i*D>4o8f{h2}H$&l3HG7BMAGN%ohcY;IxHZ3n%RADg)?Z0U?ICpM>>e;3;y$ljH6zvE3Q(4m>Ou-ll0IwZcB0MFRtI%4e6lKK51 z+E=ee8O&A0pXUAKd=Fl|zd$y3>iZUwZTE6o@xRSz8SfbiFMR_9-8Gz4kP>ctbLddq z2Itvpa9qdbfcYGlVKW+TXHT(D*qyN219Ph`)ZexCuP$a@rvQ)F8K!>yy`>9=@M!(j z3?A=KW@$5t$`@j&JGRd`kS)dmY1`3Tiv2Tp#wlg1Yh1}^%Xw17+0NThC8((s1cgm| z69)rP#a)CJ?#YJMLpw*y9ixxp+u#<901}G0*zS7sTz+;Z(26Zl$r&X0FW;|=t!_}e zzqs@+H!Wnd7?jvJ1&+e1tkE?}Id?J^!mq)x$6NYP)2-qI1o!ZkWo?Dg*5xAf7vt!= z%4Be~2q$;C;WnMN?Mp|k@AVYpat5NB6|XfHX;S;wMXz?eMZ=)k#;NfS&w5c7dyikw-lU`7A8**F9nG4n zpS7%(m4Jce8M zRe@wWiZ!-V2VwL)nd;(=jR<+-K95+=LLiLT(1>I)P8AM%wo(GOe6gjQD7%kKdohrt zp(0=2omtdIyIjW}5nz=zEw;xD>f4uH|9ki@165^;$O^geH;D0u8*7q->pn!As8D{I|v zzg-`}9G|J(V&)-AX8*dwi=eXCrc>2g;T|~Q(x+8ZLFLt$ndnlRuMjlIb$Is#G`w<$ zoy@YpP(NeN-xwMlG&dH#JI7mXSX@$6R-$yhWZEg%TezBBu;sZO9G^KfKfUvNIiWwV z|GiRdr)FU`r1_PKDx6-BXkd#@U`hwa-lDl&(Ps8h{SYd&%Zr*)v9Gjtt7Fi`1xWA4 z1bm2x@t>&`(+db$jVgT2{Zlbt z{fBDCywM#*9$n-ZhOzGj4&?wa_?wt@FREiq9lNwHrod7O-fkn+IRY;RBlRF#)F~hh znBHk}-Cp(l6tZXw&~D8n&zh19=OiD9@Er0=;jz-dyzYJ%#InO8$TMWN%VGET(MqE! z()&dso+n;oKps_ukVIrCnYF6e8%9G3ZgdHxhU0P(tX%aaZ0y#A~ z6T60Dt4E3ahf~~Jdqb8%9(re~@C)-zRrR0N4!+sn9L!zzu26$5eEUQ|a~2-nGCVYh zL0~Ox#(nUu5^-$=ukUM7W~`fHu)m~{tFFSrr z8cXctQ#YhyyuJwY9s5uFnz2b+`W;Ei=gRgrbR?KC|mpR=pX@^O*6 zNO?^W@OISQ9v_{kxU#=JM#RuIRg)2Hz?x@vLbD0q`FJM&Z-@ps(uK7KpzKfs+3>wMgO&+{X7kTX{^S^y+Mp4v3xp8#KNpW(O-6C1(7|69j z?{W7H!KB>G%(-fm|BsTy#T{VUsNYXPppt~DgF^-~8x!1X>snF@?FT1VK=0$sQi{;c z!RfTFwHP4zd6wTx)vqDBsI3CbX;NAS@3jXfBX5jsrNpho)=$Dvc5*wUf&hWRB&V~>iiPxLu&X<4gX!>$`8Mt z`80r!5%GoEBW&7Ji2kF)we592c57yipKPDGJ$~*H;f9x${gn7mHWt-e#C ze^&%Jj`U&z(tC1&X?t(uC(H7^v9G<37wD70YL}qErdR@7^`Fv?Ym1 z&cpqjFW^V{+v?k4Rtz-%z!23@G5e$J%+LC6P=_mOqy zu%XrQbic((((@b@iPwv_`5N|5Pg@Ac6;vgpD}JW(%I-G5^EEY%jV-Z8-unZ1O_hI0 zRvg99>4x~~ObAt>I##cG?vf-xq&B0|VZNvS@#jo{8RN~^J2DkNKRB;JbMp1uF8V(* zifpuFS;(bU$8l6!$yCw}y4hyDR^+!mQ+~P2Zi?@0SH4=i{p)QS0iwd{Pouo-%2nn2 zy#kcgPOo2WjM7to4ByGizYqLrUhG}B?}#P~kM`M7QUZtgW@?;lux?UZu5YFOO>uGI zemmRKKf#ca*MJMV|1Np-Z7UB|3Lq)C%N!nOB<5fD4-(Wv{kH=Ncn+c`GibQZ`DnBV zMYSR!TJbxx=*5)$%GAUOZCg--sY(f=Pq zF$ChRpM>O*<=^isHT>u3{+oW9zif~E_Z$CT05$&~^E?0Z|BhH>9T5~OexlvimXJ7^BdinP<~bqcDzX6|2h*apvz3w~vH(Ep4>~Xy z?wvm`&9^+2ERngxPJ?eU(-{e@cD5Pv^osI$~r=4XlQ zd%x_AriL1_n3-)hkthiN9S>Fsn+j}@k$-pPWR<6vcO(d48|hsxG$x2-8ft??&F#NM9%p4TPdBOIOKytZsW=T zp1-duA@M4)@?b3xw`lKeasEA-6j5wy>uM%S+Vy+mz;2Z=UheVRHw$2)Lvq^Na?L69 z-nXA5vQJJG!#obASjxXwJZdlnYC*tp-HVe%&fS`M@Gn0Xi4~F@jTrnJy;-nb{qYR; z>8_Y>0C9TCTJGA3G;!lC%xR$fbO>nr<`fpTjf`Yu)HhI&j-Lqkeq`q{LNY~!se$eB zNBO(I#cc2!fuocLuJ3CbRdSDf96D2xx8^QBy2t&piz;THn)q3+L@!!r++|J&DB1J8 zINg!HE}(vX(j6m%0r(BQIh4m3)am&C_^`xEzMYPHX=piC=E2$XtrX0nwrrsRJ2Ob{ z==#{m0x+|vo~`QorI=lylJQ5)_j~|iCxCY|QE`|h?Lo>85TWQ5VEaAcHk&;jt_(W% z@9AKzB{Y;F^7#2uGeAGY6!wG%UZtAd3%n!la@O8lHa;ytAVaxa16&TdFc z=as5*|Av>Li$IX+ASx$2S9qn;8n9`3HM8cXyHDLcs$A#=v`gI-8o?8+K&C9pt@QB4 z#3&?a!UIT|PPAnMowF`lCQA!?jyOkhbW(gVB7U~CQxwHeq?OCaG)S5qm?=dyTSnR3 zl5t_nmi5oPw%y={*STGg$G~e%X0v^1T-*TQWq~f!T8?3@Z&L=JlcMgbxG(ud5}Rv z&fKO!3m)@5)vs@+Jj4zXn--Q^Si_sO{ggKhtWM z8?6j3?Tc;}u9)6D3kmJ-mOh_XY5QyF_z$NGav0VIhy13PK|$@Jyd#wbr@flC8j-^( zD30u8oWN~JCkk8YfQ9Ink$NS*N_S7o7#nvYjvz0XY3NN+()BB+Kg2;veMQC8!c*g? zTLM6Ja^|GKqIV)KE)Hh%m~Hc+OVU+vR6jaAs&+iu#Sjj+`aO?uwd;#1*wZ9dYNA6G zugd8%4lD{0qtX~bcR3MRFr`wxXg8`Pfw9-d^#u_9gmatny{N4B3;h~RBS!^qY0S3= z50J`FV@3vOF86gzH#59V#m6Ddnor9RX^aUs8z zTjGX3y}p349{fT;@s{X%S`4=oEDv9PJ3k;H*U=&ZHBIzVR#m<<%V-BTLtNiC^((vy zY249(>WRPTndtXxi|=V4 zE-zF);xaYSp-l9i##R<0zx#SIT?xrDxkaId7ZT2O=_EH#V%fB5ku+OrTJCxu_(2$R zTV02T|8v{YG}AI#9_8VnHL=@VBBBLuc|^+*MmQ@I%pJy+?`}=GKNpLvC_DR<-0f!H&2tHzOU8&iQF%_Oqjv@1h1#6+a^y`suCRC zb0^IrBABm5AqiuqhA$&5la1xj$uD1WbalciYj}j9S1`OKiIJ!eL!v^Q5R?V33QN2! zo(FwjswBUl>hKz&{WcJ2M>5&W(?zE%RF!F)@(%~YD4G_hYa(xzO`LPSTmtw^>@53E z=QHg2}1wEl0d-ZZ{c3vvult#esm8k7TzZyHzni75UVCv$;`k?Usww&+m%Rldx7rEyt3d|p$ZYW#mPjddc@h;MV!AMjs(vCSS#?%}^UAx_n!7!ZeeDw#~S$2o+ zBsIXldQMUPK3!;!TemBC$${7Ovos*1$$D)pfcWBVxi4Cmg$_3BoBM>fmi#pl&{r8^ zp~1~gAZ=98^~`fWr;{vgOtsK_qzBKlvyZ18wh2iv?Z07Ar8B>1WAwx4X(IkLaH&O+ zyaKDPAu!1HvXkTJXG3YcLBtnd27}lcpOI&2ef;I_sU-+LVcw$bL~{s)yK@UUBv=51 z7V+hs%S@bI^246Og*z-o<)M$E&>R&Bz~vkxO!R-@jO_TjKyY9 z*5PA`x5cildPOj0s*K)#zo%GI)CI;!I6F=No+#0O03Oku8@UVr$?4pdExb93+2Jc$ zT9v}A+hVpLfr?cR4&!dNtjg!^Qnc`rwOcHlhW+p(rNw-Sjdb`7}_G<>VA$ zlRQ?(DnDu)tp^TosEFRvT7fN-s$I23oVUKn1A(h&OvCH6UJRq0arF%jUd522<wrOg+5wKe8z+50%FSRe4EqYb>S*MMyom;`gkrqBK zXtQoqEqF;SeGyE!D?HYjvqMk+yfr7>*&Z6#CfYV(uVZ5mg6dFf1}{Do9Aw`TtVI(@ zU%lOG8EjUmhag`)IuL4WETMl2jVDUi61Q&KoFF|Tl_5;L6w{HdN4kb|Zi9u=gM8T` zGElHrW2&~T@ak{D2!GA)jKZY~P7)Fd{RXU$n>0_WlE?wEp)9p$hRwB=S=mxP$yW{vzu6J zR~|91u3p_c-mKcL!|$;CK(l4x^>>n-ITeTTo)LfO#`P7|C^#P>VeUuNHZuhHk3 z-OgDJEdM0*BI>8soDMYe#ib+_3Om&<2y~`+`skzY=IQbkjgQ8aPwJ0f$+uV>CX*uX zW8M;4GCA3nMY%0l-nf*vXLDYyS#)AF59@KJsQ9&^cjy+%`0eS3PQJHozwu(!@N^s( z&w32h$xl-miP6qVNgT-=+^T{&%3Tf^*a(yZs$c0TMQ2OH6ypsjos)zz@Y=q#xRzYgmy7!-vjR3ShVe!ea{wjZu7vQ9)9#Z znU}mo9%0Y60PEU6gOEA*_6F9vAvkn1xMJTeo0v`MRLb}1Ty`uzzj9e*5|)%|II&~8 zI-)F@eq= z=N5w8ULl?`s{EyA?gm#8^bFev2^N}evsa}3b0Up5HH{DJC)xIj;##umvtXj#y)lnC zu=j^v5@r-C&BuhVB?dcC{zk3-SVr|^trqCqLQ>akp3b3Lh)McTQ_6ZAnYX`dVOE5# zDzg^vXBcL#Tgw-dNR_I;gVFV3UQgy9<7jbsRUWt9!p|}}L+bc7NRZisKfJ(nm!4Q%{X$F zE_?=_Wn_x^HV|0-x-n64Z$cqyu-49X4JvAJ7+j*TAAiR%l|kG;&+9z1hDC<>B^vd| zN|vZw{*YF**2b17gxk)3&%Vk0scT!Lv&ea|UMHSYmI6_9=s>8ys;EWR=kccTX5l=9 zrraXqxeHBI*b4UtM?9+oHGSqB=RBb2TV1@$SQ8{&?7ct?O1DWH=Z(mr$h`6`+sVLD zxXzf^d7#hH5*us^Xq^G08%Mue4?U?!xNh1CVv-n}++tTEMpd~WxWg^8 zHr_PQycx<~wq-Bj#c`4vdv3@@y`+y!I@*2D4*l%nw8F)uK8qpRHF*Mrc1A z2}E{^?`d3J9?XC5wO}ZFQc(eYSX-Pdz0I?eAxa+Jm28@6sicgY85PxQyS-hnXF>LK zgzHM^@srKj)4UPL39`{q_IuB@2Rz7}x4pU#ouxH1MOR){Xmu;5W?d7QzNu$1_0>Qo z&LwNxZP%R9u4V#^2;=|*+A{IU(0Jo|G7#G{io5)-dF;NYB9X4N27kxd^W0#)otg*0SfIU`wp62UH?R5V!ZsP*Vm|-EvC!$66|bC3#9_F*NdAsjF{gf>GG2&e8{-L zsa81F2&=)x?G@Yh;SKvM5~FXgV4vj^??P_kV}Jd`T;>L--Z4`ay>D^G#y7SmAo|uO z^HB6H%Mm(Xcn!*WR?B9@(o7auYxM>L0iV59v<;mS0cSmd!ynJWM((Z5FvesGc`yOC4{dP7SnV7r?mrOyD28M{~inB15 z!qWr~^d}o%-Z0zGD3_Q^{xO`lyEjrS_NhgW>k8(}n=`??pLGVRd0Odx%=!fPPIs0` zx0b(&u^Z?DqlBQUuN#|S9vPox4r&)SAG9IDos8YmFO^j^2 zy@#pv1a_Nu+VS$VgFwTN@Evv_R>yCB%QH~=P=kU?H?Yi-HS%qt8nY1}_!ggja`iCM zJrjC1nwSM?2Zj(g)O(DK-W5+cRGXvRbPDVy zdbGg~A%|RSNjF;sm#)*?T;D@4Rh+Wox1KTG=*VJ9k{VHNMDGI|w@%RqL9l)mVuigG z;04K4;~GsmMBCa3cupM|Q6na2K3;&6fvfe{A+UBGEhRRHKRQU)`L%aZ64Y5KjGC=} zadXhB3-VJR*sm27K7XxV?kc! z0E4>`4pd$zMMz7(%%IaPaiPrRJA5-fqYoIJ>nan3nyUWr@0%k)N|uG@&ex%ZMfJiY z1f%Y|yI)2Xy-sd?1jcS6WI7a1p2%g;cV_5ynL$dzkMT-hdT55t8gP>}Y>#@Z*If$$ z<+U!3e38w$qAnU1n~UlC$H=e@H$pMigv zP!ncZvfXLyo@+$-iLL`C#1&eKv`EW)B9$MlPyVhaL!)3$y|LQbw99(m@>StYX55W3nXgHCUYoZnR5=U z;Al~9!NnYrUlR2=SYvQxFujT^`O$bzH|fpj`f4C(Fe#-~biF%ffM0J``nr!&^eNyOKOMUKXIcZej;{hI#uXQrs019hXWV)zCspril0 zpl__`82;N{aXP7Jp75E1bW0{-s%3dtW$&KEi-4WtG1z;-3J{DJteA5>%8-q%ML1n4 zXW)aG*brZ?&q#)bd8 z$&=DOf${=r=2G*TByCMIb|>E4A?m1{8JOjFMU+I7+iFlAxy(Ky-yrm+oPFoWZH7KU zsgiQ7RLt#8M{H7)oHY~V9DMGcF5FVe15pxUslb=iK*{>XnLXbmB+qFm_Ci#1mdoCQ z3BE_8YAut+iAf#?ho6}LIha-e4#FRu{$J1<$HdTJE9ktLlSIuEx8%#GV(MOxJ=n{? zHrf&>{AuEnz*RS%>n5c_nDP) zH26Quv?SyZC-IZJs21b7(ehk^r6@}fJ6N4v^tzjg808)XWKLkWylsW zz4eh2K~9v_mTGj%%5zMhxzKT>t}&fD)eo2zlBww6pms9m?%CJL=PL+$`_AyGA*H%I zzMv2ScEt6Ia^am8rF6z46E;e8X`>TEQr?78OZKOqz`T6QRD|x4!(R1Z_}Yf&(Tb&R zE6|#5iqqRgkdTZ6g9b=k$xwv$cBn7^p<4PSK?Q3_R#By7%|*Sm3Zdc}9rS&mz%OAr zAF=G}<^%|piIBQdoJ++?ZecJLF||;TuT|DXOx3*V(GVDq4ILQRDf3H6GznHa0d3f4 zD`y;t4^p$219Ed6E=w78Ff&0e6XDozYwJ)9N=?8di4`lfI4(o?=@z94>%Go174Jl@ z8;tGc=+p+3CMGsd7Qc|GE+3CfdBK0v8hbzK30*snRWx7%suF;_f@_5R-=d}B73Wi1 z^joMN+^V0G*N!;DX=93WwJ%L@T#FhmkXGqc_kwet>sn%()c0oEO_AAYUH0=tHxG6s zeK%M(aW@!PU>gN52^SgRs`_fm=Z1z-yJm;R9iK`_5c6;xx9U-k@gS84Rg$qe;*5Xs z5~L0mH(e-_5(w{)*iJ?XhZmdf>tz%O#4dhYg^S1KAVuRtNX}Idf@EtV|BV6MqR|2|A9Mx;ETg6%@X&KBXLj1f6E{Cq;juRDXfE z#-NhmO%nz@;&0N0gVyFv&N)*?7U_Plaj9fSJwno_?Y4GUFFpP2hv1NFthVaq!)E?w z!3=pgEGaTGBVI39Kj-+wVv#s{L-g|}0rD~0=8YmX3e`Lm#iEwA0jCwM$4Bfl&jyy! zzphR$Om;Jpp9)akw^wZGt9*KLq1lNjU1t5O;vJeus?V2i^aO|r zOgB1-dD&b18KhwS>)$DWC-@5Tc!=M%Bm#dDHS;VB3SI7zM}C1=jJqzzmBZcB^-PQ& zO7mChA<5#2jT+n04Un@sty6Rv^}Se8XQ@@TGAR=D-asV#hK1F8Vma6tV6yQ=wFi|A zxYprlvHisqdaz|%IAS01yTBIyv>RjcPRt{n5O5%dD0FvckX8if-SW1q1rW$f;v9N6 z4A+VhOV!khSxof;UT$HU}4WF=QqymBn(ZU);l7aLH z@6!XCE50w%$yk5%*F{(R@xAsyDp1?std97ziNUqpA^bxI3~GSvT zFPL>nt5UGR*ETlHc*=qwlECK`8imo}|Ml0Yw7ih{(S~ zuPb`EI9Af=8)TWrUF5hit2Qyvm!Y&659UD&7xScTTnCM)-hktVgv9Os!tS13Fe{jZIvm`q zWC8;}W_L=nJ}aUjQ5n|(n!@@Sm>n|4XK!3ty=t5RD}Qr~d426Egk(OSm=^0>+lKy|8srjE{F8_A` zP*uVT$C%aw71r4Cn%dGwloo6=K7}J6{QTZgn7Q&-KRP)>NzSLA@M}bgjRJc^U!1;) zLIRiqDa~FWhRoP5YX>5xXG2bC8AgV`yr(^{in747ouvq^WP>6|%|_rRKwP({q^%A# zv$Hf#!>&{I1k5W2&JhQ6{1R7)A3#C^JT3>X`!W78{0IOSvD8()BSc;A1}nwo6J0W#fz&YK3{y@F@}yCW)m zjWTR)*IxE$&x?0^D0)q%(?A809cbJ#2>W0==>z(m4-1_`!mv~w%k~%Jm*>Po zhlGSuE-X(tF{QPn1rWP0Wp7X_D!(i16_KE`s!Le7ES+w=G_^V5t`O=Sa-U>)@FMQYU zb>BwLep)D*cU?ZM-Uf18kcY=Imu43t;E#|esTRB=~S?+wu$7(DY2WT!*a$B?|I zG`OoBt2=zgmW-l^D0xu=DWRaED7rnPrl8P4U%DcSP+4S(0-i3Q8~oWR;pY3fzkhui zc*W4(AdjtT(UGQwsE>KLBFdrR5LxZ&X>VAMN^V|r6Fbq|{J3XD1Q|-c%qBDtLl|F( z4XyVMtb2!;j0gSkz-SI_C=qpp9$XBf9cDCxi*-l6u?8hPszf`WeWh)SJcufRFvi$#ws%pa3SBqC7u{RdGvbX9NKdBZ*|_H(_5Ug zLA!iSOy7N!Y998&uWd{38%F@wZ|FR~eYP+)rj2C2UucbPa(4VmvJoyc74`m|c6?cFZUd;Ont*KS=rNnLp2 zS*Bk80OW{kc;aU^&UJv9Lfw#z%&Tzmc7laTV*WFGZ45xs0JV&1Fk%P>C*^RtBT@I# zA7E;_>%jG!UaBP%Ps|0^oS+hZ_;p%YbnPB$cPHH`&hO+=a!0mR2UL#y(EFRWva?7OgDChWw72kKZ#!9zjM-^{k)Ay%;xbz69;q23)~aMB zwRhC#JCGRbciL2SDU1h9-1*VuN};~pE`I#Q?TEk1N@Dv&?fB2OODwWu&CeMPn&TQNHT7s(XCz`Arna@IW>B-+Szi3IX6#K})$#jOME{B}bfn`RLNgAj za_QXvZh2!HufQzEk~*bPTgvwr2hPn{JH{S+PEjiYvXOn>L8L>-tfT zkgEQMuKS+iX#d1+phK`kMUGV9Mb9W@EM=D1_Ffs1?|5J8ruP-*g9I+^jvJyY<18IL z!}LF0A(t`zNslX8#(L^~Ud;14nn`ddlu9dTbffHDk(G?eTa=$e7mTmORk%ChgdKq`ZI^@_MQ^ODLQ2dyX#uS3{Guo9kAFM z68V7|Elememc(+S?^GZhdr)eNA}DoL4c#)ceP;mVN(`tp3zsJ;axPm4irqk()qHa& z7{3LOobJHypDQ(h1TzFEW_DF1UxsTn9R^@jP%EN)5h%8EPO@7=g}>W)Mb%n zVN~{NrDdb=dHs6sNI%Ev71z-XqtX}9#G@61^A`2iV&icl{_IXJ9wwzsO>2CmA@9{U zt|_B+l4w;bgo%^6@{TKl{a?eY@l}mEoXND$b`{@0k7;|I49mtVeFOOeN6B$z4r#!t zv3I+ljKz>3ItDT-K;hKVV;7jw$)qSw@;M})p2Q=~vy@&Oj3SXy4_(4Kz5OIM_YIcv z5lK%ttxc&2JRbHNw@n#f>e>Rhd1trwzM>u71I+*%RzU)6Szqpg1LqI_LUK>cef3hs zB67rYB!-+nREN}4gwaV8t@Gj;MSj?8^Zc5*n_LVXn=3oESm${sp^1(8V6(^1B~1wV zuM`yX!_GqnjTI?_o_|0V&N6+|g6h?0MQ%9_LW3kiXKTp1}VjF}X? z1bb&;ITR@op?)cizqHhYITfaMC~mNzxx{_MfzPg}env$p(-}LcJH9Tu5Y?W7R7NtU zIgC^{9dUa|eyC+o2Oa&cZ^P5l^ZkNXW8hJ*T6p;sK4N-e@)k?xpf2>)g~3K;_m&$< z7H&72rDKW5%KyXOdqy?6wOymQEwDua3q_=CL`CU{bO8kg>C$^wKtk_Q0$ZAjfQW!} z1?do^6Iv7mqy`8O2!!4tL`r}V0^bVm{k`vV#yifBZ;W%s`El-FnxS{H`gP4Y*Su(& zi?k9?cw@Ysw5Nk6U%4|hhg;HUo5}wfqGqiz&!ET2AC~z01`cWs_M`udM@{ zK833ie)w~&Jx^$Qi2ru3+PA+nu1{jq5%W}QCjjVdLL$FjS4<`_ zbN}|ucxg;vxcDD)R-%HxE7bl^#iI&WjbRg!###?gX93Gbqi5$c@b|gP)o0N}pPC~c zY~aQ!8lv_lo;PXzlUFI-k>LHWlX*Z-u zb3A<*P9OhDtB{6?yxSmX0_#z$F1G|P7-~OxF56KrHa4?sbTk?GWKuug^#}V`Qf6u8 zup`Rb8S?1T1yINZAU6YKjT5_3^W@@PnZEqrw@xll{40$hS|+8|q;z}c4O~^$+o*@< zOHRB#VqIRCvU}NVdr?JgFCDkI)xJ)W@pKHB%&Kv(JdCjq4p`(m5WBdZ%PPVx3!qF>(c*DDAL~ zFi0JYF$!dATb_$|2^eaa3VQfnNa$m@&x2sOYeHrLFQQNB%L-q*+y(!uLT1JP>&@Mx zyXRW`VqW#eU)so3)%z(-uQ0B#Te*l_cLC{}4{9lR%`7cn4iEfTYim~?aRk3VjLp2_ zr6&C5zlUGnge$I_JL6G-XE~w=Fsl9giJBTYxp}#lbBsH!*gjSXeojp^4SokIiW01j zejaK*0VW9;Z9C5(KYK|whBBZ0&2#6SV$Ze`NPgEbQS+Ju0mc_$vU?>H;)!U@M zwGg0Axi^L;CXX0g*ZuHNI_dG^!*kjGRwaf20(vq3p!@k3+GdeuY3bYO3x2y}NXU;O zM(aDUg8AwC;t1P&%CFF3;5s(wA~!k(*B^Z-j(hd>^`D~`G_sGhYT{lydj4r5xjzCd zX5Id&lG1{*;4Gn!r1GDm4-VY5$Fm)NpXMQ4i#5Ep8A5#=@&DrxF5FD15O$<00~2pr zOb!wSw%Ok?>9^G-nvKS)s*5R?c^40N zLPAyHJ5A^y(R|2{-uIuLhA$3q|fi`gdM;ivDfgI*GdRVnIRHgSe!25Iir}o2sE^2Ys4XM_F0z-;FJS<27 z1_Jn}LH^Dijps%F`^Fnr-oXotXA$kqrao$^_vQpuS|*A z@NI5tJ$XfV80IfEk-5Y^=(n?r*_QN2!Y(9H&YD-f@85dhbW5{srb7E9Wbx0J?0t77 zDico}rnd>pWA`r&Jy8COX3IkOk0RQ0fX0gxBbt;Ga|{OvKy$#g#?}1=GCysLrid@j z)qpZOC_kLh!L$s*HE=5y0o}Aw|Iocwbkg~11m}O>zFD4^d?^AX>`SD`>PBvFklbTS z-~pl7goj6;5WO^?@tVDBZ1L8b3fe%-c=A$8q9G#sy(v$2vInkTY^Dovz07ycWqcCW z3R`T*RJuL+q&yu4&YY08ib=Fx{l6g>O*5o@=%nW(P4qoAWOf#PsPOe`gi2rJ`V)!D z+`qARpVnr&kY77?(OjlCYXJxm*2yiFJ<*e(*z5gN!>r!=ra2xbnfp+S;)TwbmwC!o zrA`p*A@hUc?ZDz8goG|$wM;a@Jt88=Wa?|z@ML_jpUBOm!!=6sffD}XKenPLB3&vk z2ZfE|VM9}%-F1TkEC9#IYVQ&e4VoSlpD$nXhQXsRq&ypLtDhZyX}eqV2^zW@{DBEF zP&HWW%yC};zBGL{IJJnnI?I^zSi ze1AZ$cT&=UQy_axyCg7t*~f80_I&^cV-U+J`Jfamm#S6(VJ+r^djie$g_e)>TPOh! zJ!)3YRkjl@aPzKAgWA|{`G*r|WiXG?pc?J)I0Ben4Qh_2T$UBU^FLIpee()%j48(G z9mSu|M^jKe6#InMK7T@LuneeiSVUeqq@RrU4JJQ)*tE?|ai&WRzwkTa1XoKbk$uEt ziFjJmcvx#mmT%|K`@p5Z*A9AWFDB9BiOk+~_$hu8x_VgJvj56ZTo2-fuNkP`5x7eD z0_^rH&bLRyTf4#EqjwCKKNfn-q)*7RkE5a={doYxK z749-qUfpey+o!mC(@^|#GR5OF5^_d6Zcyl1or1fUJ_C=(dc0O|M23YC#dbi;o|bWo zq2p;|)9}4luda90+KdEkc1>y`YE14x50R5(9PO2OWYeL2sLMqqn*Ufute_mDz)Ia+ z-n;_~J>JgRSA_FlNDx~9fb)t^#4Wcbq$)c)2AVzW?Y-L=2kUX_mA4%ANPj9Sl5nwS z{DHQ<{*_Ei*9I3okVYv-qu=?v&)aDawq1DGd$(ucXWUPOF{RV5gFEeMVw2xjT1yhL zUKJKzt8=mAY*3c?rp+d2ERpY<{F}9fq-~WX*fgSSa5b;;vpw1Zf};Jt>YaQ24{KX% z8#}xQ$#}JsD}lj3ab;3I?thUbWBm2LC6IlJKPPME40MLytN>=3GY<`HcnX2i)*#MQ|pzGBrw`E42PX^9P0H98sr)T&5 z>Li;ou@hmgQtE1_ldk-=sS?y1NzIN6uGn0z1(j+nEHy{ZXi3QD=7Q|BNhshXTMki$ zWXx$re0&WJ?e)eEyNM-?o_puP#sntv%l;rqrx~A($o+n{CO4OAz>BK03p@#BvJ)wKQ=Z7sJ9ltz2(dd za7ABQUIB=nQb01uwtdMifP|jfxtTuQ{ zap-@m$$mTJg5AeeBahh=QymSKZuM^M;DWv&tA*sX-|+0e!P+Sk(RL8d*nZXc?pDZA zqncX40qD_|Rsh%X+7e}3{|l>E>lPcvTw6ZNL%DPMt?$}A>$!h%{0yMRxNbh(d()#qQ!E9~#+tB=fFZ@RhXTdPg*E)tvbuMbPg$2)a zHh}ee?Oo>dyq`my|6T_tfBv#4s!US81_}%f=$-xafP$KNE}yyp+8gmk8zZl)um3dd znqlz&Ch;N>q|DzWn(&=}FPo342{lr#wS$L+Wr67o`fB8QcyI)7H_(KKmu1%TmoXJp; zx7M6*%GlH4(`O1k3g(GmFKI|~J4wh`ITYAET)3I~vm=GILdizJLznwQ%NO&m;`UaD zzbuY9??j||eMo)jF>j=ZN1P@amSOfo?55$0=IlA9s?a6{}wBGAOCL=lj}VHw(+s%0wC}x&%3nl ze~O{}C6)Y7)sp)jcYd1&P=(ArJtp(PKm33Dh3mB0f>bPtNcp3{!5eO`$=ks%q*gA5 zpa(O9rf0R2sHjxB4-Qi}VF^>q9HqfHF59z5NbnjJkpsKXVuc3@E{CcEOu@(yEr zo~s_pg3V;}mIYmV&eVNt-Q=>uW2CG_x<+&ztKa<4ga`9>E+1abtRqQ*hHEY{Q_wCV z5N^;o=?bqU1up)@n^1U!Q+!^@ss;027|a`TxXDP>II!q{o6WgFS7kxLI>634_{Wg2 zaAYQ9p}cv3?i3jCUn_k0bv=YGLST$aDYt>-_Do=s#_S5DU~~-5pg_})v2*`XMb#HB zXULLFrmrrNe>R!I`uqm?iDqFlTdF6`{MQpTbJTJh>WOnxl3@(Z31dalJ+*_K^;(I1agqG1eH46jUO_vq6vuZzXoH!+%`xKVcJV*9j%Jn{8cowM9MS> z?wojGnhK`fw<6fYTuM`1|C~ROEvZoU@2uN`a17#*hUs$CJ)PvM%Yg-#6)GzN_-2z& zyybz=T3$q%_5-PV$Lk(5OD+S-e(sk(XdBbT3Qvq`#bSG~HZKOlsmQmIVj=P-^9P&x zr9x(%@-@vJHr2H(q9x|cOD=YNG8?cu)FVWOw;cG0CLrk2f0c)(C- zEV3UW;3>LMKM(JxO@ z%|6atz2R0Fmugb@!*eTurzDD&6X$x*A3vHGt{~7%JLA}0?k_lKqC1PWm8rf^=m&&>$;do;ZI^-26cP4Ls$;qc__wQ&% z1DQSSE~mPd0i8=R|Gi+;%YHCYrL_~FEpVg2CeJ66_wI(h(_DlB0}05^+Sh7-w?VJ9 z=&?pNRt0$N*uu!F5MO;?E(#7bZFxFeLz4P0cBfUnzt4?tqFU9*P+w5+v0ayEIvR|X zmoYo~p>^#_>CruWUGpu&F77O+)IgUeY}_0g79Sh|YR$dTonZ|Yl_sW(V; z%U=7cyE3jHEQ9ZtEu#D!aD`gpQFY_@yFR6v2U{Z7i~U(Ec8g^-#x%FL%nEDAycT7d z)0RH_4%*#G+T`=yBIsrYK+wHfJRPQ_teeCoIa^X@9YGU4@SyA-#M~jIjN6kvxD5I; z(QVzqb~-%=*SxHFHeBJea7E*X^vP8*DxAvJnJ>yDT6}j}o!{rLvZ7U3)}V}m&+C5E z={_*osy|l_6$A|wbz2;QLs5rI3fA@Dzk2PQufCFsnbLzno>@~_SwXiul!G^uG7oUb zqc+5TTavOlZBi^zQNBBKg1`b#^p(h*Gc{FJ%gNV!lNBgk6X;qtyHRGgG*||)XUA0f z{aUtFq~WSLsO{>H{#$OnZ24{pqn@V6J5vkU;4eN49g3y& zWi7YI}cx!S=!ke ziaG6xM#{*%XS(+_5-Or9)W!7$!)P7^$rSSyba)@TCR$DIud)r$s@F9{aea8%$7rQ) zZ0dI)rqHH4J>IY6!kc*3Zn3C*6jOS3OjMT^ILtmh3dQ-~u;!M~r)LD!PG+;X!kTqz zx-ww(;EG7Yukp5iV=;A{kow)zsbwctAZ{@`%r`L~MrvD|2lOKM9nqlJ)aO2%2KHnb8DGzOExR+GK$$`6!H2Zl6n!+$p zR;Nhw`Ge&sf5a0(mx*ZXv(=&uFAI^1%z$FV!ZY}bG%funZ-zBv-RcUl_<`l^gk0ub z0)vc$#TeYDQ`Z+d935%#2l~NVw>*^6##RPvzs?8C7k&$$uKW35bM8nu^4wzgN}ZZd zBB*6}l2E9v&&#pcvmAqp@;N&tFl0YM@jJ3JK*Nzu*4p}-0tP#d^xzsg>HHVQ? zKi023Mek0y7GG~*l&Su@-P<;XOEKSN&Rs$G_LjCAUX#O2`fX1P_;5KP?+$o6!>H~9 zk5^Mu&Pd@6+6rHLsLx=P8}Xz3cFTcOtOv1nUw82*I4`~&MjsU9=C%6K8d3IQ&pLQP ztuc~MQ_NH#!o%G&XQ0@mQ+~9k(o45haNG;4=O`Wzc1Diz!;y~;&N*1Ztcqe~#T8X; zaMUd>%&b07jH=ffE-dAp&t$eAtEwP)#+GphYAzI>sVA7-aHsnQ-%-^5`2kC`>_Y}oqZvC;XaKUt4AY$2FR_|pYB0Uu1F%qv-7tXch{kyPHe z802HWQiiJ9(7M?Rzv4OblA6$`^;|R=<+@s&Q8C+DL86~vD=M$UbQKpfrRnT6#BW7Z@cvt*jE#ZXOTM)xRN@p%n;Wl;qBJ=_>ElzD*Nw<4h*e=}a+-K?hmvq_JDx!Sre4JR-+295-Do=iW zN|u)^6@3fX#JV@5bHFa~-buj-;d3R%vLhoQ3AbyG|BF!kmR<$WvbnTO#t~T`g8i zB7_mXe$p46UyQz>UUZmk^fMXT8S&>GXRT|aL&6Y~(`WF?gb{HgV-~^C&6=9^l7k_7 z$0K4W@^EExoY<1!dh`XgirBs}DKlVoD6E%x&y=+Ow+|-iIIIXegFVlH+t{zmZTJPCt5ys;n zU?uGI3F)L>7Y$=jaNOB3{=D}{eN#KAt*zd#zJb=}NHWLXfcXrI{2jCi+Wpydgl62z zwt)cFDU&^;=6&0lFYL2F`YtC!_sKrduy`@@u-gdc#@I?)=p}q}P~Y=G)*8S4wGGDT zNnCk`C-)`@wca9d4XL!CdQ+d64lwA~9Lp7W7bpzHF$z ztjdpr&zuW@vsqg(K`%qL^>P>Vf^B5!mcU`K^geCa6d~RAy+F@7sU2qd%eQ`SXnVBO z(JZ&ed%wP&WA$yqXw8<~k6xXMD1G*onDb_aILybZXO4T~c9El;>+WM`7UX(2q}^W_ z$qv6M;AcfozUCd!9PLA_)?Ivg^98mQ+SXQca{Z3d#sg_Z+Z_k5(=0NSu6X`z+OHZe zTk&<$hcG2K&;v{GGC%LTQsT5Izw^m7*0EIVI(yp4`ybeAC`}vLj`T}o3@PjVoz24Q zO(euoyJO^xJkd3S?Eoo5eKd>M%RGbT_4`Y$M2y&~X)Dc2+UjNyl zu)6#{O1`F$=XLV&R*bOl@r;f<+mC6PNOHm9*4X1wZT;Nn8{sQ>4k68%NJ$Sx)@h?8 z2$)<9oV8KwWB0hda6BGCjobTS%EPHrS;&!$$l8M@)<4V!AIDX&%aP_W!eEEronV$M&fslV-(UxQt&4Ypmm-Pr53{=pQvKp}ZzDW* zr(1e#gk;ql*BGxVCJ!<)NzbbO#>a>*(7xJCn%Kw4@8 zCoU*4brjZ+^|kRX2qb%Y5v0S=8Ea z%yZNQ#$FBrC7UAlgrIm%GqV?OrM4ou_9rGL=)s&xqu5{Y2lm}H5k&&f$8N=KYj{ZRJa_@aGbQgE_#C-p=`d9Hft_{0b4SwX{#5zYgl)5nhGFmiV$^VO>8ddnYpd@iQjFOu@vi)|svJ&;|Uinl@BG`eQ%?hV^ZRnrFQu zx0k?t=9-;mdP4*0y1Y^x1gTX2YVkg&jT*{YI;q~B?9Z#en#?Ef>a}j3W(Y|hr2D-3 z^BP(tXi3rY^KQU&W*Jq3=2MuM@>To|RWn5zYf@u0HA>OJ8z+^Pn%0C63koiRM^=8l zTlH(9!>V~I<0MeK=96d%IZ#Egh z5VToI$J(&O1dI1=Gld0uvT(2;Wx8q8?z|^8{zQ)az3Lq6Mx`{Jr)2)E*1_0FTm}KHP`oBi zwsH-UON}Py{#t9v{*LxqcXRRBKQ!>FMUO=KfPVOUaA?aQhdn?WMD0b?u+_+ZgZgh( z0elby-zJ^28?TMx;N(mf6&2UP9?v8R6}tl+Ul2;TSz+1tREhbxv29ws3C3pTLHmAE zhDZ996*42It|b@;-b;cVD&OubEh#B3E-o25i3W{vPh|h zY5Ri`UqzO*EmaJRma0Lisb<%~*;oFEdh%eHC+~0*%?Y_P%m2GohMxTU~n&>OoW1kC^&N$l};EqmJ<^DcxpbIdzNu5ZoU%5qm$R3wMYOD#yZ5y61z=_YRs?wG)?jNq_d$ zYlZhl37w=G44kjwJXm1X(o`VIm`=X+O(idB9UWu~UufDQjkeQj;&@fZH7$(>oqqu^?%f`fh+35L-$_I^`t;D)Y zB-YQvVjXeAx}PE0x!O73O7-S2G($3S)BTfpH#u8d{L7_BA}_qpNB38{^M4zOgIBZ0 z@3hcOk3ZdWs<&AV)f}}bR`g-8$y*&pULCt2QGfWUfU)YrN1ye0S&Ze!0(^d|+q3DW zGxnQ3kfF@FFS*KB;jatB$veuvubpDWJjDPM$1n;~=^QZD+3t0my^%$nDyf z1-qtu0~nUzY=xTet{W^x4s%`kHDB?&9!J(-Mtvx~> zEtM+LOvfMn!f|Sb2_0@42Kx-=xc_;a?p~=?+R|Hm!sRXYfma%Od(xdaWCTkHp13{2 zD~D8OZ2xRNW>HxIH)Wd)51{slB}>&ms>%cnrc2_-8zhFWPrg%9IK6V`}NO(VuxlCB~ zBD_Py==If*n5QttXzynMlc`nD=|}$NabVB>?pM9rtI&0^PMK6@(fK#O<(NZliG??B z%~$u!i1q$M1%AzY*g4jjma!CN4xG^3%^B;bGYR2}h)|S~K;757Lmu1xQ2x8lp7CXm zqH63@VqJV=Dd=hM_WUFhi>rFSwm(sy+0*S5NeOCpbbi`ZaD^#+ zzO9-z8D%0QP25Re(;;||iC!8TB@!V$^LFUn^+558O6*QdfSIvm7?j$6^N_TPEF5(} z_2^1F-ZC$Dv~+ioqOmc42{0;+oEZAyz-9^?-lDdNdc>e~_$zG=v$e}h<5 z4}C4F0sd7*t{gd{t87SL+Hjs#ad68V)5B<0++kLf>)IQMQ>2Y!N*<$$EbV)4;sCy-glTpv{9} z=2PN#vm22&R|ImyaR4uFi4k`^nkzC*T^&7%ot#pih^14^POl;?xtx@FA&(*PqkqoW zp45}#_kt@^g;Yb=ulfdW%_>hGS`(?QZDt^d?F4Of%e>9;;&`W1z{m9gur>bLX5E#s zayk`7v5Nc${0UhD%WQYk0eB@RwLHDl`Mtz)AgN0zc2%gP)p{uYZhF?`dBd2N*&*## zSkU-v2yF7FlY*_6OIqm#kbRTQboenGmcztbUXlZbt&9&vgL4>hB26Cew2^?yjNyDwBF5K(rdv zSE9TdXyXiX)zB{u+_O6Bm%)p{QhRzcgL;-r;#*QdFdtBj4ICLm#m95~aDjUdVcS;P zWFI92(e=)em*#Mt{bL%`yLY~#Otr`Ai`i;8yGpA7fhX&4yWnegI77b!Ww;3?7g=(6 ziJD=7;TPd(tT{)Jq4qhDANxmHgRND%X2CQ+`y+<@I?}RrMW)db5fP zzX08FwZ`@QqFvc=iX}V_zp8``p3n0=JHN818YUo`DKyI2NNB`A=%F&R=1GyoZf$$*~pVEEn@0UO^Ffg zE%*EeZ@kURJh;_h&GYE}ae9m@O3pkgaR~+}cgc3T_w(I4zvv%gH3yZD_a>#m4K7q? zibYV!KwSpXDG?Lq>|LZ2mC_6)l9f!JkTyeRY<;9N4QRU4TTv(kq#xYBK5_o;>g%43 zbz|zwpNu%1Z=au^c~Dib(j8OaPfn11K0TxtsBQV)@G6(>B3tGt)!VS{st(GKx&<}0 zPl?GOd|4VXC7F4K$NGx*KgUyw);>rpeTLZDe)9y9&$-Sb)wxc|OYlG5$|ggiI!F`_ zZ+c??Ah6neFQvzB5lw+ZHM2_o#-&K}lV~rg@UI!t$pgym{9~Z@u%ZG?;4D)eNNexB42 z?b~4tAV;YudI|c@uMk!fG>1KitzDtB`GZCwl7J{ONa8C66k1FAEQ7*rairpU^^4xx z+j6CcsZ^*-R&P5%O_%-!>ENw|iE1YBdj%C1hRviqlN4V0__#i6n-19Oo>`eKO4Zs- z7#I7Hm47)azlRnOBLPvfPejfc=wes_%%0dj&H3r*RDlL-WI05 z-@x@x+wyF|=wqta*q8-;$CVV8N};bn*$M_hM^urSOS-zcqGGXhSA|A?YN)HvF^TWQDj6N?p@4G9;|>}X zBklqIk?2@>bFz?tlTeTPJkyTQC*I%hvbxt{HcKJ+aua*$OlJW_2tSYgM;h`g#n_%Qg~vzHG25w}}e_irDlESPw2PgnTOq@+*E+`A_Q9y4V1 z3&PwOzE^_W^lNn5ZS~~u?`?bEU6pm)qX)*RWD1TGa|?N?M#l8D9tr5i@~+tbe&Z5Y zmsaX*P=i>ridFn1o~cG$eKL)HY>3^8Hj_P~Z_K*%GdcYAiUAxjGx_b)U{-|~YW=6` zB1NqL=o+qbCMZzip?(%RLkb%XL<|)6)=NZm#v>xj3=l(}3<;`3M;ucD6+1qN57`oQ zu9ctZrgEUtTt6n#lPaMhhH-LeCiKLb)WtOaB5ZR@n$I>_3ur0u4FYc9i>Ipe!L|i$ z4>mRWsQzMCMUEF>Znwet6jR402&XWiRe{`YIh|LX4|42W7s1y*1iT5uH^06`%nS<8 z8NNL6^1G2Qe|jsEi=6T&iU6%N1*kK+to+x9i$*_yO)=2JjZJ}Ox)Z0LZul0wGCq*o zStAd{73TKr>HM#=@OShr-6e3Z4?=*fxg}^9IQ7Td46ri*9GfP=>MI4*Ajt{@*B^cN zAuq0(>MHW$HX#pDO2GOe1Z~*ZAr{2F)hQ0=NGfCxZ8;0msn}hx7*4zw^e7u5_!!6e z;8avl%`c_Zu|D~8iZlh?(Oyk@XSpz=jR_*5CzLc7OhkwaRVE9pXVvgd4MD@X*~b+9 z-D`&D)6&HZn8Z~DI&NMfk2d%z3T$gzQ?H@&6t6Z z3bM|z5XVrK?_ZZK^-|0p!Gv7~3>$giU+$p!QUTW&u3-*-Y9^#-JCv}tqr;y|~H^J;xmQ|2-i2GljC8-TZ z>jwksk$P3BYx^Ww=ObyVW3)41=lSO+$cTzjq6}WnFTlS%@@&kGgxtZ@XhBN_dcA=( zb?7A|@os6w*?CD?$-F<`kWKeNeC$70G*_?m=*^)mIHliVz;8+TDmf@o<)fc7p|-6hpVq0rB-wEm+bS%@=7Vvz9~cg#ZT{o5`v&eHK7G(;Lb4C}Bnj5L)*|Gc}NeW;XwFC`yL1c39bXyVd6h6Snu zbiISK38sOl{*x@eSWqr5r=*5HJ zeDyvXMNi{eP*wR`vT?b5H4?ibi81oa>*@de$IpH&r~zGU7&$Z+%>3~-bA z6!%<8gMvkuUiY(q>JFkW+_!PUR^#$MA5{3HfuHI7sdLm3?nN_pNDF-H;D3hl8xkAp0K|*!A(--=5C7h1hi4D%Lmx0+e~|UUCXA z4ag?b<&?V;Y!GUBC_@uI^ViSLEqlQV-6M1=hd1N`-cJegroVA7( z&uoj{E|g>zgyck5v;Tc4UK>TFY$_vNA{T+d0WhL!)Tu!5>j1s-Td zz8zF$I%hKO6i9&9DHem1rQDzg#EU%j$;09$xh;!{_?~L{hRY?+7Wg_nhgZV}ykgz0 z=qdoR7&;c&iMz6WG&UN>? zz`8|kKr20+(?=%balW9GE&8JpaefPxKIg}UJT z=PUQVpR=MqDfOa!7waH*PPc$BK?x0`XAPM~En>dUZIel++LzPyDA7vrn=FUb!&Yam zIs}6n8+|rvEJIV%l^uqbmZL?=IW6yu2kU8>p~sw3q@~E8pnE&i0@1l-i^j5YH=3cg zsfBoTO;=nG`Y`*~sCCjG3%iUfz@NvSm}$90nb=N=G5Nzo&17} zjz|5uFEhjp?r0#fkkKMxv4B$TrKm0M_-e@`^B*RMiKg$f^z1-IaXfe5Vm!{XcE7>D z;(En3gZnPTZGs|ig%JXJ`{>JVZ`%W{y)A%xsxGABDO848(7hzOvS`n-jHgeyb%Ci1 z(0@Yf>gps@JAlRF3bjTts%k6XHki$oW83%NaQ>w7DRySyL41rYcwm0RvvEi8p5Q8A zrn!yl9$iiuT;Z$q+^=#46LEZbn0&X}tjIt61;f&{Jh@cU6JLdZi== zBE{+4fPQQ?Rys5O^KCec>f7o8NgQ(4GW9xt7HBA&%W`0Hz(M;rlR@GMaXb`y)3yH$#Zr8 zD(tY-BFV|%NAA&hNwp$V>c>Tza%$;muL}Q=G*ky2qb&&9!P3Gh>f>;M?rl}MP!pQydALhM% z@DQWe^-xXHf@aeTfiMM{p>8w~TYXz?E^MYsdXglL_6r+)q1M_xgUXA-(&Imbggqf1 zHbv$r$(&*2`T`P4HKQFavHFpno2)|lLLWwB1}VnX$Lao44iesAbBeQ|?lsru%WgZCE=7|+yR_s8^9)i@Mqk4$3|gPy^<%g(LEuSoH>SE`dJ5gGkmXm?yOsz$H30XR~ zI~OUiEooRP8{HJW;YP^UTPZpC+|zYIYp*v#?hd;mIxG&NtDOxkZt)hu*LNMQpZTP; z;Q#0K-iv_n(N!y(y91DJpT&|?*Cr`3eW}@}dtVRVX!bh}6z#&x-5Op39J|qMqvW%| zw{uj&O1v5{%M`M*nPVl?i`FE$SWmM$ul=W5J-Y*uqkS6JY8@&-&%)HeU&^Upm zDwRuK9dRs%rxy2n1#?O0LR@=#OA(Y%c=h>?jKI+teh7&ucWeJ+VG@f;0k<5&`W!qO z3DFWt=4Yvr#(yfjo3Z1z1(*k3pt?x^Hd=gZZ>pk}?0C(M4Mf zK0Uo%$+;G?TYQ?zPwYSGT(o81+}U4+Dmk!0=sm$*f(A4*lHT%#Z{BcaLIxn>Z`!h` z73kTydlQyt=gr85KzlH1i^a#|Tx-url(r4itgqgQp(qo~iMRc=iw|8G;vnTV5mF(c zQpDCk_4CWT*`xJWLKt3l6ZETo6SBbw-H%tsM7<9etV~q`#^`G&L)m(mx1!mv3*B435(cDy8)jk+()euE&8O57W-71=1Xm8k zR&+W(cI6RuP042nC#WC#hI6G-9ZH$=b#t5%RFy!IZK~_~tVlj+pPbz*B!ek^-I(9L z(=XU{wBtz-)s*c6Ab`aKOCpXML2QkWe{$G6EHR6PQFKm6x75Q*$?tC(hN#`}u1f6p ze$8_Sy-JQ(QFv=X9~;z>SuZ!k_&^BK>DJp&faEbva;iP!P58lj`rKXftGKXO^TvL$ zl!NQcmm(z;(4DUcL-QDW%FY}0ySt`%ql3+btD_uFHZVPf*+P!F(6dN6fKYM(@IsgH z-FgBi#BqDTv7fpwojvrIGRRoa;wh^82d{ z3VU<%fuzVw(@}_np-gt~=TvE0*+S(IHKPWZBHcIIff@MAT&)#VJUDtGyxg+iUPxLI zb!7`5XtCjD_8WQ~L&btDTNBUqAxBbRx!9kPko$&OFew5~`1Tv*mUgTAlJlQaahiKd zNQXsj*#Hju=TD{IM8aB4Sko(8$`Lcvq9N?(cIIBo=L+t$xXl%{oqWRO$!-hye8}pm z3vy0eQ(zJV>hFr$b4Ll(8{K7P!mbc2Fm&%yKNjZYaCsRWN)U&rzm~gso(Rt=2uDRR zgG(55xvZ(fatwfLD9sQ$>P4gxbtI*T>p-Y>JrFM>Pseqz4`k3F_~EDOEy`;RSNzE@ zD53K7Mxl>RFsrv#j-fWq2!reM&YMj8n-W(r4^7)wAiuKdS9>s};p%f^maEK#^1eAgYFI(4AF;45=d&yXkv4ml{lJ0eXjh zdT=(~IN=8U2htf*Lib)!2K&UgJHd1ZXs$1YzthYE>U+I6!GsJKPOfK6NuKQx?fG8^ z7}X{pudQkJ7>>7XjUeyyktj59n{R7u9qo+H10dJt5P$Bmey7(Qeo;YEE~Zc)$bcuI z@bW|}?fw&wdnQt4@?}F0Iu4r|hg24oa6pk124_ty<>FuZjZVB{vP;WHV|D;!} z2ZRJ|5Ny_Y6Y5nfmsxV;`}qmr!tS1qS&if|70}3_u!h98V5aIC@Dx3G1_VsMuGh&k zuEg2rSqy$LbiMoariHPj!Tp2%4N^WMLluBve|7G`UB}5iLK$fXUk^f$1tZ}6l%=}f zZ}hZ$Z09AwkbvIkUXq#wRNH*1dLzoqWqrdjkLGs8NTA>H_Oy8{$E(4$M)>f4s?YUq zK?_E+_Q7Y%v0_c&4h>iL|U9!Leimjhv^O1OzJi&f<| z{C}-)FKB+|Hvc#KnlJY@SKOEZYA!r${(V_i+GhE7Kfe6DBmJk+p1%i*Q+FTYi6!rrpyck{OMGkjQ8fjPs+pfY*qJZ|8YfYQ>3 z>+W|h2QJ-C&lfERO*b6Bw7A5o{OPf;(VNp#Rp3){(1ESZ{c^y;!B>xcKK`6M_wllT z^>4iwMYQhh*7}gMH9erFu;7*AlJ$3X)M`)m6vx7FKM1*?>r-n|oX>)ZslWwl4Y_Ae4(n{@swcsRjBUH-uD zcZ=+Jq;uB+*Gx!kgiPi!@Emla&N=r*E8$hzP~F| z%6Z`R>-4&3>AU{!+)=rGlU>TL{qJ-cIyA4F>z~uLmwjc$#xUn7XzbtMAImz1=`ppw z=RupCZUr$^q)zE(zbY0PyN*E_vU^iv+nKemw$(a?GqAZl;W7X&!2^wyJ5N7#M_?C| zfrC= 5.2.0)) + (menhir + (>= 2.0)) + yojson + reason + ppx_yojson_conv_lib + ppx_yojson_conv + (omd (>= 2.0.0~alpha4)) + ezjs_idb + bonsai + ppx_deriving + ptmap + (uuidm (= 0.9.8)) ; 0.9.9 has breaking deprecated changes + unionFind + ocamlformat + (junit_alcotest :with-test) + ocaml-lsp-server)) ; After upgrading to opam 2.2 use with-dev https://opam.ocaml.org/blog/opam-2-2-0/ + +; See the complete stanza docs at https://dune.readthedocs.io/en/stable/reference/dune-project/index.html diff --git a/dune-workspace b/dune-workspace new file mode 100644 index 0000000000..480ccb1514 --- /dev/null +++ b/dune-workspace @@ -0,0 +1,9 @@ +(lang dune 3.16) + +(env + (dev + (flags + (:standard -warn-error -A))) + (release + (flags + (:standard -warn-error +A-58)))) diff --git a/hazel.opam b/hazel.opam new file mode 100644 index 0000000000..e78b188325 --- /dev/null +++ b/hazel.opam @@ -0,0 +1,43 @@ +# This file is generated by dune, edit dune-project instead +opam-version: "2.0" +synopsis: "Hazel, a live functional programming environment with typed holes" +maintainer: ["Hazel Development Team"] +authors: ["Hazel Development Team"] +license: "MIT" +homepage: "https://github.com/hazelgrove/hazel" +bug-reports: "https://github.com/hazelgrove/hazel/issues" +depends: [ + "dune" {>= "3.16"} + "ocaml" {>= "5.2.0"} + "menhir" {>= "2.0"} + "yojson" + "reason" + "ppx_yojson_conv_lib" + "ppx_yojson_conv" + "omd" {>= "2.0.0~alpha4"} + "ezjs_idb" + "bonsai" + "ppx_deriving" + "ptmap" + "uuidm" {= "0.9.8"} + "unionFind" + "ocamlformat" + "junit_alcotest" {with-test} + "ocaml-lsp-server" + "odoc" {with-doc} +] +build: [ + ["dune" "subst"] {dev} + [ + "dune" + "build" + "-p" + name + "-j" + jobs + "@install" + "@runtest" {with-test} + "@doc" {with-doc} + ] +] +dev-repo: "git+https://github.com/hazelgrove/hazel.git" diff --git a/hazel.opam.locked b/hazel.opam.locked new file mode 100644 index 0000000000..b2cfce2cea --- /dev/null +++ b/hazel.opam.locked @@ -0,0 +1,251 @@ + +opam-version: "2.0" +name: "hazel" +version: "dev" +synopsis: "Hazel, a live functional programming environment with typed holes" +maintainer: "Hazel Development Team" +authors: "Hazel Development Team" +license: "MIT" +homepage: "https://github.com/hazelgrove/hazel" +bug-reports: "https://github.com/hazelgrove/hazel/issues" +depends: [ + "abstract_algebra" {= "v0.16.0"} + "alcotest" {= "1.8.0" & with-test} + "angstrom" {= "0.16.1"} + "astring" {= "0.8.5"} + "async" {= "v0.16.0"} + "async_durable" {= "v0.16.0"} + "async_extra" {= "v0.16.0"} + "async_js" {= "v0.16.0"} + "async_kernel" {= "v0.16.0"} + "async_rpc_kernel" {= "v0.16.0"} + "async_rpc_websocket" {= "v0.16.0"} + "async_ssl" {= "v0.16.1"} + "async_unix" {= "v0.16.0"} + "async_websocket" {= "v0.16.0"} + "babel" {= "v0.16.0"} + "base" {= "v0.16.3"} + "base-bigarray" {= "base"} + "base-bytes" {= "base"} + "base-domains" {= "base"} + "base-nnp" {= "base"} + "base-threads" {= "base"} + "base-unix" {= "base"} + "base64" {= "3.5.1"} + "base_bigstring" {= "v0.16.0"} + "base_quickcheck" {= "v0.16.0"} + "bigarray-compat" {= "1.1.0"} + "bignum" {= "v0.16.0"} + "bigstringaf" {= "0.10.0"} + "bin_prot" {= "v0.16.0"} + "bonsai" {= "v0.16.0"} + "camlp-streams" {= "5.0.1"} + "chrome-trace" {= "3.16.0"} + "cmdliner" {= "1.3.0"} + "cohttp" {= "5.3.1"} + "cohttp-async" {= "5.3.0"} + "cohttp_async_websocket" {= "v0.16.0"} + "conduit" {= "7.1.0"} + "conduit-async" {= "7.1.0"} + "conf-bash" {= "1"} + "conf-gmp" {= "4"} + "conf-gmp-powm-sec" {= "3"} + "conf-libffi" {= "2.0.0"} + "conf-libssl" {= "4"} + "conf-pkg-config" {= "3"} + "conf-zlib" {= "1"} + "core" {= "v0.16.2"} + "core_bench" {= "v0.16.0"} + "core_kernel" {= "v0.16.0"} + "core_unix" {= "v0.16.0"} + "cppo" {= "1.7.0"} + "crunch" {= "3.3.1" & with-doc} + "cryptokit" {= "1.16.1"} + "csexp" {= "1.5.2"} + "ctypes" {= "0.23.0"} + "ctypes-foreign" {= "0.23.0"} + "diffable" {= "v0.16.0"} + "domain-name" {= "0.4.0"} + "dune" {= "3.16.0"} + "dune-build-info" {= "3.16.0"} + "dune-configurator" {= "3.16.0"} + "dune-rpc" {= "3.16.0"} + "dyn" {= "3.16.0"} + "either" {= "1.0.0"} + "expect_test_helpers_core" {= "v0.16.0"} + "ezjs_idb" {= "0.1.1"} + "ezjs_min" {= "0.3.0"} + "fiber" {= "3.7.0"} + "fieldslib" {= "v0.16.0"} + "fix" {= "20230505"} + "fmt" {= "0.9.0"} + "fpath" {= "0.7.3"} + "fuzzy_match" {= "v0.16.0"} + "gen" {= "1.1"} + "gen_js_api" {= "1.1.3"} + "incr_dom" {= "v0.16.0"} + "incr_map" {= "v0.16.0"} + "incr_select" {= "v0.16.0"} + "incremental" {= "v0.16.1"} + "indentation_buffer" {= "v0.16.0"} + "int_repr" {= "v0.16.0"} + "integers" {= "0.7.0"} + "ipaddr" {= "5.6.0"} + "ipaddr-sexp" {= "5.6.0"} + "jane-street-headers" {= "v0.16.0"} + "janestreet_lru_cache" {= "v0.16.1"} + "js_of_ocaml" {= "5.8.2"} + "js_of_ocaml-compiler" {= "5.8.2"} + "js_of_ocaml-ppx" {= "5.8.2"} + "js_of_ocaml_patches" {= "v0.16.0"} + "jsonm" {= "1.0.2"} + "jsonrpc" {= "1.19.0"} + "jst-config" {= "v0.16.0"} + "junit" {= "2.0.2" & with-test} + "junit_alcotest" {= "2.0.2" & with-test} + "lambdasoup" {= "1.1.1"} + "logs" {= "0.7.0"} + "lsp" {= "1.19.0"} + "macaddr" {= "5.6.0"} + "magic-mime" {= "1.3.1"} + "markup" {= "1.0.3"} + "menhir" {= "20240715"} + "menhirCST" {= "20240715"} + "menhirLib" {= "20240715"} + "menhirSdk" {= "20240715"} + "merlin-extend" {= "0.6.1"} + "merlin-lib" {= "5.2.1-502"} + "num" {= "1.5-1"} + "ocaml" {= "5.2.0"} + "ocaml-base-compiler" {= "5.2.0"} + "ocaml-compiler-libs" {= "v0.17.0"} + "ocaml-config" {= "3"} + "ocaml-embed-file" {= "v0.16.0"} + "ocaml-index" {= "1.1"} + "ocaml-lsp-server" {= "1.19.0"} + "ocaml-options-vanilla" {= "1"} + "ocaml-syntax-shims" {= "1.0.0"} + "ocaml-version" {= "3.6.9"} + "ocaml_intrinsics" {= "v0.16.1"} + "ocamlbuild" {= "0.15.0"} + "ocamlc-loc" {= "3.16.0"} + "ocamlfind" {= "1.9.6"} + "ocamlformat" {= "0.26.2"} + "ocamlformat-lib" {= "0.26.2"} + "ocamlformat-rpc-lib" {= "0.26.2"} + "ocp-indent" {= "1.8.1"} + "octavius" {= "1.2.2"} + "odoc" {= "2.4.3" & with-doc} + "odoc-parser" {= "2.4.3" & with-doc} + "ojs" {= "1.1.3"} + "omd" {= "2.0.0~alpha4"} + "ordering" {= "3.16.0"} + "ordinal_abbreviation" {= "v0.16.0"} + "parsexp" {= "v0.16.0"} + "patdiff" {= "v0.16.1"} + "patience_diff" {= "v0.16.0"} + "polling_state_rpc" {= "v0.16.0"} + "pp" {= "1.2.0"} + "ppx_assert" {= "v0.16.0"} + "ppx_base" {= "v0.16.0"} + "ppx_bench" {= "v0.16.0"} + "ppx_bin_prot" {= "v0.16.0"} + "ppx_cold" {= "v0.16.0"} + "ppx_compare" {= "v0.16.0"} + "ppx_css" {= "v0.16.0"} + "ppx_custom_printf" {= "v0.16.0"} + "ppx_derivers" {= "1.2.1"} + "ppx_deriving" {= "6.0.2"} + "ppx_disable_unused_warnings" {= "v0.16.0"} + "ppx_enumerate" {= "v0.16.0"} + "ppx_expect" {= "v0.16.0"} + "ppx_fields_conv" {= "v0.16.0"} + "ppx_fixed_literal" {= "v0.16.0"} + "ppx_globalize" {= "v0.16.0"} + "ppx_hash" {= "v0.16.0"} + "ppx_here" {= "v0.16.0"} + "ppx_ignore_instrumentation" {= "v0.16.0"} + "ppx_inline_test" {= "v0.16.1"} + "ppx_jane" {= "v0.16.0"} + "ppx_js_style" {= "v0.16.0"} + "ppx_let" {= "v0.16.0"} + "ppx_log" {= "v0.16.0"} + "ppx_module_timer" {= "v0.16.0"} + "ppx_optcomp" {= "v0.16.0"} + "ppx_optional" {= "v0.16.0"} + "ppx_pattern_bind" {= "v0.16.0"} + "ppx_pipebang" {= "v0.16.0"} + "ppx_sexp_conv" {= "v0.16.0"} + "ppx_sexp_message" {= "v0.16.0"} + "ppx_sexp_value" {= "v0.16.0"} + "ppx_stable" {= "v0.16.0"} + "ppx_stable_witness" {= "v0.16.0"} + "ppx_string" {= "v0.16.0"} + "ppx_tydi" {= "v0.16.0"} + "ppx_typed_fields" {= "v0.16.0"} + "ppx_typerep_conv" {= "v0.16.0"} + "ppx_variants_conv" {= "v0.16.0"} + "ppx_yojson_conv" {= "v0.16.0"} + "ppx_yojson_conv_lib" {= "v0.16.0"} + "ppxlib" {= "0.33.0"} + "profunctor" {= "v0.16.0"} + "protocol_version_header" {= "v0.16.0"} + "ptime" {= "1.2.0" & with-test} + "ptmap" {= "2.0.5"} + "re" {= "1.12.0"} + "reason" {= "3.12.0"} + "record_builder" {= "v0.16.0"} + "result" {= "1.5"} + "sedlex" {= "3.2"} + "seq" {= "base"} + "sexp_grammar" {= "v0.16.0"} + "sexp_pretty" {= "v0.16.0"} + "sexplib" {= "v0.16.0"} + "sexplib0" {= "v0.16.0"} + "spawn" {= "v0.15.1"} + "splittable_random" {= "v0.16.0"} + "stdio" {= "v0.16.0"} + "stdlib-shims" {= "0.3.0"} + "stdune" {= "3.16.0"} + "stored_reversed" {= "v0.16.0"} + "streamable" {= "v0.16.1"} + "stringext" {= "1.6.0"} + "textutils" {= "v0.16.0"} + "textutils_kernel" {= "v0.16.0"} + "tilde_f" {= "v0.16.0"} + "time_now" {= "v0.16.0"} + "timezone" {= "v0.16.0"} + "topkg" {= "1.0.7"} + "typerep" {= "v0.16.0"} + "tyxml" {= "4.6.0"} + "uchar" {= "0.0.2"} + "unionFind" {= "20220122"} + "uri" {= "4.4.0"} + "uri-sexp" {= "4.4.0"} + "uucp" {= "16.0.0"} + "uuidm" {= "0.9.8"} + "uunf" {= "16.0.0"} + "uuseg" {= "16.0.0"} + "uutf" {= "1.0.3"} + "variantslib" {= "v0.16.0"} + "virtual_dom" {= "v0.16.0"} + "xdg" {= "3.16.0"} + "yojson" {= "2.2.2"} + "zarith" {= "1.14"} + "zarith_stubs_js" {= "v0.16.1"} +] +build: [ + ["dune" "subst"] {dev} + [ + "dune" + "build" + "-p" + name + "-j" + jobs + "@install" + "@runtest" {with-test} + "@doc" {with-doc} + ] +] +dev-repo: "git+https://github.com/hazelgrove/hazel.git" \ No newline at end of file diff --git a/opam.export b/opam.export deleted file mode 100644 index e8a656aa66..0000000000 --- a/opam.export +++ /dev/null @@ -1,204 +0,0 @@ -opam-version: "2.0" -compiler: ["ocaml-base-compiler.5.0.0"] -roots: [ - "ezjs_idb.0.1.1" - "incr_dom.v0.15.1" - "lwt.5.7.0" - "lwt-dllist.1.0.1" - "merlin.4.13-500" - "ocaml-base-compiler.5.0.0" - "ocaml-lsp-server.1.17.0" - "ocamlformat.0.26.1" - "omd.1.3.2" - "ppx_deriving.5.2.1" - "ppx_yojson_conv.v0.15.1" - "ptmap.2.0.5" - "reason.3.10.0" - "tezt.4.0.0" - "unionFind.20220122" - "utop.2.13.1" - "uuidm.0.9.8" -] -installed: [ - "abstract_algebra.v0.15.0" - "alcotest.1.7.0" - "angstrom.0.16.0" - "astring.0.8.5" - "async_js.v0.15.1" - "async_kernel.v0.15.0" - "async_rpc_kernel.v0.15.0" - "base.v0.15.1" - "base-bigarray.base" - "base-bytes.base" - "base-domains.base" - "base-nnp.base" - "base-threads.base" - "base-unix.base" - "base_bigstring.v0.15.0" - "base_quickcheck.v0.15.0" - "bigstringaf.0.9.1" - "bin_prot.v0.15.0" - "camlp-streams.5.0.1" - "chrome-trace.3.13.1" - "clap.0.3.0" - "cmdliner.1.2.0" - "conf-autoconf.0.1" - "conf-which.1" - "core.v0.15.1" - "core_kernel.v0.15.0" - "cppo.1.6.9" - "csexp.1.5.2" - "cstruct.6.2.0" - "dot-merlin-reader.4.9" - "dune.3.13.1" - "dune-build-info.3.13.1" - "dune-configurator.3.13.1" - "dune-rpc.3.13.1" - "dyn.3.13.1" - "either.1.0.0" - "ezjs_idb.0.1.1" - "ezjs_min.0.3.0" - "ezjsonm.1.3.0" - "fiber.3.7.0" - "fieldslib.v0.15.0" - "fix.20230505" - "fmt.0.9.0" - "fpath.0.7.3" - "gen.1.1" - "gen_js_api.1.1.2" - "hex.1.5.0" - "incr_dom.v0.15.1" - "incr_map.v0.15.0" - "incr_select.v0.15.0" - "incremental.v0.15.0" - "int_repr.v0.15.0" - "jane-street-headers.v0.15.0" - "js_of_ocaml.5.6.0" - "js_of_ocaml-compiler.5.6.0" - "js_of_ocaml-ppx.5.6.0" - "jsonm.1.0.2" - "jst-config.v0.15.1" - "junit.2.0.2" - "junit_alcotest.2.0.1" - "lambda-term.3.3.2" - "lambdasoup.1.0.0" - "logs.0.7.0" - "lwt.5.7.0" - "lwt-dllist.1.0.1" - "lwt_react.1.2.0" - "markup.1.0.3" - "menhir.20231231" - "menhirCST.20231231" - "menhirLib.20231231" - "menhirSdk.20231231" - "merlin.4.13-500" - "merlin-extend.0.6.1" - "merlin-lib.4.13-500" - "mew.0.1.0" - "mew_vi.0.5.0" - "num.1.5" - "ocaml.5.0.0" - "ocaml-base-compiler.5.0.0" - "ocaml-compiler-libs.v0.12.4" - "ocaml-config.3" - "ocaml-lsp-server.1.17.0" - "ocaml-options-vanilla.1" - "ocaml-syntax-shims.1.0.0" - "ocaml-version.3.6.4" - "ocamlbuild.0.14.3" - "ocamlc-loc.3.13.1" - "ocamlfind.1.9.6" - "ocamlformat.0.26.1" - "ocamlformat-lib.0.26.1" - "ocamlformat-rpc-lib.0.26.1" - "ocp-indent.1.8.1" - "ocplib-endian.1.2" - "octavius.1.2.2" - "odoc-parser.2.4.1" - "ojs.1.1.2" - "omd.1.3.2" - "ordering.3.13.1" - "parsexp.v0.15.0" - "pp.1.2.0" - "ppx_assert.v0.15.0" - "ppx_base.v0.15.0" - "ppx_bench.v0.15.1" - "ppx_bin_prot.v0.15.0" - "ppx_cold.v0.15.0" - "ppx_compare.v0.15.0" - "ppx_custom_printf.v0.15.0" - "ppx_derivers.1.2.1" - "ppx_deriving.5.2.1" - "ppx_disable_unused_warnings.v0.15.0" - "ppx_enumerate.v0.15.0" - "ppx_expect.v0.15.1" - "ppx_fields_conv.v0.15.0" - "ppx_fixed_literal.v0.15.0" - "ppx_hash.v0.15.0" - "ppx_here.v0.15.0" - "ppx_ignore_instrumentation.v0.15.0" - "ppx_inline_test.v0.15.1" - "ppx_jane.v0.15.0" - "ppx_js_style.v0.15.0" - "ppx_let.v0.15.0" - "ppx_log.v0.15.0" - "ppx_module_timer.v0.15.0" - "ppx_optcomp.v0.15.0" - "ppx_optional.v0.15.0" - "ppx_pattern_bind.v0.15.0" - "ppx_pipebang.v0.15.0" - "ppx_sexp_conv.v0.15.1" - "ppx_sexp_message.v0.15.0" - "ppx_sexp_value.v0.15.0" - "ppx_stable.v0.15.0" - "ppx_string.v0.15.0" - "ppx_typerep_conv.v0.15.0" - "ppx_variants_conv.v0.15.0" - "ppx_yojson_conv.v0.15.1" - "ppx_yojson_conv_lib.v0.15.0" - "ppxlib.0.32.0" - "protocol_version_header.v0.15.0" - "ptmap.2.0.5" - "re.1.11.0" - "react.1.2.2" - "reason.3.10.0" - "result.1.5" - "sedlex.3.2" - "seq.base" - "sexplib.v0.15.1" - "sexplib0.v0.15.1" - "spawn.v0.15.1" - "splittable_random.v0.15.0" - "stdcompat.19" - "stdio.v0.15.0" - "stdlib-shims.0.3.0" - "stdune.3.13.1" - "stringext.1.6.0" - "tezt.4.0.0" - "time_now.v0.15.0" - "topkg.1.0.7" - "trie.1.0.0" - "typerep.v0.15.0" - "tyxml.4.6.0" - "uchar.0.0.2" - "unionFind.20220122" - "uri.4.4.0" - "uri-sexp.4.4.0" - "utop.2.13.1" - "uucp.15.1.0" - "uuidm.0.9.8" - "uunf.15.1.0" - "uuseg.15.1.0" - "uutf.1.0.3" - "variantslib.v0.15.0" - "virtual_dom.v0.15.1" - "xdg.3.13.1" - "yojson.2.1.2" - "zed.3.2.3" -] -pinned: [ - "async_js.v0.15.1" - "incr_dom.v0.15.1" - "sexplib.v0.15.1" - "virtual_dom.v0.15.1" -] diff --git a/src/haz3lcore/CodeString.re b/src/haz3lcore/CodeString.re index ddca7721bf..a6ddd14875 100644 --- a/src/haz3lcore/CodeString.re +++ b/src/haz3lcore/CodeString.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = string; diff --git a/src/haz3lcore/Measured.re b/src/haz3lcore/Measured.re index 5ed9d0264d..61dad8a831 100644 --- a/src/haz3lcore/Measured.re +++ b/src/haz3lcore/Measured.re @@ -1,45 +1,7 @@ -open Sexplib.Std; open Util; +open Point; -[@deriving (show({with_path: false}), sexp, yojson)] -type row = int; -[@deriving (show({with_path: false}), sexp, yojson)] -type col = int; - -module Point = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = { - row, - col, - }; - let zero = {row: 0, col: 0}; - - let equals: (t, t) => bool = (p, q) => p.row == q.row && p.col == q.col; - - type comparison = - | Exact - | Under - | Over; - - let comp = (current, target): comparison => - switch () { - | _ when current == target => Exact - | _ when current < target => Under - | _ => Over - }; - let compare = (p1, p2) => - switch (comp(p1, p2)) { - | Exact => 0 - | Under => (-1) - | Over => 1 - }; - - let dcomp = (direction: Direction.t, a, b) => - switch (direction) { - | Right => comp(a, b) - | Left => comp(b, a) - }; -}; +module Point = Point; [@deriving (show({with_path: false}), sexp, yojson)] type measurement = { @@ -86,17 +48,13 @@ module Shards = { snd(List.hd(row)).origin.row == snd(hd).origin.row ? [[hd, ...row], ...rows] : [[hd], row, ...rows] }; - // let last = (shards: t) => - // shards - // |> List.sort(((i, _), (j, _)) => Int.compare(i, j)) - // |> ListUtil.last_opt - // |> Option.map(snd); }; type t = { tiles: Id.Map.t(Shards.t), grout: Id.Map.t(measurement), secondary: Id.Map.t(measurement), + projectors: Id.Map.t(measurement), rows: Rows.t, linebreaks: Id.Map.t(rel_indent), }; @@ -105,6 +63,7 @@ let empty = { tiles: Id.Map.empty, grout: Id.Map.empty, secondary: Id.Map.empty, + projectors: Id.Map.empty, rows: Rows.empty, linebreaks: Id.Map.empty, }; @@ -145,12 +104,17 @@ let add_w = (w: Secondary.t, m, map) => { ...map, secondary: map.secondary |> Id.Map.add(w.id, m), }; +let add_pr = (p: Base.projector, m, map) => { + ...map, + projectors: map.projectors |> Id.Map.add(p.id, m), +}; let add_p = (p: Piece.t, m, map) => p |> Piece.get( w => add_w(w, m, map), g => add_g(g, m, map), t => add_t(t, m, map), + pr => add_pr(pr, m, map), ); let add_row = (row: int, shape: Rows.shape, map) => { @@ -158,6 +122,15 @@ let add_row = (row: int, shape: Rows.shape, map) => { rows: Rows.add(row, shape, map.rows), }; +let rec add_n_rows = (origin: Point.t, row_indent, n: abs_indent, map: t): t => + switch (n) { + | 0 => map + | _ => + map + |> add_n_rows(origin, row_indent, n - 1) + |> add_row(origin.row + n - 1, {indent: row_indent, max_col: origin.col}) + }; + let add_lb = (id, indent, map) => { ...map, linebreaks: Id.Map.add(id, indent, map.linebreaks), @@ -169,7 +142,10 @@ let singleton_s = (id, shard, m) => empty |> add_s(id, shard, m); // TODO(d) rename let find_opt_shards = (t: Tile.t, map) => Id.Map.find_opt(t.id, map.tiles); -let find_shards = (t: Tile.t, map) => Id.Map.find(t.id, map.tiles); +let find_shards = (~msg="", t: Tile.t, map) => + try(Id.Map.find(t.id, map.tiles)) { + | _ => failwith("find_shards: " ++ msg) + }; let find_opt_lb = (id, map) => Id.Map.find_opt(id, map.linebreaks); @@ -179,25 +155,45 @@ let find_shards' = (id: Id.t, map) => | Some(ss) => ss }; -let find_w = (w: Secondary.t, map): measurement => - Id.Map.find(w.id, map.secondary); -let find_g = (g: Grout.t, map): measurement => Id.Map.find(g.id, map.grout); +let find_w = (~msg="", w: Secondary.t, map): measurement => + try(Id.Map.find(w.id, map.secondary)) { + | _ => failwith("find_w: " ++ msg) + }; +let find_g = (~msg="", g: Grout.t, map): measurement => + try(Id.Map.find(g.id, map.grout)) { + | _ => failwith("find_g: " ++ msg) + }; +let find_pr = (~msg="", p: Base.projector, map): measurement => + try(Id.Map.find(p.id, map.projectors)) { + | _ => failwith("find_g: " ++ msg) + }; +let find_pr_opt = (p: Base.projector, map): option(measurement) => + Id.Map.find_opt(p.id, map.projectors); // returns the measurement spanning the whole tile let find_t = (t: Tile.t, map): measurement => { let shards = Id.Map.find(t.id, map.tiles); - let first = ListUtil.assoc_err(Tile.l_shard(t), shards, "find_t"); - let last = ListUtil.assoc_err(Tile.r_shard(t), shards, "find_t"); + let (first, last) = + try({ + let first = ListUtil.assoc_err(Tile.l_shard(t), shards, "find_t"); + let last = ListUtil.assoc_err(Tile.r_shard(t), shards, "find_t"); + (first, last); + }) { + | _ => failwith("find_t: inconsistent shard infor between tile and map") + }; {origin: first.origin, last: last.last}; }; -// let find_a = ({shards: (l, r), _} as a: Ancestor.t, map) => -// List.assoc(l @ r, Id.Map.find(a.id, map.tiles)); -let find_p = (p: Piece.t, map): measurement => - p - |> Piece.get( - w => find_w(w, map), - g => find_g(g, map), - t => find_t(t, map), - ); +let find_p = (~msg="", p: Piece.t, map): measurement => + try( + p + |> Piece.get( + w => find_w(w, map), + g => find_g(g, map), + t => find_t(t, map), + p => find_pr(p, map), + ) + ) { + | _ => failwith("find_p: " ++ msg ++ "id: " ++ Id.to_string(p |> Piece.id)) + }; let find_by_id = (id: Id.t, map: t): option(measurement) => { switch (Id.Map.find_opt(id, map.secondary)) { @@ -218,8 +214,15 @@ let find_by_id = (id: Id.t, map: t): option(measurement) => { ); Some({origin: first.origin, last: last.last}); | None => - Printf.printf("Measured.WARNING: id %s not found", Id.to_string(id)); - None; + switch (Id.Map.find_opt(id, map.projectors)) { + | Some(m) => Some(m) + | None => + Printf.printf( + "Measured.WARNING: id %s not found", + Id.to_string(id), + ); + None; + } } } }; @@ -255,6 +258,7 @@ let is_indented_map = (seg: Segment.t) => { ) | Secondary(_) | Grout(_) => (is_indented, map) + | Projector(_) => (is_indented, map) | Tile(t) => let is_indented = is_indented || post_tile_indent(t); let map = @@ -271,7 +275,14 @@ let is_indented_map = (seg: Segment.t) => { go(seg); }; -let of_segment = (~old: t=empty, ~touched=Touched.empty, seg: Segment.t): t => { +let last_of_token = (token: string, origin: Point.t): Point.t => + /* Supports multi-line tokens e.g. projector placeholders */ + Point.{ + col: origin.col + StringUtil.max_line_width(token), + row: origin.row + StringUtil.num_linebreaks(token), + }; + +let of_segment = (seg: Segment.t, info_map: Statics.Map.t): t => { let is_indented = is_indented_map(seg); // recursive across seg's bidelimited containers @@ -283,24 +294,6 @@ let of_segment = (~old: t=empty, ~touched=Touched.empty, seg: Segment.t): t => { seg: Segment.t, ) : (Point.t, t) => { - let first_touched_incomplete = - switch (Segment.incomplete_tiles(seg)) { - | [] => None - | ts => - ts - |> List.map((t: Tile.t) => Touched.find_opt(t.id, touched)) - |> List.fold_left( - (acc, touched) => - switch (acc, touched) { - | (Some(time), Some(time')) => Some(Time.min(time, time')) - | (Some(time), _) - | (_, Some(time)) => Some(time) - | _ => None - }, - None, - ) - }; - // recursive across seg's list structure let rec go_seq = ( @@ -323,6 +316,11 @@ let of_segment = (~old: t=empty, ~touched=Touched.empty, seg: Segment.t): t => { ); (origin, map); | [hd, ...tl] => + let extra_rows = (token, origin, map) => { + let row_indent = container_indent + contained_indent; + let num_extra_rows = StringUtil.num_linebreaks(token); + add_n_rows(origin, row_indent, num_extra_rows, map); + }; let (contained_indent, origin, map) = switch (hd) { | Secondary(w) when Secondary.is_linebreak(w) => @@ -331,16 +329,7 @@ let of_segment = (~old: t=empty, ~touched=Touched.empty, seg: Segment.t): t => { if (Segment.sameline_secondary(tl)) { 0; } else { - switch ( - Touched.find_opt(w.id, touched), - first_touched_incomplete, - find_opt_lb(w.id, old), - ) { - | (Some(touched), Some(touched'), Some(indent)) - when Time.lt(touched, touched') => indent - | _ => - contained_indent + (Id.Map.find(w.id, is_indented) ? 2 : 0) - }; + contained_indent + (Id.Map.find(w.id, is_indented) ? 2 : 0); }; let last = Point.{row: origin.row + 1, col: container_indent + indent}; @@ -363,15 +352,19 @@ let of_segment = (~old: t=empty, ~touched=Touched.empty, seg: Segment.t): t => { let last = {...origin, col: origin.col + 1}; let map = map |> add_g(g, {origin, last}); (contained_indent, last, map); + | Projector(p) => + let token = + Projector.placeholder(p, Id.Map.find_opt(p.id, info_map)); + let last = last_of_token(token, origin); + let map = extra_rows(token, origin, map); + let map = add_pr(p, {origin, last}, map); + (contained_indent, last, map); | Tile(t) => - let token = List.nth(t.label); let add_shard = (origin, shard, map) => { - let last = - Point.{ - ...origin, - col: origin.col + String.length(token(shard)), - }; - let map = map |> add_s(t.id, shard, {origin, last}); + let token = List.nth(t.label, shard); + let map = extra_rows(token, origin, map); + let last = last_of_token(token, origin); + let map = add_s(t.id, shard, {origin, last}, map); (last, map); }; let (last, map) = @@ -410,28 +403,3 @@ let length = (seg: Segment.t, map: t): int => let last = find_p(ListUtil.last(tl), map); last.last.col - first.origin.col; }; - -let segment_origin = (seg: Segment.t): option(Point.t) => - Option.map( - first => find_p(first, of_segment(seg)).origin, - ListUtil.hd_opt(seg), - ); - -let segment_last = (seg: Segment.t): option(Point.t) => - Option.map( - last => find_p(last, of_segment(seg)).last, - ListUtil.last_opt(seg), - ); - -let segment_height = (seg: Segment.t) => - switch (segment_last(seg), segment_origin(seg)) { - | (Some(last), Some(first)) => 1 + last.row - first.row - | _ => 0 - }; - -let segment_width = (seg: Segment.t): int => - IntMap.fold( - (_, {max_col, _}: Rows.shape, acc) => max(max_col, acc), - of_segment(seg).rows, - 0, - ); diff --git a/src/haz3lcore/TermMap.re b/src/haz3lcore/TermMap.re index 8f42eb012f..df0f6341de 100644 --- a/src/haz3lcore/TermMap.re +++ b/src/haz3lcore/TermMap.re @@ -1,5 +1,5 @@ include Id.Map; -type t = Id.Map.t(Term.t); +type t = Id.Map.t(Any.t); -let add_all = (ids: list(Id.t), tm: Term.t, map: t) => +let add_all = (ids: list(Id.t), tm: Any.t, map: t) => ids |> List.fold_left((map, id) => add(id, tm, map), map); diff --git a/src/haz3lcore/TermRanges.re b/src/haz3lcore/TermRanges.re index 6cbc1dfe75..f6f857f14a 100644 --- a/src/haz3lcore/TermRanges.re +++ b/src/haz3lcore/TermRanges.re @@ -8,9 +8,7 @@ let union = union((_, range, _) => Some(range)); /* PERF: Up to 50% reduction in some cases by memoizing * this function. Might be better though to just do an - * unmemoized traversal building a hashtbl avoiding unioning. - - TODO(andrew): Consider setting a limit for the hashtbl size */ + * unmemoized traversal building a hashtbl avoiding unioning */ let range_hash: Hashtbl.t(Tile.segment, Id.Map.t(range)) = Hashtbl.create(1000); diff --git a/src/haz3lcore/Unicode.re b/src/haz3lcore/Unicode.re index 8f02baeb5a..e869072048 100644 --- a/src/haz3lcore/Unicode.re +++ b/src/haz3lcore/Unicode.re @@ -8,6 +8,7 @@ let zwsp = "​"; let typeArrowSym = "→"; // U+2192 "Rightwards Arrow" let castArrowSym = "⇨"; +let castBackArrowSym = "⇦"; let ellipsis = "\xE2\x80\xA6"; diff --git a/src/haz3lcore/VarMap.re b/src/haz3lcore/VarMap.re index fdd282979c..dbee5045bb 100644 --- a/src/haz3lcore/VarMap.re +++ b/src/haz3lcore/VarMap.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t_('a) = list((Token.t, 'a)); diff --git a/src/haz3lcore/assistant/AssistantCtx.re b/src/haz3lcore/assistant/AssistantCtx.re index 1697229700..0caee1f921 100644 --- a/src/haz3lcore/assistant/AssistantCtx.re +++ b/src/haz3lcore/assistant/AssistantCtx.re @@ -1,7 +1,5 @@ open Suggestion; -let expander = AssistantExpander.c; - /* For suggestions in patterns, suggest variables which * occur free in that pattern's scope. */ let free_variables = @@ -50,12 +48,12 @@ let bound_constructors = let bound_aps = (ty_expect: Typ.t, ctx: Ctx.t): list(Suggestion.t) => List.filter_map( fun - | Ctx.VarEntry({typ: Arrow(_, ty_out) as ty_arr, name, _}) + | Ctx.VarEntry({typ: {term: Arrow(_, ty_out), _} as ty_arr, name, _}) when Typ.is_consistent(ctx, ty_expect, ty_out) && !Typ.is_consistent(ctx, ty_expect, ty_arr) => { Some({ - content: name ++ "(" ++ expander, + content: name ++ "(", strategy: Exp(Common(FromCtxAp(ty_out))), }); } @@ -66,14 +64,15 @@ let bound_aps = (ty_expect: Typ.t, ctx: Ctx.t): list(Suggestion.t) => let bound_constructor_aps = (wrap, ty: Typ.t, ctx: Ctx.t): list(Suggestion.t) => List.filter_map( fun - | Ctx.ConstructorEntry({typ: Arrow(_, ty_out) as ty_arr, name, _}) + | Ctx.ConstructorEntry({ + typ: {term: Arrow(_, ty_out), _} as ty_arr, + name, + _, + }) when Typ.is_consistent(ctx, ty, ty_out) && !Typ.is_consistent(ctx, ty, ty_arr) => - Some({ - content: name ++ "(" ++ expander, - strategy: wrap(FromCtxAp(ty_out)), - }) + Some({content: name ++ "(", strategy: wrap(FromCtxAp(ty_out))}) | _ => None, ctx, ); @@ -141,7 +140,7 @@ let suggest_lookahead_variable = (ci: Info.t): list(Suggestion.t) => { let exp_aps = ty => bound_aps(ty, ctx) @ bound_constructor_aps(x => Exp(Common(x)), ty, ctx); - switch (Mode.ty_of(mode)) { + switch (Mode.ty_of(mode) |> Typ.term_of) { | List(ty) => List.map(restrategize(" )::"), exp_aps(ty)) @ List.map(restrategize("::"), exp_refs(ty)) @@ -152,12 +151,12 @@ let suggest_lookahead_variable = (ci: Info.t): list(Suggestion.t) => { @ List.map(restrategize(commas), exp_refs(ty)); | Bool => /* TODO: Find a UI to make these less confusing */ - exp_refs(Int) - @ exp_refs(Float) - @ exp_refs(String) - @ exp_aps(Int) - @ exp_aps(Float) - @ exp_aps(String) + exp_refs(Int |> Typ.fresh) + @ exp_refs(Float |> Typ.fresh) + @ exp_refs(String |> Typ.fresh) + @ exp_aps(Int |> Typ.fresh) + @ exp_aps(Float |> Typ.fresh) + @ exp_aps(String |> Typ.fresh) | _ => [] }; | InfoPat({mode, co_ctx, _}) => @@ -165,7 +164,7 @@ let suggest_lookahead_variable = (ci: Info.t): list(Suggestion.t) => { free_variables(ty, ctx, co_ctx) @ bound_constructors(x => Pat(Common(x)), ty, ctx); let pat_aps = ty => bound_constructor_aps(x => Pat(Common(x)), ty, ctx); - switch (Mode.ty_of(mode)) { + switch (Mode.ty_of(mode) |> Typ.term_of) { | List(ty) => List.map(restrategize(" )::"), pat_aps(ty)) @ List.map(restrategize("::"), pat_refs(ty)) diff --git a/src/haz3lcore/assistant/AssistantExpander.re b/src/haz3lcore/assistant/AssistantExpander.re index 51501cd7a5..f24be63756 100644 --- a/src/haz3lcore/assistant/AssistantExpander.re +++ b/src/haz3lcore/assistant/AssistantExpander.re @@ -1,24 +1,16 @@ -/* Bit of a hack. We want to decorate suggestions which will trigger - an expansion to telegraph that expansion. Easiest way metrics wise - is to keep that deco in the syntax. Want to decorate with ellipses - character, but OCaml string functions don't support unicode, so - we use $, then swap it out for the unicode character in Code. - Eventually replace this by extending the suggestion data structure */ -let c = "$"; +/* We decorate buffers whose content will result in an + * expansion with a trailing "...". Note that this ... + * (at least in the current implementation) is not literally + * inserted into the syntax so will not be reflected + * in the decoration metrics */ -let is_expander_tok = (t: Token.t) => - String.sub(t, String.length(t) - 1, 1) == c; - -let trim_last = (t: Token.t) => String.sub(t, 0, String.length(t) - 1); +let last = t => String.sub(t, String.length(t) - 1, 1); let is_expander = (label: Label.t) => switch (label) { - | [t] => is_expander_tok(t) + | [t] => last(t) == " " || last(t) == "(" | _ => false }; let mark = (label: Label.t): Label.t => - is_expander(label) ? List.map(t => trim_last(t) ++ "…", label) : label; - -let trim = (completion: Token.t): Token.t => - is_expander_tok(completion) ? trim_last(completion) : completion; + is_expander(label) ? List.map(t => t ++ "…", label) : label; diff --git a/src/haz3lcore/assistant/AssistantForms.re b/src/haz3lcore/assistant/AssistantForms.re index 2080d9427f..f3551ac0eb 100644 --- a/src/haz3lcore/assistant/AssistantForms.re +++ b/src/haz3lcore/assistant/AssistantForms.re @@ -4,49 +4,52 @@ open OptUtil.Syntax; /* This module generates TyDi suggestions which depend * neither on the typing context or the backpack */ -let leading_expander = " " ++ AssistantExpander.c; +let leading_expander = " "; /* Specifies type information for syntactic forms. Could in principle be * derived by generating segments from Forms, parsing them to terms, and * running Statics, but for now, new forms e.g. operators must be added * below manually. */ module Typ = { - let unk: Typ.t = Unknown(Internal); + let unk: Typ.t = Unknown(Internal) |> Typ.fresh; let of_const_mono_delim: list((Token.t, Typ.t)) = [ - ("true", Bool), - ("false", Bool), + ("true", Bool |> Typ.fresh), + ("false", Bool |> Typ.fresh), //("[]", List(unk)), / *NOTE: would need to refactor buffer for this to show up */ //("()", Prod([])), /* NOTE: would need to refactor buffer for this to show up */ - ("\"\"", String), /* NOTE: Irrelevent as second quote appears automatically */ + ("\"\"", String |> Typ.fresh), /* NOTE: Irrelevent as second quote appears automatically */ ("_", unk), ]; let of_leading_delim: list((Token.t, Typ.t)) = [ ("case" ++ leading_expander, unk), - ("fun" ++ leading_expander, Arrow(unk, unk)), - ("typfun" ++ leading_expander, Forall("", unk)), + ("fun" ++ leading_expander, Arrow(unk, unk) |> Typ.fresh), + ( + "typfun" ++ leading_expander, + Forall(Var("") |> TPat.fresh, unk) |> Typ.fresh, + ), ("if" ++ leading_expander, unk), ("let" ++ leading_expander, unk), - ("test" ++ leading_expander, Prod([])), + ("test" ++ leading_expander, Prod([]) |> Typ.fresh), ("type" ++ leading_expander, unk), ]; - let of_infix_delim: list((Token.t, Typ.t)) = [ - ("|>", unk), /* */ + let of_infix_delim: list((Token.t, Typ.term)) = [ + //("|>", Unknown(Internal)), /* annoying during case rules */ (",", Prod([unk, unk])), /* NOTE: Current approach doesn't work for this, but irrelevant as 1-char */ - ("::", List(unk)), + ("::", List(unk)), /* annoying in patterns */ ("@", List(unk)), - (";", unk), + (";", Unknown(Internal)), ("&&", Bool), ("\\/", Bool), ("||", Bool), ("$==", Bool), ("==.", Bool), ("==", Bool), - ("!", Bool), // maybe doesnt belong here? but blocks autocomplete of ! to != - ("!=", Bool), - ("!=.", Bool), + ("!", Bool), + //("!=", Bool), /* annoying as != is more common */ + //("!=.", Bool), /* annoying as != is more common */ ("<", Bool), (">", Bool), ("<=", Bool), @@ -72,7 +75,7 @@ module Typ = { fun | InfoExp({mode, _}) | InfoPat({mode, _}) => Mode.ty_of(mode) - | _ => Unknown(Internal); + | _ => Unknown(Internal) |> Typ.fresh; let filter_by = ( @@ -194,7 +197,10 @@ let suggest_form = (ty_map, delims_of_sort, ci: Info.t): list(Suggestion.t) => { }; let suggest_operator: Info.t => list(Suggestion.t) = - suggest_form(Typ.of_infix_delim, Delims.infix); + suggest_form( + List.map(((a, b)) => (a, IdTagged.fresh(b)), Typ.of_infix_delim), + Delims.infix, + ); let suggest_operand: Info.t => list(Suggestion.t) = suggest_form(Typ.of_const_mono_delim, Delims.const_mono); diff --git a/src/haz3lcore/assistant/Suggestion.re b/src/haz3lcore/assistant/Suggestion.re index b97f92cfc0..2f416a80f4 100644 --- a/src/haz3lcore/assistant/Suggestion.re +++ b/src/haz3lcore/assistant/Suggestion.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; /* TyDi: Type-Directed Next-Token Suggestions diff --git a/src/haz3lcore/assistant/TyDi.re b/src/haz3lcore/assistant/TyDi.re index 0832e76075..1118fc115f 100644 --- a/src/haz3lcore/assistant/TyDi.re +++ b/src/haz3lcore/assistant/TyDi.re @@ -67,17 +67,6 @@ let suffix_of = (candidate: Token.t, current: Token.t): option(Token.t) => { candidate_suffix == "" ? None : Some(candidate_suffix); }; -/* PERF: This is quite expensive */ -let z_to_ci = (~settings: CoreSettings.t, ~ctx: Ctx.t, z: Zipper.t) => { - let map = - z - |> MakeTerm.from_zip_for_sem - |> fst - |> Interface.Statics.mk_map_ctx(settings, ctx); - let* index = Indicated.index(z); - Id.Map.find_opt(index, map); -}; - /* Returns the text content of the suggestion buffer */ let get_buffer = (z: Zipper.t): option(Token.t) => switch (z.selection.mode, z.selection.content) { @@ -87,9 +76,10 @@ let get_buffer = (z: Zipper.t): option(Token.t) => }; /* Populates the suggestion buffer with a type-directed suggestion */ -let set_buffer = (~settings, ~ctx: Ctx.t, z: Zipper.t): option(Zipper.t) => { +let set_buffer = (~info_map: Statics.Map.t, z: Zipper.t): option(Zipper.t) => { let* tok_to_left = token_to_left(z); - let* ci = z_to_ci(~settings, ~ctx, z); + let* index = Indicated.index(z); + let* ci = Id.Map.find_opt(index, info_map); let suggestions = suggest(ci, z); let suggestions = suggestions diff --git a/src/haz3lcore/dune b/src/haz3lcore/dune index 2bfd69309d..77e2ca3fe1 100644 --- a/src/haz3lcore/dune +++ b/src/haz3lcore/dune @@ -2,15 +2,20 @@ (library (name haz3lcore) - (libraries util re sexplib unionFind uuidm) - (js_of_ocaml - (flags - (:include js-of-ocaml-flags-%{profile}))) + (libraries util sexplib unionFind uuidm virtual_dom yojson core) + (js_of_ocaml) (preprocess - (pps ppx_let ppx_sexp_conv ppx_deriving.show ppx_yojson_conv))) + (pps + ppx_yojson_conv + js_of_ocaml-ppx + ppx_let + ppx_sexp_conv + ppx_deriving.show))) -(rule - (write-file js-of-ocaml-flags-dev "(:standard --debuginfo --noinline)")) - -(rule - (write-file js-of-ocaml-flags-release "(:standard)")) +(env + (dev + (js_of_ocaml + (flags :standard --debuginfo --noinline --dynlink --linkall --sourcemap))) + (release + (js_of_ocaml + (flags :standard)))) diff --git a/src/haz3lcore/dynamics/Builtins.re b/src/haz3lcore/dynamics/Builtins.re index 385f6e0317..4479989fd5 100644 --- a/src/haz3lcore/dynamics/Builtins.re +++ b/src/haz3lcore/dynamics/Builtins.re @@ -9,111 +9,153 @@ open DHExp; See the existing ones for reference. */ -[@deriving (show({with_path: false}), sexp, yojson)] +[@deriving (show({with_path: false}), sexp)] type builtin = | Const(Typ.t, DHExp.t) | Fn(Typ.t, Typ.t, DHExp.t => DHExp.t); -[@deriving (show({with_path: false}), sexp, yojson)] +[@deriving (show({with_path: false}), sexp)] type t = VarMap.t_(builtin); -[@deriving (show({with_path: false}), sexp, yojson)] +[@deriving (show({with_path: false}), sexp)] type forms = VarMap.t_(DHExp.t => DHExp.t); type result = Result.t(DHExp.t, EvaluatorError.t); -let const = (name: Var.t, typ: Typ.t, v: DHExp.t, builtins: t): t => - VarMap.extend(builtins, (name, Const(typ, v))); +let const = (name: Var.t, typ: Typ.term, v: DHExp.t, builtins: t): t => + VarMap.extend(builtins, (name, Const(typ |> Typ.fresh, v))); let fn = - (name: Var.t, t1: Typ.t, t2: Typ.t, impl: DHExp.t => DHExp.t, builtins: t) + ( + name: Var.t, + t1: Typ.term, + t2: Typ.term, + impl: DHExp.t => DHExp.t, + builtins: t, + ) : t => - VarMap.extend(builtins, (name, Fn(t1, t2, impl))); + VarMap.extend( + builtins, + (name, Fn(t1 |> Typ.fresh, t2 |> Typ.fresh, impl)), + ); module Pervasives = { module Impls = { /* constants */ - let infinity = DHExp.FloatLit(Float.infinity); - let neg_infinity = DHExp.FloatLit(Float.neg_infinity); - let nan = DHExp.FloatLit(Float.nan); - let epsilon_float = DHExp.FloatLit(epsilon_float); - let pi = DHExp.FloatLit(Float.pi); - let max_int = DHExp.IntLit(Int.max_int); - let min_int = DHExp.IntLit(Int.min_int); - - let unary = (f: DHExp.t => result, r: DHExp.t) => - switch (f(r)) { + let infinity = DHExp.Float(Float.infinity) |> fresh; + let neg_infinity = DHExp.Float(Float.neg_infinity) |> fresh; + let nan = DHExp.Float(Float.nan) |> fresh; + let epsilon_float = DHExp.Float(epsilon_float) |> fresh; + let pi = DHExp.Float(Float.pi) |> fresh; + let max_int = DHExp.Int(Int.max_int) |> fresh; + let min_int = DHExp.Int(Int.min_int) |> fresh; + + let unary = (f: DHExp.t => result, d: DHExp.t) => { + switch (f(d)) { | Ok(r') => r' | Error(e) => EvaluatorError.Exception(e) |> raise }; + }; + + let binary = (f: (DHExp.t, DHExp.t) => result, d: DHExp.t) => { + switch (term_of(d)) { + | Tuple([d1, d2]) => + switch (f(d1, d2)) { + | Ok(r) => r + | Error(e) => EvaluatorError.Exception(e) |> raise + } + | _ => raise(EvaluatorError.Exception(InvalidBoxedTuple(d))) + }; + }; + + let ternary = (f: (DHExp.t, DHExp.t, DHExp.t) => result, d: DHExp.t) => { + switch (term_of(d)) { + | Tuple([d1, d2, d3]) => + switch (f(d1, d2, d3)) { + | Ok(r) => r + | Error(e) => EvaluatorError.Exception(e) |> raise + } + | _ => raise(EvaluatorError.Exception(InvalidBoxedTuple(d))) + }; + }; let is_finite = - unary( - fun - | FloatLit(f) => Ok(BoolLit(Float.is_finite(f))) - | d => Error(InvalidBoxedFloatLit(d)), + unary(d => + switch (term_of(d)) { + | Float(f) => Ok(fresh(Bool(Float.is_finite(f)))) + | _ => Error(InvalidBoxedFloatLit(d)) + } ); let is_infinite = - unary( - fun - | FloatLit(f) => Ok(BoolLit(Float.is_infinite(f))) - | d => Error(InvalidBoxedFloatLit(d)), + unary(d => + switch (term_of(d)) { + | Float(f) => Ok(fresh(Bool(Float.is_infinite(f)))) + | _ => Error(InvalidBoxedFloatLit(d)) + } ); let is_nan = - unary( - fun - | FloatLit(f) => Ok(BoolLit(Float.is_nan(f))) - | d => Error(InvalidBoxedFloatLit(d)), + unary(d => + switch (term_of(d)) { + | Float(f) => Ok(fresh(Bool(Float.is_nan(f)))) + | _ => Error(InvalidBoxedFloatLit(d)) + } ); let string_of_int = - unary( - fun - | IntLit(n) => Ok(StringLit(string_of_int(n))) - | d => Error(InvalidBoxedIntLit(d)), + unary(d => + switch (term_of(d)) { + | Int(n) => Ok(fresh(String(string_of_int(n)))) + | _ => Error(InvalidBoxedIntLit(d)) + } ); let string_of_float = - unary( - fun - | FloatLit(f) => Ok(StringLit(string_of_float(f))) - | d => Error(InvalidBoxedFloatLit(d)), + unary(d => + switch (term_of(d)) { + | Float(f) => Ok(fresh(String(string_of_float(f)))) + | _ => Error(InvalidBoxedFloatLit(d)) + } ); let string_of_bool = - unary( - fun - | BoolLit(b) => Ok(StringLit(string_of_bool(b))) - | d => Error(InvalidBoxedBoolLit(d)), + unary(d => + switch (term_of(d)) { + | Bool(b) => Ok(fresh(String(string_of_bool(b)))) + | _ => Error(InvalidBoxedBoolLit(d)) + } ); let int_of_float = - unary( - fun - | FloatLit(f) => Ok(IntLit(int_of_float(f))) - | d => Error(InvalidBoxedFloatLit(d)), + unary(d => + switch (term_of(d)) { + | Float(f) => Ok(fresh(Int(int_of_float(f)))) + | _ => Error(InvalidBoxedFloatLit(d)) + } ); let float_of_int = - unary( - fun - | IntLit(n) => Ok(FloatLit(float_of_int(n))) - | d => Error(InvalidBoxedIntLit(d)), + unary(d => + switch (term_of(d)) { + | Int(n) => Ok(fresh(Float(float_of_int(n)))) + | _ => Error(InvalidBoxedIntLit(d)) + } ); let abs = - unary( - fun - | IntLit(n) => Ok(IntLit(abs(n))) - | d => Error(InvalidBoxedIntLit(d)), + unary(d => + switch (term_of(d)) { + | Int(n) => Ok(fresh(Int(abs(n)))) + | _ => Error(InvalidBoxedIntLit(d)) + } ); let float_op = fn => - unary( - fun - | FloatLit(f) => Ok(FloatLit(fn(f))) - | d => Error(InvalidBoxedFloatLit(d)), + unary(d => + switch (term_of(d)) { + | Float(f) => Ok(fresh(Float(fn(f)))) + | _ => Error(InvalidBoxedFloatLit(d)) + } ); let abs_float = float_op(abs_float); @@ -132,84 +174,110 @@ module Pervasives = { let of_string = (convert: string => option('a), wrap: 'a => DHExp.t, name: string) => - unary( - fun - | StringLit(s) as d => + unary(d => + switch (term_of(d)) { + | String(s) => switch (convert(s)) { | Some(n) => Ok(wrap(n)) | None => - let d' = DHExp.Ap(DHExp.BuiltinFun(name), d); - Ok(InvalidOperation(d', InvalidOfString)); + let d' = DHExp.BuiltinFun(name) |> DHExp.fresh; + let d' = DHExp.Ap(Forward, d', d) |> DHExp.fresh; + let d' = DynamicErrorHole(d', InvalidOfString) |> DHExp.fresh; + Ok(d'); } - | d => Error(InvalidBoxedStringLit(d)), + | _ => Error(InvalidBoxedStringLit(d)) + } ); - let int_of_string = of_string(int_of_string_opt, n => IntLit(n)); - let float_of_string = of_string(float_of_string_opt, f => FloatLit(f)); - let bool_of_string = of_string(bool_of_string_opt, b => BoolLit(b)); + let int_of_string = + of_string(int_of_string_opt, n => Int(n) |> DHExp.fresh); + let float_of_string = + of_string(float_of_string_opt, f => Float(f) |> DHExp.fresh); + let bool_of_string = + of_string(bool_of_string_opt, b => Bool(b) |> DHExp.fresh); let int_mod = (name, d1) => - switch (d1) { - | Tuple([IntLit(n), IntLit(m)]) => - switch (m) { - | 0 => - InvalidOperation( - DHExp.Ap(DHExp.BuiltinFun(name), d1), - DivideByZero, - ) - | _ => IntLit(n mod m) - } - | d1 => raise(EvaluatorError.Exception(InvalidBoxedTuple(d1))) - }; + binary( + (d1, d2) => + switch (term_of(d1), term_of(d2)) { + | (Int(_), Int(0)) => + Ok( + fresh( + DynamicErrorHole( + DHExp.Ap(Forward, DHExp.BuiltinFun(name) |> fresh, d1) + |> fresh, + DivideByZero, + ), + ), + ) + | (Int(n), Int(m)) => Ok(Int(n mod m) |> fresh) + | (Int(_), _) => + raise(EvaluatorError.Exception(InvalidBoxedIntLit(d2))) + | (_, _) => + raise(EvaluatorError.Exception(InvalidBoxedIntLit(d1))) + }, + d1, + ); let string_length = - unary( - fun - | StringLit(s) => Ok(IntLit(String.length(s))) - | d => Error(InvalidBoxedStringLit(d)), + unary(d => + switch (term_of(d)) { + | String(s) => Ok(Int(String.length(s)) |> fresh) + | _ => Error(InvalidBoxedStringLit(d)) + } ); let string_compare = - unary( - fun - | Tuple([StringLit(s1), StringLit(s2)]) => - Ok(IntLit(String.compare(s1, s2))) - | d => Error(InvalidBoxedTuple(d)), + binary((d1, d2) => + switch (term_of(d1), term_of(d2)) { + | (String(s1), String(s2)) => + Ok(Int(String.compare(s1, s2)) |> fresh) + | (String(_), _) => Error(InvalidBoxedStringLit(d2)) + | (_, _) => Error(InvalidBoxedStringLit(d1)) + } ); let string_trim = - unary( - fun - | StringLit(s) => Ok(StringLit(String.trim(s))) - | d => Error(InvalidBoxedStringLit(d)), + unary(d => + switch (term_of(d)) { + | String(s) => Ok(String(String.trim(s)) |> fresh) + | _ => Error(InvalidBoxedStringLit(d)) + } ); let string_of: DHExp.t => option(string) = - fun - | StringLit(s) => Some(s) - | _ => None; + d => + switch (term_of(d)) { + | String(s) => Some(s) + | _ => None + }; let string_concat = - unary( - fun - | Tuple([StringLit(s1), ListLit(_, _, _, xs)]) => + binary((d1, d2) => + switch (term_of(d1), term_of(d2)) { + | (String(s1), ListLit(xs)) => switch (xs |> List.map(string_of) |> Util.OptUtil.sequence) { | None => Error(InvalidBoxedStringLit(List.hd(xs))) - | Some(xs) => Ok(StringLit(String.concat(s1, xs))) + | Some(xs) => Ok(String(String.concat(s1, xs)) |> fresh) } - | d => Error(InvalidBoxedTuple(d)), + | (String(_), _) => Error(InvalidBoxedListLit(d2)) + | (_, _) => Error(InvalidBoxedStringLit(d1)) + } ); - let string_sub = name => - unary( - fun - | Tuple([StringLit(s), IntLit(idx), IntLit(len)]) as d => - try(Ok(StringLit(String.sub(s, idx, len)))) { + let string_sub = _ => + ternary((d1, d2, d3) => + switch (term_of(d1), term_of(d2), term_of(d3)) { + | (String(s), Int(idx), Int(len)) => + try(Ok(String(String.sub(s, idx, len)) |> fresh)) { | _ => - let d' = DHExp.Ap(DHExp.BuiltinFun(name), d); - Ok(InvalidOperation(d', IndexOutOfBounds)); + // TODO: make it clear that the problem could be with d3 too + Ok(DynamicErrorHole(d2, IndexOutOfBounds) |> fresh) } - | d => Error(InvalidBoxedTuple(d)), + | (String(_), Int(_), _) => Error(InvalidBoxedIntLit(d3)) + | (String(_), _, _) => Error(InvalidBoxedIntLit(d2)) + | (_, _, _) => Error(InvalidBoxedIntLit(d1)) + } ); }; @@ -253,37 +321,50 @@ module Pervasives = { |> fn("asin", Float, Float, asin) |> fn("acos", Float, Float, acos) |> fn("atan", Float, Float, atan) - |> fn("mod", Prod([Int, Int]), Int, int_mod("mod")) + |> fn( + "mod", + Prod([Int |> Typ.fresh, Int |> Typ.fresh]), + Int, + int_mod("mod"), + ) |> fn("string_length", String, Int, string_length) - |> fn("string_compare", Prod([String, String]), Int, string_compare) + |> fn( + "string_compare", + Prod([String |> Typ.fresh, String |> Typ.fresh]), + Int, + string_compare, + ) |> fn("string_trim", String, String, string_trim) |> fn( "string_concat", - Prod([String, List(String)]), + Prod([String |> Typ.fresh, List(String |> Typ.fresh) |> Typ.fresh]), String, string_concat, ) |> fn( "string_sub", - Prod([String, Int, Int]), + Prod([String |> Typ.fresh, Int |> Typ.fresh, Int |> Typ.fresh]), String, string_sub("string_sub"), ); }; let ctx_init: Ctx.t = { - let meta_cons_map = ConstructorMap.of_list([("$e", None), ("$v", None)]); + let meta_cons_map: ConstructorMap.t(Typ.t) = [ + Variant("$e", [Id.mk()], None), + Variant("$v", [Id.mk()], None), + ]; let meta = Ctx.TVarEntry({ name: "$Meta", id: Id.invalid, - kind: Kind.Singleton(Sum(meta_cons_map)), + kind: Ctx.Singleton(Sum(meta_cons_map) |> Typ.fresh), }); List.map( fun | (name, Const(typ, _)) => Ctx.VarEntry({name, typ, id: Id.invalid}) | (name, Fn(t1, t2, _)) => - Ctx.VarEntry({name, typ: Arrow(t1, t2), id: Id.invalid}), + Ctx.VarEntry({name, typ: Arrow(t1, t2) |> Typ.fresh, id: Id.invalid}), Pervasives.builtins, ) |> Ctx.extend(_, meta) @@ -303,7 +384,8 @@ let env_init: Environment.t = env => fun | (name, Const(_, d)) => Environment.extend(env, (name, d)) - | (name, Fn(_)) => Environment.extend(env, (name, BuiltinFun(name))), + | (name, Fn(_)) => + Environment.extend(env, (name, BuiltinFun(name) |> fresh)), Environment.empty, Pervasives.builtins, ); diff --git a/src/haz3lcore/dynamics/Casts.re b/src/haz3lcore/dynamics/Casts.re new file mode 100644 index 0000000000..b9087f1f8f --- /dev/null +++ b/src/haz3lcore/dynamics/Casts.re @@ -0,0 +1,252 @@ +open Util; + +/* The cast calculus is based off the POPL 2019 paper: + https://arxiv.org/pdf/1805.00155.pdf */ + +/* GROUND TYPES */ + +/* You can think of a ground type as a typet that tells you what the root of the + type expression is, but nothing more. For example: Int, [?], ? -> ?, ... are + ground types and [Int], ? -> Float are not. + + The most important property of ground types is: + If two types are ground types, + and the two types are consistent, + then they are equal. + + Make sure this holds for your new feature!! + + e.g. [?] and [?] are equal, but [?] and [Int] are not (because [Int] is not + ground, even though [Int] and [?] are consistent). + + */ + +[@deriving sexp] +type ground_cases = + | Hole + | Ground + | NotGroundOrHole(Typ.t) /* the argument is the corresponding ground type */; + +let grounded_Arrow = + NotGroundOrHole( + Arrow(Unknown(Internal) |> Typ.temp, Unknown(Internal) |> Typ.temp) + |> Typ.temp, + ); +let grounded_Type = + NotGroundOrHole( + Type(EmptyHole |> TPat.fresh, Unknown(Internal) |> Typ.temp) |> Typ.temp, + ); +let grounded_Forall = + NotGroundOrHole( + Forall(EmptyHole |> Pat.fresh, Unknown(Internal) |> Typ.temp) |> Typ.temp, + ); +let grounded_Equals = + NotGroundOrHole( + Equals(EmptyHole |> Exp.fresh, EmptyHole |> Exp.fresh) |> Typ.temp, + ); +let grounded_Prod = length => + NotGroundOrHole( + Prod(ListUtil.replicate(length, Typ.Unknown(Internal) |> Typ.temp)) + |> Typ.temp, + ); +let grounded_Sum: unit => Typ.sum_map = + () => [BadEntry(Typ.temp(Unknown(Internal)))]; +let grounded_List = + NotGroundOrHole(List(Unknown(Internal) |> Typ.temp) |> Typ.temp); + +let grounded_Module = (ctx: Ctx.t) => + NotGroundOrHole( + Typ.Module({ + inner_ctx: + List.map( + fun + | Ctx.VarEntry(var_entry) => + Ctx.VarEntry({...var_entry, typ: Unknown(Internal) |> Typ.temp}) + | Ctx.ConstructorEntry(var_entry) => + Ctx.ConstructorEntry({ + ...var_entry, + typ: Unknown(Internal) |> Typ.temp, + }) + | Ctx.TVarEntry(tvar_entry) => Ctx.TVarEntry(tvar_entry), + ctx, + ), + incomplete: false, + }), + ); + +let rec ground_cases_of = (ty: Typ.t): ground_cases => { + let is_hole: Typ.t => bool = + fun + | {term: Typ.Unknown(_), _} => true + | _ => false; + switch (Typ.term_of(ty)) { + | Unknown(_) => Hole + | Bool + | Int + | Float + | String + | Var(_) + | Rec(_) + | Type(_, {term: Unknown(_), _}) + | Arrow({term: Unknown(_), _}, {term: Unknown(_), _}) + | List({term: Unknown(_), _}) => Ground + | Parens(ty) => ground_cases_of(ty) + | Prod(tys) => + if (List.for_all( + fun + | ({term: Typ.Unknown(_), _}: Typ.t) => true + | _ => false, + tys, + )) { + Ground; + } else { + tys |> List.length |> grounded_Prod; + } + | Sum(sm) => + sm |> ConstructorMap.is_ground(is_hole) + ? Ground : NotGroundOrHole(Sum(grounded_Sum()) |> Typ.temp) + | Arrow(_, _) => grounded_Arrow + | Type(_) => grounded_Type + | Forall(_) => grounded_Forall + | Equals(_) => grounded_Equals + | List(_) => grounded_List + | Ap(_) => failwith("type application in dynamics") + | Module({inner_ctx: [], incomplete: true}) => Ground + | Module(_) => NotGroundOrHole(Module({inner_ctx: [], incomplete: true})) + | Member(_, ty) => ground_cases_of(ty) + }; +}; + +/* CAST CALCULUS */ + +/* Rules are taken from figure 12 of https://arxiv.org/pdf/1805.00155.pdf */ + +/* gives a transition step that can be taken by the cast calculus here if applicable. */ +let rec transition = (~recursive=false, d: DHExp.t): option(DHExp.t) => { + switch (DHExp.term_of(d)) { + | Cast(d1, t1, t2) => + let d1 = + if (recursive) { + d1 |> transition(~recursive) |> Option.value(~default=d1); + } else { + d1; + }; + switch (ground_cases_of(t1), ground_cases_of(t2)) { + | (Hole, Hole) + | (Ground, Ground) => + /* if two types are ground and consistent, then they are eq */ + Some(d1) // Rule ITCastId + + | (Ground, Hole) => + /* can't remove the cast or do anything else here, so we're done */ + None + + | (Hole, Ground) => + switch (DHExp.term_of(d1)) { + | Cast(d2, t3, {term: Unknown(_), _}) => + /* by canonical forms, d1' must be of the form d ?> */ + if (Typ.eq(t3, t2)) { + Some + (d2); // Rule ITCastSucceed + } else { + Some + (FailedCast(d2, t3, t2) |> DHExp.fresh); // Rule ITCastFail + } + | _ => None + } + + | (Hole, NotGroundOrHole(t2_grounded)) => + /* ITExpand rule */ + print_endline("called with d= " ++ DHExp.show(d)); + let inner_cast = Cast(d1, t1, t2_grounded) |> DHExp.fresh; + print_endline("inner_cast: " ++ DHExp.show(inner_cast)); + // HACK: we need to check the inner cast here + let inner_cast = + switch (transition(~recursive, inner_cast)) { + | Some(d1) => d1 + | None => inner_cast + }; + Some(DHExp.Cast(inner_cast, t2_grounded, t2) |> DHExp.fresh); + + | (NotGroundOrHole(t1_grounded), Hole) => + /* ITGround rule */ + Some( + DHExp.Cast(Cast(d1, t1, t1_grounded) |> DHExp.fresh, t1_grounded, t2) + |> DHExp.fresh, + ) + + | (Ground, NotGroundOrHole(_)) => + switch (DHExp.term_of(d1)) { + | Cast(d2, t3, _) => + if (Typ.eq(t3, t2)) { + Some(d2); + } else { + None; + } + | _ => None + } + | (NotGroundOrHole(_), Ground) => + /* can't do anything when casting between diseq, non-hole types */ + None + + | (NotGroundOrHole(_), NotGroundOrHole(_)) => + /* they might be eq in this case, so remove cast if so */ + if (Typ.eq(t1, t2)) { + Some + (d1); // Rule ITCastId + } else { + None; + } + }; + | _ => None + }; +}; + +let rec transition_multiple = (d: DHExp.t): DHExp.t => { + switch (transition(~recursive=true, d)) { + | Some(d'') => transition_multiple(d'') + | None => d + }; +}; + +// So that we don't have to regenerate its id +let hole = EmptyHole |> DHExp.fresh; + +// Hacky way to do transition_multiple on patterns by transferring +// the cast to the expression and then back to the pattern. +let pattern_fixup = (p: DHPat.t): DHPat.t => { + let rec unwrap_casts = (p: DHPat.t): (DHPat.t, DHExp.t) => { + switch (DHPat.term_of(p)) { + | Cast(p1, t1, t2) => + let (p1, d1) = unwrap_casts(p1); + ( + p1, + {term: DHExp.Cast(d1, t1, t2), copied: p.copied, ids: p.ids} + |> transition_multiple, + ); + | _ => (p, hole) + }; + }; + let rec rewrap_casts = ((p: DHPat.t, d: DHExp.t)): DHPat.t => { + switch (DHExp.term_of(d)) { + | EmptyHole => p + | Cast(d1, t1, t2) => + let p1 = rewrap_casts((p, d1)); + {term: DHPat.Cast(p1, t1, t2), copied: d.copied, ids: d.ids}; + | FailedCast(d1, t1, t2) => + let p1 = rewrap_casts((p, d1)); + { + term: + DHPat.Cast( + DHPat.Cast(p1, t1, Typ.fresh(Unknown(Internal))) |> DHPat.fresh, + Typ.fresh(Unknown(Internal)), + t2, + ), + copied: d.copied, + ids: d.ids, + }; + | _ => failwith("unexpected term in rewrap_casts") + }; + }; + p |> unwrap_casts |> rewrap_casts; +}; diff --git a/src/haz3lcore/dynamics/ClosureEnvironment.re b/src/haz3lcore/dynamics/ClosureEnvironment.re index 95342373fa..52b9ab4d51 100644 --- a/src/haz3lcore/dynamics/ClosureEnvironment.re +++ b/src/haz3lcore/dynamics/ClosureEnvironment.re @@ -1 +1 @@ -include DH.ClosureEnvironment; +include TermBase.ClosureEnvironment; diff --git a/src/haz3lcore/dynamics/ClosureEnvironment.rei b/src/haz3lcore/dynamics/ClosureEnvironment.rei index ccb9ea0284..d2cffb2310 100644 --- a/src/haz3lcore/dynamics/ClosureEnvironment.rei +++ b/src/haz3lcore/dynamics/ClosureEnvironment.rei @@ -1,3 +1,3 @@ include - (module type of DH.ClosureEnvironment) with - type t = DH.ClosureEnvironment.t; + (module type of TermBase.ClosureEnvironment) with + type t = TermBase.ClosureEnvironment.t; diff --git a/src/haz3lcore/dynamics/Constraint.re b/src/haz3lcore/dynamics/Constraint.re index a56f435e55..3fcff59bea 100644 --- a/src/haz3lcore/dynamics/Constraint.re +++ b/src/haz3lcore/dynamics/Constraint.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = @@ -129,9 +129,11 @@ let of_ap = (ctx, mode, ctr: option(Constructor.t), arg: t, syn_ty): t => }; switch (ty) { | Some(ty) => - switch (Typ.weak_head_normalize(ctx, ty)) { + switch (Typ.weak_head_normalize(ctx, ty) |> Typ.term_of) { + | Rec(_, {term: Sum(map), _}) | Sum(map) => - let num_variants = ConstructorMap.cardinal(map); + let num_variants = + ConstructorMap.get_constructors(map) |> List.length; switch (ConstructorMap.nth(map, name)) { | Some(nth) => arg |> ctr_of_nth_variant(num_variants, nth) | None => Falsity diff --git a/src/haz3lcore/dynamics/DH.re b/src/haz3lcore/dynamics/DH.re index af7cc1259a..deb94b3555 100644 --- a/src/haz3lcore/dynamics/DH.re +++ b/src/haz3lcore/dynamics/DH.re @@ -1,658 +1,587 @@ -open Sexplib.Std; - -[@deriving (show({with_path: false}), sexp, yojson)] -type if_consistency = - | ConsistentIf - | InconsistentIf; - -module rec DHExp: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | EmptyHole(MetaVar.t, HoleInstanceId.t) - | NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, HoleInstanceId.t, t) - | FreeVar(MetaVar.t, HoleInstanceId.t, Var.t) - | InvalidText(MetaVar.t, HoleInstanceId.t, string) - | InconsistentBranches(MetaVar.t, HoleInstanceId.t, case) - | Closure([@opaque] ClosureEnvironment.t, t) - | Filter(DHFilter.t, t) - | BoundVar(Var.t) - | Sequence(t, t) - | Let(DHPat.t, t, t) - | Module(DHPat.t, t, t) - | Dot(t, t) - | FixF(Var.t, Typ.t, t) - | Fun(DHPat.t, Typ.t, t, option(Var.t)) - | TypFun(Term.UTPat.t, t, option(Var.t)) - | TypAp(t, Typ.t) - | Ap(t, t) - | ApBuiltin(string, t) - | BuiltinFun(string) - | Test(KeywordID.t, t) - | BoolLit(bool) - | IntLit(int) - | FloatLit(float) - | StringLit(string) - | BinBoolOp(TermBase.UExp.op_bin_bool, t, t) - | BinIntOp(TermBase.UExp.op_bin_int, t, t) - | BinFloatOp(TermBase.UExp.op_bin_float, t, t) - | BinStringOp(TermBase.UExp.op_bin_string, t, t) - | ListLit(MetaVar.t, MetaVarInst.t, Typ.t, list(t)) - | Cons(t, t) - | ListConcat(t, t) - | Tuple(list(t)) - | Prj(t, int) - | Constructor(string) - | ConsistentCase(case) - | Cast(t, Typ.t, Typ.t) - | FailedCast(t, Typ.t, Typ.t) - | InvalidOperation(t, InvalidOperationError.t) - | ModuleVal(ClosureEnvironment.t, list(Var.t)) - | IfThenElse(if_consistency, t, t, t) // use bool tag to track if branches are consistent - and case = - | Case(t, list(rule), int) - and rule = - | Rule(DHPat.t, t); - - let constructor_string: t => string; - - let mk_tuple: list(t) => t; - - let cast: (t, Typ.t, Typ.t) => t; - - let apply_casts: (t, list((Typ.t, Typ.t))) => t; - let strip_casts: t => t; - - let fast_equal: (t, t) => bool; - - let assign_name_if_none: (t, option(Var.t)) => t; - let ty_subst: (Typ.t, TypVar.t, t) => t; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - /* Hole types */ - | EmptyHole(MetaVar.t, HoleInstanceId.t) - | NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, HoleInstanceId.t, t) - | FreeVar(MetaVar.t, HoleInstanceId.t, Var.t) - | InvalidText(MetaVar.t, HoleInstanceId.t, string) - | InconsistentBranches(MetaVar.t, HoleInstanceId.t, case) - /* Generalized closures */ - | Closure(ClosureEnvironment.t, t) - | Filter(DHFilter.t, t) - /* Other expressions forms */ - | BoundVar(Var.t) - | Sequence(t, t) - | Let(DHPat.t, t, t) - | Module(DHPat.t, t, t) - | Dot(t, t) - | FixF(Var.t, Typ.t, t) - | Fun(DHPat.t, Typ.t, t, option(Var.t)) - | TypFun(Term.UTPat.t, t, option(Var.t)) - | TypAp(t, Typ.t) - | Ap(t, t) - | ApBuiltin(string, t) - | BuiltinFun(string) - | Test(KeywordID.t, t) - | BoolLit(bool) - | IntLit(int) - | FloatLit(float) - | StringLit(string) - | BinBoolOp(TermBase.UExp.op_bin_bool, t, t) - | BinIntOp(TermBase.UExp.op_bin_int, t, t) - | BinFloatOp(TermBase.UExp.op_bin_float, t, t) - | BinStringOp(TermBase.UExp.op_bin_string, t, t) - | ListLit(MetaVar.t, MetaVarInst.t, Typ.t, list(t)) - | Cons(t, t) - | ListConcat(t, t) - | Tuple(list(t)) - | Prj(t, int) - | Constructor(string) - | ConsistentCase(case) - | Cast(t, Typ.t, Typ.t) - | FailedCast(t, Typ.t, Typ.t) - | InvalidOperation(t, InvalidOperationError.t) - | ModuleVal(ClosureEnvironment.t, list(Var.t)) - | IfThenElse(if_consistency, t, t, t) - and case = - | Case(t, list(rule), int) - and rule = - | Rule(DHPat.t, t); - - let constructor_string = (d: t): string => - switch (d) { - | EmptyHole(_, _) => "EmptyHole" - | NonEmptyHole(_, _, _, _) => "NonEmptyHole" - | FreeVar(_, _, _) => "FreeVar" - | InvalidText(_) => "InvalidText" - | BoundVar(_) => "BoundVar" - | Sequence(_, _) => "Sequence" - | Filter(_, _) => "Filter" - | Let(_, _, _) => "Let" - | Module(_, _, _) => "Module" - | Dot(_, _) => "DotMember" - | FixF(_, _, _) => "FixF" - | Fun(_, _, _, _) => "Fun" - | TypFun(_) => "TypFun" - | Closure(_, _) => "Closure" - | Ap(_, _) => "Ap" - | TypAp(_) => "TypAp" - | ApBuiltin(_, _) => "ApBuiltin" - | BuiltinFun(_) => "BuiltinFun" - | Test(_) => "Test" - | BoolLit(_) => "BoolLit" - | IntLit(_) => "IntLit" - | FloatLit(_) => "FloatLit" - | StringLit(_) => "StringLit" - | BinBoolOp(_, _, _) => "BinBoolOp" - | BinIntOp(_, _, _) => "BinIntOp" - | BinFloatOp(_, _, _) => "BinFloatOp" - | BinStringOp(_, _, _) => "BinStringOp" - | ListLit(_) => "ListLit" - | Cons(_, _) => "Cons" - | ListConcat(_, _) => "ListConcat" - | Tuple(_) => "Tuple" - | Prj(_) => "Prj" - | Constructor(_) => "Constructor" - | ConsistentCase(_) => "ConsistentCase" - | InconsistentBranches(_, _, _) => "InconsistentBranches" - | Cast(_, _, _) => "Cast" - | FailedCast(_, _, _) => "FailedCast" - | InvalidOperation(_) => "InvalidOperation" - | ModuleVal(_) => "ModuleVal" - | IfThenElse(_, _, _, _) => "IfThenElse" - }; - - let mk_tuple: list(t) => t = - fun - | [] - | [_] => failwith("mk_tuple: expected at least 2 elements") - | xs => Tuple(xs); - - let cast = (d: t, t1: Typ.t, t2: Typ.t): t => - if (Typ.eq(t1, t2) || t2 == Unknown(SynSwitch)) { - d; - } else { - Cast(d, t1, t2); - }; - - let apply_casts = (d: t, casts: list((Typ.t, Typ.t))): t => - List.fold_left((d, (ty1, ty2)) => cast(d, ty1, ty2), d, casts); - - let rec strip_casts = - fun - | Closure(ei, d) => Closure(ei, strip_casts(d)) - | Cast(d, _, _) => strip_casts(d) - | FailedCast(d, _, _) => strip_casts(d) - | Tuple(ds) => Tuple(ds |> List.map(strip_casts)) - | Prj(d, n) => Prj(strip_casts(d), n) - | Cons(d1, d2) => Cons(strip_casts(d1), strip_casts(d2)) - | ListConcat(d1, d2) => ListConcat(strip_casts(d1), strip_casts(d2)) - | ListLit(a, b, c, ds) => ListLit(a, b, c, List.map(strip_casts, ds)) - | NonEmptyHole(err, u, i, d) => NonEmptyHole(err, u, i, strip_casts(d)) - | Sequence(a, b) => Sequence(strip_casts(a), strip_casts(b)) - | Filter(f, b) => Filter(DHFilter.strip_casts(f), strip_casts(b)) - | Let(dp, b, c) => Let(dp, strip_casts(b), strip_casts(c)) - | Module(dp, b, c) => Module(dp, strip_casts(b), strip_casts(c)) - | Dot(a, b) => Dot(strip_casts(a), strip_casts(b)) - | FixF(a, b, c) => FixF(a, b, strip_casts(c)) - | Fun(a, b, c, d) => Fun(a, b, strip_casts(c), d) - | TypFun(a, b, c) => TypFun(a, strip_casts(b), c) - | Ap(a, b) => Ap(strip_casts(a), strip_casts(b)) - | TypAp(a, b) => TypAp(strip_casts(a), b) - | Test(id, a) => Test(id, strip_casts(a)) - | ApBuiltin(fn, args) => ApBuiltin(fn, strip_casts(args)) - | BuiltinFun(fn) => BuiltinFun(fn) - | BinBoolOp(a, b, c) => BinBoolOp(a, strip_casts(b), strip_casts(c)) - | BinIntOp(a, b, c) => BinIntOp(a, strip_casts(b), strip_casts(c)) - | BinFloatOp(a, b, c) => BinFloatOp(a, strip_casts(b), strip_casts(c)) - | BinStringOp(a, b, c) => - BinStringOp(a, strip_casts(b), strip_casts(c)) - | ConsistentCase(Case(a, rs, b)) => - ConsistentCase( - Case(strip_casts(a), List.map(strip_casts_rule, rs), b), - ) - | InconsistentBranches(u, i, Case(scrut, rules, n)) => - InconsistentBranches( - u, - i, - Case(strip_casts(scrut), List.map(strip_casts_rule, rules), n), - ) - | EmptyHole(_) as d - | FreeVar(_) as d - | InvalidText(_) as d - | BoundVar(_) as d - | BoolLit(_) as d - | IntLit(_) as d - | FloatLit(_) as d - | StringLit(_) as d - | Constructor(_) as d - | ModuleVal(_) as d - | InvalidOperation(_) as d => d - | IfThenElse(consistent, c, d1, d2) => - IfThenElse( - consistent, - strip_casts(c), - strip_casts(d1), - strip_casts(d2), - ) - and strip_casts_rule = (Rule(a, d)) => Rule(a, strip_casts(d)); - - let rec fast_equal = (d1: t, d2: t): bool => { - switch (d1, d2) { - /* Primitive forms: regular structural equality */ - | (BoundVar(_), _) - /* TODO: Not sure if this is right... */ - | (BoolLit(_), _) - | (IntLit(_), _) - | (FloatLit(_), _) - | (Constructor(_), _) => d1 == d2 - | (StringLit(s1), StringLit(s2)) => String.equal(s1, s2) - | (StringLit(_), _) => false - - /* Non-hole forms: recurse */ - | (Test(id1, d1), Test(id2, d2)) => id1 == id2 && fast_equal(d1, d2) - | (Sequence(d11, d21), Sequence(d12, d22)) => - fast_equal(d11, d12) && fast_equal(d21, d22) - | (Filter(f1, d1), Filter(f2, d2)) => - DHFilter.fast_equal(f1, f2) && fast_equal(d1, d2) - | (Let(dp1, d11, d21), Let(dp2, d12, d22)) => - dp1 == dp2 && fast_equal(d11, d12) && fast_equal(d21, d22) - | (Module(dp1, d11, d21), Module(dp2, d12, d22)) => - dp1 == dp2 && fast_equal(d11, d12) && fast_equal(d21, d22) - | (Dot(d11, d21), Dot(d12, d22)) => - fast_equal(d11, d12) && fast_equal(d21, d22) - | (FixF(f1, ty1, d1), FixF(f2, ty2, d2)) => - f1 == f2 && ty1 == ty2 && fast_equal(d1, d2) - | (Fun(dp1, ty1, d1, s1), Fun(dp2, ty2, d2, s2)) => - dp1 == dp2 && ty1 == ty2 && fast_equal(d1, d2) && s1 == s2 - | (TypFun(_tpat1, d1, s1), TypFun(_tpat2, d2, s2)) => - _tpat1 == _tpat2 && fast_equal(d1, d2) && s1 == s2 - | (TypAp(d1, ty1), TypAp(d2, ty2)) => fast_equal(d1, d2) && ty1 == ty2 - | (Ap(d11, d21), Ap(d12, d22)) - | (Cons(d11, d21), Cons(d12, d22)) => - fast_equal(d11, d12) && fast_equal(d21, d22) - | (ListConcat(d11, d21), ListConcat(d12, d22)) => - fast_equal(d11, d12) && fast_equal(d21, d22) - | (Tuple(ds1), Tuple(ds2)) => - List.length(ds1) == List.length(ds2) - && List.for_all2(fast_equal, ds1, ds2) - | (Prj(d1, n), Prj(d2, m)) => n == m && fast_equal(d1, d2) - | (ApBuiltin(f1, d1), ApBuiltin(f2, d2)) => f1 == f2 && d1 == d2 - | (BuiltinFun(f1), BuiltinFun(f2)) => f1 == f2 - | (ListLit(_, _, _, ds1), ListLit(_, _, _, ds2)) => - List.length(ds1) == List.length(ds2) - && List.for_all2(fast_equal, ds1, ds2) - | (BinBoolOp(op1, d11, d21), BinBoolOp(op2, d12, d22)) => - op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) - | (BinIntOp(op1, d11, d21), BinIntOp(op2, d12, d22)) => - op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) - | (BinFloatOp(op1, d11, d21), BinFloatOp(op2, d12, d22)) => - op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) - | (BinStringOp(op1, d11, d21), BinStringOp(op2, d12, d22)) => - op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) - | (Cast(d1, ty11, ty21), Cast(d2, ty12, ty22)) - | (FailedCast(d1, ty11, ty21), FailedCast(d2, ty12, ty22)) => - fast_equal(d1, d2) && ty11 == ty12 && ty21 == ty22 - | (InvalidOperation(d1, reason1), InvalidOperation(d2, reason2)) => - fast_equal(d1, d2) && reason1 == reason2 - | (ConsistentCase(case1), ConsistentCase(case2)) => - fast_equal_case(case1, case2) - | (ModuleVal(mv1, names1), ModuleVal(mv2, names2)) => - mv1 == mv2 && names1 == names2 - | (IfThenElse(c1, d11, d12, d13), IfThenElse(c2, d21, d22, d23)) => - c1 == c2 - && fast_equal(d11, d21) - && fast_equal(d12, d22) - && fast_equal(d13, d23) - /* We can group these all into a `_ => false` clause; separating - these so that we get exhaustiveness checking. */ - | (Sequence(_), _) - | (Filter(_), _) - | (Let(_), _) - | (Module(_), _) - | (Dot(_), _) - | (FixF(_), _) - | (Fun(_), _) - | (TypFun(_), _) - | (Test(_), _) - | (Ap(_), _) - | (TypAp(_), _) - | (ApBuiltin(_), _) - | (BuiltinFun(_), _) - | (Cons(_), _) - | (ListConcat(_), _) - | (ListLit(_), _) - | (Tuple(_), _) - | (Prj(_), _) - | (BinBoolOp(_), _) - | (BinIntOp(_), _) - | (BinFloatOp(_), _) - | (BinStringOp(_), _) - | (Cast(_), _) - | (FailedCast(_), _) - | (InvalidOperation(_), _) - | (ModuleVal(_), _) - | (IfThenElse(_), _) - | (ConsistentCase(_), _) => false - - /* Hole forms: when checking environments, only check that - environment ID's are equal, don't check structural equality. - - (This resolves a performance issue with many nested holes.) */ - | (EmptyHole(u1, i1), EmptyHole(u2, i2)) => u1 == u2 && i1 == i2 - | (NonEmptyHole(reason1, u1, i1, d1), NonEmptyHole(reason2, u2, i2, d2)) => - reason1 == reason2 && u1 == u2 && i1 == i2 && fast_equal(d1, d2) - | (FreeVar(u1, i1, x1), FreeVar(u2, i2, x2)) => - u1 == u2 && i1 == i2 && x1 == x2 - | (InvalidText(u1, i1, text1), InvalidText(u2, i2, text2)) => - u1 == u2 && i1 == i2 && text1 == text2 - | (Closure(sigma1, d1), Closure(sigma2, d2)) => - ClosureEnvironment.id_equal(sigma1, sigma2) && fast_equal(d1, d2) - | ( - InconsistentBranches(u1, i1, case1), - InconsistentBranches(u2, i2, case2), - ) => - u1 == u2 && i1 == i2 && fast_equal_case(case1, case2) - | (EmptyHole(_), _) - | (NonEmptyHole(_), _) - | (FreeVar(_), _) - | (InvalidText(_), _) - | (Closure(_), _) - | (InconsistentBranches(_), _) => false - }; - } - and fast_equal_case = (Case(d1, rules1, i1), Case(d2, rules2, i2)) => { - fast_equal(d1, d2) - && List.length(rules1) == List.length(rules2) - && List.for_all2( - (Rule(dp1, d1), Rule(dp2, d2)) => - dp1 == dp2 && fast_equal(d1, d2), - rules1, - rules2, - ) - && i1 == i2; - }; - - let assign_name_if_none = (t, name) => - switch (t) { - | Fun(arg, ty, body, None) => Fun(arg, ty, body, name) - | TypFun(utpat, body, None) => TypFun(utpat, body, name) - | _ => t - }; - - let rec ty_subst = (s: Typ.t, x: TypVar.t, exp: DHExp.t): t => { - let re = e2 => ty_subst(s, x, e2); - let t_re = ty => Typ.subst(s, x, ty); - switch (exp) { - | Cast(t, t1, t2) => Cast(re(t), t_re(t1), t_re(t2)) - | FixF(arg, ty, body) => FixF(arg, t_re(ty), re(body)) - | Fun(arg, ty, body, var) => Fun(arg, t_re(ty), re(body), var) - | TypAp(tfun, ty) => TypAp(re(tfun), t_re(ty)) - | ListLit(mv, mvi, t, lst) => - ListLit(mv, mvi, t_re(t), List.map(re, lst)) - | TypFun(utpat, body, var) => - switch (Term.UTPat.tyvar_of_utpat(utpat)) { - | Some(x') when x == x' => exp - | _ => - /* Note that we do not have to worry about capture avoidance, since s will always be closed. */ - TypFun(utpat, re(body), var) - } - | NonEmptyHole(errstat, mv, hid, t) => - NonEmptyHole(errstat, mv, hid, re(t)) - | Test(id, t) => Test(id, re(t)) - | InconsistentBranches(mv, hid, case) => - InconsistentBranches(mv, hid, ty_subst_case(s, x, case)) - | Closure(ce, t) => Closure(ce, re(t)) - | Sequence(t1, t2) => Sequence(re(t1), re(t2)) - | Let(dhpat, t1, t2) => Let(dhpat, re(t1), re(t2)) - | Module(dhpat, t1, t2) => Module(dhpat, re(t1), re(t2)) - | Dot(t1, t2) => Dot(re(t1), re(t2)) - | Ap(t1, t2) => Ap(re(t1), re(t2)) - | ApBuiltin(s, args) => ApBuiltin(s, re(args)) - | BinBoolOp(op, t1, t2) => BinBoolOp(op, re(t1), re(t2)) - | BinIntOp(op, t1, t2) => BinIntOp(op, re(t1), re(t2)) - | BinFloatOp(op, t1, t2) => BinFloatOp(op, re(t1), re(t2)) - | BinStringOp(op, t1, t2) => BinStringOp(op, re(t1), re(t2)) - | Cons(t1, t2) => Cons(re(t1), re(t2)) - | ListConcat(t1, t2) => ListConcat(re(t1), re(t2)) - | Tuple(args) => Tuple(List.map(re, args)) - | Prj(t, n) => Prj(re(t), n) - | ConsistentCase(case) => ConsistentCase(ty_subst_case(s, x, case)) - | InvalidOperation(t, err) => InvalidOperation(re(t), err) - | Filter(filt, exp) => Filter(DHFilter.map(re, filt), re(exp)) - | IfThenElse(consis, i, t, e) => - IfThenElse(consis, re(i), re(t), re(e)) - - | BuiltinFun(_) - | EmptyHole(_) - | FreeVar(_, _, _) - | InvalidText(_, _, _) - | Constructor(_) - | BoundVar(_) - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ModuleVal(_) - | FailedCast(_, _, _) => exp - }; - } - and ty_subst_case = (s, x, Case(t, rules, n)) => - Case( - ty_subst(s, x, t), - List.map( - (DHExp.Rule(dhpat, t)) => DHExp.Rule(dhpat, ty_subst(s, x, t)), - rules, - ), - n, - ); - //TODO: Inconsistent cases: need to check again for inconsistency? -} - -and Environment: { - include - (module type of VarBstMap.Ordered) with - type t_('a) = VarBstMap.Ordered.t_('a); - - [@deriving (show({with_path: false}), sexp, yojson)] - type t = t_(DHExp.t); -} = { - include VarBstMap.Ordered; - - [@deriving (show({with_path: false}), sexp, yojson)] - type t = t_(DHExp.t); -} - -and ClosureEnvironment: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t; - - let wrap: (EnvironmentId.t, Environment.t) => t; - - let id_of: t => EnvironmentId.t; - let map_of: t => Environment.t; - - let to_list: t => list((Var.t, DHExp.t)); - - let of_environment: Environment.t => t; - - let id_equal: (t, t) => bool; - - let empty: t; - let is_empty: t => bool; - let length: t => int; - - let lookup: (t, Var.t) => option(DHExp.t); - let contains: (t, Var.t) => bool; - let update: (Environment.t => Environment.t, t) => t; - let update_keep_id: (Environment.t => Environment.t, t) => t; - let extend: (t, (Var.t, DHExp.t)) => t; - let extend_keep_id: (t, (Var.t, DHExp.t)) => t; - let union: (t, t) => t; - let union_keep_id: (t, t) => t; - let map: (((Var.t, DHExp.t)) => DHExp.t, t) => t; - let map_keep_id: (((Var.t, DHExp.t)) => DHExp.t, t) => t; - let filter: (((Var.t, DHExp.t)) => bool, t) => t; - let filter_keep_id: (((Var.t, DHExp.t)) => bool, t) => t; - let fold: (((Var.t, DHExp.t), 'b) => 'b, 'b, t) => 'b; - - let without_keys: (list(Var.t), t) => t; - - let placeholder: t; -} = { - module Inner: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t; - - let wrap: (EnvironmentId.t, Environment.t) => t; - - let id_of: t => EnvironmentId.t; - let map_of: t => Environment.t; - } = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = (EnvironmentId.t, Environment.t); - - let wrap = (ei, map): t => (ei, map); - - let id_of = ((ei, _)) => ei; - let map_of = ((_, map)) => map; - let (sexp_of_t, t_of_sexp) = - StructureShareSexp.structure_share_here(id_of, sexp_of_t, t_of_sexp); - }; - include Inner; - - let to_list = env => env |> map_of |> Environment.to_listo; - - let of_environment = map => { - let ei = Id.mk(); - wrap(ei, map); - }; - - /* Equals only needs to check environment id's (faster than structural equality - * checking.) */ - let id_equal = (env1, env2) => id_of(env1) == id_of(env2); - - let empty = Environment.empty |> of_environment; - - let is_empty = env => env |> map_of |> Environment.is_empty; - - let length = env => Environment.length(map_of(env)); - - let lookup = (env, x) => - env |> map_of |> (map => Environment.lookup(map, x)); - - let contains = (env, x) => - env |> map_of |> (map => Environment.contains(map, x)); - - let update = (f, env) => env |> map_of |> f |> of_environment; - - let update_keep_id = (f, env) => env |> map_of |> f |> wrap(env |> id_of); - - let extend = (env, xr) => - env |> update(map => Environment.extend(map, xr)); - - let extend_keep_id = (env, xr) => - env |> update_keep_id(map => Environment.extend(map, xr)); - - let union = (env1, env2) => - env2 |> update(map2 => Environment.union(env1 |> map_of, map2)); - - let union_keep_id = (env1, env2) => - env2 |> update_keep_id(map2 => Environment.union(env1 |> map_of, map2)); - - let map = (f, env) => env |> update(Environment.mapo(f)); - - let map_keep_id = (f, env) => env |> update_keep_id(Environment.mapo(f)); - - let filter = (f, env) => env |> update(Environment.filtero(f)); - - let filter_keep_id = (f, env) => - env |> update_keep_id(Environment.filtero(f)); - - let fold = (f, init, env) => env |> map_of |> Environment.foldo(f, init); - - let placeholder = wrap(EnvironmentId.invalid, Environment.empty); - - let without_keys = keys => update(Environment.without_keys(keys)); -} - -and Filter: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = { - pat: DHExp.t, - act: FilterAction.t, - }; - - let mk: (DHExp.t, FilterAction.t) => t; - - let map: (DHExp.t => DHExp.t, t) => t; - - let strip_casts: t => t; - - let fast_equal: (t, t) => bool; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = { - pat: DHExp.t, - act: FilterAction.t, - }; - - let mk = (pat: DHExp.t, act: FilterAction.t): t => {pat, act}; - - let map = (f: DHExp.t => DHExp.t, filter: t): t => { - ...filter, - pat: f(filter.pat), - }; - - let fast_equal = (f1: t, f2: t): bool => { - DHExp.fast_equal(f1.pat, f2.pat) && f1.act == f2.act; - }; - - let strip_casts = (f: t): t => {...f, pat: f.pat |> DHExp.strip_casts}; -} - -and DHFilter: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Filter(Filter.t) - | Residue(int, FilterAction.t); - let fast_equal: (t, t) => bool; - let strip_casts: t => t; - let map: (DHExp.t => DHExp.t, t) => t; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Filter(Filter.t) - | Residue(int, FilterAction.t); - let fast_equal = (f1: t, f2: t) => { - switch (f1, f2) { - | (Filter(flt1), Filter(flt2)) => Filter.fast_equal(flt1, flt2) - | (Residue(idx1, act1), Residue(idx2, act2)) => - idx1 == idx2 && act1 == act2 - | _ => false - }; - }; - let strip_casts = f => { - switch (f) { - | Filter(flt) => Filter(Filter.strip_casts(flt)) - | Residue(idx, act) => Residue(idx, act) - }; - }; - let map = (mapper, filter) => { - switch (filter) { - | Filter(flt) => Filter(Filter.map(mapper, flt)) - | Residue(idx, act) => Residue(idx, act) - }; - }; -} - -and FilterEnvironment: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = list(Filter.t); - - let extends: (Filter.t, t) => t; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = list(Filter.t); - - let extends = (flt, env) => [flt, ...env]; -}; +// open Sexplib.Std; + // [@deriving (show({with_path: false}), sexp, yojson)] + // type if_consistency = + // | ConsistentIf + // | InconsistentIf; + // module rec DHExp: { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = + // | EmptyHole(MetaVar.t, HoleInstanceId.t) + // | NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, HoleInstanceId.t, t) + // | FreeVar(MetaVar.t, HoleInstanceId.t, Var.t) + // | InvalidText(MetaVar.t, HoleInstanceId.t, string) + // | InconsistentBranches(MetaVar.t, HoleInstanceId.t, case) + // | Closure([@opaque] ClosureEnvironment.t, t) + // | Filter(DHFilter.t, t) + // | BoundVar(Var.t) + // | Sequence(t, t) + // | Let(DHPat.t, t, t) + // | Module(DHPat.t, t, t) + // | Dot(t, t) + // | FixF(Var.t, Typ.t, t) + // | Fun(DHPat.t, Typ.t, t, option(Var.t)) + // | TypFun(Term.UTPat.t, t, option(Var.t)) + // | TypAp(t, Typ.t) + // | Ap(t, t) + // | ApBuiltin(string, t) + // | BuiltinFun(string) + // | Test(KeywordID.t, t) + // | BoolLit(bool) + // | IntLit(int) + // | FloatLit(float) + // | StringLit(string) + // | BinBoolOp(TermBase.UExp.op_bin_bool, t, t) + // | BinIntOp(TermBase.UExp.op_bin_int, t, t) + // | BinFloatOp(TermBase.UExp.op_bin_float, t, t) + // | BinStringOp(TermBase.UExp.op_bin_string, t, t) + // | ListLit(MetaVar.t, MetaVarInst.t, Typ.t, list(t)) + // | Cons(t, t) + // | ListConcat(t, t) + // | Tuple(list(t)) + // | Prj(t, int) + // | Constructor(string) + // | ConsistentCase(case) + // | Cast(t, Typ.t, Typ.t) + // | FailedCast(t, Typ.t, Typ.t) + // | InvalidOperation(t, InvalidOperationError.t) + // | ModuleVal(ClosureEnvironment.t, list(Var.t)) + // | IfThenElse(if_consistency, t, t, t) // use bool tag to track if branches are consistent + // and case = + // | Case(t, list(rule), int) + // and rule = + // | Rule(DHPat.t, t); + // let constructor_string: t => string; + // let mk_tuple: list(t) => t; + // let cast: (t, Typ.t, Typ.t) => t; + // let apply_casts: (t, list((Typ.t, Typ.t))) => t; + // let strip_casts: t => t; + // let fast_equal: (t, t) => bool; + // let assign_name_if_none: (t, option(Var.t)) => t; + // let ty_subst: (Typ.t, TypVar.t, t) => t; + // } = { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = + // /* Hole types */ + // | EmptyHole(MetaVar.t, HoleInstanceId.t) + // | NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, HoleInstanceId.t, t) + // | FreeVar(MetaVar.t, HoleInstanceId.t, Var.t) + // | InvalidText(MetaVar.t, HoleInstanceId.t, string) + // | InconsistentBranches(MetaVar.t, HoleInstanceId.t, case) + // /* Generalized closures */ + // | Closure(ClosureEnvironment.t, t) + // | Filter(DHFilter.t, t) + // /* Other expressions forms */ + // | BoundVar(Var.t) + // | Sequence(t, t) + // | Let(DHPat.t, t, t) + // | Module(DHPat.t, t, t) + // | Dot(t, t) + // | FixF(Var.t, Typ.t, t) + // | Fun(DHPat.t, Typ.t, t, option(Var.t)) + // | TypFun(Term.UTPat.t, t, option(Var.t)) + // | TypAp(t, Typ.t) + // | Ap(t, t) + // | ApBuiltin(string, t) + // | BuiltinFun(string) + // | Test(KeywordID.t, t) + // | BoolLit(bool) + // | IntLit(int) + // | FloatLit(float) + // | StringLit(string) + // | BinBoolOp(TermBase.UExp.op_bin_bool, t, t) + // | BinIntOp(TermBase.UExp.op_bin_int, t, t) + // | BinFloatOp(TermBase.UExp.op_bin_float, t, t) + // | BinStringOp(TermBase.UExp.op_bin_string, t, t) + // | ListLit(MetaVar.t, MetaVarInst.t, Typ.t, list(t)) + // | Cons(t, t) + // | ListConcat(t, t) + // | Tuple(list(t)) + // | Prj(t, int) + // | Constructor(string) + // | ConsistentCase(case) + // | Cast(t, Typ.t, Typ.t) + // | FailedCast(t, Typ.t, Typ.t) + // | InvalidOperation(t, InvalidOperationError.t) + // | ModuleVal(ClosureEnvironment.t, list(Var.t)) + // | IfThenElse(if_consistency, t, t, t) + // and case = + // | Case(t, list(rule), int) + // and rule = + // | Rule(DHPat.t, t); + // let constructor_string = (d: t): string => + // switch (d) { + // | EmptyHole(_, _) => "EmptyHole" + // | NonEmptyHole(_, _, _, _) => "NonEmptyHole" + // | FreeVar(_, _, _) => "FreeVar" + // | InvalidText(_) => "InvalidText" + // | BoundVar(_) => "BoundVar" + // | Sequence(_, _) => "Sequence" + // | Filter(_, _) => "Filter" + // | Let(_, _, _) => "Let" + // | Module(_, _, _) => "Module" + // | Dot(_, _) => "DotMember" + // | FixF(_, _, _) => "FixF" + // | Fun(_, _, _, _) => "Fun" + // | TypFun(_) => "TypFun" + // | Closure(_, _) => "Closure" + // | Ap(_, _) => "Ap" + // | TypAp(_) => "TypAp" + // | ApBuiltin(_, _) => "ApBuiltin" + // | BuiltinFun(_) => "BuiltinFun" + // | Test(_) => "Test" + // | BoolLit(_) => "BoolLit" + // | IntLit(_) => "IntLit" + // | FloatLit(_) => "FloatLit" + // | StringLit(_) => "StringLit" + // | BinBoolOp(_, _, _) => "BinBoolOp" + // | BinIntOp(_, _, _) => "BinIntOp" + // | BinFloatOp(_, _, _) => "BinFloatOp" + // | BinStringOp(_, _, _) => "BinStringOp" + // | ListLit(_) => "ListLit" + // | Cons(_, _) => "Cons" + // | ListConcat(_, _) => "ListConcat" + // | Tuple(_) => "Tuple" + // | Prj(_) => "Prj" + // | Constructor(_) => "Constructor" + // | ConsistentCase(_) => "ConsistentCase" + // | InconsistentBranches(_, _, _) => "InconsistentBranches" + // | Cast(_, _, _) => "Cast" + // | FailedCast(_, _, _) => "FailedCast" + // | InvalidOperation(_) => "InvalidOperation" + // | ModuleVal(_) => "ModuleVal" + // | IfThenElse(_, _, _, _) => "IfThenElse" + // }; + // let mk_tuple: list(t) => t = + // fun + // | [] + // | [_] => failwith("mk_tuple: expected at least 2 elements") + // | xs => Tuple(xs); + // let cast = (d: t, t1: Typ.t, t2: Typ.t): t => + // if (Typ.eq(t1, t2) || t2 == Unknown(SynSwitch)) { + // d; + // } else { + // Cast(d, t1, t2); + // }; + // let apply_casts = (d: t, casts: list((Typ.t, Typ.t))): t => + // List.fold_left((d, (ty1, ty2)) => cast(d, ty1, ty2), d, casts); + // let rec strip_casts = + // fun + // | Closure(ei, d) => Closure(ei, strip_casts(d)) + // | Cast(d, _, _) => strip_casts(d) + // | FailedCast(d, _, _) => strip_casts(d) + // | Tuple(ds) => Tuple(ds |> List.map(strip_casts)) + // | Prj(d, n) => Prj(strip_casts(d), n) + // | Cons(d1, d2) => Cons(strip_casts(d1), strip_casts(d2)) + // | ListConcat(d1, d2) => ListConcat(strip_casts(d1), strip_casts(d2)) + // | ListLit(a, b, c, ds) => ListLit(a, b, c, List.map(strip_casts, ds)) + // | NonEmptyHole(err, u, i, d) => NonEmptyHole(err, u, i, strip_casts(d)) + // | Sequence(a, b) => Sequence(strip_casts(a), strip_casts(b)) + // | Filter(f, b) => Filter(DHFilter.strip_casts(f), strip_casts(b)) + // | Let(dp, b, c) => Let(dp, strip_casts(b), strip_casts(c)) + // | Module(dp, b, c) => Module(dp, strip_casts(b), strip_casts(c)) + // | Dot(a, b) => Dot(strip_casts(a), strip_casts(b)) + // | FixF(a, b, c) => FixF(a, b, strip_casts(c)) + // | Fun(a, b, c, d) => Fun(a, b, strip_casts(c), d) + // | TypFun(a, b, c) => TypFun(a, strip_casts(b), c) + // | Ap(a, b) => Ap(strip_casts(a), strip_casts(b)) + // | TypAp(a, b) => TypAp(strip_casts(a), b) + // | Test(id, a) => Test(id, strip_casts(a)) + // | ApBuiltin(fn, args) => ApBuiltin(fn, strip_casts(args)) + // | BuiltinFun(fn) => BuiltinFun(fn) + // | BinBoolOp(a, b, c) => BinBoolOp(a, strip_casts(b), strip_casts(c)) + // | BinIntOp(a, b, c) => BinIntOp(a, strip_casts(b), strip_casts(c)) + // | BinFloatOp(a, b, c) => BinFloatOp(a, strip_casts(b), strip_casts(c)) + // | BinStringOp(a, b, c) => + // BinStringOp(a, strip_casts(b), strip_casts(c)) + // | ConsistentCase(Case(a, rs, b)) => + // ConsistentCase( + // Case(strip_casts(a), List.map(strip_casts_rule, rs), b), + // ) + // | InconsistentBranches(u, i, Case(scrut, rules, n)) => + // InconsistentBranches( + // u, + // i, + // Case(strip_casts(scrut), List.map(strip_casts_rule, rules), n), + // ) + // | EmptyHole(_) as d + // | FreeVar(_) as d + // | InvalidText(_) as d + // | BoundVar(_) as d + // | BoolLit(_) as d + // | IntLit(_) as d + // | FloatLit(_) as d + // | StringLit(_) as d + // | Constructor(_) as d + // | ModuleVal(_) as d + // | InvalidOperation(_) as d => d + // | IfThenElse(consistent, c, d1, d2) => + // IfThenElse( + // consistent, + // strip_casts(c), + // strip_casts(d1), + // strip_casts(d2), + // ) + // and strip_casts_rule = (Rule(a, d)) => Rule(a, strip_casts(d)); + // let rec fast_equal = (d1: t, d2: t): bool => { + // switch (d1, d2) { + // /* Primitive forms: regular structural equality */ + // | (BoundVar(_), _) + // /* TODO: Not sure if this is right... */ + // | (BoolLit(_), _) + // | (IntLit(_), _) + // | (FloatLit(_), _) + // | (Constructor(_), _) => d1 == d2 + // | (StringLit(s1), StringLit(s2)) => String.equal(s1, s2) + // | (StringLit(_), _) => false + // /* Non-hole forms: recurse */ + // | (Test(id1, d1), Test(id2, d2)) => id1 == id2 && fast_equal(d1, d2) + // | (Sequence(d11, d21), Sequence(d12, d22)) => + // fast_equal(d11, d12) && fast_equal(d21, d22) + // | (Filter(f1, d1), Filter(f2, d2)) => + // DHFilter.fast_equal(f1, f2) && fast_equal(d1, d2) + // | (Let(dp1, d11, d21), Let(dp2, d12, d22)) => + // dp1 == dp2 && fast_equal(d11, d12) && fast_equal(d21, d22) + // | (Module(dp1, d11, d21), Module(dp2, d12, d22)) => + // dp1 == dp2 && fast_equal(d11, d12) && fast_equal(d21, d22) + // | (Dot(d11, d21), Dot(d12, d22)) => + // fast_equal(d11, d12) && fast_equal(d21, d22) + // | (FixF(f1, ty1, d1), FixF(f2, ty2, d2)) => + // f1 == f2 && ty1 == ty2 && fast_equal(d1, d2) + // | (Fun(dp1, ty1, d1, s1), Fun(dp2, ty2, d2, s2)) => + // dp1 == dp2 && ty1 == ty2 && fast_equal(d1, d2) && s1 == s2 + // | (TypFun(_tpat1, d1, s1), TypFun(_tpat2, d2, s2)) => + // _tpat1 == _tpat2 && fast_equal(d1, d2) && s1 == s2 + // | (TypAp(d1, ty1), TypAp(d2, ty2)) => fast_equal(d1, d2) && ty1 == ty2 + // | (Ap(d11, d21), Ap(d12, d22)) + // | (Cons(d11, d21), Cons(d12, d22)) => + // fast_equal(d11, d12) && fast_equal(d21, d22) + // | (ListConcat(d11, d21), ListConcat(d12, d22)) => + // fast_equal(d11, d12) && fast_equal(d21, d22) + // | (Tuple(ds1), Tuple(ds2)) => + // List.length(ds1) == List.length(ds2) + // && List.for_all2(fast_equal, ds1, ds2) + // | (Prj(d1, n), Prj(d2, m)) => n == m && fast_equal(d1, d2) + // | (ApBuiltin(f1, d1), ApBuiltin(f2, d2)) => f1 == f2 && d1 == d2 + // | (BuiltinFun(f1), BuiltinFun(f2)) => f1 == f2 + // | (ListLit(_, _, _, ds1), ListLit(_, _, _, ds2)) => + // List.length(ds1) == List.length(ds2) + // && List.for_all2(fast_equal, ds1, ds2) + // | (BinBoolOp(op1, d11, d21), BinBoolOp(op2, d12, d22)) => + // op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) + // | (BinIntOp(op1, d11, d21), BinIntOp(op2, d12, d22)) => + // op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) + // | (BinFloatOp(op1, d11, d21), BinFloatOp(op2, d12, d22)) => + // op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) + // | (BinStringOp(op1, d11, d21), BinStringOp(op2, d12, d22)) => + // op1 == op2 && fast_equal(d11, d12) && fast_equal(d21, d22) + // | (Cast(d1, ty11, ty21), Cast(d2, ty12, ty22)) + // | (FailedCast(d1, ty11, ty21), FailedCast(d2, ty12, ty22)) => + // fast_equal(d1, d2) && ty11 == ty12 && ty21 == ty22 + // | (InvalidOperation(d1, reason1), InvalidOperation(d2, reason2)) => + // fast_equal(d1, d2) && reason1 == reason2 + // | (ConsistentCase(case1), ConsistentCase(case2)) => + // fast_equal_case(case1, case2) + // | (ModuleVal(mv1, names1), ModuleVal(mv2, names2)) => + // mv1 == mv2 && names1 == names2 + // | (IfThenElse(c1, d11, d12, d13), IfThenElse(c2, d21, d22, d23)) => + // c1 == c2 + // && fast_equal(d11, d21) + // && fast_equal(d12, d22) + // && fast_equal(d13, d23) + // /* We can group these all into a `_ => false` clause; separating + // these so that we get exhaustiveness checking. */ + // | (Sequence(_), _) + // | (Filter(_), _) + // | (Let(_), _) + // | (Module(_), _) + // | (Dot(_), _) + // | (FixF(_), _) + // | (Fun(_), _) + // | (TypFun(_), _) + // | (Test(_), _) + // | (Ap(_), _) + // | (TypAp(_), _) + // | (ApBuiltin(_), _) + // | (BuiltinFun(_), _) + // | (Cons(_), _) + // | (ListConcat(_), _) + // | (ListLit(_), _) + // | (Tuple(_), _) + // | (Prj(_), _) + // | (BinBoolOp(_), _) + // | (BinIntOp(_), _) + // | (BinFloatOp(_), _) + // | (BinStringOp(_), _) + // | (Cast(_), _) + // | (FailedCast(_), _) + // | (InvalidOperation(_), _) + // | (ModuleVal(_), _) + // | (IfThenElse(_), _) + // | (ConsistentCase(_), _) => false + // /* Hole forms: when checking environments, only check that + // environment ID's are equal, don't check structural equality. + // (This resolves a performance issue with many nested holes.) */ + // | (EmptyHole(u1, i1), EmptyHole(u2, i2)) => u1 == u2 && i1 == i2 + // | (NonEmptyHole(reason1, u1, i1, d1), NonEmptyHole(reason2, u2, i2, d2)) => + // reason1 == reason2 && u1 == u2 && i1 == i2 && fast_equal(d1, d2) + // | (FreeVar(u1, i1, x1), FreeVar(u2, i2, x2)) => + // u1 == u2 && i1 == i2 && x1 == x2 + // | (InvalidText(u1, i1, text1), InvalidText(u2, i2, text2)) => + // u1 == u2 && i1 == i2 && text1 == text2 + // | (Closure(sigma1, d1), Closure(sigma2, d2)) => + // ClosureEnvironment.id_equal(sigma1, sigma2) && fast_equal(d1, d2) + // | ( + // InconsistentBranches(u1, i1, case1), + // InconsistentBranches(u2, i2, case2), + // ) => + // u1 == u2 && i1 == i2 && fast_equal_case(case1, case2) + // | (EmptyHole(_), _) + // | (NonEmptyHole(_), _) + // | (FreeVar(_), _) + // | (InvalidText(_), _) + // | (Closure(_), _) + // | (InconsistentBranches(_), _) => false + // }; + // } + // and fast_equal_case = (Case(d1, rules1, i1), Case(d2, rules2, i2)) => { + // fast_equal(d1, d2) + // && List.length(rules1) == List.length(rules2) + // && List.for_all2( + // (Rule(dp1, d1), Rule(dp2, d2)) => + // dp1 == dp2 && fast_equal(d1, d2), + // rules1, + // rules2, + // ) + // && i1 == i2; + // }; + // let assign_name_if_none = (t, name) => + // switch (t) { + // | Fun(arg, ty, body, None) => Fun(arg, ty, body, name) + // | TypFun(utpat, body, None) => TypFun(utpat, body, name) + // | _ => t + // }; + // let rec ty_subst = (s: Typ.t, x: TypVar.t, exp: DHExp.t): t => { + // let re = e2 => ty_subst(s, x, e2); + // let t_re = ty => Typ.subst(s, x, ty); + // switch (exp) { + // | Cast(t, t1, t2) => Cast(re(t), t_re(t1), t_re(t2)) + // | FixF(arg, ty, body) => FixF(arg, t_re(ty), re(body)) + // | Fun(arg, ty, body, var) => Fun(arg, t_re(ty), re(body), var) + // | TypAp(tfun, ty) => TypAp(re(tfun), t_re(ty)) + // | ListLit(mv, mvi, t, lst) => + // ListLit(mv, mvi, t_re(t), List.map(re, lst)) + // | TypFun(utpat, body, var) => + // switch (Term.UTPat.tyvar_of_utpat(utpat)) { + // | Some(x') when x == x' => exp + // | _ => + // /* Note that we do not have to worry about capture avoidance, since s will always be closed. */ + // TypFun(utpat, re(body), var) + // } + // | NonEmptyHole(errstat, mv, hid, t) => + // NonEmptyHole(errstat, mv, hid, re(t)) + // | Test(id, t) => Test(id, re(t)) + // | InconsistentBranches(mv, hid, case) => + // InconsistentBranches(mv, hid, ty_subst_case(s, x, case)) + // | Closure(ce, t) => Closure(ce, re(t)) + // | Sequence(t1, t2) => Sequence(re(t1), re(t2)) + // | Let(dhpat, t1, t2) => Let(dhpat, re(t1), re(t2)) + // | Module(dhpat, t1, t2) => Module(dhpat, re(t1), re(t2)) + // | Dot(t1, t2) => Dot(re(t1), re(t2)) + // | Ap(t1, t2) => Ap(re(t1), re(t2)) + // | ApBuiltin(s, args) => ApBuiltin(s, re(args)) + // | BinBoolOp(op, t1, t2) => BinBoolOp(op, re(t1), re(t2)) + // | BinIntOp(op, t1, t2) => BinIntOp(op, re(t1), re(t2)) + // | BinFloatOp(op, t1, t2) => BinFloatOp(op, re(t1), re(t2)) + // | BinStringOp(op, t1, t2) => BinStringOp(op, re(t1), re(t2)) + // | Cons(t1, t2) => Cons(re(t1), re(t2)) + // | ListConcat(t1, t2) => ListConcat(re(t1), re(t2)) + // | Tuple(args) => Tuple(List.map(re, args)) + // | Prj(t, n) => Prj(re(t), n) + // | ConsistentCase(case) => ConsistentCase(ty_subst_case(s, x, case)) + // | InvalidOperation(t, err) => InvalidOperation(re(t), err) + // | Filter(filt, exp) => Filter(DHFilter.map(re, filt), re(exp)) + // | IfThenElse(consis, i, t, e) => + // IfThenElse(consis, re(i), re(t), re(e)) + // | BuiltinFun(_) + // | EmptyHole(_) + // | FreeVar(_, _, _) + // | InvalidText(_, _, _) + // | Constructor(_) + // | BoundVar(_) + // | BoolLit(_) + // | IntLit(_) + // | FloatLit(_) + // | StringLit(_) + // | ModuleVal(_) + // | FailedCast(_, _, _) => exp + // }; + // } + // and ty_subst_case = (s, x, Case(t, rules, n)) => + // Case( + // ty_subst(s, x, t), + // List.map( + // (DHExp.Rule(dhpat, t)) => DHExp.Rule(dhpat, ty_subst(s, x, t)), + // rules, + // ), + // n, + // ); + // //TODO: Inconsistent cases: need to check again for inconsistency? + // } + // and Environment: { + // include + // (module type of VarBstMap.Ordered) with + // type t_('a) = VarBstMap.Ordered.t_('a); + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = t_(DHExp.t); + // } = { + // include VarBstMap.Ordered; + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = t_(DHExp.t); + // } + // and ClosureEnvironment: { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t; + // let wrap: (EnvironmentId.t, Environment.t) => t; + // let id_of: t => EnvironmentId.t; + // let map_of: t => Environment.t; + // let to_list: t => list((Var.t, DHExp.t)); + // let of_environment: Environment.t => t; + // let id_equal: (t, t) => bool; + // let empty: t; + // let is_empty: t => bool; + // let length: t => int; + // let lookup: (t, Var.t) => option(DHExp.t); + // let contains: (t, Var.t) => bool; + // let update: (Environment.t => Environment.t, t) => t; + // let update_keep_id: (Environment.t => Environment.t, t) => t; + // let extend: (t, (Var.t, DHExp.t)) => t; + // let extend_keep_id: (t, (Var.t, DHExp.t)) => t; + // let union: (t, t) => t; + // let union_keep_id: (t, t) => t; + // let map: (((Var.t, DHExp.t)) => DHExp.t, t) => t; + // let map_keep_id: (((Var.t, DHExp.t)) => DHExp.t, t) => t; + // let filter: (((Var.t, DHExp.t)) => bool, t) => t; + // let filter_keep_id: (((Var.t, DHExp.t)) => bool, t) => t; + // let fold: (((Var.t, DHExp.t), 'b) => 'b, 'b, t) => 'b; + // let without_keys: (list(Var.t), t) => t; + // let placeholder: t; + // } = { + // module Inner: { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t; + // let wrap: (EnvironmentId.t, Environment.t) => t; + // let id_of: t => EnvironmentId.t; + // let map_of: t => Environment.t; + // } = { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = (EnvironmentId.t, Environment.t); + // let wrap = (ei, map): t => (ei, map); + // let id_of = ((ei, _)) => ei; + // let map_of = ((_, map)) => map; + // let (sexp_of_t, t_of_sexp) = + // StructureShareSexp.structure_share_here(id_of, sexp_of_t, t_of_sexp); + // }; + // include Inner; + // let to_list = env => env |> map_of |> Environment.to_listo; + // let of_environment = map => { + // let ei = Id.mk(); + // wrap(ei, map); + // }; + // /* Equals only needs to check environment id's (faster than structural equality + // * checking.) */ + // let id_equal = (env1, env2) => id_of(env1) == id_of(env2); + // let empty = Environment.empty |> of_environment; + // let is_empty = env => env |> map_of |> Environment.is_empty; + // let length = env => Environment.length(map_of(env)); + // let lookup = (env, x) => + // env |> map_of |> (map => Environment.lookup(map, x)); + // let contains = (env, x) => + // env |> map_of |> (map => Environment.contains(map, x)); + // let update = (f, env) => env |> map_of |> f |> of_environment; + // let update_keep_id = (f, env) => env |> map_of |> f |> wrap(env |> id_of); + // let extend = (env, xr) => + // env |> update(map => Environment.extend(map, xr)); + // let extend_keep_id = (env, xr) => + // env |> update_keep_id(map => Environment.extend(map, xr)); + // let union = (env1, env2) => + // env2 |> update(map2 => Environment.union(env1 |> map_of, map2)); + // let union_keep_id = (env1, env2) => + // env2 |> update_keep_id(map2 => Environment.union(env1 |> map_of, map2)); + // let map = (f, env) => env |> update(Environment.mapo(f)); + // let map_keep_id = (f, env) => env |> update_keep_id(Environment.mapo(f)); + // let filter = (f, env) => env |> update(Environment.filtero(f)); + // let filter_keep_id = (f, env) => + // env |> update_keep_id(Environment.filtero(f)); + // let fold = (f, init, env) => env |> map_of |> Environment.foldo(f, init); + // let placeholder = wrap(EnvironmentId.invalid, Environment.empty); + // let without_keys = keys => update(Environment.without_keys(keys)); + // } + // and Filter: { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = { + // pat: DHExp.t, + // act: FilterAction.t, + // }; + // let mk: (DHExp.t, FilterAction.t) => t; + // let map: (DHExp.t => DHExp.t, t) => t; + // let strip_casts: t => t; + // let fast_equal: (t, t) => bool; + // } = { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = { + // pat: DHExp.t, + // act: FilterAction.t, + // }; + // let mk = (pat: DHExp.t, act: FilterAction.t): t => {pat, act}; + // let map = (f: DHExp.t => DHExp.t, filter: t): t => { + // ...filter, + // pat: f(filter.pat), + // }; + // let fast_equal = (f1: t, f2: t): bool => { + // DHExp.fast_equal(f1.pat, f2.pat) && f1.act == f2.act; + // }; + // let strip_casts = (f: t): t => {...f, pat: f.pat |> DHExp.strip_casts}; + // } + // and DHFilter: { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = + // | Filter(Filter.t) + // | Residue(int, FilterAction.t); + // let fast_equal: (t, t) => bool; + // let strip_casts: t => t; + // let map: (DHExp.t => DHExp.t, t) => t; + // } = { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = + // | Filter(Filter.t) + // | Residue(int, FilterAction.t); + // let fast_equal = (f1: t, f2: t) => { + // switch (f1, f2) { + // | (Filter(flt1), Filter(flt2)) => Filter.fast_equal(flt1, flt2) + // | (Residue(idx1, act1), Residue(idx2, act2)) => + // idx1 == idx2 && act1 == act2 + // | _ => false + // }; + // }; + // let strip_casts = f => { + // switch (f) { + // | Filter(flt) => Filter(Filter.strip_casts(flt)) + // | Residue(idx, act) => Residue(idx, act) + // }; + // }; + // let map = (mapper, filter) => { + // switch (filter) { + // | Filter(flt) => Filter(Filter.map(mapper, flt)) + // | Residue(idx, act) => Residue(idx, act) + // }; + // }; + // } + // and FilterEnvironment: { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = list(Filter.t); + // let extends: (Filter.t, t) => t; + // } = { + // [@deriving (show({with_path: false}), sexp, yojson)] + // type t = list(Filter.t); + // let extends = (flt, env) => [flt, ...env]; + // }; diff --git a/src/haz3lcore/dynamics/DHExp.re b/src/haz3lcore/dynamics/DHExp.re index ca152a800e..f7651ba963 100644 --- a/src/haz3lcore/dynamics/DHExp.re +++ b/src/haz3lcore/dynamics/DHExp.re @@ -1 +1,153 @@ -include DH.DHExp; +/* DHExp.re + + This module is specifically for dynamic expressions. They are stored + using the same data structure as user expressions, have been modified + slightly as described in Elaborator.re. + */ + +include Exp; + +let term_of: t => term = IdTagged.term_of; +let fast_copy: (Id.t, t) => t = IdTagged.fast_copy; + +let mk = (ids, term): t => { + {ids, copied: true, term}; +}; + +// TODO: make this function emit a map of changes +let replace_all_ids = + map_term( + ~f_exp=(continue, exp) => {...exp, ids: [Id.mk()]} |> continue, + ~f_pat=(continue, exp) => {...exp, ids: [Id.mk()]} |> continue, + ~f_typ=(continue, exp) => {...exp, ids: [Id.mk()]} |> continue, + ~f_tpat=(continue, exp) => {...exp, ids: [Id.mk()]} |> continue, + ~f_rul=(continue, exp) => {...exp, ids: [Id.mk()]} |> continue, + ); + +// TODO: make this function emit a map of changes +let repair_ids = + map_term( + ~f_exp= + (continue, exp) => + if (exp.copied) { + replace_all_ids(exp); + } else { + continue(exp); + }, + _, + ); + +// Also strips static error holes - kinda like unelaboration +let rec strip_casts = + map_term( + ~f_exp= + (continue, exp) => { + switch (term_of(exp)) { + /* Leave non-casts unchanged */ + | Tuple(_) + | Cons(_) + | ListConcat(_) + | ListLit(_) + | MultiHole(_) + | Seq(_) + | Filter(_) + | Let(_) + | FixF(_) + | TyAlias(_) + | Fun(_) + | Ap(_) + | Deferral(_) + | DeferredAp(_) + | Test(_) + | BuiltinFun(_) + | UnOp(_) + | BinOp(_) + | Match(_) + | Parens(_) + | EmptyHole + | Invalid(_) + | Var(_) + | Bool(_) + | Int(_) + | Float(_) + | String(_) + | Constructor(_) + | DynamicErrorHole(_) + | Closure(_) + | TypFun(_) + | TypAp(_) + | Undefined + | If(_) => continue(exp) + /* Remove casts*/ + | FailedCast(d, _, _) + | Cast(d, _, _) => strip_casts(d) + } + }, + _, + ); + +let assign_name_if_none = (t, name) => { + let (term, rewrap) = unwrap(t); + switch (term) { + | Fun(arg, ty, body, None) => Fun(arg, ty, body, name) |> rewrap + | TypFun(utpat, body, None) => TypFun(utpat, body, name) |> rewrap + | _ => t + }; +}; + +let ty_subst = (s: Typ.t, tpat: TPat.t, exp: t): t => { + switch (TPat.tyvar_of_utpat(tpat)) { + | None => exp + | Some(x) => + Exp.map_term( + ~f_typ=(_, typ) => Typ.subst(s, tpat, typ), + ~f_exp= + (continue, exp) => + switch (term_of(exp)) { + | TypFun(utpat, _, _) => + switch (TPat.tyvar_of_utpat(utpat)) { + | Some(x') when x == x' => exp + | Some(_) + | None => continue(exp) + /* Note that we do not have to worry about capture avoidance, since s will always be closed. */ + } + | Cast(_) + | FixF(_) + | Fun(_) + | TypAp(_) + | ListLit(_) + | Test(_) + | Closure(_) + | Seq(_) + | Let(_) + | Ap(_) + | BuiltinFun(_) + | BinOp(_) + | Cons(_) + | ListConcat(_) + | Tuple(_) + | Match(_) + | DynamicErrorHole(_) + | Filter(_) + | If(_) + | EmptyHole + | Invalid(_) + | Undefined + | Constructor(_) + | Var(_) + | Bool(_) + | Int(_) + | Float(_) + | String(_) + | FailedCast(_, _, _) + | MultiHole(_) + | Deferral(_) + | TyAlias(_) + | DeferredAp(_) + | Parens(_) + | UnOp(_) => continue(exp) + }, + exp, + ) + }; +}; diff --git a/src/haz3lcore/dynamics/DHPat.re b/src/haz3lcore/dynamics/DHPat.re index fd7c821445..f9e4adbddb 100644 --- a/src/haz3lcore/dynamics/DHPat.re +++ b/src/haz3lcore/dynamics/DHPat.re @@ -1,68 +1,54 @@ -open Sexplib.Std; +include Pat; -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | EmptyHole(MetaVar.t, MetaVarInst.t) - | NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, MetaVarInst.t, t) - | Wild - | InvalidText(MetaVar.t, MetaVarInst.t, string) - | BadConstructor(MetaVar.t, MetaVarInst.t, string) - | Var(Var.t) - | IntLit(int) - | FloatLit(float) - | BoolLit(bool) - | StringLit(string) - | ListLit(Typ.t, list(t)) - | Cons(t, t) - | Tuple(list(t)) - | Constructor(string) - | Ap(t, t); - -let mk_tuple: list(t) => t = - fun - | [] - | [_] => failwith("mk_tuple: expected at least 2 elements") - | dps => Tuple(dps); +/* A Dynamic Pattern (DHPat) is a pattern that is part of an expression + that has been type-checked. Hence why these functions take both a + pattern, dp, and an info map, m, with type information. */ /** * Whether dp contains the variable x outside of a hole. */ -let rec binds_var = (x: Var.t, dp: t): bool => - switch (dp) { - | EmptyHole(_, _) - | NonEmptyHole(_, _, _, _) - | Wild - | InvalidText(_) - | BadConstructor(_) - | IntLit(_) - | FloatLit(_) - | BoolLit(_) - | StringLit(_) - | Constructor(_) => false - | Var(y) => Var.eq(x, y) - | Tuple(dps) => dps |> List.exists(binds_var(x)) - | Cons(dp1, dp2) => binds_var(x, dp1) || binds_var(x, dp2) - | ListLit(_, d_list) => - let new_list = List.map(binds_var(x), d_list); - List.fold_left((||), false, new_list); - | Ap(_, _) => false +let rec binds_var = (m: Statics.Map.t, x: Var.t, dp: t): bool => + switch (Statics.get_pat_error_at(m, rep_id(dp))) { + | Some(_) => false + | None => + switch (dp |> term_of) { + | EmptyHole + | MultiHole(_) + | Wild + | Invalid(_) + | Int(_) + | Float(_) + | Bool(_) + | String(_) + | Constructor(_) => false + | Cast(y, _, _) + | Parens(y) => binds_var(m, x, y) + | Var(y) => Var.eq(x, y) + | Tuple(dps) => dps |> List.exists(binds_var(m, x)) + | Cons(dp1, dp2) => binds_var(m, x, dp1) || binds_var(m, x, dp2) + | ListLit(d_list) => + let new_list = List.map(binds_var(m, x), d_list); + List.fold_left((||), false, new_list); + | Ap(_, _) => false + } }; let rec bound_vars = (dp: t): list(Var.t) => - switch (dp) { - | EmptyHole(_, _) - | NonEmptyHole(_, _, _, _) + switch (dp |> term_of) { + | EmptyHole + | MultiHole(_) | Wild - | InvalidText(_) - | BadConstructor(_) - | IntLit(_) - | FloatLit(_) - | BoolLit(_) - | StringLit(_) + | Invalid(_) + | Int(_) + | Float(_) + | Bool(_) + | String(_) | Constructor(_) => [] + | Cast(y, _, _) + | Parens(y) => bound_vars(y) | Var(y) => [y] | Tuple(dps) => List.flatten(List.map(bound_vars, dps)) | Cons(dp1, dp2) => bound_vars(dp1) @ bound_vars(dp2) - | ListLit(_, dps) => List.flatten(List.map(bound_vars, dps)) + | ListLit(dps) => List.flatten(List.map(bound_vars, dps)) | Ap(_, dp1) => bound_vars(dp1) }; diff --git a/src/haz3lcore/dynamics/Delta.re b/src/haz3lcore/dynamics/Delta.re index 8a492c9c20..fee0455685 100644 --- a/src/haz3lcore/dynamics/Delta.re +++ b/src/haz3lcore/dynamics/Delta.re @@ -4,5 +4,9 @@ type hole_sort = | PatternHole; [@deriving sexp] -type t = MetaVarMap.t((hole_sort, Typ.t, VarCtx.t)); -let empty: t = (MetaVarMap.empty: t); +type val_ty = (hole_sort, Typ.t, Ctx.t); + +[@deriving sexp] +type t = Id.Map.t(val_ty); + +let empty: t = (Id.Map.empty: t); diff --git a/src/haz3lcore/dynamics/Delta.rei b/src/haz3lcore/dynamics/Delta.rei index d37de1926b..ce58db058d 100644 --- a/src/haz3lcore/dynamics/Delta.rei +++ b/src/haz3lcore/dynamics/Delta.rei @@ -4,6 +4,9 @@ type hole_sort = | PatternHole; [@deriving sexp] -type t = MetaVarMap.t((hole_sort, Typ.t, VarCtx.t)); +type val_ty = (hole_sort, Typ.t, Ctx.t); + +[@deriving sexp] +type t = Id.Map.t(val_ty); let empty: t; diff --git a/src/haz3lcore/dynamics/Elaborator.re b/src/haz3lcore/dynamics/Elaborator.re index b72067c38b..b71166dd87 100644 --- a/src/haz3lcore/dynamics/Elaborator.re +++ b/src/haz3lcore/dynamics/Elaborator.re @@ -1,5 +1,15 @@ +/* + A nice property would be that elaboration is idempotent... + */ + open Util; -open OptUtil.Syntax; + +exception MissingTypeInfo; + +module Elaboration = { + [@deriving (show({with_path: false}), sexp, yojson)] + type t = {d: DHExp.t}; +}; module ElaborationResult = { [@deriving sexp] @@ -8,531 +18,610 @@ module ElaborationResult = { | DoesNotElaborate; }; -let exp_binop_of: Term.UExp.op_bin => (Typ.t, (_, _) => DHExp.t) = - fun - | Int(op) => (Int, ((e1, e2) => BinIntOp(op, e1, e2))) - | Float(op) => (Float, ((e1, e2) => BinFloatOp(op, e1, e2))) - | Bool(op) => (Bool, ((e1, e2) => BinBoolOp(op, e1, e2))) - | String(op) => (String, ((e1, e2) => BinStringOp(op, e1, e2))); +let fresh_cast = (d: DHExp.t, t1: Typ.t, t2: Typ.t): DHExp.t => { + Typ.eq(t1, t2) + ? d + : { + let d' = + DHExp.Cast(d, t1, Typ.temp(Unknown(Internal))) + |> DHExp.fresh + |> Casts.transition_multiple; + DHExp.Cast(d', Typ.temp(Unknown(Internal)), t2) + |> DHExp.fresh + |> Casts.transition_multiple; + }; +}; -let fixed_exp_typ = (m: Statics.Map.t, e: Term.UExp.t): option(Typ.t) => - switch (Id.Map.find_opt(Term.UExp.rep_id(e), m)) { - | Some(InfoExp({ty, _})) => Some(ty) - | _ => None - }; +let fresh_pat_cast = (p: DHPat.t, t1: Typ.t, t2: Typ.t): DHPat.t => { + Typ.eq(t1, t2) + ? p + : { + Cast( + DHPat.fresh(Cast(p, t1, Typ.temp(Unknown(Internal)))) + |> Casts.pattern_fixup, + Typ.temp(Unknown(Internal)), + t2, + ) + |> DHPat.fresh + |> Casts.pattern_fixup; + }; +}; -let fixed_pat_typ = (m: Statics.Map.t, p: Term.UPat.t): option(Typ.t) => - switch (Id.Map.find_opt(Term.UPat.rep_id(p), m)) { - | Some(InfoPat({ty, _})) => Some(ty) - | _ => None - }; +let elaborated_type = (m: Statics.Map.t, uexp: UExp.t): (Typ.t, Ctx.t, 'a) => { + let (mode, self_ty, ctx, co_ctx) = + switch (Id.Map.find_opt(Exp.rep_id(uexp), m)) { + | Some(Info.InfoExp({mode, ty, ctx, co_ctx, _})) => ( + mode, + ty, + ctx, + co_ctx, + ) + | _ => raise(MissingTypeInfo) + }; + let elab_ty = + switch (mode) { + | Syn => self_ty + | SynFun => + let (ty1, ty2) = Typ.matched_arrow(ctx, self_ty); + Typ.Arrow(ty1, ty2) |> Typ.temp; + | SynTypFun => + let (tpat, ty) = Typ.matched_forall(ctx, self_ty); + let tpat = Option.value(tpat, ~default=TPat.fresh(EmptyHole)); + Typ.Forall(tpat, ty) |> Typ.temp; + // We need to remove the synswitches from this type. + | Ana(ana_ty) => Typ.match_synswitch(ana_ty, self_ty) + }; + (elab_ty |> Typ.normalize(ctx), ctx, co_ctx); +}; -let cast = (ctx: Ctx.t, mode: Mode.t, self_ty: Typ.t, d: DHExp.t) => - switch (mode) { - | Syn => d - | SynFun => - switch (self_ty) { - | Unknown(prov) => - DHExp.cast(d, Unknown(prov), Arrow(Unknown(prov), Unknown(prov))) - | Arrow(_) => d - | _ => failwith("Elaborator.wrap: SynFun non-arrow-type") - } - | SynTypFun => - switch (self_ty) { - | Unknown(prov) => - /* ? |> forall _. ? */ - DHExp.cast(d, Unknown(prov), Forall("_", Unknown(prov))) - | Forall(_) => d - | _ => failwith("Elaborator.wrap: SynTypFun non-forall-type") - } - | Ana(ana_ty) => - let ana_ty = Typ.normalize(ctx, ana_ty); - /* Forms with special ana rules get cast from their appropriate Matched types */ - switch (d) { - | ListLit(_) - | ListConcat(_) - | Cons(_) => - switch (ana_ty) { - | Unknown(prov) => DHExp.cast(d, List(Unknown(prov)), Unknown(prov)) - | _ => d - } - | Fun(_) => - /* See regression tests in Documentation/Dynamics */ - let (_, ana_out) = Typ.matched_arrow(ctx, ana_ty); - let (self_in, _) = Typ.matched_arrow(ctx, self_ty); - DHExp.cast(d, Arrow(self_in, ana_out), ana_ty); - | TypFun(_) => - switch (ana_ty) { - | Unknown(prov) => - DHExp.cast(d, Forall("grounded_forall", Unknown(prov)), ana_ty) - | _ => d - } - | Tuple(ds) => - switch (ana_ty) { - | Unknown(prov) => - let us = List.init(List.length(ds), _ => Typ.Unknown(prov)); - DHExp.cast(d, Prod(us), Unknown(prov)); - | _ => d - } - | Ap(NonEmptyHole(_, _, _, Constructor(_)), _) - | Ap(Constructor(_), _) - | TypAp(Constructor(_), _) - | Constructor(_) => - switch (ana_ty, self_ty) { - | (Unknown(prov), Rec(_, Sum(_))) - | (Unknown(prov), Sum(_)) => DHExp.cast(d, self_ty, Unknown(prov)) - | (_, Module(_)) - | (Module(_), _) => DHExp.cast(d, self_ty, ana_ty) - | _ => d +let elaborated_pat_type = (m: Statics.Map.t, upat: UPat.t): (Typ.t, Ctx.t) => { + let (mode, self_ty, ctx, prev_synswitch) = + switch (Id.Map.find_opt(UPat.rep_id(upat), m)) { + | Some(Info.InfoPat({mode, ty, ctx, prev_synswitch, _})) => ( + mode, + ty, + ctx, + prev_synswitch, + ) + | _ => raise(MissingTypeInfo) + }; + let elab_ty = + switch (mode) { + | Syn => self_ty + | SynFun => + let (ty1, ty2) = Typ.matched_arrow(ctx, self_ty); + Typ.Arrow(ty1, ty2) |> Typ.temp; + | SynTypFun => + let (tpat, ty) = Typ.matched_forall(ctx, self_ty); + let tpat = Option.value(tpat, ~default=TPat.fresh(EmptyHole)); + Typ.Forall(tpat, ty) |> Typ.temp; + | Ana(ana_ty) => + switch (prev_synswitch) { + | None => ana_ty + | Some(syn_ty) => Typ.match_synswitch(syn_ty, ana_ty) } - /* Forms with special ana rules but no particular typing requirements */ - | ConsistentCase(_) - | InconsistentBranches(_) - | IfThenElse(_) - | Sequence(_) - | Let(_) - | Module(_) - | Dot(_) - | FixF(_) => d - /* Hole-like forms: Don't cast */ - | InvalidText(_) - | FreeVar(_) - | EmptyHole(_) - | NonEmptyHole(_) => d - /* DHExp-specific forms: Don't cast */ - | Cast(_) - | Closure(_) - | Filter(_) - | FailedCast(_) - | InvalidOperation(_) => d - /* Normal cases: wrap */ - | BoundVar(_) - | ModuleVal(_) - | Ap(_) - | ApBuiltin(_) - | BuiltinFun(_) - | Prj(_) - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | BinBoolOp(_) - | BinIntOp(_) - | BinFloatOp(_) - | BinStringOp(_) - | Test(_) - | TypAp(_) => - // TODO: check with andrew - DHExp.cast(d, self_ty, ana_ty) }; - }; + (elab_ty |> Typ.normalize(ctx), ctx); +}; -/* Handles cast insertion and non-empty-hole wrapping - for elaborated expressions */ -let wrap = (ctx: Ctx.t, u: Id.t, mode: Mode.t, self, d: DHExp.t): DHExp.t => - switch (Info.status_exp(ctx, mode, self)) { - | NotInHole(_) => - let self_ty = - switch (Self.typ_of_exp(ctx, self)) { - | Some(self_ty) => Typ.normalize(ctx, self_ty) - | None => Unknown(Internal) - }; - cast(ctx, mode, self_ty, d); - | InHole(_) => NonEmptyHole(TypeInconsistent, u, 0, d) - }; +let rec elaborate_pattern = + (m: Statics.Map.t, upat: UPat.t): (DHPat.t, Typ.t) => { + let (elaborated_type, ctx) = elaborated_pat_type(m, upat); + let cast_from = (ty, exp) => fresh_pat_cast(exp, ty, elaborated_type); + let (term, rewrap) = UPat.unwrap(upat); + let dpat = + switch (term) { + | Int(_) => upat |> cast_from(Int |> Typ.temp) + | Bool(_) => upat |> cast_from(Bool |> Typ.temp) + | Float(_) => upat |> cast_from(Float |> Typ.temp) + | String(_) => upat |> cast_from(String |> Typ.temp) + | ListLit(ps) => + let (ps, tys) = List.map(elaborate_pattern(m), ps) |> ListUtil.unzip; + let inner_type = + tys + |> Typ.join_all(~empty=Unknown(Internal) |> Typ.temp, ctx) + |> Option.value(~default=Typ.temp(Unknown(Internal))); + ps + |> List.map2((p, t) => fresh_pat_cast(p, t, inner_type), _, tys) + |> ( + ps' => + DHPat.ListLit(ps') + |> rewrap + |> cast_from(List(inner_type) |> Typ.temp) + ); + | Cons(p1, p2) => + let (p1', ty1) = elaborate_pattern(m, p1); + let (p2', ty2) = elaborate_pattern(m, p2); + let ty2_inner = Typ.matched_list(ctx, ty2); + let ty_inner = + Typ.join(~fix=false, ctx, ty1, ty2_inner) + |> Option.value(~default=Typ.temp(Unknown(Internal))); + let p1'' = fresh_pat_cast(p1', ty1, ty_inner); + let p2'' = fresh_pat_cast(p2', ty2, List(ty_inner) |> Typ.temp); + DHPat.Cons(p1'', p2'') + |> rewrap + |> cast_from(List(ty_inner) |> Typ.temp); + | Tuple(ps) => + let (ps', tys) = List.map(elaborate_pattern(m), ps) |> ListUtil.unzip; + DHPat.Tuple(ps') |> rewrap |> cast_from(Typ.Prod(tys) |> Typ.temp); + | Ap(p1, p2) => + let (p1', ty1) = elaborate_pattern(m, p1); + let (p2', ty2) = elaborate_pattern(m, p2); + let (ty1l, ty1r) = Typ.matched_arrow(ctx, ty1); + let p1'' = fresh_pat_cast(p1', ty1, Arrow(ty1l, ty1r) |> Typ.temp); + let p2'' = fresh_pat_cast(p2', ty2, ty1l); + DHPat.Ap(p1'', p2'') |> rewrap |> cast_from(ty1r); + | Invalid(_) + | EmptyHole + | MultiHole(_) + | Wild => upat |> cast_from(Typ.temp(Unknown(Internal))) + | Var(v) => + upat + |> cast_from( + Ctx.lookup_var(ctx, v) + |> Option.map((x: Ctx.var_entry) => x.typ |> Typ.normalize(ctx)) + |> Option.value(~default=Typ.temp(Unknown(Internal))), + ) + // Type annotations should already appear + | Parens(p) + | Cast(p, _, _) => + let (p', ty) = elaborate_pattern(m, p); + p' |> cast_from(ty |> Typ.normalize(ctx)); + | Constructor(c, _) => + let mode = + switch (Id.Map.find_opt(Pat.rep_id(upat), m)) { + | Some(Info.InfoPat({mode, _})) => mode + | _ => raise(MissingTypeInfo) + }; + let t = + switch (Mode.ctr_ana_typ(ctx, mode, c), Ctx.lookup_ctr(ctx, c)) { + | (Some(ana_ty), _) => ana_ty + | (_, Some({typ: syn_ty, _})) => syn_ty + | _ => Unknown(Internal) |> Typ.temp + }; + let t = t |> Typ.normalize(ctx); + Constructor(c, t) |> rewrap |> cast_from(t); + }; + (dpat, elaborated_type); +}; -let rec dhexp_of_uexp = - (m: Statics.Map.t, uexp: Term.UExp.t, in_filter: bool) - : option(DHExp.t) => { - let dhexp_of_uexp = (~in_filter=in_filter, m, uexp) => { - dhexp_of_uexp(m, uexp, in_filter); - }; - switch (Id.Map.find_opt(Term.UExp.rep_id(uexp), m)) { - | Some(InfoExp({mode, self, ctx, ancestors, co_ctx, _})) => - let err_status = Info.status_exp(ctx, mode, self); - let id = Term.UExp.rep_id(uexp); /* NOTE: using term uids for hole ids */ - let+ d: DHExp.t = - switch (uexp.term) { - | Invalid(t) => Some(DHExp.InvalidText(id, 0, t)) - | EmptyHole => Some(DHExp.EmptyHole(id, 0)) - | MultiHole(_tms) => - /* TODO: add a dhexp case and eval logic for multiholes. - Make sure new dhexp form is properly considered Indet - to avoid casting issues. */ - Some(EmptyHole(id, 0)) - | Triv => Some(Tuple([])) - | Deferral(_) => Some(DHExp.InvalidText(id, 0, "_")) - | Bool(b) => Some(BoolLit(b)) - | Int(n) => Some(IntLit(n)) - | Float(n) => Some(FloatLit(n)) - | String(s) => Some(StringLit(s)) - | ListLit(es) => - let* ds = es |> List.map(dhexp_of_uexp(m)) |> OptUtil.sequence; - let+ ty = fixed_exp_typ(m, uexp); - let ty = Typ.matched_list(ctx, ty); - DHExp.ListLit(id, 0, ty, ds); - | Fun(p, body) => - let* dp = dhpat_of_upat(m, p); - let* d1 = dhexp_of_uexp(m, body); - let+ ty = fixed_pat_typ(m, p); - DHExp.Fun(dp, ty, d1, None); - | TypFun(tpat, body) => - let+ d1 = dhexp_of_uexp(m, body); - DHExp.TypFun(tpat, d1, None); - | Tuple(es) => - let+ ds = es |> List.map(dhexp_of_uexp(m)) |> OptUtil.sequence; - DHExp.Tuple(ds); - | Cons(e1, e2) => - let* dc1 = dhexp_of_uexp(m, e1); - let+ dc2 = dhexp_of_uexp(m, e2); - DHExp.Cons(dc1, dc2); - | ListConcat(e1, e2) => - let* dc1 = dhexp_of_uexp(m, e1); - let+ dc2 = dhexp_of_uexp(m, e2); - DHExp.ListConcat(dc1, dc2); - | UnOp(Meta(Unquote), e) => - switch (e.term) { - | Var("e") when in_filter => Some(Constructor("$e")) - | Var("v") when in_filter => Some(Constructor("$v")) - | _ => Some(DHExp.EmptyHole(id, 0)) - } - | UnOp(Int(Minus), e) => - let+ dc = dhexp_of_uexp(m, e); - DHExp.BinIntOp(Minus, IntLit(0), dc); - | UnOp(Bool(Not), e) => - let+ d_scrut = dhexp_of_uexp(m, e); - let d_rules = - DHExp.[ - Rule(BoolLit(true), BoolLit(false)), - Rule(BoolLit(false), BoolLit(true)), - ]; - let d = DHExp.ConsistentCase(DHExp.Case(d_scrut, d_rules, 0)); - /* Manually construct cast (case is not otherwise cast) */ - switch (mode) { - | Ana(ana_ty) => DHExp.cast(d, Bool, ana_ty) - | _ => d +/* The primary goal of elaboration is to convert from a type system + where we have consistency, to a type system where types are either + equal or they're not. Anything that was just consistent needs to + become a cast. [The one other thing elaboration does is make + recursive let bindings explicit.] + + At the top of this function we work out the "elaborated type" of + of the expression. We also return this elaborated type so we can + use it in the recursive call. When elaborate returns, you can trust + that the returned expression will have the returned type. There is + however, no guarantee that the returned type is even consistent with + the "elaborated type" at the top, so you should fresh_cast EVERYWHERE + just in case. + + Important invariant: any cast in an elaborated expression should have + normalized types. + + [Matt] A lot of these fresh_cast calls are redundant, however if you + want to remove one, I'd ask you instead comment it out and leave + a comment explaining why it's redundant. */ +let rec elaborate = (m: Statics.Map.t, uexp: UExp.t): (DHExp.t, Typ.t) => { + let (elaborated_type, ctx, co_ctx) = elaborated_type(m, uexp); + let cast_from = (ty, exp) => fresh_cast(exp, ty, elaborated_type); + let (term, rewrap) = UExp.unwrap(uexp); + let dhexp = + switch (term) { + | Invalid(_) + | Undefined + | EmptyHole => uexp |> cast_from(Typ.temp(Typ.Unknown(Internal))) + | MultiHole(stuff) => + Any.map_term( + ~f_exp=(_, exp) => {elaborate(m, exp) |> fst}, + ~f_pat=(_, pat) => {elaborate_pattern(m, pat) |> fst}, + _, + ) + |> List.map(_, stuff) + |> ( + stuff => + DHExp.MultiHole(stuff) + |> rewrap + |> cast_from(Typ.temp(Typ.Unknown(Internal))) + ) + | DynamicErrorHole(e, err) => + let (e', _) = elaborate(m, e); + DynamicErrorHole(e', err) + |> rewrap + |> cast_from(Typ.temp(Unknown(Internal))); + | Cast(e, _, _) // We remove these casts because they should be re-inserted in the recursive call + | FailedCast(e, _, _) + | Parens(e) => + let (e', ty) = elaborate(m, e); + e' |> cast_from(ty); + | Deferral(_) => uexp + | Int(_) => uexp |> cast_from(Int |> Typ.temp) + | Bool(_) => uexp |> cast_from(Bool |> Typ.temp) + | Float(_) => uexp |> cast_from(Float |> Typ.temp) + | String(_) => uexp |> cast_from(String |> Typ.temp) + | ListLit(es) => + let (ds, tys) = List.map(elaborate(m), es) |> ListUtil.unzip; + let inner_type = + Typ.join_all(~empty=Typ.Unknown(Internal) |> Typ.temp, ctx, tys) + |> Option.value(~default=Typ.temp(Typ.Unknown(Internal))); + let ds' = List.map2((d, t) => fresh_cast(d, t, inner_type), ds, tys); + Exp.ListLit(ds') |> rewrap |> cast_from(List(inner_type) |> Typ.temp); + | Constructor(c, _) => + let mode = + switch (Id.Map.find_opt(Exp.rep_id(uexp), m)) { + | Some(Info.InfoExp({mode, _})) => mode + | _ => raise(MissingTypeInfo) }; - | BinOp(op, e1, e2) => - let (_, cons) = exp_binop_of(op); - let* dc1 = dhexp_of_uexp(m, e1); - let+ dc2 = dhexp_of_uexp(m, e2); - cons(dc1, dc2); - | Parens(e) => dhexp_of_uexp(m, e) - | Seq(e1, e2) => - let* d1 = dhexp_of_uexp(m, e1); - let+ d2 = dhexp_of_uexp(m, e2); - DHExp.Sequence(d1, d2); - | Test(test) => - let+ dtest = dhexp_of_uexp(m, test); - DHExp.Test(id, dtest); - | Filter(act, cond, body) => - let* dcond = dhexp_of_uexp(~in_filter=true, m, cond); - let+ dbody = dhexp_of_uexp(m, body); - DHExp.Filter(Filter(Filter.mk(dcond, act)), dbody); - | Var(name) => - switch (err_status) { - | InHole(FreeVariable(_)) => Some(FreeVar(id, 0, name)) - | _ => Some(BoundVar(name)) - } - | Constructor(name) => - switch (err_status) { - | InHole(Common(NoType(FreeConstructor(_)))) => - Some(FreeVar(id, 0, name)) - | _ => Some(Constructor(name)) - } - | Let(p, def, body) => - let add_name: (option(string), DHExp.t) => DHExp.t = ( - name => - fun - | Fun(p, ty, e, _) => DHExp.Fun(p, ty, e, name) - | TypFun(tpat, e, _) => DHExp.TypFun(tpat, e, name) - | d => d - ); - let* dp = dhpat_of_upat(m, p); - let* ddef = dhexp_of_uexp(m, def); - let* dbody = dhexp_of_uexp(m, body); - let+ ty = fixed_pat_typ(m, p); - let is_recursive = - Statics.is_recursive(ctx, p, def, ty) - && Term.UPat.get_bindings(p) - |> Option.get - |> List.exists(f => VarMap.lookup(co_ctx, f) != None); - if (!is_recursive) { - /* not recursive */ - DHExp.Let( - dp, - add_name(Term.UPat.get_var(p), ddef), - dbody, - ); - } else { - switch (Term.UPat.get_bindings(p) |> Option.get) { - | [f] => - /* simple recursion */ - Let(dp, FixF(f, ty, add_name(Some(f ++ "+"), ddef)), dbody) - | fs => - /* mutual recursion */ - let ddef = - switch (ddef) { - | Tuple(a) => - DHExp.Tuple( - List.map2(s => add_name(Some(s ++ "+")), fs, a), - ) - | _ => ddef - }; - let uniq_id = List.nth(def.ids, 0); - let self_id = "__mutual__" ++ Id.to_string(uniq_id); - let self_var = DHExp.BoundVar(self_id); - let (_, substituted_def) = - fs - |> List.fold_left( - ((i, ddef), f) => { - let ddef = - Substitution.subst_var( - DHExp.Prj(self_var, i), - f, - ddef, - ); - (i + 1, ddef); - }, - (0, ddef), - ); - Let(dp, FixF(self_id, ty, substituted_def), dbody); - }; + let t = + switch (Mode.ctr_ana_typ(ctx, mode, c), Ctx.lookup_ctr(ctx, c)) { + | (Some(ana_ty), _) => ana_ty + | (_, Some({typ: syn_ty, _})) => syn_ty + | _ => Unknown(Internal) |> Typ.temp }; - | Module(p, def, body) => - let* dp = dhpat_of_upat(m, p); - let* ddef = dhexp_of_uexp(m, def); - let+ dbody = dhexp_of_uexp(m, body); - /* if get module type, apply alias(Let).*/ - let is_alias = - switch (Id.Map.find_opt(Term.UExp.rep_id(def), m)) { - | Some(InfoExp({self, _})) => - switch (self) { - | Common(Just(Module(_))) => true - | _ => false - } - | _ => false + let t = t |> Typ.normalize(ctx); + Constructor(c, t) |> rewrap |> cast_from(t); + | Fun(p, e, env, n) => + let (p', typ) = elaborate_pattern(m, p); + let (e', tye) = elaborate(m, e); + Exp.Fun(p', e', env, n) + |> rewrap + |> cast_from(Arrow(typ, tye) |> Typ.temp); + | TypFun(tpat, e, name) => + let (e', tye) = elaborate(m, e); + Exp.TypFun(tpat, e', name) + |> rewrap + |> cast_from(Typ.Forall(tpat, tye) |> Typ.temp); + | Tuple(es) => + let (ds, tys) = List.map(elaborate(m), es) |> ListUtil.unzip; + Exp.Tuple(ds) |> rewrap |> cast_from(Prod(tys) |> Typ.temp); + | Var(v) => + uexp + |> cast_from( + Ctx.lookup_var(ctx, v) + |> Option.map((x: Ctx.var_entry) => x.typ |> Typ.normalize(ctx)) + |> Option.value(~default=Typ.temp(Typ.Unknown(Internal))), + ) + | Let(p, def, body) => + let add_name: (option(string), DHExp.t) => DHExp.t = ( + (name, exp) => { + let (term, rewrap) = DHExp.unwrap(exp); + switch (term) { + | Fun(p, e, ctx, _) => Fun(p, e, ctx, name) |> rewrap + | TypFun(tpat, e, _) => TypFun(tpat, e, name) |> rewrap + | _ => exp }; - let signiture = - switch (Id.Map.find_opt(Term.UPat.rep_id(p), m)) { - | Some(InfoPat({ty, _})) => - switch (ty) { - | Module(c) => c.inner_ctx - | _ => [] - } + } + ); + let (p, ty1) = elaborate_pattern(m, p); + let is_recursive = + Statics.is_recursive(ctx, p, def, ty1) + && Pat.get_bindings(p) + |> Option.get + |> List.exists(f => VarMap.lookup(co_ctx, f) != None); + if (!is_recursive) { + let def = add_name(Pat.get_var(p), def); + let (def, ty2) = elaborate(m, def); + let (body, ty) = elaborate(m, body); + Exp.Let(p, fresh_cast(def, ty2, ty1), body) + |> rewrap + |> cast_from(ty); + } else { + // TODO: Add names to mutually recursive functions + // TODO: Don't add fixpoint if there already is one + let def = add_name(Option.map(s => s ++ "+", Pat.get_var(p)), def); + let (def, ty2) = elaborate(m, def); + let (body, ty) = elaborate(m, body); + let fixf = FixF(p, fresh_cast(def, ty2, ty1), None) |> DHExp.fresh; + Exp.Let(p, fixf, body) |> rewrap |> cast_from(ty); + }; + | Module(p, def, body) => + let* dp = dhpat_of_upat(m, p); + let* ddef = dhexp_of_uexp(m, def); + let+ dbody = dhexp_of_uexp(m, body); + /* if get module type, apply alias(Let).*/ + let is_alias = + switch (Id.Map.find_opt(Term.UExp.rep_id(def), m)) { + | Some(InfoExp({self, _})) => + switch (self) { + | Common(Just(Module(_))) => true + | _ => false + } + | _ => false + }; + let signiture = + switch (Id.Map.find_opt(Term.UPat.rep_id(p), m)) { + | Some(InfoPat({ty, _})) => + switch (ty) { + | Module(c) => c.inner_ctx | _ => [] - }; - let (closure, names) = - List.fold_left( - ((closure, names): (ClosureEnvironment.t, list(Var.t))) => - fun - | Ctx.VarEntry({name, id, _}) => ( - Environment.extend( - closure |> ClosureEnvironment.map_of, - (name, EmptyHole(id, 0)), - ) - |> ClosureEnvironment.wrap( - ClosureEnvironment.id_of(closure), - ), - [name, ...names], + } + | _ => [] + }; + let (closure, names) = + List.fold_left( + ((closure, names): (ClosureEnvironment.t, list(Var.t))) => + fun + | Ctx.VarEntry({name, id, _}) => ( + Environment.extend( + closure |> ClosureEnvironment.map_of, + (name, EmptyHole(id, 0)), ) - | Ctx.TVarEntry(_) - | Ctx.ConstructorEntry(_) => (closure, names), - (ClosureEnvironment.empty, []), - signiture, - ); - let rec body_modulize: DHExp.t => DHExp.t = ( - fun - | Let(dp, d1, d2) => Let(dp, d1, body_modulize(d2)) - | Module(dp, d1, d2) => Module(dp, d1, body_modulize(d2)) - | _ as d => is_alias ? d : ModuleVal(closure, names) + |> ClosureEnvironment.wrap(ClosureEnvironment.id_of(closure)), + [name, ...names], + ) + | Ctx.TVarEntry(_) + | Ctx.ConstructorEntry(_) => (closure, names), + (ClosureEnvironment.empty, []), + signiture, ); - let ddef = ddef |> body_modulize; - DHExp.Module(dp, ddef, dbody); - | Dot(e_mod, e_mem) => - let* e_mod = dhexp_of_uexp(m, e_mod); - let+ e_mem = dhexp_of_uexp(m, e_mem); - DHExp.Dot(e_mod, e_mem); - | Ap(fn, arg) - | Pipeline(arg, fn) => - let* c_fn = dhexp_of_uexp(m, fn); - let+ c_arg = dhexp_of_uexp(m, arg); - DHExp.Ap(c_fn, c_arg); - | TypAp(fn, uty_arg) => - let+ d_fn = dhexp_of_uexp(m, fn); - DHExp.TypAp(d_fn, Term.UTyp.to_typ(ctx, uty_arg)); - | DeferredAp(fn, args) => - switch (err_status) { - | InHole(BadPartialAp(NoDeferredArgs)) => dhexp_of_uexp(m, fn) - | InHole(BadPartialAp(ArityMismatch(_))) => - Some(DHExp.InvalidText(id, 0, "")) - | _ => - let mk_tuple = (ctor, xs) => - List.length(xs) == 1 ? List.hd(xs) : ctor(xs); - let* ty_fn = fixed_exp_typ(m, fn); - let (ty_arg, ty_ret) = Typ.matched_arrow(ctx, ty_fn); - let ty_ins = Typ.matched_args(ctx, List.length(args), ty_arg); - /* Substitute all deferrals for new variables */ - let (pats, ty_args, ap_args, ap_ctx) = - List.combine(args, ty_ins) - |> List.fold_left( - ((pats, ty_args, ap_args, ap_ctx), (e: Term.UExp.t, ty)) => - if (Term.UExp.is_deferral(e)) { - // Internal variable name for deferrals - let name = - "__deferred__" ++ string_of_int(List.length(pats)); - let var: Term.UExp.t = {ids: e.ids, term: Var(name)}; - let var_entry = - Ctx.VarEntry({ - name, - id: Term.UExp.rep_id(e), - typ: ty, - }); - ( - pats @ [DHPat.Var(name)], - ty_args @ [ty], - ap_args @ [var], - Ctx.extend(ap_ctx, var_entry), - ); - } else { - (pats, ty_args, ap_args @ [e], ap_ctx); - }, - ([], [], [], ctx), - ); - let (pat, ty_arg) = ( - mk_tuple(x => DHPat.Tuple(x), pats), - mk_tuple(x => Typ.Prod(x), ty_args), - ); - let arg: Term.UExp.t = {ids: [Id.mk()], term: Tuple(ap_args)}; - let body: Term.UExp.t = {ids: [Id.mk()], term: Ap(fn, arg)}; - let (_info, m) = - Statics.uexp_to_info_map( - ~ctx=ap_ctx, - ~mode=Ana(ty_ret), - ~ancestors, - body, - m, - ); - let+ dbody = dhexp_of_uexp(m, body); - DHExp.Fun(pat, Arrow(ty_arg, ty_ret), dbody, None); - } - | If(c, e1, e2) => - let* c' = dhexp_of_uexp(m, c); - let* d1 = dhexp_of_uexp(m, e1); - let+ d2 = dhexp_of_uexp(m, e2); - // Use tag to mark inconsistent branches - switch (err_status) { - | InHole(Common(Inconsistent(Internal(_)))) => - DHExp.IfThenElse(DH.InconsistentIf, c', d1, d2) - | _ => DHExp.IfThenElse(DH.ConsistentIf, c', d1, d2) - }; - | Match(scrut, rules) => - let* d_scrut = dhexp_of_uexp(m, scrut); - let+ d_rules = - List.map( - ((p, e)) => { - let* d_p = dhpat_of_upat(m, p); - let+ d_e = dhexp_of_uexp(m, e); - DHExp.Rule(d_p, d_e); - }, - rules, - ) - |> OptUtil.sequence; - let d = DHExp.Case(d_scrut, d_rules, 0); - switch (err_status) { - | InHole(Common(Inconsistent(Internal(_)))) - | InHole(InexhaustiveMatch(Some(Inconsistent(Internal(_))))) => - DHExp.InconsistentBranches(id, 0, d) - | _ => ConsistentCase(d) + let rec body_modulize: DHExp.t => DHExp.t = ( + fun + | Let(dp, d1, d2) => Let(dp, d1, body_modulize(d2)) + | Module(dp, d1, d2) => Module(dp, d1, body_modulize(d2)) + | _ as d => is_alias ? d : ModuleVal(closure, names) + ); + let ddef = ddef |> body_modulize; + Exp.Module(dp, ddef, dbody); + | Dot(e_mod, e_mem) => + let* e_mod = dhexp_of_uexp(m, e_mod); + let+ e_mem = dhexp_of_uexp(m, e_mem); + Exp.Dot(e_mod, e_mem); + | FixF(p, e, env) => + let (p', typ) = elaborate_pattern(m, p); + let (e', tye) = elaborate(m, e); + Exp.FixF(p', fresh_cast(e', tye, typ), env) + |> rewrap + |> cast_from(typ); + | TyAlias(_, _, e) => + let (e', tye) = elaborate(m, e); + e' |> cast_from(tye); + | Ap(dir, f, a) => + let (f', tyf) = elaborate(m, f); + let (a', tya) = elaborate(m, a); + let (tyf1, tyf2) = Typ.matched_arrow(ctx, tyf); + let f'' = fresh_cast(f', tyf, Arrow(tyf1, tyf2) |> Typ.temp); + let a'' = fresh_cast(a', tya, tyf1); + Exp.Ap(dir, f'', a'') |> rewrap |> cast_from(tyf2); + | DeferredAp(f, args) => + let (f', tyf) = elaborate(m, f); + let (args', tys) = List.map(elaborate(m), args) |> ListUtil.unzip; + let (tyf1, tyf2) = Typ.matched_arrow(ctx, tyf); + let ty_fargs = Typ.matched_prod(ctx, List.length(args), tyf1); + let f'' = + fresh_cast( + f', + tyf, + Arrow(Prod(ty_fargs) |> Typ.temp, tyf2) |> Typ.temp, + ); + let args'' = ListUtil.map3(fresh_cast, args', tys, ty_fargs); + let remaining_args = + List.filter( + ((arg, _)) => Exp.is_deferral(arg), + List.combine(args, ty_fargs), + ); + let remaining_arg_ty = Prod(List.map(snd, remaining_args)) |> Typ.temp; + DeferredAp(f'', args'') + |> rewrap + |> cast_from(Arrow(remaining_arg_ty, tyf2) |> Typ.temp); + | TypAp(e, ut) => + let (e', tye) = elaborate(m, e); + let (tpat, tye') = Typ.matched_forall(ctx, tye); + let ut' = Typ.normalize(ctx, ut); + let tye'' = + Typ.subst( + ut', + tpat |> Option.value(~default=TPat.fresh(EmptyHole)), + tye', + ); + TypAp(e', ut) |> rewrap |> cast_from(tye''); + | If(c, t, f) => + let (c', tyc) = elaborate(m, c); + let (t', tyt) = elaborate(m, t); + let (f', tyf) = elaborate(m, f); + let ty = + Typ.join(~fix=false, ctx, tyt, tyf) + |> Option.value(~default=Typ.temp(Typ.Unknown(Internal))); + let c'' = fresh_cast(c', tyc, Bool |> Typ.temp); + let t'' = fresh_cast(t', tyt, ty); + let f'' = fresh_cast(f', tyf, ty); + Exp.If(c'', t'', f'') |> rewrap |> cast_from(ty); + | Seq(e1, e2) => + let (e1', _) = elaborate(m, e1); + let (e2', ty2) = elaborate(m, e2); + Seq(e1', e2') |> rewrap |> cast_from(ty2); + | Test(e) => + let (e', t) = elaborate(m, e); + Test(fresh_cast(e', t, Bool |> Typ.temp)) + |> rewrap + |> cast_from(Prod([]) |> Typ.temp); + | Filter(kind, e) => + let (e', t) = elaborate(m, e); + let kind' = + switch (kind) { + | Residue(_) => kind + | Filter({act, pat}) => Filter({act, pat: elaborate(m, pat) |> fst}) }; - | TyAlias(_, _, e) => dhexp_of_uexp(m, e) - }; - switch (uexp.term) { - | Parens(_) => d - | _ => wrap(ctx, id, mode, self, d) - }; - | Some(InfoPat(_) | InfoTyp(_) | InfoTPat(_) | Secondary(_)) - | None => None - }; -} -and dhpat_of_upat = (m: Statics.Map.t, upat: Term.UPat.t): option(DHPat.t) => { - switch (Id.Map.find_opt(Term.UPat.rep_id(upat), m)) { - | Some(InfoPat({mode, self, ctx, _})) => - // NOTE: for the current implementation, redundancy is considered a static error - // but not a runtime error. - let self = - switch (self) { - | Redundant(self) => self - | _ => self - }; - let err_status = Info.status_pat(ctx, mode, self); - let maybe_reason: option(ErrStatus.HoleReason.t) = - switch (err_status) { - | NotInHole(_) => None - | InHole(_) => Some(TypeInconsistent) - }; - let u = Term.UPat.rep_id(upat); /* NOTE: using term uids for hole ids */ - let wrap = (d: DHPat.t): option(DHPat.t) => - switch (maybe_reason) { - | None => Some(d) - | Some(reason) => Some(NonEmptyHole(reason, u, 0, d)) - }; - switch (upat.term) { - | Invalid(t) => Some(DHPat.InvalidText(u, 0, t)) - | EmptyHole => Some(EmptyHole(u, 0)) - | MultiHole(_) => - // TODO: dhexp, eval for multiholes - Some(EmptyHole(u, 0)) - | Wild => wrap(Wild) - | Bool(b) => wrap(BoolLit(b)) - | Int(n) => wrap(IntLit(n)) - | Float(n) => wrap(FloatLit(n)) - | String(s) => wrap(StringLit(s)) - | Triv => wrap(Tuple([])) - | ListLit(ps) => - let* ds = ps |> List.map(dhpat_of_upat(m)) |> OptUtil.sequence; - let* ty = fixed_pat_typ(m, upat); - wrap(ListLit(Typ.matched_list(ctx, ty), ds)); - | Constructor(name) => - switch (err_status) { - | InHole(Common(NoType(FreeConstructor(_)))) => - Some(BadConstructor(u, 0, name)) - | _ => wrap(Constructor(name)) + Filter(kind', e') |> rewrap |> cast_from(t); + | Closure(env, e) => + // Should we be elaborating the contents of the environment? + let (e', t) = elaborate(m, e); + Closure(env, e') |> rewrap |> cast_from(t); + | Cons(e1, e2) => + let (e1', ty1) = elaborate(m, e1); + let (e2', ty2) = elaborate(m, e2); + let ty2_inner = Typ.matched_list(ctx, ty2); + let ty_inner = + Typ.join(~fix=false, ctx, ty1, ty2_inner) + |> Option.value(~default=Typ.temp(Unknown(Internal))); + let e1'' = fresh_cast(e1', ty1, ty_inner); + let e2'' = fresh_cast(e2', ty2, List(ty_inner) |> Typ.temp); + Cons(e1'', e2'') |> rewrap |> cast_from(List(ty_inner) |> Typ.temp); + | ListConcat(e1, e2) => + let (e1', ty1) = elaborate(m, e1); + let (e2', ty2) = elaborate(m, e2); + let ty_inner1 = Typ.matched_list(ctx, ty1); + let ty_inner2 = Typ.matched_list(ctx, ty2); + let ty_inner = + Typ.join(~fix=false, ctx, ty_inner1, ty_inner2) + |> Option.value(~default=Typ.temp(Unknown(Internal))); + let e1'' = fresh_cast(e1', ty1, List(ty_inner) |> Typ.temp); + let e2'' = fresh_cast(e2', ty2, List(ty_inner) |> Typ.temp); + ListConcat(e1'', e2'') + |> rewrap + |> cast_from(List(ty_inner) |> Typ.temp); + | UnOp(Meta(Unquote), e) => + switch (e.term) { + // TODO: confirm whether these types are correct + | Var("e") => + Constructor("$e", Unknown(Internal) |> Typ.temp) |> rewrap + | Var("v") => + Constructor("$v", Unknown(Internal) |> Typ.temp) |> rewrap + | _ => + DHExp.EmptyHole + |> rewrap + |> cast_from(Typ.temp(Typ.Unknown(Internal))) } - | Cons(hd, tl) => - let* d_hd = dhpat_of_upat(m, hd); - let* d_tl = dhpat_of_upat(m, tl); - wrap(Cons(d_hd, d_tl)); - | Tuple(ps) => - let* ds = ps |> List.map(dhpat_of_upat(m)) |> OptUtil.sequence; - wrap(DHPat.Tuple(ds)); - | Var(name) => Some(Var(name)) - | Parens(p) => dhpat_of_upat(m, p) - | Ap(p1, p2) => - let* d_p1 = dhpat_of_upat(m, p1); - let* d_p2 = dhpat_of_upat(m, p2); - wrap(Ap(d_p1, d_p2)); - | TypeAnn(p, _ty) => - let* dp = dhpat_of_upat(m, p); - wrap(dp); - | TyAlias(_, _) => Some(DHPat.InvalidText(u, 0, "")) + | UnOp(Int(Minus), e) => + let (e', t) = elaborate(m, e); + UnOp(Int(Minus), fresh_cast(e', t, Int |> Typ.temp)) + |> rewrap + |> cast_from(Int |> Typ.temp); + | UnOp(Bool(Not), e) => + let (e', t) = elaborate(m, e); + UnOp(Bool(Not), fresh_cast(e', t, Bool |> Typ.temp)) + |> rewrap + |> cast_from(Bool |> Typ.temp); + | BinOp(Int(Plus | Minus | Times | Power | Divide) as op, e1, e2) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, Int |> Typ.temp), + fresh_cast(e2', t2, Int |> Typ.temp), + ) + |> rewrap + |> cast_from(Int |> Typ.temp); + | BinOp( + Int( + LessThan | LessThanOrEqual | GreaterThan | GreaterThanOrEqual | + Equals | + NotEquals, + ) as op, + e1, + e2, + ) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, Int |> Typ.temp), + fresh_cast(e2', t2, Int |> Typ.temp), + ) + |> rewrap + |> cast_from(Bool |> Typ.temp); + | BinOp(Bool(And | Or) as op, e1, e2) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, Bool |> Typ.temp), + fresh_cast(e2', t2, Bool |> Typ.temp), + ) + |> rewrap + |> cast_from(Bool |> Typ.temp); + | BinOp(Float(Plus | Minus | Times | Divide | Power) as op, e1, e2) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, Float |> Typ.temp), + fresh_cast(e2', t2, Float |> Typ.temp), + ) + |> rewrap + |> cast_from(Float |> Typ.temp); + | BinOp( + Float( + LessThan | LessThanOrEqual | GreaterThan | GreaterThanOrEqual | + Equals | + NotEquals, + ) as op, + e1, + e2, + ) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, Float |> Typ.temp), + fresh_cast(e2', t2, Float |> Typ.temp), + ) + |> rewrap + |> cast_from(Bool |> Typ.temp); + | BinOp(String(Concat) as op, e1, e2) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, String |> Typ.temp), + fresh_cast(e2', t2, String |> Typ.temp), + ) + |> rewrap + |> cast_from(String |> Typ.temp); + | BinOp(String(Equals) as op, e1, e2) => + let (e1', t1) = elaborate(m, e1); + let (e2', t2) = elaborate(m, e2); + BinOp( + op, + fresh_cast(e1', t1, String |> Typ.temp), + fresh_cast(e2', t2, String |> Typ.temp), + ) + |> rewrap + |> cast_from(Bool |> Typ.temp); + | BuiltinFun(fn) => + uexp + |> cast_from( + Ctx.lookup_var(Builtins.ctx_init, fn) + |> Option.map((x: Ctx.var_entry) => x.typ) + |> Option.value(~default=Typ.temp(Typ.Unknown(Internal))), + ) + | Match(e, cases) => + let (e', t) = elaborate(m, e); + let (ps, es) = ListUtil.unzip(cases); + let (ps', ptys) = + List.map(elaborate_pattern(m), ps) |> ListUtil.unzip; + let joined_pty = + Typ.join_all(~empty=Typ.Unknown(Internal) |> Typ.temp, ctx, ptys) + |> Option.value(~default=Typ.temp(Typ.Unknown(Internal))); + let ps'' = + List.map2((p, t) => fresh_pat_cast(p, t, joined_pty), ps', ptys); + let e'' = fresh_cast(e', t, joined_pty); + let (es', etys) = List.map(elaborate(m), es) |> ListUtil.unzip; + let joined_ety = + Typ.join_all(~empty=Typ.Unknown(Internal) |> Typ.temp, ctx, etys) + |> Option.value(~default=Typ.temp(Typ.Unknown(Internal))); + let es'' = + List.map2((e, t) => fresh_cast(e, t, joined_ety), es', etys); + Match(e'', List.combine(ps'', es'')) + |> rewrap + |> cast_from(joined_ety); }; - | Some(InfoExp(_) | InfoTyp(_) | InfoTPat(_) | Secondary(_)) - | None => None - }; + (dhexp, elaborated_type); }; //let dhexp_of_uexp = Core.Memo.general(~cache_size_bound=1000, dhexp_of_uexp); -let uexp_elab = (m: Statics.Map.t, uexp: Term.UExp.t): ElaborationResult.t => - switch (dhexp_of_uexp(m, uexp, false)) { - | None => DoesNotElaborate - | Some(d) => - //let d = uexp_elab_wrap_builtins(d); - let ty = - switch (fixed_exp_typ(m, uexp)) { - | Some(ty) => ty - | None => Typ.Unknown(Internal) - }; - Elaborates(d, ty, Delta.empty); +/* This function gives a new id to all the types + in the expression. It does this to get rid of + all the invalid ids we added to prevent generating + too many new ids */ +let fix_typ_ids = + Exp.map_term(~f_typ=(cont, e) => e |> IdTagged.new_ids |> cont); + +let uexp_elab = (m: Statics.Map.t, uexp: UExp.t): ElaborationResult.t => + switch (elaborate(m, uexp)) { + | exception MissingTypeInfo => DoesNotElaborate + | (d, ty) => Elaborates(d, ty, Delta.empty) }; diff --git a/src/haz3lcore/dynamics/Environment.re b/src/haz3lcore/dynamics/Environment.re index 9a2c61a96b..726200d7d8 100644 --- a/src/haz3lcore/dynamics/Environment.re +++ b/src/haz3lcore/dynamics/Environment.re @@ -1 +1 @@ -include DH.Environment; +include TermBase.Environment; diff --git a/src/haz3lcore/dynamics/Environment.rei b/src/haz3lcore/dynamics/Environment.rei index 3408ac0aa5..bb9d5214af 100644 --- a/src/haz3lcore/dynamics/Environment.rei +++ b/src/haz3lcore/dynamics/Environment.rei @@ -1 +1,2 @@ -include (module type of DH.Environment) with type t = DH.Environment.t; +include + (module type of TermBase.Environment) with type t = TermBase.Environment.t; diff --git a/src/haz3lcore/dynamics/EnvironmentId.re b/src/haz3lcore/dynamics/EnvironmentId.re deleted file mode 100644 index 5f6be7cd46..0000000000 --- a/src/haz3lcore/dynamics/EnvironmentId.re +++ /dev/null @@ -1 +0,0 @@ -include Id; diff --git a/src/haz3lcore/dynamics/EnvironmentId.rei b/src/haz3lcore/dynamics/EnvironmentId.rei deleted file mode 100644 index e7d316dd0a..0000000000 --- a/src/haz3lcore/dynamics/EnvironmentId.rei +++ /dev/null @@ -1 +0,0 @@ -include (module type of Id); diff --git a/src/haz3lcore/dynamics/EnvironmentIdMap.re b/src/haz3lcore/dynamics/EnvironmentIdMap.re deleted file mode 100644 index 932d7b1316..0000000000 --- a/src/haz3lcore/dynamics/EnvironmentIdMap.re +++ /dev/null @@ -1 +0,0 @@ -include Id.Map; diff --git a/src/haz3lcore/dynamics/EnvironmentIdMap.rei b/src/haz3lcore/dynamics/EnvironmentIdMap.rei deleted file mode 100644 index d5194bbcf2..0000000000 --- a/src/haz3lcore/dynamics/EnvironmentIdMap.rei +++ /dev/null @@ -1,5 +0,0 @@ -/* Mapping from EnvironmentId.t (to some other type) - - Used in HoleInstanceInfo_.re - */ -include (module type of Id.Map); diff --git a/src/haz3lcore/dynamics/ErrStatus.re b/src/haz3lcore/dynamics/ErrStatus.re deleted file mode 100644 index 94fd844ffe..0000000000 --- a/src/haz3lcore/dynamics/ErrStatus.re +++ /dev/null @@ -1,15 +0,0 @@ -module HoleReason = { - /* Variable: `reason` */ - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | TypeInconsistent - | WrongLength; - - let eq = (x, y) => x == y; -}; - -/* Variable: `err` */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | NotInHole - | InHole(HoleReason.t, MetaVar.t); diff --git a/src/haz3lcore/dynamics/EvalCtx.re b/src/haz3lcore/dynamics/EvalCtx.re index 6e41cfc146..e5b20146ab 100644 --- a/src/haz3lcore/dynamics/EvalCtx.re +++ b/src/haz3lcore/dynamics/EvalCtx.re @@ -1,283 +1,172 @@ -open Sexplib.Std; -open DH; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] -type cls = - | Mark - | Closure - | FilterPattern - | Filter - | Sequence1 - | Sequence2 - | Let1 - | Let2 - | Module1 - | Module2 - | ModuleVal - | Dot1 - | Dot2 - | TypAp - | Ap1 - | Ap2 - | Fun - | FixF - | BinBoolOp1 - | BinBoolOp2 - | BinIntOp1 - | BinIntOp2 - | BinFloatOp1 - | BinFloatOp2 - | BinStringOp1 - | BinStringOp2 - | IfThenElse1 - | IfThenElse2 - | IfThenElse3 - | Tuple(int) - | ListLit(int) - | ApBuiltin - | Test - | Cons1 - | Cons2 - | ListConcat1 - | ListConcat2 - | Prj - | NonEmptyHole - | Cast - | FailedCast - | InvalidOperation - | ConsistentCase - | ConsistentCaseRule(int) - | InconsistentBranches - | InconsistentBranchesRule(int) - | FailedCastCast - // Used when entering a bound variable expression in substitution mode - | BoundVar; - -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | Mark +type term = | Closure([@show.opaque] ClosureEnvironment.t, t) - | Filter(DH.DHFilter.t, t) - | Sequence1(t, DHExp.t) - | Sequence2(DHExp.t, t) - | Let1(DHPat.t, t, DHExp.t) - | Let2(DHPat.t, DHExp.t, t) - | Module1(DHPat.t, t, DHExp.t) - | Module2(DHPat.t, DHExp.t, t) + | Filter(TermBase.StepperFilterKind.t, t) + | Seq1(t, DHExp.t) + | Seq2(DHExp.t, t) + | Let1(Pat.t, t, DHExp.t) + | Let2(Pat.t, DHExp.t, t) + | Module1(Pat.t, t, DHExp.t) + | Module2(Pat.t, DHExp.t, t) | Dot1(t, DHExp.t) | Dot2(DHExp.t, t) - | Fun(DHPat.t, Typ.t, t, option(Var.t)) - | FixF(Var.t, Typ.t, t) + | Fun(Pat.t, t, option(ClosureEnvironment.t), option(Var.t)) + | FixF(Pat.t, t, option(ClosureEnvironment.t)) | TypAp(t, Typ.t) - | Ap1(t, DHExp.t) - | Ap2(DHExp.t, t) - | IfThenElse1(if_consistency, t, DHExp.t, DHExp.t) - | IfThenElse2(if_consistency, DHExp.t, t, DHExp.t) - | IfThenElse3(if_consistency, DHExp.t, DHExp.t, t) - | BinBoolOp1(TermBase.UExp.op_bin_bool, t, DHExp.t) - | BinBoolOp2(TermBase.UExp.op_bin_bool, DHExp.t, t) - | BinIntOp1(TermBase.UExp.op_bin_int, t, DHExp.t) - | BinIntOp2(TermBase.UExp.op_bin_int, DHExp.t, t) - | BinFloatOp1(TermBase.UExp.op_bin_float, t, DHExp.t) - | BinFloatOp2(TermBase.UExp.op_bin_float, DHExp.t, t) - | BinStringOp1(TermBase.UExp.op_bin_string, t, DHExp.t) - | BinStringOp2(TermBase.UExp.op_bin_string, DHExp.t, t) + | Ap1(Operators.ap_direction, t, DHExp.t) + | Ap2(Operators.ap_direction, DHExp.t, t) + | DeferredAp1(t, list(DHExp.t)) + | DeferredAp2(DHExp.t, t, (list(DHExp.t), list(DHExp.t))) + | If1(t, DHExp.t, DHExp.t) + | If2(DHExp.t, t, DHExp.t) + | If3(DHExp.t, DHExp.t, t) + | UnOp(Operators.op_un, t) + | BinOp1(Operators.op_bin, t, DHExp.t) + | BinOp2(Operators.op_bin, DHExp.t, t) | Tuple(t, (list(DHExp.t), list(DHExp.t))) - | ApBuiltin(string, t) - | Test(KeywordID.t, t) - | ListLit( - MetaVar.t, - MetaVarInst.t, - Typ.t, - t, - (list(DHExp.t), list(DHExp.t)), - ) + | Test(t) + | ListLit(t, (list(DHExp.t), list(DHExp.t))) + | MultiHole(t, (list(Any.t), list(Any.t))) | Cons1(t, DHExp.t) | Cons2(DHExp.t, t) | ListConcat1(t, DHExp.t) | ListConcat2(DHExp.t, t) - | Prj(t, int) - | NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, HoleInstanceId.t, t) | Cast(t, Typ.t, Typ.t) | FailedCast(t, Typ.t, Typ.t) - | InvalidOperation(t, InvalidOperationError.t) - | ConsistentCase(case) - | ConsistentCaseRule( + | DynamicErrorHole(t, InvalidOperationError.t) + | MatchScrut(t, list((UPat.t, DHExp.t))) + | MatchRule( DHExp.t, - DHPat.t, + UPat.t, t, - (list(DHExp.rule), list(DHExp.rule)), - int, + (list((UPat.t, DHExp.t)), list((UPat.t, DHExp.t))), ) - | InconsistentBranches(MetaVar.t, HoleInstanceId.t, case) - | InconsistentBranchesRule( - DHExp.t, - MetaVar.t, - HoleInstanceId.t, - DHPat.t, - t, - (list(DHExp.rule), list(DHExp.rule)), - int, - ) -and case = - | Case(t, list(rule), int) -and rule = DHExp.rule; - -let rec fuzzy_mark = - fun - | Mark => true - | Closure(_, x) - | Test(_, x) - | Cast(x, _, _) - | FailedCast(x, _, _) - | Filter(_, x) => fuzzy_mark(x) - | Sequence1(_) - | Sequence2(_) - | Let1(_) - | Let2(_) - | Module1(_) - | Module2(_) - | Dot1(_) - | Dot2(_) - | Fun(_) - | FixF(_) - | TypAp(_) - | Ap1(_) - | Ap2(_) - | IfThenElse1(_) - | IfThenElse2(_) - | IfThenElse3(_) - | BinBoolOp1(_) - | BinBoolOp2(_) - | BinIntOp1(_) - | BinIntOp2(_) - | BinFloatOp1(_) - | BinFloatOp2(_) - | BinStringOp1(_) - | BinStringOp2(_) - | Tuple(_) - | ApBuiltin(_) - | ListLit(_) - | Cons1(_) - | Cons2(_) - | ListConcat1(_) - | ListConcat2(_) - | Prj(_) - | NonEmptyHole(_) - | InvalidOperation(_) - | ConsistentCase(_) - | ConsistentCaseRule(_) - | InconsistentBranches(_) - | InconsistentBranchesRule(_) => false; +and t = + | Mark + | Term({ + term, + ids: list(Id.t), + }); -let rec unwrap = (ctx: t, sel: cls): option(t) => { - switch (sel, ctx) { - | (Mark, _) => - print_endline( - "Mark does not match with " - ++ Sexplib.Sexp.to_string_hum(sexp_of_t(ctx)), +let rec compose = (ctx: t, d: DHExp.t): DHExp.t => { + switch (ctx) { + | Mark => d + | Term({term, ids}) => + let wrap = DHExp.mk(ids); + DHExp.( + switch (term) { + | Closure(env, ctx) => + let d = compose(ctx, d); + Closure(env, d) |> wrap; + | Filter(flt, ctx) => + let d = compose(ctx, d); + Filter(flt, d) |> wrap; + | Seq1(ctx, d2) => + let d1 = compose(ctx, d); + Seq(d1, d2) |> wrap; + | Seq2(d1, ctx) => + let d2 = compose(ctx, d); + Seq(d1, d2) |> wrap; + | Ap1(dir, ctx, d2) => + let d1 = compose(ctx, d); + Ap(dir, d1, d2) |> wrap; + | Ap2(dir, d1, ctx) => + let d2 = compose(ctx, d); + Ap(dir, d1, d2) |> wrap; + | DeferredAp1(ctx, d2s) => + let d1 = compose(ctx, d); + DeferredAp(d1, d2s) |> wrap; + | DeferredAp2(d1, ctx, (ld, rd)) => + let d2 = compose(ctx, d); + DeferredAp(d1, ListUtil.rev_concat(ld, [d2, ...rd])) |> wrap; + | If1(ctx, d2, d3) => + let d' = compose(ctx, d); + If(d', d2, d3) |> wrap; + | If2(d1, ctx, d3) => + let d' = compose(ctx, d); + If(d1, d', d3) |> wrap; + | If3(d1, d2, ctx) => + let d' = compose(ctx, d); + If(d1, d2, d') |> wrap; + | Test(ctx) => + let d1 = compose(ctx, d); + Test(d1) |> wrap; + | UnOp(op, ctx) => + let d1 = compose(ctx, d); + UnOp(op, d1) |> wrap; + | BinOp1(op, ctx, d2) => + let d1 = compose(ctx, d); + BinOp(op, d1, d2) |> wrap; + | BinOp2(op, d1, ctx) => + let d2 = compose(ctx, d); + BinOp(op, d1, d2) |> wrap; + | Cons1(ctx, d2) => + let d1 = compose(ctx, d); + Cons(d1, d2) |> wrap; + | Cons2(d1, ctx) => + let d2 = compose(ctx, d); + Cons(d1, d2) |> wrap; + | ListConcat1(ctx, d2) => + let d1 = compose(ctx, d); + ListConcat(d1, d2) |> wrap; + | ListConcat2(d1, ctx) => + let d2 = compose(ctx, d); + ListConcat(d1, d2) |> wrap; + | Tuple(ctx, (ld, rd)) => + let d = compose(ctx, d); + Tuple(ListUtil.rev_concat(ld, [d, ...rd])) |> wrap; + | ListLit(ctx, (ld, rd)) => + let d = compose(ctx, d); + ListLit(ListUtil.rev_concat(ld, [d, ...rd])) |> wrap; + | MultiHole(ctx, (ld, rd)) => + let d = compose(ctx, d); + MultiHole(ListUtil.rev_concat(ld, [TermBase.Any.Exp(d), ...rd])) + |> wrap; + | Let1(dp, ctx, d2) => + let d = compose(ctx, d); + Let(dp, d, d2) |> wrap; + | Let2(dp, d1, ctx) => + let d = compose(ctx, d); + Let(dp, d1, d) |> wrap; + | Module1(dp, ctx, d2) => + let d = compose(ctx, d); + Module(dp, d, d2); + | Module2(dp, d1, ctx) => + let d = compose(ctx, d); + Module(dp, d1, d); + | Dot1(ctx, d2) => + let d1 = compose(ctx, d); + Dot(d1, d2); + | Dot2(d1, ctx) => + let d2 = compose(ctx, d); + Dot(d1, d2); + | Fun(dp, ctx, env, v) => + let d = compose(ctx, d); + Fun(dp, d, env, v) |> wrap; + | FixF(v, ctx, env) => + let d = compose(ctx, d); + FixF(v, d, env) |> wrap; + | Cast(ctx, ty1, ty2) => + let d = compose(ctx, d); + Cast(d, ty1, ty2) |> wrap; + | FailedCast(ctx, ty1, ty2) => + let d = compose(ctx, d); + FailedCast(d, ty1, ty2) |> wrap; + | DynamicErrorHole(ctx, err) => + let d = compose(ctx, d); + DynamicErrorHole(d, err) |> wrap; + | MatchScrut(ctx, rules) => + let d = compose(ctx, d); + Match(d, rules) |> wrap; + | MatchRule(scr, p, ctx, (lr, rr)) => + let d = compose(ctx, d); + Match(scr, ListUtil.rev_concat(lr, [(p, d), ...rr])) |> wrap; + | TypAp(ctx, ty) => + let d = compose(ctx, d); + TypAp(d, ty) |> wrap; + } ); - raise(EvaluatorError.Exception(StepDoesNotMatch)); - | (BoundVar, c) - | (NonEmptyHole, NonEmptyHole(_, _, _, c)) - | (Closure, Closure(_, c)) - | (Filter, Filter(_, c)) - | (Sequence1, Sequence1(c, _)) - | (Sequence2, Sequence2(_, c)) - | (Let1, Let1(_, c, _)) - | (Let2, Let2(_, _, c)) - | (Module1, Module1(_, c, _)) - | (Module2, Module2(_, _, c)) - | (Dot1, Dot1(c, _)) - | (Dot2, Dot2(_, c)) - | (Fun, Fun(_, _, c, _)) - | (FixF, FixF(_, _, c)) - | (TypAp, TypAp(c, _)) - | (Ap1, Ap1(c, _)) - | (Ap2, Ap2(_, c)) - | (BinBoolOp1, BinBoolOp1(_, c, _)) - | (BinBoolOp2, BinBoolOp2(_, _, c)) - | (BinIntOp1, BinIntOp1(_, c, _)) - | (BinIntOp2, BinIntOp2(_, _, c)) - | (BinFloatOp1, BinFloatOp1(_, c, _)) - | (BinFloatOp2, BinFloatOp2(_, _, c)) - | (BinStringOp1, BinStringOp1(_, c, _)) - | (BinStringOp2, BinStringOp2(_, _, c)) - | (IfThenElse1, IfThenElse1(_, c, _, _)) - | (IfThenElse2, IfThenElse2(_, _, c, _)) - | (IfThenElse3, IfThenElse3(_, _, _, c)) - | (Cons1, Cons1(c, _)) - | (Cons2, Cons2(_, c)) - | (ListConcat1, ListConcat1(c, _)) - | (ListConcat2, ListConcat2(_, c)) - | (Test, Test(_, c)) - | (Prj, Prj(c, _)) => Some(c) - | (ListLit(n), ListLit(_, _, _, c, (ld, _))) - | (Tuple(n), Tuple(c, (ld, _))) => - if (List.length(ld) == n) { - Some(c); - } else { - None; - } - | (ConsistentCaseRule(n), ConsistentCaseRule(_, _, c, (ld, _), _)) - | ( - InconsistentBranchesRule(n), - InconsistentBranchesRule(_, _, _, _, c, (ld, _), _), - ) => - if (List.length(ld) == n) { - Some(c); - } else { - None; - } - | (InconsistentBranches, InconsistentBranches(_, _, Case(scrut, _, _))) => - Some(scrut) - | (ConsistentCase, ConsistentCase(Case(scrut, _, _))) => Some(scrut) - | (Cast, Cast(c, _, _)) - | (FailedCastCast, FailedCast(Cast(c, _, _), _, _)) - | (FailedCast, FailedCast(c, _, _)) => Some(c) - | (Ap1, Ap2(_, _)) - | (Ap2, Ap1(_, _)) - | (IfThenElse1, IfThenElse2(_)) - | (IfThenElse1, IfThenElse3(_)) - | (IfThenElse2, IfThenElse1(_)) - | (IfThenElse2, IfThenElse3(_)) - | (IfThenElse3, IfThenElse1(_)) - | (IfThenElse3, IfThenElse2(_)) - | (Let1, Let2(_)) - | (Let2, Let1(_)) - | (Module1, Module2(_)) - | (Module2, Module1(_)) - | (Dot1, Dot2(_, _)) - | (Dot2, Dot1(_, _)) - | (BinBoolOp1, BinBoolOp2(_)) - | (BinBoolOp2, BinBoolOp1(_)) - | (BinIntOp1, BinIntOp2(_)) - | (BinIntOp2, BinIntOp1(_)) - | (BinFloatOp1, BinFloatOp2(_)) - | (BinFloatOp2, BinFloatOp1(_)) - | (BinStringOp1, BinStringOp2(_)) - | (BinStringOp2, BinStringOp1(_)) - | (Cons1, Cons2(_)) - | (Cons2, Cons1(_)) - | (Sequence1, Sequence2(_)) - | (Sequence2, Sequence1(_)) - | (ListConcat1, ListConcat2(_)) - | (ListConcat2, ListConcat1(_)) => None - | (FilterPattern, _) => None - | (Filter, _) => Some(ctx) - | (tag, Filter(_, c)) => unwrap(c, tag) - | (Closure, _) => Some(ctx) - | (tag, Closure(_, c)) => unwrap(c, tag) - | (Cast, _) => Some(ctx) - | (tag, Cast(c, _, _)) => unwrap(c, tag) - | (_, Mark) => None - | (_, _) => - // print_endline( - // Sexplib.Sexp.to_string_hum(sexp_of_cls(tag)) - // ++ " does not match with " - // ++ Sexplib.Sexp.to_string_hum(sexp_of_t(ctx)), - // ); - None - // raise(EvaluatorError.Exception(StepDoesNotMatch)); }; }; diff --git a/src/haz3lcore/dynamics/Evaluator.re b/src/haz3lcore/dynamics/Evaluator.re index 5395627ff3..fb877accd7 100644 --- a/src/haz3lcore/dynamics/Evaluator.re +++ b/src/haz3lcore/dynamics/Evaluator.re @@ -1,17 +1,43 @@ -open EvaluatorResult; open Transition; -module EvaluatorEVMode: { - type result_unfinished = +module Result = { + [@deriving (show({with_path: false}), sexp, yojson)] + type t = | BoxedValue(DHExp.t) - | Indet(DHExp.t) - | Uneval(DHExp.t); - let unbox: result_unfinished => DHExp.t; + | Indet(DHExp.t); + + let unbox = + fun + | BoxedValue(d) + | Indet(d) => d; + + let fast_equal = (r1, r2) => + switch (r1, r2) { + | (BoxedValue(d1), BoxedValue(d2)) + | (Indet(d1), Indet(d2)) => DHExp.fast_equal(d1, d2) + | _ => false + }; +}; + +open Result; + +module EvaluatorEVMode: { + type status = + | BoxedValue + | Indet + | Uneval; include EV_MODE with - type state = ref(EvaluatorState.t) and type result = result_unfinished; + type state = ref(EvaluatorState.t) and type result = (status, DHExp.t); } = { + type status = + | BoxedValue + | Indet + | Uneval; + + type result = (status, DHExp.t); + type reqstate = | BoxedReady | IndetReady @@ -34,24 +60,11 @@ module EvaluatorEVMode: { let update_test = (state, id, v) => state := EvaluatorState.add_test(state^, id, v); - type result_unfinished = - | BoxedValue(DHExp.t) - | Indet(DHExp.t) - | Uneval(DHExp.t); - - type result = result_unfinished; - - let unbox = - fun - | BoxedValue(x) - | Indet(x) - | Uneval(x) => x; - let req_value = (f, _, x) => switch (f(x)) { - | BoxedValue(x) => (BoxedReady, x) - | Indet(x) => (IndetBlocked, x) - | Uneval(_) => failwith("Unexpected Uneval") + | (BoxedValue, x) => (BoxedReady, x) + | (Indet, x) => (IndetBlocked, x) + | (Uneval, _) => failwith("Unexpected Uneval") }; let rec req_all_value = (f, i) => @@ -65,9 +78,9 @@ module EvaluatorEVMode: { let req_final = (f, _, x) => switch (f(x)) { - | BoxedValue(x) => (BoxedReady, x) - | Indet(x) => (IndetReady, x) - | Uneval(_) => failwith("Unexpected Uneval") + | (BoxedValue, x) => (BoxedReady, x) + | (Indet, x) => (IndetReady, x) + | (Uneval, _) => failwith("Unexpected Uneval") }; let rec req_all_final = (f, i) => @@ -79,20 +92,33 @@ module EvaluatorEVMode: { (r1 && r2, [x', ...xs']); }; + let req_final_or_value = (f, _, x) => + switch (f(x)) { + | (BoxedValue, x) => (BoxedReady, (x, true)) + | (Indet, x) => (IndetReady, (x, false)) + | (Uneval, _) => failwith("Unexpected Uneval") + }; + let otherwise = (_, c) => (BoxedReady, (), c); let (and.) = ((r1, x1, c1), (r2, x2)) => (r1 && r2, (x1, x2), c1(x2)); let (let.) = ((r, x, c), s) => switch (r, s(x)) { - | (BoxedReady, Step({apply, value: true, _})) => BoxedValue(apply()) - | (IndetReady, Step({apply, value: true, _})) => Indet(apply()) - | (BoxedReady, Step({apply, value: false, _})) - | (IndetReady, Step({apply, value: false, _})) => Uneval(apply()) - | (BoxedReady, Constructor) => BoxedValue(c) - | (IndetReady, Constructor) => Indet(c) - | (IndetBlocked, _) => Indet(c) - | (_, Indet) => Indet(c) + | (BoxedReady, Step({expr, state_update, is_value: true, _})) => + state_update(); + (BoxedValue, expr); + | (IndetReady, Step({expr, state_update, is_value: true, _})) => + state_update(); + (Indet, expr); + | (BoxedReady, Step({expr, state_update, is_value: false, _})) + | (IndetReady, Step({expr, state_update, is_value: false, _})) => + state_update(); + (Uneval, expr); + | (BoxedReady, Constructor) => (BoxedValue, c) + | (IndetReady, Constructor) => (Indet, c) + | (IndetBlocked, _) => (Indet, c) + | (_, Indet) => (Indet, c) }; }; module Eval = Transition(EvaluatorEVMode); @@ -100,21 +126,21 @@ module Eval = Transition(EvaluatorEVMode); let rec evaluate = (state, env, d) => { let u = Eval.transition(evaluate, state, env, d); switch (u) { - | BoxedValue(x) => BoxedValue(x) - | Indet(x) => Indet(x) - | Uneval(x) => evaluate(state, env, x) + | (BoxedValue, x) => (BoxedValue, x) + | (Indet, x) => (Indet, x) + | (Uneval, x) => evaluate(state, env, x) }; }; -let evaluate = (env, d): (EvaluatorState.t, EvaluatorResult.t) => { +let evaluate = (env, {d}: Elaborator.Elaboration.t) => { let state = ref(EvaluatorState.init); let env = ClosureEnvironment.of_environment(env); let result = evaluate(state, env, d); let result = switch (result) { - | BoxedValue(x) => BoxedValue(x) - | Indet(x) => Indet(x) - | Uneval(x) => Indet(x) + | (BoxedValue, x) => BoxedValue(x |> DHExp.repair_ids) + | (Indet, x) => Indet(x |> DHExp.repair_ids) + | (Uneval, x) => Indet(x |> DHExp.repair_ids) }; (state^, result); }; diff --git a/src/haz3lcore/dynamics/Evaluator.rei b/src/haz3lcore/dynamics/Evaluator.rei deleted file mode 100644 index 0589b7fe3f..0000000000 --- a/src/haz3lcore/dynamics/Evaluator.rei +++ /dev/null @@ -1,34 +0,0 @@ -/** - // TODO[Matt]: find where this comment belongs - [evaluate builtins env d] is [(es, r)], where [r] is the result of evaluating [d] and - [es] is the accumulated state. - */ -open Transition; - -let evaluate: - (Environment.t, DHExp.t) => (EvaluatorState.t, EvaluatorResult.t); - -module EvaluatorEVMode: { - type result_unfinished = - | BoxedValue(DHExp.t) - | Indet(DHExp.t) - | Uneval(DHExp.t); - - let unbox: result_unfinished => DHExp.t; - - include - EV_MODE with - type state = ref(EvaluatorState.t) and type result = result_unfinished; -}; - -module Eval: { - let transition: - ( - (EvaluatorEVMode.state, ClosureEnvironment.t, DHExp.t) => - EvaluatorEVMode.result_unfinished, - EvaluatorEVMode.state, - ClosureEnvironment.t, - DHExp.t - ) => - EvaluatorEVMode.result_unfinished; -}; diff --git a/src/haz3lcore/dynamics/EvaluatorError.re b/src/haz3lcore/dynamics/EvaluatorError.re index 86c1e53eaa..5724d69b77 100644 --- a/src/haz3lcore/dynamics/EvaluatorError.re +++ b/src/haz3lcore/dynamics/EvaluatorError.re @@ -1,10 +1,9 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = | OutOfFuel | StepDoesNotMatch - | FreeInvalidVar(Var.t) | BadPatternMatch | CastBVHoleGround(DHExp.t) | InvalidBoxedTypFun(DHExp.t) @@ -15,6 +14,7 @@ type t = | InvalidBoxedFloatLit(DHExp.t) | InvalidBoxedListLit(DHExp.t) | InvalidBoxedStringLit(DHExp.t) + | InvalidBoxedSumConstructor(DHExp.t) | InvalidBoxedTuple(DHExp.t) | InvalidBuiltin(string) | BadBuiltinAp(string, list(DHExp.t)) diff --git a/src/haz3lcore/dynamics/EvaluatorError.rei b/src/haz3lcore/dynamics/EvaluatorError.rei deleted file mode 100644 index 7c4a8b8a53..0000000000 --- a/src/haz3lcore/dynamics/EvaluatorError.rei +++ /dev/null @@ -1,22 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | OutOfFuel - | StepDoesNotMatch - | FreeInvalidVar(Var.t) - | BadPatternMatch - | CastBVHoleGround(DHExp.t) - | InvalidBoxedTypFun(DHExp.t) - | InvalidBoxedFun(DHExp.t) - | InvalidBoxedModule(DHExp.t) - | InvalidBoxedBoolLit(DHExp.t) - | InvalidBoxedIntLit(DHExp.t) - | InvalidBoxedFloatLit(DHExp.t) - | InvalidBoxedListLit(DHExp.t) - | InvalidBoxedStringLit(DHExp.t) - | InvalidBoxedTuple(DHExp.t) - | InvalidBuiltin(string) - | BadBuiltinAp(string, list(DHExp.t)) - | InvalidProjection(int); - -[@deriving (show({with_path: false}), sexp, yojson)] -exception Exception(t); diff --git a/src/haz3lcore/dynamics/EvaluatorPost.re b/src/haz3lcore/dynamics/EvaluatorPost.re deleted file mode 100644 index 25dceb28d5..0000000000 --- a/src/haz3lcore/dynamics/EvaluatorPost.re +++ /dev/null @@ -1,646 +0,0 @@ -module PpMonad = { - include Util.StateMonad.Make({ - [@deriving sexp] - type t = (EnvironmentIdMap.t(ClosureEnvironment.t), HoleInstanceInfo_.t); - }); - - open Syntax; - - let get_pe = get >>| (((pe, _)) => pe); - let pe_add = (ei, env) => - modify(((pe, hii)) => (pe |> EnvironmentIdMap.add(ei, env), hii)); - - let hii_add_instance = (u, env) => - modify'(((pe, hii)) => { - let (hii, i) = HoleInstanceInfo_.add_instance(hii, u, env); - (i, (pe, hii)); - }); -}; - -open PpMonad; -open PpMonad.Syntax; -open DHExp; - -type m('a) = PpMonad.t('a); - -[@deriving (show({with_path: false}), sexp, yojson)] -type error = - | ClosureInsideClosure - | FixFOutsideClosureEnv - | UnevalOutsideClosure - | InvalidClosureBody - | PostprocessedNonHoleInClosure - | PostprocessedHoleOutsideClosure; - -[@deriving (show({with_path: false}), sexp, yojson)] -exception Exception(error); - -/** - Postprocess inside evaluation boundary. - */ -let rec pp_eval = (d: DHExp.t): m(DHExp.t) => - switch (d) { - /* Non-hole expressions: recurse through subexpressions */ - | Test(_) - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ModuleVal(_) - | Constructor(_) => d |> return - - | Sequence(d1, d2) => - let* d1' = pp_eval(d1); - let+ d2' = pp_eval(d2); - Sequence(d1', d2'); - - | Filter(f, dbody) => - let+ dbody' = pp_eval(dbody); - Filter(f, dbody'); - - | Ap(d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - Ap(d1', d2') |> return; - - | Dot(d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - Dot(d1', d2') |> return; - | TypAp(d1, ty) => - let* d1' = pp_eval(d1); - TypAp(d1', ty) |> return; - - | ApBuiltin(f, d1) => - let* d1' = pp_eval(d1); - ApBuiltin(f, d1') |> return; - - | BinBoolOp(op, d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - BinBoolOp(op, d1', d2') |> return; - - | BuiltinFun(f) => BuiltinFun(f) |> return - - | BinIntOp(op, d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - BinIntOp(op, d1', d2') |> return; - - | BinFloatOp(op, d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - BinFloatOp(op, d1', d2') |> return; - - | BinStringOp(op, d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - BinStringOp(op, d1', d2') |> return; - - | Cons(d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - Cons(d1', d2') |> return; - - | ListConcat(d1, d2) => - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - ListConcat(d1', d2') |> return; - - | ListLit(a, b, c, ds) => - let+ ds = - ds - |> List.fold_left( - (ds, d) => { - let* ds = ds; - let+ d = pp_eval(d); - ds @ [d]; - }, - return([]), - ); - ListLit(a, b, c, ds); - - | Tuple(ds) => - let+ ds = - ds - |> List.fold_left( - (ds, d) => { - let* ds = ds; - let+ d = pp_eval(d); - ds @ [d]; - }, - return([]), - ); - Tuple(ds); - - | Prj(d, n) => - let+ d = pp_eval(d); - Prj(d, n); - - | Cast(d', ty1, ty2) => - let* d'' = pp_eval(d'); - Cast(d'', ty1, ty2) |> return; - - | FailedCast(d', ty1, ty2) => - let* d'' = pp_eval(d'); - FailedCast(d'', ty1, ty2) |> return; - - | InvalidOperation(d', reason) => - let* d'' = pp_eval(d'); - InvalidOperation(d'', reason) |> return; - - | IfThenElse(consistent, c, d1, d2) => - let* c' = pp_eval(c); - let* d1' = pp_eval(d1); - let* d2' = pp_eval(d2); - IfThenElse(consistent, c', d1', d2') |> return; - - /* These expression forms should not exist outside closure in evaluated result */ - | BoundVar(_) - | Let(_) - | Module(_) - | ConsistentCase(_) - | Fun(_) - | TypFun(_) - | EmptyHole(_) - | NonEmptyHole(_) - | FreeVar(_) - | InvalidText(_) - | InconsistentBranches(_) => raise(Exception(UnevalOutsideClosure)) - - | FixF(_) => raise(Exception(FixFOutsideClosureEnv)) - - /* Closure: postprocess environment, then postprocess `d'`. - - Some parts of `d'` may lie inside and outside the evaluation boundary, - use `pp_eval` and `pp_uneval` as necessary. - */ - | Closure(env, d) => - let* env = - Util.TimeUtil.measure_time("pp_eval_env/Closure", true, () => - pp_eval_env(env) - ); - switch (d) { - /* Non-hole constructs inside closures. */ - | Fun(dp, ty, d, s) => - let* d = pp_uneval(env, d); - Fun(dp, ty, d, s) |> return; - - | TypFun(tpat, d1, s) => - let* d1' = pp_uneval(env, d1); - TypFun(tpat, d1', s) |> return; - - | Let(dp, d1, d2) => - /* d1 should already be evaluated, d2 is not */ - let* d1 = pp_eval(d1); - let* d2 = pp_uneval(env, d2); - Let(dp, d1, d2) |> return; - - | Module(dp, d1, d2) => - /* d1 should already be evaluated, d2 is not */ - let* d1 = pp_eval(d1); - let* d2 = pp_uneval(env, d2); - Let(dp, d1, d2) |> return; - - | ConsistentCase(Case(scrut, rules, i)) => - /* scrut should already be evaluated, rule bodies are not */ - let* scrut = - Util.TimeUtil.measure_time("pp_eval(scrut)", true, () => - pp_eval(scrut) - ); - let* rules = - Util.TimeUtil.measure_time("pp_uneval_rules", true, () => - pp_uneval_rules(env, rules) - ); - ConsistentCase(Case(scrut, rules, i)) |> return; - - /* Hole constructs inside closures. - - `NonEmptyHole` and `InconsistentBranches` have subexpressions that - lie inside the evaluation boundary, and need to be handled differently - than in `pp_uneval`. The other hole types don't have any evaluated - subexpressions and we can use `pp_uneval`. - */ - | NonEmptyHole(reason, u, _, d) => - let* d = pp_eval(d); - let* i = hii_add_instance(u, env); - Closure(env, NonEmptyHole(reason, u, i, d)) |> return; - - | InconsistentBranches(u, _, Case(scrut, rules, case_i)) => - let* scrut = pp_eval(scrut); - let* i = hii_add_instance(u, env); - Closure(env, InconsistentBranches(u, i, Case(scrut, rules, case_i))) - |> return; - - | EmptyHole(_) - | FreeVar(_) - | InvalidText(_) => pp_uneval(env, d) - - /* Other expression forms cannot be directly in a closure. */ - | _ => raise(Exception(InvalidClosureBody)) - }; - } - -/* Recurse through environments, using memoized result if available. */ -and pp_eval_env = (env: ClosureEnvironment.t): m(ClosureEnvironment.t) => { - let ei = env |> ClosureEnvironment.id_of; - - let* pe = get_pe; - switch (pe |> EnvironmentIdMap.find_opt(ei)) { - | Some(env) => env |> return - | None => - let* env = - env - |> ClosureEnvironment.fold( - ((x, d), env') => { - let* env' = env'; - let* d' = - switch (d) { - | FixF(f, ty, d1) => - let+ d1 = pp_uneval(env', d1); - FixF(f, ty, d1); - | d => pp_eval(d) - }; - ClosureEnvironment.extend(env', (x, d')) |> return; - }, - Environment.empty |> ClosureEnvironment.wrap(ei) |> return, - ); - - let* () = pe_add(ei, env); - env |> return; - }; -} - -/** - Postprocess inside evaluation boundary. Environment should already be - postprocessed. - */ -and pp_uneval = (env: ClosureEnvironment.t, d: DHExp.t): m(DHExp.t) => - switch (d) { - /* Bound variables should be looked up within the closure - environment. If lookup fails, then variable is not bound. */ - | BoundVar(x) => - switch (ClosureEnvironment.lookup(env, x)) { - | Some(d') => d' |> return - | None => d |> return - } - - /* Non-hole expressions: expand recursively */ - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ModuleVal(_) - | Constructor(_) => d |> return - - | Test(id, d1) => - let+ d1' = pp_uneval(env, d1); - Test(id, d1'); - - | Sequence(d1, d2) => - let* d1' = pp_uneval(env, d1); - let+ d2' = pp_uneval(env, d2); - Sequence(d1', d2'); - - | Filter(flt, dbody) => - let+ dbody' = pp_uneval(env, dbody); - Filter(flt, dbody'); - | Let(dp, d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - Let(dp, d1', d2') |> return; - - | Module(dp, d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - Module(dp, d1', d2') |> return; - - | Dot(d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - Dot(d1', d2') |> return; - - | FixF(f, ty, d1) => - let* d1' = pp_uneval(env, d1); - FixF(f, ty, d1') |> return; - - | Fun(dp, ty, d', s) => - let* d'' = pp_uneval(env, d'); - Fun(dp, ty, d'', s) |> return; - - | TypFun(tpat, d1, s) => - let* d1' = pp_uneval(env, d1); - TypFun(tpat, d1', s) |> return; - - | Ap(d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - Ap(d1', d2') |> return; - - | TypAp(d1, ty) => - let* d1' = pp_uneval(env, d1); - TypAp(d1', ty) |> return; - - | ApBuiltin(f, d1) => - let* d1' = pp_uneval(env, d1); - ApBuiltin(f, d1') |> return; - - | BuiltinFun(f) => BuiltinFun(f) |> return - - | BinBoolOp(op, d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - BinBoolOp(op, d1', d2') |> return; - | BinIntOp(op, d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - BinIntOp(op, d1', d2') |> return; - - | BinFloatOp(op, d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - BinFloatOp(op, d1', d2') |> return; - - | BinStringOp(op, d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - BinStringOp(op, d1', d2') |> return; - - | IfThenElse(consistent, c, d1, d2) => - let* c' = pp_uneval(env, c); - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - IfThenElse(consistent, c', d1', d2') |> return; - - | Cons(d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - Cons(d1', d2') |> return; - - | ListConcat(d1, d2) => - let* d1' = pp_uneval(env, d1); - let* d2' = pp_uneval(env, d2); - ListConcat(d1', d2') |> return; - - | ListLit(a, b, c, ds) => - let+ ds = - ds - |> List.fold_left( - (ds, d) => { - let* ds = ds; - let+ d = pp_uneval(env, d); - ds @ [d]; - }, - return([]), - ); - ListLit(a, b, c, ds); - - | Tuple(ds) => - let+ ds = - ds - |> List.fold_left( - (ds, d) => { - let* ds = ds; - let+ d = pp_uneval(env, d); - ds @ [d]; - }, - return([]), - ); - Tuple(ds); - - | Prj(d, n) => - let+ d = pp_uneval(env, d); - Prj(d, n); - - | Cast(d', ty1, ty2) => - let* d'' = pp_uneval(env, d'); - Cast(d'', ty1, ty2) |> return; - - | FailedCast(d', ty1, ty2) => - let* d'' = pp_uneval(env, d'); - FailedCast(d'', ty1, ty2) |> return; - - | InvalidOperation(d', reason) => - let* d'' = pp_uneval(env, d'); - InvalidOperation(d'', reason) |> return; - - | ConsistentCase(Case(scrut, rules, i)) => - let* scrut' = pp_uneval(env, scrut); - let* rules' = pp_uneval_rules(env, rules); - ConsistentCase(Case(scrut', rules', i)) |> return; - - /* Closures shouldn't exist inside other closures */ - | Closure(_) => raise(Exception(ClosureInsideClosure)) - - /* Hole expressions: - - Use the closure environment as the hole environment. - - Number the hole instance appropriately. - - Recurse through inner expression (if any). - */ - | EmptyHole(u, _) => - let* i = hii_add_instance(u, env); - Closure(env, EmptyHole(u, i)) |> return; - - | NonEmptyHole(reason, u, _, d') => - let* d' = pp_uneval(env, d'); - let* i = hii_add_instance(u, env); - Closure(env, NonEmptyHole(reason, u, i, d')) |> return; - - | FreeVar(u, _, x) => - let* i = hii_add_instance(u, env); - Closure(env, FreeVar(u, i, x)) |> return; - - | InvalidText(u, _, text) => - let* i = hii_add_instance(u, env); - Closure(env, InvalidText(u, i, text)) |> return; - - | InconsistentBranches(u, _, Case(scrut, rules, case_i)) => - let* scrut = pp_uneval(env, scrut); - let* rules = pp_uneval_rules(env, rules); - let* i = hii_add_instance(u, env); - Closure(env, InconsistentBranches(u, i, Case(scrut, rules, case_i))) - |> return; - } - -and pp_uneval_rules = - (env: ClosureEnvironment.t, rules: list(DHExp.rule)) - : m(list(DHExp.rule)) => { - rules - |> List.map((Rule(dp, d)) => { - let* d' = pp_uneval(env, d); - Rule(dp, d') |> return; - }) - |> sequence; -}; - -/** - Tracking children of hole instances. A hole instance is a child of another hole - instance if it exists in the hole environment of the parent. - - This is the second stage of postprocessing, separate from hole numbering and - substitution, since memoization becomes much more convoluted if these two - stages are combined. - - This works by simply iterating over all the (postprocessed) hole instance - environments in the HoleInstanceInfo_.t and looking for "child" holes. - */ -let rec track_children_of_hole = - (hii: HoleInstanceInfo.t, parent: HoleInstanceParents.t_, d: DHExp.t) - : HoleInstanceInfo.t => - switch (d) { - | Constructor(_) - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ModuleVal(_) - | BuiltinFun(_) - | BoundVar(_) => hii - | Test(_, d) - | FixF(_, _, d) - | Fun(_, _, d, _) - | TypFun(_, d, _) - | TypAp(d, _) - | Prj(d, _) - | Cast(d, _, _) - | FailedCast(d, _, _) - | InvalidOperation(d, _) => track_children_of_hole(hii, parent, d) - | Sequence(d1, d2) - | Let(_, d1, d2) - | Module(_, d1, d2) - | Ap(d1, d2) - | BinBoolOp(_, d1, d2) - | BinIntOp(_, d1, d2) - | BinFloatOp(_, d1, d2) - | BinStringOp(_, d1, d2) - | Dot(d1, d2) - | Cons(d1, d2) => - let hii = track_children_of_hole(hii, parent, d1); - track_children_of_hole(hii, parent, d2); - | ListConcat(d1, d2) => - let hii = track_children_of_hole(hii, parent, d1); - track_children_of_hole(hii, parent, d2); - - | ListLit(_, _, _, ds) => - List.fold_right( - (d, hii) => track_children_of_hole(hii, parent, d), - ds, - hii, - ) - - | Tuple(ds) => - List.fold_right( - (d, hii) => track_children_of_hole(hii, parent, d), - ds, - hii, - ) - | IfThenElse(_, c, d1, d2) => - let hii = track_children_of_hole(hii, parent, c); - let hii = track_children_of_hole(hii, parent, d1); - track_children_of_hole(hii, parent, d2); - - | ConsistentCase(Case(scrut, rules, _)) => - let hii = - Util.TimeUtil.measure_time("track_children_of_hole(scrut)", true, () => - track_children_of_hole(hii, parent, scrut) - ); - Util.TimeUtil.measure_time("track_children_of_hole_rules", true, () => - track_children_of_hole_rules(hii, parent, rules) - ); - - | ApBuiltin(_, d) => track_children_of_hole(hii, parent, d) - - /* Hole types */ - | NonEmptyHole(_, u, i, d) => - let hii = track_children_of_hole(hii, parent, d); - hii |> HoleInstanceInfo.add_parent((u, i), parent); - | InconsistentBranches(u, i, Case(scrut, rules, _)) => - let hii = track_children_of_hole(hii, parent, scrut); - let hii = track_children_of_hole_rules(hii, parent, rules); - hii |> HoleInstanceInfo.add_parent((u, i), parent); - | EmptyHole(u, i) - | FreeVar(u, i, _) - | InvalidText(u, i, _) => - hii |> HoleInstanceInfo.add_parent((u, i), parent) - - /* The only thing that should exist in closures at this point - are holes. Ignore the hole environment, not necessary for - parent tracking. */ - | Filter(_, d) - | Closure(_, d) => track_children_of_hole(hii, parent, d) - } - -and track_children_of_hole_rules = - ( - hii: HoleInstanceInfo.t, - parent: HoleInstanceParents.t_, - rules: list(DHExp.rule), - ) - : HoleInstanceInfo.t => - List.fold_right( - (DHExp.Rule(_, d), hii) => track_children_of_hole(hii, parent, d), - rules, - hii, - ); - -/** - Driver for hole parent tracking; iterate through all hole instances in the - [HoleInstanceInfo.t], and call [track_children_of_hole] on them. - */ -let track_children = (hii: HoleInstanceInfo.t): HoleInstanceInfo.t => - MetaVarMap.fold( - (u, his, hii) => - List.fold_right( - ((i, (env, _)), hii) => - Environment.foldo( - ((x, d), hii) => track_children_of_hole(hii, (x, (u, i)), d), - hii, - env |> ClosureEnvironment.map_of, - ), - his |> List.mapi((i, hc) => (i, hc)), - hii, - ), - hii, - hii, - ); - -let postprocess = (d: DHExp.t): (HoleInstanceInfo.t, DHExp.t) => { - /* Substitution and hole numbering postprocessing */ - let ((_, hii), d) = - Util.TimeUtil.measure_time("pp_eval", true, () => - pp_eval(d, (EnvironmentIdMap.empty, HoleInstanceInfo_.empty)) - ); - - /* Build hole instance info. */ - let hii = - Util.TimeUtil.measure_time("to_hii", true, () => - hii |> HoleInstanceInfo_.to_hole_instance_info - ); - - /* Add special hole acting as top-level expression (to act as parent - for holes directly in the result) */ - /* FIXME: Better way to do this? */ - let (u_result, _) = HoleInstance.result; - let hii = - MetaVarMap.add( - u_result, - [ - ( - ClosureEnvironment.wrap( - EnvironmentId.invalid, - Environment.singleton(("", d)), - ), - [], - ), - ], - hii, - ); - - let hii = - Util.TimeUtil.measure_time("track_children", true, () => - hii |> track_children - ); - - /* Perform hole parent tracking. */ - (hii, d); -}; diff --git a/src/haz3lcore/dynamics/EvaluatorPost.rei b/src/haz3lcore/dynamics/EvaluatorPost.rei deleted file mode 100644 index 67cd0438a9..0000000000 --- a/src/haz3lcore/dynamics/EvaluatorPost.rei +++ /dev/null @@ -1,71 +0,0 @@ -/** - Postprocessing of the evaluation result. - - NOTE: Currently disabled due to exponential blow-up in certain situations, but - leaving here for now until we can fully investigate. - - This has two functions: - - Match the evaluation result generated by evaluation with substitution. - This means to continue evaluation within expressions for which evaluation - has not reached (e.g., lambda expression bodies, unmatched case and let - expression bodies), by looking up bound variables and assigning hole - environments. - - Number holes and generate a HoleInstanceInfo.t that holds information - about all unique hole instances in the result. - - The postprocessing steps are partially memoized by environments. (Only - memoized among hole instances which share the same environment.) - - Algorithmically, this algorithm begins in the evaluated region of the - evaluation result inside the "evaluation boundary" (pp_eval), and continues - to the region outside the evaluation boundary (pp_uneval). - */ - -/** - Errors related to EvalPostprocess.postprocess - - Postprocessing invalid cases: Evaluation boundary is abbreviated as "EB". "In - closure" and "outside closure" correspond to "outside the EB" and "inside the - EB," respectively. - - The following errors are used to indicate an invalid case DURING - postprocessing: - - - ClosureInsideClosure: an evaluated expression outside the EB - - BoundVarOutsideClosure: an un-looked-up (unevaluated) variable inside the EB - - UnevalOutsideClosure: non-variable unevaluated expression inside the EB - - InvalidClosureBody: closures currently only make sense storing the - following expression types: - - Hole expressions - - Lambda abstractions - - Let/case with a pattern match failure - - The following errors are used to indicate an invalid case AFTER postprocessing. - After postprocessing, closures around lambda abstractions, let expressions, and - case expressions should be removed, and all hole expressions should be wrapped - in a closure. - - - PostprocessedNoneHoleInClosure - - PostprocessedHoleOutsideClosure - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type error = - | ClosureInsideClosure - | FixFOutsideClosureEnv - | UnevalOutsideClosure - | InvalidClosureBody - | PostprocessedNonHoleInClosure - | PostprocessedHoleOutsideClosure; - -[@deriving (show({with_path: false}), sexp, yojson)] -exception Exception(error); - -/** - Postprocessing driver. - - Note: The top-level expression is wrapped in a non-empty hole, this is a - clean way of noting holes that lie directly in the result. - - See also HoleInstanceInfo.rei/HoleInstanceInfo_.rei. - */ -let postprocess: DHExp.t => (HoleInstanceInfo.t, DHExp.t); diff --git a/src/haz3lcore/dynamics/EvaluatorResult.re b/src/haz3lcore/dynamics/EvaluatorResult.re deleted file mode 100644 index 73628a7c89..0000000000 --- a/src/haz3lcore/dynamics/EvaluatorResult.re +++ /dev/null @@ -1,16 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | BoxedValue(DHExp.t) - | Indet(DHExp.t); - -let unbox = - fun - | BoxedValue(d) - | Indet(d) => d; - -let fast_equal = (r1, r2) => - switch (r1, r2) { - | (BoxedValue(d1), BoxedValue(d2)) - | (Indet(d1), Indet(d2)) => DHExp.fast_equal(d1, d2) - | _ => false - }; diff --git a/src/haz3lcore/dynamics/EvaluatorResult.rei b/src/haz3lcore/dynamics/EvaluatorResult.rei deleted file mode 100644 index 350c3cec62..0000000000 --- a/src/haz3lcore/dynamics/EvaluatorResult.rei +++ /dev/null @@ -1,22 +0,0 @@ -/** - The output from {!val:Evaluator.evaluate}. - */ - -/** - The type for the evaluation result, a {!type:DHExp.t} wrapped in its {v final - v} judgment (boxed value or indeterminate). - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | BoxedValue(DHExp.t) - | Indet(DHExp.t); - -/** - [unbox r] is the inner expression. - */ -let unbox: t => DHExp.t; - -/** - See {!val:DHExp.fast_equal}. - */ -let fast_equal: (t, t) => bool; diff --git a/src/haz3lcore/dynamics/EvaluatorState.rei b/src/haz3lcore/dynamics/EvaluatorState.rei index e699190314..916ac0586b 100644 --- a/src/haz3lcore/dynamics/EvaluatorState.rei +++ b/src/haz3lcore/dynamics/EvaluatorState.rei @@ -28,7 +28,7 @@ let get_step: t => int; let put_step: (int, t) => t; -let add_test: (t, KeywordID.t, TestMap.instance_report) => t; +let add_test: (t, Id.t, TestMap.instance_report) => t; let get_tests: t => TestMap.t; diff --git a/src/haz3lcore/dynamics/EvaluatorStats.re b/src/haz3lcore/dynamics/EvaluatorStats.re index 6047b799ed..89917ceba7 100644 --- a/src/haz3lcore/dynamics/EvaluatorStats.re +++ b/src/haz3lcore/dynamics/EvaluatorStats.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = {step: int}; diff --git a/src/haz3lcore/dynamics/EvaluatorStep.re b/src/haz3lcore/dynamics/EvaluatorStep.re index 6956ed7eef..5b9e32b10f 100644 --- a/src/haz3lcore/dynamics/EvaluatorStep.re +++ b/src/haz3lcore/dynamics/EvaluatorStep.re @@ -5,17 +5,11 @@ type step = { d: DHExp.t, // technically can be calculated from d_loc and ctx state: EvaluatorState.t, d_loc: DHExp.t, // the expression at the location given by ctx + d_loc': DHExp.t, ctx: EvalCtx.t, knd: step_kind, }; -let unwrap = (step, sel: EvalCtx.cls) => - EvalCtx.unwrap(step.ctx, sel) |> Option.map(ctx => {...step, ctx}); - -let unwrap_unsafe = (step, sel: EvalCtx.cls) => - // TODO[Matt]: bring back "safe" version - EvalCtx.unwrap(step.ctx, sel) |> Option.map(ctx => {...step, ctx}); - module EvalObj = { [@deriving (show({with_path: false}), sexp, yojson)] type t = { @@ -59,7 +53,7 @@ module Decompose = { EV_MODE with type result = Result.t and type state = ref(EvaluatorState.t); } = { - type state = ref(EvaluatorState.t); // TODO[Matt]: Make sure this gets passed around correctly + type state = ref(EvaluatorState.t); type requirement('a) = (Result.t, 'a); type requirements('a, 'b) = ('b, Result.t, ClosureEnvironment.t, 'a); type result = Result.t; @@ -111,6 +105,17 @@ module Decompose = { ); }; + let req_final_or_value = (cont, wr, d) => { + switch (cont(d)) { + | Result.Indet => (Result.BoxedValue, (d, false)) + | Result.BoxedValue => (Result.BoxedValue, (d, true)) + | Result.Step(objs) => ( + Result.Step(List.map(EvalObj.wrap(wr), objs)), + (d, false), + ) + }; + }; + let rec req_all_final' = (cont, wr, ds') => fun | [] => (Result.BoxedValue, []) @@ -133,6 +138,8 @@ module Decompose = { | Constructor => Result.BoxedValue | Indet => Result.Indet | Step(s) => Result.Step([EvalObj.mk(Mark, env, undo, s.kind)]) + // TODO: Actually show these exceptions to the user! + | exception (EvaluatorError.Exception(_)) => Result.Indet } | (_, Result.Step(_) as r, _, _) => r }; @@ -172,9 +179,13 @@ module TakeStep = { let req_final = (_, _, d) => d; let req_all_final = (_, _, ds) => ds; + let req_final_or_value = (_, _, d) => (d, true); + let (let.) = (rq: requirements('a, DHExp.t), rl: 'a => rule) => switch (rl(rq)) { - | Step({apply, _}) => Some(apply()) + | Step({expr, state_update, _}) => + state_update(); + Some(expr); | Constructor | Indet => None }; @@ -195,159 +206,7 @@ module TakeStep = { let take_step = TakeStep.take_step; -let rec rev_concat: (list('a), list('a)) => list('a) = - (ls, rs) => { - switch (ls) { - | [] => rs - | [hd, ...tl] => rev_concat(tl, [hd, ...rs]) - }; - }; - -let rec compose = (ctx: EvalCtx.t, d: DHExp.t): DHExp.t => { - DHExp.( - switch (ctx) { - | Mark => d - | Closure(env, ctx) => - let d = compose(ctx, d); - Closure(env, d); - | Filter(flt, ctx) => - let d = compose(ctx, d); - Filter(flt, d); - | Sequence1(ctx, d2) => - let d1 = compose(ctx, d); - Sequence(d1, d2); - | Sequence2(d1, ctx) => - let d2 = compose(ctx, d); - Sequence(d1, d2); - | TypAp(ctx, typ) => - let d1 = compose(ctx, d); - TypAp(d1, typ); - | Ap1(ctx, d2) => - let d1 = compose(ctx, d); - Ap(d1, d2); - | Ap2(d1, ctx) => - let d2 = compose(ctx, d); - Ap(d1, d2); - | ApBuiltin(s, ctx) => - let d' = compose(ctx, d); - ApBuiltin(s, d'); - | IfThenElse1(c, ctx, d2, d3) => - let d' = compose(ctx, d); - IfThenElse(c, d', d2, d3); - | IfThenElse2(c, d1, ctx, d3) => - let d' = compose(ctx, d); - IfThenElse(c, d1, d', d3); - | IfThenElse3(c, d1, d2, ctx) => - let d' = compose(ctx, d); - IfThenElse(c, d1, d2, d'); - | Test(lit, ctx) => - let d1 = compose(ctx, d); - Test(lit, d1); - | BinBoolOp1(op, ctx, d2) => - let d1 = compose(ctx, d); - BinBoolOp(op, d1, d2); - | BinBoolOp2(op, d1, ctx) => - let d2 = compose(ctx, d); - BinBoolOp(op, d1, d2); - | BinIntOp1(op, ctx, d2) => - let d1 = compose(ctx, d); - BinIntOp(op, d1, d2); - | BinIntOp2(op, d1, ctx) => - let d2 = compose(ctx, d); - BinIntOp(op, d1, d2); - | BinFloatOp1(op, ctx, d2) => - let d1 = compose(ctx, d); - BinFloatOp(op, d1, d2); - | BinFloatOp2(op, d1, ctx) => - let d2 = compose(ctx, d); - BinFloatOp(op, d1, d2); - | BinStringOp1(op, ctx, d2) => - let d1 = compose(ctx, d); - BinStringOp(op, d1, d2); - | BinStringOp2(op, d1, ctx) => - let d2 = compose(ctx, d); - BinStringOp(op, d1, d2); - | Cons1(ctx, d2) => - let d1 = compose(ctx, d); - Cons(d1, d2); - | Cons2(d1, ctx) => - let d2 = compose(ctx, d); - Cons(d1, d2); - | ListConcat1(ctx, d2) => - let d1 = compose(ctx, d); - ListConcat(d1, d2); - | ListConcat2(d1, ctx) => - let d2 = compose(ctx, d); - ListConcat(d1, d2); - | Tuple(ctx, (ld, rd)) => - let d = compose(ctx, d); - Tuple(rev_concat(ld, [d, ...rd])); - | ListLit(m, i, t, ctx, (ld, rd)) => - let d = compose(ctx, d); - ListLit(m, i, t, rev_concat(ld, [d, ...rd])); - | Let1(dp, ctx, d2) => - let d = compose(ctx, d); - Let(dp, d, d2); - | Let2(dp, d1, ctx) => - let d = compose(ctx, d); - Let(dp, d1, d); - | Module1(dp, ctx, d2) => - let d = compose(ctx, d); - Module(dp, d, d2); - | Module2(dp, d1, ctx) => - let d = compose(ctx, d); - Module(dp, d1, d); - | Dot1(ctx, d2) => - let d1 = compose(ctx, d); - Dot(d1, d2); - | Dot2(d1, ctx) => - let d2 = compose(ctx, d); - Dot(d1, d2); - | Fun(dp, t, ctx, v) => - let d = compose(ctx, d); - Fun(dp, t, d, v); - | FixF(v, t, ctx) => - let d = compose(ctx, d); - FixF(v, t, d); - | Prj(ctx, n) => - let d = compose(ctx, d); - Prj(d, n); - | Cast(ctx, ty1, ty2) => - let d = compose(ctx, d); - Cast(d, ty1, ty2); - | FailedCast(ctx, ty1, ty2) => - let d = compose(ctx, d); - FailedCast(d, ty1, ty2); - | InvalidOperation(ctx, err) => - let d = compose(ctx, d); - InvalidOperation(d, err); - | NonEmptyHole(reason, u, i, ctx) => - let d = compose(ctx, d); - NonEmptyHole(reason, u, i, d); - | ConsistentCase(Case(ctx, rule, n)) => - let d = compose(ctx, d); - ConsistentCase(Case(d, rule, n)); - | ConsistentCaseRule(scr, p, ctx, (lr, rr), n) => - let d = compose(ctx, d); - ConsistentCase( - Case(scr, rev_concat(lr, [(Rule(p, d): DHExp.rule), ...rr]), n), - ); - | InconsistentBranches(u, i, Case(ctx, rule, n)) => - let d = compose(ctx, d); - InconsistentBranches(u, i, Case(d, rule, n)); - | InconsistentBranchesRule(scr, mv, hi, p, ctx, (lr, rr), n) => - let d = compose(ctx, d); - InconsistentBranches( - mv, - hi, - Case(scr, rev_concat(lr, [(Rule(p, d): DHExp.rule), ...rr]), n), - ); - } - ); -}; - -let decompose = (d: DHExp.t) => { - let es = EvaluatorState.init; +let decompose = (d: DHExp.t, es: EvaluatorState.t) => { let env = ClosureEnvironment.of_environment(Builtins.env_init); let rs = Decompose.decompose(ref(es), env, d); Decompose.Result.unbox(rs); @@ -363,170 +222,177 @@ let rec matches = idx: int, ) : (FilterAction.t, int, EvalCtx.t) => { - let composed = compose(ctx, exp); + let composed = EvalCtx.compose(ctx, exp); let (pact, pidx) = (act, idx); let (mact, midx) = FilterMatcher.matches(~env, ~exp=composed, ~act, flt); let (act, idx) = switch (ctx) { - | Filter(_, _) => (pact, pidx) + | Term({term: Filter(_, _), _}) => (pact, pidx) | _ => midx > pidx ? (mact, midx) : (pact, pidx) }; let map = ((a, i, c), f: EvalCtx.t => EvalCtx.t) => { (a, i, f(c)); }; let (let+) = map; - let (ract, ridx, rctx) = + let (ract, ridx, rctx) = { + let wrap_ids = (ids, ctx) => EvalCtx.Term({term: ctx, ids}); switch (ctx) { | Mark => (act, idx, EvalCtx.Mark) - | Closure(env, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Closure(env, ctx); - | Filter(Filter(flt'), ctx) => - let flt = flt |> FilterEnvironment.extends(flt'); - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Filter(Filter(flt'), ctx); - | Filter(Residue(idx', act'), ctx) => - let (ract, ridx, rctx) = - if (idx > idx') { - matches(env, flt, ctx, exp, act, idx); + | Term({term, ids}) => + switch (term) { + | Closure(env, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Closure(env, ctx) |> wrap_ids(ids); + | Filter(Filter(flt'), ctx) => + let flt = flt |> FilterEnvironment.extends(flt'); + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Filter(Filter(flt'), ctx) |> wrap_ids(ids); + | Filter(Residue(idx', act'), ctx) => + let (ract, ridx, rctx) = + if (idx > idx') { + matches(env, flt, ctx, exp, act, idx); + } else { + matches(env, flt, ctx, exp, act', idx'); + }; + if (act' |> snd == All) { + ( + ract, + ridx, + Term({ + term: Filter(Residue(idx', act'), rctx), + ids: [Id.mk()], + }), + ); } else { - matches(env, flt, ctx, exp, act', idx'); + (ract, ridx, rctx); }; - if (act' |> snd == All) { - (ract, ridx, Filter(Residue(idx', act'), rctx)); - } else { - (ract, ridx, rctx); - }; - | Sequence1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Sequence1(ctx, d2); - | Sequence2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Sequence2(d1, ctx); - | Let1(d1, ctx, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Let1(d1, ctx, d3); - | Let2(d1, d2, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Let2(d1, d2, ctx); - | Module1(d1, ctx, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Module1(d1, ctx, d3); - | Module2(d1, d2, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Module2(d1, d2, ctx); - | Dot1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Dot1(ctx, d2); - | Dot2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Dot2(d1, ctx); - | Fun(dp, ty, ctx, name) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Fun(dp, ty, ctx, name); - | FixF(name, ty, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - FixF(name, ty, ctx); - | Ap1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Ap1(ctx, d2); - | Ap2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Ap2(d1, ctx); - | IfThenElse1(c, ctx, d2, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - IfThenElse1(c, ctx, d2, d3); - | IfThenElse2(c, d1, ctx, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - IfThenElse2(c, d1, ctx, d3); - | IfThenElse3(c, d1, d2, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - IfThenElse3(c, d1, d2, ctx); - | BinBoolOp1(op, ctx, d1) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinBoolOp1(op, ctx, d1); - | BinBoolOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinBoolOp2(op, d1, ctx); - | BinIntOp1(op, ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinIntOp1(op, ctx, d2); - | BinIntOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinIntOp2(op, d1, ctx); - | BinFloatOp1(op, ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinFloatOp1(op, ctx, d2); - | BinFloatOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinFloatOp2(op, d1, ctx); - | BinStringOp1(op, ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinStringOp1(op, ctx, d2); - | BinStringOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinStringOp2(op, d1, ctx); - | Tuple(ctx, ds) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Tuple(ctx, ds); - | ApBuiltin(name, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ApBuiltin(name, ctx); - | Test(id, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Test(id, ctx); - | ListLit(u, i, ty, ctx, ds) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ListLit(u, i, ty, ctx, ds); - | Cons1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Cons1(ctx, d2); - | Cons2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Cons2(d1, ctx); - | ListConcat1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ListConcat1(ctx, d2); - | ListConcat2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ListConcat2(d1, ctx); - | Prj(ctx, n) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Prj(ctx, n); - | NonEmptyHole(e, u, i, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - NonEmptyHole(e, u, i, ctx); - | Cast(ctx, ty, ty') => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Cast(ctx, ty, ty'); - | FailedCast(ctx, ty, ty') => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - FailedCast(ctx, ty, ty'); - | InvalidOperation(ctx, error) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - InvalidOperation(ctx, error); - | ConsistentCase(Case(ctx, rs, i)) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ConsistentCase(Case(ctx, rs, i)); - | ConsistentCaseRule(dexp, dpat, ctx, rs, i) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ConsistentCaseRule(dexp, dpat, ctx, rs, i); - | InconsistentBranches(u, i, Case(ctx, rs, ri)) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - InconsistentBranches(u, i, Case(ctx, rs, ri)); - | InconsistentBranchesRule(dexp, u, i, dpat, ctx, rs, ri) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - InconsistentBranchesRule(dexp, u, i, dpat, ctx, rs, ri); - | TypAp(ctx, ty) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - TypAp(ctx, ty); + | Seq1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Seq1(ctx, d2) |> wrap_ids(ids); + | Seq2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Seq2(d1, ctx) |> wrap_ids(ids); + | Let1(d1, ctx, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Let1(d1, ctx, d3) |> wrap_ids(ids); + | Let2(d1, d2, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Let2(d1, d2, ctx) |> wrap_ids(ids); + | Module1(d1, ctx, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Module1(d1, ctx, d3) |> wrap_ids(ids); + | Module2(d1, d2, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Module2(d1, d2, ctx) |> wrap_ids(ids); + | Dot1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Dot1(ctx, d2) |> wrap_ids(ids); + | Dot2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Dot2(d1, ctx) |> wrap_ids(ids); + | Fun(dp, ctx, env', name) => + let+ ctx = + matches( + env' |> Option.value(~default=env), + flt, + ctx, + exp, + act, + idx, + ); + Fun(dp, ctx, env', name) |> wrap_ids(ids); + | FixF(name, ctx, env') => + let+ ctx = + matches( + env' |> Option.value(~default=env), + flt, + ctx, + exp, + act, + idx, + ); + FixF(name, ctx, env') |> wrap_ids(ids); + | Ap1(dir, ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Ap1(dir, ctx, d2) |> wrap_ids(ids); + | Ap2(dir, d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Ap2(dir, d1, ctx) |> wrap_ids(ids); + | If1(ctx, d2, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + If1(ctx, d2, d3) |> wrap_ids(ids); + | If2(d1, ctx, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + If2(d1, ctx, d3) |> wrap_ids(ids); + | If3(d1, d2, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + If3(d1, d2, ctx) |> wrap_ids(ids); + | BinOp1(op, ctx, d1) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + BinOp1(op, ctx, d1) |> wrap_ids(ids); + | BinOp2(op, d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + BinOp2(op, d1, ctx) |> wrap_ids(ids); + | Test(ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Test(ctx) |> wrap_ids(ids); + | ListLit(ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + ListLit(ctx, ds) |> wrap_ids(ids); + | Tuple(ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Tuple(ctx, ds) |> wrap_ids(ids); + | MultiHole(ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + MultiHole(ctx, ds) |> wrap_ids(ids); + | Cons1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Cons1(ctx, d2) |> wrap_ids(ids); + | Cons2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Cons2(d1, ctx) |> wrap_ids(ids); + | ListConcat1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + ListConcat1(ctx, d2) |> wrap_ids(ids); + | ListConcat2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + ListConcat2(d1, ctx) |> wrap_ids(ids); + | Cast(ctx, ty, ty') => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Cast(ctx, ty, ty') |> wrap_ids(ids); + | FailedCast(ctx, ty, ty') => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + FailedCast(ctx, ty, ty') |> wrap_ids(ids); + | DynamicErrorHole(ctx, error) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + DynamicErrorHole(ctx, error) |> wrap_ids(ids); + | MatchScrut(ctx, rs) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + MatchScrut(ctx, rs) |> wrap_ids(ids); + | MatchRule(dexp, dpat, ctx, rs) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + MatchRule(dexp, dpat, ctx, rs) |> wrap_ids(ids); + | TypAp(ctx, ty) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + TypAp(ctx, ty) |> wrap_ids(ids); + | DeferredAp1(ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + DeferredAp1(ctx, ds) |> wrap_ids(ids); + | DeferredAp2(d1, ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + DeferredAp2(d1, ctx, ds) |> wrap_ids(ids); + | UnOp(op, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + UnOp(op, ctx) |> wrap_ids(ids); + } }; + }; switch (ctx) { - | Filter(_) => (ract, ridx, rctx) + | Term({term: Filter(_), _}) => (ract, ridx, rctx) | _ when midx > pidx && mact |> snd == All => ( ract, ridx, - Filter(Residue(midx, mact), rctx), + Term({term: Filter(Residue(midx, mact), rctx), ids: [Id.mk()]}), ) | _ => (ract, ridx, rctx) }; @@ -557,19 +423,19 @@ let should_hide_step = (~settings, x: step): (FilterAction.action, step) => }; }; -let decompose = (~settings, d) => - d |> decompose |> List.map(should_hide_eval_obj(~settings)); +let decompose = (~settings, d, st) => + decompose(d, st) |> List.map(should_hide_eval_obj(~settings)); let evaluate_with_history = (~settings, d) => { let state = ref(EvaluatorState.init); let rec go = d => - switch (decompose(~settings, d)) { + switch (decompose(~settings, d, state^)) { | [] => [] | [(_, x), ..._] => switch (take_step(state, x.env, x.d_loc)) { | None => [] | Some(d) => - let next = compose(x.ctx, d); + let next = EvalCtx.compose(x.ctx, d); [next, ...go(next)]; } }; diff --git a/src/haz3lcore/dynamics/ExpandingKeyword.re b/src/haz3lcore/dynamics/ExpandingKeyword.re deleted file mode 100644 index 58ecbe7553..0000000000 --- a/src/haz3lcore/dynamics/ExpandingKeyword.re +++ /dev/null @@ -1,31 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | Let - | Case - | Fun - | Test; - -let is_Let = String.equal("let"); -let is_Case = String.equal("case"); -let is_Fun = String.equal("fun"); -let is_Test = String.equal("test"); - -let mk = (text: string): option(t) => - if (text |> is_Let) { - Some(Let); - } else if (text |> is_Case) { - Some(Case); - } else if (text |> is_Fun) { - Some(Fun); - } else if (text |> is_Test) { - Some(Test); - } else { - None; - }; - -let to_string = - fun - | Let => "let" - | Case => "case" - | Fun => "fun" - | Test => "test"; diff --git a/src/haz3lcore/dynamics/Filter.re b/src/haz3lcore/dynamics/Filter.re deleted file mode 100644 index d6de2b524a..0000000000 --- a/src/haz3lcore/dynamics/Filter.re +++ /dev/null @@ -1 +0,0 @@ -include DH.Filter; diff --git a/src/haz3lcore/dynamics/FilterEnvironment.re b/src/haz3lcore/dynamics/FilterEnvironment.re index ce2f324f4c..284e7353d3 100644 --- a/src/haz3lcore/dynamics/FilterEnvironment.re +++ b/src/haz3lcore/dynamics/FilterEnvironment.re @@ -1 +1,2 @@ -include DH.FilterEnvironment; +type t = list(TermBase.StepperFilterKind.filter); +let extends = (flt, env) => [flt, ...env]; diff --git a/src/haz3lcore/dynamics/FilterMatcher.re b/src/haz3lcore/dynamics/FilterMatcher.re index 39153acee1..25d160af8f 100644 --- a/src/haz3lcore/dynamics/FilterMatcher.re +++ b/src/haz3lcore/dynamics/FilterMatcher.re @@ -1,3 +1,95 @@ +let evaluate_extend_env = + (new_bindings: Environment.t, to_extend: ClosureEnvironment.t) + : ClosureEnvironment.t => { + to_extend + |> ClosureEnvironment.map_of + |> Environment.union(new_bindings) + |> ClosureEnvironment.of_environment; +}; + +let evaluate_extend_env_with_pat = + ( + ids: list(Uuidm.t), + copied: bool, + pat: DHPat.t, + exp: DHExp.t, + to_extend: ClosureEnvironment.t, + ) + : ClosureEnvironment.t => { + switch (DHPat.get_var(pat)) { + | Some(fname) => + evaluate_extend_env( + Environment.singleton(( + fname, + { + ids, + copied, + IdTagged.term: TermBase.Exp.FixF(pat, exp, Some(to_extend)), + }, + )), + to_extend, + ) + | None => + let bindings = DHPat.bound_vars(pat); + let substitutions = + List.map( + binding => + ( + binding, + TermBase.Exp.Let( + pat, + { + ids, + copied, + term: TermBase.Exp.FixF(pat, exp, Some(to_extend)), + }, + TermBase.Exp.Var(binding) |> IdTagged.fresh, + ) + |> IdTagged.fresh, + ), + bindings, + ); + evaluate_extend_env(Environment.of_list(substitutions), to_extend); + }; +}; + +let alpha_magic = "__alpha_id__"; + +let tangle = + ( + dp: DHPat.t, + denv: ClosureEnvironment.t, + fp: DHPat.t, + fenv: ClosureEnvironment.t, + ) + : option((ClosureEnvironment.t, ClosureEnvironment.t)) => { + let dvars = DHPat.bound_vars(dp); + let fvars = DHPat.bound_vars(fp); + if (List.length(dvars) != List.length(fvars)) { + None; + } else { + let ids = + Array.init(List.length(dvars), _ => { + alpha_magic ++ Uuidm.to_string(Uuidm.v(`V4)) + }); + let denv_subst: list((string, 'a)) = + List.mapi( + (i, binding) => + (binding, TermBase.Exp.Var(ids[i]) |> IdTagged.fresh), + dvars, + ); + let fenv_subst: list((string, 'a)) = + List.mapi( + (i, binding) => + (binding, TermBase.Exp.Var(ids[i]) |> IdTagged.fresh), + fvars, + ); + let denv = evaluate_extend_env(Environment.of_list(denv_subst), denv); + let fenv = evaluate_extend_env(Environment.of_list(fenv_subst), fenv); + Some((denv, fenv)); + }; +}; + let rec matches_exp = ( ~denv: ClosureEnvironment.t, @@ -11,34 +103,56 @@ let rec matches_exp = if (d == f) { true; } else { - switch (d, f) { - | (Constructor("$e"), _) => failwith("$e in matched expression") - | (Constructor("$v"), _) => failwith("$v in matched expression") + switch (d |> DHExp.term_of, f |> DHExp.term_of) { + | (Parens(d), _) => matches_exp(d, f) + | (_, Parens(f)) => matches_exp(d, f) - // HACK[Matt]: ignore fixpoints in comparison, to allow pausing on fixpoint steps - | (FixF(dp, dt, dc), FixF(fp, ft, fc)) => - dp == fp - && dt == ft - && matches_exp( - ~denv=denv |> ClosureEnvironment.without_keys([dp]), - dc, - ~fenv=fenv |> ClosureEnvironment.without_keys([fp]), - fc, - ) - | (FixF(dp, _, dc), f) => - matches_exp(~denv=denv |> ClosureEnvironment.without_keys([dp]), dc, f) - | (d, FixF(fp, _, fc)) => - matches_exp(d, ~fenv=fenv |> ClosureEnvironment.without_keys([fp]), fc) + | (Constructor("$e", _), _) => failwith("$e in matched expression") + | (Constructor("$v", _), _) => failwith("$v in matched expression") - | (_, Constructor("$v")) => - switch (ValueChecker.check_value(denv, d)) { + // HACK[Matt]: ignore fixpoints in comparison, to allow pausing on fixpoint steps + | (FixF(dp, dc, None), FixF(fp, fc, None)) => + switch (tangle(dp, denv, fp, fenv)) { + | None => false + | Some((denv, fenv)) => matches_exp(~denv, dc, ~fenv, fc) + } + | (FixF(dp, dc, None), FixF(fp, fc, Some(fenv))) => + switch (tangle(dp, denv, fp, fenv)) { + | None => false + | Some((denv, fenv)) => matches_exp(~denv, dc, ~fenv, fc) + } + | (FixF(dp, dc, Some(denv)), FixF(fp, fc, None)) => + switch (tangle(dp, denv, fp, fenv)) { + | None => false + | Some((denv, fenv)) => matches_exp(~denv, dc, ~fenv, fc) + } + | (FixF(dp, dc, Some(denv)), FixF(fp, fc, Some(fenv))) => + switch (tangle(dp, denv, fp, fenv)) { + | None => false + | Some((denv, fenv)) => matches_exp(~denv, dc, ~fenv, fc) + } + | (FixF(dp, dc, None), _) => + let denv = evaluate_extend_env_with_pat(d.ids, d.copied, dp, dc, denv); + matches_exp(~denv, dc, ~fenv, f); + | (FixF(dp, dc, Some(denv)), _) => + let denv = evaluate_extend_env_with_pat(d.ids, d.copied, dp, dc, denv); + matches_exp(~denv, dc, ~fenv, f); + | (_, FixF(fp, fc, None)) => + let fenv = evaluate_extend_env_with_pat(f.ids, f.copied, fp, fc, fenv); + matches_exp(~denv, d, ~fenv, fc); + | (_, FixF(fp, fc, Some(fenv))) => + let fenv = evaluate_extend_env_with_pat(f.ids, f.copied, fp, fc, fenv); + matches_exp(~denv, d, ~fenv, fc); + + | (_, Constructor("$v", _)) => + switch (ValueChecker.check_value((), denv, d)) { | Indet | Value => true | Expr => false } - | (_, EmptyHole(_)) - | (_, Constructor("$e")) => true + | (_, EmptyHole) + | (_, Constructor("$e", _)) => true | (Cast(d, _, _), Cast(f, _, _)) => matches_exp(d, f) | (Closure(denv, d), Closure(fenv, f)) => @@ -53,102 +167,59 @@ let rec matches_exp = | (FailedCast(d, _, _), _) => matches_exp(d, f) | (Filter(Residue(_), d), _) => matches_exp(d, f) - | (BoundVar(dx), BoundVar(fx)) - when String.starts_with(dx, ~prefix="__mutual__") => - String.starts_with(fx, ~prefix="__mutual__") && dx == fx - | (BoundVar(dx), BoundVar(fx)) => - switch ( - ClosureEnvironment.lookup(denv, dx), - ClosureEnvironment.lookup(fenv, fx), - ) { - | ( - Some(Fun(_, _, Closure(denv, _), Some(dname)) as d), - Some(Fun(_, _, Closure(fenv, _), Some(fname)) as f), - ) - when - ClosureEnvironment.lookup(denv, dname) == Some(d) - && ClosureEnvironment.lookup(fenv, fname) == Some(f) => - matches_exp( - ~denv=ClosureEnvironment.without_keys([dname], denv), - d, - ~fenv=ClosureEnvironment.without_keys([fname], fenv), - f, - ) - | ( - Some(Fun(_, _, Closure(denv, _), Some(dname)) as d), - Some(Fun(_, _, _, Some(fname)) as f), - ) - when - ClosureEnvironment.lookup(denv, dname) == Some(d) - && ClosureEnvironment.lookup(fenv, fname) == Some(f) => - matches_exp( - ~denv=ClosureEnvironment.without_keys([dname], denv), - d, - ~fenv=ClosureEnvironment.without_keys([fname], fenv), - f, - ) - | ( - Some(Fun(_, _, _, Some(dname)) as d), - Some(Fun(_, _, _, Some(fname)) as f), - ) - when - ClosureEnvironment.lookup(denv, dname) == Some(d) - && ClosureEnvironment.lookup(fenv, fname) == Some(f) => - matches_exp( - ~denv=ClosureEnvironment.without_keys([dname], denv), - d, - ~fenv=ClosureEnvironment.without_keys([fname], fenv), - f, - ) - | ( - Some(Fun(_, _, _, Some(dname)) as d), - Some(Fun(_, _, _, Some(fname)) as f), - ) - when - ClosureEnvironment.lookup(denv, dname) == Some(d) - && ClosureEnvironment.lookup(fenv, fname) == Some(f) => - matches_exp( - ~denv=ClosureEnvironment.without_keys([dname], denv), - d, - ~fenv=ClosureEnvironment.without_keys([fname], denv), - f, - ) - | (Some(d), Some(f)) => matches_exp(d, f) - | (Some(_), None) => false - | (None, Some(_)) => false - | (None, None) => true + | (Var(dx), Var(fx)) => + if (String.starts_with(~prefix=alpha_magic, dx) + && String.starts_with(~prefix=alpha_magic, fx)) { + String.equal(dx, fx); + } else { + switch ( + ClosureEnvironment.lookup(denv, dx), + ClosureEnvironment.lookup(fenv, fx), + ) { + | (Some(d), Some(f)) => matches_exp(d, f) + | (Some(_), None) => false + | (None, Some(_)) => false + | (None, None) => true + }; } - | (BoundVar(dx), _) => + | (Var(dx), _) => switch (ClosureEnvironment.lookup(denv, dx)) { | Some(d) => matches_exp(d, f) | None => false } - | (_, BoundVar(fx)) => + | (_, Var(fx)) => switch (ClosureEnvironment.lookup(fenv, fx)) { | Some(f) => matches_exp(d, f) | None => false } - | (EmptyHole(_), _) => false + | (EmptyHole, _) => false + + | (Deferral(x), Deferral(y)) => x == y + | (Deferral(_), _) => false | (Filter(df, dd), Filter(ff, fd)) => - DH.DHFilter.fast_equal(df, ff) && matches_exp(dd, fd) + TermBase.StepperFilterKind.fast_equal(df, ff) && matches_exp(dd, fd) | (Filter(_), _) => false - | (BoolLit(dv), BoolLit(fv)) => dv == fv - | (BoolLit(_), _) => false + | (Bool(dv), Bool(fv)) => dv == fv + | (Bool(_), _) => false - | (IntLit(dv), IntLit(fv)) => dv == fv - | (IntLit(_), _) => false + | (Int(dv), Int(fv)) => dv == fv + | (Int(_), _) => false - | (FloatLit(dv), FloatLit(fv)) => dv == fv - | (FloatLit(_), _) => false + | (Float(dv), Float(fv)) => dv == fv + | (Float(_), _) => false - | (StringLit(dv), StringLit(fv)) => dv == fv - | (StringLit(_), _) => false + | (String(dv), String(fv)) => dv == fv + | (String(_), _) => false - | (Constructor(_), Ap(Constructor("~MVal"), Tuple([]))) => true - | (Constructor(dt), Constructor(ft)) => dt == ft + | ( + Constructor(_), + Ap(_, {term: Constructor("~MVal", _), _}, {term: Tuple([]), _}), + ) => + true + | (Constructor(dt, _), Constructor(ft, _)) => dt == ft | (Constructor(_), _) => false | (BuiltinFun(dn), BuiltinFun(fn)) => dn == fn @@ -158,25 +229,22 @@ let rec matches_exp = s1 == s2 && matches_utpat(pat1, pat2) && matches_exp(d1, d2) | (TypFun(_), _) => false - | ( - Fun(dp1, _, Closure(denv, d1), _), - Fun(fp1, _, Closure(fenv, f1), _), - ) => + | (Fun(dp1, d1, Some(denv), _), Fun(fp1, f1, Some(fenv), _)) => matches_fun(~denv, dp1, d1, ~fenv, fp1, f1) - | (Fun(dp1, _, Closure(denv, d1), _), Fun(fp1, _, f1, _)) => + | (Fun(dp1, d1, Some(denv), _), Fun(fp1, f1, None, _)) => matches_fun(~denv, dp1, d1, ~fenv, fp1, f1) - | (Fun(dp1, _, d1, _), Fun(fp1, _, Closure(fenv, f1), _)) => + | (Fun(dp1, d1, None, _), Fun(fp1, f1, Some(fenv), _)) => matches_fun(~denv, dp1, d1, ~fenv, fp1, f1) - | (Fun(dp1, _, d1, _), Fun(fp1, _, f1, _)) => + | (Fun(dp1, d1, None, _), Fun(fp1, f1, None, _)) => matches_fun(~denv, dp1, d1, ~fenv, fp1, f1) | (Fun(_), _) => false - | (FreeVar(du, di, dx), FreeVar(fu, fi, fx)) => - du == fu && di == fi && dx == fx - | (FreeVar(_), _) => false - | (Let(dp, d1, d2), Let(fp, f1, f2)) => - matches_pat(dp, fp) && matches_exp(d1, f1) && matches_exp(d2, f2) + switch (tangle(dp, denv, fp, fenv)) { + | None => false + | Some((denv, fenv)) => + matches_exp(d1, f1) && matches_exp(~denv, d2, ~fenv, f2) + } | (Let(_), _) => false | (Module(dp, d1, d2), Module(fp, f1, f2)) => matches_pat(dp, fp) && matches_exp(d1, f1) && matches_exp(d2, f2) @@ -191,76 +259,67 @@ let rec matches_exp = matches_exp(d1, d2) && matches_typ(t1, t2) | (TypAp(_), _) => false - | (Ap(d1, d2), Ap(f1, f2)) => + // TODO: do we want f(x) to match x |> f ??? + | (Ap(_, d1, d2), Ap(_, f1, f2)) => matches_exp(d1, f1) && matches_exp(d2, f2) | (Ap(_), _) => false - | (IfThenElse(dc, d1, d2, d3), IfThenElse(fc, f1, f2, f3)) => - dc == fc - && matches_exp(d1, f1) - && matches_exp(d2, f2) - && matches_exp(d3, f3) - | (IfThenElse(_), _) => false + | (DeferredAp(d1, d2), DeferredAp(f1, f2)) => + matches_exp(d1, f1) + && List.fold_left2( + (acc, d, f) => acc && matches_exp(d, f), + true, + d2, + f2, + ) + | (DeferredAp(_), _) => false + + | (If(d1, d2, d3), If(f1, f2, f3)) => + matches_exp(d1, f1) && matches_exp(d2, f2) && matches_exp(d3, f3) + | (If(_), _) => false - | (Sequence(d1, d2), Sequence(f1, f2)) => + | (Seq(d1, d2), Seq(f1, f2)) => matches_exp(d1, f1) && matches_exp(d2, f2) - | (Sequence(_), _) => false + | (Seq(_), _) => false - | (Test(id1, d2), Test(id2, f2)) => id1 == id2 && matches_exp(d2, f2) + | (Test(d2), Test(f2)) => matches_exp(d2, f2) | (Test(_), _) => false | (Cons(d1, d2), Cons(f1, f2)) => matches_exp(d1, f1) && matches_exp(d2, f2) | (Cons(_), _) => false - | (ListLit(_, _, dt, dv), ListLit(_, _, ft, fv)) => - dt == ft - && List.fold_left2( - (acc, d, f) => acc && matches_exp(d, f), - true, - dv, - fv, - ) + | (ListLit(dv), ListLit(fv)) => + List.fold_left2((acc, d, f) => acc && matches_exp(d, f), true, dv, fv) | (ListLit(_), _) => false | (Tuple(dv), Tuple(fv)) => List.fold_left2((acc, d, f) => acc && matches_exp(d, f), true, dv, fv) | (Tuple(_), _) => false - | (BinBoolOp(d_op_bin, d1, d2), BinBoolOp(f_op_bin, f1, f2)) => - d_op_bin == f_op_bin && matches_exp(d1, f1) && matches_exp(d2, f2) + | (UnOp(d_op, d1), UnOp(f_op, f1)) => + d_op == f_op && matches_exp(d1, f1) + | (UnOp(_), _) => false - | (BinBoolOp(_), _) => false - - | (BinIntOp(d_op_bin, d1, d2), BinIntOp(f_op_bin, f1, f2)) => - d_op_bin == f_op_bin && matches_exp(d1, f1) && matches_exp(d2, f2) - | (BinIntOp(_), _) => false - - | (BinFloatOp(d_op_bin, d1, d2), BinFloatOp(f_op_bin, f1, f2)) => - d_op_bin == f_op_bin && matches_exp(d1, f1) && matches_exp(d2, f2) - | (BinFloatOp(_), _) => false - - | (BinStringOp(d_op_bin, d1, d2), BinStringOp(f_op_bin, f1, f2)) => - d_op_bin == f_op_bin && matches_exp(d1, f1) && matches_exp(d2, f2) - | (BinStringOp(_), _) => false + | (BinOp(d_op, d1, d2), BinOp(f_op, f1, f2)) => + d_op == f_op && matches_exp(d1, f1) && matches_exp(d2, f2) + | (BinOp(_), _) => false + | (ListConcat(d1, d2), ListConcat(f1, f2)) => + matches_exp(d1, f1) && matches_exp(d2, f2) | (ListConcat(_), _) => false - | ( - ConsistentCase(Case(dscrut, drule, _)), - ConsistentCase(Case(fscrut, frule, _)), - ) - | ( - InconsistentBranches(_, _, Case(dscrut, drule, _)), - InconsistentBranches(_, _, Case(fscrut, frule, _)), - ) => + | (Match(dscrut, drule), Match(fscrut, frule)) => matches_exp(dscrut, fscrut) && ( switch ( - List.fold_left2( - (res, drule, frule) => - res && matches_rul(~denv, drule, ~fenv, frule), - true, + List.for_all2( + ((dk, dv), (fk, fv)) => { + switch (tangle(dk, denv, fk, fenv)) { + | None => false + | Some((denv, fenv)) => matches_exp(~denv, dv, ~fenv, fv) + } + }, drule, frule, ) @@ -269,22 +328,21 @@ let rec matches_exp = | res => res } ) - | (ConsistentCase(_), _) - | (InconsistentBranches(_), _) => false - - | (NonEmptyHole(_), _) => false - | (InvalidText(_), _) => false - | (InvalidOperation(_), _) => false + | (Match(_), _) => false + // TODO: should these not default to false? + | (MultiHole(_), _) => false + | (Invalid(_), _) => false + | (DynamicErrorHole(_), _) => false - | (ApBuiltin(dname, darg), ApBuiltin(fname, farg)) => - dname == fname && matches_exp(darg, farg) - | (ApBuiltin(_), _) => false + | (Undefined, _) => false - | (Prj(dv, di), Prj(fv, fi)) => matches_exp(dv, fv) && di == fi - | (Prj(_), _) => false + | (TyAlias(dtp, dut, dd), TyAlias(ftp, fut, fd)) => + dtp == ftp && dut == fut && matches_exp(dd, fd) + | (TyAlias(_), _) => false }; }; } + and matches_fun = ( ~denv: ClosureEnvironment.t, @@ -294,69 +352,38 @@ and matches_fun = fp: DHPat.t, f: DHExp.t, ) => { - matches_pat(dp, fp) - && matches_exp( - ~denv=ClosureEnvironment.without_keys(DHPat.bound_vars(dp), denv), - d, - ~fenv=ClosureEnvironment.without_keys(DHPat.bound_vars(fp), fenv), - f, - ); -} -and matches_pat = (d: DHPat.t, f: DHPat.t): bool => { - switch (d, f) { - | (_, EmptyHole(_)) => true - | (Wild, Wild) => true - | (Wild, _) => false - | (IntLit(dv), IntLit(fv)) => dv == fv - | (IntLit(_), _) => false - | (FloatLit(dv), FloatLit(fv)) => dv == fv - | (FloatLit(_), _) => false - | (BoolLit(dv), BoolLit(fv)) => dv == fv - | (BoolLit(_), _) => false - | (StringLit(dv), StringLit(fv)) => dv == fv - | (StringLit(_), _) => false - | (ListLit(dty1, dl), ListLit(fty1, fl)) => - switch ( - List.fold_left2((res, d, f) => res && matches_pat(d, f), true, dl, fl) - ) { - | exception (Invalid_argument(_)) => false - | res => matches_typ(dty1, fty1) && res - } - | (ListLit(_), _) => false - | (Constructor(dt), Constructor(ft)) => dt == ft - | (Constructor(_), _) => false - | (Var(_), Var(_)) => true - | (Var(_), _) => false - | (Tuple(dl), Tuple(fl)) => - switch ( - List.fold_left2((res, d, f) => res && matches_pat(d, f), true, dl, fl) - ) { - | exception (Invalid_argument(_)) => false - | res => res - } - | (Tuple(_), _) => false - | (Ap(d1, d2), Ap(f1, f2)) => matches_pat(d1, f1) && matches_pat(d2, f2) - | (Ap(_), _) => false - | (BadConstructor(_, _, dt), BadConstructor(_, _, ft)) => dt == ft - | (BadConstructor(_), _) => false - | (Cons(d1, d2), Cons(f1, f2)) => - matches_pat(d1, f1) && matches_pat(d2, f2) - | (Cons(_), _) => false - | (EmptyHole(_), _) => false - | (NonEmptyHole(_), _) => false - | (InvalidText(_), _) => false + let dvars = DHPat.bound_vars(dp); + let fvars = DHPat.bound_vars(fp); + if (List.length(dvars) != List.length(fvars)) { + false; + } else { + let ids = + Array.init(List.length(dvars), _ => { + alpha_magic ++ Uuidm.to_string(Uuidm.v(`V4)) + }); + let denv_subst: list((string, 'a)) = + List.mapi( + (i, binding) => + (binding, TermBase.Exp.Var(ids[i]) |> IdTagged.fresh), + dvars, + ); + let fenv_subst: list((string, 'a)) = + List.mapi( + (i, binding) => + (binding, TermBase.Exp.Var(ids[i]) |> IdTagged.fresh), + fvars, + ); + let denv = evaluate_extend_env(Environment.of_list(denv_subst), denv); + let fenv = evaluate_extend_env(Environment.of_list(fenv_subst), fenv); + matches_exp(~denv, d, ~fenv, f); }; } + and matches_typ = (d: Typ.t, f: Typ.t) => { Typ.eq(d, f); } -and matches_rul = (~denv, d: DHExp.rule, ~fenv, f: DHExp.rule) => { - switch (d, f) { - | (Rule(dp, d), Rule(fp, f)) => - matches_pat(dp, fp) && matches_exp(~denv, d, ~fenv, f) - }; -} -and matches_utpat = (d: Term.UTPat.t, f: Term.UTPat.t): bool => { + +and matches_utpat = (d: TPat.t, f: TPat.t): bool => { switch (d.term, f.term) { | (Invalid(_), _) => false | (_, Invalid(_)) => false @@ -368,7 +395,11 @@ and matches_utpat = (d: Term.UTPat.t, f: Term.UTPat.t): bool => { }; let matches = - (~env: ClosureEnvironment.t, ~exp: DHExp.t, ~flt: Filter.t) + ( + ~env: ClosureEnvironment.t, + ~exp: DHExp.t, + ~flt: TermBase.StepperFilterKind.filter, + ) : option(FilterAction.t) => if (matches_exp(~denv=env, exp, ~fenv=env, flt.pat)) { Some(flt.act); diff --git a/src/haz3lcore/dynamics/HoleInstance.re b/src/haz3lcore/dynamics/HoleInstance.re deleted file mode 100644 index 5925bf6ae8..0000000000 --- a/src/haz3lcore/dynamics/HoleInstance.re +++ /dev/null @@ -1,7 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = (MetaVar.t, HoleInstanceId.t); - -let u_of = ((u, _): t): MetaVar.t => u; -let i_of = ((_, i): t): HoleInstanceId.t => i; - -let result: t = (Id.invalid, 0); diff --git a/src/haz3lcore/dynamics/HoleInstance.rei b/src/haz3lcore/dynamics/HoleInstance.rei deleted file mode 100644 index 1e1c40bbd6..0000000000 --- a/src/haz3lcore/dynamics/HoleInstance.rei +++ /dev/null @@ -1,23 +0,0 @@ -/** - Representation of a unique hole instantiation (the set of hole instances with - the same hole number and environment). - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = (MetaVar.t, HoleInstanceId.t); - -/** - [u_of (u, i)] is [u], where [u] is the hole metavariable. - */ -let u_of: t => MetaVar.t; - -/** - [i_of (u, i)] is [i], where [i] is the hole instance id. - */ -let i_of: t => HoleInstanceId.t; - -/** - [result] is the special instance used to represent the parent "hole instance" - of the result; that is to say, if a hole instance has this value as its - parent, then it is directly in the result. - */ -let result: t; diff --git a/src/haz3lcore/dynamics/HoleInstanceId.re b/src/haz3lcore/dynamics/HoleInstanceId.re deleted file mode 100644 index 6db122bfcf..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceId.re +++ /dev/null @@ -1,4 +0,0 @@ -open Sexplib.Std; - -[@deriving (show({with_path: false}), sexp, yojson)] -type t = int; diff --git a/src/haz3lcore/dynamics/HoleInstanceId.rei b/src/haz3lcore/dynamics/HoleInstanceId.rei deleted file mode 100644 index 2093b1dcd5..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceId.rei +++ /dev/null @@ -1,6 +0,0 @@ -/** - Identifier for a unique hole closure/instantiation (unique among hole - closures for a given hole number). - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = int; diff --git a/src/haz3lcore/dynamics/HoleInstanceInfo.re b/src/haz3lcore/dynamics/HoleInstanceInfo.re deleted file mode 100644 index f63e70a762..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceInfo.re +++ /dev/null @@ -1,38 +0,0 @@ -open Sexplib.Std; - -[@deriving (show({with_path: false}), sexp, yojson)] -type t = MetaVarMap.t(list((ClosureEnvironment.t, HoleInstanceParents.t))); - -let empty: t = MetaVarMap.empty; - -let num_instances = (hii: t, u: MetaVar.t): int => - hii - |> MetaVarMap.find_opt(u) - |> Option.map(his => List.length(his)) - |> Option.value(~default=0); - -let find_instance = - (hii: t, u: MetaVar.t, i: HoleInstanceId.t) - : option((ClosureEnvironment.t, HoleInstanceParents.t)) => { - switch (hii |> MetaVarMap.find_opt(u)) { - | Some(his) => List.nth_opt(his, i) - | None => None - }; -}; - -let add_parent = - ((u, i): HoleInstance.t, parent: HoleInstanceParents.t_, hii: t): t => { - let u_instances = hii |> MetaVarMap.find(u); - hii - |> MetaVarMap.add( - u, - u_instances - |> List.mapi((i', (env, parents)) => - if (i' == i) { - (env, parent |> HoleInstanceParents.add_parent(parents)); - } else { - (env, parents); - } - ), - ); -}; diff --git a/src/haz3lcore/dynamics/HoleInstanceInfo.rei b/src/haz3lcore/dynamics/HoleInstanceInfo.rei deleted file mode 100644 index e7477ff995..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceInfo.rei +++ /dev/null @@ -1,33 +0,0 @@ -/** - Stores information about all hole instances reachable by a program's - evaluation result. Used in the context inspector. - - Constructed using {!val:HoleInstanceInfo_.to_hole_instance_info}. - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = MetaVarMap.t(list((ClosureEnvironment.t, HoleInstanceParents.t))); - -/** - [empty] is the empty info map. - */ -let empty: t; - -/** - [num_unique_his hii u] is the number of unique hole instances for a given - hole (given by the id [u]). - */ -let num_instances: (t, MetaVar.t) => int; - -/** - [find_instance hii u i] is the information for the given hole and hole - instance id, if found. - */ -let find_instance: - (t, MetaVar.t, HoleInstanceId.t) => - option((ClosureEnvironment.t, HoleInstanceParents.t)); - -/** - [add_parent (u, i) hip hii] adds the parent [hip] to the hole given by [(u, - i)]. Assumes both the parent and the hole exist in [hii]. - */ -let add_parent: (HoleInstance.t, HoleInstanceParents.t_, t) => t; diff --git a/src/haz3lcore/dynamics/HoleInstanceInfo_.re b/src/haz3lcore/dynamics/HoleInstanceInfo_.re deleted file mode 100644 index bee03aa10f..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceInfo_.re +++ /dev/null @@ -1,61 +0,0 @@ -/* - Variable names: - [hii] => "hole instance info" - [his] => "hole instances" - [hip] => "hole instance parents" - - TODO: Clear explanation of namings, probably in overall doc. - */ - -/** - Map associates a hole id to a hole instance id, hole closure environment, and - hole instance parents. - */ -[@deriving sexp] -type t = - MetaVarMap.t( - EnvironmentIdMap.t( - (HoleInstanceId.t, ClosureEnvironment.t, HoleInstanceParents.t), - ), - ); - -let empty: t = MetaVarMap.empty; - -let add_instance = - (hii: t, u: MetaVar.t, env: ClosureEnvironment.t): (t, HoleInstanceId.t) => { - let ei = env |> ClosureEnvironment.id_of; - switch (hii |> MetaVarMap.find_opt(u)) { - /* Hole already exists in the map. */ - | Some(his) => - switch (his |> EnvironmentIdMap.find_opt(ei)) { - /* Hole instance already exists in the map, simply return the hole instance - * id. */ - | Some((i, _, _)) => (hii, i) - /* Hole exists in the info map, but instance doesn't; create a new hole - * instance with next unique instance id. */ - | None => - let i = his |> EnvironmentIdMap.cardinal; - let his = his |> EnvironmentIdMap.add(ei, (i, env, [])); - let hii = hii |> MetaVarMap.add(u, his); - (hii, i); - } - /* Hole doesn't exist in the map. */ - | None => - let i = 0; - let his = EnvironmentIdMap.singleton(ei, (0, env, [])); - let hii = hii |> MetaVarMap.add(u, his); - (hii, i); - }; -}; - -let to_hole_instance_info = (hii: t): HoleInstanceInfo.t => - /* For each hole, arrange instances in order of increasing hole instance id. */ - hii - |> MetaVarMap.map(his => - his - |> EnvironmentIdMap.bindings - |> List.sort(((_, (i1, _, _)), (_, (i2, _, _))) => - compare(i1, i2) - ) - |> List.map(((_, (_, env, hip))) => (env, hip)) - ); diff --git a/src/haz3lcore/dynamics/HoleInstanceInfo_.rei b/src/haz3lcore/dynamics/HoleInstanceInfo_.rei deleted file mode 100644 index 8877f4da71..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceInfo_.rei +++ /dev/null @@ -1,29 +0,0 @@ -/** - Auxiliary data structure for constructing a {!type:HoleInstanceInfo.t}. - */ - -/* FIXME: Make this abstract. */ -[@deriving sexp] -type t; - -/** - [empty] is the empty info map. - */ -let empty: t; - -/** - [add_instance hii u env] binds a unique hole instance id for the - [(u, env)] pair representing a hole instance, assocating it in [hii] and - returning [(map', i)], where [map'] is the augmented [map] and [i] is the - hole instance id. - - If the pair already exists in [hii], the existing id is returned as [i]; - otherwise, a unique id is assigned and returned as [i]. - */ -let add_instance: - (t, MetaVar.t, ClosureEnvironment.t) => (t, HoleInstanceId.t); - -/** - [to_hole_instance_info hii] converts [hii] into {!type:HoleInstanceInfo.t}. - */ -let to_hole_instance_info: t => HoleInstanceInfo.t; diff --git a/src/haz3lcore/dynamics/HoleInstanceParents.re b/src/haz3lcore/dynamics/HoleInstanceParents.re deleted file mode 100644 index 3935a3b8c8..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceParents.re +++ /dev/null @@ -1,13 +0,0 @@ -open Sexplib.Std; - -[@deriving (show({with_path: false}), sexp, yojson)] -type t_ = (Var.t, HoleInstance.t) -and t = list(t_); - -let to_list = (hcp: t): list(t_) => hcp; -let singleton = (parent: t_) => [parent]; - -let add_parent = (hcp: t, new_parent: t_) => [ - new_parent, - ...List.filter(p => p != new_parent, hcp), -]; diff --git a/src/haz3lcore/dynamics/HoleInstanceParents.rei b/src/haz3lcore/dynamics/HoleInstanceParents.rei deleted file mode 100644 index 96b43acc95..0000000000 --- a/src/haz3lcore/dynamics/HoleInstanceParents.rei +++ /dev/null @@ -1,13 +0,0 @@ -/** - List of hole instance parents. A single hole instance (set of closures with - the same environment) may have multiple parents. - */ - -[@deriving (show({with_path: false}), sexp, yojson)] -type t_ = (Var.t, HoleInstance.t) -and t = list(t_); - -let to_list: t => list(t_); -let singleton: t_ => t; - -let add_parent: (t, t_) => t; diff --git a/src/haz3lcore/dynamics/InjSide.re b/src/haz3lcore/dynamics/InjSide.re deleted file mode 100644 index 690f23871d..0000000000 --- a/src/haz3lcore/dynamics/InjSide.re +++ /dev/null @@ -1,15 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | L - | R; - -let to_string = - fun - | L => "L" - | R => "R"; - -let pick = (side, l, r) => - switch (side) { - | L => l - | R => r - }; diff --git a/src/haz3lcore/dynamics/InstancePath.re b/src/haz3lcore/dynamics/InstancePath.re deleted file mode 100644 index 117a03806e..0000000000 --- a/src/haz3lcore/dynamics/InstancePath.re +++ /dev/null @@ -1,4 +0,0 @@ -open Sexplib.Std; - -[@deriving sexp] -type t = list((HoleInstance.t, Var.t)); diff --git a/src/haz3lcore/dynamics/InstancePath.rei b/src/haz3lcore/dynamics/InstancePath.rei deleted file mode 100644 index 8e205a0052..0000000000 --- a/src/haz3lcore/dynamics/InstancePath.rei +++ /dev/null @@ -1,2 +0,0 @@ -[@deriving sexp] -type t = list((HoleInstance.t, Var.t)); diff --git a/src/haz3lcore/dynamics/KeywordID.re b/src/haz3lcore/dynamics/KeywordID.re deleted file mode 100644 index d176549da7..0000000000 --- a/src/haz3lcore/dynamics/KeywordID.re +++ /dev/null @@ -1,2 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = Id.t; diff --git a/src/haz3lcore/dynamics/MetaVar.re b/src/haz3lcore/dynamics/MetaVar.re deleted file mode 100644 index d176549da7..0000000000 --- a/src/haz3lcore/dynamics/MetaVar.re +++ /dev/null @@ -1,2 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = Id.t; diff --git a/src/haz3lcore/dynamics/MetaVar.rei b/src/haz3lcore/dynamics/MetaVar.rei deleted file mode 100644 index d176549da7..0000000000 --- a/src/haz3lcore/dynamics/MetaVar.rei +++ /dev/null @@ -1,2 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = Id.t; diff --git a/src/haz3lcore/dynamics/MetaVarInst.re b/src/haz3lcore/dynamics/MetaVarInst.re deleted file mode 100644 index 9b410f2e61..0000000000 --- a/src/haz3lcore/dynamics/MetaVarInst.re +++ /dev/null @@ -1,7 +0,0 @@ -open Sexplib.Std; - -/** - * Hole instance index in DHPat and DHExp - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = int; diff --git a/src/haz3lcore/dynamics/MetaVarInst.rei b/src/haz3lcore/dynamics/MetaVarInst.rei deleted file mode 100644 index 89692b7bed..0000000000 --- a/src/haz3lcore/dynamics/MetaVarInst.rei +++ /dev/null @@ -1,5 +0,0 @@ -/** - * Hole instance index in DHPat and DHExp - */ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = int; diff --git a/src/haz3lcore/dynamics/MetaVarMap.re b/src/haz3lcore/dynamics/MetaVarMap.re deleted file mode 100644 index 932d7b1316..0000000000 --- a/src/haz3lcore/dynamics/MetaVarMap.re +++ /dev/null @@ -1 +0,0 @@ -include Id.Map; diff --git a/src/haz3lcore/dynamics/PatternMatch.re b/src/haz3lcore/dynamics/PatternMatch.re index cc51a785e4..329ca1efd8 100644 --- a/src/haz3lcore/dynamics/PatternMatch.re +++ b/src/haz3lcore/dynamics/PatternMatch.re @@ -1,522 +1,60 @@ -open Util; - -type match_result = - | Matches(Environment.t) - | DoesNotMatch - | IndetMatch; - -let const_unknown: 'a => Typ.t = _ => Unknown(Internal); - -let cast_sum_maps = - (sm1: Typ.sum_map, sm2: Typ.sum_map) - : option(ConstructorMap.t((Typ.t, Typ.t))) => { - let (ctrs1, tys1) = sm1 |> ConstructorMap.bindings |> List.split; - let (ctrs2, tys2) = sm2 |> ConstructorMap.bindings |> List.split; - if (ctrs1 == ctrs2) { - let tys1 = tys1 |> List.filter(Option.is_some) |> List.map(Option.get); - let tys2 = tys2 |> List.filter(Option.is_some) |> List.map(Option.get); - if (List.length(tys1) == List.length(tys2)) { - Some( - List.(combine(tys1, tys2) |> combine(ctrs1)) - |> ConstructorMap.of_list, - ); - } else { - None; - }; - } else { - None; +type match_result = Unboxing.unboxed(Environment.t); +let ( let* ) = Unboxing.( let* ); + +let combine_result = (r1: match_result, r2: match_result): match_result => + switch (r1, r2) { + | (DoesNotMatch, _) + | (_, DoesNotMatch) => DoesNotMatch + | (IndetMatch, _) + | (_, IndetMatch) => IndetMatch + | (Matches(env1), Matches(env2)) => + Matches(Environment.union(env1, env2)) }; -}; - -let rec matches = (dp: DHPat.t, d: DHExp.t): match_result => - switch (dp, d) { - | (_, BoundVar(_)) => DoesNotMatch - | (EmptyHole(_), _) - | (NonEmptyHole(_), _) => IndetMatch - | (Wild, _) => Matches(Environment.empty) - | (InvalidText(_), _) => IndetMatch - | (Var(_), ModuleVal(_)) => DoesNotMatch - | (Constructor(x), ModuleVal(_)) - | (Constructor(x), Cast(_, Module(_), Module(_))) - | (Constructor(x), Cast(_, Module(_), Unknown(_))) - | (Constructor(x), Cast(_, Unknown(_), Module(_))) => - let env = Environment.extend(Environment.empty, (x, d)); - Matches(env); - | (BadConstructor(_), _) => IndetMatch - | (Var(x), _) => - let env = Environment.extend(Environment.empty, (x, d)); - Matches(env); - | (_, EmptyHole(_)) => IndetMatch - | (_, NonEmptyHole(_)) => IndetMatch - | (_, FailedCast(_)) => IndetMatch - | (_, InvalidOperation(_)) => IndetMatch - | (_, FreeVar(_)) => IndetMatch - | (_, InvalidText(_)) => IndetMatch - | (_, Let(_)) => IndetMatch - | (_, FixF(_)) => DoesNotMatch - | (_, Fun(_)) => DoesNotMatch - | (_, BinBoolOp(_)) => IndetMatch - | (_, BinIntOp(_)) => IndetMatch - | (_, BinFloatOp(_)) => IndetMatch - | (_, ConsistentCase(Case(_))) => IndetMatch - - /* Closure should match like underlying expression. */ - | (_, Closure(_, d')) - | (_, Filter(_, d')) => matches(dp, d') - - | (BoolLit(b1), BoolLit(b2)) => - if (b1 == b2) { - Matches(Environment.empty); - } else { - DoesNotMatch; - } - | (BoolLit(_), Cast(d, Bool, Unknown(_))) => matches(dp, d) - | (BoolLit(_), Cast(d, Unknown(_), Bool)) => matches(dp, d) - | (BoolLit(_), _) => DoesNotMatch - | (IntLit(n1), IntLit(n2)) => - if (n1 == n2) { - Matches(Environment.empty); - } else { - DoesNotMatch; - } - | (IntLit(_), Cast(d, Int, Unknown(_))) => matches(dp, d) - | (IntLit(_), Cast(d, Unknown(_), Int)) => matches(dp, d) - | (IntLit(_), _) => DoesNotMatch - | (FloatLit(n1), FloatLit(n2)) => - if (n1 == n2) { - Matches(Environment.empty); - } else { - DoesNotMatch; - } - | (FloatLit(_), Cast(d, Float, Unknown(_))) => matches(dp, d) - | (FloatLit(_), Cast(d, Unknown(_), Float)) => matches(dp, d) - | (FloatLit(_), _) => DoesNotMatch - | (StringLit(s1), StringLit(s2)) => - if (s1 == s2) { - Matches(Environment.empty); - } else { - DoesNotMatch; - } - | (StringLit(_), Cast(d, String, Unknown(_))) => matches(dp, d) - | (StringLit(_), Cast(d, Unknown(_), String)) => matches(dp, d) - | (StringLit(_), _) => DoesNotMatch - - | (Ap(dp1, dp2), Ap(d1, d2)) => - switch (matches(dp1, d1)) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => - switch (matches(dp2, d2)) { - | DoesNotMatch => DoesNotMatch - | IndetMatch - | Matches(_) => IndetMatch - } - | Matches(env1) => - switch (matches(dp2, d2)) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env2) => Matches(Environment.union(env1, env2)) - } - } - | ( - Ap(Constructor(ctr), dp_opt), - Cast(d, Sum(sm1) | Rec(_, Sum(sm1)), Sum(sm2) | Rec(_, Sum(sm2))), - ) => - switch (cast_sum_maps(sm1, sm2)) { - | Some(castmap) => matches_cast_Sum(ctr, Some(dp_opt), d, [castmap]) - | None => DoesNotMatch - } - - | (Ap(_, _), Cast(d, Sum(_) | Rec(_, Sum(_)), Unknown(_))) - | (Ap(_, _), Cast(d, Unknown(_), Sum(_) | Rec(_, Sum(_)))) => - matches(dp, d) - | (Ap(_, _), _) => DoesNotMatch - | (Constructor(ctr), Constructor(ctr')) => - ctr == ctr' ? Matches(Environment.empty) : DoesNotMatch - | ( - Constructor(ctr), - Cast(d, Sum(sm1) | Rec(_, Sum(sm1)), Sum(sm2) | Rec(_, Sum(sm2))), - ) => - switch (cast_sum_maps(sm1, sm2)) { - | Some(castmap) => matches_cast_Sum(ctr, None, d, [castmap]) - | None => DoesNotMatch - } - | (Constructor(_), Cast(d, Sum(_) | Rec(_, Sum(_)), Unknown(_))) => - matches(dp, d) - | (Constructor(_), Cast(d, Unknown(_), Sum(_) | Rec(_, Sum(_)))) => - matches(dp, d) - | (Constructor(_), _) => DoesNotMatch - - | (Tuple(dps), Tuple(ds)) => - if (List.length(dps) != List.length(ds)) { - DoesNotMatch; - } else { - List.fold_left2( - (result, dp, d) => - switch (result) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env) => - switch (matches(dp, d)) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env') => Matches(Environment.union(env, env')) - } - }, - Matches(Environment.empty), - dps, - ds, - ); - } - | (Tuple(dps), Cast(d, Prod(tys), Prod(tys'))) => - assert(List.length(tys) == List.length(tys')); - matches_cast_Tuple( - dps, - d, - List.map(p => [p], List.combine(tys, tys')), - ); - | (Tuple(dps), Cast(d, Prod(tys), Unknown(_))) => - matches_cast_Tuple( - dps, - d, - List.map( - p => [p], - List.combine(tys, List.init(List.length(tys), const_unknown)), - ), - ) - | (Tuple(dps), Cast(d, Unknown(_), Prod(tys'))) => - matches_cast_Tuple( - dps, - d, - List.map( - p => [p], - List.combine(List.init(List.length(tys'), const_unknown), tys'), - ), - ) - | (Tuple(_), Cast(_)) => DoesNotMatch - | (Tuple(_), _) => DoesNotMatch - | (Cons(_) | ListLit(_), Cast(d, List(ty1), List(ty2))) => - matches_cast_Cons(dp, d, [(ty1, ty2)]) - | (Cons(_) | ListLit(_), Cast(d, Unknown(_), List(ty2))) => - matches_cast_Cons(dp, d, [(Unknown(Internal), ty2)]) - | (Cons(_) | ListLit(_), Cast(d, List(ty1), Unknown(_))) => - matches_cast_Cons(dp, d, [(ty1, Unknown(Internal))]) - | (Cons(_, _), Cons(_, _)) - | (ListLit(_, _), Cons(_, _)) - | (Cons(_, _), ListLit(_)) - | (ListLit(_), ListLit(_)) => matches_cast_Cons(dp, d, []) - | (Cons(_) | ListLit(_), _) => DoesNotMatch - } -and matches_cast_Sum = - ( - ctr: string, - dp: option(DHPat.t), - d: DHExp.t, - castmaps: list(ConstructorMap.t((Typ.t, Typ.t))), - ) - : match_result => - switch (d) { - | Constructor(ctr') => - switch ( - dp, - castmaps |> List.map(ConstructorMap.find_opt(ctr')) |> OptUtil.sequence, - ) { - | (None, Some(_)) => - ctr == ctr' ? Matches(Environment.empty) : DoesNotMatch - | _ => DoesNotMatch - } - | Ap(Constructor(ctr'), d') => - switch ( - dp, - castmaps |> List.map(ConstructorMap.find_opt(ctr')) |> OptUtil.sequence, - ) { - | (Some(dp), Some(side_casts)) => - matches(dp, DHExp.apply_casts(d', side_casts)) - | _ => DoesNotMatch - } - | Cast(d', Sum(sm1) | Rec(_, Sum(sm1)), Sum(sm2) | Rec(_, Sum(sm2))) => - switch (cast_sum_maps(sm1, sm2)) { - | Some(castmap) => matches_cast_Sum(ctr, dp, d', [castmap, ...castmaps]) - | None => DoesNotMatch - } - | Cast(d', Sum(_) | Rec(_, Sum(_)), Unknown(_)) - | Cast(d', Unknown(_), Sum(_) | Rec(_, Sum(_))) => - matches_cast_Sum(ctr, dp, d', castmaps) - | FreeVar(_) - | InvalidText(_) - | Let(_) - | Module(_) - | TypAp(_) - | Ap(_) - | ApBuiltin(_) - | BinBoolOp(_) - | BinIntOp(_) - | BinFloatOp(_) - | BinStringOp(_) - | InconsistentBranches(_) - | EmptyHole(_) - | NonEmptyHole(_) - | FailedCast(_, _, _) - | Test(_) - | InvalidOperation(_) - | ConsistentCase(_) - | Prj(_) - | IfThenElse(_) - | BuiltinFun(_) => IndetMatch - | Cast(_) - | BoundVar(_) - | Dot(_) - | ModuleVal(_) - | FixF(_) - | TypFun(_) - | Fun(_) - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ListLit(_) - | Tuple(_) - | Sequence(_, _) - | Closure(_) - | Filter(_) - | Cons(_) - | ListConcat(_) => DoesNotMatch - } -and matches_cast_Tuple = - ( - dps: list(DHPat.t), - d: DHExp.t, - elt_casts: list(list((Typ.t, Typ.t))), - ) - : match_result => - switch (d) { - | Tuple(ds) => - if (List.length(dps) != List.length(ds)) { - DoesNotMatch; +let rec matches = (dp: Pat.t, d: DHExp.t): match_result => + switch (DHPat.term_of(dp)) { + | Invalid(_) + | EmptyHole + | MultiHole(_) + | Wild => Matches(Environment.empty) + | Int(n) => + let* n' = Unboxing.unbox(Int, d); + n == n' ? Matches(Environment.empty) : DoesNotMatch; + | Float(n) => + let* n' = Unboxing.unbox(Float, d); + n == n' ? Matches(Environment.empty) : DoesNotMatch; + | Bool(b) => + let* b' = Unboxing.unbox(Bool, d); + b == b' ? Matches(Environment.empty) : DoesNotMatch; + | String(s) => + let* s' = Unboxing.unbox(String, d); + s == s' ? Matches(Environment.empty) : DoesNotMatch; + | ListLit(xs) => + let* s' = Unboxing.unbox(List, d); + if (List.length(xs) == List.length(s')) { + List.map2(matches, xs, s') + |> List.fold_left(combine_result, Matches(Environment.empty)); } else { - assert(List.length(List.combine(dps, ds)) == List.length(elt_casts)); - List.fold_right( - (((dp, d), casts), result) => { - switch (result) { - | DoesNotMatch - | IndetMatch => result - | Matches(env) => - switch (matches(dp, DHExp.apply_casts(d, casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env') => Matches(Environment.union(env, env')) - } - } - }, - List.combine(List.combine(dps, ds), elt_casts), - Matches(Environment.empty), - ); - } - | Cast(d', Prod(tys), Prod(tys')) => - if (List.length(dps) != List.length(tys)) { DoesNotMatch; - } else { - assert(List.length(tys) == List.length(tys')); - matches_cast_Tuple( - dps, - d', - List.map2(List.cons, List.combine(tys, tys'), elt_casts), - ); - } - | Cast(d', Prod(tys), Unknown(_)) => - let tys' = List.init(List.length(tys), const_unknown); - matches_cast_Tuple( - dps, - d', - List.map2(List.cons, List.combine(tys, tys'), elt_casts), - ); - | Cast(d', Unknown(_), Prod(tys')) => - let tys = List.init(List.length(tys'), const_unknown); - matches_cast_Tuple( - dps, - d', - List.map2(List.cons, List.combine(tys, tys'), elt_casts), - ); - | Cast(_, _, _) => DoesNotMatch - | BoundVar(_) => DoesNotMatch - | FreeVar(_) => IndetMatch - | InvalidText(_) => IndetMatch - | Let(_, _, _) => IndetMatch - | Module(_, _, _) => IndetMatch - | Dot(_, _) => IndetMatch - | FixF(_, _, _) => DoesNotMatch - | TypFun(_, _, _) => DoesNotMatch - | Fun(_, _, _, _) => DoesNotMatch - | Closure(_, Fun(_)) => DoesNotMatch - | Closure(_, _) => IndetMatch - | TypAp(_, _) => IndetMatch - | Filter(_, _) => IndetMatch - | Ap(_, _) => IndetMatch - | ApBuiltin(_, _) => IndetMatch - | BinBoolOp(_, _, _) - | BinIntOp(_, _, _) - | BinFloatOp(_, _, _) - | BinStringOp(_) - | BoolLit(_) => DoesNotMatch - | IntLit(_) => DoesNotMatch - | ModuleVal(_) => DoesNotMatch - | Sequence(_) - | BuiltinFun(_) - | Test(_) => DoesNotMatch - | FloatLit(_) => DoesNotMatch - | StringLit(_) => DoesNotMatch - | ListLit(_) => DoesNotMatch - | Cons(_, _) => DoesNotMatch - | ListConcat(_) => DoesNotMatch - | Prj(_) => IndetMatch - | Constructor(_) => DoesNotMatch - | ConsistentCase(_) - | InconsistentBranches(_) => IndetMatch - | EmptyHole(_) => IndetMatch - | NonEmptyHole(_) => IndetMatch - | FailedCast(_, _, _) => IndetMatch - | InvalidOperation(_) => IndetMatch - | IfThenElse(_) => IndetMatch - } -and matches_cast_Cons = - (dp: DHPat.t, d: DHExp.t, elt_casts: list((Typ.t, Typ.t))): match_result => - switch (d) { - | ListLit(_, _, _, []) => - switch (dp) { - | ListLit(_, []) => Matches(Environment.empty) - | _ => DoesNotMatch - } - | ListLit(u, i, ty, [dhd, ...dtl] as ds) => - switch (dp) { - | Cons(dp1, dp2) => - switch (matches(dp1, DHExp.apply_casts(dhd, elt_casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env1) => - let list_casts = - List.map( - (c: (Typ.t, Typ.t)) => { - let (ty1, ty2) = c; - (Typ.List(ty1), Typ.List(ty2)); - }, - elt_casts, - ); - let d2 = DHExp.ListLit(u, i, ty, dtl); - switch (matches(dp2, DHExp.apply_casts(d2, list_casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env2) => Matches(Environment.union(env1, env2)) - }; - } - | ListLit(_, dps) => - switch (ListUtil.opt_zip(dps, ds)) { - | None => DoesNotMatch - | Some(lst) => - lst - |> List.map(((dp, d)) => - matches(dp, DHExp.apply_casts(d, elt_casts)) - ) - |> List.fold_left( - (match1, match2) => - switch (match1, match2) { - | (DoesNotMatch, _) - | (_, DoesNotMatch) => DoesNotMatch - | (IndetMatch, _) - | (_, IndetMatch) => IndetMatch - | (Matches(env1), Matches(env2)) => - Matches(Environment.union(env1, env2)) - }, - Matches(Environment.empty), - ) - } - | _ => failwith("called matches_cast_Cons with non-list pattern") - } - | Cons(d1, d2) => - switch (dp) { - | Cons(dp1, dp2) => - switch (matches(dp1, DHExp.apply_casts(d1, elt_casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env1) => - let list_casts = - List.map( - (c: (Typ.t, Typ.t)) => { - let (ty1, ty2) = c; - (Typ.List(ty1), Typ.List(ty2)); - }, - elt_casts, - ); - switch (matches(dp2, DHExp.apply_casts(d2, list_casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env2) => Matches(Environment.union(env1, env2)) - }; - } - | ListLit(_, []) => DoesNotMatch - | ListLit(ty, [dphd, ...dptl]) => - switch (matches(dphd, DHExp.apply_casts(d1, elt_casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env1) => - let list_casts = - List.map( - (c: (Typ.t, Typ.t)) => { - let (ty1, ty2) = c; - (Typ.List(ty1), Typ.List(ty2)); - }, - elt_casts, - ); - let dp2 = DHPat.ListLit(ty, dptl); - switch (matches(dp2, DHExp.apply_casts(d2, list_casts))) { - | DoesNotMatch => DoesNotMatch - | IndetMatch => IndetMatch - | Matches(env2) => Matches(Environment.union(env1, env2)) - }; - } - | _ => failwith("called matches_cast_Cons with non-list pattern") - } - | Cast(d', List(ty1), List(ty2)) => - matches_cast_Cons(dp, d', [(ty1, ty2), ...elt_casts]) - | Cast(d', List(ty1), Unknown(_)) => - matches_cast_Cons(dp, d', [(ty1, Unknown(Internal)), ...elt_casts]) - | Cast(d', Unknown(_), List(ty2)) => - matches_cast_Cons(dp, d', [(Unknown(Internal), ty2), ...elt_casts]) - | Cast(_, _, _) => DoesNotMatch - | BoundVar(_) => DoesNotMatch - | FreeVar(_) => IndetMatch - | InvalidText(_) => IndetMatch - | Let(_, _, _) => IndetMatch - | Module(_, _, _) => IndetMatch - | Dot(_, _) => IndetMatch - | FixF(_, _, _) => DoesNotMatch - | TypFun(_, _, _) => DoesNotMatch - | Fun(_, _, _, _) => DoesNotMatch - | Closure(_, d') => matches_cast_Cons(dp, d', elt_casts) - | TypAp(_, _) => IndetMatch - | Filter(_, d') => matches_cast_Cons(dp, d', elt_casts) - | Ap(_, _) => IndetMatch - | ApBuiltin(_, _) => IndetMatch - | BinBoolOp(_, _, _) - | BinIntOp(_, _, _) - | BinFloatOp(_, _, _) - | BinStringOp(_) - | ListConcat(_) - | BuiltinFun(_) => DoesNotMatch - | BoolLit(_) => DoesNotMatch - | IntLit(_) => DoesNotMatch - | ModuleVal(_) => DoesNotMatch - | Sequence(_) - | Test(_) => DoesNotMatch - | FloatLit(_) => DoesNotMatch - | StringLit(_) => DoesNotMatch - | Tuple(_) => DoesNotMatch - | Prj(_) => IndetMatch - | Constructor(_) => DoesNotMatch - | ConsistentCase(_) - | InconsistentBranches(_) => IndetMatch - | EmptyHole(_) => IndetMatch - | NonEmptyHole(_) => IndetMatch - | FailedCast(_, _, _) => IndetMatch - | InvalidOperation(_) => IndetMatch - | IfThenElse(_) => IndetMatch + }; + | Cons(x, xs) => + let* (x', xs') = Unboxing.unbox(Cons, d); + let* m_x = matches(x, x'); + let* m_xs = matches(xs, xs'); + Matches(Environment.union(m_x, m_xs)); + | Constructor(ctr, _) => + let* () = Unboxing.unbox(SumNoArg(ctr), d); + Matches(Environment.empty); + | Ap({term: Constructor(ctr, _), _}, p2) => + let* d2 = Unboxing.unbox(SumWithArg(ctr), d); + matches(p2, d2); + | Ap(_, _) => IndetMatch // TODO: should this fail? + | Var(x) => Matches(Environment.singleton((x, d))) + | Tuple(ps) => + let* ds = Unboxing.unbox(Tuple(List.length(ps)), d); + List.map2(matches, ps, ds) + |> List.fold_left(combine_result, Matches(Environment.empty)); + | Parens(p) => matches(p, d) + | Cast(p, t1, t2) => + matches(p, Cast(d, t2, t1) |> DHExp.fresh |> Casts.transition_multiple) }; diff --git a/src/haz3lcore/dynamics/PatternMatch.rei b/src/haz3lcore/dynamics/PatternMatch.rei deleted file mode 100644 index 96cf6019fa..0000000000 --- a/src/haz3lcore/dynamics/PatternMatch.rei +++ /dev/null @@ -1,6 +0,0 @@ -type match_result = - | Matches(Environment.t) - | DoesNotMatch - | IndetMatch; - -let matches: (DHPat.t, DHExp.t) => match_result; diff --git a/src/haz3lcore/dynamics/Stepper.re b/src/haz3lcore/dynamics/Stepper.re index 9e528af222..b23d3d9a4b 100644 --- a/src/haz3lcore/dynamics/Stepper.re +++ b/src/haz3lcore/dynamics/Stepper.re @@ -1,29 +1,24 @@ -open Sexplib.Std; open EvaluatorStep; open Transition; +open Util; exception Exception; -type step_with_previous = { - step, - previous: option(step), - hidden: list(step), -}; +[@deriving (show({with_path: false}), sexp, yojson)] +type stepper_state = + | StepPending(int) + | StepperReady + | StepperDone + | StepTimeout(EvalObj.t); [@deriving (show({with_path: false}), sexp, yojson)] -type current = - | StepperOK(DHExp.t, EvaluatorState.t) - | StepTimeout // Must have at least one in previous - | StepPending(DHExp.t, EvaluatorState.t, option(EvalObj.t)); // StepPending(_,Some(_)) cannot be saved +type history = Aba.t((DHExp.t, EvaluatorState.t), step); [@deriving (show({with_path: false}), sexp, yojson)] type t = { - /* Might be different to first expression in previous because - steps are taken automatically (this may no longer be true - Matt) */ - elab: DHExp.t, - previous: list(step), - current, - next: list((FilterAction.action, EvalObj.t)), + history, + next_options: list((FilterAction.action, EvalObj.t)), + stepper_state, }; let rec matches = @@ -36,170 +31,155 @@ let rec matches = idx: int, ) : (FilterAction.t, int, EvalCtx.t) => { - let composed = compose(ctx, exp); + let composed = EvalCtx.compose(ctx, exp); let (pact, pidx) = (act, idx); let (mact, midx) = FilterMatcher.matches(~env, ~exp=composed, ~act, flt); let (act, idx) = switch (ctx) { - | Filter(_, _) => (pact, pidx) + | Term({term: Filter(_, _), _}) => (pact, pidx) | _ => midx > pidx ? (mact, midx) : (pact, pidx) }; - let map = ((a, i, c), f: EvalCtx.t => EvalCtx.t) => { + let map = ((a, i, c), f) => { (a, i, f(c)); }; let (let+) = map; let (ract, ridx, rctx) = switch (ctx) { | Mark => (act, idx, EvalCtx.Mark) - | Closure(env, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Closure(env, ctx); - | Filter(Filter(flt'), ctx) => - let flt = flt |> FilterEnvironment.extends(flt'); - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Filter(Filter(flt'), ctx); - | Filter(Residue(idx', act'), ctx) => - let (ract, ridx, rctx) = - if (idx > idx') { - matches(env, flt, ctx, exp, act, idx); + | Term({term, ids}) => + let rewrap = term => EvalCtx.Term({term, ids}); + switch ((term: EvalCtx.term)) { + | Closure(env, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Closure(env, ctx) |> rewrap; + | Filter(Filter(flt'), ctx) => + let flt = flt |> FilterEnvironment.extends(flt'); + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Filter(Filter(flt'), ctx) |> rewrap; + | Filter(Residue(idx', act'), ctx) => + let (ract, ridx, rctx) = + if (idx > idx') { + matches(env, flt, ctx, exp, act, idx); + } else { + matches(env, flt, ctx, exp, act', idx'); + }; + if (act' |> snd == All) { + (ract, ridx, Filter(Residue(idx', act'), rctx) |> rewrap); } else { - matches(env, flt, ctx, exp, act', idx'); + (ract, ridx, rctx); }; - if (act' |> snd == All) { - (ract, ridx, Filter(Residue(idx', act'), rctx)); - } else { - (ract, ridx, rctx); + | Seq1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Seq1(ctx, d2) |> rewrap; + | Seq2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Seq2(d1, ctx) |> rewrap; + | Let1(d1, ctx, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Let1(d1, ctx, d3) |> rewrap; + | Let2(d1, d2, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Let2(d1, d2, ctx) |> rewrap; + | Module1(d1, ctx, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Module1(d1, ctx, d3) |> rewrap; + | Module2(d1, d2, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Module2(d1, d2, ctx) |> rewrap; + | Dot1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Dot1(ctx, d2) |> rewrap; + | Dot2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Dot2(d1, ctx) |> rewrap; + | Fun(dp, ctx, env', name) => + let+ ctx = + matches(Option.value(~default=env, env'), flt, ctx, exp, act, idx); + Fun(dp, ctx, env', name) |> rewrap; + | FixF(name, ctx, env') => + let+ ctx = + matches(Option.value(~default=env, env'), flt, ctx, exp, act, idx); + FixF(name, ctx, env') |> rewrap; + | Ap1(dir, ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Ap1(dir, ctx, d2) |> rewrap; + | Ap2(dir, d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Ap2(dir, d1, ctx) |> rewrap; + | TypAp(ctx, ty) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + TypAp(ctx, ty) |> rewrap; + | DeferredAp1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + DeferredAp1(ctx, d2) |> rewrap; + | DeferredAp2(d1, ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + DeferredAp2(d1, ctx, ds) |> rewrap; + | If1(ctx, d2, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + If1(ctx, d2, d3) |> rewrap; + | If2(d1, ctx, d3) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + If2(d1, ctx, d3) |> rewrap; + | If3(d1, d2, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + If3(d1, d2, ctx) |> rewrap; + | UnOp(op, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + UnOp(op, ctx) |> rewrap; + | BinOp1(op, ctx, d1) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + BinOp1(op, ctx, d1) |> rewrap; + | BinOp2(op, d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + BinOp2(op, d1, ctx) |> rewrap; + | Tuple(ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Tuple(ctx, ds) |> rewrap; + | Test(ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Test(ctx) |> rewrap; + | ListLit(ctx, ds) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + ListLit(ctx, ds) |> rewrap; + | Cons1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Cons1(ctx, d2) |> rewrap; + | Cons2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Cons2(d1, ctx) |> rewrap; + | ListConcat1(ctx, d2) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + ListConcat1(ctx, d2) |> rewrap; + | ListConcat2(d1, ctx) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + ListConcat2(d1, ctx) |> rewrap; + | MultiHole(ctx, (dl, dr)) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + MultiHole(ctx, (dl, dr)) |> rewrap; + | Cast(ctx, ty, ty') => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + Cast(ctx, ty, ty') |> rewrap; + | FailedCast(ctx, ty, ty') => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + FailedCast(ctx, ty, ty') |> rewrap; + | DynamicErrorHole(ctx, error) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + DynamicErrorHole(ctx, error) |> rewrap; + | MatchScrut(ctx, rs) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + MatchScrut(ctx, rs) |> rewrap; + | MatchRule(scr, p, ctx, rs) => + let+ ctx = matches(env, flt, ctx, exp, act, idx); + MatchRule(scr, p, ctx, rs) |> rewrap; }; - | Sequence1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Sequence1(ctx, d2); - | Sequence2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Sequence2(d1, ctx); - | Let1(d1, ctx, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Let1(d1, ctx, d3); - | Let2(d1, d2, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Let2(d1, d2, ctx); - | Module1(d1, ctx, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Module1(d1, ctx, d3); - | Module2(d1, d2, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Module2(d1, d2, ctx); - | Dot1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Dot1(ctx, d2); - | Dot2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Dot2(d1, ctx); - | Fun(dp, ty, ctx, name) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Fun(dp, ty, ctx, name); - | FixF(name, ty, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - FixF(name, ty, ctx); - | TypAp(ctx, ty) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - TypAp(ctx, ty); - | Ap1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Ap1(ctx, d2); - | Ap2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Ap2(d1, ctx); - | IfThenElse1(c, ctx, d2, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - IfThenElse1(c, ctx, d2, d3); - | IfThenElse2(c, d1, ctx, d3) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - IfThenElse2(c, d1, ctx, d3); - | IfThenElse3(c, d1, d2, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - IfThenElse3(c, d1, d2, ctx); - | BinBoolOp1(op, ctx, d1) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinBoolOp1(op, ctx, d1); - | BinBoolOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinBoolOp2(op, d1, ctx); - | BinIntOp1(op, ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinIntOp1(op, ctx, d2); - | BinIntOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinIntOp2(op, d1, ctx); - | BinFloatOp1(op, ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinFloatOp1(op, ctx, d2); - | BinFloatOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinFloatOp2(op, d1, ctx); - | BinStringOp1(op, ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinStringOp1(op, ctx, d2); - | BinStringOp2(op, d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - BinStringOp2(op, d1, ctx); - | Tuple(ctx, ds) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Tuple(ctx, ds); - | ApBuiltin(name, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ApBuiltin(name, ctx); - | Test(id, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Test(id, ctx); - | ListLit(u, i, ty, ctx, ds) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ListLit(u, i, ty, ctx, ds); - | Cons1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Cons1(ctx, d2); - | Cons2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Cons2(d1, ctx); - | ListConcat1(ctx, d2) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ListConcat1(ctx, d2); - | ListConcat2(d1, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ListConcat2(d1, ctx); - | Prj(ctx, n) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Prj(ctx, n); - | NonEmptyHole(e, u, i, ctx) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - NonEmptyHole(e, u, i, ctx); - | Cast(ctx, ty, ty') => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - Cast(ctx, ty, ty'); - | FailedCast(ctx, ty, ty') => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - FailedCast(ctx, ty, ty'); - | InvalidOperation(ctx, error) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - InvalidOperation(ctx, error); - | ConsistentCase(Case(ctx, rs, i)) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ConsistentCase(Case(ctx, rs, i)); - | ConsistentCaseRule(dexp, dpat, ctx, rs, i) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - ConsistentCaseRule(dexp, dpat, ctx, rs, i); - | InconsistentBranches(u, i, Case(ctx, rs, ri)) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - InconsistentBranches(u, i, Case(ctx, rs, ri)); - | InconsistentBranchesRule(dexp, u, i, dpat, ctx, rs, ri) => - let+ ctx = matches(env, flt, ctx, exp, act, idx); - InconsistentBranchesRule(dexp, u, i, dpat, ctx, rs, ri); }; switch (ctx) { - | Filter(_) => (ract, ridx, rctx) + | Term({term: Filter(_), _}) => (ract, ridx, rctx) | _ when midx > pidx && mact |> snd == All => ( ract, ridx, - Filter(Residue(midx, mact), rctx), + Term({term: Filter(Residue(midx, mact), rctx), ids: [Id.mk()]}), ) | _ => (ract, ridx, rctx) }; @@ -230,104 +210,80 @@ let should_hide_step = (~settings, x: step): (FilterAction.action, step) => }; }; -let get_elab = ({elab, _}: t) => elab; +let get_elab = ({history, _}: t): Elaborator.Elaboration.t => { + let (d, _) = Aba.last_a(history); + {d: d}; +}; -let get_next_steps = s => s.next; +let get_next_steps = s => s.next_options |> List.map(snd); -let current_expr = (s: t) => - switch (s.current, s.previous) { - | (StepperOK(d, _), _) - | (StepPending(d, _, _), _) => d - | (StepTimeout, [x, ..._]) => x.d - | (StepTimeout, []) => s.elab - }; +let current_expr = ({history, _}: t) => Aba.hd(history) |> fst; -let step_pending = (idx: int, {elab, previous, current, next}: t) => { - // TODO[Matt]: change to nth_opt after refactor - let eo = List.nth(next, idx) |> snd; - switch (current) { - | StepperOK(d, s) => { - elab, - previous, - current: StepPending(d, s, Some(eo)), - next, - } - | StepTimeout => { - elab, - previous: List.tl(previous), - current: - StepPending( - List.hd(previous).d, - List.hd(previous).state, - Some(eo), - ), - next, - } - | StepPending(d, s, _) => { - elab, - previous, - current: StepPending(d, s, Some(eo)), - next, - } - }; +let current_state = ({history, _}: t) => Aba.hd(history) |> snd; + +let step_pending = (idx: int, stepper: t) => { + {...stepper, stepper_state: StepPending(idx)}; }; -let init = (~settings, elab: DHExp.t) => { +let init = (~settings, {d}: Elaborator.Elaboration.t) => { + let state = EvaluatorState.init; { - elab, - previous: [], - current: StepPending(elab, EvaluatorState.init, None), - next: decompose(~settings, elab), + history: Aba.singleton((d, state)), + next_options: decompose(~settings, d, state), + stepper_state: StepperReady, }; }; let rec evaluate_pending = (~settings, s: t) => { - switch (s.current) { - | StepperOK(_) - | StepTimeout => s - | StepPending(d, state, Some(eo)) => + switch (s.stepper_state) { + | StepperDone + | StepTimeout(_) => s + | StepperReady => + let next' = List.mapi((i, x) => (i, x), s.next_options); + switch ( + List.find_opt(((_, (act, _))) => act == FilterAction.Eval, next') + ) { + | Some((i, (_, _))) => + {...s, stepper_state: StepPending(i)} |> evaluate_pending(~settings) + | None => {...s, stepper_state: StepperDone} + }; + | StepPending(i) => + let (_, eo) = List.nth(s.next_options, i); + let (d, state) = Aba.hd(s.history); let state_ref = ref(state); let d_loc' = - switch (take_step(state_ref, eo.env, eo.d_loc)) { - | Some(d) => d - | None => raise(Exception) - }; - let d' = compose(eo.ctx, d_loc'); + ( + switch (take_step(state_ref, eo.env, eo.d_loc)) { + | Some(d) => d |> DHExp.repair_ids + | None => raise(Exception) + } + ) + |> DHExp.repair_ids; + let d' = EvalCtx.compose(eo.ctx, d_loc'); + let new_step = { + d, + d_loc: eo.d_loc, + d_loc', + ctx: eo.ctx, + knd: eo.knd, + state, + }; + let new_state = state_ref^; { - elab: s.elab, - previous: [ - {d, d_loc: eo.d_loc, ctx: eo.ctx, knd: eo.knd, state}, - ...s.previous, - ], - current: StepPending(d', state_ref^, None), - next: decompose(~settings, d'), + history: s.history |> Aba.cons((d', new_state), new_step), + stepper_state: StepperReady, + next_options: decompose(~settings, d', new_state), } |> evaluate_pending(~settings); - | StepPending(d, state, None) => - switch (List.find_opt(((act, _)) => act == FilterAction.Eval, s.next)) { - | Some((_, eo)) => - { - elab: s.elab, - previous: s.previous, - current: StepPending(d, state, Some(eo)), - next: s.next, - } - |> evaluate_pending(~settings) - | None => { - elab: s.elab, - previous: s.previous, - current: StepperOK(d, state), - next: s.next, - } - } }; }; let rec evaluate_full = (~settings, s: t) => { - switch (s.current) { - | StepTimeout => s - | StepperOK(_) when s.next == [] => s - | StepperOK(_) => s |> step_pending(0) |> evaluate_full(~settings) + switch (s.stepper_state) { + | StepTimeout(_) => s + | StepperDone when s.next_options == [] => s + | StepperDone => s |> step_pending(0) |> evaluate_full(~settings) + | StepperReady | StepPending(_) => evaluate_pending(~settings, s) |> evaluate_full(~settings) }; @@ -335,70 +291,49 @@ let rec evaluate_full = (~settings, s: t) => { let timeout = fun - | {elab, previous, current: StepPending(d, state, Some(eo)), next} => { - elab, - previous: [ - {d, d_loc: eo.d_loc, ctx: eo.ctx, knd: eo.knd, state}, - ...previous, - ], - current: StepTimeout, - next, + | {stepper_state: StepPending(idx), _} as s => { + ...s, + stepper_state: StepTimeout(List.nth(s.next_options, idx) |> snd), } - | {current: StepTimeout | StepperOK(_) | StepPending(_, _, None), _} as s => s; - -// let rec step_forward = (~settings, e: EvalObj.t, s: t) => { -// let current = compose(e.ctx, e.apply()); -// skip_steps( -// ~settings, -// { -// current, -// previous: [{d: s.current, step: e}, ...s.previous], -// next: decompose(current), -// }, -// ); -// } -// and skip_steps = (~settings, s) => { -// switch ( -// List.find_opt( -// (x: EvalObj.t) => should_hide_step(~settings, x.knd), -// s.next, -// ) -// ) { -// | None => s -// | Some(e) => step_forward(~settings, e, s) -// }; -// }; + | {stepper_state: StepTimeout(_) | StepperReady | StepperDone, _} as s => s; -let rec undo_point = - (~settings): (list(step) => option((step, list(step)))) => +let rec truncate_history = (~settings) => fun - | [] => None - | [x, ...xs] when should_hide_step(~settings, x) |> fst == Eval => - undo_point(~settings, xs) - | [x, ...xs] => Some((x, xs)); + | ([_, ...as_], [b, ...bs]) + when should_hide_step(~settings, b) |> fst == Eval => + truncate_history(~settings, (as_, bs)) + | ([_, ...as_], [_, ...bs]) => Some((as_, bs)) + | _ => None; -let step_backward = (~settings, s: t) => - switch (undo_point(~settings, s.previous)) { - | None => failwith("cannot step backwards") - | Some((x, xs)) => { - current: StepperOK(x.d, x.state), - next: decompose(~settings, x.d), - previous: xs, - elab: s.elab, - } +let step_backward = (~settings, s: t) => { + let h' = + truncate_history(~settings, s.history) + |> Option.value(~default=s.history); + { + history: h', + next_options: + decompose(~settings, Aba.hd(h') |> fst, Aba.hd(h') |> snd), + stepper_state: StepperDone, }; +}; + +let can_undo = (~settings, s: t) => { + truncate_history(~settings, s.history) |> Option.is_some; +}; let get_justification: step_kind => string = fun | LetBind => "substitution" | ModuleBind => "module substitution" - | Sequence => "sequence" + | Seq => "sequence" | FixUnwrap => "unroll fixpoint" | UpdateTest => "update test" | TypFunAp => "apply type function" | FunAp => "apply function" + | DeferredAp => "deferred application" | BuiltinWrap => "wrap builtin" | BuiltinAp(s) => "evaluate " ++ s + | UnOp(Int(Minus)) | BinIntOp(Plus | Minus | Times | Power | Divide) | BinFloatOp(Plus | Minus | Times | Power | Divide) => "arithmetic" | BinIntOp(LessThan | LessThanOrEqual | GreaterThan | GreaterThanOrEqual) @@ -407,12 +342,12 @@ let get_justification: step_kind => string = | BinFloatOp(Equals | NotEquals) | BinStringOp(Equals) => "check equality" | BinStringOp(Concat) => "string manipulation" + | UnOp(Bool(Not)) | BinBoolOp(_) => "boolean logic" | Conditional(_) => "conditional" | ListCons => "list manipulation" | ListConcat => "list manipulation" | CaseApply => "case selection" - | CaseNext => "case discarding" | Projection => "projection" // TODO(Matt): We don't want to show projection to the user | InvalidStep => "error" | VarLookup => "variable lookup" @@ -425,44 +360,84 @@ let get_justification: step_kind => string = | CompleteFilter => "complete filter" | CompleteClosure => "complete closure" | FunClosure => "function closure" - | Skip => "skipped steps"; + | RemoveTypeAlias => "define type" + | RemoveParens => "remove parentheses" + | UnOp(Meta(Unquote)) => failwith("INVALID STEP"); + +type step_info = { + d: DHExp.t, + chosen_step: option(step), // The step that was taken next + hidden_steps: list((step, Id.t)), // The hidden steps between previous_step and the current one (an Id in included because it may have changed since the step was taken) + previous_step: option((step, Id.t)) // The step that will be displayed above this one (an Id in included because it may have changed since the step was taken) +}; let get_history = (~settings, stepper) => { - let rec get_history': - list(step) => (list(step), list(step_with_previous)) = - fun - | [] => ([], []) - | [step, ...steps] => { - let (hidden, ss) = get_history'(steps); - switch (step |> should_hide_step(~settings) |> fst) { - | Eval => ([step, ...hidden], ss) - | Step => ( - [], - [ - { - step, - previous: - Option.map( - (x: step_with_previous) => x.step, - List.nth_opt(ss, 0), - ), - hidden, - }, - ...ss, - ], - ) - }; - }; - stepper.previous |> get_history'; + let should_skip_step = step => + step |> should_hide_step(~settings) |> fst == Eval; + let grouped_steps = + stepper.history + |> Aba.fold_right( + ((d, _), step, result) => + if (should_skip_step(step)) { + Aba.map_hd(((_, hs)) => (d, [step, ...hs]), result); + } else { + Aba.cons((d, []), step, result); + }, + ((d, _)) => Aba.singleton((d, [])), + ); + let replace_id = (x, y, (s, z)) => (s, x == z ? y : z); + let track_ids = + ( + ( + chosen_step: option(step), + (d: DHExp.t, hidden_steps: list(step)), + previous_step: option(step), + ), + ) => { + let (previous_step, hidden_steps) = + List.fold_left( + ((ps, hs), h: step) => { + let replacement = + replace_id(h.d_loc |> DHExp.rep_id, h.d_loc' |> DHExp.rep_id); + ( + Option.map(replacement, ps), + [(h, h.d_loc' |> DHExp.rep_id), ...List.map(replacement, hs)], + ); + }, + (Option.map(x => (x, x.d_loc' |> DHExp.rep_id), previous_step), []), + hidden_steps, + ); + {d, previous_step, hidden_steps, chosen_step}; + }; + let padded = grouped_steps |> Aba.bab_triples; + let result = padded |> List.map(track_ids); + result; + //grouped_steps |> Aba.bab_triples |> List.map(track_ids); }; -[@deriving (show({with_path: false}), sexp, yojson)] -type persistent = { - elab: DHExp.t, - previous: list(step), - current, +let hidden_steps_of_info = (info: step_info): list(step_info) => { + // note the previous_step field is fudged because it is currently usused.next_options + List.map( + ((hs: step, _)) => + { + d: hs.d, + chosen_step: Some(hs), + hidden_steps: [], + previous_step: None, + }, + info.hidden_steps, + ); }; +[@deriving (show({with_path: false}), sexp, yojson)] +type persistent = {history}; + +let (sexp_of_persistent, persistent_of_sexp) = + StructureShareSexp.structure_share_in( + sexp_of_persistent, + persistent_of_sexp, + ); + let (sexp_of_persistent, persistent_of_sexp) = StructureShareSexp.structure_share_in( sexp_of_persistent, @@ -470,16 +445,13 @@ let (sexp_of_persistent, persistent_of_sexp) = ); // Remove EvalObj.t objects from stepper to prevent problems when loading -let to_persistent: t => persistent = - fun - | {elab, previous, current: StepPending(d, state, Some(_)), _} => { - elab, - previous, - current: StepPending(d, state, None), - } - | {elab, previous, current, _} => {elab, previous, current}; +let to_persistent: t => persistent = ({history, _}) => {history: history}; -let from_persistent = (~settings, {elab, previous, current}) => { - let s = {elab, previous, current, next: []}; - {elab, previous, current, next: decompose(~settings, current_expr(s))}; +let from_persistent = (~settings, {history}) => { + { + history, + next_options: + decompose(~settings, Aba.hd(history) |> fst, Aba.hd(history) |> snd), + stepper_state: StepperDone, + }; }; diff --git a/src/haz3lcore/dynamics/Substitution.re b/src/haz3lcore/dynamics/Substitution.re index 521ec5dc49..3bcc910e3a 100644 --- a/src/haz3lcore/dynamics/Substitution.re +++ b/src/haz3lcore/dynamics/Substitution.re @@ -1,31 +1,32 @@ /* closed substitution [d1/x]d2 */ -let rec subst_var = (d1: DHExp.t, x: Var.t, d2: DHExp.t): DHExp.t => - switch (d2) { - | BoundVar(y) => +let rec subst_var = (m, d1: DHExp.t, x: Var.t, d2: DHExp.t): DHExp.t => { + let (term, rewrap) = DHExp.unwrap(d2); + switch (term) { + | Var(y) => if (Var.eq(x, y)) { d1; } else { d2; } - | FreeVar(_) => d2 - | InvalidText(_) => d2 - | Sequence(d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - Sequence(d3, d4); + | Invalid(_) => d2 + | Undefined => d2 + | Seq(d3, d4) => + let d3 = subst_var(m, d1, x, d3); + let d4 = subst_var(m, d1, x, d4); + Seq(d3, d4) |> rewrap; | Filter(filter, dbody) => - let dbody = subst_var(d1, x, dbody); - let filter = subst_var_filter(d1, x, filter); - Filter(filter, dbody); + let dbody = subst_var(m, d1, x, dbody); + let filter = subst_var_filter(m, d1, x, filter); + Filter(filter, dbody) |> rewrap; | Let(dp, d3, d4) => - let d3 = subst_var(d1, x, d3); + let d3 = subst_var(m, d1, x, d3); let d4 = - if (DHPat.binds_var(x, dp)) { + if (DHPat.binds_var(m, x, dp)) { d4; } else { - subst_var(d1, x, d4); + subst_var(m, d1, x, d4); }; - Let(dp, d3, d4); + Let(dp, d3, d4) |> rewrap; | Module(dp, d3, d4) => let d3 = subst_var(d1, x, d3); let d4 = @@ -34,119 +35,116 @@ let rec subst_var = (d1: DHExp.t, x: Var.t, d2: DHExp.t): DHExp.t => } else { subst_var(d1, x, d4); }; - Module(dp, d3, d4); + Module(dp, d3, d4) |> rewrap; | Dot(d3, d4) => let d3 = subst_var(d1, x, d3); let d4 = subst_var(d1, x, d4); - Dot(d3, d4); + Dot(d3, d4) |> rewrap; | FixF(y, ty, d3) => + let env' = Option.map(subst_var_env(m, d1, x), env); let d3 = - if (Var.eq(x, y)) { + if (DHPat.binds_var(m, x, y)) { d3; } else { - subst_var(d1, x, d3); + subst_var(m, d1, x, d3); }; - FixF(y, ty, d3); - | Fun(dp, ty, d3, s) => - if (DHPat.binds_var(x, dp)) { - Fun(dp, ty, d3, s); + FixF(y, d3, env') |> rewrap; + | Fun(dp, d3, env, s) => + /* Function closure shouldn't appear during substitution + (which only is called from elaboration currently) */ + let env' = Option.map(subst_var_env(m, d1, x), env); + if (DHPat.binds_var(m, x, dp)) { + Fun(dp, d3, env', s) |> rewrap; } else { - let d3 = subst_var(d1, x, d3); - Fun(dp, ty, d3, s); - } - | TypFun(tpat, d3, s) => TypFun(tpat, subst_var(d1, x, d3), s) + let d3 = subst_var(m, d1, x, d3); + Fun(dp, d3, env', s) |> rewrap; + }; + | TypFun(tpat, d3, s) => + TypFun(tpat, subst_var(m, d1, x, d3), s) |> rewrap | Closure(env, d3) => /* Closure shouldn't appear during substitution (which only is called from elaboration currently) */ - let env' = subst_var_env(d1, x, env); - let d3' = subst_var(d1, x, d3); - Closure(env', d3'); - | Ap(d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - Ap(d3, d4); - | TypAp(d3, ty) => TypAp(subst_var(d1, x, d3), ty) - | ApBuiltin(ident, args) => ApBuiltin(ident, subst_var(d1, x, args)) - | BuiltinFun(ident) => BuiltinFun(ident) - | Test(id, d3) => Test(id, subst_var(d1, x, d3)) - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ModuleVal(_) + let env' = subst_var_env(m, d1, x, env); + let d3' = subst_var(m, d1, x, d3); + Closure(env', d3') |> rewrap; + | Ap(dir, d3, d4) => + let d3 = subst_var(m, d1, x, d3); + let d4 = subst_var(m, d1, x, d4); + Ap(dir, d3, d4) |> rewrap; + | BuiltinFun(_) => d2 + | Test(d3) => Test(subst_var(m, d1, x, d3)) |> rewrap + | Bool(_) + | Int(_) + | Float(_) + | String(_) | Constructor(_) => d2 - | ListLit(a, b, c, ds) => - ListLit(a, b, c, List.map(subst_var(d1, x), ds)) + | ListLit(ds) => ListLit(List.map(subst_var(m, d1, x), ds)) |> rewrap | Cons(d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - Cons(d3, d4); + let d3 = subst_var(m, d1, x, d3); + let d4 = subst_var(m, d1, x, d4); + Cons(d3, d4) |> rewrap; | ListConcat(d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - ListConcat(d3, d4); - | Tuple(ds) => Tuple(List.map(subst_var(d1, x), ds)) - | Prj(d, n) => Prj(subst_var(d1, x, d), n) - | BinBoolOp(op, d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - BinBoolOp(op, d3, d4); - | BinIntOp(op, d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - BinIntOp(op, d3, d4); - | BinFloatOp(op, d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - BinFloatOp(op, d3, d4); - | BinStringOp(op, d3, d4) => - let d3 = subst_var(d1, x, d3); - let d4 = subst_var(d1, x, d4); - BinStringOp(op, d3, d4); - | ConsistentCase(Case(d3, rules, n)) => - let d3 = subst_var(d1, x, d3); - let rules = subst_var_rules(d1, x, rules); - ConsistentCase(Case(d3, rules, n)); - | InconsistentBranches(u, i, Case(d3, rules, n)) => - let d3 = subst_var(d1, x, d3); - let rules = subst_var_rules(d1, x, rules); - InconsistentBranches(u, i, Case(d3, rules, n)); - | EmptyHole(u, i) => EmptyHole(u, i) - | NonEmptyHole(reason, u, i, d3) => - let d3' = subst_var(d1, x, d3); - NonEmptyHole(reason, u, i, d3'); + let d3 = subst_var(m, d1, x, d3); + let d4 = subst_var(m, d1, x, d4); + ListConcat(d3, d4) |> rewrap; + | Tuple(ds) => Tuple(List.map(subst_var(m, d1, x), ds)) |> rewrap + | UnOp(op, d3) => + let d3 = subst_var(m, d1, x, d3); + UnOp(op, d3) |> rewrap; + | BinOp(op, d3, d4) => + let d3 = subst_var(m, d1, x, d3); + let d4 = subst_var(m, d1, x, d4); + BinOp(op, d3, d4) |> rewrap; + | Match(ds, rules) => + let ds = subst_var(m, d1, x, ds); + let rules = + List.map( + ((p, v)) => + if (DHPat.binds_var(m, x, p)) { + (p, v); + } else { + (p, subst_var(m, d1, x, v)); + }, + rules, + ); + Match(ds, rules) |> rewrap; + | EmptyHole => EmptyHole |> rewrap + // TODO: handle multihole + | MultiHole(_d2) => d2 //MultiHole(List.map(subst_var(m, d1, x), ds)) |> rewrap | Cast(d, ty1, ty2) => - let d' = subst_var(d1, x, d); - Cast(d', ty1, ty2); + let d' = subst_var(m, d1, x, d); + Cast(d', ty1, ty2) |> rewrap; | FailedCast(d, ty1, ty2) => - let d' = subst_var(d1, x, d); - FailedCast(d', ty1, ty2); - | InvalidOperation(d, err) => - let d' = subst_var(d1, x, d); - InvalidOperation(d', err); - | IfThenElse(d3, d4, d5, d6) => - let d4' = subst_var(d1, x, d4); - let d5' = subst_var(d1, x, d5); - let d6' = subst_var(d1, x, d6); - IfThenElse(d3, d4', d5', d6'); - } - -and subst_var_rules = - (d1: DHExp.t, x: Var.t, rules: list(DHExp.rule)): list(DHExp.rule) => - rules - |> List.map((r: DHExp.rule) => - switch (r) { - | Rule(dp, d2) => - if (DHPat.binds_var(x, dp)) { - r; - } else { - Rule(dp, subst_var(d1, x, d2)); - } - } - ) + let d' = subst_var(m, d1, x, d); + FailedCast(d', ty1, ty2) |> rewrap; + | DynamicErrorHole(d, err) => + let d' = subst_var(m, d1, x, d); + DynamicErrorHole(d', err) |> rewrap; + | If(d4, d5, d6) => + let d4' = subst_var(m, d1, x, d4); + let d5' = subst_var(m, d1, x, d5); + let d6' = subst_var(m, d1, x, d6); + If(d4', d5', d6') |> rewrap; + | TyAlias(tp, ut, d4) => + let d4' = subst_var(m, d1, x, d4); + TyAlias(tp, ut, d4') |> rewrap; + | Parens(d4) => + let d4' = subst_var(m, d1, x, d4); + Parens(d4') |> rewrap; + | Deferral(_) => d2 + | DeferredAp(d3, d4s) => + let d3 = subst_var(m, d1, x, d3); + let d4s = List.map(subst_var(m, d1, x), d4s); + DeferredAp(d3, d4s) |> rewrap; + | TypAp(d3, ut) => + let d3 = subst_var(m, d1, x, d3); + TypAp(d3, ut) |> rewrap; + }; +} and subst_var_env = - (d1: DHExp.t, x: Var.t, env: ClosureEnvironment.t): ClosureEnvironment.t => { + (m, d1: DHExp.t, x: Var.t, env: ClosureEnvironment.t) + : ClosureEnvironment.t => { let id = env |> ClosureEnvironment.id_of; let map = env @@ -154,20 +152,20 @@ and subst_var_env = |> Environment.foldo( ((x', d': DHExp.t), map) => { let d' = - switch (d') { + switch (DHExp.term_of(d')) { /* Substitute each previously substituted binding into the * fixpoint. */ - | FixF(_) as d => + | FixF(_) => map |> Environment.foldo( - ((x'', d''), d) => subst_var(d'', x'', d), - d, + ((x'', d''), d) => subst_var(m, d'', x'', d), + d', ) - | d => d + | _ => d' }; /* Substitute. */ - let d' = subst_var(d1, x, d'); + let d' = subst_var(m, d1, x, d'); Environment.extend(map, (x', d')); }, Environment.empty, @@ -177,16 +175,17 @@ and subst_var_env = } and subst_var_filter = - (d1: DHExp.t, x: Var.t, flt: DH.DHFilter.t): DH.DHFilter.t => { - flt |> DH.DHFilter.map(subst_var(d1, x)); + (m, d1: DHExp.t, x: Var.t, flt: TermBase.StepperFilterKind.t) + : TermBase.StepperFilterKind.t => { + flt |> TermBase.StepperFilterKind.map(subst_var(m, d1, x)); }; -let subst = (env: Environment.t, d: DHExp.t): DHExp.t => +let subst = (m, env: Environment.t, d: DHExp.t): DHExp.t => env |> Environment.foldo( (xd: (Var.t, DHExp.t), d2) => { let (x, d1) = xd; - subst_var(d1, x, d2); + subst_var(m, d1, x, d2); }, d, ); diff --git a/src/haz3lcore/dynamics/Substitution.rei b/src/haz3lcore/dynamics/Substitution.rei index d413bf23c9..49b1e2e92f 100644 --- a/src/haz3lcore/dynamics/Substitution.rei +++ b/src/haz3lcore/dynamics/Substitution.rei @@ -1,3 +1,3 @@ /* closed substitution [d1/x]d2 */ -let subst_var: (DHExp.t, Var.t, DHExp.t) => DHExp.t; -let subst: (Environment.t, DHExp.t) => DHExp.t; +let subst_var: (Statics.Map.t, DHExp.t, Var.t, DHExp.t) => DHExp.t; +let subst: (Statics.Map.t, Environment.t, DHExp.t) => DHExp.t; diff --git a/src/haz3lcore/dynamics/TestMap.re b/src/haz3lcore/dynamics/TestMap.re index 0a77e62d21..74a5f8f550 100644 --- a/src/haz3lcore/dynamics/TestMap.re +++ b/src/haz3lcore/dynamics/TestMap.re @@ -1,14 +1,14 @@ -open Sexplib.Std; +open Util; /* FIXME: Make more obvious names. */ [@deriving (show({with_path: false}), sexp, yojson)] type instance_report = (DHExp.t, TestStatus.t); let joint_status: list(instance_report) => TestStatus.t = - reports => TestStatus.join_all(List.map(snd, reports)); + reports => TestStatus.join_all(List.map(((_, x)) => x, reports)); [@deriving (show({with_path: false}), sexp, yojson)] -type report = (KeywordID.t, list(instance_report)); +type report = (Id.t, list(instance_report)); [@deriving (show({with_path: false}), sexp, yojson)] type t = list(report); diff --git a/src/haz3lcore/dynamics/TestResults.re b/src/haz3lcore/dynamics/TestResults.re index d716d1ac05..bc0cdefe0a 100644 --- a/src/haz3lcore/dynamics/TestResults.re +++ b/src/haz3lcore/dynamics/TestResults.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = { diff --git a/src/haz3lcore/dynamics/Transition.re b/src/haz3lcore/dynamics/Transition.re index 1a3fdeed1a..9dcc89352e 100644 --- a/src/haz3lcore/dynamics/Transition.re +++ b/src/haz3lcore/dynamics/Transition.re @@ -1,19 +1,17 @@ -open Sexplib.Std; open Util; open PatternMatch; -open DH; /* Transition.re This module defines the evaluation semantics of Hazel in terms of small step evaluation. These small steps are wrapped up into a big step in Evaluator.re. - I'll use the Sequence case as an example: + I'll use the Seq case as an example: - | Sequence(d1, d2) => - let. _ = otherwise(d1 => Sequence(d1, d2)) + | Seq(d1, d2) => + let. _ = otherwise(d1 => Seq(d1, d2)) and. _ = req_final(req(state, env), 0, d1); - Step({apply: () => d2, kind: Sequence, final: false}); + Step({expr: d2, state, kind: Seq, final: false}); Each step semantics starts with a `let. () = otherwise(...)` that defines how @@ -34,9 +32,9 @@ open DH; secondly a `kind`, that describes the step (which will be used in the stepper) Lastly, the `value` field allows for some speeding up of the evaluator. If you - are unsure, it is always safe to put `value: false`. + are unsure, it is always safe to put `is_value: false`. - `value: true` guarantees: + `is_value: true` guarantees: - if all requirements are values, then the output will be a value - if some requirements are indet, then the output will be indet @@ -49,7 +47,7 @@ type step_kind = | InvalidStep | VarLookup | ModuleLookup - | Sequence + | Seq | LetBind | ModuleBind | DotAccess @@ -59,117 +57,26 @@ type step_kind = | UpdateTest | TypFunAp | FunAp + | DeferredAp | CastTypAp | CastAp | BuiltinWrap | BuiltinAp(string) - | BinBoolOp(TermBase.UExp.op_bin_bool) - | BinIntOp(TermBase.UExp.op_bin_int) - | BinFloatOp(TermBase.UExp.op_bin_float) - | BinStringOp(TermBase.UExp.op_bin_string) + | UnOp(Operators.op_un) + | BinBoolOp(Operators.op_bin_bool) + | BinIntOp(Operators.op_bin_int) + | BinFloatOp(Operators.op_bin_float) + | BinStringOp(Operators.op_bin_string) | Conditional(bool) | Projection | ListCons | ListConcat | CaseApply - | CaseNext | CompleteClosure | CompleteFilter | Cast - | Skip; - -module CastHelpers = { - [@deriving sexp] - type ground_cases = - | Hole - | Ground - | NotGroundOrHole(Typ.t) /* the argument is the corresponding ground type */; - - let const_unknown: 'a => Typ.t = _ => Unknown(Internal); - - let grounded_Arrow = - NotGroundOrHole(Arrow(Unknown(Internal), Unknown(Internal))); - // TODO: Maybe the Forall should allow a hole in the variable position? - let grounded_Forall = - NotGroundOrHole(Forall("grounded_forall", Unknown(Internal))); - let grounded_Prod = length => - NotGroundOrHole( - Prod(ListUtil.replicate(length, Typ.Unknown(Internal))), - ); - let grounded_Sum = (sm: Typ.sum_map): ground_cases => { - let sm' = sm |> ConstructorMap.map(Option.map(const_unknown)); - NotGroundOrHole(Sum(sm')); - }; - let grounded_List = NotGroundOrHole(List(Unknown(Internal))); - let grounded_Module = (ctx: Ctx.t) => - NotGroundOrHole( - Typ.Module({ - inner_ctx: - List.map( - fun - | Ctx.VarEntry(var_entry) => - Ctx.VarEntry({...var_entry, typ: Unknown(Internal)}) - | Ctx.ConstructorEntry(var_entry) => - Ctx.ConstructorEntry({...var_entry, typ: Unknown(Internal)}) - | Ctx.TVarEntry(tvar_entry) => Ctx.TVarEntry(tvar_entry), - ctx, - ), - incomplete: false, - }), - ); - - let rec ground_cases_of = (ty: Typ.t): ground_cases => { - let is_ground_arg: option(Typ.t) => bool = - fun - | None - | Some(Typ.Unknown(_)) => true - | Some(ty) => ground_cases_of(ty) == Ground; - switch (ty) { - | Unknown(_) => Hole - | Bool - | Int - | Float - | String - | Var(_) - | Rec(_) - | Forall(_, Unknown(_)) - | Arrow(Unknown(_), Unknown(_)) - | List(Unknown(_)) => Ground - | Prod(tys) => - if (List.for_all( - fun - | Typ.Unknown(_) => true - | _ => false, - tys, - )) { - Ground; - } else { - tys |> List.length |> grounded_Prod; - } - | Module({inner_ctx: [], incomplete: true}) => Ground - | Module(_) => NotGroundOrHole(Module({inner_ctx: [], incomplete: true})) - | Sum(sm) => - sm |> ConstructorMap.is_ground(is_ground_arg) - ? Ground : grounded_Sum(sm) - | Arrow(_, _) => grounded_Arrow - | Forall(_) => grounded_Forall - | List(_) => grounded_List - | Member(_, ty) => ground_cases_of(ty) - }; - }; -}; - -let rec unbox_list = (d: DHExp.t): DHExp.t => - switch (d) { - | Cast(d, List(t1), List(t2)) => - switch (unbox_list(d)) { - | ListLit(u, i, _, xs) => - ListLit(u, i, t2, List.map(x => DHExp.Cast(x, t1, t2), xs)) - | d => d - } - | d => d - }; - + | RemoveTypeAlias + | RemoveParens; let evaluate_extend_env = (new_bindings: Environment.t, to_extend: ClosureEnvironment.t) : ClosureEnvironment.t => { @@ -181,13 +88,21 @@ let evaluate_extend_env = type rule = | Step({ - apply: unit => DHExp.t, + expr: DHExp.t, + state_update: unit => unit, kind: step_kind, - value: bool, + is_value: bool, }) | Constructor | Indet; +let (let-unbox) = ((request, v), f) => + switch (Unboxing.unbox(request, v)) { + | IndetMatch + | DoesNotMatch => Indet + | Matches(n) => f(n) + }; + module type EV_MODE = { type state; type result; @@ -214,6 +129,9 @@ module type EV_MODE = { list(DHExp.t) ) => requirement(list(DHExp.t)); + let req_final_or_value: + (DHExp.t => result, EvalCtx.t => EvalCtx.t, DHExp.t) => + requirement((DHExp.t, bool)); let (let.): (requirements('a, DHExp.t), 'a => rule) => result; let (and.): @@ -221,14 +139,17 @@ module type EV_MODE = { requirements(('a, 'c), 'b); let otherwise: (ClosureEnvironment.t, 'a) => requirements(unit, 'a); - let update_test: (state, KeywordID.t, TestMap.instance_report) => unit; + let update_test: (state, Id.t, TestMap.instance_report) => unit; }; module Transition = (EV: EV_MODE) => { open EV; open DHExp; - let (let.match) = ((env, match_result), r) => + // Default state update + let state_update = () => (); + + let (let.match) = ((env, match_result: PatternMatch.match_result), r) => switch (match_result) { | IndetMatch | DoesNotMatch => Indet @@ -251,45 +172,71 @@ module Transition = (EV: EV_MODE) => { }; }; - let transition = (req, state, env, d): 'a => - switch (d) { - | BoundVar(x) => - let. _ = otherwise(env, BoundVar(x)); - let d = - ClosureEnvironment.lookup(env, x) - |> OptUtil.get(() => { - raise(EvaluatorError.Exception(FreeInvalidVar(x))) - }); - Step({apply: () => d, kind: VarLookup, value: false}); - | Sequence(d1, d2) => - let. _ = otherwise(env, d1 => Sequence(d1, d2)) - and. _ = req_final(req(state, env), d1 => Sequence1(d1, d2), d1); - Step({apply: () => d2, kind: Sequence, value: false}); + /* Note[Matt]: For IDs, I'm currently using a fresh id + if anything about the current node changes, if only its + children change, we use rewrap */ + + let transition = (req, state, env, d): 'a => { + // Split DHExp into term and id information + let (term, rewrap) = DHExp.unwrap(d); + let wrap_ctx = (term): EvalCtx.t => Term({term, ids: [rep_id(d)]}); + + // Transition rules + switch (term) { + | Var(x) => + let. _ = otherwise(env, Var(x) |> rewrap); + switch (ClosureEnvironment.lookup(env, x)) { + | Some(d) => + Step({ + expr: d |> fast_copy(Id.mk()), + state_update, + kind: VarLookup, + is_value: false, + }) + | None => Indet + }; + | Seq(d1, d2) => + let. _ = otherwise(env, d1 => Seq(d1, d2) |> rewrap) + and. _ = + req_final(req(state, env), d1 => Seq1(d1, d2) |> wrap_ctx, d1); + Step({expr: d2, state_update, kind: Seq, is_value: false}); | Let(dp, d1, d2) => - let. _ = otherwise(env, d1 => Let(dp, d1, d2)) - and. d1' = req_final(req(state, env), d1 => Let1(dp, d1, d2), d1); + let. _ = otherwise(env, d1 => Let(dp, d1, d2) |> rewrap) + and. d1' = + req_final(req(state, env), d1 => Let1(dp, d1, d2) |> wrap_ctx, d1); let result = matches(dp, d1'); let d2' = extend_module(d2, result); let.match env' = (env, result); - Step({apply: () => Closure(env', d2'), kind: LetBind, value: false}); + Step({ + expr: Closure(env', d2) |> fresh, + state_update, + kind: LetBind, + is_value: false, + }); | Module(dp, d1, d2) => - let. _ = otherwise(env, d1 => Module(dp, d1, d2)) - and. d1' = req_final(req(state, env), d1 => Module1(dp, d1, d2), d1); + let. _ = otherwise(env, d1 => Module(dp, d1, d2) |> rewrap) + and. d1' = + req_final( + req(state, env), + d1 => Module1(dp, d1, d2) |> wrap_ctx, + d1, + ); let result = matches(dp, d1'); let d2' = extend_module(d2, result); let.match env' = (env, result); Step({ - apply: () => Closure(env', d2'), + apply: () => Closure(env', d2') |> fresh, kind: ModuleBind, value: false, }); | Dot(d1, d2) => - let. _ = otherwise(env, d1 => Dot(d1, d2)) - and. d1' = req_value(req(state, env), d1 => Dot1(d1, d2), d1); + let. _ = otherwise(env, d1 => Dot(d1, d2) |> rewrap) + and. d1' = + req_value(req(state, env), d1 => Dot1(d1, d2) |> wrap_ctx, d1); switch (d1', d2) { | (ModuleVal(inner_env, _), _) => Step({ - apply: () => Closure(inner_env, d2), + apply: () => Closure(inner_env, d2) |> fresh, kind: DotAccess, value: false, }) @@ -319,504 +266,589 @@ module Transition = (EV: EV_MODE) => { | _ => Indet }; | TypFun(_) - | Fun(_, _, Closure(_), _) => + | Fun(_, _, Some(_), _) => let. _ = otherwise(env, d); Constructor; - | Fun(p, t, d, v) => - let. _ = otherwise(env, Fun(p, t, d, v)); + | Fun(p, d1, None, v) => + let. _ = otherwise(env, d); Step({ - apply: () => Fun(p, t, Closure(env, d), v), + expr: Fun(p, d1, Some(env), v) |> rewrap, + state_update, kind: FunClosure, - value: true, + is_value: true, }); - | FixF(f, _, Closure(env, d1)) => - let. _ = otherwise(env, d); - let env' = evaluate_extend_env(Environment.singleton((f, d)), env); - Step({apply: () => Closure(env', d1), kind: FixUnwrap, value: false}); - | FixF(f, t, d1) => - let. _ = otherwise(env, FixF(f, t, d1)); + | FixF(dp, d1, None) => + let. _ = otherwise(env, FixF(dp, d1, None) |> rewrap); Step({ - apply: () => FixF(f, t, Closure(env, d1)), + expr: FixF(dp, d1, Some(env)) |> rewrap, + state_update, kind: FixClosure, - value: false, + is_value: false, }); - | Test(id, d) => - let. _ = otherwise(env, d => Test(id, d)) - and. d' = req_final(req(state, env), d => Test(id, d), d); + | FixF(dp, d1, Some(env)) => + switch (DHPat.get_var(dp)) { + // Simple Recursion case + | Some(f) => + let. _ = otherwise(env, d); + let env'' = + evaluate_extend_env( + Environment.singleton((f, FixF(dp, d1, Some(env)) |> rewrap)), + env, + ); + Step({ + expr: Closure(env'', d1) |> fresh, + state_update, + kind: FixUnwrap, + is_value: false, + }); + // Mutual Recursion case + | None => + let. _ = otherwise(env, d); + let bindings = DHPat.bound_vars(dp); + let substitutions = + List.map( + binding => + ( + binding, + Let( + dp, + FixF(dp, d1, Some(env)) |> rewrap, + Var(binding) |> fresh, + ) + |> fresh, + ), + bindings, + ); + let env'' = + evaluate_extend_env(Environment.of_list(substitutions), env); + Step({ + expr: Closure(env'', d1) |> fresh, + state_update, + kind: FixUnwrap, + is_value: false, + }); + } + | Test(d'') => + let. _ = otherwise(env, ((d, _)) => Test(d) |> rewrap) + and. (d', is_value) = + req_final_or_value(req(state, env), d => Test(d) |> wrap_ctx, d''); + let result: TestStatus.t = + if (is_value) { + switch (Unboxing.unbox(Bool, d')) { + | DoesNotMatch + | IndetMatch => Indet + | Matches(b) => b ? Pass : Fail + }; + } else { + Indet; + }; Step({ - apply: () => - switch (d') { - | BoolLit(true) => - update_test(state, id, (d', Pass)); - Tuple([]); - | BoolLit(false) => - update_test(state, id, (d', Fail)); - Tuple([]); - /* Hack: assume if final and not Bool, then Indet; this won't catch errors in statics */ - | _ => - update_test(state, id, (d', Indet)); - Tuple([]); - }, + expr: Tuple([]) |> fresh, + state_update: () => + update_test(state, DHExp.rep_id(d), (d', result)), kind: UpdateTest, - value: true, + is_value: true, }); | TypAp(d, tau) => - let. _ = otherwise(env, d => TypAp(d, tau)) - and. d' = req_value(req(state, env), d => TypAp(d, tau), d); - switch (d') { + let. _ = otherwise(env, d => TypAp(d, tau) |> rewrap) + and. d' = + req_value(req(state, env), d => TypAp(d, tau) |> wrap_ctx, d); + switch (DHExp.term_of(d')) { | TypFun(utpat, tfbody, name) => /* Rule ITTLam */ - switch (Term.UTPat.tyvar_of_utpat(utpat)) { - | Some(tyvar) => - /* Perform substitution */ - Step({ - apply: () => - DHExp.assign_name_if_none( - /* Inherit name for user clarity */ - DHExp.ty_subst(tau, tyvar, tfbody), - Option.map( - x => x ++ "@<" ++ Typ.pretty_print(tau) ++ ">", - name, - ), - ), - kind: TypFunAp, - value: false, - }) - | None => - /* Treat a hole or invalid tyvar name as a unique type variable that doesn't appear anywhere else. Thus instantiating it at anything doesn't produce any substitutions. */ - Step({ - apply: () => - DHExp.assign_name_if_none( - tfbody, - Option.map( - x => x ++ "@<" ++ Typ.pretty_print(tau) ++ ">", - name, - ), + Step({ + expr: + DHExp.assign_name_if_none( + /* Inherit name for user clarity */ + DHExp.ty_subst(tau, utpat, tfbody), + Option.map( + x => x ++ "@<" ++ Typ.pretty_print(tau) ++ ">", + name, ), - kind: TypFunAp, - value: false, - }) - } - | Cast(d'', Forall(x, t), Forall(x', t')) => + ), + state_update, + kind: TypFunAp, + is_value: false, + }) + | Cast( + d'', + {term: Forall(tp1, _), _} as t1, + {term: Forall(tp2, _), _} as t2, + ) => /* Rule ITTApCast */ Step({ - apply: () => + expr: Cast( - TypAp(d'', tau), - Typ.subst(tau, x, t), - Typ.subst(tau, x', t'), - ), + TypAp(d'', tau) |> Exp.fresh, + Typ.subst(tau, tp1, t1), + Typ.subst(tau, tp2, t2), + ) + |> Exp.fresh, + state_update, kind: CastTypAp, - value: false, - }) - | _ => - Step({ - apply: () => { - raise(EvaluatorError.Exception(InvalidBoxedTypFun(d'))); - }, - kind: InvalidStep, - value: true, + is_value: false, }) + | _ => raise(EvaluatorError.Exception(InvalidBoxedTypFun(d'))) }; - | Ap(d1, d2) => - let. _ = otherwise(env, (d1, d2) => Ap(d1, d2)) - and. d1' = req_value(req(state, env), d1 => Ap1(d1, d2), d1) - and. d2' = req_final(req(state, env), d2 => Ap2(d1, d2), d2); - switch (d1') { + | DeferredAp(d1, ds) => + let. _ = otherwise(env, (d1, ds) => DeferredAp(d1, ds) |> rewrap) + and. _ = + req_final( + req(state, env), + d1 => DeferredAp1(d1, ds) |> wrap_ctx, + d1, + ) + and. _ = + req_all_final( + req(state, env), + (d2, ds) => DeferredAp2(d1, d2, ds) |> wrap_ctx, + ds, + ); + Constructor; + | Ap(dir, d1, d2) => + let. _ = otherwise(env, (d1, (d2, _)) => Ap(dir, d1, d2) |> rewrap) + and. d1' = + req_value(req(state, env), d1 => Ap1(dir, d1, d2) |> wrap_ctx, d1) + and. (d2', d2_is_value) = + req_final_or_value( + req(state, env), + d2 => Ap2(dir, d1, d2) |> wrap_ctx, + d2, + ); + switch (DHExp.term_of(d1')) { | Constructor(_) => Constructor - | Fun(dp, _, Closure(env', d3), _) => + | Fun(dp, d3, Some(env'), _) => let.match env'' = (env', matches(dp, d2')); - Step({apply: () => Closure(env'', d3), kind: FunAp, value: false}); - | Cast(d3', Arrow(ty1, ty2), Arrow(ty1', ty2')) => Step({ - apply: () => Cast(Ap(d3', Cast(d2', ty1', ty1)), ty2, ty2'), + expr: Closure(env'', d3) |> fresh, + state_update, + kind: FunAp, + is_value: false, + }); + | Cast( + d3', + {term: Arrow(ty1, ty2), _}, + {term: Arrow(ty1', ty2'), _}, + ) => + Step({ + expr: + Cast( + Ap(dir, d3', Cast(d2', ty1', ty1) |> fresh) |> fresh, + ty2, + ty2', + ) + |> fresh, + state_update, kind: CastAp, - value: false, + is_value: false, }) | BuiltinFun(ident) => + if (d2_is_value) { + Step({ + expr: { + let builtin = + VarMap.lookup(Builtins.forms_init, ident) + |> OptUtil.get(() => { + /* This exception should never be raised because there is + no way for the user to create a BuiltinFun. They are all + inserted into the context before evaluation. */ + raise( + EvaluatorError.Exception(InvalidBuiltin(ident)), + ) + }); + builtin(d2'); + }, + state_update, + kind: BuiltinAp(ident), + is_value: false // Not necessarily a value because of InvalidOperations + }); + } else { + Indet; + } + /* This case isn't currently used because deferrals are elaborated away */ + | DeferredAp(d3, d4s) => + let n_args = + List.length( + List.map( + fun + | {term: Deferral(_), _} => true + | _ => false: Exp.t => bool, + d4s, + ), + ); + let-unbox args = (Tuple(n_args), d2); + let new_args = { + let rec go = (deferred, args) => + switch ((deferred: list(Exp.t))) { + | [] => [] + | [{term: Deferral(_), _}, ...deferred] => + /* I can use List.hd and List.tl here because let-unbox ensure that + there are the correct number of args */ + [List.hd(args), ...go(deferred, List.tl(args))] + | [x, ...deferred] => [x, ...go(deferred, args)] + }; + go(d4s, args); + }; Step({ - apply: () => { - //HACK[Matt]: This step is just so we can check that d2' is not indet - ApBuiltin( - ident, - d2', - ); - }, - kind: BuiltinWrap, - value: false // Not necessarily a value because of InvalidOperations - }) + expr: Ap(Forward, d3, Tuple(new_args) |> fresh) |> fresh, + state_update, + kind: DeferredAp, + is_value: false, + }); + | Cast(_) + | FailedCast(_) => Indet + | FixF(_) => + print_endline(Exp.show(d1)); + print_endline(Exp.show(d1')); + print_endline("FIXF"); + failwith("FixF in Ap"); | _ => Step({ - apply: () => { + expr: { raise(EvaluatorError.Exception(InvalidBoxedFun(d1'))); }, + state_update, kind: InvalidStep, - value: true, + is_value: true, }) }; - | ApBuiltin(ident, arg) => - let. _ = otherwise(env, arg => ApBuiltin(ident, arg)) - and. arg' = - req_value(req(state, env), arg => ApBuiltin(ident, arg), arg); - Step({ - apply: () => { - let builtin = - VarMap.lookup(Builtins.forms_init, ident) - |> OptUtil.get(() => { - raise(EvaluatorError.Exception(InvalidBuiltin(ident))) - }); - builtin(arg'); - }, - kind: BuiltinAp(ident), - value: false // Not necessarily a value because of InvalidOperations - }); - | BoolLit(_) - | IntLit(_) - | FloatLit(_) - | StringLit(_) - | ModuleVal(_) => + | Deferral(_) => let. _ = otherwise(env, d); - Constructor; - | Constructor(x) => - let. _ = otherwise(env, d); - switch (ClosureEnvironment.lookup(env, x)) { - | None => Constructor - | Some(d) => Step({apply: () => d, kind: ModuleLookup, value: false}) - }; - + Indet; + | Bool(_) + | Int(_) + | Float(_) + | String(_) + | ModuleVal(_) + | Constructor(_) | BuiltinFun(_) => let. _ = otherwise(env, d); Constructor; - | IfThenElse(consistent, c, d1, d2) => - let. _ = otherwise(env, c => IfThenElse(consistent, c, d1, d2)) + | If(c, d1, d2) => + let. _ = otherwise(env, c => If(c, d1, d2) |> rewrap) and. c' = + req_value(req(state, env), c => If1(c, d1, d2) |> wrap_ctx, c); + let-unbox b = (Bool, c'); + Step({ + expr: { + b ? d1 : d2; + }, + state_update, + // Attach c' to indicate which branch taken. + kind: Conditional(b), + is_value: false, + }); + | UnOp(Meta(Unquote), _) => + let. _ = otherwise(env, d); + Indet; + | UnOp(Int(Minus), d1) => + let. _ = otherwise(env, d1 => UnOp(Int(Minus), d1) |> rewrap) + and. d1' = req_value( req(state, env), - c => IfThenElse1(consistent, c, d1, d2), - c, + c => UnOp(Int(Minus), c) |> wrap_ctx, + d1, ); - switch (consistent, c') { - | (ConsistentIf, BoolLit(b)) => - Step({ - apply: () => { - b ? d1 : d2; - }, - // Attach c' to indicate which branch taken. - kind: Conditional(b), - value: false, - }) - // Use a seperate case for invalid conditionals. Makes extracting the bool from BoolLit (above) easier. - | (ConsistentIf, _) => - Step({ - apply: () => { - raise(EvaluatorError.Exception(InvalidBoxedBoolLit(c'))); - }, - kind: InvalidStep, - value: true, - }) - // Inconsistent branches should be Indet - | (InconsistentIf, _) => Indet - }; - | BinBoolOp(And, d1, d2) => - let. _ = otherwise(env, d1 => BinBoolOp(And, d1, d2)) + let-unbox n = (Int, d1'); + Step({ + expr: Int(- n) |> fresh, + state_update, + kind: UnOp(Int(Minus)), + is_value: true, + }); + | UnOp(Bool(Not), d1) => + let. _ = otherwise(env, d1 => UnOp(Bool(Not), d1) |> rewrap) and. d1' = - req_value(req(state, env), d1 => BinBoolOp1(And, d1, d2), d1); + req_value( + req(state, env), + c => UnOp(Bool(Not), c) |> wrap_ctx, + d1, + ); + let-unbox b = (Bool, d1'); Step({ - apply: () => - switch (d1') { - | BoolLit(true) => d2 - | BoolLit(false) => BoolLit(false) - | _ => raise(EvaluatorError.Exception(InvalidBoxedBoolLit(d1'))) - }, + expr: Bool(!b) |> fresh, + state_update, + kind: UnOp(Bool(Not)), + is_value: true, + }); + | BinOp(Bool(And), d1, d2) => + let. _ = otherwise(env, d1 => BinOp(Bool(And), d1, d2) |> rewrap) + and. d1' = + req_value( + req(state, env), + d1 => BinOp1(Bool(And), d1, d2) |> wrap_ctx, + d1, + ); + let-unbox b1 = (Bool, d1'); + Step({ + expr: b1 ? d2 : Bool(false) |> fresh, + state_update, kind: BinBoolOp(And), - value: false, + is_value: false, }); - | BinBoolOp(Or, d1, d2) => - let. _ = otherwise(env, d1 => BinBoolOp(Or, d1, d2)) + | BinOp(Bool(Or), d1, d2) => + let. _ = otherwise(env, d1 => BinOp(Bool(Or), d1, d2) |> rewrap) and. d1' = - req_value(req(state, env), d1 => BinBoolOp1(Or, d1, d2), d1); + req_value( + req(state, env), + d1 => BinOp1(Bool(Or), d1, d2) |> wrap_ctx, + d1, + ); + let-unbox b1 = (Bool, d1'); Step({ - apply: () => - switch (d1') { - | BoolLit(true) => BoolLit(true) - | BoolLit(false) => d2 - | _ => raise(EvaluatorError.Exception(InvalidBoxedBoolLit(d2))) - }, + expr: b1 ? Bool(true) |> fresh : d2, + state_update, kind: BinBoolOp(Or), - value: false, + is_value: false, }); - | BinIntOp(op, d1, d2) => - let. _ = otherwise(env, (d1, d2) => BinIntOp(op, d1, d2)) - and. d1' = req_value(req(state, env), d1 => BinIntOp1(op, d1, d2), d1) + | BinOp(Int(op), d1, d2) => + let. _ = otherwise(env, (d1, d2) => BinOp(Int(op), d1, d2) |> rewrap) + and. d1' = + req_value( + req(state, env), + d1 => BinOp1(Int(op), d1, d2) |> wrap_ctx, + d1, + ) and. d2' = - req_value(req(state, env), d2 => BinIntOp2(op, d1, d2), d2); + req_value( + req(state, env), + d2 => BinOp2(Int(op), d1, d2) |> wrap_ctx, + d2, + ); + let-unbox n1 = (Int, d1'); + let-unbox n2 = (Int, d2'); Step({ - apply: () => - switch (d1', d2') { - | (IntLit(n1), IntLit(n2)) => + expr: + ( switch (op) { - | Plus => IntLit(n1 + n2) - | Minus => IntLit(n1 - n2) + | Plus => Int(n1 + n2) + | Minus => Int(n1 - n2) | Power when n2 < 0 => - InvalidOperation( - BinIntOp(op, IntLit(n1), IntLit(n2)), + DynamicErrorHole( + BinOp(Int(op), d1', d2') |> rewrap, NegativeExponent, ) - | Power => IntLit(IntUtil.ipow(n1, n2)) - | Times => IntLit(n1 * n2) + | Power => Int(IntUtil.ipow(n1, n2)) + | Times => Int(n1 * n2) | Divide when n2 == 0 => - InvalidOperation( - BinIntOp(op, IntLit(n1), IntLit(n2)), + DynamicErrorHole( + BinOp(Int(op), d1', d2') |> rewrap, DivideByZero, ) - | Divide => IntLit(n1 / n2) - | LessThan => BoolLit(n1 < n2) - | LessThanOrEqual => BoolLit(n1 <= n2) - | GreaterThan => BoolLit(n1 > n2) - | GreaterThanOrEqual => BoolLit(n1 >= n2) - | Equals => BoolLit(n1 == n2) - | NotEquals => BoolLit(n1 != n2) + | Divide => Int(n1 / n2) + | LessThan => Bool(n1 < n2) + | LessThanOrEqual => Bool(n1 <= n2) + | GreaterThan => Bool(n1 > n2) + | GreaterThanOrEqual => Bool(n1 >= n2) + | Equals => Bool(n1 == n2) + | NotEquals => Bool(n1 != n2) } - | (IntLit(_), _) => - raise(EvaluatorError.Exception(InvalidBoxedIntLit(d2'))) - | _ => raise(EvaluatorError.Exception(InvalidBoxedIntLit(d1'))) - }, + ) + |> fresh, + state_update, kind: BinIntOp(op), // False so that InvalidOperations are caught and made indet by the next step - value: false, + is_value: false, }); - | BinFloatOp(op, d1, d2) => - let. _ = otherwise(env, (d1, d2) => BinFloatOp(op, d1, d2)) + | BinOp(Float(op), d1, d2) => + let. _ = + otherwise(env, (d1, d2) => BinOp(Float(op), d1, d2) |> rewrap) and. d1' = - req_value(req(state, env), d1 => BinFloatOp1(op, d1, d2), d1) + req_value( + req(state, env), + d1 => BinOp1(Float(op), d1, d2) |> wrap_ctx, + d1, + ) and. d2' = - req_value(req(state, env), d2 => BinFloatOp2(op, d1, d2), d2); + req_value( + req(state, env), + d2 => BinOp2(Float(op), d1, d2) |> wrap_ctx, + d2, + ); + let-unbox n1 = (Float, d1'); + let-unbox n2 = (Float, d2'); Step({ - apply: () => - switch (d1', d2') { - | (FloatLit(n1), FloatLit(n2)) => + expr: + ( switch (op) { - | Plus => FloatLit(n1 +. n2) - | Minus => FloatLit(n1 -. n2) - | Power => FloatLit(n1 ** n2) - | Times => FloatLit(n1 *. n2) - | Divide => FloatLit(n1 /. n2) - | LessThan => BoolLit(n1 < n2) - | LessThanOrEqual => BoolLit(n1 <= n2) - | GreaterThan => BoolLit(n1 > n2) - | GreaterThanOrEqual => BoolLit(n1 >= n2) - | Equals => BoolLit(n1 == n2) - | NotEquals => BoolLit(n1 != n2) + | Plus => Float(n1 +. n2) + | Minus => Float(n1 -. n2) + | Power => Float(n1 ** n2) + | Times => Float(n1 *. n2) + | Divide => Float(n1 /. n2) + | LessThan => Bool(n1 < n2) + | LessThanOrEqual => Bool(n1 <= n2) + | GreaterThan => Bool(n1 > n2) + | GreaterThanOrEqual => Bool(n1 >= n2) + | Equals => Bool(n1 == n2) + | NotEquals => Bool(n1 != n2) } - | (FloatLit(_), _) => - raise(EvaluatorError.Exception(InvalidBoxedFloatLit(d2'))) - | _ => raise(EvaluatorError.Exception(InvalidBoxedFloatLit(d1'))) - }, + ) + |> fresh, + state_update, kind: BinFloatOp(op), - value: true, + is_value: true, }); - | BinStringOp(op, d1, d2) => - let. _ = otherwise(env, (d1, d2) => BinStringOp(op, d1, d2)) + | BinOp(String(op), d1, d2) => + let. _ = + otherwise(env, (d1, d2) => BinOp(String(op), d1, d2) |> rewrap) and. d1' = - req_value(req(state, env), d1 => BinStringOp1(op, d1, d2), d1) + req_value( + req(state, env), + d1 => BinOp1(String(op), d1, d2) |> wrap_ctx, + d1, + ) and. d2' = - req_value(req(state, env), d2 => BinStringOp2(op, d1, d2), d2); + req_value( + req(state, env), + d2 => BinOp2(String(op), d1, d2) |> wrap_ctx, + d2, + ); + let-unbox s1 = (String, d1'); + let-unbox s2 = (String, d2'); Step({ - apply: () => - switch (d1', d2') { - | (StringLit(s1), StringLit(s2)) => - switch (op) { - | Concat => StringLit(s1 ++ s2) - | Equals => BoolLit(s1 == s2) - } - | (StringLit(_), _) => - raise(EvaluatorError.Exception(InvalidBoxedStringLit(d2'))) - | _ => raise(EvaluatorError.Exception(InvalidBoxedStringLit(d1'))) + expr: + switch (op) { + | Concat => String(s1 ++ s2) |> fresh + | Equals => Bool(s1 == s2) |> fresh }, + state_update, kind: BinStringOp(op), - value: true, + is_value: true, }); | Tuple(ds) => - let. _ = otherwise(env, ds => Tuple(ds)) + let. _ = otherwise(env, ds => Tuple(ds) |> rewrap) and. _ = - req_all_final(req(state, env), (d1, ds) => Tuple(d1, ds), ds); + req_all_final( + req(state, env), + (d1, ds) => Tuple(d1, ds) |> wrap_ctx, + ds, + ); Constructor; - | Prj(d1, n) => - let. _ = otherwise(env, d1 => Prj(d1, n)) - and. d1' = req_final(req(state, env), d1 => Prj(d1, n), d1); + | Cons(d1, d2) => + let. _ = otherwise(env, (d1, d2) => Cons(d1, d2) |> rewrap) + and. d1' = + req_final(req(state, env), d1 => Cons1(d1, d2) |> wrap_ctx, d1) + and. d2' = + req_value(req(state, env), d2 => Cons2(d1, d2) |> wrap_ctx, d2); + let-unbox ds = (List, d2'); Step({ - apply: () => - switch (d1') { - | Tuple(ds) when n < 0 || List.length(ds) <= n => - raise(EvaluatorError.Exception(InvalidProjection(n))) - | Tuple(ds) => List.nth(ds, n) - | Cast(_, Prod(ts), Prod(_)) when n < 0 || List.length(ts) <= n => - raise(EvaluatorError.Exception(InvalidProjection(n))) - | Cast(d2, Prod(ts1), Prod(ts2)) => - Cast(Prj(d2, n), List.nth(ts1, n), List.nth(ts2, n)) - | _ => raise(EvaluatorError.Exception(InvalidProjection(n))) - }, - kind: Projection, - value: false, + expr: ListLit([d1', ...ds]) |> fresh, + state_update, + kind: ListCons, + is_value: true, }); - | Cons(d1, d2) => - let. _ = otherwise(env, (d1, d2) => Cons(d1, d2)) - and. d1' = req_final(req(state, env), d1 => Cons1(d1, d2), d1) - and. d2' = req_final(req(state, env), d2 => Cons2(d1, d2), d2); - switch (unbox_list(d2')) { - | ListLit(u, i, ty, ds) => - Step({ - apply: () => ListLit(u, i, ty, [d1', ...ds]), - kind: ListCons, - value: true, - }) - | _ => Indet - }; | ListConcat(d1, d2) => - let. _ = otherwise(env, (d1, d2) => ListConcat(d1, d2)) - and. d1' = req_final(req(state, env), d1 => ListConcat1(d1, d2), d1) - and. d2' = req_final(req(state, env), d2 => ListConcat2(d1, d2), d2); - switch (unbox_list(d1'), unbox_list(d2')) { - | (ListLit(u1, i1, t1, ds1), ListLit(_, _, _, ds2)) => - Step({ - apply: () => ListLit(u1, i1, t1, ds1 @ ds2), - kind: ListConcat, - value: true, - }) - | _ => Indet - }; - | ListLit(u, i, ty, ds) => - let. _ = otherwise(env, ds => ListLit(u, i, ty, ds)) + let. _ = otherwise(env, (d1, d2) => ListConcat(d1, d2) |> rewrap) + and. d1' = + req_value( + req(state, env), + d1 => ListConcat1(d1, d2) |> wrap_ctx, + d1, + ) + and. d2' = + req_value( + req(state, env), + d2 => ListConcat2(d1, d2) |> wrap_ctx, + d2, + ); + let-unbox ds1 = (List, d1'); + let-unbox ds2 = (List, d2'); + Step({ + expr: ListLit(ds1 @ ds2) |> fresh, + state_update, + kind: ListConcat, + is_value: true, + }); + | ListLit(ds) => + let. _ = otherwise(env, ds => ListLit(ds) |> rewrap) and. _ = req_all_final( req(state, env), - (d1, ds) => ListLit(u, i, ty, d1, ds), + (d1, ds) => ListLit(d1, ds) |> wrap_ctx, ds, ); Constructor; - // TODO(Matt): This will currently re-traverse d1 if it is a large constructor - | ConsistentCase(Case(d1, rules, n)) => - let. _ = otherwise(env, d1 => ConsistentCase(Case(d1, rules, n))) - and. d1' = + | Match(d1, rules) => + let. _ = otherwise(env, d1 => Match(d1, rules) |> rewrap) + and. d1 = req_final( req(state, env), - d1 => ConsistentCase(Case(d1, rules, n)), + d1 => MatchScrut(d1, rules) |> wrap_ctx, d1, ); - switch (List.nth_opt(rules, n)) { + let rec next_rule = ( + fun + | [] => None + | [(dp, d2), ...rules] => + switch (matches(dp, d1)) { + | Matches(env') => Some((env', d2)) + | DoesNotMatch => next_rule(rules) + | IndetMatch => None + } + ); + switch (next_rule(rules)) { + | Some((env', d2)) => + Step({ + expr: Closure(evaluate_extend_env(env', env), d2) |> fresh, + state_update, + kind: CaseApply, + is_value: false, + }) | None => Indet - | Some(Rule(dp, d2)) => - switch (matches(dp, d1')) { - | Matches(env') => - Step({ - apply: () => Closure(evaluate_extend_env(env', env), d2), - kind: CaseApply, - value: false, - }) - | DoesNotMatch => - Step({ - apply: () => ConsistentCase(Case(d1', rules, n + 1)), - kind: CaseNext, - value: false, - }) - | IndetMatch => Indet - } }; - | InconsistentBranches(_) as d => + | Closure(env', d) => + let. _ = otherwise(env, d => Closure(env', d) |> rewrap) + and. d' = + req_final(req(state, env'), d1 => Closure(env', d1) |> wrap_ctx, d); + Step({expr: d', state_update, kind: CompleteClosure, is_value: true}); + | MultiHole(_) => let. _ = otherwise(env, d); + // and. _ = + // req_all_final( + // req(state, env), + // (d1, ds) => MultiHole(d1, ds) |> wrap_ctx, + // ds, + // ); Indet; - | Closure(env', d) => - let. _ = otherwise(env, d => Closure(env', d)) - and. d' = req_final(req(state, env'), d1 => Closure(env', d1), d); - Step({apply: () => d', kind: CompleteClosure, value: true}); - | NonEmptyHole(reason, u, i, d1) => - let. _ = otherwise(env, d1 => NonEmptyHole(reason, u, i, d1)) + | EmptyHole + | Invalid(_) + | DynamicErrorHole(_) => + let. _ = otherwise(env, d); + Indet; + | Cast(d, t1, t2) => + let. _ = otherwise(env, d => Cast(d, t1, t2) |> rewrap) + and. d' = + req_final(req(state, env), d => Cast(d, t1, t2) |> wrap_ctx, d); + switch (Casts.transition(Cast(d', t1, t2) |> rewrap)) { + | Some(d) => Step({expr: d, state_update, kind: Cast, is_value: false}) + | None => Constructor + }; + | FailedCast(d1, t1, t2) => + let. _ = otherwise(env, d1 => FailedCast(d1, t1, t2) |> rewrap) and. _ = req_final( req(state, env), - d1 => NonEmptyHole(reason, u, i, d1), + d1 => FailedCast(d1, t1, t2) |> wrap_ctx, d1, ); Indet; - | EmptyHole(_) - | FreeVar(_) - | InvalidText(_) - | InvalidOperation(_) => + | Undefined => let. _ = otherwise(env, d); Indet; - | Cast(d, t1, t2) => - open CastHelpers; /* Cast calculus */ - - let. _ = otherwise(env, d => Cast(d, t1, t2)) - and. d' = req_final(req(state, env), d => Cast(d, t1, t2), d); - switch (ground_cases_of(t1), ground_cases_of(t2)) { - | (Hole, Hole) - | (Ground, Ground) => - /* if two types are ground and consistent, then they are eq */ - Step({apply: () => d', kind: Cast, value: true}) - | (Ground, Hole) => - /* can't remove the cast or do anything else here, so we're done */ - Constructor - | (Hole, Ground) => - switch (d') { - | Cast(d2, t3, Unknown(_)) => - /* by canonical forms, d1' must be of the form d ?> */ - if (Typ.eq(t3, t2)) { - Step({apply: () => d2, kind: Cast, value: true}); - } else { - Step({ - apply: () => FailedCast(d', t1, t2), - kind: Cast, - value: false, - }); - } - | _ => Indet - } - | (Hole, NotGroundOrHole(t2_grounded)) => - /* ITExpand rule */ - Step({ - apply: () => - DHExp.Cast(Cast(d', t1, t2_grounded), t2_grounded, t2), - kind: Cast, - value: false, - }) - | (NotGroundOrHole(t1_grounded), Hole) => - /* ITGround rule */ - Step({ - apply: () => - DHExp.Cast(Cast(d', t1, t1_grounded), t1_grounded, t2), - kind: Cast, - value: false, - }) - | (Ground, NotGroundOrHole(_)) - | (NotGroundOrHole(_), Ground) => - /* can't do anything when casting between diseq, non-hole types */ - Constructor - | (NotGroundOrHole(_), NotGroundOrHole(_)) => - /* they might be eq in this case, so remove cast if so */ - if (Typ.eq(t1, t2)) { - Step({apply: () => d', kind: Cast, value: true}); - } else { - Constructor; - } - }; - | FailedCast(d1, t1, t2) => - let. _ = otherwise(env, d1 => FailedCast(d1, t1, t2)) - and. _ = req_final(req(state, env), d1 => FailedCast(d1, t1, t2), d1); - Indet; - | Filter(Filter({pat: Closure(_), _}) as f1, d1) - | Filter(Residue(_) as f1, d1) => - let. _ = otherwise(env, d1 => Filter(f1, d1)) - and. d1 = req_final(req(state, env), d1 => Filter(f1, d1), d1); - Step({apply: () => d1, kind: CompleteFilter, value: true}); - | Filter(Filter({pat, act}) as f1, d1) => - let. _ = otherwise(env, Filter(f1, d1)); - Step({ - apply: () => Filter(Filter({pat: Closure(env, pat), act}), d1), - kind: CompleteFilter, - value: false, - }); + | Parens(d) => + let. _ = otherwise(env, d); + Step({expr: d, state_update, kind: RemoveParens, is_value: false}); + | TyAlias(_, _, d) => + let. _ = otherwise(env, d); + Step({expr: d, state_update, kind: RemoveTypeAlias, is_value: false}); + | Filter(f1, d1) => + let. _ = otherwise(env, d1 => Filter(f1, d1) |> rewrap) + and. d1 = + req_final(req(state, env), d1 => Filter(f1, d1) |> wrap_ctx, d1); + Step({expr: d1, state_update, kind: CompleteFilter, is_value: true}); }; + }; }; let should_hide_step_kind = (~settings: CoreSettings.Evaluation.t) => @@ -824,21 +856,23 @@ let should_hide_step_kind = (~settings: CoreSettings.Evaluation.t) => | LetBind | ModuleBind | DotAccess - | Sequence + | Seq | UpdateTest | TypFunAp | FunAp + | DeferredAp | BuiltinAp(_) | BinBoolOp(_) | BinIntOp(_) | BinFloatOp(_) | BinStringOp(_) + | UnOp(_) | ListCons | ListConcat | CaseApply | Projection // TODO(Matt): We don't want to show projection to the user - | Skip | Conditional(_) + | RemoveTypeAlias | InvalidStep => false | ModuleLookup | VarLookup => !settings.show_lookup_steps @@ -846,9 +880,9 @@ let should_hide_step_kind = (~settings: CoreSettings.Evaluation.t) => | CastAp | Cast => !settings.show_casts | FixUnwrap => !settings.show_fixpoints - | CaseNext | CompleteClosure | CompleteFilter | BuiltinWrap | FunClosure - | FixClosure => true; + | FixClosure + | RemoveParens => true; diff --git a/src/haz3lcore/dynamics/TypeAssignment.re b/src/haz3lcore/dynamics/TypeAssignment.re new file mode 100644 index 0000000000..f4979d94bf --- /dev/null +++ b/src/haz3lcore/dynamics/TypeAssignment.re @@ -0,0 +1,358 @@ +open Util; +open OptUtil.Syntax; + +// let equal_typ_list = (l: list(Typ.t)): option(Typ.t) => { +// switch (l) { +// | [] => None +// | [ty, ..._] => +// List.fold_left((acc, t) => {acc && Typ.eq(t, ty)}, true, l) +// ? Some(ty) : None +// }; +// }; + +// let delta_ty = (id: MetaVar.t, m: Statics.Map.t): option(Typ.t) => { +// switch (Id.Map.find_opt(id, m)) { +// | Some(InfoExp({mode, ctx, _})) => +// switch (mode) { +// | Syn +// | SynTypFun +// | SynFun => Some(Unknown(Internal)) +// | Ana(ana_ty) => Some(Typ.normalize(ctx, ana_ty)) +// } +// | _ => None +// }; +// }; + +let ground = (ty: Typ.t): bool => { + switch (Casts.ground_cases_of(ty)) { + | Casts.Ground => true + | _ => false + }; +}; + +let dhpat_extend_ctx = (dhpat: DHPat.t, ty: Typ.t, ctx: Ctx.t): option(Ctx.t) => { + let rec dhpat_var_entry = + (dhpat: DHPat.t, ty: Typ.t): option(list(Ctx.entry)) => { + switch (dhpat |> Pat.term_of) { + | Var(name) => + let entry = Ctx.VarEntry({name, id: Id.invalid, typ: ty}); + Some([entry]); + | Tuple(l1) => + let* ts = Typ.matched_prod_strict(ctx, List.length(l1), ty); + let* l = + List.map2((dhp, typ) => {dhpat_var_entry(dhp, typ)}, l1, ts) + |> OptUtil.sequence; + Some(List.concat(l)); + | Cons(dhp1, dhp2) => + let* t = Typ.matched_list_strict(ctx, ty); + let* l1 = dhpat_var_entry(dhp1, t); + let* l2 = dhpat_var_entry(dhp2, List(t) |> Typ.temp); + Some(l1 @ l2); + | ListLit(l) => + let* t = Typ.matched_list_strict(ctx, ty); + let* l = + List.map(dhp => {dhpat_var_entry(dhp, t)}, l) |> OptUtil.sequence; + Some(List.concat(l)); + | Ap({term: Constructor(name, _), _}, dhp) => + // TODO: make this stricter + let* ctrs = Typ.get_sum_constructors(ctx, ty); + let* typ = ConstructorMap.get_entry(name, ctrs); + let* (ty1, ty2) = Typ.matched_arrow_strict(ctx, typ); + Typ.eq(ty2, ty) ? dhpat_var_entry(dhp, ty1) : None; + | Ap(_) => None + | EmptyHole + | Wild + | Invalid(_) + | MultiHole(_) => Some([]) + | Parens(dhp) => dhpat_var_entry(dhp, ty) + | Int(_) => Typ.eq(ty, Int |> Typ.temp) ? Some([]) : None + | Float(_) => Typ.eq(ty, Float |> Typ.temp) ? Some([]) : None + | Bool(_) => Typ.eq(ty, Bool |> Typ.temp) ? Some([]) : None + | String(_) => Typ.eq(ty, String |> Typ.temp) ? Some([]) : None + | Constructor(_) => Some([]) // TODO: make this stricter + | Cast(dhp, ty1, ty2) => + Typ.eq(ty, ty2) ? dhpat_var_entry(dhp, ty1) : None + }; + }; + let+ l = dhpat_var_entry(dhpat, ty); + List.fold_left((ctx, entry) => Ctx.extend(ctx, entry), ctx, l); +}; + +/* patterns in functions and fixpoints must have a synthesizable type */ +let rec dhpat_synthesize = (dhpat: DHPat.t, ctx: Ctx.t): option(Typ.t) => { + switch (dhpat |> Pat.term_of) { + | Var(_) + | Constructor(_) + | Ap(_) => None + | Tuple(dhs) => + let* l = List.map(dhpat_synthesize(_, ctx), dhs) |> OptUtil.sequence; + Some(Prod(l) |> Typ.temp); + | Cons(dhp1, _) => + let* t = dhpat_synthesize(dhp1, ctx); + Some(List(t) |> Typ.temp); + | ListLit([]) => Some(List(Unknown(Internal) |> Typ.temp) |> Typ.temp) + | ListLit([x, ..._]) => + let* t_x = dhpat_synthesize(x, ctx); + Some(List(t_x) |> Typ.temp); + | EmptyHole => Some(Unknown(Internal) |> Typ.temp) + | Wild => Some(Unknown(Internal) |> Typ.temp) + | Invalid(_) + | MultiHole(_) => Some(Unknown(Internal) |> Typ.temp) + | Parens(dhp) => dhpat_synthesize(dhp, ctx) + | Int(_) => Some(Int |> Typ.temp) + | Float(_) => Some(Float |> Typ.temp) + | Bool(_) => Some(Bool |> Typ.temp) + | String(_) => Some(String |> Typ.temp) + | Cast(_, _, ty) => Some(ty) + }; +}; + +let rec env_extend_ctx = + (env: ClosureEnvironment.t, m: Statics.Map.t, ctx: Ctx.t) + : option(Ctx.t) => { + let+ l = + env + |> ClosureEnvironment.to_list + |> List.map(((name, de)) => { + let+ ty = typ_of_dhexp(ctx, m, de); + Ctx.VarEntry({name, id: Id.invalid, typ: ty}); + }) + |> OptUtil.sequence; + List.fold_left((ctx, var_entry) => Ctx.extend(ctx, var_entry), ctx, l); +} + +and typ_of_dhexp = (ctx: Ctx.t, m: Statics.Map.t, dh: DHExp.t): option(Typ.t) => { + switch (dh |> DHExp.term_of) { + | Invalid(_) + | MultiHole(_) + | EmptyHole + | Deferral(_) + | Undefined => Some(Unknown(Internal) |> Typ.temp) + | DynamicErrorHole(e, _) => typ_of_dhexp(ctx, m, e) + | Closure(env, d) => + let* ctx' = env_extend_ctx(env, m, ctx); + typ_of_dhexp(ctx', m, d); + | Filter(_, d) => typ_of_dhexp(ctx, m, d) + | Var(name) => + let* var = Ctx.lookup_var(ctx, name); + Some(var.typ); + | Seq(d1, d2) => + let* _ = typ_of_dhexp(ctx, m, d1); + typ_of_dhexp(ctx, m, d2); + | Let(dhp, de, db) => + let* ty1 = typ_of_dhexp(ctx, m, de); + let* ctx = dhpat_extend_ctx(dhp, ty1, ctx); + typ_of_dhexp(ctx, m, db); + | FixF(dhp, d, env) => + let* ty_p = dhpat_synthesize(dhp, ctx); + let* ctx = + switch (env) { + | None => Some(ctx) + | Some(env) => env_extend_ctx(env, m, ctx) + }; + let* ctx = dhpat_extend_ctx(dhp, ty_p, ctx); + typ_of_dhexp(ctx, m, d); + | Fun(dhp, d, env, _) => + let* ty_p = dhpat_synthesize(dhp, ctx); + let* ctx = + switch (env) { + | None => Some(ctx) + | Some(env) => env_extend_ctx(env, m, ctx) + }; + let* ctx = dhpat_extend_ctx(dhp, ty_p, ctx); + let* ty2 = typ_of_dhexp(ctx, m, d); + Some(Typ.Arrow(ty_p, ty2) |> Typ.temp); + | TypFun({term: Var(name), _} as utpat, d, _) + when !Ctx.shadows_typ(ctx, name) => + let ctx = + Ctx.extend_tvar(ctx, {name, id: TPat.rep_id(utpat), kind: Abstract}); + let* ty = typ_of_dhexp(ctx, m, d); + Some(Typ.Forall(utpat, ty) |> Typ.temp); + | TypFun(_, d, _) => + let* ty = typ_of_dhexp(ctx, m, d); + Some(Typ.Forall(Var("?") |> TPat.fresh, ty) |> Typ.temp); + | TypAp(d, ty1) => + let* ty = typ_of_dhexp(ctx, m, d); + let* (name, ty2) = Typ.matched_forall_strict(ctx, ty); + switch (name) { + | Some(name) => Some(Typ.subst(ty1, name, ty2)) + | None => Some(ty2) + }; + | Ap(_, d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + let* (tyl, tyr) = Typ.matched_arrow_strict(ctx, ty1); + Typ.eq(tyl, ty2) ? Some(tyr) : None; + | DeferredAp(d1, d2s) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* tys = List.map(typ_of_dhexp(ctx, m), d2s) |> OptUtil.sequence; + let* (tyl, tyr) = Typ.matched_arrow_strict(ctx, ty1); + // TODO: make strict + let tyls = Typ.matched_args(ctx, List.length(tys), tyl); + let* combined = ListUtil.combine_opt(tyls, d2s); + let without_deferrals = + List.filter(((_, d)) => !DHExp.is_deferral(d), combined); + if (List.for_all( + ((t, d)) => { + let ty = typ_of_dhexp(ctx, m, d); + switch (ty) { + | Some(ty) => Typ.eq(t, ty) + | None => false + }; + }, + without_deferrals, + )) { + let with_deferrals = + List.filter(((_, d)) => DHExp.is_deferral(d), combined); + let* tys = + List.map(((_, d)) => typ_of_dhexp(ctx, m, d), with_deferrals) + |> OptUtil.sequence; + switch (tys) { + | [] => Some(tyr) + | [ty] => Some(Typ.Arrow(ty, tyr) |> Typ.temp) + | tys => Some(Typ.Arrow(Prod(tys) |> Typ.temp, tyr) |> Typ.temp) + }; + } else { + None; + }; + + | BuiltinFun(name) => + let* var = Ctx.lookup_var(ctx, name); + Some(var.typ); + | Test(dtest) => + let* ty = typ_of_dhexp(ctx, m, dtest); + Typ.eq(ty, Bool |> Typ.temp) ? Some(Typ.Prod([]) |> Typ.temp) : None; + | Bool(_) => Some(Bool |> Typ.temp) + | Int(_) => Some(Int |> Typ.temp) + | Float(_) => Some(Float |> Typ.temp) + | String(_) => Some(String |> Typ.temp) + | BinOp(Bool(_), d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + Typ.eq(ty1, Bool |> Typ.temp) && Typ.eq(ty2, Bool |> Typ.temp) + ? Some(Bool |> Typ.temp) : None; + | BinOp(Int(op), d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + if (Typ.eq(ty1, Int |> Typ.temp) && Typ.eq(ty2, Int |> Typ.temp)) { + switch (op) { + | Minus + | Plus + | Times + | Power + | Divide => Some(Int |> Typ.temp) + | LessThan + | LessThanOrEqual + | GreaterThan + | GreaterThanOrEqual + | Equals + | NotEquals => Some(Bool |> Typ.temp) + }; + } else { + None; + }; + | BinOp(Float(op), d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + if (Typ.eq(ty1, Float |> Typ.temp) && Typ.eq(ty2, Float |> Typ.temp)) { + switch (op) { + | Minus + | Plus + | Times + | Power + | Divide => Some(Float |> Typ.temp) + | LessThan + | LessThanOrEqual + | GreaterThan + | GreaterThanOrEqual + | Equals + | NotEquals => Some(Bool |> Typ.temp) + }; + } else { + None; + }; + | BinOp(String(op), d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + if (Typ.eq(ty1, String |> Typ.temp) && Typ.eq(ty2, String |> Typ.temp)) { + switch (op) { + | Concat => Some(String |> Typ.temp) + | Equals => Some(Bool |> Typ.temp) + }; + } else { + None; + }; + | UnOp(Int(Minus), d) => + let* ty = typ_of_dhexp(ctx, m, d); + Typ.eq(ty, Int |> Typ.temp) ? Some(Int |> Typ.temp) : None; + | UnOp(Bool(Not), d) => + let* ty = typ_of_dhexp(ctx, m, d); + Typ.eq(ty, Bool |> Typ.temp) ? Some(Bool |> Typ.temp) : None; + | UnOp(Meta(Unquote), d) => + let* ty = typ_of_dhexp(ctx, m, d); + Some(ty); + | ListLit([]) => Some(List(Unknown(Internal) |> Typ.temp) |> Typ.temp) + | ListLit([x, ...xs]) => + let* t_x = typ_of_dhexp(ctx, m, x); + let* t_xs = List.map(typ_of_dhexp(ctx, m), xs) |> OptUtil.sequence; + List.for_all(t => Typ.eq(t, t_x), t_xs) + ? Some(List(t_x) |> Typ.temp) : None; + | Cons(d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + let* ty3 = Typ.matched_list_strict(ctx, ty2); + Typ.eq(ty1, ty3) ? Some(ty2) : None; + | ListConcat(d1, d2) => + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty1l = Typ.matched_list_strict(ctx, ty1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + let* ty2l = Typ.matched_list_strict(ctx, ty2); + Typ.eq(ty1l, ty2l) ? Some(ty1) : None; + | Tuple(dhs) => + let+ typ_list = + dhs |> List.map(typ_of_dhexp(ctx, m)) |> OptUtil.sequence; + Prod(typ_list) |> Typ.temp; + | Constructor(_) => None // Constructors should always be surrounded by casts + | Match(_, []) => Some(Unknown(Internal) |> Typ.temp) + | Match(d_scrut, [rule, ...rules]) => + let* ty' = typ_of_dhexp(ctx, m, d_scrut); + let rule_to_ty = ((dhpat, dhexp): (Pat.t, Exp.t)) => { + let* ctx = dhpat_extend_ctx(dhpat, ty', ctx); + typ_of_dhexp(ctx, m, dhexp); + }; + let* rule_ty = rule_to_ty(rule); + let* rules_ty = List.map(rule_to_ty, rules) |> OptUtil.sequence; + List.for_all(Typ.eq(rule_ty, _), rules_ty) ? Some(rule_ty) : None; + | Cast(d, ty1, ty2) => + let* _ = Typ.join(~fix=true, ctx, ty1, ty2); + let* tyd = typ_of_dhexp(ctx, m, d); + Typ.eq(tyd, ty1) ? Some(ty2) : None; + | FailedCast(d, ty1, ty2) => + if (ground(ty1) && ground(ty2) && !Typ.eq(ty1, ty2)) { + let* tyd = typ_of_dhexp(ctx, m, d); + Typ.eq(tyd, ty1) ? Some(ty2) : None; + } else { + None; + } + | If(d_scrut, d1, d2) => + let* ty = typ_of_dhexp(ctx, m, d_scrut); + if (Typ.eq(ty, Bool |> Typ.temp)) { + let* ty1 = typ_of_dhexp(ctx, m, d1); + let* ty2 = typ_of_dhexp(ctx, m, d2); + Typ.eq(ty1, ty2) ? Some(ty1) : None; + } else { + None; + }; + | TyAlias(_, _, d) => typ_of_dhexp(ctx, m, d) + | Parens(d) => typ_of_dhexp(ctx, m, d) + }; +}; + +let property_test = (uexp_typ: Typ.t, dhexp: DHExp.t, m: Statics.Map.t): bool => { + let dhexp_typ = typ_of_dhexp(Builtins.ctx_init, m, dhexp); + + switch (dhexp_typ) { + | None => false + | Some(dh_typ) => Typ.eq(dh_typ, uexp_typ) + }; +}; diff --git a/src/haz3lcore/dynamics/Unboxing.re b/src/haz3lcore/dynamics/Unboxing.re new file mode 100644 index 0000000000..400620026c --- /dev/null +++ b/src/haz3lcore/dynamics/Unboxing.re @@ -0,0 +1,198 @@ +open Util; + +/* What is unboxing? + + When you have an expression of type list, and it's finished evaluating, + is it a list? Sadly not necessarily, it might be: + + - indeterminate, e.g. it has a hole in it + - a list with some casts wrapped around it + + Unboxing is the process of turning a list into a list if it is a list, + by pushing casts inside data structures, or giving up if it is not a list. + + Note unboxing only works one layer deep, if we have a list of lists then + the inner lists may still have casts around them after unboxing. + */ + +type unbox_request('a) = + | Int: unbox_request(int) + | Float: unbox_request(float) + | Bool: unbox_request(bool) + | String: unbox_request(string) + | Tuple(int): unbox_request(list(DHExp.t)) + | List: unbox_request(list(DHExp.t)) + | Cons: unbox_request((DHExp.t, DHExp.t)) + | SumNoArg(string): unbox_request(unit) + | SumWithArg(string): unbox_request(DHExp.t); + +type unboxed('a) = + | DoesNotMatch + | IndetMatch + | Matches('a); + +let ( let* ) = (x: unboxed('a), f: 'a => unboxed('b)): unboxed('b) => + switch (x) { + | IndetMatch => IndetMatch + | DoesNotMatch => DoesNotMatch + | Matches(x) => f(x) + }; + +let fixup_cast = Casts.transition_multiple; + +/* This function has a different return type depending on what kind of request + it is given. This unfortunately uses a crazy OCaml feature called GADTS, but + it avoids having to write a separate unbox function for each kind of request. + */ + +let rec unbox: type a. (unbox_request(a), DHExp.t) => unboxed(a) = + (request, expr) => { + switch (request, DHExp.term_of(expr)) { + /* Remove parentheses from casts */ + | (_, Cast(d, {term: Parens(x), _}, y)) + | (_, Cast(d, x, {term: Parens(y), _})) => + unbox(request, Cast(d, x, y) |> DHExp.fresh) + + /* Base types are always already unboxed because of the ITCastID rule*/ + | (Bool, Bool(b)) => Matches(b) + | (Int, Int(i)) => Matches(i) + | (Float, Float(f)) => Matches(f) + | (String, String(s)) => Matches(s) + + /* Lists can be either lists or list casts */ + | (List, ListLit(l)) => Matches(l) + | (Cons, ListLit([x, ...xs])) => + Matches((x, ListLit(xs) |> DHExp.fresh)) + | (Cons, ListLit([])) => DoesNotMatch + | (List, Cast(l, {term: List(t1), _}, {term: List(t2), _})) => + let* l = unbox(List, l); + let l = List.map(d => Cast(d, t1, t2) |> DHExp.fresh, l); + let l = List.map(fixup_cast, l); + Matches(l); + | ( + Cons, + Cast(l, {term: List(t1), _} as ct1, {term: List(t2), _} as ct2), + ) => + let* l = unbox(List, l); + switch (l) { + | [] => DoesNotMatch + | [x, ...xs] => + Matches(( + Cast(x, t1, t2) |> DHExp.fresh |> fixup_cast, + Cast(ListLit(xs) |> DHExp.fresh, ct1, ct2) |> DHExp.fresh, + )) + }; + + /* Tuples can be either tuples or tuple casts */ + | (Tuple(n), Tuple(t)) when List.length(t) == n => Matches(t) + | (Tuple(_), Tuple(_)) => DoesNotMatch + | (Tuple(n), Cast(t, {term: Prod(t1s), _}, {term: Prod(t2s), _})) + when n == List.length(t1s) && n == List.length(t2s) => + let* t = unbox(Tuple(n), t); + let t = + ListUtil.map3( + (d, t1, t2) => Cast(d, t1, t2) |> DHExp.fresh, + t, + t1s, + t2s, + ); + let t = List.map(fixup_cast, t); + Matches(t); + + /* Sum constructors can be either sum constructors, sum constructors + applied to some value or sum casts */ + | (SumNoArg(name1), Constructor(name2, _)) when name1 == name2 => + Matches() + | (SumNoArg(_), Constructor(_)) => DoesNotMatch + | (SumNoArg(_), Ap(_, {term: Constructor(_), _}, _)) => DoesNotMatch + | (SumNoArg(name), Cast(d1, {term: Sum(_), _}, {term: Sum(s2), _})) + when + ConstructorMap.has_constructor_no_args(name, s2) + || ConstructorMap.has_bad_entry(s2) => + let* d1 = unbox(SumNoArg(name), d1); + Matches(d1); + | (SumNoArg(_), Cast(_, {term: Sum(_), _}, {term: Sum(_), _})) => + IndetMatch + + | (SumWithArg(_), Constructor(_)) => DoesNotMatch + | (SumWithArg(name1), Ap(_, {term: Constructor(name2, _), _}, d3)) + when name1 == name2 => + Matches(d3) + | (SumWithArg(_), Ap(_, {term: Constructor(_), _}, _)) => DoesNotMatch + | (SumWithArg(name), Cast(d1, {term: Sum(s1), _}, {term: Sum(s2), _})) => + let get_entry_or_bad = s => + switch (ConstructorMap.get_entry(name, s)) { + | Some(x) => Some(x) + | None when ConstructorMap.has_bad_entry(s) => + Some(Typ.temp(Unknown(Internal))) + | None => None + }; + switch (get_entry_or_bad(s1), get_entry_or_bad(s2)) { + | (Some(x), Some(y)) => + let* d1 = unbox(SumWithArg(name), d1); + Matches(Cast(d1, x, y) |> Exp.fresh |> fixup_cast); + | _ => IndetMatch + }; + // There should be some sort of failure here when the cast doesn't go through. + + /* Any cast from unknown is indet */ + | (_, Cast(_, {term: Unknown(_), _}, _)) => IndetMatch + + /* Any failed cast is indet */ + | (_, FailedCast(_)) => IndetMatch + + /* Forms that are the wrong type of value - these cases indicate an error + in elaboration or in the cast calculus. */ + | ( + _, + Bool(_) | Int(_) | Float(_) | String(_) | Constructor(_) | + BuiltinFun(_) | + Deferral(_) | + DeferredAp(_) | + Fun(_, _, _, Some(_)) | + ListLit(_) | + Tuple(_) | + Cast(_) | + Ap(_, {term: Constructor(_), _}, _) | + TypFun(_) | + TypAp(_), + ) => + switch (request) { + | Bool => raise(EvaluatorError.Exception(InvalidBoxedBoolLit(expr))) + | Int => raise(EvaluatorError.Exception(InvalidBoxedIntLit(expr))) + | Float => raise(EvaluatorError.Exception(InvalidBoxedFloatLit(expr))) + | String => + raise(EvaluatorError.Exception(InvalidBoxedStringLit(expr))) + | Tuple(_) => raise(EvaluatorError.Exception(InvalidBoxedTuple(expr))) + | List + | Cons => raise(EvaluatorError.Exception(InvalidBoxedListLit(expr))) + | SumNoArg(_) + | SumWithArg(_) => + raise(EvaluatorError.Exception(InvalidBoxedSumConstructor(expr))) + } + + /* Forms that are not yet or will never be a value */ + | ( + _, + Invalid(_) | Undefined | EmptyHole | MultiHole(_) | DynamicErrorHole(_) | + Var(_) | + Let(_) | + Fun(_, _, _, None) | + FixF(_) | + TyAlias(_) | + Ap(_) | + If(_) | + Seq(_) | + Test(_) | + Filter(_) | + Closure(_) | + Parens(_) | + Cons(_) | + ListConcat(_) | + UnOp(_) | + BinOp(_) | + Match(_), + ) => + IndetMatch + }; + }; diff --git a/src/haz3lcore/dynamics/ValueChecker.re b/src/haz3lcore/dynamics/ValueChecker.re index 4bc7fea3d4..39f43daeed 100644 --- a/src/haz3lcore/dynamics/ValueChecker.re +++ b/src/haz3lcore/dynamics/ValueChecker.re @@ -1,6 +1,5 @@ open DHExp; open Transition; -open Util; type t = | Value @@ -56,6 +55,13 @@ module ValueCheckerEVMode: { ([], (Value, true)), ); + let req_final_or_value = (vc, _, d) => + switch (vc(d)) { + | Value => ((d, true), (Value, true)) + | Indet => ((d, false), (Value, true)) + | Expr => ((d, false), (Value, false)) + }; + let otherwise = (_, _) => ((), (Value, true)); let (let.) = ((v, (r, b)), rule) => @@ -71,27 +77,20 @@ module ValueCheckerEVMode: { ((v1, v2), combine(r1, r2)); }; - let update_test = ((), _, _) => (); + let update_test = (_, _, _) => (); }; module CV = Transition(ValueCheckerEVMode); -let rec check_value = ((), env, d) => CV.transition(check_value, (), env, d); +let rec check_value = (state, env, d) => + CV.transition(check_value, state, env, d); -let check_value = check_value(); - -let rec check_value_mod_ctx = ((), env) => - fun - | BoundVar(x) => - check_value_mod_ctx( - (), - env, - ClosureEnvironment.lookup(env, x) - |> OptUtil.get(() => { - print_endline("FreeInvalidVar:" ++ x); - raise(EvaluatorError.Exception(FreeInvalidVar(x))); - }), - ) - | d => CV.transition(check_value_mod_ctx, (), env, d); - -let check_value_mod_ctx = check_value_mod_ctx(); +let rec check_value_mod_ctx = ((), env, d) => + switch (DHExp.term_of(d)) { + | Var(x) => + switch (ClosureEnvironment.lookup(env, x)) { + | Some(v) => check_value_mod_ctx((), env, v) + | None => CV.transition(check_value_mod_ctx, (), env, d) + } + | _ => CV.transition(check_value_mod_ctx, (), env, d) + }; diff --git a/src/haz3lcore/dynamics/VarBstMap.re b/src/haz3lcore/dynamics/VarBstMap.re index ce126177bc..2952690388 100644 --- a/src/haz3lcore/dynamics/VarBstMap.re +++ b/src/haz3lcore/dynamics/VarBstMap.re @@ -1,4 +1,5 @@ -open Sexplib.Std; +open Util; +open Ppx_yojson_conv_lib.Yojson_conv; module Sexp = Sexplib.Sexp; module Inner = { diff --git a/src/haz3lcore/dynamics/VarErrStatus.re b/src/haz3lcore/dynamics/VarErrStatus.re index 167db32cad..d52f5809a5 100644 --- a/src/haz3lcore/dynamics/VarErrStatus.re +++ b/src/haz3lcore/dynamics/VarErrStatus.re @@ -9,4 +9,4 @@ module HoleReason = { [@deriving (show({with_path: false}), sexp, yojson)] type t = | NotInVarHole - | InVarHole(HoleReason.t, MetaVar.t); + | InVarHole(HoleReason.t, Id.t); diff --git a/src/haz3lcore/lang/Form.re b/src/haz3lcore/lang/Form.re index 8fd317eee6..8ee20c3e0b 100644 --- a/src/haz3lcore/lang/Form.re +++ b/src/haz3lcore/lang/Form.re @@ -1,4 +1,5 @@ -open Sexplib.Std; +open Util; +open StringUtil; open Mold; module P = Precedence; @@ -11,10 +12,6 @@ module P = Precedence; The wrapping functions seen in both of those tables determine the shape, precedence, and expansion behavior of the form. */ -let regexp = (r, s) => - Js_of_ocaml.Regexp.string_match(Js_of_ocaml.Regexp.regexp(r), s, 0) - |> Option.is_some; - /* A label is the textual expression of a form's delimiters */ [@deriving (show({with_path: false}), sexp, yojson)] type label = list(Token.t); @@ -68,23 +65,20 @@ let mk_nul_infix = (t: Token.t, prec) => /* A. Secondary Notation (Comments, Whitespace, etc.) */ let space = " "; -/* HACK(andrew): Using ⏎ char to represent linebreak to avoid regexp - issues with using \n. Someone who understands regexps better - should fix this. */ -let linebreak = "⏎"; -let comment_regexp = "^#[^#⏎]*#$"; /* Multiline comments not supported */ -let is_comment = t => regexp(comment_regexp, t) || t == "#"; +let linebreak = "\n"; +let comment_regexp = regexp("^#[^#\n]*#$"); /* Multiline comments not supported */ +let is_comment = t => match(comment_regexp, t) || t == "#"; let is_comment_delim = t => t == "#"; let is_secondary = t => - List.mem(t, [space, linebreak]) || regexp(comment_regexp, t); + List.mem(t, [space, linebreak]) || match(comment_regexp, t); /* STRINGS: special-case syntax */ /* is_string: last clause is a somewhat hacky way of making sure there are at most two quotes, in order to prevent merges */ +let string_regexp = regexp("^\"[^\n]*\"$"); /* Multiline strings not supported */ let is_string = t => - regexp("^\"[^⏎]*\"$", t) - && List.length(String.split_on_char('"', t)) < 4; + match(string_regexp, t) && List.length(String.split_on_char('"', t)) < 4; let string_delim = "\""; let empty_string = string_delim ++ string_delim; let is_string_delim = (==)(string_delim); @@ -111,9 +105,8 @@ let keywords = [ "else", ]; let reserved_keywords = ["of", "when", "with", "switch", "match"]; -let is_keyword = regexp("^(" ++ String.concat("|", keywords) ++ ")$"); -let is_reserved_keyword = - regexp("^(" ++ String.concat("|", reserved_keywords) ++ ")$"); +let keyword_regexp = regexp("^(" ++ String.concat("|", keywords) ++ ")$"); +let is_keyword = match(keyword_regexp); /* Potential tokens: These are fallthrough classes which determine * the behavior when inserting a character in contact with a token */ @@ -121,57 +114,62 @@ let is_potential_operand = /* gensofubi: "." is used as a operator for module, only recognized as potential operand if not appearing with letters */ x => - regexp("^[a-zA-Z0-9_'?]+$", x) || regexp("^[0-9_'\\.?]+$", x); + match(regexp("^[a-zA-Z0-9_'?]+$"), x) + || match(regexp("^[0-9_'\\.?]+$"), x); /* Anything else is considered a potential operator, as long * as it does not contain any whitespace, linebreaks, comment * delimiters, string delimiters, or the instant expanding paired * delimiters: ()[]|{} */ -let is_potential_operator = - regexp("^[^a-zA-Z0-9_'?\"#⏎\\s\\[\\]\\(\\)\\{\\}]+$"); +let potential_operator_regexp = + regexp("^[^a-zA-Z0-9_'?\"#\n\\s\\[\\]\\(\\)\\{\\}]+$"); /* Multiline operators not supported */ +let is_potential_operator = match(potential_operator_regexp); let is_potential_token = t => is_potential_operand(t) || is_potential_operator(t) || is_string(t) || is_comment(t); -let is_arbitary_int = regexp("^-?\\d+[0-9_]*$"); -let is_arbitary_float = x => - x != "." && x != "-" && regexp("^-?[0-9]*\\.?[0-9]*((e|E)-?[0-9]*)?$", x); -let is_int = str => is_arbitary_int(str) && int_of_string_opt(str) != None; +let int_regexp = regexp("^-?\\d+[0-9_]*$"); +let is_float = match(regexp("^-?[0-9]*\\.?[0-9]*((e|E)-?[0-9]*)?$")); +let is_arbitary_float = x => x != "." && x != "-" && is_float(x); +let is_int = str => match(int_regexp, str) && int_of_string_opt(str) != None; /* NOTE: The is_arbitary_int check is necessary to prevent minuses from being parsed as part of the int token. */ -let is_bad_int = str => is_arbitary_int(str) && !is_int(str); +let is_bad_int = str => match(int_regexp, str) && !is_int(str); /* NOTE: As well as making is_float disjoint from is_int, the is_arbitary_int also prevents ints over int_max from being cast as floats. The is_arbitary_float check is necessary to prevent minuses from being parsed as part of the float token. */ let is_float = str => - !is_arbitary_int(str) + !match(int_regexp, str) && is_arbitary_float(str) && float_of_string_opt(str) != None; let is_bad_float = str => is_arbitary_float(str) && !is_float(str); let bools = ["true", "false"]; -let is_bool = regexp("^(" ++ String.concat("|", bools) ++ ")$"); - +let is_bool = match(regexp("^(" ++ String.concat("|", bools) ++ ")$")); +let undefined = "undefined"; +let is_undefined = match(regexp("^" ++ undefined ++ "$")); + +let var_regexp = + regexp( + {|(^[a-z_][A-Za-z0-9_']*$)|(^[A-Z][A-Za-z0-9_']*\.[a-z][A-Za-z0-9_']*$)|}, + ); let is_var = str => !is_bool(str) + && !is_undefined(str) && str != "_" //&& !is_keyword(str) - //&& !is_reserved(str) - && regexp( - {|(^[a-z_][A-Za-z0-9_']*$)|(^[A-Z][A-Za-z0-9_']*\.[a-z][A-Za-z0-9_']*$)|}, - str, - ); -let is_capitalized_name = regexp("^[A-Z][A-Za-z0-9_]*$"); -let is_tag = is_capitalized_name; -let is_ctr = is_capitalized_name; + && match(var_regexp, str); +let capitalized_name_regexp = regexp("^[A-Z][A-Za-z0-9_]*$"); +let is_ctr = match(capitalized_name_regexp); let base_typs = ["String", "Int", "Float", "Bool"]; -let is_base_typ = regexp("^(" ++ String.concat("|", base_typs) ++ ")$"); -let is_typ_var = str => is_var(str) || is_capitalized_name(str); +let is_base_typ = + match(regexp("^(" ++ String.concat("|", base_typs) ++ ")$")); +let is_typ_var = str => is_var(str) || match(capitalized_name_regexp, str); let wild = "_"; -let is_wild = regexp("^" ++ wild ++ "$"); +let is_wild = match(regexp("^" ++ wild ++ "$")); /* List literals */ let list_start = "["; @@ -205,9 +203,8 @@ let duomerges = (lbl: Label.t): option(Label.t) => | _ => None }; -//TODO(andrew): refactor atomic_forms to seperate these out let const_mono_delims = - base_typs @ bools @ [wild, empty_list, empty_tuple, empty_string]; + base_typs @ bools @ [undefined, wild, empty_list, empty_tuple, empty_string]; let explicit_hole = "?"; let is_explicit_hole = t => t == explicit_hole; @@ -235,6 +232,7 @@ let atomic_forms: list((string, (string => bool, list(Mold.t)))) = [ ("int_lit", (is_int, [mk_op(Exp, []), mk_op(Pat, [])])), ("float_lit", (is_float, [mk_op(Exp, []), mk_op(Pat, [])])), ("bool_lit", (is_bool, [mk_op(Exp, []), mk_op(Pat, [])])), + ("undefined_lit", (is_undefined, [mk_op(Exp, []), mk_op(Pat, [])])), ("empty_list", (is_empty_list, [mk_op(Exp, []), mk_op(Pat, [])])), ( "empty_tuple", @@ -253,9 +251,9 @@ let atomic_forms: list((string, (string => bool, list(Mold.t)))) = [ let forms: list((string, t)) = [ // INFIX OPERATORS - ("typ_plus", mk_infix("+", Typ, P.or_)), - ("type-arrow", mk_infix("->", Typ, 6)), - ("cell-join", mk_infix(";", Exp, 10)), + ("typ_plus", mk_infix("+", Typ, P.type_plus)), + ("type-arrow", mk_infix("->", Typ, P.type_arrow)), + ("cell-join", mk_infix(";", Exp, P.semi)), ("plus", mk_infix("+", Exp, P.plus)), ("minus", mk_infix("-", Exp, P.plus)), ("times", mk_infix("*", Exp, P.mult)), @@ -290,14 +288,14 @@ let forms: list((string, t)) = [ ("cons_pat", mk_infix("::", Pat, P.cons)), ("typeann", mk(ss, [":"], mk_bin'(P.ann, Pat, Pat, [], Typ))), // UNARY PREFIX OPERATORS - ("not", mk(ii, ["!"], mk_pre(5, Exp, []))), //TODO: precedence + ("not", mk(ii, ["!"], mk_pre(P.not_, Exp, []))), ("typ_sum_single", mk(ss, ["+"], mk_pre(P.or_, Typ, []))), ("unary_minus", mk(ss, ["-"], mk_pre(P.neg, Exp, []))), ("unquote", mk(ss, ["$"], mk_pre(P.unquote, Exp, []))), // N-ARY OPS (on the semantics level) - ("comma_exp", mk_infix(",", Exp, P.prod)), - ("comma_pat", mk_infix(",", Pat, P.prod)), - ("comma_typ", mk_infix(",", Typ, P.prod)), + ("comma_exp", mk_infix(",", Exp, P.comma)), + ("comma_pat", mk_infix(",", Pat, P.comma)), + ("comma_typ", mk_infix(",", Typ, P.type_prod)), // PAIRED DELIMITERS: ("list_lit_exp", mk(ii, ["[", "]"], mk_op(Exp, [Exp]))), ("list_lit_pat", mk(ii, ["[", "]"], mk_op(Pat, [Pat]))), @@ -318,6 +316,7 @@ let forms: list((string, t)) = [ ("case", mk(ds, ["case", "end"], mk_op(Exp, [Rul]))), ("test", mk(ds, ["test", "end"], mk_op(Exp, [Exp]))), ("fun_", mk(ds, ["fun", "->"], mk_pre(P.fun_, Exp, [Pat]))), + ("fix", mk(ds, ["fix", "->"], mk_pre(P.fun_, Exp, [Pat]))), ("typfun", mk(ds, ["typfun", "->"], mk_pre(P.fun_, Exp, [TPat]))), ("forall", mk(ds, ["forall", "->"], mk_pre(P.fun_, Typ, [TPat]))), ("rec", mk(ds, ["rec", "->"], mk_pre(P.fun_, Typ, [TPat]))), diff --git a/src/haz3lcore/lang/Molds.re b/src/haz3lcore/lang/Molds.re index 8dd7a114ba..c754dac288 100644 --- a/src/haz3lcore/lang/Molds.re +++ b/src/haz3lcore/lang/Molds.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; [@deriving (show({with_path: false}), sexp, yojson)] @@ -21,7 +20,6 @@ let forms_assoc: list((Label.t, list(Mold.t))) = let get = (label: Label.t): list(Mold.t) => switch (label, List.assoc_opt(label, forms_assoc)) { | ([t], Some(molds)) when Form.atomic_molds(t) != [] => - // TODO(andrew): does this make sense? Form.atomic_molds(t) @ molds | ([t], None) when Form.atomic_molds(t) != [] => Form.atomic_molds(t) | (_, Some(molds)) => molds diff --git a/src/haz3lcore/lang/Operators.re b/src/haz3lcore/lang/Operators.re new file mode 100644 index 0000000000..aa8842b72b --- /dev/null +++ b/src/haz3lcore/lang/Operators.re @@ -0,0 +1,177 @@ +[@deriving (show({with_path: false}), sexp, yojson)] +type op_un_bool = + | Not; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_un_meta = + | Unquote; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_un_int = + | Minus; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_bin_bool = + | And + | Or; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_bin_int = + | Plus + | Minus + | Times + | Power + | Divide + | LessThan + | LessThanOrEqual + | GreaterThan + | GreaterThanOrEqual + | Equals + | NotEquals; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_bin_float = + | Plus + | Minus + | Times + | Power + | Divide + | LessThan + | LessThanOrEqual + | GreaterThan + | GreaterThanOrEqual + | Equals + | NotEquals; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_bin_string = + | Concat + | Equals; + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_un = + | Meta(op_un_meta) + | Int(op_un_int) + | Bool(op_un_bool); + +[@deriving (show({with_path: false}), sexp, yojson)] +type op_bin = + | Int(op_bin_int) + | Float(op_bin_float) + | Bool(op_bin_bool) + | String(op_bin_string); + +[@deriving (show({with_path: false}), sexp, yojson)] +type ap_direction = + | Forward + | Reverse; + +// Are these show function necessary? +let show_op_un_meta: op_un_meta => string = + fun + | Unquote => "Un-quotation"; + +let show_op_un_bool: op_un_bool => string = + fun + | Not => "Boolean Negation"; + +let show_op_un_int: op_un_int => string = + fun + | Minus => "Integer Negation"; + +let show_unop: op_un => string = + fun + | Meta(op) => show_op_un_meta(op) + | Bool(op) => show_op_un_bool(op) + | Int(op) => show_op_un_int(op); + +let show_op_bin_bool: op_bin_bool => string = + fun + | And => "Boolean Conjunction" + | Or => "Boolean Disjunction"; + +let show_op_bin_int: op_bin_int => string = + fun + | Plus => "Integer Addition" + | Minus => "Integer Subtraction" + | Times => "Integer Multiplication" + | Power => "Integer Exponentiation" + | Divide => "Integer Division" + | LessThan => "Integer Less Than" + | LessThanOrEqual => "Integer Less Than or Equal" + | GreaterThan => "Integer Greater Than" + | GreaterThanOrEqual => "Integer Greater Than or Equal" + | Equals => "Integer Equality" + | NotEquals => "Integer Inequality"; + +let show_op_bin_float: op_bin_float => string = + fun + | Plus => "Float Addition" + | Minus => "Float Subtraction" + | Times => "Float Multiplication" + | Power => "Float Exponentiation" + | Divide => "Float Division" + | LessThan => "Float Less Than" + | LessThanOrEqual => "Float Less Than or Equal" + | GreaterThan => "Float Greater Than" + | GreaterThanOrEqual => "Float Greater Than or Equal" + | Equals => "Float Equality" + | NotEquals => "Float Inequality"; + +let show_op_bin_string: op_bin_string => string = + fun + | Concat => "String Concatenation" + | Equals => "String Equality"; + +let show_binop: op_bin => string = + fun + | Int(op) => show_op_bin_int(op) + | Float(op) => show_op_bin_float(op) + | Bool(op) => show_op_bin_bool(op) + | String(op) => show_op_bin_string(op); + +let bool_op_to_string = (op: op_bin_bool): string => { + switch (op) { + | And => "&&" + | Or => "||" + }; +}; + +let int_op_to_string = (op: op_bin_int): string => { + switch (op) { + | Plus => "+" + | Minus => "-" + | Times => "*" + | Power => "**" + | Divide => "/" + | LessThan => "<" + | LessThanOrEqual => "<=" + | GreaterThan => ">" + | GreaterThanOrEqual => ">=" + | Equals => "==" + | NotEquals => "!=" + }; +}; + +let float_op_to_string = (op: op_bin_float): string => { + switch (op) { + | Plus => "+." + | Minus => "-." + | Times => "*." + | Power => "**." + | Divide => "/." + | LessThan => "<." + | LessThanOrEqual => "<=." + | GreaterThan => ">." + | GreaterThanOrEqual => ">=." + | Equals => "==." + | NotEquals => "!=." + }; +}; + +let string_op_to_string = (op: op_bin_string): string => { + switch (op) { + | Concat => "++" + | Equals => "$==" + }; +}; diff --git a/src/haz3lcore/lang/Precedence.re b/src/haz3lcore/lang/Precedence.re index b7d00796a5..7d72b66404 100644 --- a/src/haz3lcore/lang/Precedence.re +++ b/src/haz3lcore/lang/Precedence.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; /** @@ -14,6 +13,7 @@ let ap = 2; let neg = 3; let power = 4; let mult = 5; +let not_ = 5; let plus = 6; let cons = 7; let concat = 8; @@ -23,7 +23,6 @@ let or_ = 11; let ann = 12; let if_ = 13; let fun_ = 14; -let prod = 15; let semi = 16; let let_ = 17; let filter = 18; @@ -32,7 +31,13 @@ let rule_pre = 20; let rule_sep = 21; let case_ = 22; -let min = 23; +let comma = 15; + +let type_plus = 4; +let type_arrow = 5; +let type_prod = comma; + +let min = 26; let compare = (p1: t, p2: t): int => (-1) * Int.compare((p1 :> int), (p2 :> int)); @@ -47,6 +52,7 @@ let associativity_map: IntMap.t(Direction.t) = (concat, Right), (ann, Left), (eqs, Left), + (type_arrow, Right), ] |> List.to_seq |> IntMap.of_seq; diff --git a/src/haz3lcore/lang/term/Any.re b/src/haz3lcore/lang/term/Any.re new file mode 100644 index 0000000000..b759e67fc9 --- /dev/null +++ b/src/haz3lcore/lang/term/Any.re @@ -0,0 +1 @@ +include Term.Any; diff --git a/src/haz3lcore/lang/term/Cls.re b/src/haz3lcore/lang/term/Cls.re new file mode 100644 index 0000000000..e1acb702c8 --- /dev/null +++ b/src/haz3lcore/lang/term/Cls.re @@ -0,0 +1,18 @@ +[@deriving (show({with_path: false}), sexp, yojson)] +type t = + | Exp(Exp.cls) + | Pat(Pat.cls) + | Typ(Typ.cls) + | TPat(TPat.cls) + | Rul(Rul.cls) + | Secondary(Secondary.cls); + +let show = (cls: t) => + switch (cls) { + | Exp(cls) => Exp.show_cls(cls) + | Pat(cls) => Pat.show_cls(cls) + | Typ(cls) => Typ.show_cls(cls) + | TPat(cls) => TPat.show_cls(cls) + | Rul(cls) => Rul.show_cls(cls) + | Secondary(cls) => Secondary.show_cls(cls) + }; diff --git a/src/haz3lcore/lang/term/Exp.re b/src/haz3lcore/lang/term/Exp.re new file mode 100644 index 0000000000..ff620a0166 --- /dev/null +++ b/src/haz3lcore/lang/term/Exp.re @@ -0,0 +1 @@ +include Term.Exp; diff --git a/src/haz3lcore/lang/term/IdTagged.re b/src/haz3lcore/lang/term/IdTagged.re new file mode 100644 index 0000000000..3812b0e83f --- /dev/null +++ b/src/haz3lcore/lang/term/IdTagged.re @@ -0,0 +1,32 @@ +open Util; + +[@deriving (show({with_path: false}), sexp, yojson)] +type t('a) = { + [@show.opaque] + ids: list(Id.t), + [@show.opaque] + /* UExp invariant: copied should always be false, and the id should be unique + DHExp invariant: if copied is true, then this term and its children may not + have unique ids. The flag is used to avoid deep-copying expressions during + evaluation, while keeping track of where we will need to replace the ids + at the end of evaluation to keep them unique.*/ + copied: bool, + term: 'a, +}; + +// To be used if you want to remove the id from the debug output +// let pp: ((Format.formatter, 'a) => unit, Format.formatter, t('a)) => unit = +// (fmt_a, formatter, ta) => { +// fmt_a(formatter, ta.term); +// }; +let fresh = term => { + {ids: [Id.mk()], copied: false, term}; +}; + +let term_of = x => x.term; +let unwrap = x => (x.term, term' => {...x, term: term'}); +let rep_id = ({ids, _}) => List.hd(ids); +let fast_copy = (id, {term, _}) => {ids: [id], term, copied: true}; +let new_ids = + fun + | {ids: _, term, copied} => {ids: [Id.mk()], term, copied}; diff --git a/src/haz3lcore/lang/term/Pat.re b/src/haz3lcore/lang/term/Pat.re new file mode 100644 index 0000000000..b4bb875bdd --- /dev/null +++ b/src/haz3lcore/lang/term/Pat.re @@ -0,0 +1 @@ +include Term.Pat; diff --git a/src/haz3lcore/lang/term/Rul.re b/src/haz3lcore/lang/term/Rul.re new file mode 100644 index 0000000000..9a293a4270 --- /dev/null +++ b/src/haz3lcore/lang/term/Rul.re @@ -0,0 +1 @@ +include Term.Rul; diff --git a/src/haz3lcore/lang/term/TPat.re b/src/haz3lcore/lang/term/TPat.re new file mode 100644 index 0000000000..3dade36b54 --- /dev/null +++ b/src/haz3lcore/lang/term/TPat.re @@ -0,0 +1,31 @@ +[@deriving (show({with_path: false}), sexp, yojson)] +type cls = + | Invalid + | EmptyHole + | MultiHole + | Var; + +include TermBase.TPat; + +let rep_id: t => Id.t = IdTagged.rep_id; +let fresh: term => t = IdTagged.fresh; + +let hole = (tms: list(TermBase.Any.t)) => + switch (tms) { + | [] => EmptyHole + | [_, ..._] => MultiHole(tms) + }; + +let cls_of_term: term => cls = + fun + | Invalid(_) => Invalid + | EmptyHole => EmptyHole + | MultiHole(_) => MultiHole + | Var(_) => Var; + +let show_cls: cls => string = + fun + | Invalid => "Invalid type alias" + | MultiHole => "Broken type alias" + | EmptyHole => "Empty type alias hole" + | Var => "Type alias"; diff --git a/src/haz3lcore/lang/term/Typ.re b/src/haz3lcore/lang/term/Typ.re new file mode 100644 index 0000000000..a7f91b308e --- /dev/null +++ b/src/haz3lcore/lang/term/Typ.re @@ -0,0 +1,661 @@ +open Util; +open OptUtil.Syntax; + +[@deriving (show({with_path: false}), sexp, yojson)] +type cls = + | Invalid + | EmptyHole + | MultiHole + | SynSwitch + | Internal + | Int + | Float + | Bool + | String + | Arrow + | Prod + | Sum + | List + | Var + | Constructor + | Module + | ModuleVar + | Parens + | Ap + | Rec + | Forall; + +include TermBase.Typ; + +let term_of: t => term = IdTagged.term_of; +let unwrap: t => (term, term => t) = IdTagged.unwrap; +let fresh: term => t = IdTagged.fresh; +/* fresh assigns a random id, whereas temp assigns Id.invalid, which + is a lot faster, and since we so often make types and throw them away + shortly after, it makes sense to use it. */ +let temp: term => t = term => {term, ids: [Id.invalid], copied: false}; +let rep_id: t => Id.t = IdTagged.rep_id; + +let hole = (tms: list(TermBase.Any.t)) => + switch (tms) { + | [] => Unknown(Hole(EmptyHole)) + | [_, ..._] => Unknown(Hole(MultiHole(tms))) + }; + +let cls_of_term: term => cls = + fun + | Unknown(Hole(Invalid(_))) => Invalid + | Unknown(Hole(EmptyHole)) => EmptyHole + | Unknown(Hole(MultiHole(_))) => MultiHole + | Unknown(SynSwitch) => SynSwitch + | Unknown(Internal) => Internal + | Int => Int + | Float => Float + | Bool => Bool + | String => String + | List(_) => List + | Arrow(_) => Arrow + | Var(_) => Var + | Prod(_) => Prod + | Parens(_) => Parens + | Module(_) => Module + | Ap(_) => Ap + | Sum(_) => Sum + | Rec(_) => Rec + | Forall(_) => Forall; + +let show_cls: cls => string = + fun + | Invalid => "Invalid type" + | MultiHole => "Broken type" + | EmptyHole => "Empty type hole" + | SynSwitch => "Synthetic type" + | Internal => "Internal type" + | Int + | Float + | String + | Bool => "Base type" + | Var => "Type variable" + | Constructor => "Sum constructor" + | List => "List type" + | Arrow => "Function type" + | Prod => "Product type" + | Sum => "Sum type" + | Parens => "Parenthesized type" + | Module => "Module type" + | ModuleVar => "Module path" + | Ap => "Constructor application" + | Rec => "Recursive type" + | Forall => "Forall type"; + +let rec is_arrow = (typ: t) => { + switch (typ.term) { + | Parens(typ) => is_arrow(typ) + | Arrow(_) => true + | Unknown(_) + | Int + | Float + | Bool + | String + | List(_) + | Prod(_) + | Var(_) + | Ap(_) + | Sum(_) + | Forall(_) + | Module(_) + | Rec(_) => false + }; +}; + +let rec is_forall = (typ: t) => { + switch (typ.term) { + | Parens(typ) => is_forall(typ) + | Forall(_) => true + | Unknown(_) + | Int + | Float + | Bool + | String + | Arrow(_) + | List(_) + | Prod(_) + | Var(_) + | Ap(_) + | Sum(_) + | Module(_) + | Rec(_) => false + }; +}; + +/* Functions below this point assume that types have been through the to_typ function above */ + +[@deriving (show({with_path: false}), sexp, yojson)] +type source = { + id: Id.t, + ty: t, +}; + +/* Strip location information from a list of sources */ +let of_source = List.map((source: source) => source.ty); + +/* How type provenance information should be collated when + joining unknown types. This probably requires more thought, + but right now TypeHole strictly predominates over Internal + which strictly predominates over SynSwitch. */ +let join_type_provenance = + (p1: type_provenance, p2: type_provenance): type_provenance => + switch (p1, p2) { + | (Hole(h1), Hole(h2)) when h1 == h2 => Hole(h1) + | (Hole(EmptyHole), Hole(EmptyHole) | SynSwitch) + | (SynSwitch, Hole(EmptyHole)) => Hole(EmptyHole) + | (SynSwitch, Internal) + | (Internal, SynSwitch) => SynSwitch + | (Internal | Hole(_), _) + | (_, Hole(_)) => Internal + | (SynSwitch, SynSwitch) => SynSwitch + }; + +let rec free_vars = (~bound=[], ty: t): list(Var.t) => + switch (term_of(ty)) { + | Unknown(_) + | Int + | Float + | Bool + | String => [] + | Ap(t1, t2) => free_vars(~bound, t1) @ free_vars(~bound, t2) + | Var(v) => List.mem(v, bound) ? [] : [v] + | Parens(ty) => free_vars(~bound, ty) + | List(ty) => free_vars(~bound, ty) + | Arrow(t1, t2) => free_vars(~bound, t1) @ free_vars(~bound, t2) + | Sum(sm) => ConstructorMap.free_variables(free_vars(~bound), sm) + | Prod(tys) => ListUtil.flat_map(free_vars(~bound), tys) + | Module({inner_ctx, _}) => + let ctx_entry_subst = (l: list(Token.t), e: Ctx.entry): list(Token.t) => { + switch (e) { + | VarEntry(t) + | ConstructorEntry(t) => l @ free_vars(t.typ) + | TVarEntry(_) => l + }; + }; + List.fold_left(ctx_entry_subst, [], inner_ctx); + | Member(_, ty) => free_vars(ty) + | Rec(x, ty) + | Forall(x, ty) => + free_vars(~bound=(x |> TPat.tyvar_of_utpat |> Option.to_list) @ bound, ty) + }; + +let var_count = ref(0); +let fresh_var = (var_name: string) => { + let x = var_count^; + var_count := x + 1; + var_name ++ "_α" ++ string_of_int(x); +}; + +let unroll = (ty: t): t => + switch (term_of(ty)) { + | Rec(tp, ty_body) => subst(ty, tp, ty_body) + | _ => ty + }; + +/* Type Equality: This coincides with alpha equivalence for normalized types. + Other types may be equivalent but this will not detect so if they are not normalized. */ +let eq = (t1: t, t2: t): bool => fast_equal(t1, t2); + +/* Lattice join on types. This is a LUB join in the hazel2 + sense in that any type dominates Unknown. The optional + resolve parameter specifies whether, in the case of a type + variable and a succesful join, to return the resolved join type, + or to return the (first) type variable for readability */ +let rec join = (~resolve=false, ~fix, ctx: Ctx.t, ty1: t, ty2: t): option(t) => { + let join' = join(~resolve, ~fix, ctx); + switch (term_of(ty1), term_of(ty2)) { + | (_, Parens(ty2)) => join'(ty1, ty2) + | (Parens(ty1), _) => join'(ty1, ty2) + | (Member(_, Unknown(Internal)), ty) + | (ty, Member(_, Unknown(Internal))) => Some(ty) + | (Member(n1, ty1), Member(n2, ty2)) => + if (n1 == n2) { + let* ty = join'(ty1, ty2); + Some(Member(n1, ty)); + } else { + let+ ty_join = join'(ty1, ty2); + resolve ? ty_join : Member(n1, ty_join); + } + | (Member(name, ty1), ty2) + | (ty2, Member(name, ty1)) => + let+ ty_join = join'(ty1, ty2); + resolve ? ty_join : Member(name, ty_join); + | (_, Unknown(Hole(_))) when fix => + /* NOTE(andrew): This is load bearing + for ensuring that function literals get appropriate + casts. Documentation/Dynamics has regression tests */ + Some(ty2) + | (Unknown(p1), Unknown(p2)) => + Some(Unknown(join_type_provenance(p1, p2)) |> temp) + | (Unknown(_), _) => Some(ty2) + | (_, Unknown(Internal | SynSwitch)) => Some(ty1) + | (Var(n1), Var(n2)) => + if (n1 == n2) { + Some(ty1); + } else { + let* ty1 = Ctx.lookup_alias(ctx, n1); + let* ty2 = Ctx.lookup_alias(ctx, n2); + let+ ty_join = join'(ty1, ty2); + !resolve && eq(ty1, ty_join) ? ty1 : ty_join; + } + | (Var(name), _) => + let* ty_name = Ctx.lookup_alias(ctx, name); + let+ ty_join = join'(ty_name, ty2); + !resolve && eq(ty_name, ty_join) ? ty1 : ty_join; + | (_, Var(name)) => + let* ty_name = Ctx.lookup_alias(ctx, name); + let+ ty_join = join'(ty_name, ty1); + !resolve && eq(ty_name, ty_join) ? ty2 : ty_join; + /* Note: Ordering of Unknown, Var, and Rec above is load-bearing! */ + | (Rec(tp1, ty1), Rec(tp2, ty2)) => + let ctx = Ctx.extend_dummy_tvar(ctx, tp1); + let ty1' = + switch (TPat.tyvar_of_utpat(tp2)) { + | Some(x2) => subst(Var(x2) |> temp, tp1, ty1) + | None => ty1 + }; + let+ ty_body = join(~resolve, ~fix, ctx, ty1', ty2); + Rec(tp1, ty_body) |> temp; + | (Rec(_), _) => None + | (Forall(x1, ty1), Forall(x2, ty2)) => + let ctx = Ctx.extend_dummy_tvar(ctx, x1); + let ty1' = + switch (TPat.tyvar_of_utpat(x2)) { + | Some(x2) => subst(Var(x2) |> temp, x1, ty1) + | None => ty1 + }; + let+ ty_body = join(~resolve, ~fix, ctx, ty1', ty2); + Forall(x1, ty_body) |> temp; + /* Note for above: there is no danger of free variable capture as + subst itself performs capture avoiding substitution. However this + may generate internal type variable names that in corner cases can + be exposed to the user. We preserve the variable name of the + second type to preserve synthesized type variable names, which + come from user annotations. */ + | (Forall(_), _) => None + | (Int, Int) => Some(ty1) + | (Int, _) => None + | (Float, Float) => Some(ty1) + | (Float, _) => None + | (Bool, Bool) => Some(ty1) + | (Bool, _) => None + | (String, String) => Some(ty1) + | (String, _) => None + | (Arrow(ty1, ty2), Arrow(ty1', ty2')) => + let* ty1 = join'(ty1, ty1'); + let+ ty2 = join'(ty2, ty2'); + Arrow(ty1, ty2) |> temp; + | (Arrow(_), _) => None + | (Prod(tys1), Prod(tys2)) => + let* tys = ListUtil.map2_opt(join', tys1, tys2); + let+ tys = OptUtil.sequence(tys); + Prod(tys) |> temp; + | (Prod(_), _) => None + | (Sum(sm1), Sum(sm2)) => + let+ sm' = ConstructorMap.join(eq, join(~resolve, ~fix, ctx), sm1, sm2); + Sum(sm') |> temp; + | (Sum(_), _) => None + | (List(ty1), List(ty2)) => + let+ ty = join'(ty1, ty2); + List(ty) |> temp; + | (List(_), _) => None + | (Ap(_), _) => failwith("Type join of ap") + | (Module(ctx1), Module(ctx2)) => + /* Module types can join if and only if for every variable, + Either: it appears in both ctxs and the types can join, + Or: it appears only in one ctx and the other ctx is incomplete */ + let join_entry = + ( + {inner_ctx, incomplete}: module_typ, + ctx_joined: option(Ctx.t), + ctx1_entry: Ctx.entry, + ) + : option(Ctx.t) => { + let do_incomplete = (entry1: 'a, entry2: option('a)): option('a) => + if (incomplete && entry2 == None) { + Some(entry1); + } else { + entry2; + }; + let* ctx_joined = ctx_joined; + switch (ctx1_entry) { + | VarEntry({name, typ, id} as entry1) => + let* entry2 = + Ctx.lookup_var(inner_ctx, name) |> do_incomplete(entry1); + let+ typ_joined = join'(typ, entry2.typ); + Ctx.extend(ctx_joined, VarEntry({name, typ: typ_joined, id})); + | ConstructorEntry({name, typ, id} as entry1) => + let* entry2 = + Ctx.lookup_ctr(inner_ctx, name) |> do_incomplete(entry1); + let+ typ_joined = join'(typ, entry2.typ); + Ctx.extend( + ctx_joined, + ConstructorEntry({name, typ: typ_joined, id}), + ); + | TVarEntry({name, kind, id}) => + let* entry2 = Ctx.lookup_tvar(inner_ctx, name); + let+ kind_joined = + switch (kind, entry2.kind) { + | (Abstract, Abstract) => Some(Kind.Abstract) + | (Singleton(ty1), Singleton(ty2)) => + let+ typ_joined = join'(ty1, ty2); + Kind.Singleton(typ_joined); + | _ => None + }; + Ctx.extend(ctx_joined, TVarEntry({name, kind: kind_joined, id})); + }; + }; + let* ctx = List.fold_left(join_entry(ctx2), Some([]), ctx1.inner_ctx); + let* ctx = List.fold_left(join_entry(ctx1), Some(ctx), ctx2.inner_ctx); + Some( + Module({ + inner_ctx: ctx |> Ctx.filter_duplicates, + incomplete: ctx1.incomplete && ctx2.incomplete, + }), + ); + | (Module(_), _) => None + }; +}; + +/* REQUIRES NORMALIZED TYPES + Remove synswitches from t1 by matching against t2 */ +let rec match_synswitch = (t1: t, t2: t) => { + let (term1, rewrap1) = unwrap(t1); + switch (term1, term_of(t2)) { + | (Parens(t1), _) => Parens(match_synswitch(t1, t2)) |> rewrap1 + | (Unknown(SynSwitch), _) => t2 + // These cases can't have a synswitch inside + | (Unknown(_), _) + | (Int, _) + | (Float, _) + | (Bool, _) + | (String, _) + | (Var(_), _) + | (Ap(_), _) + | (Rec(_), _) + | (Forall(_), _) => t1 + // These might + | (List(ty1), List(ty2)) => List(match_synswitch(ty1, ty2)) |> rewrap1 + | (List(_), _) => t1 + | (Arrow(ty1, ty2), Arrow(ty1', ty2')) => + Arrow(match_synswitch(ty1, ty1'), match_synswitch(ty2, ty2')) |> rewrap1 + | (Arrow(_), _) => t1 + | (Prod(tys1), Prod(tys2)) when List.length(tys1) == List.length(tys2) => + let tys = List.map2(match_synswitch, tys1, tys2); + Prod(tys) |> rewrap1; + | (Prod(_), _) => t1 + | (Sum(sm1), Sum(sm2)) => + let sm' = ConstructorMap.match_synswitch(match_synswitch, eq, sm1, sm2); + Sum(sm') |> rewrap1; + | (Sum(_), _) => t1 + }; +}; + +let join_fix = join(~fix=true); + +let join_all = (~empty: t, ctx: Ctx.t, ts: list(t)): option(t) => + List.fold_left( + (acc, ty) => OptUtil.and_then(join(~fix=false, ctx, ty), acc), + Some(empty), + ts, + ); + +let is_consistent = (ctx: Ctx.t, ty1: t, ty2: t): bool => + join(~fix=false, ctx, ty1, ty2) != None; + +let rec normalize = (ctx: Ctx.t, ty: t): t => { + let (term, rewrap) = unwrap(ty); + switch (term) { + | Var(x) => + switch (Ctx.lookup_alias(ctx, x)) { + | Some(ty) => normalize(ctx, ty) + | None => ty + } + | Unknown(_) + | Int + | Float + | Bool + | String => ty + | Parens(t) => Parens(normalize(ctx, t)) |> rewrap + | List(t) => List(normalize(ctx, t)) |> rewrap + | Ap(t1, t2) => Ap(normalize(ctx, t1), normalize(ctx, t2)) |> rewrap + | Arrow(t1, t2) => + Arrow(normalize(ctx, t1), normalize(ctx, t2)) |> rewrap + | Prod(ts) => Prod(List.map(normalize(ctx), ts)) |> rewrap + | Sum(ts) => + Sum(ConstructorMap.map(Option.map(normalize(ctx)), ts)) |> rewrap + | Module({inner_ctx, incomplete}) => + let ctx_entry_subst = (e: Ctx.entry): Ctx.entry => { + switch (e) { + | VarEntry(t) => VarEntry({...t, typ: normalize(ctx, t.typ)}) + | ConstructorEntry(t) => + ConstructorEntry({...t, typ: normalize(ctx, t.typ)}) + | TVarEntry(_) => e + }; + }; + Module({inner_ctx: List.map(ctx_entry_subst, inner_ctx), incomplete}); + | Member(name, ty) => Member(name, normalize(ctx, ty)) + | Rec(tpat, ty) => + /* NOTE: Dummy tvar added has fake id but shouldn't matter + as in current implementation Recs do not occur in the + surface syntax, so we won't try to jump to them. */ + Rec(tpat, normalize(Ctx.extend_dummy_tvar(ctx, tpat), ty)) |> rewrap + | Forall(name, ty) => + Forall(name, normalize(Ctx.extend_dummy_tvar(ctx, name), ty)) |> rewrap + }; +}; + +let rec matched_arrow_strict = (ctx, ty) => + switch (term_of(weak_head_normalize(ctx, ty))) { + | Parens(ty) => matched_arrow_strict(ctx, ty) + | Arrow(ty_in, ty_out) => Some((ty_in, ty_out)) + | Unknown(SynSwitch) => + Some((Unknown(SynSwitch) |> temp, Unknown(SynSwitch) |> temp)) + | _ => None + }; + +let matched_arrow = (ctx, ty) => + matched_arrow_strict(ctx, ty) + |> Option.value( + ~default=(Unknown(Internal) |> temp, Unknown(Internal) |> temp), + ); + +let rec matched_forall_strict = (ctx, ty) => + switch (term_of(weak_head_normalize(ctx, ty))) { + | Parens(ty) => matched_forall_strict(ctx, ty) + | Forall(t, ty) => Some((Some(t), ty)) + | Unknown(SynSwitch) => Some((None, Unknown(SynSwitch) |> temp)) + | _ => None // (None, Unknown(Internal) |> temp) + }; + +let matched_forall = (ctx, ty) => + matched_forall_strict(ctx, ty) + |> Option.value(~default=(None, Unknown(Internal) |> temp)); + +let rec matched_prod_strict = (ctx, length, ty) => + switch (term_of(weak_head_normalize(ctx, ty))) { + | Parens(ty) => matched_prod_strict(ctx, length, ty) + | Prod(tys) when List.length(tys) == length => Some(tys) + | Unknown(SynSwitch) => + Some(List.init(length, _ => Unknown(SynSwitch) |> temp)) + | _ => None + }; + +let matched_prod = (ctx, length, ty) => + matched_prod_strict(ctx, length, ty) + |> Option.value(~default=List.init(length, _ => Unknown(Internal) |> temp)); + +let rec matched_list_strict = (ctx, ty) => + switch (term_of(weak_head_normalize(ctx, ty))) { + | Parens(ty) => matched_list_strict(ctx, ty) + | List(ty) => Some(ty) + | Unknown(SynSwitch) => Some(Unknown(SynSwitch) |> temp) + | _ => None + }; + +let matched_list = (ctx, ty) => + matched_list_strict(ctx, ty) + |> Option.value(~default=Unknown(Internal) |> temp); + +let rec matched_args = (ctx, default_arity, ty) => { + let ty' = weak_head_normalize(ctx, ty); + switch (term_of(ty')) { + | Parens(ty) => matched_args(ctx, default_arity, ty) + | Prod([_, ..._] as tys) => tys + | Unknown(_) => List.init(default_arity, _ => ty') + | _ => [ty'] + }; +}; + +let rec get_sum_constructors = (ctx: Ctx.t, ty: t): option(sum_map) => { + let ty = weak_head_normalize(ctx, ty); + switch (term_of(ty)) { + | Parens(ty) => get_sum_constructors(ctx, ty) + | Member(_, ty) => get_sum_constructors(ctx, ty) + | Sum(sm) => Some(sm) + | Rec(_) => + /* Note: We must unroll here to get right ctr types; + otherwise the rec parameter will leak. However, seeing + as substitution is too expensive to be used here, we + currently making the optimization that, since all + recursive types are type alises which use the alias name + as the recursive parameter, and type aliases cannot be + shadowed, it is safe to simply remove the Rec constructor, + provided we haven't escaped the context in which the alias + is bound. If either of the above assumptions become invalid, + the below code will be incorrect! */ + let ty = + switch (ty |> term_of) { + | Rec({term: Var(x), _}, ty_body) => + switch (Ctx.lookup_alias(ctx, x)) { + | None => unroll(ty) + | Some(_) => ty_body + } + | _ => ty + }; + switch (ty |> term_of) { + | Sum(sm) => Some(sm) + | _ => None + }; + | _ => None + }; +}; + +let rec is_unknown = (ty: t): bool => + switch (ty |> term_of) { + | Parens(x) => is_unknown(x) + | Unknown(_) => true + | _ => false + }; + +/* Does the type require parentheses when on the left of an arrow for printing? */ +let rec needs_parens = (ty: t): bool => + switch (term_of(ty)) { + | Parens(ty) => needs_parens(ty) + | Ap(_) + | Unknown(_) + | Int + | Float + | String + | Bool + | Module(_) + | Member(_) + | Var(_) => false + | Rec(_, _) + | Forall(_, _) => true + | List(_) => false /* is already wrapped in [] */ + | Arrow(_, _) => true + | Prod(_) + | Sum(_) => true /* disambiguate between (A + B) -> C and A + (B -> C) */ + }; + +let pretty_print_tvar = (tv: TPat.t): string => + switch (IdTagged.term_of(tv)) { + | Var(x) => x + | Invalid(_) + | EmptyHole + | MultiHole(_) => "?" + }; + +/* Essentially recreates haz3lweb/view/Type.re's view_ty but with string output */ +let rec pretty_print = (ty: t): string => + switch (term_of(ty)) { + | Parens(ty) => pretty_print(ty) + | Ap(_) + | Unknown(_) => "?" + | Int => "Int" + | Float => "Float" + | Bool => "Bool" + | String => "String" + | Var(tvar) => tvar + | List(t) => "[" ++ pretty_print(t) ++ "]" + | Arrow(t1, t2) => paren_pretty_print(t1) ++ " -> " ++ pretty_print(t2) + | Sum(sm) => + switch (sm) { + | [] => "+?" + | [t0] => "+" ++ ctr_pretty_print(t0) + | [t0, ...ts] => + List.fold_left( + (acc, t) => acc ++ " + " ++ ctr_pretty_print(t), + ctr_pretty_print(t0), + ts, + ) + } + | Prod([]) => "()" + | Prod([t0, ...ts]) => + "(" + ++ List.fold_left( + (acc, t) => acc ++ ", " ++ pretty_print(t), + pretty_print(t0), + ts, + ) + ++ ")" + | Module({inner_ctx: [], incomplete: false}) => "Module" + | Module({inner_ctx: [], incomplete: true}) => "Module{...}" + | Module({inner_ctx: [e, ...es], incomplete}) => + let view_entry = (m: Ctx.entry): string => { + switch (m) { + | VarEntry({name: n0, typ: t0, _}) + | ConstructorEntry({name: n0, typ: t0, _}) => + n0 ++ ":" ++ pretty_print(t0) + + | TVarEntry({name: n0, kind: Singleton(t0), _}) => + "Type " ++ n0 ++ "=" ++ pretty_print(t0) + + | TVarEntry({name: n0, _}) => + "Type " ++ n0 ++ "=" ++ pretty_print(Unknown(Internal)) + }; + }; + "Module{" + ++ List.fold_left( + (acc, t) => acc ++ ", " ++ view_entry(t), + view_entry(e), + es, + ) + ++ view_entry(e) + ++ (incomplete ? ",..." : "") + ++ "}"; + | Member(name, _) => name + | Rec(tv, t) => + "rec " ++ pretty_print_tvar(tv) ++ " -> " ++ pretty_print(t) + | Forall(tv, t) => + "forall " ++ pretty_print_tvar(tv) ++ " -> " ++ pretty_print(t) + } +and ctr_pretty_print = + fun + | ConstructorMap.Variant(ctr, _, None) => ctr + | ConstructorMap.Variant(ctr, _, Some(t)) => + ctr ++ "(" ++ pretty_print(t) ++ ")" + | ConstructorMap.BadEntry(_) => "?" +and paren_pretty_print = typ => + if (needs_parens(typ)) { + "(" ++ pretty_print(typ) ++ ")"; + } else { + pretty_print(typ); + }; diff --git a/src/haz3lcore/prog/CachedStatics.re b/src/haz3lcore/prog/CachedStatics.re index 336d61f3a3..f2bc13d113 100644 --- a/src/haz3lcore/prog/CachedStatics.re +++ b/src/haz3lcore/prog/CachedStatics.re @@ -1,14 +1,14 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type statics = { - term: Term.UExp.t, + term: UExp.t, info_map: Statics.Map.t, error_ids: list(Id.t), }; let empty_statics: statics = { - term: Term.UExp.{ids: [Id.invalid], term: Triv}, + term: UExp.{ids: [Id.invalid], copied: false, term: Tuple([])}, info_map: Id.Map.empty, error_ids: [], }; diff --git a/src/haz3lcore/prog/CoreSettings.re b/src/haz3lcore/prog/CoreSettings.re index 327187cd2c..a23fbee307 100644 --- a/src/haz3lcore/prog/CoreSettings.re +++ b/src/haz3lcore/prog/CoreSettings.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; module Evaluation = { [@deriving (show({with_path: false}), sexp, yojson)] diff --git a/src/haz3lcore/prog/Interface.re b/src/haz3lcore/prog/Interface.re index 91d7237e06..3249b1aef2 100644 --- a/src/haz3lcore/prog/Interface.re +++ b/src/haz3lcore/prog/Interface.re @@ -1,38 +1,4 @@ -module Statics = { - let mk_map' = - Core.Memo.general(~cache_size_bound=1000, e => { - Statics.uexp_to_info_map( - ~ctx=Builtins.ctx_init, - ~ancestors=[], - e, - Id.Map.empty, - ) - |> snd - }); - let mk_map = (core: CoreSettings.t, exp) => - core.statics ? mk_map'(exp) : Id.Map.empty; - - let mk_map_and_info_ctx = - Core.Memo.general(~cache_size_bound=1000, (ctx, e) => { - Statics.uexp_to_info_map(~ctx, ~ancestors=[], e, Id.Map.empty) - }); - let mk_map_and_info_ctx = (core: CoreSettings.t, ctx, exp) => - core.statics - ? { - let (info, map) = mk_map_and_info_ctx(ctx, exp); - (Some(info), map); - } - : (None, Id.Map.empty); - - let mk_map_ctx = - Core.Memo.general(~cache_size_bound=1000, (ctx, e) => { - Statics.uexp_to_info_map(~ctx, ~ancestors=[], e, Id.Map.empty) |> snd - }); - let mk_map_ctx = (core: CoreSettings.t, ctx, exp) => - core.statics ? mk_map_ctx(ctx, exp) : Id.Map.empty; -}; - -let dh_err = (error: string): DHExp.t => BoundVar(error); +let dh_err = (error: string): DHExp.t => Var(error) |> DHExp.fresh; let elaborate = Core.Memo.general(~cache_size_bound=1000, Elaborator.uexp_elab); @@ -54,9 +20,9 @@ let evaluate = (~settings: CoreSettings.t, ~env=Builtins.env_init, elab: DHExp.t) : ProgramResult.t => switch () { - | _ when !settings.dynamics => Off(elab) + | _ when !settings.dynamics => Off({d: elab}) | _ => - switch (Evaluator.evaluate(env, elab)) { + switch (Evaluator.evaluate(env, {d: elab})) { | exception (EvaluatorError.Exception(reason)) => print_endline("EvaluatorError:" ++ EvaluatorError.show(reason)); ResultFail(EvaulatorError(reason)); @@ -66,17 +32,3 @@ let evaluate = | (state, result) => ResultOk({result, state}) } }; - -let eval_z = - ( - ~settings: CoreSettings.t, - ~ctx_init: Ctx.t, - ~env_init: Environment.t, - z: Zipper.t, - ) - : ProgramResult.t => { - let (term, _) = MakeTerm.from_zip_for_sem(z); - let info_map = Statics.mk_map_ctx(settings, ctx_init, term); - let d = elaborate(~settings, info_map, term); - evaluate(~settings, ~env=env_init, d); -}; diff --git a/src/haz3lcore/prog/ModelResult.re b/src/haz3lcore/prog/ModelResult.re index 5965cd1c52..e8c8980a60 100644 --- a/src/haz3lcore/prog/ModelResult.re +++ b/src/haz3lcore/prog/ModelResult.re @@ -1,6 +1,6 @@ [@deriving (show({with_path: false}), sexp, yojson)] type eval_result = { - elab: DHExp.t, + elab: Elaborator.Elaboration.t, evaluation: ProgramResult.t, previous: ProgramResult.t, }; @@ -11,7 +11,7 @@ type t = | Evaluation(eval_result) | Stepper(Stepper.t); -let init_eval = elab => +let init_eval = (elab: Elaborator.Elaboration.t) => Evaluation({elab, evaluation: ResultPending, previous: ResultPending}); let update_elab = (~settings, elab) => @@ -20,7 +20,7 @@ let update_elab = (~settings, elab) => Evaluation({elab, evaluation: ResultPending, previous: ResultPending}) | Evaluation({evaluation, _}) => Evaluation({elab, evaluation: ResultPending, previous: evaluation}) - | Stepper({elab: elab2, _}) as s when DHExp.fast_equal(elab, elab2) => s + | Stepper(s) as s' when DHExp.fast_equal(elab.d, Stepper.get_elab(s).d) => s' | Stepper(_) => Stepper(Stepper.init(~settings, elab)); let update_stepper = f => @@ -42,7 +42,7 @@ let run_pending = (~settings: CoreSettings.t) => Evaluation({ elab, previous, - evaluation: Interface.evaluate(~settings, elab), + evaluation: Interface.evaluate(~settings, elab.d), }) | Evaluation(_) as e => e | Stepper(s) => @@ -59,8 +59,12 @@ let toggle_stepper = (~settings) => fun | NoElab => NoElab | Evaluation({elab, _}) => Stepper(Stepper.init(~settings, elab)) - | Stepper({elab, _}) => - Evaluation({elab, evaluation: ResultPending, previous: ResultPending}); + | Stepper(s) => + Evaluation({ + elab: Stepper.get_elab(s), + evaluation: ResultPending, + previous: ResultPending, + }); let test_results = (result: t) => switch (result) { diff --git a/src/haz3lcore/prog/ModelResults.re b/src/haz3lcore/prog/ModelResults.re index cceeb3153d..a49d287d07 100644 --- a/src/haz3lcore/prog/ModelResults.re +++ b/src/haz3lcore/prog/ModelResults.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; /* ModelResults is used to store the results of @@ -19,7 +19,7 @@ include M; [@deriving (show({with_path: false}), sexp, yojson)] type t = M.t(ModelResult.t); -let init_eval = (ds: list((Key.t, DHExp.t))): t => +let init_eval = (ds: list((Key.t, Elaborator.Elaboration.t))): t => ds |> List.to_seq |> of_seq |> map(ModelResult.init_eval); let update_elabs = (~settings) => @@ -43,7 +43,7 @@ let run_pending = (~settings) => M.map(ModelResult.run_pending(~settings)); let timeout_all = map(ModelResult.timeout); let advance_evaluator_result = - (results: t, (key: Key.t, elab: DHExp.t)) + (results: t, (key: Key.t, elab: Elaborator.Elaboration.t)) : option((Key.t, ModelResult.t)) => switch (lookup(results, key)) { | Some(Stepper(_)) => None @@ -64,7 +64,8 @@ let stepper_result_opt = | _ => None }; -let to_evaluate = (results: t, elabs: list((Key.t, DHExp.t))): t => +let to_evaluate = + (results: t, elabs: list((Key.t, Elaborator.Elaboration.t))): t => elabs |> List.filter_map(advance_evaluator_result(results)) |> List.to_seq diff --git a/src/haz3lcore/prog/ProgramResult.re b/src/haz3lcore/prog/ProgramResult.re index a8e0eb4415..58e2e9082e 100644 --- a/src/haz3lcore/prog/ProgramResult.re +++ b/src/haz3lcore/prog/ProgramResult.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; /** The result of a program evaluation. Includes the {!type:EvaluatorResult.t}, @@ -7,7 +7,7 @@ open Sexplib.Std; */ [@deriving (show({with_path: false}), sexp, yojson)] type inner = { - result: EvaluatorResult.t, + result: Evaluator.Result.t, state: EvaluatorState.t, }; @@ -19,10 +19,10 @@ type error = [@deriving (show({with_path: false}), sexp, yojson)] type t = - | Off(DHExp.t) //elab + | Off(Elaborator.Elaboration.t) | ResultOk(inner) | ResultFail(error) | ResultPending; -let get_dhexp = (r: inner) => EvaluatorResult.unbox(r.result); +let get_dhexp = (r: inner) => Evaluator.Result.unbox(r.result); let get_state = (r: inner) => r.state; diff --git a/src/haz3lcore/statics/CoCtx.re b/src/haz3lcore/statics/CoCtx.re index f25981c622..3088ef4a28 100644 --- a/src/haz3lcore/statics/CoCtx.re +++ b/src/haz3lcore/statics/CoCtx.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; /* Co-contexts: @@ -63,8 +63,10 @@ let singleton = (name, id, expected_ty): t => [ let join: (Ctx.t, list(entry)) => Typ.t = (ctx, entries) => { let expected_tys = List.map(entry => entry.expected_ty, entries); - switch (Typ.join_all(~empty=Unknown(Internal), ctx, expected_tys)) { - | None => Unknown(Internal) + switch ( + Typ.join_all(~empty=Unknown(Internal) |> Typ.fresh, ctx, expected_tys) + ) { + | None => Unknown(Internal) |> Typ.fresh | Some(ty) => ty }; }; diff --git a/src/haz3lcore/statics/Constructor.re b/src/haz3lcore/statics/Constructor.re index 6515fd2f97..02e897a030 100644 --- a/src/haz3lcore/statics/Constructor.re +++ b/src/haz3lcore/statics/Constructor.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = string; diff --git a/src/haz3lcore/statics/ConstructorMap.re b/src/haz3lcore/statics/ConstructorMap.re index a350d16d92..bd4ac26195 100644 --- a/src/haz3lcore/statics/ConstructorMap.re +++ b/src/haz3lcore/statics/ConstructorMap.re @@ -1,108 +1,224 @@ open Util.OptUtil.Syntax; -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] -type binding('a) = (Constructor.t, 'a); +type variant('a) = + | Variant(Constructor.t, list(Id.t), option('a)) + | BadEntry('a); +// Invariant: Must not have duplicate constructors [@deriving (show({with_path: false}), sexp, yojson)] -type t('a) = list(binding('a)); - -let compare = compare; - -let empty: t('a) = []; - -let is_empty: t('a) => bool = - fun - | [] => true - | _ => false; - -let rec add = (ctr: Constructor.t, value: 'a, map: t('a)): t('a) => - switch (map) { - | [] => [(ctr, value)] - | [(ctr', value') as head, ...tail] => - if (Constructor.equal(ctr, ctr')) { - if (value === value') { - map; +type t('a) = list(variant('a)); + +let mk = + ( + ~mk_bad: (Constructor.t, list(Id.t), option('a)) => 'a, + with_duplicates: list(variant('a)), + ) + : t('a) => { + let rec go = (xs, seen: list(Constructor.t)) => { + switch (xs) { + | [] => [] + | [BadEntry(x), ...xs] => [BadEntry(x), ...go(xs, seen)] + | [Variant(ctr, ids, value), ...xs] => + if (List.mem(ctr, seen)) { + [BadEntry(mk_bad(ctr, ids, value)), ...go(xs, seen)]; } else { - [(ctr, value), ...tail]; - }; - } else { - [head, ...add(ctr, value, tail)]; - } + [Variant(ctr, ids, value), ...go(xs, List.cons(ctr, seen))]; + } + }; }; + go(with_duplicates, []); +}; -let singleton = (ctr: Constructor.t, value: 'a): t('a) => [(ctr, value)]; - -let compare_bindings = - ((ctr1, _): binding('a), (ctr2, _): binding('a)): int => - compare(ctr1, ctr2); - -/* compares ctrs only */ -let equal = (val_equal: ('a, 'a) => bool, map1: t('a), map2: t('a)): bool => { - let equal_bindings = - ( - val_equal: ('a, 'a) => bool, - (ctr1, val1): binding('a), - (ctr2, val2): binding('a), - ) - : bool => - Constructor.equal(ctr1, ctr2) && val_equal(val1, val2); - map1 === map2 - || { - let map1 = List.fast_sort(compare_bindings, map1); - let map2 = List.fast_sort(compare_bindings, map2); - List.equal(equal_bindings(val_equal), map1, map2); +let equal_constructor = + (eq: ('a, 'a) => bool, x: variant('a), y: variant('a)): bool => + switch (x, y) { + | (Variant(ctr1, _, Some(x1)), Variant(ctr2, _, Some(y1))) => + Constructor.equal(ctr1, ctr2) && eq(x1, y1) + | (Variant(ctr1, _, None), Variant(ctr2, _, None)) => + Constructor.equal(ctr1, ctr2) + | (BadEntry(x), BadEntry(y)) => eq(x, y) + | (Variant(_), Variant(_)) + | (BadEntry(_), Variant(_)) + | (Variant(_), BadEntry(_)) => false + }; + +let same_constructor = + (eq: ('a, 'a) => bool, x: variant('a), y: variant('a)): bool => + switch (x, y) { + | (Variant(ctr1, _, _), Variant(ctr2, _, _)) => + Constructor.equal(ctr1, ctr2) + | (BadEntry(x), BadEntry(y)) => eq(x, y) + | (BadEntry(_), Variant(_)) + | (Variant(_), BadEntry(_)) => false }; -}; -let cardinal: t('a) => int = List.length; +let has_bad_entry = (x: t('a)): bool => + List.exists( + fun + | BadEntry(_) => true + | Variant(_) => false, + x, + ); -let ctrs_of = (m: list((Constructor.t, 'a))): list(Constructor.t) => - List.map(fst, m); +let has_good_entry = (x: t('a)): bool => + List.exists( + fun + | BadEntry(_) => false + | Variant(_) => true, + x, + ); -let same_constructors_same_order = (map1: t('a), map2: t('a)): bool => - cardinal(map1) === cardinal(map2) - && List.for_all2(Constructor.equal, ctrs_of(map1), ctrs_of(map2)); +let free_variables = (f, m) => + m + |> List.map( + fun + | Variant(_, _, Some(value)) => f(value) + | _ => [], + ) + |> List.flatten; -let ctrs_equal = (map1: t('a), map2: t('a)): bool => { - let ctrs1 = ctrs_of(map1); - let ctrs2 = ctrs_of(map2); - ctrs1 === ctrs2 - || List.fast_sort(compare, ctrs1) == List.fast_sort(compare, ctrs2); +let is_ground = is_hole => + fun + | [BadEntry(x)] when is_hole(x) => true + | _ => false; + +/* computes all three regions of a venn diagram of two sets represented as lists */ +let venn_regions = + (f: ('a, 'a) => bool, xs: list('a), ys: list('a)) + : (list(('a, 'a)), list('a), list('a)) => { + let rec go = (xs, ys, acc, left, right) => + switch (xs) { + | [] => (acc |> List.rev, left |> List.rev, List.rev_append(right, ys)) + | [x, ...xs] => + switch (List.partition(f(x, _), ys)) { + | ([], _) => go(xs, ys, acc, [x, ...left], right) + | ([y], ys') => go(xs, ys', [(x, y), ...acc], left, right) + | _ => failwith("Sum type has non-unique constructors") + } + }; + go(xs, ys, [], [], []); }; -let for_all: (binding('a) => bool, t('a)) => bool = List.for_all; +let join_entry = + (join: ('a, 'a) => option('a), (x: variant('a), y: variant('a))) + : option(variant('a)) => + switch (x, y) { + | (Variant(ctr1, ids1, Some(value1)), Variant(ctr2, _, Some(value2))) + when Constructor.equal(ctr1, ctr2) => + let+ value = join(value1, value2); + Variant(ctr1, ids1, Some(value)); + | (Variant(ctr1, ids1, None), Variant(ctr2, _, None)) + when Constructor.equal(ctr1, ctr2) => + Some(Variant(ctr1, ids1, None)) + | (BadEntry(x), BadEntry(_)) => Some(BadEntry(x)) + | _ => None + }; -let bindings: t('a) => list(binding('a)) = x => x; +let join = + ( + eq: ('a, 'a) => bool, + join: ('a, 'a) => option('a), + m1: t('a), + m2: t('a), + ) + : option(t('a)) => { + let (inter, left, right) = venn_regions(same_constructor(eq), m1, m2); + let join_entries = List.filter_map(join_entry(join), inter); + if (List.length(join_entries) == List.length(inter)) { + switch ( + has_good_entry(left), + has_bad_entry(m1), + has_good_entry(right), + has_bad_entry(m2), + ) { + | (_, true, _, true) => Some(join_entries @ left @ right) + | (false, true, _, _) => Some(join_entries @ right) + | (_, _, false, true) => Some(join_entries @ left) + | _ when left == [] && right == [] => Some(join_entries) + | _ => None + }; + } else { + None; + }; +}; -let find_opt = (ctr: Constructor.t, map: t('a)): option('a) => { - let+ binding = List.find_opt(((k, _)) => Constructor.equal(ctr, k), map); - snd(binding); +let match_synswitch = + ( + match_synswitch: ('a, 'a) => 'a, + eq: ('a, 'a) => bool, + m1: t('a), + m2: t('a), + ) + : t('a) => { + let (inter, left, _) = venn_regions(same_constructor(eq), m1, m2); + let inter' = + List.map( + fun + | (Variant(ctr, ids, Some(value1)), Variant(_, _, Some(value2))) => + Variant(ctr, ids, Some(match_synswitch(value1, value2))) + | (v, _) => v, + inter, + ); + inter' @ left; }; -let map = (f: 'a => 'b, m: t('a)): t('b) => { - let (ctrs, vals) = List.split(m); - let vals = List.map(f, vals); - List.combine(ctrs, vals); +let equal = (eq: ('a, 'a) => bool, m1: t('a), m2: t('a)) => { + switch (venn_regions(same_constructor(eq), m1, m2)) { + | (inter, [], []) => + List.for_all( + ((x, y)) => + switch (x, y) { + | (Variant(_, _, Some(value1)), Variant(_, _, Some(value2))) => + eq(value1, value2) + | (Variant(_, _, None), Variant(_, _, None)) => true + | (BadEntry(x), BadEntry(y)) => eq(x, y) + | _ => false + }, + inter, + ) + | _ => false + }; }; -/* sorts on ctrs only */ -let sort = (map: t('a)): t('a) => { - List.fast_sort(compare_bindings, map); +let map = (f: option('a) => option('b), m: t('a)): t('b) => { + List.map( + fun + | Variant(ctr, args, value) => Variant(ctr, args, f(value)) + | BadEntry(value) => BadEntry(value), + m, + ); }; -let of_list: list(binding('a)) => t('a) = x => x; +let get_entry = (ctr, m) => + List.find_map( + fun + | Variant(ctr', _, value) when Constructor.equal(ctr, ctr') => value + | Variant(_) + | BadEntry(_) => None, + m, + ); -let rec is_ground = (is_ground_value: 'a => bool, map: t('a)): bool => - switch (map) { - | [] => true - | [(_, head), ...tail] => - is_ground_value(head) && tail |> is_ground(is_ground_value) - }; +let has_constructor_no_args = ctr => + List.exists( + fun + | Variant(ctr', _, None) when Constructor.equal(ctr, ctr') => true + | Variant(_) => false + | BadEntry(_) => false, + ); + +let get_constructors = + List.filter_map( + fun + | Variant(ctr, _, _) => Some(ctr) + | BadEntry(_) => None, + _, + ); let nth = (map: t('a), ctr: Constructor.t): option(int) => { // TODO: use List.find_index instead, which is available for OCaml 5.1 - let ctrs_sorted = map |> sort |> ctrs_of; + let ctrs_sorted = map |> get_constructors |> List.sort(String.compare); List.find_opt( nth => List.nth(ctrs_sorted, nth) == ctr, List.init(List.length(ctrs_sorted), Fun.id), diff --git a/src/haz3lcore/statics/Ctx.re b/src/haz3lcore/statics/Ctx.re index a7ddecd669..cfaf634304 100644 --- a/src/haz3lcore/statics/Ctx.re +++ b/src/haz3lcore/statics/Ctx.re @@ -1,4 +1,238 @@ -include TypBase.Ctx; +open Util; -/* Due to otherwise cyclic dependencies, Typ and Ctx - are jointly located in the TypBase module */ +[@deriving (show({with_path: false}), sexp, yojson)] +type kind = + | Singleton(TermBase.Typ.t) + | Abstract; + +[@deriving (show({with_path: false}), sexp, yojson)] +type var_entry = { + name: Var.t, + id: Id.t, + typ: TermBase.Typ.t, +}; + +[@deriving (show({with_path: false}), sexp, yojson)] +type tvar_entry = { + name: string, + id: Id.t, + kind, +}; + +[@deriving (show({with_path: false}), sexp, yojson)] +type entry = + | VarEntry(var_entry) + | ConstructorEntry(var_entry) + | TVarEntry(tvar_entry); + +[@deriving (show({with_path: false}), sexp, yojson)] +type t = list(entry); + +let extend = (ctx, entry) => List.cons(entry, ctx); + +let extend_tvar = (ctx: t, tvar_entry: tvar_entry): t => + extend(ctx, TVarEntry(tvar_entry)); + +let extend_alias = (ctx: t, name: string, id: Id.t, ty: TermBase.Typ.t): t => + extend_tvar(ctx, {name, id, kind: Singleton(ty)}); + +let extend_dummy_tvar = (ctx: t, tvar: TPat.t) => + switch (TPat.tyvar_of_utpat(tvar)) { + | Some(name) => extend_tvar(ctx, {kind: Abstract, name, id: Id.invalid}) + | None => ctx + }; + +let lookup_tvar = (ctx: t, name: string): option(kind) => + List.find_map( + fun + | TVarEntry(v) when v.name == name => Some(v.kind) + | _ => None, + ctx, + ); + +let lookup_tvar_id = (ctx: t, name: string): option(Id.t) => + List.find_map( + fun + | TVarEntry(v) when v.name == name => Some(v.id) + | _ => None, + ctx, + ); + +let get_id: entry => Id.t = + fun + | VarEntry({id, _}) + | ConstructorEntry({id, _}) + | TVarEntry({id, _}) => id; + +let lookup_var = (ctx: t, name: string): option(var_entry) => + List.find_map( + fun + | VarEntry(v) when v.name == name => Some(v) + | _ => None, + ctx, + ); + +let lookup_ctr = (ctx: t, name: string): option(var_entry) => + List.find_map( + fun + | ConstructorEntry(t) when t.name == name => Some(t) + | _ => None, + ctx, + ); + +let is_alias = (ctx: t, name: string): bool => + switch (lookup_tvar(ctx, name)) { + | Some(Singleton(_)) => true + | Some(Abstract) + | None => false + }; + +let is_abstract = (ctx: t, name: string): bool => + switch (lookup_tvar(ctx, name)) { + | Some(Abstract) => true + | Some(Singleton(_)) + | None => false + }; + +let lookup_alias = (ctx: t, name: string): option(TermBase.Typ.t) => + switch (lookup_tvar(ctx, name)) { + | Some(Singleton(ty)) => Some(ty) + | Some(Abstract) => None + | None => + Some(TermBase.Typ.Unknown(Hole(Invalid(name))) |> IdTagged.fresh) + }; + +let add_ctrs = (ctx: t, name: string, id: Id.t, ctrs: TermBase.Typ.sum_map): t => + List.filter_map( + fun + | ConstructorMap.Variant(ctr, _, typ) => + Some( + ConstructorEntry({ + name: ctr, + id, + typ: + switch (typ) { + | None => TermBase.Typ.Var(name) |> IdTagged.fresh + | Some(typ) => + TermBase.Typ.Arrow( + typ, + TermBase.Typ.Var(name) |> IdTagged.fresh, + ) + |> IdTagged.fresh + }, + }), + ) + | ConstructorMap.BadEntry(_) => None, + ctrs, + ) + @ ctx; + +let subtract_prefix = (ctx: t, prefix_ctx: t): option(t) => { + // NOTE: does not check that the prefix is an actual prefix + let prefix_length = List.length(prefix_ctx); + let ctx_length = List.length(ctx); + if (prefix_length > ctx_length) { + None; + } else { + Some( + List.rev( + ListUtil.sublist((prefix_length, ctx_length), List.rev(ctx)), + ), + ); + }; +}; + +let added_bindings = (ctx_after: t, ctx_before: t): t => { + /* Precondition: new_ctx is old_ctx plus some new bindings */ + let new_count = List.length(ctx_after) - List.length(ctx_before); + switch (ListUtil.split_n_opt(new_count, ctx_after)) { + | Some((ctx, _)) => ctx + | _ => [] + }; +}; + +module VarSet = Set.Make(Var); + +// Note: filter out duplicates when rendering +let filter_duplicates = (ctx: t): t => + ctx + |> List.fold_left( + ((ctx, term_set, typ_set), entry) => { + switch (entry) { + | VarEntry({name, _}) + | ConstructorEntry({name, _}) => + VarSet.mem(name, term_set) + ? (ctx, term_set, typ_set) + : ([entry, ...ctx], VarSet.add(name, term_set), typ_set) + | TVarEntry({name, _}) => + VarSet.mem(name, typ_set) + ? (ctx, term_set, typ_set) + : ([entry, ...ctx], term_set, VarSet.add(name, typ_set)) + } + }, + ([], VarSet.empty, VarSet.empty), + ) + |> (((ctx, _, _)) => List.rev(ctx)); + +let rec modulize_item = + (ctx: t, x: Token.t, ty: TermBase.Typ.t): TermBase.Typ.t => { + switch (ty) { + | Int => Int + | Float => Float + | Bool => Bool + | String => String + | Member(name, ty1) => Member(x ++ "." ++ name, ty1) + | Unknown(prov) => Unknown(prov) + | Arrow(ty1, ty2) => + Arrow(modulize_item(ctx, x, ty1), modulize_item(ctx, x, ty2)) + | Prod(tys) => Prod(List.map(modulize_item(ctx, x), tys)) + | Sum(sm) => + Sum(ConstructorMap.map(Option.map(modulize_item(ctx, x)), sm)) + | Rec(y, ty) => Rec(y, modulize_item(ctx, x, ty)) + | List(ty) => List(modulize_item(ctx, x, ty)) + | Var(n) => + x == n + ? Var(n) + : Member(x ++ "." ++ n, TermBase.Typ.weak_head_normalize(ctx, ty)) + | Module({inner_ctx, incomplete}) => + let ctx_entry_modulize = (e: entry): entry => { + switch (e) { + | VarEntry(t) => VarEntry({...t, typ: modulize_item(ctx, x, t.typ)}) + | ConstructorEntry(t) => + ConstructorEntry({...t, typ: modulize_item(ctx, x, t.typ)}) + | TVarEntry(_) => e + }; + }; + Module({inner_ctx: List.map(ctx_entry_modulize, inner_ctx), incomplete}); + | Forall(_, t) => modulize_item(ctx, x, t) + }; +}; + +let modulize = (ty: TermBase.Typ.t, x: string): TermBase.Typ.t => { + switch (ty) { + | Module({inner_ctx, incomplete}) => + Module({ + inner_ctx: + List.map( + (e: entry): entry => { + switch (e) { + | VarEntry(t) => + VarEntry({...t, typ: modulize_item(inner_ctx, x, t.typ)}) + | ConstructorEntry(t) => + ConstructorEntry({ + ...t, + typ: modulize_item(inner_ctx, x, t.typ), + }) + | TVarEntry(_) => e + } + }, + inner_ctx, + ), + incomplete, + }) + | _ => ty + }; +}; + +let shadows_typ = (ctx: t, name: string): bool => + Form.is_base_typ(name) || lookup_tvar(ctx, name) != None; diff --git a/src/haz3lcore/statics/Info.re b/src/haz3lcore/statics/Info.re index 2546ed519b..485dab2e5e 100644 --- a/src/haz3lcore/statics/Info.re +++ b/src/haz3lcore/statics/Info.re @@ -1,7 +1,5 @@ -open Sexplib.Std; open Util; open OptUtil.Syntax; -open Term; /* INFO.re @@ -147,7 +145,7 @@ type typ_expects = [@deriving (show({with_path: false}), sexp, yojson)] type error_typ = | BadToken(Token.t) /* Invalid token, treated as type hole */ - | FreeTypeVariable(TypVar.t) /* Free type variable */ + | FreeTypeVariable(string) /* Free type variable */ | DuplicateConstructor(Constructor.t) /* Duplicate ctr in same sum */ | WantTypeFoundAp | FreeTypeMember(Token.t) @@ -164,8 +162,8 @@ type error_typ = type ok_typ = | Variant(Constructor.t, Typ.t) | VariantIncomplete(Typ.t) - | TypeAlias(TypVar.t, Typ.t) | Module(Constructor.t, Ctx.t) + | TypeAlias(string, Typ.t) | Type(Typ.t); [@deriving (show({with_path: false}), sexp, yojson)] @@ -188,14 +186,14 @@ type shadow_src = /* Type pattern term errors */ [@deriving (show({with_path: false}), sexp, yojson)] type error_tpat = - | ShadowsType(TypVar.t, shadow_src) + | ShadowsType(string, shadow_src) | NotAVar(type_var_err); /* Type pattern ok statuses for cursor inspector */ [@deriving (show({with_path: false}), sexp, yojson)] type ok_tpat = | Empty - | Var(TypVar.t); + | Var(string); [@deriving (show({with_path: false}), sexp, yojson)] type status_tpat = @@ -210,7 +208,7 @@ type exp = { mode: Mode.t, /* Parental type expectations */ self: Self.exp, /* Expectation-independent type info */ co_ctx: CoCtx.t, /* Locally free variables */ - cls: Term.Cls.t, /* DERIVED: Syntax class (i.e. form name) */ + cls: Cls.t, /* DERIVED: Syntax class (i.e. form name) */ status: status_exp, /* DERIVED: Ok/Error statuses for display */ ty: Typ.t /* DERIVED: Type after nonempty hole fixing */ }; @@ -221,9 +219,10 @@ type pat = { ancestors, ctx: Ctx.t, co_ctx: CoCtx.t, + prev_synswitch: option(Typ.t), // If a pattern is first synthesized, then analysed, the initial syn is stored here. mode: Mode.t, self: Self.pat, - cls: Term.Cls.t, + cls: Cls.t, status: status_pat, ty: Typ.t, constraint_: Constraint.t, @@ -231,28 +230,27 @@ type pat = { [@deriving (show({with_path: false}), sexp, yojson)] type typ = { - term: UTyp.t, + term: Typ.t, ancestors, ctx: Ctx.t, expects: typ_expects, - cls: Term.Cls.t, + cls: Cls.t, status: status_typ, - ty: Typ.t, }; [@deriving (show({with_path: false}), sexp, yojson)] type tpat = { - term: UTPat.t, + term: TPat.t, ancestors, ctx: Ctx.t, - cls: Term.Cls.t, + cls: Cls.t, status: status_tpat, }; [@deriving (show({with_path: false}), sexp, yojson)] type secondary = { id: Id.t, // Id of term static info is sourced from - cls: Term.Cls.t, // Cls of secondary, not source term + cls: Cls.t, // Cls of secondary, not source term sort: Sort.t, // from source term ctx: Ctx.t // from source term }; @@ -307,10 +305,10 @@ let ancestors_of: t => ancestors = let id_of: t => Id.t = fun - | InfoExp(i) => Term.UExp.rep_id(i.term) - | InfoPat(i) => Term.UPat.rep_id(i.term) - | InfoTyp(i) => Term.UTyp.rep_id(i.term) - | InfoTPat(i) => Term.UTPat.rep_id(i.term) + | InfoExp(i) => Exp.rep_id(i.term) + | InfoPat(i) => Pat.rep_id(i.term) + | InfoTyp(i) => Typ.rep_id(i.term) + | InfoTPat(i) => TPat.rep_id(i.term) | Secondary(s) => s.id; let error_of: t => option(error) = @@ -337,13 +335,25 @@ let rec status_common = | (Just(ty), Syn) => NotInHole(Syn(ty)) | (Just(ty), SynFun) => switch ( - Typ.join_fix(ctx, Arrow(Unknown(Internal), Unknown(Internal)), ty) + Typ.join_fix( + ctx, + Arrow(Unknown(Internal) |> Typ.temp, Unknown(Internal) |> Typ.temp) + |> Typ.temp, + ty, + ) ) { | Some(_) => NotInHole(Syn(ty)) | None => InHole(Inconsistent(WithArrow(ty))) } | (Just(ty), SynTypFun) => - switch (Typ.join_fix(ctx, Forall("?", Unknown(Internal)), ty)) { + switch ( + Typ.join_fix( + ctx, + Forall(Var("?") |> TPat.fresh, Unknown(Internal) |> Typ.temp) + |> Typ.temp, + ty, + ) + ) { | Some(_) => NotInHole(Syn(ty)) | None => InHole(Inconsistent(WithArrow(ty))) } @@ -370,9 +380,9 @@ let rec status_common = } | (BadToken(name), _) => InHole(NoType(BadToken(name))) | (BadTrivAp(ty), _) => InHole(NoType(BadTrivAp(ty))) - | (IsMulti, _) => NotInHole(Syn(Unknown(Internal))) + | (IsMulti, _) => NotInHole(Syn(Unknown(Internal) |> Typ.temp)) | (NoJoin(wrap, tys), Ana(ana)) => - let syn: Typ.t = Self.join_of(wrap, Unknown(Internal)); + let syn: Typ.t = Self.join_of(wrap, Unknown(Internal) |> Typ.temp); switch (Typ.join_fix(ctx, ana, syn)) { | None => InHole(Inconsistent(Expectation({ana, syn}))) | Some(_) => @@ -455,14 +465,11 @@ let rec status_exp = (ctx: Ctx.t, mode: Mode.t, self: Self.exp): status_exp => separate sort. It also determines semantic properties such as whether or not a type variable reference is free, and whether a ctr name is a dupe. */ -let status_typ = - (ctx: Ctx.t, expects: typ_expects, term: TermBase.UTyp.t, ty: Typ.t) - : status_typ => - switch (term.term) { - | Invalid(token) => InHole(BadToken(token)) - | EmptyHole => NotInHole(Type(ty)) - | Var(name) - | Constructor(name) => +let status_typ = (ctx: Ctx.t, expects: typ_expects, ty: Typ.t): status_typ => + switch (ty.term) { + | Unknown(Hole(Invalid(token))) => InHole(BadToken(token)) + | Unknown(Hole(EmptyHole)) => NotInHole(Type(ty)) + | Var(name) => switch (expects) { | VariantExpected(Unique, sum_ty) | ConstructorExpected(Unique, sum_ty) => @@ -481,21 +488,21 @@ let status_typ = | false => switch (Ctx.is_abstract(ctx, name)) { | false => InHole(FreeTypeVariable(name)) - | true => NotInHole(Type(Var(name))) + | true => NotInHole(Type(Var(name) |> Typ.temp)) } | true => NotInHole(TypeAlias(name, Typ.weak_head_normalize(ctx, ty))) } | AnaTypeExpected(ana) => InHole(InconsistentMember({ana, syn: ty})) } - | Ap(t1, t2) => + | Ap(t1, ty_in) => switch (expects) { | VariantExpected(status_variant, ty_variant) => - let ty_in = UTyp.to_typ(ctx, t2); switch (status_variant, t1.term) { | (Unique, Var(name) | Constructor(name)) => - NotInHole(Variant(name, Arrow(ty_in, ty_variant))) - | _ => NotInHole(VariantIncomplete(Arrow(ty_in, ty_variant))) - }; + NotInHole(Variant(name, Arrow(ty_in, ty_variant) |> Typ.temp)) + | _ => + NotInHole(VariantIncomplete(Arrow(ty_in, ty_variant) |> Typ.temp)) + } | ModuleExpected => InHole(WantModule) | ConstructorExpected(_) => InHole(WantConstructorFoundAp) | TypeExpected => InHole(WantTypeFoundAp) @@ -524,7 +531,7 @@ let status_typ = } }; -let status_tpat = (ctx: Ctx.t, utpat: UTPat.t): status_tpat => +let status_tpat = (ctx: Ctx.t, utpat: TPat.t): status_tpat => switch (utpat.term) { | EmptyHole => NotInHole(Empty) | Var(name) when Ctx.shadows_typ(ctx, name) => @@ -554,8 +561,8 @@ let is_error = (ci: t): bool => { | InHole(_) => true | NotInHole(_) => false } - | InfoTyp({expects, ctx, term, ty, _}) => - switch (status_typ(ctx, expects, term, ty)) { + | InfoTyp({expects, ctx, term, _}) => + switch (status_typ(ctx, expects, term)) { | InHole(_) => true | NotInHole(_) => false } @@ -569,7 +576,7 @@ let is_error = (ci: t): bool => { }; /* Determined the type of an expression or pattern 'after hole fixing'; - that is, all ill-typed terms are considered to be 'wrapped in + that is, some ill-typed terms are considered to be 'wrapped in non-empty holes', i.e. assigned Unknown type. */ let fixed_typ_ok: ok_pat => Typ.t = fun @@ -577,6 +584,29 @@ let fixed_typ_ok: ok_pat => Typ.t = | Ana(Consistent({join, _})) => join | Ana(InternallyInconsistent({ana, _})) => ana; +let fixed_typ_err_common: error_common => Typ.t = + fun + | NoType(_) => Unknown(Internal) |> Typ.temp + | Inconsistent(Expectation({ana, _})) => ana + | Inconsistent(Internal(_)) => Unknown(Internal) |> Typ.temp // Should this be some sort of meet? + | Inconsistent(WithArrow(_)) => + Arrow(Unknown(Internal) |> Typ.temp, Unknown(Internal) |> Typ.temp) + |> Typ.temp; + +let fixed_typ_err: error_exp => Typ.t = + fun + | FreeVariable(_) => Unknown(Internal) |> Typ.temp + | UnusedDeferral => Unknown(Internal) |> Typ.temp + | BadPartialAp(_) => Unknown(Internal) |> Typ.temp + | InexhaustiveMatch(_) => Unknown(Internal) |> Typ.temp + | Common(err) => fixed_typ_err_common(err); + +let fixed_typ_err_pat: error_pat => Typ.t = + fun + | ExpectedConstructor => Unknown(Internal) |> Typ.temp + | Redundant(_) => Unknown(Internal) |> Typ.temp + | Common(err) => fixed_typ_err_common(err); + let fixed_typ_pat = (ctx, mode: Mode.t, self: Self.pat): Typ.t => { // TODO: get rid of unwrapping (probably by changing the implementation of error_exp.Redundant) let self = @@ -585,7 +615,7 @@ let fixed_typ_pat = (ctx, mode: Mode.t, self: Self.pat): Typ.t => { | _ => self }; switch (status_pat(ctx, mode, self)) { - | InHole(_) => Unknown(Internal) + | InHole(err) => fixed_typ_err_pat(err) | NotInHole(ok) => fixed_typ_ok(ok) }; }; @@ -600,9 +630,9 @@ let fixed_constraint_pat = ) : Constraint.t => switch (upat.term) { - | TypeAnn(_) => constraint_ + | Cast(_) => constraint_ | _ => - switch (fixed_typ_pat(ctx, mode, self)) { + switch (fixed_typ_pat(ctx, mode, self) |> Typ.term_of) { | Unknown(_) => Constraint.Hole | _ => constraint_ } @@ -610,7 +640,7 @@ let fixed_constraint_pat = let fixed_typ_exp = (ctx, mode: Mode.t, self: Self.exp): Typ.t => switch (status_exp(ctx, mode, self)) { - | InHole(_) => Unknown(Internal) + | InHole(err) => fixed_typ_err(err) | NotInHole(AnaDeferralConsistent(ana)) => ana | NotInHole(Common(ok)) => fixed_typ_ok(ok) }; @@ -635,10 +665,11 @@ let derived_pat = ~upat: UPat.t, ~ctx, ~co_ctx, + ~is_module, + ~prev_synswitch, ~mode, ~ancestors, ~self, - ~is_module, ~constraint_, ) : pat => { @@ -654,6 +685,7 @@ let derived_pat = { cls, self, + prev_synswitch, mode, ty, status, @@ -670,18 +702,18 @@ let derived_typ = (~utyp: UTyp.t, ~ctx, ~ancestors, ~expects): typ => { let cls: Cls.t = /* Hack to improve CI display */ switch (expects, UTyp.cls_of_term(utyp.term)) { - | (VariantExpected(_), Var) => Cls.Typ(Constructor) | (ModuleExpected, Var) => Cls.Typ(ModuleVar) + | (VariantExpected(_) | ConstructorExpected(_), Var) => + Cls.Typ(Constructor) | (_, cls) => Cls.Typ(cls) }; - let ty = UTyp.to_typ(ctx, utyp); - let status = status_typ(ctx, expects, utyp, ty); - {cls, ctx, ancestors, status, expects, ty, term: utyp}; + let status = status_typ(ctx, expects, utyp); + {cls, ctx, ancestors, status, expects, term: utyp}; }; /* Add derivable attributes for type patterns */ -let derived_tpat = (~utpat: UTPat.t, ~ctx, ~ancestors): tpat => { - let cls = Cls.TPat(UTPat.cls_of_term(utpat.term)); +let derived_tpat = (~utpat: TPat.t, ~ctx, ~ancestors): tpat => { + let cls = Cls.TPat(TPat.cls_of_term(utpat.term)); let status = status_tpat(ctx, utpat); {cls, ancestors, status, ctx, term: utpat}; }; @@ -693,13 +725,18 @@ let get_binding_site = (info: t): option(Id.t) => { | InfoExp({term: {term: Var(name), _}, ctx, _}) => let+ entry = Ctx.lookup_var(ctx, name); entry.id; - | InfoExp({term: {term: Constructor(name), _}, ctx, _}) - | InfoPat({term: {term: Constructor(name), _}, ctx, _}) => + | InfoExp({term: {term: Constructor(name, _), _}, ctx, _}) + | InfoPat({term: {term: Constructor(name, _), _}, ctx, _}) => let+ entry = Ctx.lookup_ctr(ctx, name); entry.id; | InfoTyp({term: {term: Var(name), _}, ctx, _}) => - let+ entry = Ctx.lookup_tvar(ctx, name); - entry.id; + Ctx.lookup_tvar_id(ctx, name) | _ => None }; }; + +let typ_is_constructor_expected = t => + switch (t) { + | {expects: ConstructorExpected(_) | VariantExpected(_), _} => true + | _ => false + }; diff --git a/src/haz3lcore/statics/Kind.re b/src/haz3lcore/statics/Kind.re deleted file mode 100644 index 8db5638e94..0000000000 --- a/src/haz3lcore/statics/Kind.re +++ /dev/null @@ -1 +0,0 @@ -include TypBase.Kind; diff --git a/src/haz3lcore/statics/MakeTerm.re b/src/haz3lcore/statics/MakeTerm.re index b5b080a10a..0738e3f9fd 100644 --- a/src/haz3lcore/statics/MakeTerm.re +++ b/src/haz3lcore/statics/MakeTerm.re @@ -11,7 +11,7 @@ */ open Util; -open Term; +open Any; // TODO make less hacky let tokens = @@ -19,6 +19,7 @@ let tokens = _ => [], _ => [" "], (t: Tile.t) => t.shards |> List.map(List.nth(t.label)), + _ => [], ); [@deriving (show({with_path: false}), sexp, yojson)] @@ -34,8 +35,14 @@ type unsorted = | Post(t, tiles) | Bin(t, tiles, t); +type t = { + term: UExp.t, + terms: TermMap.t, + projectors: Id.Map.t(Piece.projector), +}; + let is_nary = - (is_sort: any => option('sort), delim: Token.t, (delims, kids): tiles) + (is_sort: Any.t => option('sort), delim: Token.t, (delims, kids): tiles) : option(list('sort)) => if (delims |> List.map(snd) |> List.for_all((==)(([delim], [])))) { kids |> List.map(is_sort) |> OptUtil.sequence; @@ -43,10 +50,10 @@ let is_nary = None; }; -let is_tuple_exp = is_nary(TermBase.Any.is_exp, ","); -let is_tuple_pat = is_nary(TermBase.Any.is_pat, ","); -let is_tuple_typ = is_nary(TermBase.Any.is_typ, ","); -let is_typ_bsum = is_nary(TermBase.Any.is_typ, "+"); +let is_tuple_exp = is_nary(Any.is_exp, ","); +let is_tuple_pat = is_nary(Any.is_pat, ","); +let is_tuple_typ = is_nary(Any.is_typ, ","); +let is_typ_bsum = is_nary(Any.is_typ, "+"); let is_grout = tiles => Aba.get_as(tiles) |> List.map(snd) |> List.for_all((==)(([" "], []))); @@ -57,7 +64,7 @@ let is_rules = ((ts, kids): tiles): option(Aba.t(UPat.t, UExp.t)) => { ts |> List.map( fun - | (_, (["|", "=>"], [Pat(p)])) => Some(p) + | (_, (["|", "=>"], [Any.Pat(p)])) => Some(p) | _ => None, ) |> OptUtil.sequence @@ -102,14 +109,37 @@ let return = (wrap, ids, tm) => { tm; }; -let parse_sum_term: UTyp.t => UTyp.variant = +/* Map to collect projector ids */ +let projectors: ref(Id.Map.t(Piece.projector)) = ref(Id.Map.empty); + +/* Strip a projector from a segment and log it in the map */ +let rm_and_log_projectors = (seg: Segment.t): Segment.t => + List.map( + fun + | Piece.Projector(pr) => { + projectors := Id.Map.add(pr.id, pr, projectors^); + pr.syntax; + } + | x => x, + seg, + ); + +let parse_sum_term: UTyp.t => ConstructorMap.variant(UTyp.t) = fun - | {term: Var(ctr), ids} => Variant(ctr, ids, None) - | {term: Ap({term: Var(ctr), ids: ids_ctr}, u), ids: ids_ap} => + | {term: Var(ctr), ids, _} => Variant(ctr, ids, None) + | {term: Ap({term: Var(ctr), ids: ids_ctr, _}, u), ids: ids_ap, _} => Variant(ctr, ids_ctr @ ids_ap, Some(u)) | t => BadEntry(t); -let rec go_s = (s: Sort.t, skel: Skel.t, seg: Segment.t): any => +let mk_bad = (ctr, ids, value) => { + let t: Typ.t = {ids, copied: false, term: Var(ctr)}; + switch (value) { + | None => t + | Some(u) => Ap(t, u) |> Typ.fresh + }; +}; + +let rec go_s = (s: Sort.t, skel: Skel.t, seg: Segment.t): Term.Any.t => switch (s) { | Pat => Pat(pat(unsorted(skel, seg))) | TPat => TPat(tpat(unsorted(skel, seg))) @@ -138,35 +168,37 @@ let rec go_s = (s: Sort.t, skel: Skel.t, seg: Segment.t): any => and exp = unsorted => { let (term, inner_ids) = exp_term(unsorted); let ids = ids(unsorted) @ inner_ids; - return(e => Exp(e), ids, {ids, term}); + return(e => Exp(e), ids, {ids, copied: false, term}); } and exp_term: unsorted => (UExp.term, list(Id.t)) = { let ret = (tm: UExp.term) => (tm, []); - let hole = unsorted => Term.UExp.hole(kids_of_unsorted(unsorted)); + let hole = unsorted => UExp.hole(kids_of_unsorted(unsorted)); fun | Op(tiles) as tm => switch (tiles) { // single-tile case | ([(_id, t)], []) => switch (t) { - | ([t], []) when Form.is_empty_tuple(t) => ret(Triv) + | ([t], []) when Form.is_empty_tuple(t) => ret(Tuple([])) | ([t], []) when Form.is_wild(t) => ret(Deferral(OutsideAp)) | ([t], []) when Form.is_empty_list(t) => ret(ListLit([])) | ([t], []) when Form.is_bool(t) => ret(Bool(bool_of_string(t))) + | ([t], []) when Form.is_undefined(t) => ret(Undefined) | ([t], []) when Form.is_int(t) => ret(Int(int_of_string(t))) | ([t], []) when Form.is_string(t) => ret(String(Form.strip_quotes(t))) | ([t], []) when Form.is_float(t) => ret(Float(float_of_string(t))) | ([t], []) when Form.is_var(t) => ret(Var(t)) - | ([t], []) when Form.is_ctr(t) => ret(Constructor(t)) + | ([t], []) when Form.is_ctr(t) => + ret(Constructor(t, Unknown(Internal) |> Typ.temp)) | (["(", ")"], [Exp(body)]) => ret(Parens(body)) | (["[", "]"], [Exp(body)]) => switch (body) { - | {ids, term: Tuple(es)} => (ListLit(es), ids) + | {ids, copied: false, term: Tuple(es)} => (ListLit(es), ids) | term => ret(ListLit([term])) } | (["test", "end"], [Exp(test)]) => ret(Test(test)) - | (["case", "end"], [Rul({ids, term: Rules(scrut, rules)})]) => ( + | (["case", "end"], [Rul({ids, term: Rules(scrut, rules), _})]) => ( Match(scrut, rules), ids, ) @@ -184,17 +216,18 @@ and exp_term: unsorted => (UExp.term, list(Id.t)) = { | (["$"], []) => UnOp(Meta(Unquote), r) | (["-"], []) => UnOp(Int(Minus), r) | (["!"], []) => UnOp(Bool(Not), r) - | (["fun", "->"], [Pat(pat)]) => Fun(pat, r) - | (["typfun", "->"], [TPat(tpat)]) => TypFun(tpat, r) + | (["fun", "->"], [Pat(pat)]) => Fun(pat, r, None, None) + | (["fix", "->"], [Pat(pat)]) => FixF(pat, r, None) + | (["typfun", "->"], [TPat(tpat)]) => TypFun(tpat, r, None) | (["let", "=", "in"], [Pat(pat), Exp(def)]) => Let(pat, def, r) | (["hide", "in"], [Exp(filter)]) => - Filter((Eval, One), filter, r) + Filter(Filter({act: (Eval, One), pat: filter}), r) | (["eval", "in"], [Exp(filter)]) => - Filter((Eval, All), filter, r) + Filter(Filter({act: (Eval, All), pat: filter}), r) | (["pause", "in"], [Exp(filter)]) => - Filter((Step, One), filter, r) + Filter(Filter({act: (Step, One), pat: filter}), r) | (["debug", "in"], [Exp(filter)]) => - Filter((Step, All), filter, r) + Filter(Filter({act: (Step, All), pat: filter}), r) | (["type", "=", "in"], [TPat(tpat), Typ(def)]) => TyAlias(tpat, def, r) | (["if", "then", "else"], [Exp(cond), Exp(conseq)]) => @@ -211,10 +244,17 @@ and exp_term: unsorted => (UExp.term, list(Id.t)) = { | ([(_id, t)], []) => switch (t) { | (["()"], []) => - ret(Ap(l, {ids: [Id.nullary_ap_flag], term: Triv})) + ret( + Ap( + Forward, + l, + {ids: [Id.nullary_ap_flag], copied: false, term: Tuple([])}, + ), + ) | (["(", ")"], [Exp(arg)]) => let use_deferral = (arg: UExp.t): UExp.t => { ids: arg.ids, + copied: false, term: Deferral(InAp), }; switch (arg.term) { @@ -230,7 +270,7 @@ and exp_term: unsorted => (UExp.term, list(Id.t)) = { ), arg.ids, ) - | _ => ret(Ap(l, arg)) + | _ => ret(Ap(Forward, l, arg)) }; | (["@<", ">"], [Typ(ty)]) => ret(TypAp(l, ty)) | _ => ret(hole(tm)) @@ -274,7 +314,7 @@ and exp_term: unsorted => (UExp.term, list(Id.t)) = { | (["++"], []) => BinOp(String(Concat), l, r) | (["$=="], []) => BinOp(String(Equals), l, r) | (["."], []) => Dot(l, r) - | (["|>"], []) => Pipeline(l, r) + | (["|>"], []) => Ap(Reverse, r, l) | (["@"], []) => ListConcat(l, r) | _ => hole(tm) }, @@ -287,29 +327,27 @@ and exp_term: unsorted => (UExp.term, list(Id.t)) = { and pat = unsorted => { let (term, inner_ids) = pat_term(unsorted); let ids = ids(unsorted) @ inner_ids; - return(p => Pat(p), ids, {ids, term}); + return(p => Pat(p), ids, {ids, term, copied: false}); } and pat_term: unsorted => (UPat.term, list(Id.t)) = { let ret = (term: UPat.term) => (term, []); - let hole = unsorted => Term.UPat.hole(kids_of_unsorted(unsorted)); + let hole = unsorted => UPat.hole(kids_of_unsorted(unsorted)); fun | Op(tiles) as tm => switch (tiles) { | ([(_id, tile)], []) => ret( switch (tile) { - | ([t], []) when Form.is_empty_tuple(t) => Triv + | ([t], []) when Form.is_empty_tuple(t) => Tuple([]) | ([t], []) when Form.is_empty_list(t) => ListLit([]) | ([t], []) when Form.is_bool(t) => Bool(bool_of_string(t)) | ([t], []) when Form.is_float(t) => Float(float_of_string(t)) | ([t], []) when Form.is_int(t) => Int(int_of_string(t)) - | ([t], []) when Form.is_string(t) => - let s = Re.Str.string_after(t, 1); - let s = Re.Str.string_before(s, String.length(s) - 1); - String(s); + | ([t], []) when Form.is_string(t) => String(Form.strip_quotes(t)) | ([t], []) when Form.is_var(t) => Var(t) | ([t], []) when Form.is_wild(t) => Wild - | ([t], []) when Form.is_ctr(t) => Constructor(t) + | ([t], []) when Form.is_ctr(t) => + Constructor(t, Unknown(Internal) |> Typ.fresh) | ([t], []) when t != " " && !Form.is_explicit_hole(t) => Invalid(t) | (["(", ")"], [Pat(body)]) => Parens(body) @@ -348,7 +386,8 @@ and pat_term: unsorted => (UPat.term, list(Id.t)) = { | Pre(_) as tm => ret(hole(tm)) | Bin(Pat(p), tiles, Typ(ty)) as tm => switch (tiles) { - | ([(_id, ([":"], []))], []) => ret(TypeAnn(p, ty)) + | ([(_id, ([":"], []))], []) => + ret(Cast(p, ty, Unknown(Internal) |> Typ.fresh)) | _ => ret(hole(tm)) } | Bin(Pat(l), tiles, Pat(r)) as tm => @@ -365,18 +404,18 @@ and pat_term: unsorted => (UPat.term, list(Id.t)) = { and typ = unsorted => { let (term, inner_ids) = typ_term(unsorted); let ids = ids(unsorted) @ inner_ids; - return(ty => Typ(ty), ids, {ids, term}); + return(ty => Typ(ty), ids, {ids, term, copied: false}); } and typ_term: unsorted => (UTyp.term, list(Id.t)) = { let ret = (term: UTyp.term) => (term, []); - let hole = unsorted => Term.UTyp.hole(kids_of_unsorted(unsorted)); + let hole = unsorted => UTyp.hole(kids_of_unsorted(unsorted)); fun | Op(tiles) as tm => switch (tiles) { | ([(_id, tile)], []) => ret( switch (tile) { - | ([t], []) when Form.is_empty_tuple(t) => Tuple([]) + | ([t], []) when Form.is_empty_tuple(t) => Prod([]) | (["Bool"], []) => Bool | (["Int"], []) => Int | (["Float"], []) => Float @@ -386,7 +425,7 @@ and typ_term: unsorted => (UTyp.term, list(Id.t)) = { | (["[", "]"], [Typ(body)]) => List(body) | (["{", "}"], [Pat(body)]) => Module(body) | ([t], []) when t != " " && !Form.is_explicit_hole(t) => - Invalid(t) + Unknown(Hole(Invalid(t))) | _ => hole(tm) }, ) @@ -404,7 +443,7 @@ and typ_term: unsorted => (UTyp.term, list(Id.t)) = { ret(Forall(tpat, t)) | Pre(([(_id, (["rec", "->"], [TPat(tpat)]))], []), Typ(t)) => ret(Rec(tpat, t)) - | Pre(tiles, Typ({term: Sum(t0), ids})) as tm => + | Pre(tiles, Typ({term: Sum(t0), ids, _})) as tm => /* Case for leading prefix + preceeding a sum */ switch (tiles) { | ([(_, (["+"], []))], []) => (Sum(t0), ids) @@ -412,18 +451,24 @@ and typ_term: unsorted => (UTyp.term, list(Id.t)) = { } | Pre(tiles, Typ(t)) as tm => switch (tiles) { - | ([(_, (["+"], []))], []) => ret(Sum([parse_sum_term(t)])) + | ([(_, (["+"], []))], []) => + ret(Sum([parse_sum_term(t)] |> ConstructorMap.mk(~mk_bad))) | _ => ret(hole(tm)) } | Bin(Typ(t1), tiles, Typ(t2)) as tm when is_typ_bsum(tiles) != None => switch (is_typ_bsum(tiles)) { | Some(between_kids) => - ret(Sum(List.map(parse_sum_term, [t1] @ between_kids @ [t2]))) + ret( + Sum( + List.map(parse_sum_term, [t1] @ between_kids @ [t2]) + |> ConstructorMap.mk(~mk_bad), + ), + ) | None => ret(hole(tm)) } | Bin(Typ(l), tiles, Typ(r)) as tm => switch (is_tuple_typ(tiles)) { - | Some(between_kids) => ret(Tuple([l] @ between_kids @ [r])) + | Some(between_kids) => ret(Prod([l] @ between_kids @ [r])) | None => switch (tiles) { | ([(_id, (["->"], []))], []) => ret(Arrow(l, r)) @@ -436,11 +481,11 @@ and typ_term: unsorted => (UTyp.term, list(Id.t)) = { and tpat = unsorted => { let term = tpat_term(unsorted); let ids = ids(unsorted); - return(ty => TPat(ty), ids, {ids, term}); + return(ty => TPat(ty), ids, {ids, term, copied: false}); } -and tpat_term: unsorted => UTPat.term = { - let ret = (term: UTPat.term) => term; - let hole = unsorted => Term.UTPat.hole(kids_of_unsorted(unsorted)); +and tpat_term: unsorted => TPat.term = { + let ret = (term: TPat.term) => term; + let hole = unsorted => TPat.hole(kids_of_unsorted(unsorted)); fun | Op(tiles) as tm => switch (tiles) { @@ -464,8 +509,8 @@ and tpat_term: unsorted => UTPat.term = { // let ids = ids(unsorted); // return(r => Rul(r), ids, {ids, term}); // } -and rul = (unsorted: unsorted): URul.t => { - let hole = Term.URul.Hole(kids_of_unsorted(unsorted)); +and rul = (unsorted: unsorted): Rul.t => { + let hole = Rul.Hole(kids_of_unsorted(unsorted)); switch (exp(unsorted)) { | {term: MultiHole(_), _} => switch (unsorted) { @@ -475,20 +520,25 @@ and rul = (unsorted: unsorted): URul.t => { ids: ids(unsorted), term: Rules(scrut, List.combine(ps, leading_clauses @ [last_clause])), + copied: false, } - | None => {ids: ids(unsorted), term: hole} + | None => {ids: ids(unsorted), term: hole, copied: false} } - | _ => {ids: ids(unsorted), term: hole} + | _ => {ids: ids(unsorted), term: hole, copied: false} } - | e => {ids: [], term: Rules(e, [])} + | e => {ids: [], term: Rules(e, []), copied: false} }; } and unsorted = (skel: Skel.t, seg: Segment.t): unsorted => { - let tile_kids = (p: Piece.t): list(any) => + /* Remove projectors. We do this here as opposed to removing + * them in an external call to save a whole-syntax pass. */ + let seg = rm_and_log_projectors(seg); + let tile_kids = (p: Piece.t): list(Term.Any.t) => switch (p) { | Secondary(_) | Grout(_) => [] + | Projector(_) => [] | Tile({mold, shards, children, _}) => Aba.aba_triples(Aba.mk(shards, children)) |> List.map(((l, kid, r)) => { @@ -536,24 +586,20 @@ let go = ~cache_size_bound=1000, seg => { map := TermMap.empty; - let e = exp(unsorted(Segment.skel(seg), seg)); - (e, map^); + projectors := Id.Map.empty; + let term = exp(unsorted(Segment.skel(seg), seg)); + {term, terms: map^, projectors: projectors^}; }, ); -let from_zip = (~dump_backpack: bool, ~erase_buffer: bool, z: Zipper.t) => { +let from_zip_for_sem = + (~dump_backpack: bool, ~erase_buffer: bool, z: Zipper.t) => { let seg = Zipper.smart_seg(~dump_backpack, ~erase_buffer, z); go(seg); }; -let from_zip_for_view = - Core.Memo.general( - ~cache_size_bound=1000, - from_zip(~dump_backpack=false, ~erase_buffer=true), - ); - let from_zip_for_sem = Core.Memo.general( ~cache_size_bound=1000, - from_zip(~dump_backpack=true, ~erase_buffer=true), + from_zip_for_sem(~dump_backpack=true, ~erase_buffer=true), ); diff --git a/src/haz3lcore/statics/Mode.re b/src/haz3lcore/statics/Mode.re index ad53e30f00..26d68a8177 100644 --- a/src/haz3lcore/statics/Mode.re +++ b/src/haz3lcore/statics/Mode.re @@ -30,9 +30,13 @@ let ana: Typ.t => t = ty => Ana(ty); let ty_of: t => Typ.t = fun | Ana(ty) => ty - | Syn => Unknown(SynSwitch) - | SynFun => Arrow(Unknown(SynSwitch), Unknown(SynSwitch)) - | SynTypFun => Forall("syntypfun", Unknown(SynSwitch)); /* TODO: naming the type variable? */ + | Syn => Unknown(SynSwitch) |> Typ.temp + | SynFun => + Arrow(Unknown(SynSwitch) |> Typ.temp, Unknown(SynSwitch) |> Typ.temp) + |> Typ.temp + | SynTypFun => + Forall(Var("syntypfun") |> TPat.fresh, Unknown(SynSwitch) |> Typ.temp) + |> Typ.temp; /* TODO: naming the type variable? */ let of_arrow = (ctx: Ctx.t, mode: t): (t, t) => switch (mode) { @@ -42,7 +46,7 @@ let of_arrow = (ctx: Ctx.t, mode: t): (t, t) => | Ana(ty) => ty |> Typ.matched_arrow(ctx) |> TupleUtil.map2(ana) }; -let of_forall = (ctx: Ctx.t, name_opt: option(TypVar.t), mode: t): t => +let of_forall = (ctx: Ctx.t, name_opt: option(string), mode: t): t => switch (mode) { | Syn | SynFun @@ -51,7 +55,7 @@ let of_forall = (ctx: Ctx.t, name_opt: option(TypVar.t), mode: t): t => let (name_expected_opt, item) = Typ.matched_forall(ctx, ty); switch (name_opt, name_expected_opt) { | (Some(name), Some(name_expected)) => - Ana(Typ.subst(Var(name), name_expected, item)) + Ana(Typ.subst(Var(name) |> Typ.temp, name_expected, item)) | _ => Ana(item) }; }; @@ -76,8 +80,8 @@ let of_cons_tl = (ctx: Ctx.t, mode: t, hd_ty: Typ.t): t => switch (mode) { | Syn | SynFun - | SynTypFun => Ana(List(hd_ty)) - | Ana(ty) => Ana(List(Typ.matched_list(ctx, ty))) + | SynTypFun => Ana(List(hd_ty) |> Typ.temp) + | Ana(ty) => Ana(List(Typ.matched_list(ctx, ty)) |> Typ.temp) }; let of_list = (ctx: Ctx.t, mode: t): t => @@ -92,8 +96,8 @@ let of_list_concat = (ctx: Ctx.t, mode: t): t => switch (mode) { | Syn | SynFun - | SynTypFun => Ana(List(Unknown(SynSwitch))) - | Ana(ty) => Ana(List(Typ.matched_list(ctx, ty))) + | SynTypFun => Ana(List(Unknown(SynSwitch) |> Typ.temp) |> Typ.temp) + | Ana(ty) => Ana(List(Typ.matched_list(ctx, ty)) |> Typ.temp) }; let of_list_lit = (ctx: Ctx.t, length, mode: t): list(t) => @@ -104,13 +108,13 @@ let ctr_ana_typ = (ctx: Ctx.t, mode: t, ctr: Constructor.t): option(Typ.t) => { a sum type having that ctr as a variant, we consider the ctr's type to be determined by the sum type */ switch (mode) { - | Ana(Arrow(_, ty_ana)) + | Ana({term: Arrow(_, ty_ana), _}) | Ana(ty_ana) => - let* ctrs = Typ.get_sum_constructors(ctx, ty_ana); - let+ (_, ty_entry) = Typ.sum_entry(ctr, ctrs); + let+ ctrs = Typ.get_sum_constructors(ctx, ty_ana); + let ty_entry = ConstructorMap.get_entry(ctr, ctrs); switch (ty_entry) { | None => ty_ana - | Some(ty_in) => Arrow(ty_in, ty_ana) + | Some(ty_in) => Arrow(ty_in, ty_ana) |> Typ.temp }; | _ => None }; @@ -118,14 +122,14 @@ let ctr_ana_typ = (ctx: Ctx.t, mode: t, ctr: Constructor.t): option(Typ.t) => { let of_ctr_in_ap = (ctx: Ctx.t, mode: t, ctr: Constructor.t): option(t) => switch (ctr_ana_typ(ctx, mode, ctr)) { - | Some(Arrow(_) as ty_ana) => Some(Ana(ty_ana)) + | Some({term: Arrow(_), _} as ty_ana) => Some(Ana(ty_ana)) | Some(ty_ana) => /* Consider for example "let _ : +Yo = Yo("lol") in..." Here, the 'Yo' constructor should be in a hole, as it is nullary but used as unary; we reflect this by analyzing against an arrow type. Since we can't guess at what the parameter type might have be, we use Unknown. */ - Some(Ana(Arrow(Unknown(Internal), ty_ana))) + Some(Ana(Arrow(Unknown(Internal) |> Typ.temp, ty_ana) |> Typ.temp)) | None => None }; @@ -161,6 +165,6 @@ let typap_mode: t = SynTypFun; let of_deferred_ap_args = (length: int, ty_ins: list(Typ.t)): list(t) => ( List.length(ty_ins) == length - ? ty_ins : List.init(length, _ => Typ.Unknown(Internal)) + ? ty_ins : List.init(length, _ => Typ.Unknown(Internal) |> Typ.temp) ) |> List.map(ty => Ana(ty)); diff --git a/src/haz3lcore/statics/Self.re b/src/haz3lcore/statics/Self.re index 052bf581ef..cece7d2b0b 100644 --- a/src/haz3lcore/statics/Self.re +++ b/src/haz3lcore/statics/Self.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; /* SELF.re @@ -50,7 +50,7 @@ type error_partial_ap = type exp = | Free(Var.t) | InexhaustiveMatch(exp) - | IsDeferral(Term.UExp.deferral_position) + | IsDeferral(Exp.deferral_position) | IsBadPartialAp(error_partial_ap) | Common(t); @@ -62,7 +62,7 @@ type pat = let join_of = (j: join_type, ty: Typ.t): Typ.t => switch (j) { | Id => ty - | List => List(ty) + | List => List(ty) |> Typ.fresh }; /* What the type would be if the position had been @@ -119,22 +119,24 @@ let of_deferred_ap = (args, ty_ins: list(Typ.t), ty_out: Typ.t): exp => { let actual = List.length(args); if (expected != actual) { IsBadPartialAp(ArityMismatch({expected, actual})); - } else if (List.for_all(Term.UExp.is_deferral, args)) { + } else if (List.for_all(Exp.is_deferral, args)) { IsBadPartialAp(NoDeferredArgs); } else { let ty_ins = List.combine(args, ty_ins) - |> List.filter(((arg, _ty)) => Term.UExp.is_deferral(arg)) + |> List.filter(((arg, _ty)) => Exp.is_deferral(arg)) |> List.map(snd); - let ty_in = List.length(ty_ins) == 1 ? List.hd(ty_ins) : Prod(ty_ins); - Common(Just(Arrow(ty_in, ty_out))); + let ty_in = + List.length(ty_ins) == 1 + ? List.hd(ty_ins) : Prod(ty_ins) |> Typ.fresh; + Common(Just(Arrow(ty_in, ty_out) |> Typ.fresh)); }; }; let add_source = List.map2((id, ty) => Typ.{id, ty}); let match = (ctx: Ctx.t, tys: list(Typ.t), ids: list(Id.t)): t => - switch (Typ.join_all(~empty=Unknown(Internal), ctx, tys)) { + switch (Typ.join_all(~empty=Unknown(Internal) |> Typ.fresh, ctx, tys)) { | None => NoJoin(Id, add_source(ids, tys)) | Some(ty) => Just(ty) }; @@ -142,11 +144,11 @@ let match = (ctx: Ctx.t, tys: list(Typ.t), ids: list(Id.t)): t => let listlit = (~empty, ctx: Ctx.t, tys: list(Typ.t), ids: list(Id.t)): t => switch (Typ.join_all(~empty, ctx, tys)) { | None => NoJoin(List, add_source(ids, tys)) - | Some(ty) => Just(List(ty)) + | Some(ty) => Just(List(ty) |> Typ.fresh) }; let list_concat = (ctx: Ctx.t, tys: list(Typ.t), ids: list(Id.t)): t => - switch (Typ.join_all(~empty=Unknown(Internal), ctx, tys)) { + switch (Typ.join_all(~empty=Unknown(Internal) |> Typ.fresh, ctx, tys)) { | None => NoJoin(List, add_source(ids, tys)) | Some(ty) => Just(ty) }; diff --git a/src/haz3lcore/statics/Statics.re b/src/haz3lcore/statics/Statics.re index 68b30bfaf5..4caa6d7c3f 100644 --- a/src/haz3lcore/statics/Statics.re +++ b/src/haz3lcore/statics/Statics.re @@ -1,5 +1,3 @@ -open Term; - /* STATICS.re This module determines the statics semantics of a program. @@ -36,22 +34,12 @@ module Map = { [@deriving (show({with_path: false}), sexp, yojson)] type t = Id.Map.t(Info.t); - let error_ids = (term_ranges: TermRanges.t, info_map: t): list(Id.t) => + let error_ids = (info_map: t): list(Id.t) => Id.Map.fold( (id, info, acc) => - /* Because of artefacts in Maketerm ID handling, - * there are be situations where ids appear in the - * info_map which do not occur in term_ranges. These - * ids should be purely duplicative, so skipping them - * when iterating over the info_map should have no - * effect, beyond supressing the resulting Not_found exs */ - switch (Id.Map.find_opt(id, term_ranges)) { - | Some(_) when Info.is_error(info) && id == Info.id_of(info) => [ - id, - ...acc, - ] - | _ => acc - }, + /* Second clause is to eliminate non-representative ids, + * which will not be found in the measurements map */ + Info.is_error(info) && id == Info.id_of(info) ? [id, ...acc] : acc, info_map, [], ); @@ -68,7 +56,7 @@ let add_info = (ids: list(Id.t), info: Info.t, m: Map.t): Map.t => ids |> List.fold_left((m, id) => Id.Map.add(id, info, m), m); let rec is_arrow_like = (t: Typ.t) => { - switch (t) { + switch (t |> Typ.term_of) { | Unknown(_) => true | Arrow(_) => true | Forall(_, t) => is_arrow_like(t) @@ -77,57 +65,69 @@ let rec is_arrow_like = (t: Typ.t) => { }; let is_recursive = (ctx, p, def, syn: Typ.t) => { - switch (Term.UPat.get_num_of_vars(p), Term.UExp.get_num_of_functions(def)) { + switch (Pat.get_num_of_vars(p), Exp.get_num_of_functions(def)) { | (Some(num_vars), Some(num_fns)) when num_vars != 0 && num_vars == num_fns => - switch (Typ.normalize(ctx, syn)) { + let norm = Typ.normalize(ctx, syn); + switch (norm |> Typ.term_of) { | Prod(syns) when List.length(syns) == num_vars => syns |> List.for_all(is_arrow_like) - | t when is_arrow_like(t) => num_vars == 1 + | _ when is_arrow_like(norm) => num_vars == 1 | _ => false - } + }; | _ => false }; }; -let typ_exp_binop_bin_int: UExp.op_bin_int => Typ.t = +let typ_exp_binop_bin_int: Operators.op_bin_int => Typ.t = fun - | (Plus | Minus | Times | Power | Divide) as _op => Int + | (Plus | Minus | Times | Power | Divide) as _op => Int |> Typ.temp | ( LessThan | GreaterThan | LessThanOrEqual | GreaterThanOrEqual | Equals | NotEquals ) as _op => - Bool; + Bool |> Typ.temp; -let typ_exp_binop_bin_float: UExp.op_bin_float => Typ.t = +let typ_exp_binop_bin_float: Operators.op_bin_float => Typ.t = fun - | (Plus | Minus | Times | Power | Divide) as _op => Float + | (Plus | Minus | Times | Power | Divide) as _op => Float |> Typ.temp | ( LessThan | GreaterThan | LessThanOrEqual | GreaterThanOrEqual | Equals | NotEquals ) as _op => - Bool; + Bool |> Typ.temp; -let typ_exp_binop_bin_string: UExp.op_bin_string => Typ.t = +let typ_exp_binop_bin_string: Operators.op_bin_string => Typ.t = fun - | Concat => String - | Equals => Bool; + | Concat => String |> Typ.temp + | Equals => Bool |> Typ.temp; -let typ_exp_binop: UExp.op_bin => (Typ.t, Typ.t, Typ.t) = +let typ_exp_binop: Operators.op_bin => (Typ.t, Typ.t, Typ.t) = fun - | Bool(And | Or) => (Bool, Bool, Bool) - | Int(op) => (Int, Int, typ_exp_binop_bin_int(op)) - | Float(op) => (Float, Float, typ_exp_binop_bin_float(op)) - | String(op) => (String, String, typ_exp_binop_bin_string(op)); + | Bool(And | Or) => (Bool |> Typ.temp, Bool |> Typ.temp, Bool |> Typ.temp) + | Int(op) => (Int |> Typ.temp, Int |> Typ.temp, typ_exp_binop_bin_int(op)) + | Float(op) => ( + Float |> Typ.temp, + Float |> Typ.temp, + typ_exp_binop_bin_float(op), + ) + | String(op) => ( + String |> Typ.temp, + String |> Typ.temp, + typ_exp_binop_bin_string(op), + ); -let typ_exp_unop: UExp.op_un => (Typ.t, Typ.t) = +let typ_exp_unop: Operators.op_un => (Typ.t, Typ.t) = fun - | Meta(Unquote) => (Var("$Meta"), Unknown(Free("$Meta"))) - | Bool(Not) => (Bool, Bool) - | Int(Minus) => (Int, Int); + | Meta(Unquote) => ( + Var("$Meta") |> Typ.temp, + Unknown(Internal) |> Typ.temp, + ) + | Bool(Not) => (Bool |> Typ.temp, Bool |> Typ.temp) + | Int(Minus) => (Int |> Typ.temp, Int |> Typ.temp); let rec any_to_info_map = - (~ctx: Ctx.t, ~ancestors, any: any, m: Map.t): (CoCtx.t, Map.t) => + (~ctx: Ctx.t, ~ancestors, any: Any.t, m: Map.t): (CoCtx.t, Map.t) => switch (any) { | Exp(e) => let ({co_ctx, _}: Info.exp, m) = @@ -172,14 +172,14 @@ and uexp_to_info_map = ~mode=Mode.Syn, ~is_in_filter=false, ~ancestors, - {ids, term} as uexp: UExp.t, + {ids, copied: _, term} as uexp: UExp.t, m: Map.t, ) : (Info.exp, Map.t) => { /* Maybe switch mode to syn */ let mode = switch (mode) { - | Ana(Unknown(SynSwitch)) => Mode.Syn + | Ana({term: Unknown(SynSwitch), _}) => Mode.Syn | _ => mode }; let add' = (~self, ~co_ctx, m) => { @@ -212,25 +212,34 @@ and uexp_to_info_map = let go_module = uexp_to_module(~ancestors); let atomic = self => add(~self, ~co_ctx=CoCtx.empty, m); switch (term) { + | Closure(_) => + failwith( + "TODO: implement closure type checking - see how dynamic type assignment does it", + ) | MultiHole(tms) => let (co_ctxs, m) = multi(~ctx, ~ancestors, m, tms); add(~self=IsMulti, ~co_ctx=CoCtx.union(co_ctxs), m); + | Cast(e, t1, t2) + | FailedCast(e, t1, t2) => + let (e, m) = go(~mode=Ana(t1), e, m); + add(~self=Just(t2), ~co_ctx=e.co_ctx, m); | Invalid(token) => atomic(BadToken(token)) - | EmptyHole => atomic(Just(Unknown(Internal))) - | Triv => atomic(Just(Prod([]))) + | EmptyHole => atomic(Just(Unknown(Internal) |> Typ.temp)) | Deferral(position) => add'(~self=IsDeferral(position), ~co_ctx=CoCtx.empty, m) - | Bool(_) => atomic(Just(Bool)) - | Int(_) => atomic(Just(Int)) - | Float(_) => atomic(Just(Float)) - | String(_) => atomic(Just(String)) + | Undefined => atomic(Just(Unknown(Hole(EmptyHole)) |> Typ.temp)) + | Bool(_) => atomic(Just(Bool |> Typ.temp)) + | Int(_) => atomic(Just(Int |> Typ.temp)) + | Float(_) => atomic(Just(Float |> Typ.temp)) + | String(_) => atomic(Just(String |> Typ.temp)) | ListLit(es) => let ids = List.map(UExp.rep_id, es); let modes = Mode.of_list_lit(ctx, List.length(es), mode); let (es, m) = map_m_go(m, modes, es); let tys = List.map(Info.exp_ty, es); add( - ~self=Self.listlit(~empty=Unknown(Internal), ctx, tys, ids), + ~self= + Self.listlit(~empty=Unknown(Internal) |> Typ.temp, ctx, tys, ids), ~co_ctx=CoCtx.union(List.map(Info.exp_co_ctx, es)), m, ); @@ -238,13 +247,13 @@ and uexp_to_info_map = let (hd, m) = go(~mode=Mode.of_cons_hd(ctx, mode), hd, m); let (tl, m) = go(~mode=Mode.of_cons_tl(ctx, mode, hd.ty), tl, m); add( - ~self=Just(List(hd.ty)), + ~self=Just(List(hd.ty) |> Typ.temp), ~co_ctx=CoCtx.union([hd.co_ctx, tl.co_ctx]), m, ); | ListConcat(e1, e2) => let mode = Mode.of_list_concat(ctx, mode); - let ids = List.map(Term.UExp.rep_id, [e1, e2]); + let ids = List.map(UExp.rep_id, [e1, e2]); let (e1, m) = go(~mode, e1, m); let (e2, m) = go(~mode, e2, m); add( @@ -258,21 +267,23 @@ and uexp_to_info_map = ~co_ctx=CoCtx.singleton(name, UExp.rep_id(uexp), Mode.ty_of(mode)), m, ) + | DynamicErrorHole(e, _) | Parens(e) => let (e, m) = go(~mode, e, m); add(~self=Just(e.ty), ~co_ctx=e.co_ctx, m); | UnOp(Meta(Unquote), e) when is_in_filter => let e: UExp.t = { ids: e.ids, + copied: false, term: switch (e.term) { - | Var("e") => UExp.Constructor("$e") - | Var("v") => UExp.Constructor("$v") + | Var("e") => UExp.Constructor("$e", Unknown(Internal) |> Typ.temp) + | Var("v") => UExp.Constructor("$v", Unknown(Internal) |> Typ.temp) | _ => e.term }, }; - let ty_in = Typ.Var("$Meta"); - let ty_out = Typ.Unknown(Internal); + let ty_in = Typ.Var("$Meta") |> Typ.temp; + let ty_out = Typ.Unknown(Internal) |> Typ.temp; let (e, m) = go(~mode=Ana(ty_in), e, m); add(~self=Just(ty_out), ~co_ctx=e.co_ctx, m); | UnOp(op, e) => @@ -284,18 +295,24 @@ and uexp_to_info_map = let (e1, m) = go(~mode=Ana(ty1), e1, m); let (e2, m) = go(~mode=Ana(ty2), e2, m); add(~self=Just(ty_out), ~co_ctx=CoCtx.union([e1.co_ctx, e2.co_ctx]), m); + | BuiltinFun(string) => + add'( + ~self=Self.of_exp_var(Builtins.ctx_init, string), + ~co_ctx=CoCtx.empty, + m, + ) | Tuple(es) => let modes = Mode.of_prod(ctx, mode, List.length(es)); let (es, m) = map_m_go(m, modes, es); add( - ~self=Just(Prod(List.map(Info.exp_ty, es))), + ~self=Just(Prod(List.map(Info.exp_ty, es)) |> Typ.temp), ~co_ctx=CoCtx.union(List.map(Info.exp_co_ctx, es)), m, ); | Test(e) => - let (e, m) = go(~mode=Ana(Bool), e, m); - add(~self=Just(Prod([])), ~co_ctx=e.co_ctx, m); - | Filter(_, cond, body) => + let (e, m) = go(~mode=Ana(Bool |> Typ.temp), e, m); + add(~self=Just(Prod([]) |> Typ.temp), ~co_ctx=e.co_ctx, m); + | Filter(Filter({pat: cond, _}), body) => let (cond, m) = go(~mode=Syn, cond, m, ~is_in_filter=true); let (body, m) = go(~mode, body, m); add( @@ -303,6 +320,9 @@ and uexp_to_info_map = ~co_ctx=CoCtx.union([cond.co_ctx, body.co_ctx]), m, ); + | Filter(Residue(_), body) => + let (body, m) = go(~mode, body, m); + add(~self=Just(body.ty), ~co_ctx=CoCtx.union([body.co_ctx]), m); | Seq(e1, e2) => let (e1, m) = go(~mode=Syn, e1, m); let (e2, m) = go(~mode, e2, m); @@ -325,15 +345,14 @@ and uexp_to_info_map = | IsBadPartialAp(_) | InexhaustiveMatch(_) => atomic(Self.of_ctr(ctx, ctr)) }; - | Ap(fn, arg) - | Pipeline(arg, fn) => + | Ap(_, fn, arg) => let fn_mode = Mode.of_ap(ctx, mode, UExp.ctr_name(fn)); let (fn, m) = go(~mode=fn_mode, fn, m); let (ty_in, ty_out) = Typ.matched_arrow(ctx, fn.ty); let (arg, m) = go(~mode=Ana(ty_in), arg, m); let self: Self.t = Id.is_nullary_ap_flag(arg.term.ids) - && !Typ.is_consistent(ctx, ty_in, Prod([])) + && !Typ.is_consistent(ctx, ty_in, Prod([]) |> Typ.temp) ? BadTrivAp(ty_in) : Just(ty_out); add(~self, ~co_ctx=CoCtx.union([fn.co_ctx, arg.co_ctx]), m); | TypAp(fn, utyp) => @@ -341,10 +360,9 @@ and uexp_to_info_map = let (fn, m) = go(~mode=typfn_mode, fn, m); let (_, m) = utyp_to_info_map(~ctx, ~ancestors, utyp, m); let (option_name, ty_body) = Typ.matched_forall(ctx, fn.ty); - let ty = Term.UTyp.to_typ(ctx, utyp); switch (option_name) { | Some(name) => - add(~self=Just(Typ.subst(ty, name, ty_body)), ~co_ctx=fn.co_ctx, m) + add(~self=Just(Typ.subst(utyp, name, ty_body)), ~co_ctx=fn.co_ctx, m) | None => add(~self=Just(ty_body), ~co_ctx=fn.co_ctx, m) /* invalid name matches with no free type variables. */ }; | DeferredAp(fn, args) => @@ -358,7 +376,7 @@ and uexp_to_info_map = let (args, m) = map_m_go(m, modes, args); let arg_co_ctx = CoCtx.union(List.map(Info.exp_co_ctx, args)); add'(~self, ~co_ctx=CoCtx.union([fn.co_ctx, arg_co_ctx]), m); - | Fun(p, e) => + | Fun(p, e, _, _) => let (mode_pat, mode_body) = Mode.of_arrow(ctx, mode); let (p', _) = go_pat(~is_synswitch=false, ~co_ctx=CoCtx.empty, ~mode=mode_pat, p, m); @@ -367,27 +385,33 @@ and uexp_to_info_map = let (p, m) = go_pat(~is_synswitch=false, ~co_ctx=e.co_ctx, ~mode=mode_pat, p, m); // TODO: factor out code - let unwrapped_self: Self.exp = Common(Just(Arrow(p.ty, e.ty))); + let unwrapped_self: Self.exp = + Common(Just(Arrow(p.ty, e.ty) |> Typ.temp)); let is_exhaustive = p |> Info.pat_constraint |> Incon.is_exhaustive; let self = is_exhaustive ? unwrapped_self : InexhaustiveMatch(unwrapped_self); add'(~self, ~co_ctx=CoCtx.mk(ctx, p.ctx, e.co_ctx), m); - | TypFun({term: Var(name), _} as utpat, body) + | TypFun({term: Var(name), _} as utpat, body, _) when !Ctx.shadows_typ(ctx, name) => let mode_body = Mode.of_forall(ctx, Some(name), mode); let m = utpat_to_info_map(~ctx, ~ancestors, utpat, m) |> snd; let ctx_body = - Ctx.extend_tvar( - ctx, - {name, id: Term.UTPat.rep_id(utpat), kind: Abstract}, - ); + Ctx.extend_tvar(ctx, {name, id: TPat.rep_id(utpat), kind: Abstract}); let (body, m) = go'(~ctx=ctx_body, ~mode=mode_body, body, m); - add(~self=Just(Forall(name, body.ty)), ~co_ctx=body.co_ctx, m); - | TypFun(utpat, body) => + add( + ~self=Just(Forall(utpat, body.ty) |> Typ.temp), + ~co_ctx=body.co_ctx, + m, + ); + | TypFun(utpat, body, _) => let mode_body = Mode.of_forall(ctx, None, mode); let m = utpat_to_info_map(~ctx, ~ancestors, utpat, m) |> snd; let (body, m) = go(~mode=mode_body, body, m); - add(~self=Just(Forall("?", body.ty)), ~co_ctx=body.co_ctx, m); + add( + ~self=Just(Forall(utpat, body.ty) |> Typ.temp), + ~co_ctx=body.co_ctx, + m, + ); | Let(p, def, body) => let (p_syn, _) = go_pat(~is_synswitch=true, ~co_ctx=CoCtx.empty, ~mode=Syn, p, m); @@ -420,16 +444,20 @@ and uexp_to_info_map = let def_ctx = p_ana'.ctx; let (def_base2, _) = go'(~ctx=def_ctx, ~mode=Ana(p_syn.ty), def, m); let ana_ty_fn = ((ty_fn1, ty_fn2), ty_p) => { - ty_p == Typ.Unknown(SynSwitch) && !Typ.eq(ty_fn1, ty_fn2) + Typ.term_of(ty_p) == Typ.Unknown(SynSwitch) + && !Typ.eq(ty_fn1, ty_fn2) ? ty_fn1 : ty_p; }; let ana = - switch ((def_base.ty, def_base2.ty), p_syn.ty) { + switch ( + (def_base.ty |> Typ.term_of, def_base2.ty |> Typ.term_of), + p_syn.ty |> Typ.term_of, + ) { | ((Prod(ty_fns1), Prod(ty_fns2)), Prod(ty_ps)) => let tys = List.map2(ana_ty_fn, List.combine(ty_fns1, ty_fns2), ty_ps); - Typ.Prod(tys); - | ((ty_fn1, ty_fn2), ty_p) => ana_ty_fn((ty_fn1, ty_fn2), ty_p) + Typ.Prod(tys) |> Typ.temp; + | ((_, _), _) => ana_ty_fn((def_base.ty, def_base2.ty), p_syn.ty) }; let (def, m) = go'(~ctx=def_ctx, ~mode=Ana(ana), def, m); (def, def_ctx, m, ty_p_ana); @@ -455,9 +483,20 @@ and uexp_to_info_map = CoCtx.union([def.co_ctx, CoCtx.mk(ctx, p_ana.ctx, body.co_ctx)]), m, ); + | FixF(p, e, _) => + let (p', _) = + go_pat(~is_synswitch=false, ~co_ctx=CoCtx.empty, ~mode, p, m); + let (e', m) = go'(~ctx=p'.ctx, ~mode=Ana(p'.ty), e, m); + let (p'', m) = + go_pat(~is_synswitch=false, ~co_ctx=e'.co_ctx, ~mode, p, m); + add( + ~self=Just(p'.ty), + ~co_ctx=CoCtx.union([CoCtx.mk(ctx, p''.ctx, e'.co_ctx)]), + m, + ); | If(e0, e1, e2) => let branch_ids = List.map(UExp.rep_id, [e1, e2]); - let (cond, m) = go(~mode=Ana(Bool), e0, m); + let (cond, m) = go(~mode=Ana(Bool |> Typ.temp), e0, m); let (cons, m) = go(~mode, e1, m); let (alt, m) = go(~mode, e2, m); add( @@ -595,13 +634,13 @@ and uexp_to_info_map = let unwrapped_self: Self.exp = Common(Self.match(ctx, e_tys, branch_ids)); let constraint_ty = - switch (scrut.ty) { + switch (scrut.ty.term) { | Unknown(_) => map_m(go_pat(~is_synswitch=false, ~co_ctx=CoCtx.empty), ps, m) |> fst |> List.map(Info.pat_ty) - |> Typ.join_all(~empty=Unknown(Internal), ctx) - | ty => Some(ty) + |> Typ.join_all(~empty=Unknown(Internal) |> Typ.temp, ctx) + | _ => Some(scrut.ty) }; let (self, m) = switch (constraint_ty) { @@ -638,6 +677,7 @@ and uexp_to_info_map = ~co_ctx=p.co_ctx, ~mode=p.mode, ~ancestors=p.ancestors, + ~prev_synswitch=None, ~self, ~is_module=false, // Mark patterns as redundant at the top level @@ -690,20 +730,21 @@ and uexp_to_info_map = tentatively add an abtract type to the ctx, representing the speculative rec parameter. */ let (ty_def, ctx_def, ctx_body) = { - let ty_pre = UTyp.to_typ(Ctx.extend_dummy_tvar(ctx, name), utyp); switch (utyp.term) { - | Sum(_) when List.mem(name, Typ.free_vars(ty_pre)) => + | Sum(_) when List.mem(name, Typ.free_vars(utyp)) => /* NOTE: When debugging type system issues it may be beneficial to use a different name than the alias for the recursive parameter */ //let ty_rec = Typ.Rec("α", Typ.subst(Var("α"), name, ty_pre)); - let ty_rec = Typ.Rec(name, ty_pre); + let ty_rec = + Typ.Rec(TPat.Var(name) |> IdTagged.fresh, utyp) |> Typ.temp; let ctx_def = - Ctx.extend_alias(ctx, name, UTPat.rep_id(typat), ty_rec); + Ctx.extend_alias(ctx, name, TPat.rep_id(typat), ty_rec); (ty_rec, ctx_def, ctx_def); - | _ => - let ty = UTyp.to_typ(ctx, utyp); - (ty, ctx, Ctx.extend_alias(ctx, name, UTPat.rep_id(typat), ty)); - }; + | _ => ( + utyp, + ctx, + Ctx.extend_alias(ctx, name, TPat.rep_id(typat), utyp), + ) /* NOTE(yuchen): Below is an alternative implementation that attempts to add a rec whenever type alias is present. It may cause trouble to the runtime, so precede with caution. */ @@ -717,6 +758,7 @@ and uexp_to_info_map = // let ty = Term.UTyp.to_typ(ctx, utyp); // (ty, ctx, Ctx.add_alias(ctx, name, utpat_id(typat), ty)); // }; + }; }; let ctx_body = switch (Typ.get_sum_constructors(ctx, ty_def)) { @@ -726,7 +768,7 @@ and uexp_to_info_map = let ({co_ctx, ty: ty_body, _}: Info.exp, m) = go'(~ctx=ctx_body, ~mode, body, m); /* Make sure types don't escape their scope */ - let ty_escape = Typ.subst(ty_def, name, ty_body); + let ty_escape = Typ.subst(ty_def, typat, ty_body); let m = utyp_to_info_map(~ctx=ctx_def, ~ancestors, utyp, m) |> snd; add(~self=Just(ty_escape), ~co_ctx, m); | Var(_) @@ -748,13 +790,21 @@ and upat_to_info_map = ~ancestors: Info.ancestors, ~mode: Mode.t=Mode.Syn, ~is_module=false, - {ids, term} as upat: UPat.t, + {ids, term, _} as upat: UPat.t, m: Map.t, ) : (Info.pat, Map.t) => { let add = (~self, ~ctx, ~constraint_, m) => { + let prev_synswitch = + switch (Id.Map.find_opt(Pat.rep_id(upat), m)) { + | Some(Info.InfoPat({mode: Syn | SynFun, ty, _})) => Some(ty) + | Some(Info.InfoPat({mode: Ana(_), prev_synswitch, _})) => prev_synswitch + | Some(_) + | None => None + }; let info = Info.derived_pat( + ~prev_synswitch, ~upat, ~ctx, ~co_ctx, @@ -769,7 +819,7 @@ and upat_to_info_map = let atomic = (self, constraint_) => add(~self, ~ctx, ~constraint_, m); let ancestors = [UPat.rep_id(upat)] @ ancestors; let go = upat_to_info_map(~is_synswitch, ~ancestors, ~co_ctx, ~is_module); - let unknown = Typ.Unknown(is_synswitch ? SynSwitch : Internal); + let unknown = Typ.Unknown(is_synswitch ? SynSwitch : Internal) |> Typ.temp; let ctx_fold = (ctx: Ctx.t, m) => List.fold_left2( ((ctx, tys, cons, m), e, mode) => @@ -791,17 +841,19 @@ and upat_to_info_map = add(~self=IsMulti, ~ctx, ~constraint_=Constraint.Hole, m); | Invalid(token) => hole(BadToken(token)) | EmptyHole => hole(Just(unknown)) - | Int(int) => atomic(Just(Int), Constraint.Int(int)) - | Float(float) => atomic(Just(Float), Constraint.Float(float)) - | Triv => atomic(Just(Prod([])), Constraint.Truth) + | Int(int) => atomic(Just(Int |> Typ.temp), Constraint.Int(int)) + | Float(float) => + atomic(Just(Float |> Typ.temp), Constraint.Float(float)) + | Tuple([]) => atomic(Just(Prod([]) |> Typ.temp), Constraint.Truth) | Bool(bool) => atomic( - Just(Bool), + Just(Bool |> Typ.temp), bool ? Constraint.InjL(Constraint.Truth) : Constraint.InjR(Constraint.Truth), ) - | String(string) => atomic(Just(String), Constraint.String(string)) + | String(string) => + atomic(Just(String |> Typ.temp), Constraint.String(string)) | ListLit(ps) => let ids = List.map(UPat.rep_id, ps); let modes = Mode.of_list_lit(ctx, List.length(ps), mode); @@ -823,7 +875,7 @@ and upat_to_info_map = let (tl, m) = go(~ctx=hd.ctx, ~mode=Mode.of_cons_tl(ctx, mode, hd.ty), tl, m); add( - ~self=Just(List(hd.ty)), + ~self=Just(List(hd.ty) |> Typ.temp), ~ctx=tl.ctx, ~constraint_= Constraint.InjR(Constraint.Pair(hd.constraint_, tl.constraint_)), @@ -838,7 +890,11 @@ and upat_to_info_map = hole(BadToken(name)); } else { let ctx_typ = - Info.fixed_typ_pat(ctx, mode, Common(Just(Unknown(Internal)))); + Info.fixed_typ_pat( + ctx, + mode, + Common(Just(Unknown(Internal) |> Typ.temp)), + ); let entry = Ctx.VarEntry({name, id: UPat.rep_id(upat), typ: ctx_typ}); add( ~self=Just(unknown), @@ -857,7 +913,7 @@ and upat_to_info_map = | [hd, ...tl] => Constraint.Pair(hd, cons_fold_tuple(tl)) }; add( - ~self=Just(Prod(tys)), + ~self=Just(Prod(tys) |> Typ.temp), ~ctx, ~constraint_=cons_fold_tuple(cons), m, @@ -865,7 +921,7 @@ and upat_to_info_map = | Parens(p) => let (p, m) = go(~ctx, ~mode, p, m); add(~self=Just(p.ty), ~ctx=p.ctx, ~constraint_=p.constraint_, m); - | Constructor(ctr) => + | Constructor(ctr, _) => if (Mode.is_module_ana(mode, ctx, is_module)) { let ctx_typ = Info.fixed_typ_pat(ctx, mode, Common(Just(Unknown(Internal)))); @@ -916,44 +972,10 @@ and upat_to_info_map = Constraint.of_ap(ctx, mode, ctr, arg.constraint_, Some(ty_out)), m, ); - | TypeAnn(p, ann) => + | Cast(p, ann, _) => let (ann, m) = utyp_to_info_map(~ctx, ~ancestors, ann, m); - let (p, m) = go(~ctx, ~mode=Ana(ann.ty), p, m); - add(~self=Just(ann.ty), ~ctx=p.ctx, ~constraint_=p.constraint_, m); - | TyAlias(typat, utyp) => - let m = utpat_to_info_map(~ctx, ~ancestors, typat, m) |> snd; - switch (typat.term) { - | Var(name) - when !Form.is_base_typ(name) && Ctx.lookup_alias(ctx, name) == None => - let (ty_def, ctx_def, ctx_body) = { - let ty_pre = UTyp.to_typ(Ctx.extend_dummy_tvar(ctx, name), utyp); - switch (utyp.term) { - | Sum(_) when List.mem(name, Typ.free_vars(ty_pre)) => - let ty_rec = Typ.Rec("α", Typ.subst(Var("α"), name, ty_pre)); - let ctx_def = - Ctx.extend_alias(ctx, name, UTPat.rep_id(typat), ty_rec); - (ty_rec, ctx_def, ctx_def); - | _ => - let ty = UTyp.to_typ(ctx, utyp); - (ty, ctx, Ctx.extend_alias(ctx, name, UTPat.rep_id(typat), ty)); - }; - }; - let ctx_body = - switch (Typ.get_sum_constructors(ctx, ty_def)) { - | Some(sm) => Ctx.add_ctrs(ctx_body, name, UTyp.rep_id(utyp), sm) - | None => ctx_body - }; - let m = utyp_to_info_map(~ctx=ctx_def, ~ancestors, utyp, m) |> snd; - add( - ~self=Just(ty_def), - ~ctx=ctx_body, - ~constraint_=Constraint.Truth, - m, - ); - | _ => - let m = utyp_to_info_map(~ctx, ~ancestors, utyp, m) |> snd; - add(~self=Just(unknown), ~ctx, ~constraint_=Constraint.Truth, m); - }; + let (p, m) = go(~ctx, ~mode=Ana(ann.term), p, m); + add(~self=Just(ann.term), ~ctx=p.ctx, ~constraint_=p.constraint_, m); }; } and utyp_to_info_map = @@ -961,7 +983,7 @@ and utyp_to_info_map = ~ctx, ~expects=Info.TypeExpected, ~ancestors, - {ids, term} as utyp: UTyp.t, + {ids, term, _} as utyp: UTyp.t, m: Map.t, ) : (Info.typ, Map.t) => { @@ -972,19 +994,16 @@ and utyp_to_info_map = let ancestors = [UTyp.rep_id(utyp)] @ ancestors; let go' = utyp_to_info_map(~ctx, ~ancestors); let go = go'(~expects=TypeExpected); - //TODO(andrew): make this return free, replacing Typ.free_vars switch (term) { - | MultiHole(tms) => + | Unknown(Hole(MultiHole(tms))) => let (_, m) = multi(~ctx, ~ancestors, m, tms); add(m); - | Invalid(_) - | EmptyHole + | Unknown(_) | Int | Float | Bool | String => add(m) - | Var(_) - | Constructor(_) => + | Var(_) => /* Names are resolved in Info.status_typ */ add(m) | List(t) @@ -993,25 +1012,27 @@ and utyp_to_info_map = let m = go(t1, m) |> snd; let m = go(t2, m) |> snd; add(m); - | Tuple(ts) => + | Prod(ts) => let m = map_m(go, ts, m) |> snd; add(m); | Ap(t1, t2) => - let ty_in = UTyp.to_typ(ctx, t2); let t1_mode: Info.typ_expects = switch (expects) { | VariantExpected(m, sum_ty) => - ConstructorExpected(m, Arrow(ty_in, sum_ty)) - | _ => ConstructorExpected(Unique, Arrow(ty_in, Unknown(Internal))) + ConstructorExpected(m, Arrow(t2, sum_ty) |> Typ.temp) + | _ => + ConstructorExpected( + Unique, + Arrow(t2, Unknown(Internal) |> Typ.temp) |> Typ.temp, + ) }; let m = go'(~expects=t1_mode, t1, m) |> snd; let m = go'(~expects=TypeExpected, t2, m) |> snd; add(m); | Sum(variants) => - let ty_sum = UTyp.to_typ(ctx, utyp); let (m, _) = List.fold_left( - variant_to_info_map(~ctx, ~ancestors, ~ty_sum), + variant_to_info_map(~ctx, ~ancestors, ~ty_sum=utyp), (m, []), variants, ); @@ -1043,10 +1064,7 @@ and utyp_to_info_map = add(m); | Forall({term: Var(name), _} as utpat, tbody) => let body_ctx = - Ctx.extend_tvar( - ctx, - {name, id: Term.UTPat.rep_id(utpat), kind: Abstract}, - ); + Ctx.extend_tvar(ctx, {name, id: TPat.rep_id(utpat), kind: Abstract}); let m = utyp_to_info_map( tbody, @@ -1066,10 +1084,7 @@ and utyp_to_info_map = add(m); // TODO: check with andrew | Rec({term: Var(name), _} as utpat, tbody) => let body_ctx = - Ctx.extend_tvar( - ctx, - {name, id: Term.UTPat.rep_id(utpat), kind: Abstract}, - ); + Ctx.extend_tvar(ctx, {name, id: TPat.rep_id(utpat), kind: Abstract}); let m = utyp_to_info_map( tbody, @@ -1090,13 +1105,13 @@ and utyp_to_info_map = }; } and utpat_to_info_map = - (~ctx, ~ancestors, {ids, term} as utpat: UTPat.t, m: Map.t) + (~ctx, ~ancestors, {ids, term, _} as utpat: TPat.t, m: Map.t) : (Info.tpat, Map.t) => { let add = m => { let info = Info.derived_tpat(~utpat, ~ctx, ~ancestors); (info, add_info(ids, InfoTPat(info), m)); }; - let ancestors = [UTPat.rep_id(utpat)] @ ancestors; + let ancestors = [TPat.rep_id(utpat)] @ ancestors; switch (term) { | MultiHole(tms) => let (_, m) = multi(~ctx, ~ancestors, m, tms); @@ -1500,7 +1515,13 @@ and uexp_to_module = } and variant_to_info_map = - (~ctx, ~ancestors, ~ty_sum, (m, ctrs), uty: UTyp.variant) => { + ( + ~ctx, + ~ancestors, + ~ty_sum, + (m, ctrs), + uty: ConstructorMap.variant(UTyp.t), + ) => { let go = expects => utyp_to_info_map(~ctx, ~ancestors, ~expects); switch (uty) { | BadEntry(uty) => @@ -1513,7 +1534,7 @@ and variant_to_info_map = List.mem(ctr, ctrs) ? Duplicate : Unique, ty_sum, ), - {term: Constructor(ctr), ids}, + {term: Var(ctr), ids, copied: false}, m, ) |> snd; @@ -1526,6 +1547,48 @@ and variant_to_info_map = }; }; +let mk = + Core.Memo.general(~cache_size_bound=1000, (ctx, e) => { + uexp_to_info_map(~ctx, ~ancestors=[], e, Id.Map.empty) |> snd + }); + +let mk = (core: CoreSettings.t, ctx, exp) => + core.statics ? mk(ctx, exp) : Id.Map.empty; + +let get_error_at = (info_map: Map.t, id: Id.t) => { + id + |> Id.Map.find_opt(_, info_map) + |> Option.bind( + _, + fun + | InfoExp(e) => Some(e) + | _ => None, + ) + |> Option.bind(_, e => + switch (e.status) { + | InHole(err_info) => Some(err_info) + | NotInHole(_) => None + } + ); +}; + +let get_pat_error_at = (info_map: Map.t, id: Id.t) => { + id + |> Id.Map.find_opt(_, info_map) + |> Option.bind( + _, + fun + | InfoPat(e) => Some(e) + | _ => None, + ) + |> Option.bind(_, e => + switch (e.status) { + | InHole(err_info) => Some(err_info) + | NotInHole(_) => None + } + ); +}; + let collect_errors = (map: Map.t): list((Id.t, Info.error)) => Id.Map.fold( (id, info: Info.t, acc) => diff --git a/src/haz3lcore/statics/Term.re b/src/haz3lcore/statics/Term.re index 7e5b518bb4..2075968433 100644 --- a/src/haz3lcore/statics/Term.re +++ b/src/haz3lcore/statics/Term.re @@ -1,437 +1,246 @@ -/* TERM - - These data structures define the term structures on which - the static and dynamic semantics of the language are based. - Each sort has a corresponding U module. - - The contained cls type lists the terms of that sort, and - should be in 1-1 correspondence with the term type which - is used to build composite terms. - - This is wrapped in a record type to associate a unique id - with each term. These unique ids are the same as from the - tile structure from the syntax module, as there is a 1-1 - correspondence between terms and tiles. - - TODO: add tests to check if there are forms and/or terms - without correponding syntax classes */ - -include TermBase.Any; -type any = t; - -module UTPat = { - [@deriving (show({with_path: false}), sexp, yojson)] - type cls = - | Invalid - | EmptyHole - | MultiHole - | Var; - - include TermBase.UTPat; - - let rep_id = ({ids, _}) => { - assert(ids != []); - List.hd(ids); - }; - - let hole = (tms: list(any)) => - switch (tms) { - | [] => EmptyHole - | [_, ..._] => MultiHole(tms) - }; - - let cls_of_term: term => cls = - fun - | Invalid(_) => Invalid - | EmptyHole => EmptyHole - | MultiHole(_) => MultiHole - | Var(_) => Var; - - let show_cls: cls => string = - fun - | Invalid => "Invalid type binding name" - | MultiHole => "Broken type binding" - | EmptyHole => "Empty type binding hole" - | Var => "Type binding"; - - let tyvar_of_utpat = ({ids: _, term}) => - switch (term) { - | Var(x) => Some(x) - | _ => None - }; -}; - -module UTyp = { - [@deriving (show({with_path: false}), sexp, yojson)] - type cls = - | Invalid - | EmptyHole - | MultiHole - | Int - | Float - | Bool - | String - | Arrow - | Tuple - | Sum - | List - | Var - | Constructor - | Module - | ModuleVar - | Parens - | Ap - | Dot - | Forall - | Rec; - - include TermBase.UTyp; - - let rep_id = ({ids, _}: t) => { - assert(ids != []); - List.hd(ids); - }; - - let hole = (tms: list(any)) => - switch (tms) { - | [] => EmptyHole - | [_, ..._] => MultiHole(tms) - }; - - let cls_of_term: term => cls = - fun - | Invalid(_) => Invalid - | EmptyHole => EmptyHole - | MultiHole(_) => MultiHole - | Int => Int - | Float => Float - | Bool => Bool - | String => String - | List(_) => List - | Arrow(_) => Arrow - | Var(_) => Var - | Constructor(_) => Constructor - | Tuple(_) => Tuple - | Parens(_) => Parens - | Module(_) => Module - | Ap(_) => Ap - | Dot(_) => Dot - | Sum(_) => Sum - | Forall(_) => Forall - | Rec(_) => Rec; - - let show_cls: cls => string = - fun - | Invalid => "Invalid type" - | MultiHole => "Broken type" - | EmptyHole => "Empty type hole" - | Int - | Float - | String - | Bool => "Base type" - | Var => "Type variable" - | Constructor => "Sum constructor" - | List => "List type" - | Arrow => "Function type" - | Tuple => "Product type" - | Sum => "Sum type" - | Parens => "Parenthesized type" - | Module => "Module type" - | ModuleVar => "Module path" - | Dot => "Member type" - | Ap => "Constructor application" - | Forall => "Forall Type" - | Rec => "Recursive Type"; - - let rec is_arrow = (typ: t) => { - switch (typ.term) { - | Parens(typ) => is_arrow(typ) - | Arrow(_) => true - | Invalid(_) - | EmptyHole - | MultiHole(_) - | Int - | Float - | Bool - | String - | List(_) - | Tuple(_) - | Var(_) - | Constructor(_) - | Ap(_) - | Module(_) - | Dot(_) - | Sum(_) - | Forall(_) - | Rec(_) => false - }; - }; - - let rec is_forall = (typ: t) => { - switch (typ.term) { - | Parens(typ) => is_forall(typ) - | Forall(_) => true - | Invalid(_) - | EmptyHole - | MultiHole(_) - | Int - | Float - | Bool - | String - | Arrow(_) - | List(_) - | Tuple(_) - | Var(_) - | Constructor(_) - | Module(_) - | Dot(_) - | Ap(_) - | Sum(_) - | Rec(_) => false - }; - }; - - /* Converts a syntactic type into a semantic type */ - let rec to_typ: (Ctx.t, t) => Typ.t = - (ctx, utyp) => - switch (utyp.term) { - | Invalid(_) - | MultiHole(_) => Unknown(Internal) - | EmptyHole => Unknown(TypeHole) - | Bool => Bool - | Int => Int - | Float => Float - | String => String - | Var(name) => - switch (Ctx.lookup_tvar(ctx, name)) { - | Some(_) => Var(name) - | None => Unknown(Free(name)) - } - | Arrow(u1, u2) => Arrow(to_typ(ctx, u1), to_typ(ctx, u2)) - | Tuple(us) => Prod(List.map(to_typ(ctx), us)) - | Sum(uts) => Sum(to_ctr_map(ctx, uts)) - | List(u) => List(to_typ(ctx, u)) - | Parens(u) => to_typ(ctx, u) - | Forall({term: Var(name), _} as utpat, tbody) => - let ctx = - Ctx.extend_tvar( - ctx, - {name, id: UTPat.rep_id(utpat), kind: Abstract}, - ); - Forall(name, to_typ(ctx, tbody)); - // Rec is same as Forall - | Rec({term: Var(name), _} as utpat, tbody) => - let ctx = - Ctx.extend_tvar( - ctx, - {name, id: UTPat.rep_id(utpat), kind: Abstract}, - ); - Rec(name, to_typ(ctx, tbody)); - | Forall({term: Invalid(_), _}, tbody) - | Forall({term: EmptyHole, _}, tbody) - | Forall({term: MultiHole(_), _}, tbody) => - Forall("?", to_typ(ctx, tbody)) - | Rec({term: Invalid(_), _}, tbody) - | Rec({term: EmptyHole, _}, tbody) - | Rec({term: MultiHole(_), _}, tbody) => Rec("?", to_typ(ctx, tbody)) - /* The below cases should occur only inside sums */ - | Constructor(_) - | Ap(_) => Unknown(Internal) - | Module(u) => - let rep_id_p = ({ids, _}: TermBase.UPat.t) => { - assert(ids != []); - List.hd(ids); - }; - let rep_id_t = ({ids, _}: TermBase.UTPat.t) => { - assert(ids != []); - List.hd(ids); - }; - let rec upat_to_ctx = - ( - (outer_ctx: Ctx.t, inner_ctx: Ctx.t, incomplete: bool), - upat: TermBase.UPat.t, - ) => { - switch (upat.term) { - | Invalid(_) - | EmptyHole - | MultiHole(_) - | Int(_) - | Float(_) - | Bool(_) - | String(_) - | Triv - | ListLit(_) - | Cons(_) - | Tuple(_) - | Wild - | Ap(_) => (outer_ctx, inner_ctx, incomplete) - // | Wild => (outer_ctx, inner_ctx, true) // disabled due to casting issues. - | TypeAnn(var, utyp1) => - switch (var.term, utyp1.term) { - | (Var(name), _) - // All constructors appearing here should be Modules. - | (Constructor(name), _) => ( - outer_ctx, - [ - VarEntry({ - name, - id: rep_id_p(var), - typ: to_typ(outer_ctx, utyp1), - }), - ...inner_ctx, - ], - incomplete, - ) - | _ => (outer_ctx, inner_ctx, incomplete) - } - | Var(name) => ( - outer_ctx, - [ - VarEntry({name, id: rep_id_p(upat), typ: Unknown(TypeHole)}), - ...inner_ctx, - ], - incomplete, - ) - | Constructor(name) => ( - outer_ctx, - [ - ConstructorEntry({ - name, - id: rep_id_p(upat), - typ: Unknown(TypeHole), - }), - ...inner_ctx, - ], - incomplete, - ) - | TyAlias(typat, utyp) => - switch (typat.term) { - | Var(name) - when - !Form.is_base_typ(name) - && Ctx.lookup_alias(inner_ctx, name) == None => - /* NOTE(andrew): See TyAlias in Statics.uexp_to_info_map */ - let (ty_def, ctx_body, new_inner) = { - let ty_pre = - to_typ(Ctx.extend_dummy_tvar(outer_ctx, name), utyp); - switch (utyp.term) { - | Sum(_) when List.mem(name, Typ.free_vars(ty_pre)) => - let ty_rec = - Typ.Rec("α", Typ.subst(Var("α"), name, ty_pre)); - ( - ty_rec, - Ctx.extend_alias( - outer_ctx, - name, - rep_id_t(typat), - ty_rec, - ), - Ctx.extend_alias( - inner_ctx, - name, - rep_id_t(typat), - ty_rec, - ), - ); - | _ => - let ty = to_typ(outer_ctx, utyp); - ( - ty, - Ctx.extend_alias(outer_ctx, name, rep_id_t(typat), ty), - Ctx.extend_alias(inner_ctx, name, rep_id_t(typat), ty), - ); - }; - }; - switch (Typ.get_sum_constructors(outer_ctx, ty_def)) { - | Some(sm) => ( - Ctx.add_ctrs(ctx_body, name, rep_id(utyp), sm), - Ctx.add_ctrs(new_inner, name, rep_id(utyp), sm), - incomplete, - ) - | None => (ctx_body, new_inner, incomplete) - }; - - | _ => (outer_ctx, inner_ctx, incomplete) - } - | Parens(p) => upat_to_ctx((outer_ctx, inner_ctx, incomplete), p) - }; - }; - let rec get_Tuple: TermBase.UPat.t => Typ.t = ( - ut => - switch (ut.term) { - | Tuple(us) => - let (_, inner_ctx, incomplete) = - List.fold_left(upat_to_ctx, (ctx, [], false), us); - Module({inner_ctx, incomplete}); - | Parens(p) => get_Tuple(p) - | TypeAnn(_) - | Var(_) - | Constructor(_) - | TyAlias(_) - | Invalid(_) - | EmptyHole - | MultiHole(_) - | Wild - | Int(_) - | Float(_) - | Bool(_) - | String(_) - | Triv - | ListLit(_) - | Cons(_) - | Ap(_) => - let (_, inner_ctx, incomplete) = - upat_to_ctx((ctx, [], false), ut); - Module({inner_ctx, incomplete}); - } - ); - get_Tuple(u); - | Dot(typ1, typ2) => - /** Currently, the only possible way to introduce modules are through - a variable in Constructor form. - - Maybe better to put to_typ in Statics? */ - open Util.OptUtil.Syntax; - let rec inner_normalize = (ctx: Ctx.t, ty: Typ.t): option(Typ.t) => - switch (ty) { - | Var(x) => - let* ty = Ctx.lookup_alias(ctx, x); - inner_normalize(ctx, ty); - | _ => Some(ty) - }; - let res = { - let* name = Module.get_tyname(typ2); - let+ (tag_name, inner_ctx) = Module.get_module("", ctx, typ1); - let ty = { - let* inner_ctx = inner_ctx; - inner_normalize(inner_ctx, to_typ(inner_ctx, typ2)); - }; - (tag_name ++ name, ty); - }; - switch (res) { - | Some((name, Some(ty))) => Member(name, ty) - | Some((name, None)) => Member(name, Unknown(Internal)) - | None => Member("?", Unknown(Internal)) - }; - } - and to_variant: - (Ctx.t, variant) => option(ConstructorMap.binding(option(Typ.t))) = - ctx => - fun - | Variant(ctr, _, u) => Some((ctr, Option.map(to_typ(ctx), u))) - | BadEntry(_) => None - and to_ctr_map = (ctx: Ctx.t, uts: list(variant)): Typ.sum_map => { - List.fold_left( - (acc, ut) => - List.find_opt(((ctr, _)) => ctr == fst(ut), acc) == None - ? acc @ [ut] : acc, - [], - List.filter_map(to_variant(ctx), uts), - ); - }; -}; - -module UPat = { +// module UTyp = { + +// /* Converts a syntactic type into a semantic type */ +// let rec to_typ: (Ctx.t, t) => Typ.t = +// (ctx, utyp) => +// switch (utyp.term) { +// | Invalid(_) +// | MultiHole(_) => Unknown(Internal) +// | EmptyHole => Unknown(TypeHole) +// | Bool => Bool +// | Int => Int +// | Float => Float +// | String => String +// | Var(name) => +// switch (Ctx.lookup_tvar(ctx, name)) { +// | Some(_) => Var(name) +// | None => Unknown(Free(name)) +// } +// | Arrow(u1, u2) => Arrow(to_typ(ctx, u1), to_typ(ctx, u2)) +// | Tuple(us) => Prod(List.map(to_typ(ctx), us)) +// | Sum(uts) => Sum(to_ctr_map(ctx, uts)) +// | List(u) => List(to_typ(ctx, u)) +// | Parens(u) => to_typ(ctx, u) +// | Forall({term: Var(name), _} as utpat, tbody) => +// let ctx = +// Ctx.extend_tvar( +// ctx, +// {name, id: UTPat.rep_id(utpat), kind: Abstract}, +// ); +// Forall(name, to_typ(ctx, tbody)); +// // Rec is same as Forall +// | Rec({term: Var(name), _} as utpat, tbody) => +// let ctx = +// Ctx.extend_tvar( +// ctx, +// {name, id: UTPat.rep_id(utpat), kind: Abstract}, +// ); +// Rec(name, to_typ(ctx, tbody)); +// | Forall({term: Invalid(_), _}, tbody) +// | Forall({term: EmptyHole, _}, tbody) +// | Forall({term: MultiHole(_), _}, tbody) => +// Forall("?", to_typ(ctx, tbody)) +// | Rec({term: Invalid(_), _}, tbody) +// | Rec({term: EmptyHole, _}, tbody) +// | Rec({term: MultiHole(_), _}, tbody) => Rec("?", to_typ(ctx, tbody)) +// /* The below cases should occur only inside sums */ +// | Constructor(_) +// | Ap(_) => Unknown(Internal) +// | Module(u) => +// let rep_id_p = ({ids, _}: TermBase.UPat.t) => { +// assert(ids != []); +// List.hd(ids); +// }; +// let rep_id_t = ({ids, _}: TermBase.UTPat.t) => { +// assert(ids != []); +// List.hd(ids); +// }; +// let rec upat_to_ctx = +// ( +// (outer_ctx: Ctx.t, inner_ctx: Ctx.t, incomplete: bool), +// upat: TermBase.UPat.t, +// ) => { +// switch (upat.term) { +// | Invalid(_) +// | EmptyHole +// | MultiHole(_) +// | Int(_) +// | Float(_) +// | Bool(_) +// | String(_) +// | Triv +// | ListLit(_) +// | Cons(_) +// | Tuple(_) +// | Wild +// | Ap(_) => (outer_ctx, inner_ctx, incomplete) +// // | Wild => (outer_ctx, inner_ctx, true) // disabled due to casting issues. +// | TypeAnn(var, utyp1) => +// switch (var.term, utyp1.term) { +// | (Var(name), _) +// // All constructors appearing here should be Modules. +// | (Constructor(name), _) => ( +// outer_ctx, +// [ +// VarEntry({ +// name, +// id: rep_id_p(var), +// typ: to_typ(outer_ctx, utyp1), +// }), +// ...inner_ctx, +// ], +// incomplete, +// ) +// | _ => (outer_ctx, inner_ctx, incomplete) +// } +// | Var(name) => ( +// outer_ctx, +// [ +// VarEntry({name, id: rep_id_p(upat), typ: Unknown(TypeHole)}), +// ...inner_ctx, +// ], +// incomplete, +// ) +// | Constructor(name) => ( +// outer_ctx, +// [ +// ConstructorEntry({ +// name, +// id: rep_id_p(upat), +// typ: Unknown(TypeHole), +// }), +// ...inner_ctx, +// ], +// incomplete, +// ) +// | TyAlias(typat, utyp) => +// switch (typat.term) { +// | Var(name) +// when +// !Form.is_base_typ(name) +// && Ctx.lookup_alias(inner_ctx, name) == None => +// /* NOTE(andrew): See TyAlias in Statics.uexp_to_info_map */ +// let (ty_def, ctx_body, new_inner) = { +// let ty_pre = +// to_typ(Ctx.extend_dummy_tvar(outer_ctx, name), utyp); +// switch (utyp.term) { +// | Sum(_) when List.mem(name, Typ.free_vars(ty_pre)) => +// let ty_rec = +// Typ.Rec("α", Typ.subst(Var("α"), name, ty_pre)); +// ( +// ty_rec, +// Ctx.extend_alias( +// outer_ctx, +// name, +// rep_id_t(typat), +// ty_rec, +// ), +// Ctx.extend_alias( +// inner_ctx, +// name, +// rep_id_t(typat), +// ty_rec, +// ), +// ); +// | _ => +// let ty = to_typ(outer_ctx, utyp); +// ( +// ty, +// Ctx.extend_alias(outer_ctx, name, rep_id_t(typat), ty), +// Ctx.extend_alias(inner_ctx, name, rep_id_t(typat), ty), +// ); +// }; +// }; +// switch (Typ.get_sum_constructors(outer_ctx, ty_def)) { +// | Some(sm) => ( +// Ctx.add_ctrs(ctx_body, name, rep_id(utyp), sm), +// Ctx.add_ctrs(new_inner, name, rep_id(utyp), sm), +// incomplete, +// ) +// | None => (ctx_body, new_inner, incomplete) +// }; + +// | _ => (outer_ctx, inner_ctx, incomplete) +// } +// | Parens(p) => upat_to_ctx((outer_ctx, inner_ctx, incomplete), p) +// }; +// }; +// let rec get_Tuple: TermBase.UPat.t => Typ.t = ( +// ut => +// switch (ut.term) { +// | Tuple(us) => +// let (_, inner_ctx, incomplete) = +// List.fold_left(upat_to_ctx, (ctx, [], false), us); +// Module({inner_ctx, incomplete}); +// | Parens(p) => get_Tuple(p) +// | TypeAnn(_) +// | Var(_) +// | Constructor(_) +// | TyAlias(_) +// | Invalid(_) +// | EmptyHole +// | MultiHole(_) +// | Wild +// | Int(_) +// | Float(_) +// | Bool(_) +// | String(_) +// | Triv +// | ListLit(_) +// | Cons(_) +// | Ap(_) => +// let (_, inner_ctx, incomplete) = +// upat_to_ctx((ctx, [], false), ut); +// Module({inner_ctx, incomplete}); +// } +// ); +// get_Tuple(u); +// | Dot(typ1, typ2) => +// /** Currently, the only possible way to introduce modules are through +// a variable in Constructor form. + +// Maybe better to put to_typ in Statics? */ +// open Util.OptUtil.Syntax; +// let rec inner_normalize = (ctx: Ctx.t, ty: Typ.t): option(Typ.t) => +// switch (ty) { +// | Var(x) => +// let* ty = Ctx.lookup_alias(ctx, x); +// inner_normalize(ctx, ty); +// | _ => Some(ty) +// }; +// let res = { +// let* name = Module.get_tyname(typ2); +// let+ (tag_name, inner_ctx) = Module.get_module("", ctx, typ1); +// let ty = { +// let* inner_ctx = inner_ctx; +// inner_normalize(inner_ctx, to_typ(inner_ctx, typ2)); +// }; +// (tag_name ++ name, ty); +// }; +// switch (res) { +// | Some((name, Some(ty))) => Member(name, ty) +// | Some((name, None)) => Member(name, Unknown(Internal)) +// | None => Member("?", Unknown(Internal)) +// }; +// } +// and to_variant: +// (Ctx.t, variant) => option(ConstructorMap.binding(option(Typ.t))) = +// ctx => +// fun +// | Variant(ctr, _, u) => Some((ctr, Option.map(to_typ(ctx), u))) +// | BadEntry(_) => None +// and to_ctr_map = (ctx: Ctx.t, uts: list(variant)): Typ.sum_map => { +// List.fold_left( +// (acc, ut) => +// List.find_opt(((ctr, _)) => ctr == fst(ut), acc) == None +// ? acc @ [ut] : acc, +// [], +// List.filter_map(to_variant(ctx), uts), +// ); +// }; +// }; + +module Pat = { [@deriving (show({with_path: false}), sexp, yojson)] type cls = | Invalid @@ -442,7 +251,6 @@ module UPat = { | Float | Bool | String - | Triv | ListLit | Constructor | Cons @@ -451,17 +259,22 @@ module UPat = { | Tuple | Parens | Ap - | TypeAnn - | TyAlias; + | Cast; - include TermBase.UPat; + include TermBase.Pat; let rep_id = ({ids, _}: t) => { assert(ids != []); List.hd(ids); }; - let hole = (tms: list(any)) => + let term_of: t => TermBase.Pat.term = IdTagged.term_of; + + let unwrap: t => (term, term => t) = IdTagged.unwrap; + + let fresh: term => t = IdTagged.fresh; + + let hole = (tms: list(TermBase.Any.t)) => switch (tms) { | [] => EmptyHole | [_, ..._] => MultiHole(tms) @@ -477,7 +290,6 @@ module UPat = { | Float(_) => Float | Bool(_) => Bool | String(_) => String - | Triv => Triv | ListLit(_) => ListLit | Constructor(_) => Constructor | Cons(_) => Cons @@ -485,8 +297,8 @@ module UPat = { | Tuple(_) => Tuple | Parens(_) => Parens | Ap(_) => Ap - | TypeAnn(_) => TypeAnn - | TyAlias(_) => TyAlias; + | TyAlias(_) => TyAlias + | Cast(_) => Cast; let show_cls: cls => string = fun @@ -498,7 +310,6 @@ module UPat = { | Float => "Float literal" | Bool => "Boolean literal" | String => "String literal" - | Triv => "Trivial literal" | ListLit => "List literal" | Constructor => "Constructor" | Cons => "Cons" @@ -508,12 +319,12 @@ module UPat = { | Parens => "Parenthesized pattern" | Ap => "Constructor application" | TyAlias => "Type alias definition pattern" - | TypeAnn => "Annotation"; + | Cast => "Annotation"; let rec is_var = (pat: t) => { switch (pat.term) { | Parens(pat) - | TypeAnn(pat, _) => is_var(pat) + | Cast(pat, _, _) => is_var(pat) | Var(_) => true | TyAlias(_) | Invalid(_) @@ -524,7 +335,6 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Tuple(_) @@ -536,8 +346,8 @@ module UPat = { let rec is_fun_var = (pat: t) => { switch (pat.term) { | Parens(pat) => is_fun_var(pat) - | TypeAnn(pat, typ) => - is_var(pat) && (UTyp.is_arrow(typ) || UTyp.is_forall(typ)) + | Cast(pat, typ, _) => + is_var(pat) && (UTyp.is_arrow(typ) || Typ.is_forall(typ)) | Invalid(_) | EmptyHole | MultiHole(_) @@ -546,7 +356,6 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Var(_) @@ -571,11 +380,10 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Var(_) - | TypeAnn(_) + | Cast(_) | Constructor(_) | TyAlias(_) | Ap(_) => false @@ -587,7 +395,7 @@ module UPat = { || ( switch (pat.term) { | Parens(pat) - | TypeAnn(pat, _) => is_tuple_of_vars(pat) + | Cast(pat, _, _) => is_tuple_of_vars(pat) | Tuple(pats) => pats |> List.for_all(is_var) | Invalid(_) | EmptyHole @@ -597,7 +405,6 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Var(_) @@ -609,10 +416,10 @@ module UPat = { let rec get_var = (pat: t) => { switch (pat.term) { - | Parens(pat) - | TypeAnn(pat, _) => get_var(pat) + | Parens(pat) => get_var(pat) | Var(x) => Some(x) | TyAlias(_) + | Cast(x, _, _) => get_var(x) | Invalid(_) | EmptyHole | MultiHole(_) @@ -621,7 +428,6 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Tuple(_) @@ -633,8 +439,8 @@ module UPat = { let rec get_fun_var = (pat: t) => { switch (pat.term) { | Parens(pat) => get_fun_var(pat) - | TypeAnn(pat, typ) => - if (UTyp.is_arrow(typ) || UTyp.is_forall(typ)) { + | Cast(pat, t1, _) => + if (Typ.is_arrow(t1) || UTyp.is_forall(t1)) { get_var(pat) |> Option.map(var => var); } else { None; @@ -647,7 +453,6 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Var(_) @@ -691,7 +496,7 @@ module UPat = { | None => switch (pat.term) { | Parens(pat) - | TypeAnn(pat, _) => get_bindings(pat) + | Cast(pat, _, _) => get_bindings(pat) | Tuple(pats) => let vars = pats |> List.map(get_var); if (List.exists(Option.is_none, vars)) { @@ -707,7 +512,6 @@ module UPat = { | Float(_) | Bool(_) | String(_) - | Triv | ListLit(_) | Cons(_, _) | Var(_) @@ -717,23 +521,51 @@ module UPat = { } }; + let rec get_num_of_vars = (pat: t) => + if (is_var(pat)) { + Some(1); + } else { + switch (pat.term) { + | Parens(pat) + | Cast(pat, _, _) => get_num_of_vars(pat) + | Tuple(pats) => + is_tuple_of_vars(pat) ? Some(List.length(pats)) : None + | Invalid(_) + | EmptyHole + | MultiHole(_) + | Wild + | Int(_) + | Float(_) + | Bool(_) + | String(_) + | ListLit(_) + | Cons(_, _) + | Var(_) + | Constructor(_) + | Ap(_) => None + }; + }; + let ctr_name = (p: t): option(Constructor.t) => switch (p.term) { - | Constructor(name) => Some(name) + | Constructor(name, _) => Some(name) | _ => None }; }; -module UExp = { - include TermBase.UExp; +module Exp = { + include TermBase.Exp; [@deriving (show({with_path: false}), sexp, yojson)] type cls = | Invalid | EmptyHole | MultiHole - | Triv + | StaticErrorHole + | DynamicErrorHole + | FailedCast | Deferral + | Undefined | Bool | Int | Float @@ -749,6 +581,7 @@ module UExp = { | Module | ModuleVar | Dot + | FixF | TyAlias | Ap | TypAp @@ -758,31 +591,35 @@ module UExp = { | Seq | Test | Filter + | Closure | Parens | Cons - | UnOp(op_un) - | BinOp(op_bin) + | UnOp(Operators.op_un) + | BinOp(Operators.op_bin) + | BuiltinFun | Match + | Cast | ListConcat; - let hole = (tms: list(any)): term => + let hole = (tms: list(TermBase.Any.t)): term => switch (tms) { | [] => EmptyHole | [_, ..._] => MultiHole(tms) }; - let rep_id = ({ids, _}) => { - assert(ids != []); - List.hd(ids); - }; + let rep_id: t => Id.t = IdTagged.rep_id; + let fresh: term => t = IdTagged.fresh; + let unwrap: t => (term, term => t) = IdTagged.unwrap; let cls_of_term: term => cls = fun | Invalid(_) => Invalid | EmptyHole => EmptyHole | MultiHole(_) => MultiHole - | Triv => Triv + | DynamicErrorHole(_) => DynamicErrorHole + | FailedCast(_) => FailedCast | Deferral(_) => Deferral + | Undefined => Undefined | Bool(_) => Bool | Int(_) => Int | Float(_) => Float @@ -796,92 +633,35 @@ module UExp = { | Let(_) => Let | Module(_) => Module | Dot(_) => Dot + | FixF(_) => FixF | TyAlias(_) => TyAlias | Ap(_) => Ap | TypAp(_) => TypAp | DeferredAp(_) => DeferredAp - | Pipeline(_) => Pipeline | If(_) => If | Seq(_) => Seq | Test(_) => Test | Filter(_) => Filter + | Closure(_) => Closure | Parens(_) => Parens | Cons(_) => Cons | ListConcat(_) => ListConcat | UnOp(op, _) => UnOp(op) | BinOp(op, _, _) => BinOp(op) - | Match(_) => Match; - - let show_op_un_meta: op_un_meta => string = - fun - | Unquote => "Un-quotation"; - - let show_op_un_bool: op_un_bool => string = - fun - | Not => "Boolean Negation"; - - let show_op_un_int: op_un_int => string = - fun - | Minus => "Integer Negation"; - - let show_unop: op_un => string = - fun - | Meta(op) => show_op_un_meta(op) - | Bool(op) => show_op_un_bool(op) - | Int(op) => show_op_un_int(op); - - let show_op_bin_bool: op_bin_bool => string = - fun - | And => "Boolean Conjunction" - | Or => "Boolean Disjunction"; - - let show_op_bin_int: op_bin_int => string = - fun - | Plus => "Integer Addition" - | Minus => "Integer Subtraction" - | Times => "Integer Multiplication" - | Power => "Integer Exponentiation" - | Divide => "Integer Division" - | LessThan => "Integer Less Than" - | LessThanOrEqual => "Integer Less Than or Equal" - | GreaterThan => "Integer Greater Than" - | GreaterThanOrEqual => "Integer Greater Than or Equal" - | Equals => "Integer Equality" - | NotEquals => "Integer Inequality"; - - let show_op_bin_float: op_bin_float => string = - fun - | Plus => "Float Addition" - | Minus => "Float Subtraction" - | Times => "Float Multiplication" - | Power => "Float Exponentiation" - | Divide => "Float Division" - | LessThan => "Float Less Than" - | LessThanOrEqual => "Float Less Than or Equal" - | GreaterThan => "Float Greater Than" - | GreaterThanOrEqual => "Float Greater Than or Equal" - | Equals => "Float Equality" - | NotEquals => "Float Inequality"; - - let show_op_bin_string: op_bin_string => string = - fun - | Concat => "String Concatenation" - | Equals => "String Equality"; - - let show_binop: op_bin => string = - fun - | Int(op) => show_op_bin_int(op) - | Float(op) => show_op_bin_float(op) - | Bool(op) => show_op_bin_bool(op) - | String(op) => show_op_bin_string(op); + | BuiltinFun(_) => BuiltinFun + | Match(_) => Match + | Cast(_) => Cast; let show_cls: cls => string = fun | Invalid => "Invalid expression" | MultiHole => "Broken expression" | EmptyHole => "Empty expression hole" - | Triv => "Trivial literal" + | StaticErrorHole => "Static error hole" + | DynamicErrorHole => "Dynamic error hole" + | FailedCast => "Failed cast" | Deferral => "Deferral" + | Undefined => "Undefined expression" | Bool => "Boolean literal" | Int => "Integer literal" | Float => "Float literal" @@ -897,6 +677,7 @@ module UExp = { | Module => "Module expression" | ModuleVar => "Module path" | Dot => "Dot access" + | FixF => "Fixpoint operator" | TyAlias => "Type Alias definition" | Ap => "Application" | TypAp => "Type application" @@ -906,25 +687,32 @@ module UExp = { | Seq => "Sequence expression" | Test => "Test" | Filter => "Filter" + | Closure => "Closure" | Parens => "Parenthesized expression" | Cons => "Cons" | ListConcat => "List Concatenation" - | BinOp(op) => show_binop(op) - | UnOp(op) => show_unop(op) - | Match => "Case expression"; + | BinOp(op) => Operators.show_binop(op) + | UnOp(op) => Operators.show_unop(op) + | BuiltinFun => "Built-in Function" + | Match => "Case expression" + | Cast => "Cast expression"; // Typfun should be treated as a function here as this is only used to // determine when to allow for recursive definitions in a let binding. let rec is_fun = (e: t) => { switch (e.term) { | Parens(e) => is_fun(e) + | Cast(e, _, _) => is_fun(e) | TypFun(_) - | Fun(_) => true + | Fun(_) + | BuiltinFun(_) => true | Invalid(_) | EmptyHole | MultiHole(_) - | Triv + | DynamicErrorHole(_) + | FailedCast(_) | Deferral(_) + | Undefined | Bool(_) | Int(_) | Float(_) @@ -935,17 +723,18 @@ module UExp = { | Let(_) | Module(_) | Dot(_) + | FixF(_) | TyAlias(_) | Ap(_) | TypAp(_) | DeferredAp(_) - | Pipeline(_) | If(_) | Seq(_) | Test(_) | Filter(_) | Cons(_) | ListConcat(_) + | Closure(_) | UnOp(_) | BinOp(_) | Match(_) @@ -957,13 +746,16 @@ module UExp = { is_fun(e) || ( switch (e.term) { + | Cast(e, _, _) | Parens(e) => is_tuple_of_functions(e) | Tuple(es) => es |> List.for_all(is_fun) | Invalid(_) | EmptyHole | MultiHole(_) - | Triv + | DynamicErrorHole(_) + | FailedCast(_) | Deferral(_) + | Undefined | Bool(_) | Int(_) | Float(_) @@ -971,15 +763,17 @@ module UExp = { | ListLit(_) | Fun(_) | TypFun(_) + | Closure(_) + | BuiltinFun(_) | Var(_) | Let(_) | Module(_) | Dot(_) + | FixF(_) | TyAlias(_) | Ap(_) | TypAp(_) | DeferredAp(_) - | Pipeline(_) | If(_) | Seq(_) | Test(_) @@ -995,7 +789,7 @@ module UExp = { let ctr_name = (e: t): option(Constructor.t) => switch (e.term) { - | Constructor(name) => Some(name) + | Constructor(name, _) => Some(name) | _ => None }; @@ -1016,8 +810,14 @@ module UExp = { | Invalid(_) | EmptyHole | MultiHole(_) - | Triv + | DynamicErrorHole(_) + | FailedCast(_) + | FixF(_) + | Closure(_) + | BuiltinFun(_) + | Cast(_) | Deferral(_) + | Undefined | Bool(_) | Int(_) | Float(_) @@ -1034,7 +834,6 @@ module UExp = { | Ap(_) | TypAp(_) | DeferredAp(_) - | Pipeline(_) | If(_) | Seq(_) | Test(_) @@ -1048,9 +847,8 @@ module UExp = { }; }; -// TODO(d): consider just folding this into UExp -module URul = { - include TermBase.URul; +module Rul = { + include TermBase.Rul; [@deriving (show({with_path: false}), sexp, yojson)] type cls = @@ -1059,7 +857,7 @@ module URul = { // example of awkwardness induced by having forms like rules // that may have a different-sorted child with no delimiters // (eg scrut with no rules) - let ids = (~any_ids, {ids, term}: t) => + let ids = (~any_ids, {ids, term, _}: t) => switch (ids) { | [_, ..._] => ids | [] => @@ -1072,59 +870,55 @@ module URul = { let rep_id = (~any_ids, tm) => switch (ids(~any_ids, tm)) { - | [] => raise(Invalid_argument("Term.UExp.rep_id")) + | [] => raise(Invalid_argument("UExp.rep_id")) | [id, ..._] => id }; }; -module Cls = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Exp(UExp.cls) - | Pat(UPat.cls) - | Typ(UTyp.cls) - | TPat(UTPat.cls) - | Rul(URul.cls) - | Secondary(Secondary.cls); - - let show = (cls: t) => - switch (cls) { - | Exp(cls) => UExp.show_cls(cls) - | Pat(cls) => UPat.show_cls(cls) - | Typ(cls) => UTyp.show_cls(cls) - | TPat(cls) => UTPat.show_cls(cls) - | Rul(cls) => URul.show_cls(cls) - | Secondary(cls) => Secondary.show_cls(cls) - }; -}; +module Any = { + include TermBase.Any; -let rec ids = - fun - | Exp(tm) => tm.ids - | Pat(tm) => tm.ids - | Typ(tm) => tm.ids - | TPat(tm) => tm.ids - | Rul(tm) => URul.ids(~any_ids=ids, tm) - | Nul () - | Any () => []; + let is_exp: t => option(TermBase.Exp.t) = + fun + | Exp(e) => Some(e) + | _ => None; + let is_pat: t => option(TermBase.Pat.t) = + fun + | Pat(p) => Some(p) + | _ => None; + let is_typ: t => option(TermBase.Typ.t) = + fun + | Typ(t) => Some(t) + | _ => None; -// Terms may consist of multiple tiles, eg the commas in an n-tuple, -// the rules of a case expression + the surrounding case-end tile, -// the list brackets tile coupled with the elem-separating commas. -// The _representative id_ is the canonical tile id used to identify -// and look up info about a term. -// -// In instances like case expressions and list literals, where a parent -// tile surrounds the other tiles, the representative id is the parent tile's. -// In other instances like n-tuples, where the commas are all siblings, -// the representative id is one of the comma ids, unspecified which one. -// (This would change for n-tuples if we decided parentheses are necessary.) -let rep_id = - fun - | Exp(tm) => UExp.rep_id(tm) - | Pat(tm) => UPat.rep_id(tm) - | Typ(tm) => UTyp.rep_id(tm) - | TPat(tm) => UTPat.rep_id(tm) - | Rul(tm) => URul.rep_id(~any_ids=ids, tm) - | Nul () - | Any () => raise(Invalid_argument("Term.rep_id")); + let rec ids = + fun + | Exp(tm) => tm.ids + | Pat(tm) => tm.ids + | Typ(tm) => tm.ids + | TPat(tm) => tm.ids + | Rul(tm) => Rul.ids(~any_ids=ids, tm) + | Nul () + | Any () => []; + + // Terms may consist of multiple tiles, eg the commas in an n-tuple, + // the rules of a case expression + the surrounding case-end tile, + // the list brackets tile coupled with the elem-separating commas. + // The _representative id_ is the canonical tile id used to identify + // and look up info about a term. + // + // In instances like case expressions and list literals, where a parent + // tile surrounds the other tiles, the representative id is the parent tile's. + // In other instances like n-tuples, where the commas are all siblings, + // the representative id is one of the comma ids, unspecified which one. + // (This would change for n-tuples if we decided parentheses are necessary.) + let rep_id = + fun + | Exp(tm) => Exp.rep_id(tm) + | Pat(tm) => Pat.rep_id(tm) + | Typ(tm) => Typ.rep_id(tm) + | TPat(tm) => TPat.rep_id(tm) + | Rul(tm) => Rul.rep_id(~any_ids=ids, tm) + | Nul () + | Any () => raise(Invalid_argument("Term.rep_id")); +}; diff --git a/src/haz3lcore/statics/TermBase.re b/src/haz3lcore/statics/TermBase.re index afcc754423..0c45437588 100644 --- a/src/haz3lcore/statics/TermBase.re +++ b/src/haz3lcore/statics/TermBase.re @@ -1,138 +1,131 @@ -open Sexplib.Std; +open Util; -module rec Any: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Exp(UExp.t) - | Pat(UPat.t) - | Typ(UTyp.t) - | TPat(UTPat.t) - | Rul(URul.t) - | Nul(unit) - | Any(unit); +let continue = x => x; +let stop = (_, x) => x; - let is_exp: t => option(UExp.t); - let is_pat: t => option(UPat.t); - let is_typ: t => option(UTyp.t); -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Exp(UExp.t) - | Pat(UPat.t) - | Typ(UTyp.t) - | TPat(UTPat.t) - | Rul(URul.t) - | Nul(unit) - | Any(unit); +/* + This megafile contains the definitions of the expression data types in + Hazel. They are all in one file because they are mutually recursive, and + OCaml doesn't let us have mutually recursive files. Any definition that + is not mutually recursive across the whole data structure should be + defined in Any.re, Exp.re, Typ.re, Pat.re, TPat.re, etc... - let is_exp: t => option(UExp.t) = - fun - | Exp(e) => Some(e) - | _ => None; - let is_pat: t => option(UPat.t) = - fun - | Pat(p) => Some(p) - | _ => None; - let is_typ: t => option(UTyp.t) = - fun - | Typ(t) => Some(t) - | _ => None; -} -and UExp: { - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un_bool = - | Not; + Each module has: - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un_meta = - | Unquote; + - A type definition for the term - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un_int = - | Minus; + - A map_term function that allows you to apply a function to every term in + the data structure with the following type: - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_bool = - | And - | Or; + map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_int = - | Plus - | Minus - | Times - | Power - | Divide - | LessThan - | LessThanOrEqual - | GreaterThan - | GreaterThanOrEqual - | Equals - | NotEquals; + Each argument to `map_term` specifies what should happen at each node in the + data structure. Each function takes two arguments: a `continue` function that + allows the map to continue on all the children nodes, and the current node + itself. If you don't explicitly call the `continue` function, the map will + not traverse the children nodes. If you don't provide a function for a + specific kind of node, the map will simply continue at that node without + any additional action. - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_float = - | Plus - | Minus - | Times - | Power - | Divide - | LessThan - | LessThanOrEqual - | GreaterThan - | GreaterThanOrEqual - | Equals - | NotEquals; + - A fast_equal function that compares two terms for equality, it performs + structural equality except for the case of closures, where it just compares + the id of the closure. + */ +module rec Any: { [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_string = - | Concat - | Equals; + type t = + | Exp(Exp.t) + | Pat(Pat.t) + | Typ(Typ.t) + | TPat(TPat.t) + | Rul(Rul.t) + | Nul(unit) + | Any(unit); - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un = - | Meta(op_un_meta) - | Int(op_un_int) - | Bool(op_un_bool); + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + let fast_equal: (t, t) => bool; +} = { [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin = - | Int(op_bin_int) - | Float(op_bin_float) - | Bool(op_bin_bool) - | String(op_bin_string); + type t = + | Exp(Exp.t) + | Pat(Pat.t) + | Typ(Typ.t) + | TPat(TPat.t) + | Rul(Rul.t) + | Nul(unit) + | Any(unit); - [@deriving (show({with_path: false}), sexp, yojson)] - type cls = - | Invalid - | EmptyHole - | MultiHole - | Triv - | Bool - | Int - | Float - | String - | ListLit - | Constructor - | Fun - | TypFun - | Tuple - | Var - | Let - | TyAlias - | Ap - | TypAp - | If - | Seq - | Test - | Filter - | Parens - | Cons - | ListConcat - | UnOp(op_un) - | BinOp(op_bin) - | Match; + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + x, + ) => { + let rec_call = y => + switch (y) { + | Exp(x) => + Exp(Exp.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any, x)) + | Pat(x) => + Pat(Pat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any, x)) + | Typ(x) => + Typ(Typ.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any, x)) + | TPat(x) => + TPat( + TPat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any, x), + ) + | Rul(x) => + Rul(Rul.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any, x)) + | Nul () => Nul() + | Any () => Any() + }; + x |> f_any(rec_call); + }; + let fast_equal = (x, y) => + switch (x, y) { + | (Exp(x), Exp(y)) => Exp.fast_equal(x, y) + | (Pat(x), Pat(y)) => Pat.fast_equal(x, y) + | (Typ(x), Typ(y)) => Typ.fast_equal(x, y) + | (TPat(x), TPat(y)) => TPat.fast_equal(x, y) + | (Rul(x), Rul(y)) => Rul.fast_equal(x, y) + | (Nul (), Nul ()) => true + | (Any (), Any ()) => true + | (Exp(_), _) + | (Pat(_), _) + | (Typ(_), _) + | (TPat(_), _) + | (Rul(_), _) + | (Nul (), _) + | (Any (), _) => false + }; +} +and Exp: { [@deriving (show({with_path: false}), sexp, yojson)] type deferral_position = | InAp @@ -143,141 +136,65 @@ and UExp: { | Invalid(string) | EmptyHole | MultiHole(list(Any.t)) - | Triv + | DynamicErrorHole(t, InvalidOperationError.t) + | FailedCast(t, Typ.t, Typ.t) | Deferral(deferral_position) + | Undefined | Bool(bool) | Int(int) | Float(float) | String(string) | ListLit(list(t)) - | Constructor(string) - | Fun(UPat.t, t) - | TypFun(UTPat.t, t) + | Constructor(string, Typ.t) // Typ.t field is only meaningful in dynamic expressions + | Fun( + Pat.t, + t, + [@show.opaque] option(ClosureEnvironment.t), + option(Var.t), + ) + | TypFun(TPat.t, t, option(Var.t)) | Tuple(list(t)) | Var(Var.t) - | Let(UPat.t, t, t) - | Module(UPat.t, t, t) + | Module(Pat.t, t, t) | Dot(t, t) - | TyAlias(UTPat.t, UTyp.t, t) - | Ap(t, t) - | TypAp(t, UTyp.t) + | Let(Pat.t, t, t) + | FixF(Pat.t, t, option(ClosureEnvironment.t)) + | TyAlias(TPat.t, Typ.t, t) + | Ap(Operators.ap_direction, t, t) + | TypAp(t, Typ.t) | DeferredAp(t, list(t)) - | Pipeline(t, t) | If(t, t, t) | Seq(t, t) | Test(t) - | Filter(FilterAction.t, t, t) + | Filter(StepperFilterKind.t, t) + | Closure([@show.opaque] ClosureEnvironment.t, t) | Parens(t) // ( | Cons(t, t) | ListConcat(t, t) - | UnOp(op_un, t) - | BinOp(op_bin, t, t) - | Match(t, list((UPat.t, t))) - and t = { - // invariant: nonempty - ids: list(Id.t), - term, - }; + | UnOp(Operators.op_un, t) + | BinOp(Operators.op_bin, t, t) + | BuiltinFun(string) + | Match(t, list((Pat.t, t))) + /* INVARIANT: in dynamic expressions, casts must be between + two consistent types. Both types should be normalized in + dynamics for the cast calculus to work right. */ + | Cast(t, Typ.t, Typ.t) // first Typ.t field is only meaningful in dynamic expressions + and t = IdTagged.t(term); - let bool_op_to_string: op_bin_bool => string; - let int_op_to_string: op_bin_int => string; - let float_op_to_string: op_bin_float => string; - let string_op_to_string: op_bin_string => string; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un_bool = - | Not; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un_meta = - | Unquote; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un_int = - | Minus; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_bool = - | And - | Or; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_int = - | Plus - | Minus - | Times - | Power - | Divide - | LessThan - | LessThanOrEqual - | GreaterThan - | GreaterThanOrEqual - | Equals - | NotEquals; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_float = - | Plus - | Minus - | Times - | Power - | Divide - | LessThan - | LessThanOrEqual - | GreaterThan - | GreaterThanOrEqual - | Equals - | NotEquals; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin_string = - | Concat - | Equals; - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_un = - | Meta(op_un_meta) - | Int(op_un_int) - | Bool(op_un_bool); - - [@deriving (show({with_path: false}), sexp, yojson)] - type op_bin = - | Int(op_bin_int) - | Float(op_bin_float) - | Bool(op_bin_bool) - | String(op_bin_string); - - [@deriving (show({with_path: false}), sexp, yojson)] - type cls = - | Invalid - | EmptyHole - | MultiHole - | Triv - | Bool - | Int - | Float - | String - | ListLit - | Constructor - | Fun - | TypFun - | Tuple - | Var - | Let - | TyAlias - | Ap - | TypAp - | If - | Seq - | Test - | Filter - | Parens - | Cons - | ListConcat - | UnOp(op_un) - | BinOp(op_bin) - | Match; + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + let fast_equal: (t, t) => bool; +} = { [@deriving (show({with_path: false}), sexp, yojson)] type deferral_position = | InAp @@ -288,89 +205,252 @@ and UExp: { | Invalid(string) | EmptyHole | MultiHole(list(Any.t)) - | Triv + | DynamicErrorHole(t, InvalidOperationError.t) + | FailedCast(t, Typ.t, Typ.t) | Deferral(deferral_position) + | Undefined | Bool(bool) | Int(int) | Float(float) | String(string) | ListLit(list(t)) - | Constructor(string) - | Fun(UPat.t, t) - | TypFun(UTPat.t, t) + | Constructor(string, Typ.t) + | Fun( + Pat.t, + t, + [@show.opaque] option(ClosureEnvironment.t), + option(Var.t), + ) + | TypFun(TPat.t, t, option(string)) | Tuple(list(t)) | Var(Var.t) - | Let(UPat.t, t, t) - | Module(UPat.t, t, t) + | Module(Pat.t, t, t) | Dot(t, t) - | TyAlias(UTPat.t, UTyp.t, t) - | Ap(t, t) - | TypAp(t, UTyp.t) + | Let(Pat.t, t, t) + | FixF(Pat.t, t, [@show.opaque] option(ClosureEnvironment.t)) + | TyAlias(TPat.t, Typ.t, t) + | Ap(Operators.ap_direction, t, t) // note: function is always first then argument; even in pipe mode + | TypAp(t, Typ.t) | DeferredAp(t, list(t)) - | Pipeline(t, t) | If(t, t, t) | Seq(t, t) | Test(t) - | Filter(FilterAction.t, t, t) - | Parens(t) // ( + | Filter(StepperFilterKind.t, t) + | Closure([@show.opaque] ClosureEnvironment.t, t) + | Parens(t) | Cons(t, t) | ListConcat(t, t) - | UnOp(op_un, t) - | BinOp(op_bin, t, t) - | Match(t, list((UPat.t, t))) - and t = { - // invariant: nonempty - ids: list(Id.t), - term, - }; - - let bool_op_to_string = (op: op_bin_bool): string => { - switch (op) { - | And => "&&" - | Or => "||" - }; - }; - - let int_op_to_string = (op: op_bin_int): string => { - switch (op) { - | Plus => "+" - | Minus => "-" - | Times => "*" - | Power => "**" - | Divide => "/" - | LessThan => "<" - | LessThanOrEqual => "<=" - | GreaterThan => ">" - | GreaterThanOrEqual => ">=" - | Equals => "==" - | NotEquals => "!=" - }; - }; + | UnOp(Operators.op_un, t) + | BinOp(Operators.op_bin, t, t) + | BuiltinFun(string) /// Doesn't currently have a distinguishable syntax + | Match(t, list((Pat.t, t))) + | Cast(t, Typ.t, Typ.t) + and t = IdTagged.t(term); - let float_op_to_string = (op: op_bin_float): string => { - switch (op) { - | Plus => "+." - | Minus => "-." - | Times => "*." - | Power => "**." - | Divide => "/." - | LessThan => "<." - | LessThanOrEqual => "<=." - | GreaterThan => ">." - | GreaterThanOrEqual => ">=." - | Equals => "==." - | NotEquals => "!=." + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + x, + ) => { + let exp_map_term = + Exp.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let pat_map_term = + Pat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let typ_map_term = + Typ.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let tpat_map_term = + TPat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let any_map_term = + Any.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let flt_map_term = + StepperFilterKind.map_term( + ~f_exp, + ~f_pat, + ~f_typ, + ~f_tpat, + ~f_rul, + ~f_any, + ); + let rec_call = ({term, _} as exp: t) => { + ...exp, + term: + switch (term) { + | EmptyHole + | Invalid(_) + | Bool(_) + | Int(_) + | Float(_) + | Constructor(_) + | String(_) + | Deferral(_) + | Var(_) + | Undefined => term + | MultiHole(things) => MultiHole(List.map(any_map_term, things)) + | DynamicErrorHole(e, err) => DynamicErrorHole(exp_map_term(e), err) + | FailedCast(e, t1, t2) => FailedCast(exp_map_term(e), t1, t2) + | ListLit(ts) => ListLit(List.map(exp_map_term, ts)) + | Fun(p, e, env, f) => + Fun(pat_map_term(p), exp_map_term(e), env, f) + | TypFun(tp, e, f) => TypFun(tpat_map_term(tp), exp_map_term(e), f) + | Tuple(xs) => Tuple(List.map(exp_map_term, xs)) + | Let(p, e1, e2) => + Let(pat_map_term(p), exp_map_term(e1), exp_map_term(e2)) + | FixF(p, e, env) => FixF(pat_map_term(p), exp_map_term(e), env) + | TyAlias(tp, t, e) => + TyAlias(tpat_map_term(tp), typ_map_term(t), exp_map_term(e)) + | Ap(op, e1, e2) => Ap(op, exp_map_term(e1), exp_map_term(e2)) + | TypAp(e, t) => TypAp(exp_map_term(e), typ_map_term(t)) + | DeferredAp(e, es) => + DeferredAp(exp_map_term(e), List.map(exp_map_term, es)) + | If(e1, e2, e3) => + If(exp_map_term(e1), exp_map_term(e2), exp_map_term(e3)) + | Seq(e1, e2) => Seq(exp_map_term(e1), exp_map_term(e2)) + | Test(e) => Test(exp_map_term(e)) + | Filter(f, e) => Filter(flt_map_term(f), exp_map_term(e)) + | Closure(env, e) => Closure(env, exp_map_term(e)) + | Parens(e) => Parens(exp_map_term(e)) + | Cons(e1, e2) => Cons(exp_map_term(e1), exp_map_term(e2)) + | ListConcat(e1, e2) => + ListConcat(exp_map_term(e1), exp_map_term(e2)) + | UnOp(op, e) => UnOp(op, exp_map_term(e)) + | BinOp(op, e1, e2) => + BinOp(op, exp_map_term(e1), exp_map_term(e2)) + | BuiltinFun(str) => BuiltinFun(str) + | Match(e, rls) => + Match( + exp_map_term(e), + List.map( + ((p, e)) => (pat_map_term(p), exp_map_term(e)), + rls, + ), + ) + | Cast(e, t1, t2) => Cast(exp_map_term(e), t1, t2) + }, }; + x |> f_exp(rec_call); }; - let string_op_to_string = (op: op_bin_string): string => { - switch (op) { - | Concat => "++" - | Equals => "$==" + let rec fast_equal = (e1, e2) => + switch (e1 |> IdTagged.term_of, e2 |> IdTagged.term_of) { + | (DynamicErrorHole(x, _), _) + | (Parens(x), _) => fast_equal(x, e2) + | (_, DynamicErrorHole(x, _)) + | (_, Parens(x)) => fast_equal(e1, x) + | (EmptyHole, EmptyHole) => true + | (Undefined, Undefined) => true + | (Invalid(s1), Invalid(s2)) => s1 == s2 + | (MultiHole(xs), MultiHole(ys)) when List.length(xs) == List.length(ys) => + List.equal(Any.fast_equal, xs, ys) + | (FailedCast(e1, t1, t2), FailedCast(e2, t3, t4)) => + Exp.fast_equal(e1, e2) + && Typ.fast_equal(t1, t3) + && Typ.fast_equal(t2, t4) + | (Deferral(d1), Deferral(d2)) => d1 == d2 + | (Bool(b1), Bool(b2)) => b1 == b2 + | (Int(i1), Int(i2)) => i1 == i2 + | (Float(f1), Float(f2)) => f1 == f2 + | (String(s1), String(s2)) => s1 == s2 + | (ListLit(xs), ListLit(ys)) => + List.length(xs) == List.length(ys) && List.equal(fast_equal, xs, ys) + | (Constructor(c1, ty1), Constructor(c2, ty2)) => + c1 == c2 && Typ.fast_equal(ty1, ty2) + | (Fun(p1, e1, env1, _), Fun(p2, e2, env2, _)) => + Pat.fast_equal(p1, p2) + && fast_equal(e1, e2) + && Option.equal(ClosureEnvironment.id_equal, env1, env2) + | (TypFun(tp1, e1, _), TypFun(tp2, e2, _)) => + TPat.fast_equal(tp1, tp2) && fast_equal(e1, e2) + | (Tuple(xs), Tuple(ys)) => + List.length(xs) == List.length(ys) && List.equal(fast_equal, xs, ys) + | (Var(v1), Var(v2)) => v1 == v2 + | (Let(p1, e1, e2), Let(p2, e3, e4)) => + Pat.fast_equal(p1, p2) && fast_equal(e1, e3) && fast_equal(e2, e4) + | (FixF(p1, e1, c1), FixF(p2, e2, c2)) => + Pat.fast_equal(p1, p2) + && fast_equal(e1, e2) + && Option.equal(ClosureEnvironment.id_equal, c1, c2) + | (TyAlias(tp1, t1, e1), TyAlias(tp2, t2, e2)) => + TPat.fast_equal(tp1, tp2) + && Typ.fast_equal(t1, t2) + && fast_equal(e1, e2) + | (Ap(d1, e1, e2), Ap(d2, e3, e4)) => + d1 == d2 && fast_equal(e1, e3) && fast_equal(e2, e4) + | (TypAp(e1, t1), TypAp(e2, t2)) => + fast_equal(e1, e2) && Typ.fast_equal(t1, t2) + | (DeferredAp(e1, es1), DeferredAp(e2, es2)) => + List.length(es1) == List.length(es2) + && fast_equal(e1, e2) + && List.equal(fast_equal, es1, es2) + | (If(e1, e2, e3), If(e4, e5, e6)) => + fast_equal(e1, e4) && fast_equal(e2, e5) && fast_equal(e3, e6) + | (Seq(e1, e2), Seq(e3, e4)) => + fast_equal(e1, e3) && fast_equal(e2, e4) + | (Test(e1), Test(e2)) => fast_equal(e1, e2) + | (Filter(f1, e1), Filter(f2, e2)) => + StepperFilterKind.fast_equal(f1, f2) && fast_equal(e1, e2) + | (Closure(c1, e1), Closure(c2, e2)) => + ClosureEnvironment.id_equal(c1, c2) && fast_equal(e1, e2) + | (Cons(e1, e2), Cons(e3, e4)) => + fast_equal(e1, e3) && fast_equal(e2, e4) + | (ListConcat(e1, e2), ListConcat(e3, e4)) => + fast_equal(e1, e3) && fast_equal(e2, e4) + | (UnOp(o1, e1), UnOp(o2, e2)) => o1 == o2 && fast_equal(e1, e2) + | (BinOp(o1, e1, e2), BinOp(o2, e3, e4)) => + o1 == o2 && fast_equal(e1, e3) && fast_equal(e2, e4) + | (BuiltinFun(f1), BuiltinFun(f2)) => f1 == f2 + | (Match(e1, rls1), Match(e2, rls2)) => + fast_equal(e1, e2) + && List.length(rls1) == List.length(rls2) + && List.for_all2( + ((p1, e1), (p2, e2)) => + Pat.fast_equal(p1, p2) && fast_equal(e1, e2), + rls1, + rls2, + ) + | (Cast(e1, t1, t2), Cast(e2, t3, t4)) => + fast_equal(e1, e2) && Typ.fast_equal(t1, t3) && Typ.fast_equal(t2, t4) + | (Invalid(_), _) + | (FailedCast(_), _) + | (Deferral(_), _) + | (Bool(_), _) + | (Int(_), _) + | (Float(_), _) + | (String(_), _) + | (ListLit(_), _) + | (Constructor(_), _) + | (Fun(_), _) + | (TypFun(_), _) + | (Tuple(_), _) + | (Var(_), _) + | (Let(_), _) + | (FixF(_), _) + | (TyAlias(_), _) + | (Ap(_), _) + | (TypAp(_), _) + | (DeferredAp(_), _) + | (If(_), _) + | (Seq(_), _) + | (Test(_), _) + | (Filter(_), _) + | (Closure(_), _) + | (Cons(_), _) + | (ListConcat(_), _) + | (UnOp(_), _) + | (BinOp(_), _) + | (BuiltinFun(_), _) + | (Match(_), _) + | (Cast(_), _) + | (MultiHole(_), _) + | (EmptyHole, _) + | (Undefined, _) => false }; - }; } -and UPat: { +and Pat: { [@deriving (show({with_path: false}), sexp, yojson)] type term = | Invalid(string) @@ -381,20 +461,29 @@ and UPat: { | Float(float) | Bool(bool) | String(string) - | Triv | ListLit(list(t)) - | Constructor(string) + | Constructor(string, Typ.t) // Typ.t field is only meaningful in dynamic patterns | Cons(t, t) | Var(Var.t) | Tuple(list(t)) | Parens(t) | Ap(t, t) - | TypeAnn(t, UTyp.t) - | TyAlias(UTPat.t, UTyp.t) - and t = { - ids: list(Id.t), - term, - }; + | Cast(t, Typ.t, Typ.t) // The second Typ.t field is only meaningful in dynamic patterns + and t = IdTagged.t(term); + + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + + let fast_equal: (t, t) => bool; } = { [@deriving (show({with_path: false}), sexp, yojson)] type term = @@ -406,121 +495,746 @@ and UPat: { | Float(float) | Bool(bool) | String(string) - | Triv | ListLit(list(t)) - | Constructor(string) + | Constructor(string, Typ.t) | Cons(t, t) | Var(Var.t) | Tuple(list(t)) | Parens(t) | Ap(t, t) - | TypeAnn(t, UTyp.t) - | TyAlias(UTPat.t, UTyp.t) - and t = { - ids: list(Id.t), - term, + | Cast(t, Typ.t, Typ.t) // The second one is hidden from the user + and t = IdTagged.t(term); + + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + x, + ) => { + let pat_map_term = + Pat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let typ_map_term = + Typ.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let any_map_term = + Any.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let rec_call = ({term, _} as exp: t) => { + ...exp, + term: + switch (term) { + | EmptyHole + | Invalid(_) + | Wild + | Bool(_) + | Int(_) + | Float(_) + | Constructor(_) + | String(_) + | Var(_) => term + | MultiHole(things) => MultiHole(List.map(any_map_term, things)) + | ListLit(ts) => ListLit(List.map(pat_map_term, ts)) + | Ap(e1, e2) => Ap(pat_map_term(e1), pat_map_term(e2)) + | Cons(e1, e2) => Cons(pat_map_term(e1), pat_map_term(e2)) + | Tuple(xs) => Tuple(List.map(pat_map_term, xs)) + | Parens(e) => Parens(pat_map_term(e)) + | Cast(e, t1, t2) => + Cast(pat_map_term(e), typ_map_term(t1), typ_map_term(t2)) + }, + }; + x |> f_pat(rec_call); }; + + let rec fast_equal = (p1, p2) => + switch (p1 |> IdTagged.term_of, p2 |> IdTagged.term_of) { + | (Parens(x), _) => fast_equal(x, p2) + | (_, Parens(x)) => fast_equal(p1, x) + | (EmptyHole, EmptyHole) => true + | (MultiHole(xs), MultiHole(ys)) => + List.length(xs) == List.length(ys) + && List.equal(Any.fast_equal, xs, ys) + | (Invalid(s1), Invalid(s2)) => s1 == s2 + | (Wild, Wild) => true + | (Bool(b1), Bool(b2)) => b1 == b2 + | (Int(i1), Int(i2)) => i1 == i2 + | (Float(f1), Float(f2)) => f1 == f2 + | (String(s1), String(s2)) => s1 == s2 + | (Constructor(c1, t1), Constructor(c2, t2)) => + c1 == c2 && Typ.fast_equal(t1, t2) + | (Var(v1), Var(v2)) => v1 == v2 + | (ListLit(xs), ListLit(ys)) => + List.length(xs) == List.length(ys) && List.equal(fast_equal, xs, ys) + | (Cons(x1, y1), Cons(x2, y2)) => + fast_equal(x1, x2) && fast_equal(y1, y2) + | (Tuple(xs), Tuple(ys)) => + List.length(xs) == List.length(ys) && List.equal(fast_equal, xs, ys) + | (Ap(x1, y1), Ap(x2, y2)) => fast_equal(x1, x2) && fast_equal(y1, y2) + | (Cast(x1, t1, t2), Cast(x2, u1, u2)) => + fast_equal(x1, x2) && Typ.fast_equal(t1, u1) && Typ.fast_equal(t2, u2) + | (EmptyHole, _) + | (MultiHole(_), _) + | (Invalid(_), _) + | (Wild, _) + | (Bool(_), _) + | (Int(_), _) + | (Float(_), _) + | (String(_), _) + | (ListLit(_), _) + | (Constructor(_), _) + | (Cons(_), _) + | (Var(_), _) + | (Tuple(_), _) + | (Ap(_), _) + | (Cast(_), _) => false + }; } -and UTyp: { +and Typ: { [@deriving (show({with_path: false}), sexp, yojson)] - type term = + type type_hole = | Invalid(string) | EmptyHole - | MultiHole(list(Any.t)) + | MultiHole(list(Any.t)); + + /* TYPE_PROVENANCE: From whence does an unknown type originate? + Is it generated from an unannotated pattern variable (SynSwitch), + a pattern variable annotated with a type hole (TypeHole), or + generated by an internal judgement (Internal)? */ + [@deriving (show({with_path: false}), sexp, yojson)] + type type_provenance = + | SynSwitch + | Hole(type_hole) + | Internal; + + type module_typ = { + inner_ctx: Ctx.t, + incomplete: bool, + }; + + [@deriving (show({with_path: false}), sexp, yojson)] + type term = + | Unknown(Typ.type_provenance) | Int | Float | Bool | String - | List(t) | Var(string) - | Constructor(string) + | List(t) | Arrow(t, t) - | Tuple(list(t)) + | Sum(ConstructorMap.t(t)) + | Prod(list(t)) + | Module(module_typ) + | Member(Token.t, t) | Parens(t) - | Module(UPat.t) | Ap(t, t) - | Dot(t, t) - | Sum(list(variant)) - | Forall(UTPat.t, t) - | Rec(UTPat.t, t) - and variant = - | Variant(Constructor.t, list(Id.t), option(t)) - | BadEntry(t) - and t = { - ids: list(Id.t), - term, - }; + | Rec(TPat.t, t) + | Forall(TPat.t, t) + and t = IdTagged.t(term); + + type sum_map = ConstructorMap.t(t); + + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + + let subst: (t, TPat.t, t) => t; + + let fast_equal: (t, t) => bool; } = { [@deriving (show({with_path: false}), sexp, yojson)] - type term = + type type_hole = | Invalid(string) | EmptyHole - | MultiHole(list(Any.t)) + | MultiHole(list(Any.t)); + + /* TYPE_PROVENANCE: From whence does an unknown type originate? + Is it generated from an unannotated pattern variable (SynSwitch), + a pattern variable annotated with a type hole (TypeHole), or + generated by an internal judgement (Internal)? */ + [@deriving (show({with_path: false}), sexp, yojson)] + type type_provenance = + | SynSwitch + | Hole(type_hole) + | Internal; + + type module_typ = { + inner_ctx: Ctx.t, + incomplete: bool, + }; + + [@deriving (show({with_path: false}), sexp, yojson)] + type term = + | Unknown(Typ.type_provenance) | Int | Float | Bool | String - | List(t) | Var(string) - | Constructor(string) + | List(t) | Arrow(t, t) - | Tuple(list(t)) + | Sum(ConstructorMap.t(t)) + | Prod(list(t)) + | Module(module_typ) + | Member(Token.t, t) | Parens(t) - | Module(UPat.t) | Ap(t, t) - | Dot(t, t) - | Sum(list(variant)) - | Forall(UTPat.t, t) - | Rec(UTPat.t, t) - and variant = - | Variant(Constructor.t, list(Id.t), option(t)) - | BadEntry(t) - and t = { - ids: list(Id.t), - term, + | Rec(TPat.t, t) + | Forall(TPat.t, t) + and t = IdTagged.t(term); + + type sum_map = ConstructorMap.t(t); + + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + x, + ) => { + let typ_map_term = + Typ.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let any_map_term = + Any.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let tpat_map_term = + TPat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let rec_call = ({term, _} as exp: t) => { + ...exp, + term: + switch (term) { + | Unknown(Hole(EmptyHole)) + | Unknown(Hole(Invalid(_))) + | Unknown(SynSwitch) + | Unknown(Internal) + | Bool + | Int + | Float + | String + | Var(_) => term + | List(t) => List(typ_map_term(t)) + | Unknown(Hole(MultiHole(things))) => + Unknown(Hole(MultiHole(List.map(any_map_term, things)))) + | Ap(e1, e2) => Ap(typ_map_term(e1), typ_map_term(e2)) + | Prod(xs) => Prod(List.map(typ_map_term, xs)) + | Parens(e) => Parens(typ_map_term(e)) + | Arrow(t1, t2) => Arrow(typ_map_term(t1), typ_map_term(t2)) + | Sum(variants) => + Sum( + List.map( + fun + | ConstructorMap.Variant(c, ids, t) => + ConstructorMap.Variant(c, ids, Option.map(typ_map_term, t)) + | ConstructorMap.BadEntry(t) => + ConstructorMap.BadEntry(typ_map_term(t)), + variants, + ), + ) + | Rec(tp, t) => Rec(tpat_map_term(tp), typ_map_term(t)) + | Forall(tp, t) => Forall(tpat_map_term(tp), typ_map_term(t)) + }, + }; + x |> f_typ(rec_call); }; + + let rec subst = (s: t, x: TPat.t, ty: t) => { + switch (TPat.tyvar_of_utpat(x)) { + | Some(str) => + let (term, rewrap) = IdTagged.unwrap(ty); + switch (term) { + | Int => Int |> rewrap + | Float => Float |> rewrap + | Bool => Bool |> rewrap + | String => String |> rewrap + | Unknown(prov) => Unknown(prov) |> rewrap + | Arrow(ty1, ty2) => + Arrow(subst(s, x, ty1), subst(s, x, ty2)) |> rewrap + | Prod(tys) => Prod(List.map(subst(s, x), tys)) |> rewrap + | Sum(sm) => + Sum(ConstructorMap.map(Option.map(subst(s, x)), sm)) |> rewrap + | Forall(tp2, ty) + when TPat.tyvar_of_utpat(x) == TPat.tyvar_of_utpat(tp2) => + Forall(tp2, ty) |> rewrap + | Forall(tp2, ty) => Forall(tp2, subst(s, x, ty)) |> rewrap + | Rec(tp2, ty) when TPat.tyvar_of_utpat(x) == TPat.tyvar_of_utpat(tp2) => + Rec(tp2, ty) |> rewrap + | Rec(tp2, ty) => Rec(tp2, subst(s, x, ty)) |> rewrap + | List(ty) => List(subst(s, x, ty)) |> rewrap + | Var(y) => str == y ? s : Var(y) |> rewrap + | Module({inner_ctx, incomplete}) => + let ctx_entry_subst = (e: Ctx.entry): Ctx.entry => { + switch (e) { + | VarEntry(t) => VarEntry({...t, typ: subst(s, x, t.typ)}) + | ConstructorEntry(t) => + ConstructorEntry({...t, typ: subst(s, x, t.typ)}) + | TVarEntry(_) => e + }; + }; + Module({ + inner_ctx: List.map(ctx_entry_subst, inner_ctx), + incomplete, + }); + | Member(name, ty) => Member(name, subst(s, x, ty)) + | Parens(ty) => Parens(subst(s, x, ty)) |> rewrap + | Ap(t1, t2) => Ap(subst(s, x, t1), subst(s, x, t2)) |> rewrap + }; + | None => ty + }; + }; + + let rec weak_head_normalize = (ctx: Ctx.t, ty: t): t => + switch (term_of(ty)) { + | Parens(t) => weak_head_normalize(ctx, t) + | Var(x) => + switch (Ctx.lookup_alias(ctx, x)) { + | Some(ty) => weak_head_normalize(ctx, ty) + | None => ty + } + | _ => ty + }; + + /* Type Equality: This coincides with alpha equivalence for normalized types. + Other types may be equivalent but this will not detect so if they are not normalized. */ + + let rec eq_internal = (n: int, t1: t, t2: t) => { + switch (IdTagged.term_of(t1), IdTagged.term_of(t2)) { + | (Parens(t1), _) => eq_internal(n, t1, t2) + | (_, Parens(t2)) => eq_internal(n, t1, t2) + | (Member(_, ty1), ty2) => eq_internal(n, ty1, ty2) + | (ty1, Member(_, ty2)) => eq_internal(n, ty1, ty2) + | (Module(ctx1), Module(ctx2)) => + let entry_equal = (e1: Ctx.entry, e2: Ctx.entry) => { + switch (e1, e2) { + | ( + VarEntry({typ: t1, name: n1, _}), + VarEntry({typ: t2, name: n2, _}), + ) => + eq_internal(n, t1, t2) && n1 == n2 + | ( + TVarEntry({kind: t1, name: n1, _}), + TVarEntry({kind: t2, name: n2, _}), + ) => + t1 == t2 && n1 == n2 + | ( + ConstructorEntry({typ: t1, name: n1, _}), + ConstructorEntry({typ: t2, name: n2, _}), + ) => + eq_internal(n, t1, t2) && n1 == n2 + | _ => false + }; + }; + List.equal(entry_equal, ctx1.inner_ctx, ctx2.inner_ctx) + && ctx1.incomplete == ctx2.incomplete; + | (Module(_), _) => false + | (Rec(x1, t1), Rec(x2, t2)) + | (Forall(x1, t1), Forall(x2, t2)) => + let alpha_subst = + subst({ + term: Var("=" ++ string_of_int(n)), + copied: false, + ids: [Id.invalid], + }); + eq_internal(n + 1, alpha_subst(x1, t1), alpha_subst(x2, t2)); + | (Rec(_), _) => false + | (Forall(_), _) => false + | (Int, Int) => true + | (Int, _) => false + | (Float, Float) => true + | (Float, _) => false + | (Bool, Bool) => true + | (Bool, _) => false + | (String, String) => true + | (String, _) => false + | (Ap(t1, t2), Ap(t1', t2')) => + eq_internal(n, t1, t1') && eq_internal(n, t2, t2') + | (Ap(_), _) => false + | (Unknown(_), Unknown(_)) => true + | (Unknown(_), _) => false + | (Arrow(t1, t2), Arrow(t1', t2')) => + eq_internal(n, t1, t1') && eq_internal(n, t2, t2') + | (Arrow(_), _) => false + | (Prod(tys1), Prod(tys2)) => List.equal(eq_internal(n), tys1, tys2) + | (Prod(_), _) => false + | (List(t1), List(t2)) => eq_internal(n, t1, t2) + | (List(_), _) => false + | (Sum(sm1), Sum(sm2)) => + /* Does not normalize the types. */ + ConstructorMap.equal(eq_internal(n), sm1, sm2) + | (Sum(_), _) => false + | (Var(n1), Var(n2)) => n1 == n2 + | (Var(_), _) => false + }; + }; + + let fast_equal = eq_internal(0); } -and UTPat: { +and TPat: { [@deriving (show({with_path: false}), sexp, yojson)] type term = | Invalid(string) | EmptyHole | MultiHole(list(Any.t)) - | Var(TypVar.t) - and t = { - ids: list(Id.t), - term, - }; + | Var(string) + and t = IdTagged.t(term); + + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + + let tyvar_of_utpat: t => option(string); + + let fast_equal: (t, t) => bool; } = { [@deriving (show({with_path: false}), sexp, yojson)] type term = | Invalid(string) | EmptyHole | MultiHole(list(Any.t)) - | Var(TypVar.t) - and t = { - ids: list(Id.t), - term, + | Var(string) + and t = IdTagged.t(term); + + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + x, + ) => { + let any_map_term = + Any.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let rec_call = ({term, _} as exp: t) => { + ...exp, + term: + switch (term) { + | EmptyHole + | Invalid(_) + | Var(_) => term + | MultiHole(things) => MultiHole(List.map(any_map_term, things)) + }, + }; + x |> f_tpat(rec_call); }; + + let tyvar_of_utpat = ({term, _}: t) => + switch (term) { + | Var(x) => Some(x) + | _ => None + }; + + let fast_equal = (tp1: t, tp2: t) => + switch (tp1 |> IdTagged.term_of, tp2 |> IdTagged.term_of) { + | (EmptyHole, EmptyHole) => true + | (Invalid(s1), Invalid(s2)) => s1 == s2 + | (MultiHole(xs), MultiHole(ys)) => + List.length(xs) == List.length(ys) + && List.equal(Any.fast_equal, xs, ys) + | (Var(x), Var(y)) => x == y + | (EmptyHole, _) + | (Invalid(_), _) + | (MultiHole(_), _) + | (Var(_), _) => false + }; } -and URul: { +and Rul: { [@deriving (show({with_path: false}), sexp, yojson)] type term = | Invalid(string) | Hole(list(Any.t)) - | Rules(UExp.t, list((UPat.t, UExp.t))) - and t = { - ids: list(Id.t), - term, - }; + | Rules(Exp.t, list((Pat.t, Exp.t))) + and t = IdTagged.t(term); + + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + + let fast_equal: (t, t) => bool; } = { [@deriving (show({with_path: false}), sexp, yojson)] type term = | Invalid(string) | Hole(list(Any.t)) - | Rules(UExp.t, list((UPat.t, UExp.t))) - and t = { - ids: list(Id.t), - term, + | Rules(Exp.t, list((Pat.t, Exp.t))) + and t = IdTagged.t(term); + + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + x, + ) => { + let exp_map_term = + Exp.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let pat_map_term = + Pat.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let any_map_term = + Any.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + let rec_call = ({term, _} as exp: t) => { + ...exp, + term: + switch (term) { + | Invalid(_) => term + | Hole(things) => Hole(List.map(any_map_term, things)) + | Rules(e, rls) => + Rules( + exp_map_term(e), + List.map( + ((p, e)) => (pat_map_term(p), exp_map_term(e)), + rls, + ), + ) + }, + }; + x |> f_rul(rec_call); + }; + + let fast_equal = (r1: t, r2: t) => + switch (r1 |> IdTagged.term_of, r2 |> IdTagged.term_of) { + | (Invalid(s1), Invalid(s2)) => s1 == s2 + | (Hole(xs), Hole(ys)) => + List.length(xs) == List.length(ys) + && List.equal(Any.fast_equal, xs, ys) + | (Rules(e1, rls1), Rules(e2, rls2)) => + Exp.fast_equal(e1, e2) + && List.length(rls1) == List.length(rls2) + && List.for_all2( + ((p1, e1), (p2, e2)) => + Pat.fast_equal(p1, p2) && Exp.fast_equal(e1, e2), + rls1, + rls2, + ) + | (Invalid(_), _) + | (Hole(_), _) + | (Rules(_), _) => false + }; +} + +and Environment: { + include + (module type of VarBstMap.Ordered) with + type t_('a) = VarBstMap.Ordered.t_('a); + + [@deriving (show({with_path: false}), sexp, yojson)] + type t = t_(Exp.t); +} = { + include VarBstMap.Ordered; + + [@deriving (show({with_path: false}), sexp, yojson)] + type t = t_(Exp.t); +} + +and ClosureEnvironment: { + [@deriving (show({with_path: false}), sexp, yojson)] + type t; + + let wrap: (Id.t, Environment.t) => t; + + let id_of: t => Id.t; + let map_of: t => Environment.t; + + let to_list: t => list((Var.t, Exp.t)); + + let of_environment: Environment.t => t; + + let id_equal: (t, t) => bool; + + let empty: t; + let is_empty: t => bool; + let length: t => int; + + let lookup: (t, Var.t) => option(Exp.t); + let contains: (t, Var.t) => bool; + let update: (Environment.t => Environment.t, t) => t; + let update_keep_id: (Environment.t => Environment.t, t) => t; + let extend: (t, (Var.t, Exp.t)) => t; + let extend_keep_id: (t, (Var.t, Exp.t)) => t; + let union: (t, t) => t; + let union_keep_id: (t, t) => t; + let map: (((Var.t, Exp.t)) => Exp.t, t) => t; + let map_keep_id: (((Var.t, Exp.t)) => Exp.t, t) => t; + let filter: (((Var.t, Exp.t)) => bool, t) => t; + let filter_keep_id: (((Var.t, Exp.t)) => bool, t) => t; + let fold: (((Var.t, Exp.t), 'b) => 'b, 'b, t) => 'b; + + let without_keys: (list(Var.t), t) => t; + + let placeholder: t; +} = { + module Inner: { + [@deriving (show({with_path: false}), sexp, yojson)] + type t; + + let wrap: (Id.t, Environment.t) => t; + + let id_of: t => Id.t; + let map_of: t => Environment.t; + } = { + [@deriving (show({with_path: false}), sexp, yojson)] + type t = (Id.t, Environment.t); + + let wrap = (ei, map): t => (ei, map); + + let id_of = ((ei, _)) => ei; + let map_of = ((_, map)) => map; + let (sexp_of_t, t_of_sexp) = + StructureShareSexp.structure_share_here(id_of, sexp_of_t, t_of_sexp); + }; + include Inner; + + let to_list = env => env |> map_of |> Environment.to_listo; + + let of_environment = map => { + let ei = Id.mk(); + wrap(ei, map); + }; + + /* Equals only needs to check environment id's (faster than structural equality + * checking.) */ + let id_equal = (env1, env2) => id_of(env1) == id_of(env2); + + let empty = Environment.empty |> of_environment; + + let is_empty = env => env |> map_of |> Environment.is_empty; + + let length = env => Environment.length(map_of(env)); + + let lookup = (env, x) => + env |> map_of |> (map => Environment.lookup(map, x)); + + let contains = (env, x) => + env |> map_of |> (map => Environment.contains(map, x)); + + let update = (f, env) => env |> map_of |> f |> of_environment; + + let update_keep_id = (f, env) => env |> map_of |> f |> wrap(env |> id_of); + + let extend = (env, xr) => + env |> update(map => Environment.extend(map, xr)); + + let extend_keep_id = (env, xr) => + env |> update_keep_id(map => Environment.extend(map, xr)); + + let union = (env1, env2) => + env2 |> update(map2 => Environment.union(env1 |> map_of, map2)); + + let union_keep_id = (env1, env2) => + env2 |> update_keep_id(map2 => Environment.union(env1 |> map_of, map2)); + + let map = (f, env) => env |> update(Environment.mapo(f)); + + let map_keep_id = (f, env) => env |> update_keep_id(Environment.mapo(f)); + + let filter = (f, env) => env |> update(Environment.filtero(f)); + + let filter_keep_id = (f, env) => + env |> update_keep_id(Environment.filtero(f)); + + let fold = (f, init, env) => env |> map_of |> Environment.foldo(f, init); + + let placeholder = wrap(Id.invalid, Environment.empty); + + let without_keys = keys => update(Environment.without_keys(keys)); +} +and StepperFilterKind: { + [@deriving (show({with_path: false}), sexp, yojson)] + type filter = { + pat: Exp.t, + act: FilterAction.t, }; + + [@deriving (show({with_path: false}), sexp, yojson)] + type t = + | Filter(filter) + | Residue(int, FilterAction.t); + + let map_term: + ( + ~f_exp: (Exp.t => Exp.t, Exp.t) => Exp.t=?, + ~f_pat: (Pat.t => Pat.t, Pat.t) => Pat.t=?, + ~f_typ: (Typ.t => Typ.t, Typ.t) => Typ.t=?, + ~f_tpat: (TPat.t => TPat.t, TPat.t) => TPat.t=?, + ~f_rul: (Rul.t => Rul.t, Rul.t) => Rul.t=?, + ~f_any: (Any.t => Any.t, Any.t) => Any.t=?, + t + ) => + t; + + let map: (Exp.t => Exp.t, t) => t; + + let fast_equal: (t, t) => bool; +} = { + [@deriving (show({with_path: false}), sexp, yojson)] + type filter = { + pat: Exp.t, + act: FilterAction.t, + }; + + [@deriving (show({with_path: false}), sexp, yojson)] + type t = + | Filter(filter) + | Residue(int, FilterAction.t); + + let map = (mapper, filter) => { + switch (filter) { + | Filter({act, pat}) => Filter({act, pat: mapper(pat)}) + | Residue(idx, act) => Residue(idx, act) + }; + }; + + let map_term = + ( + ~f_exp=continue, + ~f_pat=continue, + ~f_typ=continue, + ~f_tpat=continue, + ~f_rul=continue, + ~f_any=continue, + ) => { + let exp_map_term = + Exp.map_term(~f_exp, ~f_pat, ~f_typ, ~f_tpat, ~f_rul, ~f_any); + fun + | Filter({pat: e, act}) => Filter({pat: exp_map_term(e), act}) + | Residue(i, a) => Residue(i, a); + }; + + let fast_equal = (f1, f2) => + switch (f1, f2) { + | (Filter({pat: e1, act: a1}), Filter({pat: e2, act: a2})) => + Exp.fast_equal(e1, e2) && a1 == a2 + | (Residue(i1, a1), Residue(i2, a2)) => i1 == i2 && a1 == a2 + | (Filter(_), _) + | (Residue(_), _) => false + }; }; diff --git a/src/haz3lcore/statics/Typ.re b/src/haz3lcore/statics/Typ.re deleted file mode 100644 index 9b6c4033a5..0000000000 --- a/src/haz3lcore/statics/Typ.re +++ /dev/null @@ -1,4 +0,0 @@ -include TypBase.Typ; - -/* Due to otherwise cyclic dependencies, Typ and Ctx - are jointly located in the TypBase module */ diff --git a/src/haz3lcore/statics/TypBase.re b/src/haz3lcore/statics/TypBase.re deleted file mode 100644 index d5ad13c0d3..0000000000 --- a/src/haz3lcore/statics/TypBase.re +++ /dev/null @@ -1,981 +0,0 @@ -open Sexplib.Std; -open Util; -open OptUtil.Syntax; - -let precedence_Prod = 1; -let precedence_Arrow = 2; -let precedence_Sum = 3; -let precedence_Const = 4; - -module rec Typ: { - /* TYPE_PROVENANCE: From whence does an unknown type originate? - Is it generated from an unannotated pattern variable (SynSwitch), - a pattern variable annotated with a type hole (TypeHole), or - generated by an internal judgement (Internal)? */ - [@deriving (show({with_path: false}), sexp, yojson)] - type type_provenance = - | SynSwitch - | TypeHole - | Free(TypVar.t) - | Internal; - - type module_typ = { - inner_ctx: Ctx.t, - incomplete: bool, - }; - - /* TYP.T: Hazel types */ - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Unknown(type_provenance) - | Int - | Float - | Bool - | String - | Var(TypVar.t) - | List(t) - | Arrow(t, t) - | Sum(sum_map) - | Prod(list(t)) - | Module(module_typ) - | Member(Token.t, t) - | Rec(TypVar.t, t) - | Forall(TypVar.t, t) - and sum_map = ConstructorMap.t(option(t)); - - [@deriving (show({with_path: false}), sexp, yojson)] - type sum_entry = ConstructorMap.binding(option(t)); - - /* Hazel type annotated with a relevant source location. - Currently used to track match branches for inconsistent - branches errors, but could perhaps be used more broadly - for type debugging UI. */ - [@deriving (show({with_path: false}), sexp, yojson)] - type source = { - id: Id.t, - ty: t, - }; - - let of_source: list(source) => list(t); - let join_type_provenance: - (type_provenance, type_provenance) => type_provenance; - let matched_arrow: (Ctx.t, t) => (t, t); - let matched_forall: (Ctx.t, t) => (option(string), t); - let matched_prod: (Ctx.t, int, t) => list(t); - let matched_list: (Ctx.t, t) => t; - let matched_args: (Ctx.t, int, t) => list(t); - let precedence: t => int; - let subst: (t, TypVar.t, t) => t; - let unroll: t => t; - let eq: (t, t) => bool; - let free_vars: (~bound: list(Var.t)=?, t) => list(Var.t); - let join: (~resolve: bool=?, ~fix: bool, Ctx.t, t, t) => option(t); - let join_fix: (~resolve: bool=?, Ctx.t, t, t) => option(t); - let join_all: (~empty: t, Ctx.t, list(t)) => option(t); - let is_consistent: (Ctx.t, t, t) => bool; - let weak_head_normalize: (Ctx.t, t) => t; - let normalize: (Ctx.t, t) => t; - let sum_entry: (Constructor.t, sum_map) => option(sum_entry); - let get_sum_constructors: (Ctx.t, t) => option(sum_map); - let is_unknown: t => bool; - let needs_parens: t => bool; - let pretty_print: t => string; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type type_provenance = - | SynSwitch - | TypeHole - | Free(TypVar.t) - | Internal; - - [@deriving (show({with_path: false}), sexp, yojson)] - type module_typ = { - inner_ctx: Ctx.t, - incomplete: bool, - }; - /* TYP.T: Hazel types */ - - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Unknown(type_provenance) - | Int - | Float - | Bool - | String - | Var(TypVar.t) - | List(t) - | Arrow(t, t) - | Sum(sum_map) - | Prod(list(t)) - | Module(module_typ) - | Member(Token.t, t) - | Rec(TypVar.t, t) - | Forall(TypVar.t, t) - and sum_map = ConstructorMap.t(option(t)); - - [@deriving (show({with_path: false}), sexp, yojson)] - type sum_entry = ConstructorMap.binding(option(t)); - - [@deriving (show({with_path: false}), sexp, yojson)] - type source = { - id: Id.t, - ty: t, - }; - - /* Strip location information from a list of sources */ - let of_source = List.map((source: source) => source.ty); - - /* How type provenance information should be collated when - joining unknown types. This probably requires more thought, - but right now TypeHole strictly predominates over Internal - which strictly predominates over SynSwitch. */ - let join_type_provenance = - (p1: type_provenance, p2: type_provenance): type_provenance => - switch (p1, p2) { - | (Free(tv1), Free(tv2)) when TypVar.eq(tv1, tv2) => Free(tv1) - | (TypeHole, TypeHole | SynSwitch) - | (SynSwitch, TypeHole) => TypeHole - | (SynSwitch, Internal) - | (Internal, SynSwitch) => SynSwitch - | (Internal | Free(_), _) - | (_, Internal | Free(_)) => Internal - | (SynSwitch, SynSwitch) => SynSwitch - }; - - let precedence = (ty: t): int => - switch (ty) { - | Int - | Float - | Bool - | String - | Unknown(_) - | Var(_) - | Module(_) - | Member(_) - | Rec(_) - | Forall(_) - | Sum(_) => precedence_Sum - | List(_) => precedence_Const - | Prod(_) => precedence_Prod - | Arrow(_, _) => precedence_Arrow - }; - - let rec free_vars = (~bound=[], ty: t): list(Var.t) => - switch (ty) { - | Unknown(_) - | Int - | Float - | Bool - | String => [] - | Var(v) => List.mem(v, bound) ? [] : [v] - | List(ty) => free_vars(~bound, ty) - | Arrow(t1, t2) => free_vars(~bound, t1) @ free_vars(~bound, t2) - | Sum(sm) => - ListUtil.flat_map( - fun - | None => [] - | Some(typ) => free_vars(~bound, typ), - List.map(snd, sm), - ) - | Prod(tys) => ListUtil.flat_map(free_vars(~bound), tys) - | Module({inner_ctx, _}) => - let ctx_entry_subst = (l: list(Token.t), e: Ctx.entry): list(Token.t) => { - switch (e) { - | VarEntry(t) - | ConstructorEntry(t) => l @ free_vars(t.typ) - | TVarEntry(_) => l - }; - }; - List.fold_left(ctx_entry_subst, [], inner_ctx); - | Member(_, ty) => free_vars(ty) - | Rec(x, ty) => free_vars(~bound=[x, ...bound], ty) - | Forall(x, ty) => free_vars(~bound=[x, ...bound], ty) - }; - - let var_count = ref(0); - let fresh_var = (var_name: string) => { - let x = var_count^; - var_count := x + 1; - var_name ++ "_α" ++ string_of_int(x); - }; - - let rec subst = (s: t, x: TypVar.t, ty: t) => { - switch (ty) { - | Int => Int - | Float => Float - | Bool => Bool - | String => String - | Unknown(prov) => Unknown(prov) - | Arrow(ty1, ty2) => Arrow(subst(s, x, ty1), subst(s, x, ty2)) - | Prod(tys) => Prod(List.map(subst(s, x), tys)) - | Sum(sm) => Sum(ConstructorMap.map(Option.map(subst(s, x)), sm)) - | Rec(y, ty) when TypVar.eq(x, y) => Rec(y, ty) - | Rec(y, ty) when List.mem(y, free_vars(s)) => - let fresh = fresh_var(y); - Rec(fresh, subst(s, x, subst(Var(fresh), y, ty))); - | Rec(y, ty) => Rec(y, subst(s, x, ty)) - | Forall(y, ty) when TypVar.eq(x, y) => Forall(y, ty) - | Forall(y, ty) when List.mem(y, free_vars(s)) => - let fresh = fresh_var(y); - Forall(fresh, subst(s, x, subst(Var(fresh), y, ty))); - | Forall(y, ty) => Forall(y, subst(s, x, ty)) - | List(ty) => List(subst(s, x, ty)) - | Var(y) => TypVar.eq(x, y) ? s : Var(y) - | Module({inner_ctx, incomplete}) => - let ctx_entry_subst = (e: Ctx.entry): Ctx.entry => { - switch (e) { - | VarEntry(t) => VarEntry({...t, typ: subst(s, x, t.typ)}) - | ConstructorEntry(t) => - ConstructorEntry({...t, typ: subst(s, x, t.typ)}) - | TVarEntry(_) => e - }; - }; - Module({inner_ctx: List.map(ctx_entry_subst, inner_ctx), incomplete}); - | Member(name, ty) => Member(name, subst(s, x, ty)) - }; - }; - - let unroll = (ty: t): t => - switch (ty) { - | Rec(x, ty_body) => subst(ty, x, ty_body) - | _ => ty - }; - - /* Type Equality: This coincides with alpha equivalence for normalized types. - Other types may be equivalent but this will not detect so if they are not normalized. */ - let rec eq_internal = (n: int, t1: t, t2: t) => { - switch (t1, t2) { - | (Member(_, ty1), ty2) => eq_internal(n, ty1, ty2) - | (ty1, Member(_, ty2)) => eq_internal(n, ty1, ty2) - | (Module(ctx1), Module(ctx2)) => - let entry_equal = (e1: Ctx.entry, e2: Ctx.entry) => { - switch (e1, e2) { - | ( - VarEntry({typ: t1, name: n1, _}), - VarEntry({typ: t2, name: n2, _}), - ) => - eq_internal(n, t1, t2) && n1 == n2 - | ( - TVarEntry({kind: t1, name: n1, _}), - TVarEntry({kind: t2, name: n2, _}), - ) => - t1 == t2 && n1 == n2 - | ( - ConstructorEntry({typ: t1, name: n1, _}), - ConstructorEntry({typ: t2, name: n2, _}), - ) => - eq_internal(n, t1, t2) && n1 == n2 - | _ => false - }; - }; - List.equal(entry_equal, ctx1.inner_ctx, ctx2.inner_ctx) - && ctx1.incomplete == ctx2.incomplete; - | (Module(_), _) => false - | (Rec(x1, t1), Rec(x2, t2)) - | (Forall(x1, t1), Forall(x2, t2)) => - eq_internal( - n + 1, - subst(Var("=" ++ string_of_int(n)), x1, t1), - subst(Var("=" ++ string_of_int(n)), x2, t2), - ) - | (Rec(_), _) => false - | (Forall(_), _) => false - | (Int, Int) => true - | (Int, _) => false - | (Float, Float) => true - | (Float, _) => false - | (Bool, Bool) => true - | (Bool, _) => false - | (String, String) => true - | (String, _) => false - | (Unknown(_), Unknown(_)) => true - | (Unknown(_), _) => false - | (Arrow(t1, t2), Arrow(t1', t2')) => - eq_internal(n, t1, t1') && eq_internal(n, t2, t2') - | (Arrow(_), _) => false - | (Prod(tys1), Prod(tys2)) => List.equal(eq_internal(n), tys1, tys2) - | (Prod(_), _) => false - | (List(t1), List(t2)) => eq_internal(n, t1, t2) - | (List(_), _) => false - | (Sum(sm1), Sum(sm2)) => - /* Does not normalize the types. */ - ConstructorMap.equal(Option.equal(eq_internal(n)), sm1, sm2) - | (Sum(_), _) => false - | (Var(n1), Var(n2)) => n1 == n2 - | (Var(_), _) => false - }; - }; - - let eq = (t1: t, t2: t): bool => eq_internal(0, t1, t2); - - /* Lattice join on types. This is a LUB join in the hazel2 - sense in that any type dominates Unknown. The optional - resolve parameter specifies whether, in the case of a type - variable and a succesful join, to return the resolved join type, - or to return the (first) type variable for readability */ - let rec join = - (~resolve=false, ~fix, ctx: Ctx.t, ty1: t, ty2: t): option(t) => { - let join' = join(~resolve, ~fix, ctx); - switch (ty1, ty2) { - | (Member(_, Unknown(Internal)), ty) - | (ty, Member(_, Unknown(Internal))) => Some(ty) - | (Member(n1, ty1), Member(n2, ty2)) => - if (n1 == n2) { - let* ty = join'(ty1, ty2); - Some(Member(n1, ty)); - } else { - let+ ty_join = join'(ty1, ty2); - resolve ? ty_join : Member(n1, ty_join); - } - | (Member(name, ty1), ty2) - | (ty2, Member(name, ty1)) => - let+ ty_join = join'(ty1, ty2); - resolve ? ty_join : Member(name, ty_join); - | (_, Unknown(TypeHole | Free(_)) as ty) when fix => - /* NOTE(andrew): This is load bearing - for ensuring that function literals get appropriate - casts. Documentation/Dynamics has regression tests */ - Some(ty) - | (Unknown(p1), Unknown(p2)) => - Some(Unknown(join_type_provenance(p1, p2))) - | (Unknown(_), ty) - | (ty, Unknown(_)) => Some(ty) - | (Var(n1), Var(n2)) => - if (n1 == n2) { - Some(Var(n1)); - } else { - let* ty1 = Ctx.lookup_alias(ctx, n1); - let* ty2 = Ctx.lookup_alias(ctx, n2); - let+ ty_join = join'(ty1, ty2); - !resolve && eq(ty1, ty_join) ? Var(n1) : ty_join; - } - | (Var(name), ty) - | (ty, Var(name)) => - let* ty_name = Ctx.lookup_alias(ctx, name); - let+ ty_join = join'(ty_name, ty); - !resolve && eq(ty_name, ty_join) ? Var(name) : ty_join; - /* Note: Ordering of Unknown, Var, and Rec above is load-bearing! */ - | (Rec(x1, ty1), Rec(x2, ty2)) => - let ctx = Ctx.extend_dummy_tvar(ctx, x1); - let+ ty_body = - join(~resolve, ~fix, ctx, subst(Var(x2), x1, ty1), ty2); - Rec(x1, ty_body); - | (Forall(x1, ty1), Forall(x2, ty2)) => - let ctx = Ctx.extend_dummy_tvar(ctx, x1); - let+ ty_body = - join(~resolve, ~fix, ctx, subst(Var(x2), x1, ty1), ty2); - Forall(x1, ty_body); - /* Note for above: there is no danger of free variable capture as - subst itself performs capture avoiding substitution. However this - may generate internal type variable names that in corner cases can - be exposed to the user. We preserve the variable name of the - second type to preserve synthesized type variable names, which - come from user annotations. */ - | (Rec(_), _) => None - | (Forall(_), _) => None - | (Int, Int) => Some(Int) - | (Int, _) => None - | (Float, Float) => Some(Float) - | (Float, _) => None - | (Bool, Bool) => Some(Bool) - | (Bool, _) => None - | (String, String) => Some(String) - | (String, _) => None - | (Arrow(ty1, ty2), Arrow(ty1', ty2')) => - let* ty1 = join'(ty1, ty1'); - let+ ty2 = join'(ty2, ty2'); - Arrow(ty1, ty2); - | (Arrow(_), _) => None - | (Prod(tys1), Prod(tys2)) => - let* tys = ListUtil.map2_opt(join', tys1, tys2); - let+ tys = OptUtil.sequence(tys); - Prod(tys); - | (Prod(_), _) => None - | (Sum(sm1), Sum(sm2)) => - let (sorted1, sorted2) = - /* If same order, retain order for UI */ - ConstructorMap.same_constructors_same_order(sm1, sm2) - ? (sm1, sm2) - : (ConstructorMap.sort(sm1), ConstructorMap.sort(sm2)); - let* ty = - ListUtil.map2_opt( - join_sum_entries(~resolve, ~fix, ctx), - sorted1, - sorted2, - ); - let+ ty = OptUtil.sequence(ty); - Sum(ty); - | (Sum(_), _) => None - | (List(ty1), List(ty2)) => - let+ ty = join'(ty1, ty2); - List(ty); - | (List(_), _) => None - | (Module(ctx1), Module(ctx2)) => - /* Module types can join if and only if for every variable, - Either: it appears in both ctxs and the types can join, - Or: it appears only in one ctx and the other ctx is incomplete */ - let join_entry = - ( - {inner_ctx, incomplete}: module_typ, - ctx_joined: option(Ctx.t), - ctx1_entry: Ctx.entry, - ) - : option(Ctx.t) => { - let do_incomplete = (entry1: 'a, entry2: option('a)): option('a) => - if (incomplete && entry2 == None) { - Some(entry1); - } else { - entry2; - }; - let* ctx_joined = ctx_joined; - switch (ctx1_entry) { - | VarEntry({name, typ, id} as entry1) => - let* entry2 = - Ctx.lookup_var(inner_ctx, name) |> do_incomplete(entry1); - let+ typ_joined = join'(typ, entry2.typ); - Ctx.extend(ctx_joined, VarEntry({name, typ: typ_joined, id})); - | ConstructorEntry({name, typ, id} as entry1) => - let* entry2 = - Ctx.lookup_ctr(inner_ctx, name) |> do_incomplete(entry1); - let+ typ_joined = join'(typ, entry2.typ); - Ctx.extend( - ctx_joined, - ConstructorEntry({name, typ: typ_joined, id}), - ); - | TVarEntry({name, kind, id}) => - let* entry2 = Ctx.lookup_tvar(inner_ctx, name); - let+ kind_joined = - switch (kind, entry2.kind) { - | (Abstract, Abstract) => Some(Kind.Abstract) - | (Singleton(ty1), Singleton(ty2)) => - let+ typ_joined = join'(ty1, ty2); - Kind.Singleton(typ_joined); - | _ => None - }; - Ctx.extend(ctx_joined, TVarEntry({name, kind: kind_joined, id})); - }; - }; - let* ctx = List.fold_left(join_entry(ctx2), Some([]), ctx1.inner_ctx); - let* ctx = - List.fold_left(join_entry(ctx1), Some(ctx), ctx2.inner_ctx); - Some( - Module({ - inner_ctx: ctx |> Ctx.filter_duplicates, - incomplete: ctx1.incomplete && ctx2.incomplete, - }), - ); - | (Module(_), _) => None - }; - } - and join_sum_entries = - ( - ~resolve, - ~fix, - ctx: Ctx.t, - (ctr1, ty1): sum_entry, - (ctr2, ty2): sum_entry, - ) - : option(sum_entry) => - switch (ty1, ty2) { - | (None, None) when ctr1 == ctr2 => Some((ctr1, None)) - | (Some(ty1), Some(ty2)) when ctr1 == ctr2 => - let+ ty_join = join(~resolve, ~fix, ctx, ty1, ty2); - (ctr1, Some(ty_join)); - | _ => None - }; - - let join_fix = join(~fix=true); - - let join_all = (~empty: t, ctx: Ctx.t, ts: list(t)): option(t) => - List.fold_left( - (acc, ty) => OptUtil.and_then(join(~fix=false, ctx, ty), acc), - Some(empty), - ts, - ); - - let is_consistent = (ctx: Ctx.t, ty1: t, ty2: t): bool => - join(~fix=false, ctx, ty1, ty2) != None; - - let rec weak_head_normalize = (ctx: Ctx.t, ty: t): t => - switch (ty) { - | Var(x) => - switch (Ctx.lookup_alias(ctx, x)) { - | Some(ty) => weak_head_normalize(ctx, ty) - | None => ty - } - | _ => ty - }; - - let rec normalize = (ctx: Ctx.t, ty: t): t => { - switch (ty) { - | Var(x) => - switch (Ctx.lookup_alias(ctx, x)) { - | Some(ty) => normalize(ctx, ty) - | None => ty - } - | Unknown(_) - | Int - | Float - | Bool - | String => ty - | List(t) => List(normalize(ctx, t)) - | Arrow(t1, t2) => Arrow(normalize(ctx, t1), normalize(ctx, t2)) - | Prod(ts) => Prod(List.map(normalize(ctx), ts)) - | Sum(ts) => Sum(ConstructorMap.map(Option.map(normalize(ctx)), ts)) - | Module({inner_ctx, incomplete}) => - let ctx_entry_subst = (e: Ctx.entry): Ctx.entry => { - switch (e) { - | VarEntry(t) => VarEntry({...t, typ: normalize(ctx, t.typ)}) - | ConstructorEntry(t) => - ConstructorEntry({...t, typ: normalize(ctx, t.typ)}) - | TVarEntry(_) => e - }; - }; - Module({inner_ctx: List.map(ctx_entry_subst, inner_ctx), incomplete}); - | Member(name, ty) => Member(name, normalize(ctx, ty)) - | Rec(name, ty) => - /* NOTE: Dummy tvar added has fake id but shouldn't matter - as in current implementation Recs do not occur in the - surface syntax, so we won't try to jump to them. */ - Rec(name, normalize(Ctx.extend_dummy_tvar(ctx, name), ty)) - | Forall(name, ty) => - Forall(name, normalize(Ctx.extend_dummy_tvar(ctx, name), ty)) - }; - }; - - let matched_arrow = (ctx, ty) => - switch (weak_head_normalize(ctx, ty)) { - | Arrow(ty_in, ty_out) => (ty_in, ty_out) - | Unknown(SynSwitch) => (Unknown(SynSwitch), Unknown(SynSwitch)) - | _ => (Unknown(Internal), Unknown(Internal)) - }; - - let matched_forall = (ctx, ty) => - switch (weak_head_normalize(ctx, ty)) { - | Forall(t, ty) => (Some(t), ty) - | Unknown(SynSwitch) => (None, Unknown(SynSwitch)) - | _ => (None, Unknown(Internal)) - }; - - let matched_prod = (ctx, length, ty) => - switch (weak_head_normalize(ctx, ty)) { - | Prod(tys) when List.length(tys) == length => tys - | Unknown(SynSwitch) => List.init(length, _ => Unknown(SynSwitch)) - | _ => List.init(length, _ => Unknown(Internal)) - }; - - let matched_list = (ctx, ty) => - switch (weak_head_normalize(ctx, ty)) { - | List(ty) => ty - | Unknown(SynSwitch) => Unknown(SynSwitch) - | _ => Unknown(Internal) - }; - - let matched_args = (ctx, default_arity, ty) => - switch (weak_head_normalize(ctx, ty)) { - | Prod([_, ..._] as tys) => tys - | Unknown(_) as ty_unknown => List.init(default_arity, _ => ty_unknown) - | _ as ty => [ty] - }; - - let sum_entry = (ctr: Constructor.t, ctrs: sum_map): option(sum_entry) => - List.find_map( - fun - | (t, typ) when Constructor.equal(t, ctr) => Some((t, typ)) - | _ => None, - ctrs, - ); - - let rec get_sum_constructors = (ctx: Ctx.t, ty: t): option(sum_map) => { - let ty = weak_head_normalize(ctx, ty); - switch (ty) { - | Member(_, ty) => get_sum_constructors(ctx, ty) - | Sum(sm) => Some(sm) - | Rec(_) => - /* Note: We must unroll here to get right ctr types; - otherwise the rec parameter will leak. However, seeing - as substitution is too expensive to be used here, we - currently making the optimization that, since all - recursive types are type alises which use the alias name - as the recursive parameter, and type aliases cannot be - shadowed, it is safe to simply remove the Rec constructor, - provided we haven't escaped the context in which the alias - is bound. If either of the above assumptions become invalid, - the below code will be incorrect! */ - let ty = - switch (ty) { - | Rec(x, ty_body) => - switch (Ctx.lookup_alias(ctx, x)) { - | None => unroll(ty) - | Some(_) => ty_body - } - | _ => ty - }; - switch (ty) { - | Sum(sm) => Some(sm) - | _ => None - }; - | _ => None - }; - }; - - let is_unknown = (ty: t): bool => - switch (ty) { - | Unknown(_) => true - | _ => false - }; - - /* Does the type require parentheses when on the left of an arrow for printing? */ - let needs_parens = (ty: t): bool => - switch (ty) { - | Unknown(_) - | Int - | Float - | String - | Bool - | Module(_) - | Member(_) - | Var(_) => false - | Rec(_, _) - | Forall(_, _) => true - | List(_) => false /* is already wrapped in [] */ - | Arrow(_, _) => true - | Prod(_) - | Sum(_) => true /* disambiguate between (A + B) -> C and A + (B -> C) */ - }; - - /* Essentially recreates haz3lweb/view/Type.re's view_ty but with string output */ - let rec pretty_print = (ty: t): string => - switch (ty) { - | Unknown(_) => "?" - | Int => "Int" - | Float => "Float" - | Bool => "Bool" - | String => "String" - | Var(tvar) => tvar - | List(t) => "[" ++ pretty_print(t) ++ "]" - | Arrow(t1, t2) => paren_pretty_print(t1) ++ "->" ++ pretty_print(t2) - | Sum(sm) => - switch (sm) { - | [] => "+?" - | [t0] => "+" ++ ctr_pretty_print(t0) - | [t0, ...ts] => - List.fold_left( - (acc, t) => acc ++ "+" ++ ctr_pretty_print(t), - ctr_pretty_print(t0), - ts, - ) - } - | Prod([]) => "()" - | Prod([t0, ...ts]) => - "(" - ++ List.fold_left( - (acc, t) => acc ++ ", " ++ pretty_print(t), - pretty_print(t0), - ts, - ) - ++ ")" - | Module({inner_ctx: [], incomplete: false}) => "Module" - | Module({inner_ctx: [], incomplete: true}) => "Module{...}" - | Module({inner_ctx: [e, ...es], incomplete}) => - let view_entry = (m: Ctx.entry): string => { - switch (m) { - | VarEntry({name: n0, typ: t0, _}) - | ConstructorEntry({name: n0, typ: t0, _}) => - n0 ++ ":" ++ pretty_print(t0) - - | TVarEntry({name: n0, kind: Singleton(t0), _}) => - "Type " ++ n0 ++ "=" ++ pretty_print(t0) - - | TVarEntry({name: n0, _}) => - "Type " ++ n0 ++ "=" ++ pretty_print(Unknown(Internal)) - }; - }; - "Module{" - ++ List.fold_left( - (acc, t) => acc ++ ", " ++ view_entry(t), - view_entry(e), - es, - ) - ++ view_entry(e) - ++ (incomplete ? ",..." : "") - ++ "}"; - | Member(name, _) => name - | Rec(tv, t) => "rec " ++ tv ++ "->" ++ pretty_print(t) - | Forall(tv, t) => "forall " ++ tv ++ "->" ++ pretty_print(t) - } - and ctr_pretty_print = ((ctr, typ)) => - switch (typ) { - | None => ctr - | Some(typ) => ctr ++ "(" ++ pretty_print(typ) ++ ")" - } - and paren_pretty_print = typ => - if (needs_parens(typ)) { - "(" ++ pretty_print(typ) ++ ")"; - } else { - pretty_print(typ); - }; -} - -and Ctx: { - [@deriving (show({with_path: false}), sexp, yojson)] - type var_entry = { - name: Var.t, - id: Id.t, - typ: Typ.t, - }; - - [@deriving (show({with_path: false}), sexp, yojson)] - type tvar_entry = { - name: TypVar.t, - id: Id.t, - kind: Kind.t, - }; - - [@deriving (show({with_path: false}), sexp, yojson)] - type entry = - | VarEntry(var_entry) - | ConstructorEntry(var_entry) - | TVarEntry(tvar_entry); - - [@deriving (show({with_path: false}), sexp, yojson)] - type t = list(entry); - - let extend: (t, entry) => t; - let extend_tvar: (t, tvar_entry) => t; - let extend_alias: (t, TypVar.t, Id.t, Typ.t) => t; - let extend_dummy_tvar: (t, TypVar.t) => t; - let lookup_tvar: (t, TypVar.t) => option(tvar_entry); - let lookup_alias: (t, TypVar.t) => option(Typ.t); - let get_id: entry => Id.t; - let lookup_var: (t, string) => option(var_entry); - let lookup_ctr: (t, string) => option(var_entry); - let is_alias: (t, TypVar.t) => bool; - let is_abstract: (t, TypVar.t) => bool; - let add_ctrs: (t, TypVar.t, Id.t, Typ.sum_map) => t; - let subtract_prefix: (t, t) => option(t); - let added_bindings: (t, t) => t; - let filter_duplicates: t => t; - let modulize: (Typ.t, string) => Typ.t; - let shadows_typ: (t, TypVar.t) => bool; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type var_entry = { - name: Var.t, - id: Id.t, - typ: Typ.t, - }; - - [@deriving (show({with_path: false}), sexp, yojson)] - type tvar_entry = { - name: TypVar.t, - id: Id.t, - kind: Kind.t, - }; - - [@deriving (show({with_path: false}), sexp, yojson)] - type entry = - | VarEntry(var_entry) - | ConstructorEntry(var_entry) - | TVarEntry(tvar_entry); - - [@deriving (show({with_path: false}), sexp, yojson)] - type t = list(entry); - - let extend = (ctx, entry) => List.cons(entry, ctx); - - let extend_tvar = (ctx: t, tvar_entry: tvar_entry): t => - extend(ctx, TVarEntry(tvar_entry)); - - let extend_alias = (ctx: t, name: TypVar.t, id: Id.t, ty: Typ.t): t => - extend_tvar(ctx, {name, id, kind: Singleton(ty)}); - - let extend_dummy_tvar = (ctx: t, name: TypVar.t) => - extend_tvar(ctx, {kind: Abstract, name, id: Id.invalid}); - - let lookup_tvar = (ctx: t, name: TypVar.t): option(tvar_entry) => - List.find_map( - fun - | TVarEntry(v) when v.name == name => Some(v) - | _ => None, - ctx, - ); - - let lookup_alias = (ctx: t, t: TypVar.t): option(Typ.t) => - switch (lookup_tvar(ctx, t)) { - | Some({kind: Singleton(ty), _}) => Some(ty) - | Some({kind: Abstract, _}) - | None => None - }; - - let get_id: entry => Id.t = - fun - | VarEntry({id, _}) - | ConstructorEntry({id, _}) - | TVarEntry({id, _}) => id; - - let lookup_var = (ctx: t, name: string): option(var_entry) => - List.find_map( - fun - | VarEntry(v) when v.name == name => Some(v) - | _ => None, - ctx, - ); - - let lookup_ctr = (ctx: t, name: string): option(var_entry) => - List.find_map( - fun - | ConstructorEntry(t) when t.name == name => Some(t) - | _ => None, - ctx, - ); - - let is_alias = (ctx: t, name: TypVar.t): bool => - switch (lookup_alias(ctx, name)) { - | Some(_) => true - | None => false - }; - - let is_abstract = (ctx: t, name: TypVar.t): bool => - switch (lookup_tvar(ctx, name)) { - | Some({kind: Abstract, _}) => true - | _ => false - }; - - let add_ctrs = (ctx: t, name: TypVar.t, id: Id.t, ctrs: Typ.sum_map): t => - List.map( - ((ctr, typ)) => - ConstructorEntry({ - name: ctr, - id, - typ: - switch (typ) { - | None => Var(name) - | Some(typ) => Arrow(typ, Var(name)) - }, - }), - ctrs, - ) - @ ctx; - - let subtract_prefix = (ctx: t, prefix_ctx: t): option(t) => { - // NOTE: does not check that the prefix is an actual prefix - let prefix_length = List.length(prefix_ctx); - let ctx_length = List.length(ctx); - if (prefix_length > ctx_length) { - None; - } else { - Some( - List.rev( - ListUtil.sublist((prefix_length, ctx_length), List.rev(ctx)), - ), - ); - }; - }; - - let added_bindings = (ctx_after: t, ctx_before: t): t => { - /* Precondition: new_ctx is old_ctx plus some new bindings */ - let new_count = List.length(ctx_after) - List.length(ctx_before); - switch (ListUtil.split_n_opt(new_count, ctx_after)) { - | Some((ctx, _)) => ctx - | _ => [] - }; - }; - - module VarSet = Set.Make(Var); - - // Note: filter out duplicates when rendering - let filter_duplicates = (ctx: t): t => - ctx - |> List.fold_left( - ((ctx, term_set, typ_set), entry) => { - switch (entry) { - | VarEntry({name, _}) - | ConstructorEntry({name, _}) => - VarSet.mem(name, term_set) - ? (ctx, term_set, typ_set) - : ([entry, ...ctx], VarSet.add(name, term_set), typ_set) - | TVarEntry({name, _}) => - VarSet.mem(name, typ_set) - ? (ctx, term_set, typ_set) - : ([entry, ...ctx], term_set, VarSet.add(name, typ_set)) - } - }, - ([], VarSet.empty, VarSet.empty), - ) - |> (((ctx, _, _)) => List.rev(ctx)); - let rec modulize_item = (ctx: t, x: Token.t, ty: Typ.t): Typ.t => { - switch (ty) { - | Int => Int - | Float => Float - | Bool => Bool - | String => String - | Member(name, ty1) => Member(x ++ "." ++ name, ty1) - | Unknown(prov) => Unknown(prov) - | Arrow(ty1, ty2) => - Arrow(modulize_item(ctx, x, ty1), modulize_item(ctx, x, ty2)) - | Prod(tys) => Prod(List.map(modulize_item(ctx, x), tys)) - | Sum(sm) => - Sum(ConstructorMap.map(Option.map(modulize_item(ctx, x)), sm)) - | Rec(y, ty) => Rec(y, modulize_item(ctx, x, ty)) - | List(ty) => List(modulize_item(ctx, x, ty)) - | Var(n) => - x == n - ? Var(n) : Member(x ++ "." ++ n, Typ.weak_head_normalize(ctx, ty)) - | Module({inner_ctx, incomplete}) => - let ctx_entry_modulize = (e: entry): entry => { - switch (e) { - | VarEntry(t) => VarEntry({...t, typ: modulize_item(ctx, x, t.typ)}) - | ConstructorEntry(t) => - ConstructorEntry({...t, typ: modulize_item(ctx, x, t.typ)}) - | TVarEntry(_) => e - }; - }; - Module({ - inner_ctx: List.map(ctx_entry_modulize, inner_ctx), - incomplete, - }); - | Forall(_, t) => modulize_item(ctx, x, t) - }; - }; - - let modulize = (ty: Typ.t, x: string): Typ.t => { - switch (ty) { - | Module({inner_ctx, incomplete}) => - Module({ - inner_ctx: - List.map( - (e: entry): entry => { - switch (e) { - | VarEntry(t) => - VarEntry({...t, typ: modulize_item(inner_ctx, x, t.typ)}) - | ConstructorEntry(t) => - ConstructorEntry({ - ...t, - typ: modulize_item(inner_ctx, x, t.typ), - }) - | TVarEntry(_) => e - } - }, - inner_ctx, - ), - incomplete, - }) - | _ => ty - }; - }; - - let shadows_typ = (ctx: t, name: TypVar.t): bool => - Form.is_base_typ(name) || is_alias(ctx, name) || is_abstract(ctx, name); -} -and Kind: { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Singleton(Typ.t) - | Abstract; -} = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Singleton(Typ.t) - | Abstract; -}; diff --git a/src/haz3lcore/statics/TypVar.re b/src/haz3lcore/statics/TypVar.re deleted file mode 100644 index 7b4f4d4ef2..0000000000 --- a/src/haz3lcore/statics/TypVar.re +++ /dev/null @@ -1,6 +0,0 @@ -open Sexplib.Std; - -[@deriving (show({with_path: false}), sexp, yojson)] -type t = string; - -let eq = String.equal; diff --git a/src/haz3lcore/statics/Var.re b/src/haz3lcore/statics/Var.re index f684dacfe5..68c3d9d1b3 100644 --- a/src/haz3lcore/statics/Var.re +++ b/src/haz3lcore/statics/Var.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = string; @@ -7,18 +7,6 @@ let eq = String.equal; let length = String.length; -let valid_regex = - Re.Str.regexp("^\\([a-zA-Z]\\|_[_a-zA-Z0-9]\\)[_a-zA-Z0-9']*$"); -let is_valid = s => Re.Str.string_match(valid_regex, s, 0); - -/* helper function for guarding options with is_valid */ -let check_valid = (s, result) => - if (is_valid(s)) { - result; - } else { - None; - }; - let is_true = eq("true"); let is_false = eq("false"); diff --git a/src/haz3lcore/statics/uterm/UExp.re b/src/haz3lcore/statics/uterm/UExp.re new file mode 100644 index 0000000000..16d6db0412 --- /dev/null +++ b/src/haz3lcore/statics/uterm/UExp.re @@ -0,0 +1 @@ +include Exp; diff --git a/src/haz3lcore/statics/uterm/UPat.re b/src/haz3lcore/statics/uterm/UPat.re new file mode 100644 index 0000000000..9bd15c6ba8 --- /dev/null +++ b/src/haz3lcore/statics/uterm/UPat.re @@ -0,0 +1 @@ +include Pat; diff --git a/src/haz3lcore/statics/uterm/UTyp.re b/src/haz3lcore/statics/uterm/UTyp.re new file mode 100644 index 0000000000..7dcfba5350 --- /dev/null +++ b/src/haz3lcore/statics/uterm/UTyp.re @@ -0,0 +1 @@ +include Typ; diff --git a/src/haz3lcore/tiles/Base.re b/src/haz3lcore/tiles/Base.re index 29f3d64e6f..8c127d83ba 100644 --- a/src/haz3lcore/tiles/Base.re +++ b/src/haz3lcore/tiles/Base.re @@ -1,4 +1,16 @@ -open Sexplib.Std; +open Util; + +/* The different kinds of projector. New projectors + * types need to be registered here in order to be + * able to create and update their instances */ +[@deriving (show({with_path: false}), sexp, yojson)] +type kind = + | Fold + | Info + | Checkbox + | Slider + | SliderF + | TextArea; [@deriving (show({with_path: false}), sexp, yojson)] type segment = list(piece) @@ -6,6 +18,7 @@ and piece = | Tile(tile) | Grout(Grout.t) | Secondary(Secondary.t) + | Projector(projector) and tile = { // invariants: // - length(mold.in_) + 1 == length(label) @@ -17,6 +30,12 @@ and tile = { mold: Mold.t, shards: list(int), children: list(segment), +} +and projector = { + id: Id.t, + kind, + syntax: piece, + model: string, }; // This is for comment insertion diff --git a/src/haz3lcore/tiles/Id.re b/src/haz3lcore/tiles/Id.re index b377ca02b0..5046dd63c5 100644 --- a/src/haz3lcore/tiles/Id.re +++ b/src/haz3lcore/tiles/Id.re @@ -1,3 +1,5 @@ +open Util; + /* ID FAQ WHATS AN ID? diff --git a/src/haz3lcore/tiles/Label.re b/src/haz3lcore/tiles/Label.re index 146521afa5..e26eeaa5a8 100644 --- a/src/haz3lcore/tiles/Label.re +++ b/src/haz3lcore/tiles/Label.re @@ -1,16 +1,6 @@ -open Sexplib.Std; +open Util; /* A label is the textual expression of a form's delimiters */ [@deriving (show({with_path: false}), sexp, yojson)] type t = list(Token.t); exception Empty_label; - -let length: t => int = List.length; - -let rev: t => t = List.rev; - -let hd_tl = (lbl: t): (Token.t, list(Token.t)) => - switch (lbl) { - | [] => raise(Empty_label) - | [hd, ...tl] => (hd, tl) - }; diff --git a/src/haz3lcore/tiles/Mold.re b/src/haz3lcore/tiles/Mold.re index d9a497e20c..743fcb0d18 100644 --- a/src/haz3lcore/tiles/Mold.re +++ b/src/haz3lcore/tiles/Mold.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; [@deriving (show({with_path: false}), sexp, yojson)] @@ -67,12 +66,6 @@ let nib_shapes = (~index=?, mold: t): Nibs.shapes => { (nib_l.shape, nib_r.shape); }; -module Map = { - type mold = t; - include Id.Map; - type nonrec t = Id.Map.t(list(mold)); -}; - let of_grout: (Grout.t, Sort.t) => t = (g, sort) => { nibs: @@ -95,17 +88,6 @@ let of_secondary = (l: Nib.t) => { in_: [], }; -let fits_shape = (d: Direction.t, s: Nib.Shape.t, m: t): bool => { - let s' = Direction.choose(d, nib_shapes(m)); - Nib.Shape.fits(s, s'); -}; - -let consistent_shapes = (ms: list(t)) => - ms - |> List.map(nib_shapes) - |> List.split - |> TupleUtil.map2(ListUtil.single_elem); - let is_infix_op = (mold: t): bool => switch (mold.nibs, mold.in_) { | (({shape: Concave(_), _}, {shape: Concave(_), _}), []) => true diff --git a/src/haz3lcore/tiles/Nib.re b/src/haz3lcore/tiles/Nib.re index 04b4c940d3..863ea9bd9f 100644 --- a/src/haz3lcore/tiles/Nib.re +++ b/src/haz3lcore/tiles/Nib.re @@ -1,3 +1,5 @@ +open Util; + module Shape = { [@deriving (show({with_path: false}), sexp, yojson)] type t = @@ -21,25 +23,26 @@ module Shape = { | (Concave(_), Concave(_)) => false }; - let fitting = - fun - | Convex => concave() - | Concave(_) => Convex; - let flip = fun | Convex => concave() | Concave(_) => Convex; - let absolute = (d: Util.Direction.t, s: t): Util.Direction.t => + let absolute = (d: Direction.t, s: t): Direction.t => /* The direction an s-shaped nib on the d-hand side is facing */ switch (s) { | Convex => d - | Concave(_) => Util.Direction.toggle(d) + | Concave(_) => Direction.toggle(d) }; - let relative = (nib: Util.Direction.t, side: Util.Direction.t): t => + let relative = (nib: Direction.t, side: Direction.t): t => nib == side ? Convex : concave(); + + let direction_of = (d: Direction.t, shape: t): Direction.t => + switch (shape) { + | Convex => d + | Concave(_) => Direction.toggle(d) + }; }; [@deriving (show({with_path: false}), sexp, yojson)] @@ -50,21 +53,4 @@ type t = { let shape = n => n.shape; -let fits = (l: t, r: t): bool => - l.sort == r.sort && Shape.fits(l.shape, r.shape); - -let fitting = (nib: t): t => {...nib, shape: Shape.fitting(nib.shape)}; - let flip = (nib: t) => {...nib, shape: Shape.flip(nib.shape)}; - -// let toggle = (nib: t) => { -// ...nib, -// orientation: Direction.toggle(nib.orientation), -// }; - -// let sort_consistent = (nib: t, nib': t) => nib.sort == nib'.sort; - -// let of_sort = sort => [ -// {sort, orientation: Left}, -// {sort, orientation: Right}, -// ]; diff --git a/src/haz3lcore/tiles/Nibs.re b/src/haz3lcore/tiles/Nibs.re index ec0d943dfc..0c4225a279 100644 --- a/src/haz3lcore/tiles/Nibs.re +++ b/src/haz3lcore/tiles/Nibs.re @@ -5,7 +5,3 @@ type t = (Nib.t, Nib.t); type shapes = (Nib.Shape.t, Nib.Shape.t); let flip = ((l, r): t) => (r, l); - -let of_hole = sort => Nib.({sort, shape: Convex}, {sort, shape: Convex}); - -let fitting = ((l, r): t) => (Nib.fitting(l), Nib.fitting(r)); diff --git a/src/haz3lcore/tiles/Piece.re b/src/haz3lcore/tiles/Piece.re index aafeef4a5b..fc6207a979 100644 --- a/src/haz3lcore/tiles/Piece.re +++ b/src/haz3lcore/tiles/Piece.re @@ -1,4 +1,3 @@ -// open Util; include Base; [@deriving (show({with_path: false}), sexp, yojson)] @@ -8,20 +7,23 @@ let secondary = w => Secondary(w); let grout = g => Grout(g); let tile = t => Tile(t); -let get = (f_w, f_g, f_t, p: t) => +let get = (f_w, f_g, f_t: tile => _, f_p: projector => _, p: t) => switch (p) { | Secondary(w) => f_w(w) | Grout(g) => f_g(g) | Tile(t) => f_t(t) + | Projector(p) => f_p(p) }; -let id = get(Secondary.id, Grout.id, Tile.id); +let proj_id = projector => projector.id; +let id = get(Secondary.id, Grout.id, tile => tile.id, proj_id); let sort = get( _ => (Sort.Any, []), _ => (Sort.Any, []), t => (t.mold.out, t.mold.in_), + _ => (Sort.Any, []), ); let nibs = @@ -32,6 +34,10 @@ let nibs = Some(Nib.({shape: l, sort: Any}, {shape: r, sort: Any})); }, t => Some(Tile.nibs(t)), + p => { + let (l, r) = ProjectorBase.shapes(p); + Some(Nib.({shape: l, sort: Any}, {shape: r, sort: Any})); + }, ); let nib_sorts = @@ -42,47 +48,47 @@ let nib_sorts = let (l, r) = Tile.nibs(t); (l.sort, r.sort); }, + _ => (Sort.Any, Sort.Any), ); -let sorted_children = get(_ => [], _ => [], Tile.sorted_children); -let children = p => sorted_children(p) |> List.split |> snd; - -// let is_balanced = -// fun -// | Shard(_) => false -// | Secondary(_) -// | Grout(_) -// | Tile(_) => true; +let sorted_children = get(_ => [], _ => [], Tile.sorted_children, _ => []); let pop_l = (p: t): (t, segment) => switch (p) { | Tile(t) => Tile.pop_l(t) | Grout(_) - | Secondary(_) => (p, []) + | Secondary(_) + | Projector(_) => (p, []) }; let pop_r = (p: t): (segment, t) => switch (p) { | Tile(t) => Tile.pop_r(t) | Grout(_) - | Secondary(_) => ([], p) + | Secondary(_) + | Projector(_) => ([], p) }; let disassemble = (p: t): segment => switch (p) { | Grout(_) - | Secondary(_) => [p] + | Secondary(_) + | Projector(_) => [p] | Tile(t) => Tile.disassemble(t) }; -// let remold = (p: t) => -// switch (p) { -// | Grout(_) -// | Secondary(_) => [p] -// | Tile(t) => List.map(tile, Tile.remold(t)) -// }; - let shapes = - get(_ => None, g => Some(Grout.shapes(g)), t => Some(Tile.shapes(t))); + get( + _ => None, + g => Some(Grout.shapes(g)), + t => Some(Tile.shapes(t)), + p => Some(ProjectorBase.shapes(p)), + ); + +let is_convex = (p: t): bool => + switch (shapes(p)) { + | Some((Convex, Convex)) => true + | _ => false + }; let is_grout: t => bool = fun @@ -99,6 +105,11 @@ let is_tile: t => option(Tile.t) = | Tile(t) => Some(t) | _ => None; +let is_projector: t => option(projector) = + fun + | Projector(p) => Some(p) + | _ => None; + let label: t => option(Label.t) = fun | Tile({label, _}) => Some(label) @@ -111,37 +122,67 @@ let monotile: t => option(Token.t) = Some(Secondary.get_string(w.content)) | _ => None; -let has_ends = get(_ => true, _ => true, Tile.has_ends); - let is_complete: t => bool = fun | Tile(t) => Tile.is_complete(t) | _ => true; -let get_outside_sorts = (~default_sort=Sort.Any, p: t): list(Sort.t) => - //TODO: David please review this +let replace_id = (id: Id.t, p: t): t => + switch (p) { + | Tile(t) => Tile({...t, id}) + | Grout(g) => Grout({...g, id}) + | Secondary(w) => Secondary({...w, id}) + | Projector(p) => Projector({...p, id}) + }; + +let mk_tile: (Form.t, list(list(t))) => t = + (form, children) => + Tile({ + id: Id.mk(), + label: form.label, + mold: form.mold, + shards: List.mapi((i, _) => i, form.label), + children, + }); + +let mk_mono = (sort: Sort.t, string: string): t => + string |> Form.mk_atomic(sort) |> mk_tile(_, []); + +let of_mono = (syntax: t): option(string) => + switch (syntax) { + | Tile({label: [l], _}) => Some(l) + | _ => None + }; + +let is_case_or_rule = (p: t) => + switch (p) { + | Tile({label: ["case", "end"], _}) => true + | Tile({label: ["|", "=>"], _}) => true + | _ => false + }; +let is_not_case_or_rule_or_space = (p: t) => switch (p) { - | Secondary(_) => [] - | Grout({shape: Convex, _}) => [] - | Grout({shape: Concave, _}) => [default_sort, default_sort] - | Tile({shards: _, _} as t) when !Tile.is_complete(t) => - // TODO(andrew): better incomplete tile handling - // Need to figure out what shape of incomplete tile is - [] - | Tile(t) => - let (sort_l, sort_r) = nib_sorts(p); - switch ((t.mold.nibs |> fst).shape, (t.mold.nibs |> snd).shape) { - | (Convex, Convex) => [] - | (Convex, Concave(_)) => [sort_r] - | (Concave(_), Convex) => [sort_l] - | (Concave(_), Concave(_)) => [sort_l, sort_r] - }; + | Tile({label: ["case", "end"], _}) => false + | Tile({label: ["|", "=>"], _}) => false + | Secondary(_) => false + | _ => true + }; +let not_comment_or_space = (p: t) => + switch (p) { + | Secondary(s) => Secondary.is_linebreak(s) + | _ => true }; -let mold_of = (~shape=Nib.Shape.Convex, p: t) => - // TODO(d) fix sorts +let is_term = (p: t) => switch (p) { - | Tile(t) => t.mold - | Grout(g) => Mold.of_grout(g, Any) - | Secondary(_) => Mold.of_secondary({sort: Any, shape}) + | Grout(_) + | Projector(_) + | Tile({ + label: [_], + mold: {nibs: ({shape: Convex, _}, {shape: Convex, _}), _}, + _, + }) => + true + | Secondary(_) => false // debatable + | _ => false }; diff --git a/src/haz3lcore/tiles/Secondary.re b/src/haz3lcore/tiles/Secondary.re index 7ef17b16a1..c973469254 100644 --- a/src/haz3lcore/tiles/Secondary.re +++ b/src/haz3lcore/tiles/Secondary.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type cls = diff --git a/src/haz3lcore/tiles/Segment.re b/src/haz3lcore/tiles/Segment.re index fc1c54e2f4..de8689f08a 100644 --- a/src/haz3lcore/tiles/Segment.re +++ b/src/haz3lcore/tiles/Segment.re @@ -13,13 +13,6 @@ let rev = List.rev; let of_tile = t => [Tile.to_piece(t)]; -let nibs = tiles => - switch (tiles, ListUtil.split_last_opt(tiles)) { - | ([], _) - | (_, None) => None - | ([_first, ..._], Some((_, _last))) => failwith("todo Tiles.nibs") - }; - let incomplete_tiles = List.filter_map( fun @@ -56,8 +49,6 @@ let remove_matching = (t: Tile.t) => let snoc = (tiles, tile) => tiles @ [tile]; -// let is_balanced = List.for_all(Piece.is_balanced); - let shape_affix = (d: Direction.t, affix: t, r: Nib.Shape.t) : (Aba.t(list(Secondary.t), Grout.t), Nib.Shape.t, t) => { @@ -73,6 +64,10 @@ let shape_affix = let (ws, wss) = ListUtil.split_first(wss); (([[w, ...ws], ...wss], gs), s, tl); | Grout(g) => (Aba.cons([], g, wgw), s, tl) + | Projector(p) => + let (l, _) = + ProjectorBase.shapes(p) |> (d == Left ? TupleUtil.swap : Fun.id); + (empty_wgw, l, tl); | Tile(t) => let (l, _) = Tile.shapes(t) |> (d == Left ? TupleUtil.swap : Fun.id); (empty_wgw, l, tl); @@ -80,39 +75,6 @@ let shape_affix = }; go((d == Left ? List.rev : Fun.id)(affix), r); }; -let shape = shape_affix(Right); - -let rec convex = seg => { - open OptUtil.Syntax; - let l = - fold_right( - (p: Piece.t, shape) => { - let* s = shape; - switch (p) { - | Secondary(_) => shape - | Grout(g) => - Grout.fits_shape(g, s) ? Some(fst(Grout.shapes(g))) : None - | Tile(t) => - let (l, r) = Tile.shapes(t); - List.for_all(convex, t.children) && Nib.Shape.fits(r, s) - ? Some(l) : None; - }; - }, - seg, - Some(Nib.Shape.concave()), - ); - switch (l) { - | None => false - | Some(l) => Nib.Shape.fits(Nib.Shape.concave(), l) - }; -}; - -let split_by_grout: t => Aba.t(t, Grout.t) = - Aba.split( - fun - | Piece.Grout(g) => Either.R(g) - | p => L(p), - ); let rec remold = (~shape=Nib.Shape.concave(), seg: t, s: Sort.t) => switch (s) { @@ -143,10 +105,7 @@ and remold_tile = (s: Sort.t, shape, t: Tile.t): option(Tile.t) => { let child = if (l + 1 == r - && ( - List.nth(remolded.mold.in_, l) != List.nth(t.mold.in_, l) - || Effect.s_touched(remolded.id) - )) { + && List.nth(remolded.mold.in_, l) != List.nth(t.mold.in_, l)) { remold(child, List.nth(remolded.mold.in_, l)); } else { child; @@ -164,7 +123,8 @@ and remold_typ = (shape, seg: t): t => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => [hd, ...remold_typ(shape, tl)] + | Grout(_) + | Projector(_) => [hd, ...remold_typ(shape, tl)] | Tile(t) => switch (remold_tile(Typ, shape, t)) { | None => [Tile(t), ...remold_typ(snd(Tile.shapes(t)), tl)] @@ -178,7 +138,8 @@ and remold_typ_uni = (shape, seg: t): (t, Nib.Shape.t, t) => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => + | Grout(_) + | Projector(_) => let (remolded, shape, rest) = remold_typ_uni(shape, tl); ([hd, ...remolded], shape, rest); | Tile(t) => @@ -207,7 +168,8 @@ and remold_pat_uni = (shape, seg: t): (t, Nib.Shape.t, t) => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => + | Grout(_) + | Projector(_) => let (remolded, shape, rest) = remold_pat_uni(shape, tl); ([hd, ...remolded], shape, rest); | Tile(t) => @@ -238,7 +200,8 @@ and remold_pat = (shape, seg: t): t => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => [hd, ...remold_pat(shape, tl)] + | Grout(_) + | Projector(_) => [hd, ...remold_pat(shape, tl)] | Tile(t) => switch (remold_tile(Pat, shape, t)) { | None => [Tile(t), ...remold_pat(snd(Tile.shapes(t)), tl)] @@ -258,7 +221,8 @@ and remold_tpat_uni = (shape, seg: t): (t, Nib.Shape.t, t) => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => + | Grout(_) + | Projector(_) => let (remolded, shape, rest) = remold_tpat_uni(shape, tl); ([hd, ...remolded], shape, rest); | Tile(t) => @@ -285,7 +249,8 @@ and remold_tpat = (shape, seg: t): t => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => [hd, ...remold_tpat(shape, tl)] + | Grout(_) + | Projector(_) => [hd, ...remold_tpat(shape, tl)] | Tile(t) => switch (remold_tile(TPat, shape, t)) { | None => [Tile(t), ...remold_tpat(snd(Tile.shapes(t)), tl)] @@ -305,7 +270,8 @@ and remold_exp_uni = (shape, seg: t): (t, Nib.Shape.t, t) => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => + | Grout(_) + | Projector(_) => let (remolded, shape, rest) = remold_exp_uni(shape, tl); ([hd, ...remolded], shape, rest); | Tile(t) => @@ -347,7 +313,8 @@ and remold_rul = (shape, seg: t): t => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => [hd, ...remold_rul(shape, tl)] + | Grout(_) + | Projector(_) => [hd, ...remold_rul(shape, tl)] | Tile(t) => switch (remold_tile(Rul, shape, t)) { | Some(t) => @@ -376,7 +343,8 @@ and remold_exp = (shape, seg: t): t => | [hd, ...tl] => switch (hd) { | Secondary(_) - | Grout(_) => [hd, ...remold_exp(shape, tl)] + | Grout(_) + | Projector(_) => [hd, ...remold_exp(shape, tl)] | Tile(t) => switch (remold_tile(Exp, shape, t)) { | None => [Tile(t), ...remold_exp(snd(Tile.shapes(t)), tl)] @@ -436,15 +404,7 @@ module Trim = { Aba.mk([ws, List.concat(wss)], [g]); }; }; - // same as merge but type encodes postcond - // let merged = (trim: t): (list(Secondary.t), option((Grout.t, list(Secondary.t)))) => { - // let (wss, gs) = merge(trim); - // let (ws, wss) = ListUtil.split_first(wss); - // switch (gs) { - // | [] => (ws, None) - // | [g, ..._] => (ws, Some((g, List.concat(wss)))) - // }; - // }; + let rec rm_up_to_one_space = (wss: list(list(Secondary.t))): list(list(Secondary.t)) => switch (wss) { @@ -541,6 +501,12 @@ and regrout_affix = switch (p) { | Secondary(w) => (Trim.cons_w(w, trim), r, tl) | Grout(g) => (Trim.(merge(cons_g(g, trim))), r, tl) + | Projector(pr) => + let p = Piece.Projector(pr); + let (l', r') = + ProjectorBase.shapes(pr) |> (d == Left ? TupleUtil.swap : Fun.id); + let trim = Trim.regrout(d, (r', r), trim); + (Trim.empty, l', [p, ...Trim.to_seg(trim)] @ tl); | Tile(t) => let children = List.fold_right( @@ -565,14 +531,6 @@ and regrout_affix = d == Left ? (Trim.rev(trim), s, rev(affix)) : (trim, s, affix); }; -// for internal use when dealing with segments in reverse order (eg Affix.re) -// let flip_nibs = -// List.map( -// fun -// | (Piece.Secondary(_) | Grout(_)) as p => p -// | Tile(t) => Tile({...t, mold: Mold.flip_nibs(t.mold)}), -// ); - let split_by_matching = (id: Id.t): (t => Aba.t(t, Tile.t)) => Aba.split( fun @@ -580,7 +538,6 @@ let split_by_matching = (id: Id.t): (t => Aba.t(t, Tile.t)) => | p => L(p), ); -// module Match = Tile.Match.Make(Orientation.R); let rec reassemble = (seg: t): t => switch (incomplete_tiles(seg)) { | [] => seg @@ -615,33 +572,6 @@ let trim_secondary: (Direction.t, t) => t = trim_f(trim_l, d, ps); }; -let trim_grout: (Direction.t, t) => t = - (d, ps) => { - /* Trims leading/trailing grout */ - let rec trim_l: list(Base.piece) => list(Base.piece) = - xs => - switch (xs) { - | [] => [] - | [Grout(_), ...xs] => trim_l(xs) - | [_, ..._] => xs - }; - trim_f(trim_l, d, ps); - }; - -let trim_secondary_and_grout: (Direction.t, t) => t = - (d, ps) => { - /* Trims leading/trailing secondary, continuing - to trim around grout until first Tile is reached */ - let rec trim_l: list(Base.piece) => list(Base.piece) = - xs => - switch (xs) { - | [] => [] - | [Secondary(_) | Grout(_), ...xs] => trim_l(xs) - | [_, ..._] => xs - }; - trim_f(trim_l, d, ps); - }; - let trim_grout_around_secondary: (Direction.t, t) => t = (d, ps) => { /* Trims leading/trailing grout, skipping over secondary, @@ -669,26 +599,6 @@ let edge_shape_of = (d: Direction.t, ps: t): option(Nib.Shape.t) => { let edge_direction_of = (d: Direction.t, ps: t): option(Direction.t) => Option.map(Nib.Shape.absolute(d), edge_shape_of(d, ps)); -let rec serialize = (seg: t) => - seg - |> List.concat_map( - fun - | (Piece.Secondary(_) | Grout(_) | Tile({shards: [_], _})) as p => [ - p, - ] - | Tile(t) => { - let shards = - List.map( - Tile.to_piece, - Tile.split_shards(t.id, t.label, t.mold, t.shards), - ); - let children = List.map(serialize, t.children); - Aba.mk(shards, children) - |> Aba.join(s => [s], Fun.id) - |> List.concat; - }, - ); - let sameline_secondary = List.for_all( fun @@ -728,7 +638,8 @@ let expected_sorts = (sort: Sort.t, seg: t): list((int, Sort.t)) => { let rec holes = (segment: t): list(Grout.t) => List.concat_map( fun - | Piece.Secondary(_) => [] + | Piece.Secondary(_) + | Projector(_) => [] | Tile(t) => List.concat_map(holes, t.children) | Grout(g) => [g], segment, @@ -754,3 +665,12 @@ let rec get_incomplete_ids = (seg: t): list(Id.t) => let ids_of_incomplete_tiles_in_bidelimiteds = (seg: t): list(Id.t) => get_childrens(seg) |> List.concat |> get_incomplete_ids; + +let rec ids = (s: t): list(Id.t) => List.concat_map(ids_of_piece, s) +and ids_of_piece = (p: Piece.t): list(Id.t) => + switch (p) { + | Tile(t) => [Piece.id(p), ...ids(List.concat(t.children))] + | Grout(_) + | Secondary(_) + | Projector(_) => [Piece.id(p)] + }; diff --git a/src/haz3lcore/tiles/Shard.re b/src/haz3lcore/tiles/Shard.re deleted file mode 100644 index 63784705cd..0000000000 --- a/src/haz3lcore/tiles/Shard.re +++ /dev/null @@ -1,42 +0,0 @@ -// open Util; -// include Base.Shard; -// module Label = { -// include Label; -// let token = ((n, lbl)) => { -// assert(n >= 0 && n < List.length(lbl)); -// List.nth(lbl, n); -// }; -// let is_next = (d: Direction.t, (n, lbl), (n', lbl')) => -// lbl == lbl' && (d == Right ? n + 1 == n' : n == 1 + n'); -// }; -// let mk = (tile_id: Id.t, label: Label.t, nibs: Nibs.t) => { -// tile_id, -// label, -// nibs, -// }; -// let mk_s = (tile_id: Id.t, label: Base.Tile.Label.t, mold: Mold.t): list(t) => -// label -// |> List.mapi((i, _) => -// mk(tile_id, (i, label), Mold.nibs(~index=i, mold)) -// ); -// let to_piece = s => Base.Piece.Shard(s); -// let tile_label = s => snd(s.label); -// let is_next = (d: Direction.t, l: t, r: t) => -// Label.is_next(d, l.label, r.label); -// let id = s => s.tile_id; -// let index = s => fst(s.label); -// let remold = (s: t) => -// Molds.get(tile_label(s)) -// |> List.map(mold => {...s, nibs: Mold.nibs(~index=index(s), mold)}) -// |> ListUtil.dedup; -// let consistent_molds = (shards: list(t)): list(Mold.t) => -// switch (shards) { -// | [] => raise(Invalid_argument("Shard.consistent")) -// | [s, ..._] => -// Molds.get(tile_label(s)) -// |> List.filter(mold => -// shards -// |> List.for_all(s => s.nibs == Mold.nibs(~index=index(s), mold)) -// ) -// }; -// let shapes = ({nibs: (l, r), _}: t) => (l.shape, r.shape); diff --git a/src/haz3lcore/tiles/Skel.re b/src/haz3lcore/tiles/Skel.re index 8d11c40961..a00f6b1dfd 100644 --- a/src/haz3lcore/tiles/Skel.re +++ b/src/haz3lcore/tiles/Skel.re @@ -1,5 +1,4 @@ open Util; -open Sexplib.Std; [@deriving (show({with_path: false}), sexp, yojson)] type t = @@ -9,13 +8,6 @@ type t = | Bin(t, root, t) and root = Aba.t(int, t); -// let rec size = -// fun -// | Op(_) => 1 -// | Pre(_, r) => 1 + size(r) -// | Post(l, _) => size(l) + 1 -// | Bin(l, _, r) => size(l) + 1 + size(r); - // TODO(d): rename to reflect aba let root = fun @@ -24,36 +16,6 @@ let root = | Post(_, r) | Bin(_, r, _) => r; -// let children = -// fun -// | Op(_) => [] -// | Pre(_, skel) => [(Direction.Right, skel)] -// | Post(skel, _) => [(Left, skel)] -// | Bin(l, _, r) => [(Left, l), (Right, r)]; - -// returns inclusive lower bound, exclusive upper bound -// let rec range = -// fun -// | Op(n) => (n, n + 1) -// | Pre(n, r) => (n, snd(range(r))) -// | Post(l, n) => (fst(range(l)), n + 1) -// | Bin(l, _, r) => (fst(range(l)), snd(range(r))); - -// let rec skel_at = (n, skel) => -// switch (skel) { -// | Op(m) => n == m ? skel : raise(Invalid_argument("Skel.skel_at")) -// | Pre(m, r) => n == m ? skel : skel_at(n, r) -// | Post(l, m) => n == m ? skel : skel_at(n, l) -// | Bin(l, m, r) => -// if (n < m) { -// skel_at(n, l); -// } else if (n > m) { -// skel_at(n, r); -// } else { -// skel; -// } -// }; - exception Input_contains_secondary; exception Nonconvex_segment; @@ -79,6 +41,8 @@ let rel = (p1: Piece.t, p2: Piece.t): option(rel) => | Convex => Some(Lt) | Concave => Some(Gt) } + | (Projector(_), _) => None + | (_, Projector(_)) => None | (Tile(t1), Tile(t2)) => open Labels; let lbl1 = (==)(t1.label); diff --git a/src/haz3lcore/tiles/Tile.re b/src/haz3lcore/tiles/Tile.re index 10c7c41e42..df9350c4ff 100644 --- a/src/haz3lcore/tiles/Tile.re +++ b/src/haz3lcore/tiles/Tile.re @@ -22,7 +22,6 @@ let has_end = (d: Direction.t, t) => | Left => l_shard(t) == 0 | Right => r_shard(t) == List.length(t.label) - 1 }; -let has_ends = t => has_end(Left, t) && has_end(Right, t); let nibs = (t: t) => { let (l, _) = Mold.nibs(~index=l_shard(t), t.mold); @@ -55,9 +54,6 @@ let contained_children = (t: t): list((t, Base.segment, t)) => (l, child, r); }); -// let remold = (t: t): list(t) => -// Molds.get(t.label) |> List.map(mold => {...t, mold}); - let split_shards = (id, label, mold, shards) => shards |> List.map(i => {id, label, mold, shards: [i], children: []}); @@ -105,54 +101,3 @@ let pop_r = (tile: t): (segment, piece) => disassemble(tile) |> ListUtil.split_last_opt |> OptUtil.get_or_raise(Empty_tile); - -// let unique_mold = _ => failwith("todo unique_mold"); - -// module Match = { -// type tile = t; - -// module Make = (O: Orientation.S) => { -// [@deriving (show({with_path: false}), sexp, yojson)] -// type t = Aba.t(Shard.t, segment); - -// let id = (m: t) => Aba.hd(m).tile_id; - -// let label = (m: t) => snd(Aba.hd(m).label); - -// let shards: t => list(Shard.t) = Aba.get_as; -// // let children: t => list(segment) = Aba.get_bs; - -// let length = (m: t) => List.length(shards(m)); - -// let mold = (m: t) => { -// let molds = -// switch (Shard.consistent_molds(shards(m))) { -// | [] => -// // this should only happen upon construct/destruct, -// // in which case everything will be subsequently remolded -// Molds.get(label(m)) -// | [_, ..._] as molds => molds -// }; -// assert(molds != []); -// List.hd(molds); -// }; - -// let children = m => -// List.map(ListUtil.rev_if(O.d == Left), Aba.get_bs(m)); - -// let join = (m: t): segment => -// m |> Aba.join(s => [Shard.to_piece(s)], Fun.id) |> List.flatten; - -// let complete = (m: t): option(tile) => { -// let id = id(m); -// let label = label(m); -// let mold = mold(m); -// length(m) == Label.length(label) -// ? { -// let children = ListUtil.rev_if(O.d == Left, children(m)); -// Some(Base.Tile.{id, label, mold, children}); -// } -// : None; -// }; -// }; -// }; diff --git a/src/haz3lcore/tiles/Token.re b/src/haz3lcore/tiles/Token.re index 907f1bbcd3..8b68de1eb3 100644 --- a/src/haz3lcore/tiles/Token.re +++ b/src/haz3lcore/tiles/Token.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; // make an enum [@deriving (show({with_path: false}), sexp, yojson)] diff --git a/src/haz3lcore/zipper/Ancestor.re b/src/haz3lcore/zipper/Ancestor.re index c0342da0c8..498b18b93e 100644 --- a/src/haz3lcore/zipper/Ancestor.re +++ b/src/haz3lcore/zipper/Ancestor.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; exception Empty_shard_affix; @@ -47,19 +46,9 @@ let sorted_children = (a: t) => { (l, r); }; -// TODO flatten with shard indices -// let step = (frame: t): step => { -// let (prefix, _) = frame.children; -// List.length(prefix); -// }; - let remold = (a: t): list(t) => Molds.get(a.label) |> List.map(mold => {...a, mold}); -// let sort = (frame: t): Sort.t => { -// assert(step(frame) >= 0 && step(frame) < List.length(frame.mold.in_)); -// List.nth(frame.mold.in_, step(frame)); -// }; let sort = (a: t): Sort.t => { let (pre, suf) = a.shards; switch (ListUtil.split_last_opt(pre), suf) { @@ -107,48 +96,3 @@ let reassemble = (match_l: Aba.t(Tile.t, Segment.t) as 'm, match_r: 'm): t => { children: (t_l.children, t_r.children), }; }; - -// module Match = { -// module Prefix = Tile.Match.Make(Orientation.L); -// module Suffix = Tile.Match.Make(Orientation.R); - -// type ancestor = t; -// type t = (Prefix.t, Suffix.t); - -// let id = ((pre, _): t) => Prefix.id(pre); - -// let shards = ((pre, suf): t) => -// List.rev(Prefix.shards(pre)) @ Suffix.shards(suf); - -// let label = ((_, suf)) => Suffix.label(suf); - -// let length = ((pre, suf)) => Prefix.length(pre) + Suffix.length(suf); - -// let children = ((pre, suf)) => ( -// Prefix.children(pre), -// Suffix.children(suf), -// ); - -// let mold = (m: t) => { -// let molds = -// switch (Shard.consistent_molds(shards(m))) { -// | [] => -// // this should only happen upon construct/destruct, -// // in which case everything will be subsequently remolded -// Molds.get(label(m)) -// | [_, ..._] as molds => molds -// }; -// assert(molds != []); -// List.hd(molds); -// }; - -// let join = ((pre, suf): t) => (Prefix.join(pre), Suffix.join(suf)); - -// let complete = (m: t): option(ancestor) => { -// let id = id(m); -// let label = label(m); -// let mold = mold(m); -// length(m) == Tile.Label.length(label) -// ? Some({id, label, mold, children: children(m)}) : None; -// }; -// }; diff --git a/src/haz3lcore/zipper/Ancestors.re b/src/haz3lcore/zipper/Ancestors.re index 84f209fe34..2acc7d0838 100644 --- a/src/haz3lcore/zipper/Ancestors.re +++ b/src/haz3lcore/zipper/Ancestors.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; [@deriving (show({with_path: false}), sexp, yojson)] @@ -23,55 +22,6 @@ let zip_gen = (seg: Segment.t, (a, (pre, suf)): generation): Segment.t => pre @ [Piece.Tile(Ancestor.zip(seg, a)), ...suf]; let zip = (seg: Segment.t, ancs: t) => ancs |> List.fold_left(zip_gen, seg); -let disassemble = ancs => - ancs - |> List.map(((a, sibs)) => - Siblings.concat([Ancestor.disassemble(a), sibs]) - ) - |> Siblings.concat; - -// let remold = (ancestors: t): list(t) => -// List.fold_right( -// ((a, sibs), remolded) => { -// open ListUtil.Syntax; -// let+ ancestors = remolded -// and+ sibs = Siblings.remold(sibs) -// and+ a = Ancestor.remold(a); -// [(a, sibs), ...ancestors]; -// }, -// ancestors, -// [empty], -// ); - -let skel = ((a, (pre, suf)): generation): Skel.t => { - let n = List.length(pre); - let a = (n, Piece.Tile(Ancestor.zip(Segment.empty, a))); - let pre = - pre - |> List.mapi((i, p) => (i, p)) - |> List.filter(((_, p)) => !Piece.is_secondary(p)); - let suf = - suf - |> List.mapi((i, p) => (n + 1 + i, p)) - |> List.filter(((_, p)) => !Piece.is_secondary(p)); - Skel.mk(pre @ [a, ...suf]); -}; - -// let sorts = (i, (a, (pre, suf)): generation) => { -// let n = List.length(pre); -// if (i < List.length(pre)) { -// List.nth_opt(pre, i) -// |> Option.map(Piece.sort) -// |> OptUtil.get_or_raise(Invalid_argument("Ancestors.sort_out")) -// } else if (i > n) { -// List.nth_opt(suf, i - 1 - n) -// |> Option.map(Piece.sort) -// |> OptUtil.get_or_raise(Invalid_argument("Ancestors.sort_out")) -// } else { -// a.mold.out; -// }; -// }; - let regrout = (ancs: t) => List.fold_right( ((a, sibs): generation, regrouted) => { diff --git a/src/haz3lcore/zipper/Backpack.re b/src/haz3lcore/zipper/Backpack.re index fe73d401fa..b704e36721 100644 --- a/src/haz3lcore/zipper/Backpack.re +++ b/src/haz3lcore/zipper/Backpack.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; module ShardInfo = { diff --git a/src/haz3lcore/zipper/Editor.re b/src/haz3lcore/zipper/Editor.re index 1ee7c9fd3b..cd05476fd9 100644 --- a/src/haz3lcore/zipper/Editor.re +++ b/src/haz3lcore/zipper/Editor.re @@ -1,41 +1,102 @@ -open Sexplib.Std; open Util; -module Meta = { +module CachedStatics = { + type t = { + term: UExp.t, + info_map: Statics.Map.t, + error_ids: list(Id.t), + }; + + let empty: t = { + term: UExp.{ids: [Id.invalid], copied: false, term: Tuple([])}, + info_map: Id.Map.empty, + error_ids: [], + }; + + let init = (~settings: CoreSettings.t, z: Zipper.t): t => { + // Modify here to allow passing in an initial context + let ctx_init = Builtins.ctx_init; + let term = MakeTerm.from_zip_for_sem(z).term; + let info_map = Statics.mk(settings, ctx_init, term); + let error_ids = Statics.Map.error_ids(info_map); + {term, info_map, error_ids}; + }; + + let init = (~settings: CoreSettings.t, z: Zipper.t) => + settings.statics ? init(~settings, z) : empty; + + let next = + (~settings: CoreSettings.t, a: Action.t, z: Zipper.t, old_statics: t): t => + if (!settings.statics) { + empty; + } else if (!Action.is_edit(a)) { + old_statics; + } else { + init(~settings, z); + }; +}; + +module CachedSyntax = { type t = { - col_target: int, - touched: Touched.t, - measured: Measured.t, - term_ranges: TermRanges.t, - unselected: Segment.t, segment: Segment.t, - view_term: Term.UExp.t, - terms: TermMap.t, + measured: Measured.t, tiles: TileMap.t, holes: list(Grout.t), - buffer_ids: list(Id.t), + selection_ids: list(Id.t), + term: UExp.t, + /* This term, and the term-derived data structured below, may differ + * from the term used for semantics. These terms are identical when + * the backpack is empty. If the backpack is non-empty, then when we + * make the term for semantics, we attempt to empty the backpack + * according to some simple heuristics (~ try to empty it greedily + * while moving rightwards from the current caret position). + * this is currently necessary to have the cursorinfo/completion + * workwhen the backpack is nonempty. + * + * This is a brittle part of the current implementation. there are + * some other comments at some of the weakest joints; the biggest + * issue is that dropping the backpack can add/remove grout, causing + * certain ids to be present/non-present unexpectedly. */ + term_ranges: TermRanges.t, + terms: TermMap.t, + projectors: Id.Map.t(Base.projector), }; - let init = (z: Zipper.t) => { - let unselected = Zipper.unselect_and_zip(z); - let (view_term, terms) = MakeTerm.go(unselected); + let init = (z, info_map): t => { + let segment = Zipper.unselect_and_zip(z); + let MakeTerm.{term, terms, projectors} = MakeTerm.go(segment); { - col_target: 0, - touched: Touched.empty, - measured: Measured.of_segment(unselected), - unselected, - term_ranges: TermRanges.mk(unselected), - segment: Zipper.zip(z), - tiles: TileMap.mk(unselected), - view_term, + segment, + term_ranges: TermRanges.mk(segment), + tiles: TileMap.mk(segment), + holes: Segment.holes(segment), + measured: Measured.of_segment(segment, info_map), + selection_ids: Selection.selection_ids(z.selection), + term, terms, - holes: Segment.holes(unselected), - buffer_ids: Selection.buffer_ids(z.selection), + projectors, }; }; + let next = (a: Action.t, z: Zipper.t, info_map, old: t) => + Action.is_edit(a) + ? init(z, info_map) + : {...old, selection_ids: Selection.selection_ids(z.selection)}; +}; + +module Meta = { + type t = { + col_target: int, + statics: CachedStatics.t, + syntax: CachedSyntax.t, + }; + + let init = (~settings: CoreSettings.t, z: Zipper.t) => { + let statics = CachedStatics.init(~settings, z); + {col_target: 0, statics, syntax: CachedSyntax.init(z, statics.info_map)}; + }; + module type S = { - let touched: Touched.t; let measured: Measured.t; let term_ranges: TermRanges.t; let col_target: int; @@ -43,9 +104,8 @@ module Meta = { let module_of_t = (m: t): (module S) => (module { - let touched = m.touched; - let measured = m.measured; - let term_ranges = m.term_ranges; + let measured = m.syntax.measured; + let term_ranges = m.syntax.term_ranges; let col_target = m.col_target; }); @@ -55,36 +115,16 @@ module Meta = { let yojson_of_t = _ => failwith("Editor.Meta.yojson_of_t"); let t_of_yojson = _ => failwith("Editor.Meta.t_of_yojson"); - let next = - (~effects: list(Effect.t)=[], a: Action.t, z: Zipper.t, meta: t): t => { - let {touched, measured, col_target, _} = meta; - let touched = Touched.update(Time.tick(), effects, touched); - let is_edit = Action.is_edit(a); - let unselected = is_edit ? Zipper.unselect_and_zip(z) : meta.unselected; - let measured = - is_edit - ? Measured.of_segment(~touched, ~old=measured, unselected) : measured; + let next = (~settings: CoreSettings.t, a: Action.t, z: Zipper.t, meta: t): t => { + let syntax = CachedSyntax.next(a, z, meta.statics.info_map, meta.syntax); + let statics = CachedStatics.next(~settings, a, z, meta.statics); let col_target = switch (a) { | Move(Local(Up | Down)) - | Select(Resize(Local(Up | Down))) => col_target - | _ => Zipper.caret_point(measured, z).col + | Select(Resize(Local(Up | Down))) => meta.col_target + | _ => (Zipper.caret_point(syntax.measured))(. z).col }; - let (view_term, terms) = - is_edit ? MakeTerm.go(unselected) : (meta.view_term, meta.terms); - { - col_target, - touched, - measured, - unselected, - term_ranges: is_edit ? TermRanges.mk(unselected) : meta.term_ranges, - segment: Zipper.zip(z), - tiles: is_edit ? TileMap.mk(unselected) : meta.tiles, - view_term, - terms, - holes: is_edit ? Segment.holes(unselected) : meta.holes, - buffer_ids: Selection.buffer_ids(z.selection), - }; + {col_target, syntax, statics}; }; }; @@ -96,11 +136,14 @@ module State = { meta: Meta.t, }; - let init = zipper => {zipper, meta: Meta.init(zipper)}; + let init = (zipper, ~settings: CoreSettings.t) => { + zipper, + meta: Meta.init(zipper, ~settings), + }; - let next = (~effects: list(Effect.t)=[], a: Action.t, z: Zipper.t, state) => { + let next = (~settings: CoreSettings.t, a: Action.t, z: Zipper.t, state) => { zipper: z, - meta: Meta.next(~effects, a, z, state.meta), + meta: Meta.next(~settings, a, z, state.meta), }; }; @@ -125,38 +168,35 @@ type t = { read_only: bool, }; -let init = (~read_only=false, z) => { - state: State.init(z), +let init = (~read_only=false, z, ~settings: CoreSettings.t) => { + state: State.init(z, ~settings), history: History.empty, read_only, }; -let empty = id => init(~read_only=false, Zipper.init(id)); - -let update_z = (f: Zipper.t => Zipper.t, ed: t) => { - ...ed, - state: { - ...ed.state, - zipper: f(ed.state.zipper), - }, -}; -let put_z = (z: Zipper.t) => update_z(_ => z); - -let update_z_opt = (f: Zipper.t => option(Zipper.t), ed: t) => { - open OptUtil.Syntax; - let+ z = f(ed.state.zipper); - put_z(z, ed); -}; let new_state = - (~effects: list(Effect.t)=[], a: Action.t, z: Zipper.t, ed: t): t => { - let state = State.next(~effects, a, z, ed.state); - let history = History.add(a, ed.state, ed.history); + (~settings: CoreSettings.t, a: Action.t, z: Zipper.t, ed: t): t => { + let state = State.next(~settings, a, z, ed.state); + let history = + Action.is_historic(a) + ? History.add(a, ed.state, ed.history) : ed.history; {state, history, read_only: ed.read_only}; }; -let caret_point = (ed: t): Measured.Point.t => { - let State.{zipper, meta} = ed.state; - Zipper.caret_point(meta.measured, zipper); +let update_statics = (~settings: CoreSettings.t, ed: t): t => { + /* Use this function to force a statics update when (for example) + * changing the statics settings */ + let statics = CachedStatics.init(~settings, ed.state.zipper); + { + ...ed, + state: { + ...ed.state, + meta: { + ...ed.state.meta, + statics, + }, + }, + }; }; let undo = (ed: t) => @@ -201,3 +241,6 @@ let trailing_hole_ctx = (ed: t, info_map: Statics.Map.t) => { }; }; }; + +let indicated_projector = (editor: t) => + Projector.indicated(editor.state.zipper); diff --git a/src/haz3lcore/zipper/EditorUtil.re b/src/haz3lcore/zipper/EditorUtil.re index 838287010a..f8761a6ba1 100644 --- a/src/haz3lcore/zipper/EditorUtil.re +++ b/src/haz3lcore/zipper/EditorUtil.re @@ -1,90 +1,51 @@ -let editor_of_code = (~read_only=false, code: CodeString.t) => { - switch (Printer.zipper_of_string(code)) { - | None => None - | Some(z) => Some(Editor.init(~read_only, z)) - }; -}; - -let editors_for = - (~read_only=false, xs: list('a), f: 'a => option(string)) - : (int, list(('a, option(Editor.t)))) => { - let zs = - List.fold_left( - (acc_zs, a) => { - switch (f(a)) { - | Some(str) => - switch (Printer.zipper_of_string(str)) { - | None => acc_zs @ [(a, Some(Zipper.init()))] - | Some(z) => acc_zs @ [(a, Some(z))] - } - | None => acc_zs @ [(a, None)] - } - }, - [], - xs, - ); - ( - 0, - List.map( - ((a, sz)) => - switch (sz) { - | Some(z) => (a, Some(Editor.init(z, ~read_only))) - | None => (a, None) - }, - zs, - ), +let rec append_exp = (e1: Exp.t, e2: Exp.t): Exp.t => { + Exp.( + switch (e1.term) { + | EmptyHole + | Invalid(_) + | MultiHole(_) + | DynamicErrorHole(_) + | FailedCast(_) + | Undefined + | Deferral(_) + | Bool(_) + | Int(_) + | Float(_) + | String(_) + | ListLit(_) + | Constructor(_) + | Closure(_) + | Fun(_) + | TypFun(_) + | FixF(_) + | Tuple(_) + | Var(_) + | Ap(_) + | TypAp(_) + | DeferredAp(_) + | If(_) + | Test(_) + | Parens(_) + | Cons(_) + | ListConcat(_) + | UnOp(_) + | BinOp(_) + | BuiltinFun(_) + | Cast(_) + | Dot(_) + | Match(_) => Exp.{ids: [Id.mk()], copied: false, term: Seq(e1, e2)} + | Seq(e11, e12) => + let e12' = append_exp(e12, e2); + {ids: e1.ids, copied: false, term: Seq(e11, e12')}; + | Filter(kind, ebody) => + let ebody' = append_exp(ebody, e2); + {ids: e1.ids, copied: false, term: Filter(kind, ebody')}; + | Let(p, edef, ebody) => + let ebody' = append_exp(ebody, e2); + {ids: e1.ids, copied: false, term: Let(p, edef, ebody')}; + | TyAlias(tp, tdef, ebody) => + let ebody' = append_exp(ebody, e2); + {ids: e1.ids, copied: false, term: TyAlias(tp, tdef, ebody')}; + } ); }; - -let editors_of_strings = (~read_only=false, xs: list(string)) => { - let (i, aes) = editors_for(xs, x => Some(x), ~read_only); - (i, List.map(((_, oe)) => Option.get(oe), aes)); -}; - -let rec append_exp = (e1: TermBase.UExp.t, e2: TermBase.UExp.t) => { - switch (e1.term) { - | EmptyHole - | Invalid(_) - | MultiHole(_) - | Triv - | Deferral(_) - | Bool(_) - | Int(_) - | Float(_) - | String(_) - | ListLit(_) - | Constructor(_) - | Fun(_) - | TypFun(_) - | Tuple(_) - | Var(_) - | Ap(_) - | TypAp(_) - | DeferredAp(_) - | Pipeline(_) - | If(_) - | Test(_) - | Parens(_) - | Cons(_) - | ListConcat(_) - | UnOp(_) - | BinOp(_) - | Dot(_) - | Match(_) => TermBase.UExp.{ids: [Id.mk()], term: Seq(e1, e2)} - | Seq(e11, e12) => - let e12' = append_exp(e12, e2); - TermBase.UExp.{ids: e1.ids, term: Seq(e11, e12')}; - | Filter(act, econd, ebody) => - let ebody' = append_exp(ebody, e2); - TermBase.UExp.{ids: e1.ids, term: Filter(act, econd, ebody')}; - | Let(p, edef, ebody) => - let ebody' = append_exp(ebody, e2); - TermBase.UExp.{ids: e1.ids, term: Let(p, edef, ebody')}; - | Module(p, edef, ebody) => - let ebody' = append_exp(ebody, e2); - TermBase.UExp.{ids: e1.ids, term: Module(p, edef, ebody')}; - | TyAlias(tp, tdef, ebody) => - let ebody' = append_exp(ebody, e2); - TermBase.UExp.{ids: e1.ids, term: TyAlias(tp, tdef, ebody')}; - }; -}; diff --git a/src/haz3lcore/zipper/IncompleteBidelim.re b/src/haz3lcore/zipper/IncompleteBidelim.re deleted file mode 100644 index 1ffd1f16c2..0000000000 --- a/src/haz3lcore/zipper/IncompleteBidelim.re +++ /dev/null @@ -1,32 +0,0 @@ -type t = Id.Map.t(list(int)); - -let t = ref(Id.Map.empty); - -let contains = (id, i): bool => - switch (Id.Map.find_opt(id, t^)) { - | None => false - | Some(is) => List.mem(i, is) - }; - -let clear = () => { - t := Id.Map.empty; -}; - -// assumes seg is fully assembled -let set = (seg: Base.segment): unit => - t := - seg - |> List.filter_map( - fun - | Piece.Tile(t) => { - let (l_shard, r_shard) = Tile.(l_shard(t), r_shard(t)); - let l = l_shard == 0 ? [] : [l_shard - 1]; - let r = r_shard == List.length(t.label) - 1 ? [] : [r_shard]; - let lr = l @ r; - lr == [] ? None : Some((t.id, l @ r)); - } - | Grout(_) - | Secondary(_) => None, - ) - |> List.to_seq - |> Id.Map.of_seq; diff --git a/src/haz3lcore/zipper/Orientation.re b/src/haz3lcore/zipper/Orientation.re deleted file mode 100644 index e832d697bc..0000000000 --- a/src/haz3lcore/zipper/Orientation.re +++ /dev/null @@ -1,15 +0,0 @@ -open Util; - -module type S = { - let d: Direction.t; - let orient: (('a, 'a)) => ('a, 'a); -}; - -module L: S = { - let d = Direction.Left; - let orient = ((l, r)) => (l, r); -}; -module R: S = { - let d = Direction.Right; - let orient = ((l, r)) => (r, l); -}; diff --git a/src/haz3lcore/zipper/PersistentZipper.re b/src/haz3lcore/zipper/PersistentZipper.re index 423bc7a5f9..a1bbc094d2 100644 --- a/src/haz3lcore/zipper/PersistentZipper.re +++ b/src/haz3lcore/zipper/PersistentZipper.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type t = { diff --git a/src/haz3lcore/zipper/Printer.re b/src/haz3lcore/zipper/Printer.re index 70ea237eea..e6af6911ec 100644 --- a/src/haz3lcore/zipper/Printer.re +++ b/src/haz3lcore/zipper/Printer.re @@ -1,13 +1,6 @@ open Util; open Util.OptUtil.Syntax; -[@deriving (show({with_path: false}), yojson)] -type t = { - code: list(string), - selection: list(string), - backpack: list(list(string)), -}; - let seg_of_zip = Zipper.seg_without_buffer; let rec of_segment = (~holes, seg: Segment.t): string => @@ -20,6 +13,7 @@ and of_piece = (~holes, p: Piece.t): string => | Grout({shape: Convex, _}) => " " | Secondary(w) => Secondary.is_linebreak(w) ? "\n" : Secondary.get_string(w.content) + | Projector(p) => of_piece(~holes, p.syntax) } and of_tile = (~holes, t: Tile.t): string => Aba.mk(t.shards, t.children) @@ -39,7 +33,7 @@ let to_rows = ( ~holes: option(string), ~measured: Measured.t, - ~caret: option(Measured.Point.t), + ~caret: option(Point.t), ~indent: string, ~segment: Segment.t, ) @@ -60,30 +54,33 @@ let to_rows = }; }; -let pretty_print = (~measured: Measured.t, z: Zipper.t): string => +let measured = z => + z |> Zipper.seg_without_buffer |> Measured.of_segment(_, Id.Map.empty); + +let pretty_print = (~holes: option(string)=Some(""), z: Zipper.t): string => to_rows( - ~holes=None, - ~measured, + ~holes, + ~measured=measured(z), ~caret=None, ~indent=" ", ~segment=seg_of_zip(z), ) |> String.concat("\n"); -let to_string_editor = - (~holes: option(string)=Some(""), editor: Editor.t): string => +let zipper_to_string = + (~holes: option(string)=Some(""), z: Zipper.t): string => to_rows( ~holes, - ~measured=editor.state.meta.measured, + ~measured=measured(z), ~caret=None, ~indent="", - ~segment=seg_of_zip(editor.state.zipper), + ~segment=seg_of_zip(z), ) |> String.concat("\n"); let to_string_selection = (editor: Editor.t): string => to_rows( - ~measured=editor.state.meta.measured, + ~measured=measured(editor.state.zipper), ~caret=None, ~indent=" ", ~holes=None, @@ -91,43 +88,11 @@ let to_string_selection = (editor: Editor.t): string => ) |> String.concat("\n"); -let to_log = (~measured: Measured.t, z: Zipper.t): t => { - code: - to_rows( - ~holes=None, - ~measured, - ~caret=Some(Zipper.caret_point(measured, z)), - ~indent=" ", - ~segment=seg_of_zip(z), - ), - selection: z.selection.content |> of_segment(~holes=None) |> lines_to_list, - backpack: - List.map( - (s: Selection.t) => - s.content |> of_segment(~holes=None) |> lines_to_list, - z.backpack, - ), -}; - -let to_log_flat = (~measured, z: Zipper.t): string => { - let {code, selection, backpack} = to_log(~measured, z); - Printf.sprintf( - "CODE:\n%s\nSELECTION:\n%s\n%s\n", - String.concat("\n", code), - String.concat("\n", selection), - backpack - |> List.mapi((i, b) => - Printf.sprintf("BP(%d):\n %s\n", i, String.concat("\n", b)) - ) - |> String.concat(""), - ); -}; - let zipper_of_string = (~zipper_init=Zipper.init(), str: string): option(Zipper.t) => { let insert = (z: option(Zipper.t), c: string): option(Zipper.t) => { let* z = z; - try(c == "\r" ? Some(z) : Insert.go(c == "\n" ? Form.linebreak : c, z)) { + try(c == "\r" ? Some(z) : Insert.go(c, z)) { | exn => print_endline("WARN: zipper_of_string: " ++ Printexc.to_string(exn)); None; @@ -136,19 +101,8 @@ let zipper_of_string = str |> Util.StringUtil.to_list |> List.fold_left(insert, Some(zipper_init)); }; -let paste_into_zip = (z: Zipper.t, str: string): option(Zipper.t) => { - /* HACK(andrew): These two perform calls are a hack to - deal with the fact that pasting something like "let a = b in" - won't trigger the barfing of the "in"; to trigger this, we - insert a space, and then we immediately delete it. */ - let settings = CoreSettings.off; - let* z = zipper_of_string(~zipper_init=z, str); - switch (Perform.go_z(~settings, Insert(" "), z)) { - | Error(_) => None - | Ok(z) => - switch (Perform.go_z(~settings, Destruct(Left), z)) { - | Error(_) => None - | Ok(z) => Some(z) - } - }; -}; +/* This serializes the current editor to text, resets the current + editor, and then deserializes. It is intended as a (tactical) + nuclear option for weird backpack states */ +let reparse = z => + zipper_of_string(~zipper_init=Zipper.init(), zipper_to_string(z)); diff --git a/src/haz3lcore/zipper/Projector.re b/src/haz3lcore/zipper/Projector.re new file mode 100644 index 0000000000..82b036b821 --- /dev/null +++ b/src/haz3lcore/zipper/Projector.re @@ -0,0 +1,49 @@ +open ProjectorBase; + +/* After adding a new projector module, add it here so that + * it can be instantiated. The first-class module created by + * this function must be reified whenever projector methods + * are to be called; see `shape` below for an example */ +let to_module = (kind: Base.kind): (module Cooked) => + switch (kind) { + | Fold => (module Cook(FoldProj.M)) + | Info => (module Cook(InfoProj.M)) + | Slider => (module Cook(SliderProj.M)) + | SliderF => (module Cook(SliderFProj.M)) + | Checkbox => (module Cook(CheckboxProj.M)) + | TextArea => (module Cook(TextAreaProj.M)) + }; + +let shape = (p: Base.projector, info: info): shape => { + let (module P) = to_module(p.kind); + P.placeholder(p.model, info); +}; + +/* A projector is replaced by a placeholder in the underlying + * editor for view purposes. This projector is an all-whitespace + * monotile. Currently there is no explicit notion of placeholders + * in the zipper; a tile consisting of any number of whitespaces + * is considered a placeholder. This could be made more principled. + * Note that a placeholder retains the UUID of the underlying. */ +let placeholder = (p: Base.projector, ci: option(Info.t)): string => + switch (shape(p, {id: p.id, syntax: p.syntax, ci})) { + | Inline(width) => String.make(width, ' ') + | Block({row, col}) => String.make(row - 1, '\n') ++ String.make(col, ' ') + }; + +/* Currently projection is limited to convex pieces */ +let minimum_projection_condition = (syntax: syntax): bool => + Piece.is_convex(syntax); + +/* Returns the projector at the caret, if any */ +let indicated = (z: ZipperBase.t) => { + open Util.OptUtil.Syntax; + let* id = Indicated.index(z); + let* (p, _, _) = Indicated.piece(z); + let+ projector = + switch (p) { + | Projector(pr) => Some(pr) + | _ => None + }; + (id, projector); +}; diff --git a/src/haz3lcore/zipper/ProjectorBase.re b/src/haz3lcore/zipper/ProjectorBase.re new file mode 100644 index 0000000000..5abe811d76 --- /dev/null +++ b/src/haz3lcore/zipper/ProjectorBase.re @@ -0,0 +1,153 @@ +open Util; +open Virtual_dom.Vdom; + +[@deriving (show({with_path: false}), sexp, yojson)] +type t = Base.kind; + +/* Projectors currently have two options for placeholder + * shapes: A inline display of a given length, or a block + * display with given length & height. Both of these can + * depend on the projector model and info package */ +[@deriving (show({with_path: false}), sexp, yojson)] +type shape = + | Inline(int) + | Block(Point.t); + +/* The type of syntax which a projector can replace. + * Right now projectors can replace a single piece */ +[@deriving (show({with_path: false}), sexp, yojson)] +type syntax = Base.piece; + +/* Global actions available to handlers in all projectors */ +type external_action = + | Remove /* Remove projector entirely */ + | Escape(Util.Direction.t) /* Pass focus to parent editor */ + | SetSyntax(syntax); /* Set underlying syntax */ + +/* External info fed to all projectors. Eventually + * dynamic information will be added here. Projector + * position and dimensions in base editor could be + * added here if needed */ +[@deriving (show({with_path: false}), sexp, yojson)] +type info = { + id: Id.t, + syntax, + ci: option(Info.t), +}; + +/* To add a new projector: + * 1. Create a new module implementing Projector (e.g. FoldCore) + * 2. Add an entry for it in Base.projector_kind + * 3. Register the module in Projector.to_module + * 4. If you want to expose the projector via a keyboard + * shortcut, see the existing entry for Fold in Keyboard + * 5. If you want to expose the projector in the projector + * panel bottom bar UI, update ProjectorView.name, + * ProjectorView.of_name, and ProjectorView.applicable_projectors + * 6. If you want to manually manage the projector as part of + * the update cycle, see the implementations of the SetIndicated + * and Remove actions in ProjectorPerform for how to manually + * add/remove projectors from an editor */ +module type Projector = { + /* The internal model type of the projector which will + * be serialized and persisted. Use `unit` if you don't + * need other state beyond the underlying syntax */ + [@deriving (show({with_path: false}), sexp, yojson)] + type model; + /* An internal action type to be used in actions which + * update the model. Use `unit` if the basic projector + * actions (type `action`) above suffice */ + [@deriving (show({with_path: false}), sexp, yojson)] + type action; + /* Initial state of the model */ + let init: model; + /* A predicate determining if the given underlying + * syntax (currently limited to convex pieces) is + * supported by this projector. This is used to gate + * adding the projector */ + let can_project: Base.piece => bool; + /* Does this projector have internal position states, + * overriding the editor caret & keyboard handlers? + * If yes, the focus method will be called when this + * projector is either clicked on or if left/right + * is pressed when the caret is to the immediate + * right/left of the projector */ + let can_focus: bool; + /* Renders a DOM view for the projector, given the + * model, an info packet (see info type for details), + * and has two callbacks: ~parent for parent editor + * actions(see external_action type above), and ~local + * for this projector's local update function. */ + let view: + ( + model, + ~info: info, + ~local: action => Ui_effect.t(unit), + ~parent: external_action => Ui_effect.t(unit) + ) => + Node.t; + /* How much space should be left in the code view for + * this projector? This determines how the base code + * view is laid out, including how movement around the + * projector works. In principle this could be derived + * from the view, but this is awkward to do so for now + * projector writers are responsible for keeping these + * in sync with each other. */ + let placeholder: (model, info) => shape; + /* Update the local projector model given an action */ + let update: (model, action) => model; + /* Does whatever needs to be done to give a projector + * keyboard focus. Right now this is only for side + * effects but could be extended in the future to + * take/return the model if the projector needs to + * maintain a complex internal position state */ + let focus: ((Id.t, option(Direction.t))) => unit; +}; + +/* A cooked projector is the same as the base module + * signature except model & action are serialized so + * they may be used by the Editor without it having + * specialized knowledge of projector internals */ +module type Cooked = + Projector with type model = string and type action = string; + +module Cook = (C: Projector) : Cooked => { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = string; + [@deriving (show({with_path: false}), sexp, yojson)] + type action = string; + let serialize_m = m => m |> C.sexp_of_model |> Sexplib.Sexp.to_string; + let deserialize_m = s => s |> Sexplib.Sexp.of_string |> C.model_of_sexp; + let serialize_a = a => a |> C.sexp_of_action |> Sexplib.Sexp.to_string; + let deserialize_a = s => s |> Sexplib.Sexp.of_string |> C.action_of_sexp; + let init = C.init |> serialize_m; + let can_project = C.can_project; + let can_focus = C.can_focus; + let view = (m, ~info, ~local, ~parent) => + C.view( + deserialize_m(m), + ~info, + ~local=a => local(serialize_a(a)), + ~parent, + ); + let placeholder = m => + m |> Sexplib.Sexp.of_string |> C.model_of_sexp |> C.placeholder; + let update = (m, a) => + C.update(m |> deserialize_m, a |> deserialize_a) |> serialize_m; + let focus = C.focus; +}; + +/* Projectors currently are all convex */ +let shapes = (_: Base.projector) => Nib.Shape.(Convex, Convex); + +/* Projectors currently have a unique molding */ +let mold_of = (p, sort: Sort.t): Mold.t => { + let (l, r) = shapes(p); + { + nibs: { + ({shape: l, sort}, {shape: r, sort}); + }, + out: sort, + in_: [], + }; +}; diff --git a/src/haz3lcore/zipper/Relatives.re b/src/haz3lcore/zipper/Relatives.re index 04a9740130..251cdbc4e9 100644 --- a/src/haz3lcore/zipper/Relatives.re +++ b/src/haz3lcore/zipper/Relatives.re @@ -64,9 +64,6 @@ let delete_parent = ({siblings, ancestors}: t): t => { }; }; -let disassemble = ({siblings, ancestors}: t): Siblings.t => - Siblings.concat([siblings, Ancestors.disassemble(ancestors)]); - let remold = ({siblings, ancestors}: t): t => { let s = Ancestors.sort(ancestors); let siblings = Siblings.remold(siblings, s); @@ -120,24 +117,6 @@ let regrout = (d: Direction.t, {siblings, ancestors}: t): t => { {siblings, ancestors}; }; -let prepend_generation = ((a, sibs): Ancestors.generation, rs: t): t => { - siblings: Siblings.empty, - ancestors: [(a, Siblings.concat([sibs, rs.siblings])), ...rs.ancestors], -}; -let prepend_siblings = (sibs: Siblings.t, rs: t): t => { - ...rs, - siblings: Siblings.concat([sibs, rs.siblings]), -}; - -let concat = (rss: list(t)): t => - List.fold_right( - (rs: t, cat: t) => - List.fold_right(prepend_generation, rs.ancestors, cat) - |> prepend_siblings(rs.siblings), - rss, - empty, - ); - let reassemble_parent = (rs: t): t => switch (rs.ancestors) { | [] => rs @@ -220,58 +199,3 @@ let reassemble = (rs: t): t => { }; rs |> reassemble_siblings |> reassemble_parent |> go; }; - -// let rec reassemble = (rs: t): t => { -// let siblings = Siblings.reassemble(rs.siblings); -// switch (Siblings.incomplete_tiles(siblings)) { -// | ([], _) -// | (_, []) => {...rs, siblings} -// | ([_, ..._], [t, ..._]) => -// switch ( -// siblings -// |> Siblings.split_by_matching(t.id) -// |> TupleUtil.map2(Aba.trim) -// ) { -// | (None, None) => {...rs, siblings} -// | (None, Some((inner_r, match_r, outer_r))) => -// let {siblings: (l, r), ancestors} = -// reassemble({...rs, siblings: (fst(siblings), outer_r)}); -// { -// siblings: ( -// l, -// Segment.concat([inner_r, Ancestor.Match.Suffix.join(match_r), r]), -// ), -// ancestors, -// }; -// | (Some((inner_l, match_l, outer_l)), None) => -// let {siblings: (l, r), ancestors} = -// reassemble({...rs, siblings: (outer_l, snd(rs.siblings))}); -// { -// siblings: ( -// Segment.concat([inner_l, Ancestor.Match.Suffix.join(match_l), l]), -// r, -// ), -// ancestors, -// }; -// | (Some((inner_l, match_l, outer_l)), Some((inner_r, match_r, outer_r))) => -// let match = (match_l, match_r); -// let rs_inner = -// switch (Ancestor.Match.complete(match)) { -// | None => { -// siblings: -// Siblings.concat([ -// (inner_l, inner_r), -// Ancestor.Match.join(match), -// ]), -// ancestors: Ancestors.empty, -// } -// | Some(a) => { -// siblings: (inner_l, inner_r), -// ancestors: [(a, Siblings.empty)], -// } -// }; -// let rs_outer = reassemble({...rs, siblings: (outer_l, outer_r)}); -// concat([rs_inner, rs_outer]); -// } -// }; -// }; diff --git a/src/haz3lcore/zipper/Selection.re b/src/haz3lcore/zipper/Selection.re index e89aba3a99..92d6509fb8 100644 --- a/src/haz3lcore/zipper/Selection.re +++ b/src/haz3lcore/zipper/Selection.re @@ -2,8 +2,8 @@ open Util; [@deriving (show({with_path: false}), sexp, yojson)] type buffer = - | Unparsed - | Parsed; + //| Parsed + | Unparsed; [@deriving (show({with_path: false}), sexp, yojson)] type mode = @@ -31,13 +31,7 @@ let is_buffer: t => bool = | {mode: Buffer(_), _} => true | _ => false; -let buffer_ids = (sel: t): list(Id.t) => { - /* Collect ids of tokens in buffer for styling purposes. This is - * currently necessary as the selection is not persisted through - * unzipping for display */ - let buffer = is_buffer(sel) ? sel.content : []; - Id.Map.bindings(Measured.of_segment(buffer).tiles) |> List.map(fst); -}; +let selection_ids = (sel: t): list(Id.t) => Segment.ids(sel.content); let empty = mk(Segment.empty); @@ -72,5 +66,3 @@ let pop = (sel: t): option((Piece.t, t)) => let (rest, p) = Piece.pop_r(p); Some((p, {...sel, content: content @ rest})); }; - -let split_piece = _: option((Piece.t, t)) => failwith("todo split_piece"); diff --git a/src/haz3lcore/zipper/Siblings.re b/src/haz3lcore/zipper/Siblings.re index 96d254e31e..332b63f8df 100644 --- a/src/haz3lcore/zipper/Siblings.re +++ b/src/haz3lcore/zipper/Siblings.re @@ -1,8 +1,5 @@ open Util; -// module Prefix = Affix.Make(Orientation.L); -// module Suffix = Affix.Make(Orientation.R); - [@deriving (show({with_path: false}), sexp, yojson)] type t = (Segment.t, Segment.t); @@ -27,13 +24,6 @@ let concat = (sibss: list(t)): t => |> PairUtil.map_fst(List.concat) |> PairUtil.map_snd(List.concat); -// let consistent_shards = ((pre, suf): t): bool => { -// let shards_pre = Prefix.shards(pre); -// let shards_suf = Suffix.shards(suf); -// ListUtil.group_by(Shard.id, shards_pre @ shards_suf) -// |> List.for_all(((_, shards)) => Shard.consistent_molds(shards) != []); -// }; - let remold = ((pre, _) as sibs: t, s: Sort.t): t => Segment.remold(zip(sibs), s) |> unzip(List.length(pre)); @@ -44,15 +34,6 @@ let shapes = ((pre, suf): t) => { (l, r); }; -let is_mismatch = ((l, r): t): bool => { - /* predicts if grout is neccessary between siblings */ - switch (Segment.edge_shape_of(Left, r), Segment.edge_shape_of(Right, l)) { - | (None, _) - | (_, None) => false - | (s1, s2) => s1 == s2 - }; -}; - let contains_matching = (t: Tile.t, (pre, suf): t) => Segment.(contains_matching(t, pre) || contains_matching(t, suf)); @@ -103,16 +84,6 @@ let trim_secondary = ((l_sibs, r_sibs): t) => ( Segment.trim_secondary(Left, r_sibs), ); -let trim_grout = ((l_sibs, r_sibs): t) => ( - Segment.trim_grout(Right, l_sibs), - Segment.trim_grout(Left, r_sibs), -); - -let trim_secondary_and_grout = ((l_sibs, r_sibs): t) => ( - Segment.trim_secondary_and_grout(Right, l_sibs), - Segment.trim_secondary_and_grout(Left, r_sibs), -); - let direction_between = ((l, r): t): option(Direction.t) => /* Facing direction of the shared nib between l & r */ switch (Segment.edge_direction_of(Left, r)) { @@ -125,5 +96,3 @@ let mold_fitting_between = (sort: Sort.t, p: Precedence.t, sibs: t): Mold.t => | Some(d) => Mold.chevron(sort, p, d) | None => Mold.mk_op(sort, []) }; - -let sorted_children = TupleUtil.map2(Segment.sorted_children); diff --git a/src/haz3lcore/zipper/Time.re b/src/haz3lcore/zipper/Time.re deleted file mode 100644 index 34a363f279..0000000000 --- a/src/haz3lcore/zipper/Time.re +++ /dev/null @@ -1,15 +0,0 @@ -type t = int; -let t = ref(0); - -let tick = (): t => { - let time = t^; - t := time + 1; - time; -}; - -let lt = (<); - -let min = min; -let max = max; - -let max_time = Int.max_int; diff --git a/src/haz3lcore/zipper/Touched.re b/src/haz3lcore/zipper/Touched.re deleted file mode 100644 index 2a428deb28..0000000000 --- a/src/haz3lcore/zipper/Touched.re +++ /dev/null @@ -1,24 +0,0 @@ -include Id.Map; -type t = Id.Map.t(Time.t); - -module type S = { - let touched: t; -}; - -let update = (t: Time.t, es: list(Effect.t), td: t) => - es - |> List.fold_left( - (td, e: Effect.t) => - switch (e) { - | Delete(id) => td |> remove(id) - | Touch(id) => - td - |> update( - id, - fun - | None => Some(t) - | Some(t') => Some(Time.max(t, t')), - ) - }, - td, - ); diff --git a/src/haz3lcore/zipper/Zipper.re b/src/haz3lcore/zipper/Zipper.re index 61e1cbe04d..f87fb964e6 100644 --- a/src/haz3lcore/zipper/Zipper.re +++ b/src/haz3lcore/zipper/Zipper.re @@ -1,34 +1,6 @@ -open Sexplib.Std; open Util; open OptUtil.Syntax; - -module Caret = { - [@deriving (show({with_path: false}), sexp, yojson)] - type t = - | Outer - | Inner(int, int); - - let decrement: t => t = - fun - | Outer - | Inner(_, 0) => Outer - | Inner(d, c) => Inner(d, c - 1); - - let offset: t => int = - fun - | Outer => 0 - | Inner(_, c) => c + 1; -}; - -// assuming single backpack, shards may appear in selection, backpack, or siblings -[@deriving (show({with_path: false}), sexp, yojson)] -type t = { - selection: Selection.t, - backpack: Backpack.t, - relatives: Relatives.t, - caret: Caret.t, - // col_target: int, -}; +include ZipperBase; let init: unit => t = () => { @@ -39,7 +11,6 @@ let init: unit => t = ancestors: [], }, caret: Outer, - // col_target: 0, }; let next_blank = _ => Id.mk(); @@ -70,17 +41,6 @@ let update_caret = (f: Caret.t => Caret.t, z: t): t => { }; let set_caret = (caret: Caret.t): (t => t) => update_caret(_ => caret); -let update_relatives = (f: Relatives.t => Relatives.t, z: t): t => { - ...z, - relatives: f(z.relatives), -}; - -let update_siblings: (Siblings.t => Siblings.t, t) => t = - f => update_relatives(rs => {...rs, siblings: f(rs.siblings)}); - -let parent = (z: t): option(Piece.t) => - Relatives.parent(~sel=z.selection.content, z.relatives); - let delete_parent = (z: t): t => { ...z, relatives: Relatives.delete_parent(z.relatives), @@ -99,20 +59,6 @@ let unzip = (seg: Segment.t): t => { caret: Outer, }; -let sibs_with_sel = - ( - { - selection: {content, focus, _}, - relatives: {siblings: (l_sibs, r_sibs), _}, - _, - }: t, - ) - : Siblings.t => - switch (focus) { - | Left => (l_sibs, content @ r_sibs) - | Right => (l_sibs @ content, r_sibs) - }; - let pop_backpack = (z: t) => Backpack.pop(Relatives.local_incomplete_tiles(z.relatives), z.backpack); @@ -147,7 +93,7 @@ let clear_unparsed_buffer = (z: t) => let unselect = (~erase_buffer=false, z: t): t => { /* NOTE(andrew): Erase buffer flag only applies to unparsed buffer, * that is, the buffer style that just contains a single flat token. - * Erasing a buffer the contains arbitrary tiles would be more complex + * Erasing a buffer that contains arbitrary tiles would be more complex * as we can't just empty the selection without regrouting */ let z = erase_buffer ? clear_unparsed_buffer(z) : z; let relatives = @@ -205,7 +151,6 @@ let directional_unselect = (d: Direction.t, z: t): t => { let move = (d: Direction.t, z: t): option(t) => if (Selection.is_empty(z.selection)) { - // let balanced = !Backpack.is_balanced(z.backpack); let+ (p, relatives) = Relatives.pop(d, z.relatives); let relatives = relatives @@ -226,9 +171,6 @@ let pick_up = (z: t): t => { |> Segment.trim_grout_around_secondary(Left) |> Segment.trim_grout_around_secondary(Right) |> Selection.mk; - Segment.tiles(selection.content) - |> List.map((t: Tile.t) => t.id) - |> Effect.s_touch; let backpack = Backpack.push(selection, z.backpack); {...z, backpack}; }; @@ -247,7 +189,6 @@ let destruct = (~destroy_kids=true, z: t): t => { let to_pick_up = destroy_kids ? List.map(Tile.disintegrate, to_pick_up) |> List.flatten : to_pick_up; - Effect.s_touch(List.map((t: Tile.t) => t.id, to_pick_up)); let backpack = backpack |> Backpack.remove_matching(to_remove) @@ -263,9 +204,6 @@ let delete = (d: Direction.t, z: t): option(t) => let put_down = (d: Direction.t, z: t): option(t) => { let z = destruct(z); let* (_, popped, backpack) = pop_backpack(z); - Segment.tiles(popped.content) - |> List.map((t: Tile.t) => t.id) - |> Effect.s_touch; let z = {...z, backpack} |> put_selection(popped) |> unselect; switch (d) { | Left => Some(z) @@ -284,7 +222,6 @@ let rec construct = /* Special case for comments, can't rely on the last branch to construct */ let content = Secondary.construct_comment(content); let id = Id.mk(); - Effect.s_touch([id]); let z = destruct(z); let selections = [Selection.mk(Base.mk_secondary(id, content))]; let backpack = Backpack.push_s(selections, z.backpack); @@ -293,7 +230,6 @@ let rec construct = | [content] when Form.is_secondary(content) => let content = Secondary.Whitespace(content); let id = Id.mk(); - Effect.s_touch([id]); z |> update_siblings(((l, r)) => (l @ [Secondary({id, content})], r)); | _ => let z = destruct(z); @@ -302,7 +238,6 @@ let rec construct = // initial mold to typecheck, will be remolded let mold = List.hd(molds); let id = Id.mk(); - Effect.s_touch([id]); let selections = Tile.split_shards(id, label, mold, List.mapi((i, _) => i, label)) |> List.map(Segment.of_tile) @@ -340,31 +275,35 @@ let caret_direction = (z: t): option(Direction.t) => | Inner(_) => None | Outer => switch (Siblings.neighbors(sibs_with_sel(z))) { - | (Some(l), Some(r)) when Piece.is_secondary(l) && Piece.is_secondary(r) => + | (Some(l), Some(r)) + when + Piece.is_secondary(l) + && Piece.is_secondary(r) + && Selection.is_empty(z.selection) => None | _ => Siblings.direction_between(sibs_with_sel(z)) } }; -let base_point = (measured: Measured.t, z: t): Measured.Point.t => { +let base_point = (measured: Measured.t, z: t): Point.t => { switch (representative_piece(z)) { | Some((p, d)) => let seg = Piece.disassemble(p); switch (d) { | Left => let p = ListUtil.last(seg); - let m = Measured.find_p(p, measured); + let m = Measured.find_p(~msg="base_point", p, measured); m.last; | Right => let p = List.hd(seg); - let m = Measured.find_p(p, measured); + let m = Measured.find_p(~msg="base_point", p, measured); m.origin; }; | None => {row: 0, col: 0} }; }; -let caret_point = (measured, z: t): Measured.Point.t => { - let Measured.Point.{row, col} = base_point(measured, z); +let caret_point = (measured, z: t): Point.t => { + let Point.{row, col} = base_point(measured, z); {row, col: col + Caret.offset(z.caret)}; }; diff --git a/src/haz3lcore/zipper/ZipperBase.re b/src/haz3lcore/zipper/ZipperBase.re new file mode 100644 index 0000000000..cb6311a4b8 --- /dev/null +++ b/src/haz3lcore/zipper/ZipperBase.re @@ -0,0 +1,162 @@ +open Util; + +module Caret = { + [@deriving (show({with_path: false}), sexp, yojson)] + type t = + | Outer + | Inner(int, int); + + let decrement: t => t = + fun + | Outer + | Inner(_, 0) => Outer + | Inner(d, c) => Inner(d, c - 1); + + let offset: t => int = + fun + | Outer => 0 + | Inner(_, c) => c + 1; +}; + +// assuming single backpack, shards may appear in selection, backpack, or siblings +[@deriving (show({with_path: false}), sexp, yojson)] +type t = { + selection: Selection.t, + backpack: Backpack.t, + relatives: Relatives.t, + caret: Caret.t, +}; + +let update_relatives = (f: Relatives.t => Relatives.t, z: t): t => { + ...z, + relatives: f(z.relatives), +}; + +let update_siblings: (Siblings.t => Siblings.t, t) => t = + f => update_relatives(rs => {...rs, siblings: f(rs.siblings)}); + +let put_siblings = (siblings, z: t): t => update_siblings(_ => siblings, z); + +let put_selection_content = (content: Segment.t, z): t => { + ...z, + selection: { + ...z.selection, + content, + }, +}; + +let parent = (z: t): option(Piece.t) => + Relatives.parent(~sel=z.selection.content, z.relatives); + +let sibs_with_sel = + ( + { + selection: {content, focus, _}, + relatives: {siblings: (l_sibs, r_sibs), _}, + _, + }: t, + ) + : Siblings.t => + switch (focus) { + | Left => (l_sibs, content @ r_sibs) + | Right => (l_sibs @ content, r_sibs) + }; + +module MapPiece = { + type updater = Piece.t => Piece.t; + + let rec of_segment = (f: updater, seg: Segment.t): Segment.t => { + seg |> List.map(p => f(p)) |> List.map(of_piece(f)); + } + and of_piece = (f: updater, piece: Piece.t): Piece.t => { + switch (piece) { + | Tile(t) => Tile(of_tile(f, t)) + | Grout(_) + | Projector(_) + | Secondary(_) => piece + }; + } + and of_tile = (f: updater, t: Tile.t): Tile.t => { + {...t, children: List.map(of_segment(f), t.children)}; + }; + + let of_siblings = (f: updater, sibs: Siblings.t): Siblings.t => ( + of_segment(f, fst(sibs)), + of_segment(f, snd(sibs)), + ); + + let of_ancestor = (f: updater, ancestor: Ancestor.t): Ancestor.t => { + { + ...ancestor, + children: ( + List.map(of_segment(f), fst(ancestor.children)), + List.map(of_segment(f), snd(ancestor.children)), + ), + }; + }; + + let of_generation = + (f: updater, generation: Ancestors.generation): Ancestors.generation => ( + of_ancestor(f, fst(generation)), + of_siblings(f, snd(generation)), + ); + + let of_ancestors = (f: updater, ancestors: Ancestors.t): Ancestors.t => + List.map(of_generation(f), ancestors); + + let of_selection = (f: updater, selection: Selection.t): Selection.t => { + {...selection, content: of_segment(f, selection.content)}; + }; + + /* Maps the updater over all pieces in the zipper + * (that are not currently unzipped) */ + let go = (f: updater, z: t): t => { + ...z, + selection: of_selection(f, z.selection), + relatives: { + ancestors: of_ancestors(f, z.relatives.ancestors), + siblings: of_siblings(f, z.relatives.siblings), + }, + }; + + let sib_has_id = (get, z: t, id: Id.t): bool => { + switch (z.relatives.siblings |> get) { + | Some(l) => Piece.id(l) == id + | _ => false + }; + }; + + let left_sib_has_id = sib_has_id(Siblings.left_neighbor); + + let right_sib_has_id = sib_has_id(Siblings.right_neighbor); + + let update_left_sib = (f: Piece.t => Piece.t, z: t) => { + let (l, r) = z.relatives.siblings; + let sibs = (List.map(f, l), List.map(f, r)); + put_siblings(sibs, z); + }; + + let update_right_sib = (f: Piece.t => Piece.t, z: t) => { + let sibs = + switch (z.relatives.siblings) { + | (l, [hd, ...tl]) => (l, [f(hd), ...tl]) + | sibs => sibs + }; + put_siblings(sibs, z); + }; + + let fast_local = (f: Piece.t => Piece.t, id: Id.t, z: t): t => + /* This applies the function to the piece in the zipper having id id, and + * then replaces the id of the resulting piece with the idea of the old + * piece, ensuring that the root id remains stable. This function assumes + * the cursor is not inside the piece to be updated. This is optimized to + * be O(1) when the piece is directly to the left or right of the cursor, + * otherwise it is O(|zipper|) */ + if (left_sib_has_id(z, id)) { + update_left_sib(f, z); + } else if (right_sib_has_id(z, id)) { + update_right_sib(f, z); + } else { + go(f, z); + }; +}; diff --git a/src/haz3lcore/zipper/action/Action.re b/src/haz3lcore/zipper/action/Action.re index 272570169a..85b24be4f1 100644 --- a/src/haz3lcore/zipper/action/Action.re +++ b/src/haz3lcore/zipper/action/Action.re @@ -1,5 +1,5 @@ open Util; -open Sexplib.Std; + open Zipper; [@deriving (show({with_path: false}), sexp, yojson)] @@ -16,7 +16,7 @@ let of_piece_goal = [@deriving (show({with_path: false}), sexp, yojson)] type goal = - | Point(Measured.Point.t) + | Point(Point.t) | Piece(piece_goal, Direction.t); [@deriving (show({with_path: false}), sexp, yojson)] @@ -39,14 +39,43 @@ type rel = type select = | All | Resize(move) - | Smart + | Smart(int) | Tile(rel) | Term(rel); +/* This type defines the top-level actions used to manage + * projectors,as distinguished from external_action, + * which defines the actions available internally to all projectors, + * and from each projector's own internal action type */ +[@deriving (show({with_path: false}), sexp, yojson)] +type project = + | SetIndicated(Base.kind) /* Project syntax at caret */ + | ToggleIndicated(Base.kind) /* Un/Project syntax at caret */ + | Remove(Id.t) /* Remove projector at Id */ + | SetSyntax(Id.t, Piece.t) /* Set underlying syntax */ + | SetModel(Id.t, string) /* Set serialized projector model */ + | Focus(Id.t, option(Util.Direction.t)) /* Pass control to projector */ + | Escape(Id.t, Direction.t); /* Pass control to parent editor */ + +[@deriving (show({with_path: false}), sexp, yojson)] +type agent = + | TyDi; + +[@deriving (show({with_path: false}), sexp, yojson)] +type buffer = + | Set(agent) + | Clear + | Accept; + [@deriving (show({with_path: false}), sexp, yojson)] type t = + | Reparse + | Buffer(buffer) + | Paste(string) + | Copy + | Cut + | Project(project) | Move(move) - | MoveToNextHole(Direction.t) | Jump(jump_target) | Select(select) | Unselect(option(Direction.t)) @@ -64,7 +93,11 @@ module Failure = { | Cant_insert | Cant_destruct | Cant_select - | Cant_put_down; + | Cant_put_down + | Cant_project + | CantPaste + | CantReparse + | CantAccept; }; module Result = { @@ -74,8 +107,88 @@ module Result = { let is_edit: t => bool = fun + | Paste(_) + | Cut + | Reparse + | Insert(_) + | Destruct(_) + | Pick_up + | Put_down + | Buffer(Accept | Clear | Set(_)) => true + | Copy + | Move(_) + | Jump(_) + | Select(_) + | Unselect(_) + | RotateBackpack + | MoveToBackpackTarget(_) => false + | Project(p) => + switch (p) { + | SetSyntax(_) + | SetModel(_) + | SetIndicated(_) + | ToggleIndicated(_) + | Remove(_) => true + | Focus(_) + | Escape(_) => false + }; + +/* Determines whether undo/redo skips action */ +let is_historic: t => bool = + fun + | Buffer(Set(_) | Clear) + | Copy + | Move(_) + | Jump(_) + | Select(_) + | Unselect(_) + | RotateBackpack + | MoveToBackpackTarget(_) => false + | Cut + | Buffer(Accept) + | Paste(_) + | Reparse | Insert(_) | Destruct(_) | Pick_up | Put_down => true - | _ => false; + | Project(p) => + switch (p) { + | SetSyntax(_) + | SetModel(_) + | SetIndicated(_) + | ToggleIndicated(_) + | Remove(_) => true + | Focus(_) + | Escape(_) => false + }; + +let prevent_in_read_only_editor = (a: t) => { + switch (a) { + | Copy + | Move(_) + | Unselect(_) + | Jump(_) + | Select(_) => false + | Buffer(Set(_) | Accept | Clear) + | Cut + | Paste(_) + | Reparse + | Destruct(_) + | Insert(_) + | Pick_up + | Put_down + | RotateBackpack + | MoveToBackpackTarget(_) => true + | Project(p) => + switch (p) { + | SetSyntax(_) => true + | SetModel(_) + | SetIndicated(_) + | ToggleIndicated(_) + | Remove(_) + | Focus(_) + | Escape(_) => false + } + }; +}; diff --git a/src/haz3lcore/zipper/action/Effect.re b/src/haz3lcore/zipper/action/Effect.re deleted file mode 100644 index 8567cb44d1..0000000000 --- a/src/haz3lcore/zipper/action/Effect.re +++ /dev/null @@ -1,12 +0,0 @@ -[@deriving (show({with_path: false}), sexp, yojson)] -type t = - | Touch(Id.t) - | Delete(Id.t); - -// used to record effects over the course of a single action -let s: ref(list(t)) = ref([]); -let s_clear = () => s := []; -let s_touch = (ids: list(Id.t)) => - s := List.map(id => Touch(id), ids) @ s^; - -let s_touched = (id: Id.t): bool => List.mem(Touch(id), s^); diff --git a/src/haz3lcore/zipper/action/Indicated.re b/src/haz3lcore/zipper/action/Indicated.re index 3df1f3cb5c..6cfbc5f997 100644 --- a/src/haz3lcore/zipper/action/Indicated.re +++ b/src/haz3lcore/zipper/action/Indicated.re @@ -1,5 +1,4 @@ open Util; -open Zipper; open OptUtil.Syntax; type relation = @@ -7,20 +6,18 @@ type relation = | Sibling; let piece' = - (~no_ws: bool, ~ign: Piece.t => bool, ~trim_secondary=false, z: Zipper.t) + (~no_ws: bool, ~ign: Piece.t => bool, z: ZipperBase.t) : option((Piece.t, Direction.t, relation)) => { - let sibs = - trim_secondary - ? sibs_with_sel(z) |> Siblings.trim_secondary : sibs_with_sel(z); /* Returns the piece currently indicated (if any) and which side of that piece the caret is on. We favor indicating the piece to the (R)ight, but may end up indicating the (P)arent or the (L)eft. We don't indicate secondary tiles. This function ignores whether or not there is a selection so this can be used to get the caret direction, but the caller shouldn't indicate if there's a selection */ - switch (Siblings.neighbors(sibs), parent(z)) { - /* Non-empty selection => no indication */ - //| _ when z.selection.content != [] => None + switch ( + Siblings.neighbors(ZipperBase.sibs_with_sel(z)), + ZipperBase.parent(z), + ) { /* Empty syntax => no indication */ | ((None, None), None) => None /* L not secondary, R is secondary => indicate L */ @@ -57,7 +54,7 @@ let piece' = let piece = piece'(~no_ws=true, ~ign=p => Piece.(is_secondary(p) || is_grout(p))); -let shard_index = (z: Zipper.t): option(int) => +let shard_index = (z: ZipperBase.t): option(int) => switch (piece(z)) { | None => None | Some((p, side, relation)) => @@ -75,7 +72,8 @@ let shard_index = (z: Zipper.t): option(int) => | Sibling => switch (p) { | Secondary(_) - | Grout(_) => Some(0) + | Grout(_) + | Projector(_) => Some(0) | Tile(t) => switch (side) { | Left => Some(List.length(t.children)) @@ -85,27 +83,28 @@ let shard_index = (z: Zipper.t): option(int) => } }; -let index = (z: Zipper.t): option(Id.t) => - switch ( - piece'(~no_ws=false, ~ign=Piece.is_secondary, ~trim_secondary=false, z) - ) { +let for_index = piece'(~no_ws=false, ~ign=Piece.is_secondary); + +let index = (z: ZipperBase.t): option(Id.t) => + switch (for_index(z)) { | None => None | Some((p, _, _)) => Some(Piece.id(p)) }; -let ci_of = (z: Zipper.t, info_map: Statics.Map.t): option(Statics.Info.t) => +let piece'' = piece'(~no_ws=true, ~ign=Piece.is_secondary); + +let ci_of = + (z: ZipperBase.t, info_map: Statics.Map.t): option(Statics.Info.t) => /* This version takes into accounts Secondary, while accounting for the - * fact that Secondary is not currently added to the infomap. First we + * fact that Secondary is not currently added to the info_map. First we * try the basic indication function, specifying that we do not want * Secondary. But if this doesn't succeed, then we create a 'virtual' * info map entry representing the Secondary notation, which takes on * some of the semantic context of a nearby 'proxy' term */ - switch ( - piece'(~no_ws=true, ~ign=Piece.is_secondary, ~trim_secondary=false, z) - ) { + switch (piece''(z)) { | Some((p, _, _)) => Id.Map.find_opt(Piece.id(p), info_map) | None => - let sibs = sibs_with_sel(z); + let sibs = ZipperBase.sibs_with_sel(z); let* cls = switch (Siblings.neighbors(sibs)) { /* If on side of comment, say we're on comment */ diff --git a/src/haz3lcore/zipper/action/Move.re b/src/haz3lcore/zipper/action/Move.re index 1f19f0441e..afc46ca152 100644 --- a/src/haz3lcore/zipper/action/Move.re +++ b/src/haz3lcore/zipper/action/Move.re @@ -1,7 +1,6 @@ open Zipper; open Util; open OptUtil.Syntax; -open Sexplib.Std; [@deriving (show({with_path: false}), sexp, yojson)] type movability = @@ -44,8 +43,8 @@ let neighbor_movability = Unicode.length(content_string) - 1, Unicode.length(content_string) - 2, ); - | Some(_) => CanPass - | _ => supernhbr_l + | Some(Secondary(_) | Grout(_) | Projector(_)) => CanPass + | None => supernhbr_l }; let r = switch (r_nhbr) { @@ -54,8 +53,8 @@ let neighbor_movability = // Comments are always length >= 2 let content_string = Secondary.get_string(w.content); CanEnter(0, Unicode.length(content_string) - 2); - | Some(_) => CanPass - | _ => supernhbr_r + | Some(Secondary(_) | Grout(_) | Projector(_)) => CanPass + | None => supernhbr_r }; (l, r); }; @@ -94,66 +93,90 @@ module Make = (M: Editor.Meta.S) => { }; let is_at_side_of_row = (d: Direction.t, z: Zipper.t) => { - let Measured.Point.{row, col} = caret_point(z); + let Point.{row, col} = caret_point(z); switch (Zipper.move(d, z)) { | None => true | Some(z) => - let Measured.Point.{row: rowp, col: colp} = caret_point(z); + let Point.{row: rowp, col: colp} = caret_point(z); row != rowp || col == colp; }; }; + let direction_to_from = (p1: Point.t, p2: Point.t): Direction.t => { + let before_row = p1.row < p2.row; + let at_row = p1.row == p2.row; + let before_col = p1.col < p2.col; + before_row || at_row && before_col ? Left : Right; + }; + + let closer_to_prev = (curr, prev, goal: Point.t) => + /* Default to true if equal */ + abs(caret_point(prev).col - goal.col) + < abs(caret_point(curr).col - goal.col); + let do_towards = ( ~anchor: option(Measured.Point.t)=?, + ~force_progress: bool=false, f: (Direction.t, t) => option(t), goal: Measured.Point.t, z: t, ) : option(t) => { let init = caret_point(z); - let d = - goal.row < init.row || goal.row == init.row && goal.col < init.col - ? Direction.Left : Right; + let d_to_goal = direction_to_from(goal, init); let rec go = (prev: t, curr: t) => { let curr_p = caret_point(curr); - switch ( - Measured.Point.dcomp(d, curr_p.col, goal.col), - Measured.Point.dcomp(d, curr_p.row, goal.row), - ) { - | (Exact, Exact) => curr - | (_, Over) => prev - | (_, Under) - | (Under, Exact) => - switch (f(d, curr)) { - | None => curr + let x_progress = Point.dcomp(d_to_goal, curr_p.col, goal.col); + let y_progress = Point.dcomp(d_to_goal, curr_p.row, goal.row); + switch (y_progress, x_progress) { + /* If we're not there yet, keep going */ + | (Under, Over | Exact | Under) + | (Exact, Under) => + switch (f(d_to_goal, curr)) { | Some(next) => go(curr, next) + | None => curr /* Should only occur at start/end of program */ + } + /* If we're there, stop */ + | (Exact, Exact) => curr + /* If we've overshot, meaning the exact goal is inaccessible, + * we choose between current and previous (undershot) positions */ + | (Over, Over | Exact | Under) => + switch (force_progress) { + | false => + /* Ideally we would use the same logic as from the below + * anchor case here; however that results in strange + * behavior when accidentally starting a drag at the end + * of a line, which triggers the (invisible) selection of + * a linebreak, making it appear that the caret has jumped + * to the next line. The downside of leaving this as-is is + * that multiline tokens (projectors) do not become part of + * the selection when dragging until you're all the way + * over them, which is slightly visually jarring */ + prev + | true => + /* Up/down kb movement works by setting a goal one row + * below the current. When adjacent to a multiline token, + * the nearest next caret position may be multiple lines down. + * We must allow this overshoot in order to make progress. */ + caret_point(prev) == init ? curr : prev } - | (Over, Exact) => + | (Exact, Over) => switch (anchor) { | None => - /* Special case for when you're (eg) you're trying - to move down, but you're at the right end of a row - and the first position of the next row is further - right than the current row's end. In this case we - want to progress regardless of whether the new - position would be closer or futher from the - goal col */ - is_at_side_of_row(Direction.toggle(d), curr) - ? curr - : { - let d_curr = abs(curr_p.col - goal.col); - let d_prev = abs(caret_point(prev).col - goal.col); - // default to going over when equal - d_prev < d_curr ? prev : curr; - } + /* If you're trying to (eg) move down at the end of a row + * but the first position of the next row is further right + * than the currentrow's end, we want to make progress + * regardless of whether the new position would be closer + * or further from the goal. Otherwise, we try to just + * get as close as we can */ + is_at_side_of_row(Direction.toggle(d_to_goal), curr) + ? curr : closer_to_prev(curr, prev, goal) ? prev : curr | Some(anchor) => - let anchor_d = - goal.row < anchor.row - || goal.row == anchor.row - && goal.col < anchor.col - ? Direction.Left : Right; - anchor_d == d ? curr : prev; + /* If we're dragging to make a selection, decide whether or + * not to force progress based on the relative position of the + * anchor (the position where the drag was started) */ + direction_to_from(goal, anchor) == d_to_goal ? curr : prev } }; }; @@ -168,17 +191,14 @@ module Make = (M: Editor.Meta.S) => { caret position to a target derived from the initial position */ let cur_p = caret_point(z); let goal = - Measured.Point.{ - col: M.col_target, - row: cur_p.row + (d == Right ? 1 : (-1)), - }; - do_towards(f, goal, z); + Point.{col: M.col_target, row: cur_p.row + (d == Right ? 1 : (-1))}; + do_towards(~force_progress=true, f, goal, z); }; let do_extreme = (f: (Direction.t, t) => option(t), d: planar, z: t): option(t) => { let cur_p = caret_point(z); - let goal: Measured.Point.t = + let goal: Point.t = switch (d) { | Right(_) => {col: Int.max_int, row: cur_p.row} | Left(_) => {col: 0, row: cur_p.row} @@ -227,6 +247,14 @@ module Make = (M: Editor.Meta.S) => { | Some(z) => Some(z) }; + /* Jump to id moves the caret to the leftmost edge of + * the piece with the target id. Note that this may not + * mean that the piece at that id will be considered + * indicate from the point of view of the code decorations + * and cursor info display, since for example in the + * expression with (caret "|") "true && !|flag", the + * caret is at the leftmost edge of flag, but the not + * operator ("!") is indicated */ let jump_to_id = (z: t, id: Id.t): option(t) => { let* {origin, _} = Measured.find_by_id(id, M.measured); let z = @@ -240,6 +268,47 @@ module Make = (M: Editor.Meta.S) => { }; }; + let jump_to_side_of_id = (d: Direction.t, z, id) => { + let z = + switch (jump_to_id(z, id)) { + | Some(z) => z /* Move to left of id */ + | None => z + }; + switch (d) { + | Left => z + | Right => + switch (primary(ByToken, Right, z)) { + | Some(z) => z + | None => z + } + }; + }; + + /* Same as jump to id, but if the end position doesn't + * indicate the target id, move one token to the right. + * This is an approximate solution (that I believe works + * for all current cases) */ + let jump_to_id_indicated = (z: t, id: Id.t): option(t) => { + let* {origin, _} = Measured.find_by_id(id, M.measured); + let z = + switch (to_start(z)) { + | None => z + | Some(z) => z + }; + switch (do_towards(primary(ByChar), origin, z)) { + | None => Some(z) + | Some(z) => + switch (Indicated.index(z)) { + | Some(indicated_id) when id == indicated_id => Some(z) + | _ => + switch (primary(ByToken, Right, z)) { + | Some(z) => Some(z) + | None => Some(z) + } + } + }; + }; + let vertical = (d: Direction.t, z: t): option(t) => z.selection.content == [] ? do_vertical(primary(ByChar), d, z) @@ -316,12 +385,14 @@ module Make = (M: Editor.Meta.S) => { }; }; - let go = (d: Action.move, z: Zipper.t): option(Zipper.t) => + let move_dispatch = (d: Action.move, z: Zipper.t): option(Zipper.t) => switch (d) { | Goal(Piece(p, d)) => do_until_wrap(Action.of_piece_goal(p), d, z) | Goal(Point(goal)) => - let z = Zipper.unselect(z); - do_towards(primary(ByChar), goal, z); + switch (do_towards(primary(ByChar), goal, z)) { + | None => Some(z) + | Some(z) => Some(z) + } | Extreme(d) => do_extreme(primary(ByToken), d, z) | Local(d) => z @@ -334,4 +405,27 @@ module Make = (M: Editor.Meta.S) => { } ) }; + + let go = (d: Action.move, z: Zipper.t): option(Zipper.t) => + if (Selection.is_empty(z.selection)) { + move_dispatch(d, z); + } else { + /* Always empty selection on move action, + * even if we don't actually move */ + let z = Zipper.unselect(z); + switch (move_dispatch(d, z)) { + | Some(z) => Some(z) + | None => Some(z) + }; + }; + + let left_until_case_or_rule = + do_until(go(Local(Left(ByToken))), Piece.is_case_or_rule); + + let left_until_not_comment_or_space = (~move_first) => + do_until( + ~move_first, + go(Local(Left(ByToken))), + Piece.not_comment_or_space, + ); }; diff --git a/src/haz3lcore/zipper/action/Perform.re b/src/haz3lcore/zipper/action/Perform.re index 58bc516123..5a3b90c245 100644 --- a/src/haz3lcore/zipper/action/Perform.re +++ b/src/haz3lcore/zipper/action/Perform.re @@ -1,21 +1,17 @@ open Util; open Zipper; -let is_write_action = (a: Action.t) => { - switch (a) { - | Move(_) - | MoveToNextHole(_) - | Unselect(_) - | Jump(_) - | Select(_) => false - | Destruct(_) - | Insert(_) - | Pick_up - | Put_down - | RotateBackpack - | MoveToBackpackTarget(_) => true +let buffer_clear = (z: t): t => + switch (z.selection.mode) { + | Buffer(_) => {...z, selection: Selection.mk([])} + | _ => z + }; + +let set_buffer = (info_map: Statics.Map.t, z: t): t => + switch (TyDi.set_buffer(~info_map, z)) { + | None => z + | Some(z) => z }; -}; let go_z = ( @@ -28,49 +24,114 @@ let go_z = let meta = switch (meta) { | Some(m) => m - | None => Editor.Meta.init(z) + | None => Editor.Meta.init(z, ~settings) }; module M = (val Editor.Meta.module_of_t(meta)); module Move = Move.Make(M); module Select = Select.Make(M); - let select_term_current = z => - switch (Indicated.index(z)) { - | None => Error(Action.Failure.Cant_select) - | Some(id) => - switch (Select.term(id, z)) { - | Some(z) => Ok(z) - | None => Error(Action.Failure.Cant_select) + let paste = (z: Zipper.t, str: string): option(Zipper.t) => { + open Util.OptUtil.Syntax; + let* z = Printer.zipper_of_string(~zipper_init=z, str); + /* HACK(andrew): Insert/Destruct below is a hack to deal + with the fact that pasting something like "let a = b in" + won't trigger the barfing of the "in"; to trigger this, + we insert a space, and then we immediately delete it */ + let* z = Insert.go(" ", z); + let+ z = Destruct.go(Left, z); + remold_regrout(Left, z); + }; + + let buffer_accept = (z): option(Zipper.t) => + switch (z.selection.mode) { + | Normal => None + | Buffer(Unparsed) => + switch (TyDi.get_buffer(z)) { + | None => None + | Some(completion) + when StringUtil.match(StringUtil.regexp(".*\\)::$"), completion) => + /* Slightly hacky. There's currently only one genre of completion + * that creates more than one hole on intial expansion: when on eg + * 1 :: a|, we suggest "abs( )::" via lookahead. In such a case we + * want the caret to end up to the left of the first hole, whereas + * pasting would leave it to the left of the second. Thus we move + * left to the previous hole. */ + let z = { + open OptUtil.Syntax; + let* z = paste(z, completion); + let* z = Move.go(Goal(Piece(Grout, Left)), z); + Move.go(Local(Left(ByToken)), z); + }; + z; + | Some(completion) => paste(z, completion) } }; + let smart_select = (n, z): option(Zipper.t) => { + switch (n) { + | 2 => Select.indicated_token(z) + | 3 => + open OptUtil.Syntax; + /* For things where triple-clicking would otherwise have + * no additional effect, select the parent term instead */ + let* (p, _, _) = Indicated.piece''(z); + Piece.is_term(p) + ? Select.parent_of_indicated(z, meta.statics.info_map) + : Select.nice_term(z); + | _ => None + }; + }; + switch (a) { + | Paste(clipboard) => + switch (paste(z, clipboard)) { + | None => Error(CantPaste) + | Some(z) => Ok(z) + } + | Cut => + /* System clipboard handling is done in Page.view handlers */ + switch (Destruct.go(Left, z)) { + | None => Error(Cant_destruct) + | Some(z) => Ok(z) + } + | Copy => + /* System clipboard handling itself is done in Page.view handlers. + * This doesn't change state but is included here for logging purposes */ + Ok(z) + | Reparse => + switch (Printer.reparse(z)) { + | None => Error(CantReparse) + | Some(z) => Ok(z) + } + | Buffer(Set(TyDi)) => Ok(set_buffer(meta.statics.info_map, z)) + | Buffer(Accept) => + switch (buffer_accept(z)) { + | None => Error(CantAccept) + | Some(z) => Ok(z) + } + | Buffer(Clear) => Ok(buffer_clear(z)) + | Project(a) => + ProjectorPerform.go( + Move.jump_to_id_indicated, + Move.jump_to_side_of_id, + a, + z, + ) | Move(d) => Move.go(d, z) |> Result.of_option(~error=Action.Failure.Cant_move) - | MoveToNextHole(d) => - Move.go(Goal(Piece(Grout, d)), z) - |> Result.of_option(~error=Action.Failure.Cant_move) | Jump(jump_target) => - open OptUtil.Syntax; - - let idx = Indicated.index(z); - let (term, _) = - Util.TimeUtil.measure_time("Perform.go_z => MakeTerm.from_zip", true, () => - MakeTerm.from_zip_for_view(z) - ); - let statics = Interface.Statics.mk_map(settings, term); - ( switch (jump_target) { | BindingSiteOfIndicatedVar => - let* idx = idx; - let* ci = Id.Map.find_opt(idx, statics); + open OptUtil.Syntax; + let* idx = Indicated.index(z); + let* ci = Id.Map.find_opt(idx, meta.statics.info_map); let* binding_id = Info.get_binding_site(ci); Move.jump_to_id(z, binding_id); | TileId(id) => Move.jump_to_id(z, id) } ) - |> Result.of_option(~error=Action.Failure.Cant_move); + |> Result.of_option(~error=Action.Failure.Cant_move) | Unselect(Some(d)) => Ok(Zipper.directional_unselect(d, z)) | Unselect(None) => let z = Zipper.directional_unselect(z.selection.focus, z); @@ -84,42 +145,16 @@ let go_z = } | None => Error(Action.Failure.Cant_select) } - | Select(Term(Current)) => select_term_current(z) - | Select(Smart) => - /* If the current tile is not coincident with the term, - select the term. Otherwise, select the parent term. */ - let tile_is_term = - switch (Indicated.index(z)) { - | None => false - | Some(id) => Select.tile(id, z) == Select.term(id, z) - }; - if (!tile_is_term) { - select_term_current(z); - } else { - //PERF: this is expensive - let (term, _) = MakeTerm.from_zip_for_view(z); - let statics = Interface.Statics.mk_map(settings, term); - let target = - switch ( - Indicated.index(z) - |> OptUtil.and_then(idx => Id.Map.find_opt(idx, statics)) - ) { - | Some(ci) => - switch (Info.ancestors_of(ci)) { - | [] => None - | [parent, ..._] => Some(parent) - } - | None => None - }; - switch (target) { - | None => Error(Action.Failure.Cant_select) - | Some(id) => - switch (Select.term(id, z)) { - | Some(z) => Ok(z) - | None => Error(Action.Failure.Cant_select) - } - }; - }; + | Select(Term(Current)) => + switch (Select.current_term(z)) { + | None => Error(Cant_select) + | Some(z) => Ok(z) + } + | Select(Smart(n)) => + switch (smart_select(n, z)) { + | None => Error(Cant_select) + | Some(z) => Ok(z) + } | Select(Term(Id(id, d))) => switch (Select.term(id, z)) { | Some(z) => @@ -128,13 +163,9 @@ let go_z = | None => Error(Action.Failure.Cant_select) } | Select(Tile(Current)) => - switch (Indicated.index(z)) { - | None => Error(Action.Failure.Cant_select) - | Some(id) => - switch (Select.tile(id, z)) { - | Some(z) => Ok(z) - | None => Error(Action.Failure.Cant_select) - } + switch (Select.current_tile(z)) { + | None => Error(Cant_select) + | Some(z) => Ok(z) } | Select(Tile(Id(id, d))) => switch (Select.tile(id, z)) { @@ -184,15 +215,45 @@ let go_z = }; }; +let go_history = + (~settings: CoreSettings.t, a: Action.t, ed: Editor.t) + : Action.Result.t(Editor.t) => { + open Result.Syntax; + /* This function records action history */ + let Editor.State.{zipper, meta} = ed.state; + let+ z = go_z(~settings, ~meta, a, zipper); + Editor.new_state(~settings, a, z, ed); +}; + let go = (~settings: CoreSettings.t, a: Action.t, ed: Editor.t) : Action.Result.t(Editor.t) => - if (ed.read_only && is_write_action(a)) { - Result.Ok(ed); - } else { + /* This function wraps assistant completions. If completions are enabled, + * then beginning any action (other than accepting a completion) clears + * the completion buffer before performing the action. Conversely, + * after any edit action, a new completion is set in the buffer */ + if (ed.read_only && Action.prevent_in_read_only_editor(a)) { + Ok(ed); + } else if (settings.assist && settings.statics) { open Result.Syntax; - let Editor.State.{zipper, meta} = ed.state; - Effect.s_clear(); - let+ z = go_z(~settings, ~meta, a, zipper); - Editor.new_state(~effects=Effect.s^, a, z, ed); + let ed = + a == Buffer(Accept) + ? ed + : ( + switch (go_history(~settings, Buffer(Clear), ed)) { + | Ok(ed) => ed + | Error(_) => ed + } + ); + let* ed = go_history(~settings, a, ed); + Action.is_edit(a) + ? { + switch (go_history(~settings, Buffer(Set(TyDi)), ed)) { + | Error(err) => Error(err) + | Ok(ed) => Ok(ed) + }; + } + : Ok(ed); + } else { + go_history(~settings, a, ed); }; diff --git a/src/haz3lcore/zipper/action/ProjectorPerform.re b/src/haz3lcore/zipper/action/ProjectorPerform.re new file mode 100644 index 0000000000..a0996437bd --- /dev/null +++ b/src/haz3lcore/zipper/action/ProjectorPerform.re @@ -0,0 +1,129 @@ +open Projector; +open ProjectorBase; + +/* Updates the underlying piece of syntax for a projector */ +module Update = { + let update_piece = + (f: Base.projector => Base.projector, id: Id.t, syntax: syntax) => + switch (syntax) { + | Projector(pr) when pr.id == id => Base.Projector(f(pr)) + | x => x + }; + + let init = (kind: t, syntax: syntax): syntax => { + /* We set the projector id equal to the Piece id for convienence + * including cursor-info association. We maintain this invariant + * when we update a projector's contained syntax */ + let (module P) = to_module(kind); + switch (P.can_project(syntax) && minimum_projection_condition(syntax)) { + | false => syntax + | true => Projector({id: Piece.id(syntax), kind, model: P.init, syntax}) + }; + }; + + let add_projector = (kind: Base.kind, id: Id.t, syntax: syntax) => + switch (syntax) { + | Projector(pr) when Piece.id(syntax) == id => init(kind, pr.syntax) + | syntax when Piece.id(syntax) == id => init(kind, syntax) + | x => x + }; + + let remove_projector = (id: Id.t, syntax: syntax) => + switch (syntax) { + | Projector(pr) when pr.id == id => pr.syntax + | x => x + }; + + let add_or_remove_projector = (kind: Base.kind, id: Id.t, syntax: syntax) => + switch (syntax) { + | Projector(pr) when Piece.id(syntax) == id => pr.syntax + | syntax when Piece.id(syntax) == id => init(kind, syntax) + | x => x + }; + + let remove_any_projector = (syntax: syntax) => + switch (syntax) { + | Projector(pr) => pr.syntax + | x => x + }; + + let update = + (f: Base.projector => Base.projector, id: Id.t, z: ZipperBase.t) + : ZipperBase.t => + ZipperBase.MapPiece.fast_local(update_piece(f, id), id, z); + + let add = (k: Base.kind, id: Id.t, z: ZipperBase.t): ZipperBase.t => + ZipperBase.MapPiece.fast_local(add_projector(k, id), id, z); + + let add_or_remove = (k: Base.kind, id: Id.t, z: ZipperBase.t): ZipperBase.t => + ZipperBase.MapPiece.fast_local(add_or_remove_projector(k, id), id, z); + + let remove = (id: Id.t, z: ZipperBase.t): ZipperBase.t => + ZipperBase.MapPiece.fast_local(remove_projector(id), id, z); + + let remove_all = (z: ZipperBase.t): ZipperBase.t => + ZipperBase.MapPiece.go(remove_any_projector, z); +}; + +/* If the caret is inside the indicated piece, move it out + * NOTE: Might need to be updated to support pieces with more than 2 delims */ +let move_out_of_piece = + (d: Util.Direction.t, rel: Indicated.relation, z: Zipper.t): Zipper.t => + switch (rel) { + | Sibling => {...z, caret: Outer} + | Parent => + switch (Zipper.move(d, {...z, caret: Outer})) { + | Some(z) => z + | None => z + } + }; + +let go = + (jump_to_id_indicated, jump_to_side_of_id, a: Action.project, z: Zipper.t) + : result(ZipperBase.t, Action.Failure.t) => { + switch (a) { + | SetIndicated(p) => + switch (Indicated.for_index(z)) { + | None => Error(Cant_project) + | Some((piece, d, rel)) => + Ok(move_out_of_piece(d, rel, z) |> Update.add(p, Piece.id(piece))) + } + | ToggleIndicated(p) => + switch (Indicated.for_index(z)) { + | None => Error(Cant_project) + | Some((piece, d, rel)) => + Ok( + move_out_of_piece(d, rel, z) + |> Update.add_or_remove(p, Piece.id(piece)), + ) + } + | Remove(id) => Ok(Update.remove(id, z)) + | SetSyntax(id, syntax) => + /* Note we update piece id to keep in sync with projector id; + * See intial id setting in Update.init */ + Ok( + Update.update( + p => {...p, syntax: Piece.replace_id(id, syntax)}, + id, + z, + ), + ) + | SetModel(id, model) => Ok(Update.update(pr => {...pr, model}, id, z)) + | Focus(id, d) => + let z = + switch (d) { + | None => + /* d == None means focus by mouse click */ + jump_to_id_indicated(z, id) |> Option.value(~default=z) + | Some(_) => z + }; + switch (Projector.indicated(z)) { + | Some((_, p)) => + let (module P) = to_module(p.kind); + P.focus((id, d)); + Ok(z); + | None => Error(Cant_project) + }; + | Escape(id, d) => Ok(jump_to_side_of_id(d, z, id)) + }; +}; diff --git a/src/haz3lcore/zipper/action/Select.re b/src/haz3lcore/zipper/action/Select.re index 143ce6a29b..dca2607863 100644 --- a/src/haz3lcore/zipper/action/Select.re +++ b/src/haz3lcore/zipper/action/Select.re @@ -19,10 +19,27 @@ module Make = (M: Editor.Meta.S) => { let vertical = (d: Direction.t, ed: Zipper.t): option(Zipper.t) => Move.do_vertical(primary, d, ed); + let go = (d: Action.move, z: Zipper.t) => + switch (d) { + | Goal(Piece(_)) => failwith("Select.go not implemented for Piece Goal") + | Goal(Point(goal)) => + let anchor = z |> Zipper.toggle_focus |> Zipper.caret_point(M.measured); + Move.do_towards(~anchor, primary, goal, z); + | Extreme(d) => Move.do_extreme(primary, d, z) + | Local(d) => + /* Note: Don't update target on vertical selection */ + switch (d) { + | Left(_) => primary(Left, z) + | Right(_) => primary(Right, z) + | Up => vertical(Left, z) + | Down => vertical(Right, z) + } + }; + let range = (l: Id.t, r: Id.t, z: Zipper.t): option(Zipper.t) => { let* z = Move.jump_to_id(z, l); let* Measured.{last, _} = Measured.find_by_id(r, M.measured); - Move.do_towards(primary, last, z); + Move.do_towards(Zipper.select, last, z); }; let term = (id: Id.t, z: Zipper.t): option(Zipper.t) => { @@ -37,20 +54,146 @@ module Make = (M: Editor.Meta.S) => { Move.do_towards(primary, last, z); }; - let go = (d: Action.move, z: Zipper.t) => - switch (d) { - | Goal(Piece(_)) => failwith("Select.go not implemented for Piece Goal") - | Goal(Point(goal)) => - let anchor = z |> Zipper.toggle_focus |> Zipper.caret_point(M.measured); - Move.do_towards(~anchor, primary, goal, z); - | Extreme(d) => Move.do_extreme(primary, d, z) - | Local(d) => - /* Note: Don't update target on vertical selection */ - switch (d) { - | Left(_) => primary(Left, z) - | Right(_) => primary(Right, z) - | Up => vertical(Left, z) - | Down => vertical(Right, z) + let current_term = z => { + let* id = Indicated.index(z); + term(id, z); + }; + + let current_tile = z => { + let* id = Indicated.index(z); + tile(id, z); + }; + + let grow_right_until_case_or_rule = + Move.do_until(go(Local(Right(ByToken))), Piece.is_case_or_rule); + + let shrink_left_until_not_case_or_rule_or_space = + Move.do_until( + go(Local(Left(ByToken))), + Piece.is_not_case_or_rule_or_space, + ); + + let containing_rule = z => { + let* z = current_tile(z); + let* z = grow_right_until_case_or_rule(z); + shrink_left_until_not_case_or_rule_or_space(z); + }; + + let nice_term = (z: Zipper.t) => + switch (Indicated.piece''(z)) { + | Some((p, _, _)) => + switch (p) { + | Secondary(_) => failwith("Select.nice_term unimplemented") + | Grout(_) + | Projector(_) + | Tile({ + label: [_], + mold: {nibs: ({shape: Convex, _}, {shape: Convex, _}), _}, + _, + }) => + current_term(z) + | Tile({label: ["let" | "type", ..._], _}) => current_tile(z) + | Tile({label: ["|", "=>"], _}) => containing_rule(z) + | Tile(t) => + switch (t.label, Zipper.parent(z)) { + | ([","], Some(Tile({label: ["[", "]"] | ["(", ")"], id, _}))) => + term(id, z) + | _ => current_term(z) + } + } + | _ => None + }; + + let grow_right_until_not_comment_or_space = + Move.do_until(go(Local(Right(ByToken))), Piece.not_comment_or_space); + + let containing_secondary_run = z => { + let z = + switch (Move.left_until_not_comment_or_space(~move_first=false, z)) { + | None => + /* Due to implementation details of Move.do_until (specifically its + * use of Indicated), this behaves poorly if we're one token away + * from the beginning of the syntax. We handle that case here */ + let z = Zipper.set_caret(Outer, z); + switch (Zipper.move(Left, z)) { + | Some(z) => z + | None => z + }; + | Some(z) => z + }; + let* z = grow_right_until_not_comment_or_space(z); + go(Local(Left(ByToken)), z); /* above overshoots */ + }; + + let indicated_token = (z: Zipper.t) => + switch (Indicated.piece'(~no_ws=false, ~ign=Piece.is_secondary, z)) { + | Some((Secondary(_), _, _)) => + /* If there is secondary on both sides, select the + * largest contiguous run of non-linebreak secondary */ + containing_secondary_run(z) + | Some((_, Left, _)) when z.caret == Outer => + /* If we're on the far right side of a non-secondary piece, we + * still prefer to select it over secondary to the right */ + let* z = Move.go(Local(Left(ByToken)), z); + go(Local(Right(ByToken)), z); + | Some(_) => go(Local(Right(ByToken)), z) + | _ => None + }; + + let parent_of_indicated = (z: Zipper.t, info_map) => { + let statics_of = Id.Map.find_opt(_, info_map); + let* base_id = Indicated.index(z); + let* ci = statics_of(base_id); + let* id = + switch (Info.ancestors_of(ci)) { + | [] => None + | [parent, ..._] => Some(parent) + }; + let* ci_parent = statics_of(id); + switch (Info.cls_of(ci_parent)) { + | Exp(Let | TyAlias) => + /* For definition-type forms, don't select the body, + * unless the body is precisely what we're clicking on */ + switch (ci_parent) { + | InfoExp({term: t, _}) => + switch (IdTagged.term_of(t)) { + | Let(_, _, body) + | TyAlias(_, _, body) => + let body_id = IdTagged.rep_id(body); + base_id == body_id ? term(id, z) : tile(id, z); + | _ => tile(id, z) + } + | _ => tile(id, z) + } + | Exp(Match) => + /* Case rules aren't terms in the syntax model, + * but here we pretend they are */ + let* z = Move.left_until_case_or_rule(z); + switch (Indicated.piece''(z)) { + | Some((p, _, _)) => + switch (p) { + | Tile({label: ["|", "=>"], _}) => containing_rule(z) + | Tile({label: ["case", "end"], _}) => term(id, z) + | _ => None + } + | _ => None + }; + | _ => + switch (Info.ancestors_of(ci_parent)) { + | [] => term(id, z) + | [gp, ..._] => + let* ci_gp = statics_of(gp); + switch (Info.cls_of(ci_parent), Info.cls_of(ci_gp)) { + | ( + Exp(Tuple) | Pat(Tuple) | Typ(Prod), + Exp(Parens) | Pat(Parens) | Typ(Parens), + ) => + /* If parent is tuple, check if it's in parens, + * and if so, select the parens as well */ + term(gp, z) + | _ => term(id, z) + }; } }; + }; }; diff --git a/src/haz3lcore/zipper/projectors/CheckboxProj.re b/src/haz3lcore/zipper/projectors/CheckboxProj.re new file mode 100644 index 0000000000..b1d734a8cf --- /dev/null +++ b/src/haz3lcore/zipper/projectors/CheckboxProj.re @@ -0,0 +1,53 @@ +open Util; +open ProjectorBase; +open Virtual_dom.Vdom; + +let of_mono = (syntax: Piece.t): option(string) => + switch (syntax) { + | Tile({label: [l], _}) => Some(l) + | _ => None + }; + +let mk_mono = (sort: Sort.t, string: string): Piece.t => + string |> Form.mk_atomic(sort) |> Piece.mk_tile(_, []); + +let state_of = (piece: Piece.t): option(bool) => + piece |> of_mono |> Option.map(bool_of_string); + +let get = (piece: Piece.t): bool => + switch (piece |> of_mono |> Util.OptUtil.and_then(bool_of_string_opt)) { + | None => failwith("Checkbox: not boolean literal") + | Some(s) => s + }; + +let put = (bool: bool): Piece.t => bool |> string_of_bool |> mk_mono(Exp); + +let toggle = (piece: Piece.t) => put(!get(piece)); + +let view = + (_, ~info, ~local as _, ~parent: external_action => Ui_effect.t(unit)) => + Node.input( + ~attrs= + [ + Attr.create("type", "checkbox"), + Attr.on_input((_, _) => + parent(SetSyntax(put(!get(info.syntax)))) + ), + ] + @ (get(info.syntax) ? [Attr.checked] : []), + (), + ); + +module M: Projector = { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = unit; + [@deriving (show({with_path: false}), sexp, yojson)] + type action = unit; + let init = (); + let can_project = p => state_of(p) != None; + let can_focus = false; + let placeholder = (_, _) => Inline(2); + let update = (model, _) => model; + let view = view; + let focus = _ => (); +}; diff --git a/src/haz3lcore/zipper/projectors/FoldProj.re b/src/haz3lcore/zipper/projectors/FoldProj.re new file mode 100644 index 0000000000..b21ab12721 --- /dev/null +++ b/src/haz3lcore/zipper/projectors/FoldProj.re @@ -0,0 +1,22 @@ +open Util; +open ProjectorBase; +open Virtual_dom.Vdom; +open Node; + +module M: Projector = { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = unit; + [@deriving (show({with_path: false}), sexp, yojson)] + type action = unit; + let init = (); + let can_project = _ => true; + let can_focus = false; + let placeholder = (_, _) => Inline(2); + let update = (_, _) => (); + let view = (_, ~info as _, ~local as _, ~parent) => + div( + ~attrs=[Attr.on_double_click(_ => parent(Remove))], + [text("⋱")], + ); + let focus = _ => (); +}; diff --git a/src/haz3lcore/zipper/projectors/InfoProj.re b/src/haz3lcore/zipper/projectors/InfoProj.re new file mode 100644 index 0000000000..6b467e76b1 --- /dev/null +++ b/src/haz3lcore/zipper/projectors/InfoProj.re @@ -0,0 +1,94 @@ +open Virtual_dom.Vdom; +open Node; +open ProjectorBase; + +let mode = (info: option(Info.t)): option(Mode.t) => + switch (info) { + | Some(InfoExp({mode, _})) + | Some(InfoPat({mode, _})) => Some(mode) + | _ => None + }; + +let expected_ty = (info: option(Info.t)): option(Typ.t) => + switch (mode(info)) { + | Some(mode) => Some(Mode.ty_of(mode)) + | _ => None + }; + +let self_ty = (info: option(Info.t)): option(Typ.t) => + switch (info) { + | Some(InfoExp({self, ctx, _})) => Self.typ_of_exp(ctx, self) + | Some(InfoPat({self, ctx, _})) => Self.typ_of_pat(ctx, self) + | _ => None + }; + +let totalize_ty = (expected_ty: option(Typ.t)): Typ.t => + switch (expected_ty) { + | Some(expected_ty) => expected_ty + | None => Typ.fresh(Unknown(Internal)) + }; + +module M: Projector = { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = + | Expected + | Self; + + [@deriving (show({with_path: false}), sexp, yojson)] + type action = + | ToggleDisplay; + + let init = Expected; + + let can_project = (p: Piece.t): bool => { + switch (Piece.sort(p)) { + | (Exp | Pat, _) => true + | _ when Piece.is_grout(p) => true /* Grout don't have sorts rn */ + | _ => false + }; + }; + + let can_focus = false; + + let display_ty = (model, info) => + switch (model) { + | _ when mode(info) == Some(Syn) => info |> self_ty + | Self => info |> self_ty + | Expected => info |> expected_ty + }; + + let display_mode = (model, info): string => + switch (model) { + | _ when mode(info) == Some(Syn) => "⇐" + | Self => "⇐" + | Expected => "⇒" + }; + + let display = (model, info) => + display_ty(model, info) |> totalize_ty |> Typ.pretty_print; + + let placeholder = (model, info) => + Inline((display(model, info.ci) |> String.length) + 5); + + let update = (model, a: action) => + switch (a, model) { + | (ToggleDisplay, Expected) => Self + | (ToggleDisplay, Self) => Expected + }; + + let view = (model, ~info, ~local, ~parent as _) => + div( + ~attrs=[ + Attr.classes(["info", "code"]), + Attr.on_mousedown(_ => local(ToggleDisplay)), + ], + [ + text("⋱ " ++ display_mode(model, info.ci) ++ " "), + div( + ~attrs=[Attr.classes(["type"])], + [text(display(model, info.ci))], + ), + ], + ); + let focus = _ => (); +}; diff --git a/src/haz3lcore/zipper/projectors/SliderFProj.re b/src/haz3lcore/zipper/projectors/SliderFProj.re new file mode 100644 index 0000000000..4ad36621ad --- /dev/null +++ b/src/haz3lcore/zipper/projectors/SliderFProj.re @@ -0,0 +1,36 @@ +open Util; +open Virtual_dom.Vdom; +open ProjectorBase; + +/* Some decimal places necessary to avoid becoming an int */ +let float_of_float = s => s |> float_of_string |> Printf.sprintf("%.2f"); + +let put = (s: string): Piece.t => s |> float_of_float |> Piece.mk_mono(Exp); + +let get_opt = (piece: Piece.t): option(float) => + piece |> Piece.of_mono |> Util.OptUtil.and_then(float_of_string_opt); + +let get = (piece: Piece.t): float => + switch (get_opt(piece)) { + | None => failwith("ERROR: Slider: not float literal") + | Some(s) => s + }; + +module M: Projector = { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = unit; + [@deriving (show({with_path: false}), sexp, yojson)] + type action = unit; + let init = (); + let can_project = p => get_opt(p) != None; + let can_focus = false; + let placeholder = (_, _) => Inline(10); + let update = (model, _) => model; + let view = + (_, ~info, ~local as _, ~parent: external_action => Ui_effect.t(unit)) => + Util.Web.range( + ~attrs=[Attr.on_input((_, v) => parent(SetSyntax(put(v))))], + get(info.syntax) |> Printf.sprintf("%.2f"), + ); + let focus = _ => (); +}; diff --git a/src/haz3lcore/zipper/projectors/SliderProj.re b/src/haz3lcore/zipper/projectors/SliderProj.re new file mode 100644 index 0000000000..2a73c6d012 --- /dev/null +++ b/src/haz3lcore/zipper/projectors/SliderProj.re @@ -0,0 +1,33 @@ +open Util; +open Virtual_dom.Vdom; +open ProjectorBase; + +let put: string => Piece.t = Piece.mk_mono(Exp); + +let get_opt = (piece: Piece.t): option(int) => + piece |> Piece.of_mono |> Util.OptUtil.and_then(int_of_string_opt); + +let get = (piece: Piece.t): string => + switch (get_opt(piece)) { + | None => failwith("ERROR: Slider: not integer literal") + | Some(s) => string_of_int(s) + }; + +module M: Projector = { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = unit; + [@deriving (show({with_path: false}), sexp, yojson)] + type action = unit; + let init = (); + let can_project = p => get_opt(p) != None; + let can_focus = false; + let placeholder = (_, _) => Inline(10); + let update = (model, _) => model; + let view = + (_, ~info, ~local as _, ~parent: external_action => Ui_effect.t(unit)) => + Util.Web.range( + ~attrs=[Attr.on_input((_, v) => parent(SetSyntax(put(v))))], + get(info.syntax), + ); + let focus = _ => (); +}; diff --git a/src/haz3lcore/zipper/projectors/TextAreaProj.re b/src/haz3lcore/zipper/projectors/TextAreaProj.re new file mode 100644 index 0000000000..d6488afd86 --- /dev/null +++ b/src/haz3lcore/zipper/projectors/TextAreaProj.re @@ -0,0 +1,121 @@ +open Util; +open Virtual_dom.Vdom; +open ProjectorBase; + +let of_id = (id: Id.t) => + "id" ++ (id |> Id.to_string |> String.sub(_, 0, 8)); + +let of_mono = (syntax: Piece.t): option(string) => + switch (syntax) { + | Tile({label: [l], _}) => Some(StringUtil.unescape_linebreaks(l)) + | _ => None + }; + +let mk_mono = (sort: Sort.t, string: string): Piece.t => + string + |> StringUtil.escape_linebreaks + |> Form.mk_atomic(sort) + |> Piece.mk_tile(_, []); + +let get = (piece: Piece.t): string => + switch (piece |> of_mono) { + | None => failwith("TextArea: not string literal") + | Some(s) => s + }; + +let put = (s: string): Piece.t => s |> mk_mono(Exp); + +let put = (str: string): external_action => + SetSyntax(str |> Form.string_quote |> put); + +let is_last_pos = id => + Web.TextArea.caret_at_end(Web.TextArea.get(of_id(id))); +let is_first_pos = id => + Web.TextArea.caret_at_start(Web.TextArea.get(of_id(id))); + +let key_handler = (id, ~parent, evt) => { + open Effect; + let key = Key.mk(KeyDown, evt); + + switch (key.key) { + | D("ArrowRight" | "ArrowDown") when is_last_pos(id) => + JsUtil.get_elem_by_id(of_id(id))##blur; + Many([parent(Escape(Right)), Stop_propagation]); + | D("ArrowLeft" | "ArrowUp") when is_first_pos(id) => + JsUtil.get_elem_by_id(of_id(id))##blur; + Many([parent(Escape(Left)), Stop_propagation]); + /* Defer to parent editor undo for now */ + | D("z" | "Z" | "y" | "Y") when Key.ctrl_held(evt) || Key.meta_held(evt) => + Many([Prevent_default]) + | D("z" | "Z") + when Key.shift_held(evt) && (Key.ctrl_held(evt) || Key.meta_held(evt)) => + Many([Prevent_default]) + | D("\"") => + /* Hide quotes from both the textarea and parent editor */ + Many([Prevent_default, Stop_propagation]) + | _ => Stop_propagation + }; +}; + +let textarea = + (id, ~parent: external_action => Ui_effect.t(unit), text: string) => + Node.textarea( + ~attrs=[ + Attr.id(of_id(id)), + Attr.on_keydown(key_handler(id, ~parent)), + Attr.on_input((_, new_text) => + Effect.(Many([parent(put(new_text))])) + ), + /* Note: adding these handlers below because + * currently these are handled on page level. + * unnecesary maybe if we move handling down */ + Attr.on_copy(_ => Effect.Stop_propagation), + Attr.on_cut(_ => Effect.Stop_propagation), + Attr.on_paste(_ => Effect.Stop_propagation), + Attr.string_property("value", text), + ], + [], + ); + +let view = (_, ~info, ~local as _, ~parent) => { + let text = info.syntax |> get |> Form.strip_quotes; + Node.div( + ~attrs=[Attr.classes(["wrapper"])], + [ + Node.div( + ~attrs=[Attr.classes(["cols", "code"])], + [Node.text("·")] @ [textarea(info.id, ~parent, text)], + ), + ], + ); +}; + +module M: Projector = { + [@deriving (show({with_path: false}), sexp, yojson)] + type model = unit; + [@deriving (show({with_path: false}), sexp, yojson)] + type action = unit; + let init = (); + let can_project = _ => true; //TODO(andrew): restrict somehow + let can_focus = true; + let placeholder = (_, info) => { + let str = Form.strip_quotes(get(info.syntax)); + Block({ + row: StringUtil.num_lines(str), + /* +2 for left and right padding */ + col: 2 + StringUtil.max_line_width(str), + }); + }; + let update = (model, _) => model; + let view = view; + let focus = ((id: Id.t, d: option(Direction.t))) => { + JsUtil.get_elem_by_id(of_id(id))##focus; + switch (d) { + | None => () + | Some(Left) => + Web.TextArea.set_caret_to_start(Web.TextArea.get(of_id(id))) + | Some(Right) => + Web.TextArea.set_caret_to_end(Web.TextArea.get(of_id(id))) + }; + }; +}; diff --git a/src/haz3lschool/Exercise.re b/src/haz3lschool/Exercise.re index 86fdd4ce99..b5e7dfc76d 100644 --- a/src/haz3lschool/Exercise.re +++ b/src/haz3lschool/Exercise.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; open Haz3lcore; module type ExerciseEnv = { @@ -336,57 +336,59 @@ module F = (ExerciseEnv: ExerciseEnv) => { }; }; - let editor_of_serialization = zipper => Editor.init(zipper); - let eds_of_spec: spec => eds = - ( - { - title, - version, - module_name, - prompt, - point_distribution, - prelude, - correct_impl, - your_tests, - your_impl, - hidden_bugs, - hidden_tests, - syntax_tests, - }, - ) => { - let prelude = editor_of_serialization(prelude); - let correct_impl = editor_of_serialization(correct_impl); - let your_tests = { - let tests = editor_of_serialization(your_tests.tests); - {tests, required: your_tests.required, provided: your_tests.provided}; - }; - let your_impl = editor_of_serialization(your_impl); - let hidden_bugs = - hidden_bugs - |> List.map(({impl, hint}) => { - let impl = editor_of_serialization(impl); - {impl, hint}; - }); - let hidden_tests = { - let {tests, hints} = hidden_tests; - let tests = editor_of_serialization(tests); - {tests, hints}; - }; - { - title, - version, - module_name, - prompt, - point_distribution, - prelude, - correct_impl, - your_tests, - your_impl, - hidden_bugs, - hidden_tests, - syntax_tests, - }; + let eds_of_spec = + ( + { + title, + version, + module_name, + prompt, + point_distribution, + prelude, + correct_impl, + your_tests, + your_impl, + hidden_bugs, + hidden_tests, + syntax_tests, + }, + ~settings: CoreSettings.t, + ) + : eds => { + let editor_of_serialization = Editor.init(~settings); + let prelude = editor_of_serialization(prelude); + let correct_impl = editor_of_serialization(correct_impl); + let your_tests = { + let tests = editor_of_serialization(your_tests.tests); + {tests, required: your_tests.required, provided: your_tests.provided}; + }; + let your_impl = editor_of_serialization(your_impl); + let hidden_bugs = + hidden_bugs + |> List.map(({impl, hint}) => { + let impl = editor_of_serialization(impl); + {impl, hint}; + }); + let hidden_tests = { + let {tests, hints} = hidden_tests; + let tests = editor_of_serialization(tests); + {tests, hints}; + }; + { + title, + version, + module_name, + prompt, + point_distribution, + prelude, + correct_impl, + your_tests, + your_impl, + hidden_bugs, + hidden_tests, + syntax_tests, }; + }; // // Old version of above that did string-based parsing, may be useful @@ -477,8 +479,9 @@ module F = (ExerciseEnv: ExerciseEnv) => { }; }; - let state_of_spec = (spec, ~instructor_mode: bool): state => { - let eds = eds_of_spec(spec); + let state_of_spec = + (spec, ~instructor_mode: bool, ~settings: CoreSettings.t): state => { + let eds = eds_of_spec(~settings, spec); set_instructor_mode({pos: YourImpl, eds}, instructor_mode); }; @@ -498,15 +501,16 @@ module F = (ExerciseEnv: ExerciseEnv) => { (pos, positioned_zippers): persistent_state, ~spec: spec, ~instructor_mode: bool, + ~settings: CoreSettings.t, ) : state => { let lookup = (pos, default) => if (visible_in(pos, ~instructor_mode)) { let persisted_zipper = List.assoc(pos, positioned_zippers); let zipper = PersistentZipper.unpersist(persisted_zipper); - Editor.init(zipper); + Editor.init(zipper, ~settings); } else { - editor_of_serialization(default); + Editor.init(default, ~settings); }; let prelude = lookup(Prelude, spec.prelude); let correct_impl = lookup(CorrectImpl, spec.correct_impl); @@ -554,17 +558,6 @@ module F = (ExerciseEnv: ExerciseEnv) => { // # Stitching - module TermItem = { - type t = { - term: TermBase.UExp.t, - term_ranges: TermRanges.t, - }; - }; - - module StaticsItem = { - type t = CachedStatics.statics; - }; - type stitched('a) = { test_validation: 'a, // prelude + correct_impl + your_tests user_impl: 'a, // prelude + your_impl @@ -575,24 +568,26 @@ module F = (ExerciseEnv: ExerciseEnv) => { hidden_tests: 'a, }; - let wrap_filter = (act: FilterAction.action, term: Term.UExp.t): Term.UExp.t => - TermBase.UExp.{ + let wrap_filter = (act: FilterAction.action, term: UExp.t): UExp.t => + Exp.{ term: - TermBase.UExp.Filter( - FilterAction.(act, One), - {term: Constructor("$e"), ids: [Id.mk()]}, + Exp.Filter( + Filter({ + act: FilterAction.(act, One), + pat: { + term: Constructor("$e", Unknown(Internal) |> Typ.temp), + copied: false, + ids: [Id.mk()], + }, + }), term, ), + copied: false, ids: [Id.mk()], }; - let wrap = (term, editor: Editor.t): TermItem.t => { - term, - term_ranges: editor.state.meta.term_ranges, - }; - - let term_of = (editor: Editor.t): Term.UExp.t => - editor.state.meta.view_term; + let term_of = (editor: Editor.t): UExp.t => + MakeTerm.from_zip_for_sem(editor.state.zipper).term; let stitch3 = (ed1: Editor.t, ed2: Editor.t, ed3: Editor.t) => EditorUtil.append_exp( @@ -600,7 +595,7 @@ module F = (ExerciseEnv: ExerciseEnv) => { term_of(ed3), ); - let stitch_term = ({eds, _}: state): stitched(TermItem.t) => { + let stitch_term = ({eds, _}: state): stitched(UExp.t) => { let instructor = stitch3(eds.prelude, eds.correct_impl, eds.hidden_tests.tests); let user_impl_term = { @@ -617,24 +612,23 @@ module F = (ExerciseEnv: ExerciseEnv) => { let hidden_tests_term = EditorUtil.append_exp(user_impl_term, term_of(eds.hidden_tests.tests)); { - test_validation: wrap(test_validation_term, eds.your_tests.tests), - user_impl: wrap(user_impl_term, eds.your_impl), - user_tests: wrap(user_tests_term, eds.your_tests.tests), + test_validation: test_validation_term, + user_impl: user_impl_term, + user_tests: user_tests_term, // instructor works here as long as you don't shadow anything in the prelude - prelude: wrap(instructor, eds.prelude), - instructor: wrap(instructor, eds.correct_impl), + prelude: instructor, + instructor, hidden_bugs: List.map( - (t): TermItem.t => - wrap(stitch3(eds.prelude, t.impl, eds.your_tests.tests), t.impl), + (t): UExp.t => stitch3(eds.prelude, t.impl, eds.your_tests.tests), eds.hidden_bugs, ), - hidden_tests: wrap(hidden_tests_term, eds.hidden_tests.tests), + hidden_tests: hidden_tests_term, }; }; let stitch_term = Core.Memo.general(stitch_term); - type stitched_statics = stitched(StaticsItem.t); + type stitched_statics = stitched(Editor.CachedStatics.t); /* Multiple stitchings are needed for each exercise (see comments in the stitched type above) @@ -642,14 +636,10 @@ module F = (ExerciseEnv: ExerciseEnv) => { Stitching is necessary to concatenate terms from different editors, which are then typechecked. */ let stitch_static = - (settings: CoreSettings.t, t: stitched(TermItem.t)): stitched_statics => { - let mk = ({term, term_ranges, _}: TermItem.t): StaticsItem.t => { - let info_map = Interface.Statics.mk_map(settings, term); - { - term, - error_ids: Statics.Map.error_ids(term_ranges, info_map), - info_map, - }; + (settings: CoreSettings.t, t: stitched(UExp.t)): stitched_statics => { + let mk = (term: UExp.t): Editor.CachedStatics.t => { + let info_map = Statics.mk(settings, Builtins.ctx_init, term); + {term, error_ids: Statics.Map.error_ids(info_map), info_map}; }; let instructor = mk(t.instructor); { @@ -665,24 +655,6 @@ module F = (ExerciseEnv: ExerciseEnv) => { let stitch_static = Core.Memo.general(stitch_static); - let statics_of_stiched = - (state: state, s: stitched(StaticsItem.t)): StaticsItem.t => - switch (state.pos) { - | Prelude => s.prelude - | CorrectImpl => s.instructor - | YourTestsValidation => s.test_validation - | YourTestsTesting => s.user_tests - | YourImpl => s.user_impl - | HiddenBugs(idx) => List.nth(s.hidden_bugs, idx) - | HiddenTests => s.hidden_tests - }; - - let statics_of = (~settings, exercise: state): StaticsItem.t => - exercise - |> stitch_term - |> stitch_static(settings) - |> statics_of_stiched(exercise); - let prelude_key = "prelude"; let test_validation_key = "test_validation"; let user_impl_key = "user_impl"; @@ -704,7 +676,7 @@ module F = (ExerciseEnv: ExerciseEnv) => { let spliced_elabs = (settings: CoreSettings.t, state: state) - : list((ModelResults.key, DHExp.t)) => { + : list((ModelResults.key, Elaborator.Elaboration.t)) => { let { test_validation, user_impl, @@ -715,8 +687,9 @@ module F = (ExerciseEnv: ExerciseEnv) => { hidden_tests, } = stitch_static(settings, stitch_term(state)); - let elab = (s: CachedStatics.statics) => - Interface.elaborate(~settings, s.info_map, s.term); + let elab = (s: Editor.CachedStatics.t): Elaborator.Elaboration.t => { + d: Interface.elaborate(~settings, s.info_map, s.term), + }; [ (test_validation_key, elab(test_validation)), (user_impl_key, elab(user_impl)), @@ -726,49 +699,36 @@ module F = (ExerciseEnv: ExerciseEnv) => { ] @ ( hidden_bugs - |> List.mapi((n, hidden_bug: StaticsItem.t) => + |> List.mapi((n, hidden_bug: Editor.CachedStatics.t) => (hidden_bugs_key(n), elab(hidden_bug)) ) ); }; - let mk_statics = - (settings: CoreSettings.t, state: state) - : list((ModelResults.key, StaticsItem.t)) => { - let stitched = stitch_static(settings, stitch_term(state)); - [ - (prelude_key, stitched.prelude), - (test_validation_key, stitched.test_validation), - (user_impl_key, stitched.user_impl), - (user_tests_key, stitched.user_tests), - (instructor_key, stitched.instructor), - (hidden_tests_key, stitched.hidden_tests), - ] - @ List.mapi( - (n, hidden_bug: StaticsItem.t) => (hidden_bugs_key(n), hidden_bug), - stitched.hidden_bugs, - ); - }; - module DynamicsItem = { type t = { - term: TermBase.UExp.t, - info_map: Statics.Map.t, + statics: Editor.CachedStatics.t, result: ModelResult.t, }; - let empty: t = { - term: { - term: Tuple([]), - ids: [Id.mk()], - }, - info_map: Id.Map.empty, + let empty: t = {statics: Editor.CachedStatics.empty, result: NoElab}; + let statics_only = (statics: Editor.CachedStatics.t): t => { + statics, result: NoElab, }; - let statics_only = ({term, info_map, _}: StaticsItem.t): t => { - {term, info_map, result: NoElab}; - }; }; + let statics_of_stiched_dynamics = + (state: state, s: stitched(DynamicsItem.t)): Editor.CachedStatics.t => + switch (state.pos) { + | Prelude => s.prelude.statics + | CorrectImpl => s.instructor.statics + | YourTestsValidation => s.test_validation.statics + | YourTestsTesting => s.user_tests.statics + | YourImpl => s.user_impl.statics + | HiddenBugs(idx) => List.nth(s.hidden_bugs, idx).statics + | HiddenTests => s.hidden_tests.statics + }; + /* Given the evaluation results, collects the relevant information for producing dynamic feedback*/ @@ -799,50 +759,27 @@ module F = (ExerciseEnv: ExerciseEnv) => { let test_validation = DynamicsItem.{ - term: test_validation.term, - info_map: test_validation.info_map, + statics: test_validation, result: result_of(test_validation_key), }; let user_impl = - DynamicsItem.{ - term: user_impl.term, - info_map: user_impl.info_map, - result: result_of(user_impl_key), - }; + DynamicsItem.{statics: user_impl, result: result_of(user_impl_key)}; let user_tests = - DynamicsItem.{ - term: user_tests.term, - info_map: user_tests.info_map, - result: result_of(user_tests_key), - }; - let prelude = - DynamicsItem.{ - term: prelude.term, - info_map: prelude.info_map, - result: NoElab, - }; + DynamicsItem.{statics: user_tests, result: result_of(user_tests_key)}; + let prelude = DynamicsItem.{statics: prelude, result: NoElab}; let instructor = - DynamicsItem.{ - term: instructor.term, - info_map: instructor.info_map, - result: result_of(instructor_key), - }; + DynamicsItem.{statics: instructor, result: result_of(instructor_key)}; let hidden_bugs = List.mapi( - (n, statics_item: StaticsItem.t) => - DynamicsItem.{ - term: statics_item.term, - info_map: statics_item.info_map, - result: result_of(hidden_bugs_key(n)), - }, + (n, statics: Editor.CachedStatics.t) => + DynamicsItem.{statics, result: result_of(hidden_bugs_key(n))}, hidden_bugs, ); let hidden_tests = DynamicsItem.{ - term: hidden_tests.term, - info_map: hidden_tests.info_map, + statics: hidden_tests, result: result_of(hidden_tests_key), }; { diff --git a/src/haz3lschool/Gradescope.re b/src/haz3lschool/Gradescope.re index c3bb2a0001..7277fcf85b 100644 --- a/src/haz3lschool/Gradescope.re +++ b/src/haz3lschool/Gradescope.re @@ -1,5 +1,6 @@ open Haz3lcore; -// open Sexplib.Std; +open Util; + open Haz3lschool; open Core; @@ -44,6 +45,7 @@ type section = { type chapter = list(section); module Main = { + let settings = CoreSettings.on; /* Statics and Dynamics on */ let name_to_exercise_export = path => { let yj = Yojson.Safe.from_file(path); switch (yj) { @@ -60,16 +62,11 @@ module Main = { }; let gen_grading_report = exercise => { let zipper_pp = zipper => { - Printer.pretty_print( - ~measured=Measured.of_segment(Zipper.seg_without_buffer(zipper)), - zipper, - ); + Printer.pretty_print(zipper); }; - let settings = CoreSettings.on; let model_results = spliced_elabs(settings, exercise) |> ModelResults.init_eval - //TODO[Matt]: Make sure this times out correctly |> ModelResults.run_pending(~settings); let stitched_dynamics = stitch_dynamic(settings, exercise, Some(model_results)); @@ -117,6 +114,7 @@ module Main = { let exercise = unpersist_state( persistent_state, + ~settings, ~spec, ~instructor_mode=true, ); diff --git a/src/haz3lschool/Grading.re b/src/haz3lschool/Grading.re index eb94be8aa1..9e0f577772 100644 --- a/src/haz3lschool/Grading.re +++ b/src/haz3lschool/Grading.re @@ -1,5 +1,5 @@ open Haz3lcore; -open Sexplib.Std; +open Util; module F = (ExerciseEnv: Exercise.ExerciseEnv) => { open Exercise.F(ExerciseEnv); @@ -171,7 +171,8 @@ module F = (ExerciseEnv: Exercise.ExerciseEnv) => { }; let mk = (~your_impl: Editor.t, ~tests: syntax_tests): t => { - let user_impl_term = your_impl.state.meta.view_term; + let user_impl_term = + MakeTerm.from_zip_for_sem(your_impl.state.zipper).term; let predicates = List.map(((_, p)) => SyntaxTest.predicate_fn(p), tests); diff --git a/src/haz3lschool/SyntaxTest.re b/src/haz3lschool/SyntaxTest.re index ac5f69c50c..385f98021a 100644 --- a/src/haz3lschool/SyntaxTest.re +++ b/src/haz3lschool/SyntaxTest.re @@ -1,5 +1,5 @@ open Haz3lcore; -open Sexplib.Std; +open Util; /* These are the syntax test functions used for the syntax validation @@ -14,12 +14,11 @@ type syntax_result = { percentage: float, }; -let rec find_var_upat = (name: string, upat: Term.UPat.t): bool => { +let rec find_var_upat = (name: string, upat: Pat.t): bool => { switch (upat.term) { | Var(x) => x == name | EmptyHole | Wild - | Triv | Invalid(_) | MultiHole(_) | Int(_) @@ -34,7 +33,7 @@ let rec find_var_upat = (name: string, upat: Term.UPat.t): bool => { List.fold_left((acc, up) => {acc || find_var_upat(name, up)}, false, l) | Parens(up) => find_var_upat(name, up) | Ap(up1, up2) => find_var_upat(name, up1) || find_var_upat(name, up2) - | TypeAnn(up, _) => find_var_upat(name, up) + | Cast(up, _, _) => find_var_upat(name, up) }; }; @@ -46,18 +45,13 @@ let rec find_var_upat = (name: string, upat: Term.UPat.t): bool => { if name="a", then l=[fun x -> x+1] */ let rec find_in_let = - ( - name: string, - upat: Term.UPat.t, - def: Term.UExp.t, - l: list(Term.UExp.t), - ) - : list(Term.UExp.t) => { + (name: string, upat: UPat.t, def: UExp.t, l: list(UExp.t)) + : list(UExp.t) => { switch (upat.term, def.term) { | (Parens(up), Parens(ue)) => find_in_let(name, up, ue, l) | (Parens(up), _) => find_in_let(name, up, def, l) | (_, Parens(ue)) => find_in_let(name, upat, ue, l) - | (TypeAnn(up, _), _) => find_in_let(name, up, def, l) + | (Cast(up, _, _), _) => find_in_let(name, up, def, l) | (Var(x), Fun(_)) => x == name ? [def, ...l] : l | (Tuple(pl), Tuple(ul)) => if (List.length(pl) != List.length(ul)) { @@ -73,8 +67,7 @@ let rec find_in_let = | (Var(_), _) | (Tuple(_), _) | ( - EmptyHole | Wild | Triv | Invalid(_) | MultiHole(_) | Int(_) | Float(_) | - Bool(_) | + EmptyHole | Wild | Invalid(_) | MultiHole(_) | Int(_) | Float(_) | Bool(_) | String(_) | ListLit(_) | Constructor(_) | @@ -90,8 +83,7 @@ let rec find_in_let = Find any function expressions in uexp that are bound to variable name */ let rec find_fn = - (name: string, uexp: Term.UExp.t, l: list(Term.UExp.t)) - : list(Term.UExp.t) => { + (name: string, uexp: UExp.t, l: list(UExp.t)): list(UExp.t) => { switch (uexp.term) { | Let(up, def, body) | Module(up, def, body) => @@ -99,17 +91,19 @@ let rec find_fn = | ListLit(ul) | Tuple(ul) => List.fold_left((acc, u1) => {find_fn(name, u1, acc)}, l, ul) - | TypFun(_, body) - | Fun(_, body) => l |> find_fn(name, body) + | TypFun(_, body, _) + | FixF(_, body, _) + | Fun(_, body, _, _) => l |> find_fn(name, body) | TypAp(u1, _) | Parens(u1) + | Cast(u1, _, _) | UnOp(_, u1) | TyAlias(_, _, u1) | Test(u1) - | Filter(_, _, u1) => l |> find_fn(name, u1) - | Ap(u1, u2) | Dot(u1, u2) - | Pipeline(u1, u2) + | Closure(_, u1) + | Filter(_, u1) => l |> find_fn(name, u1) + | Ap(_, u1, u2) | Seq(u1, u2) | Cons(u1, u2) | ListConcat(u1, u2) @@ -127,15 +121,18 @@ let rec find_fn = ul, ) | EmptyHole - | Triv | Deferral(_) | Invalid(_) | MultiHole(_) + | DynamicErrorHole(_) + | FailedCast(_) | Bool(_) | Int(_) | Float(_) | String(_) | Constructor(_) + | Undefined + | BuiltinFun(_) | Var(_) => l }; }; @@ -143,12 +140,11 @@ let rec find_fn = /* Finds whether variable name is ever mentioned in upat. */ -let rec var_mention_upat = (name: string, upat: Term.UPat.t): bool => { +let rec var_mention_upat = (name: string, upat: Pat.t): bool => { switch (upat.term) { | Var(x) => x == name | EmptyHole | Wild - | Triv | Invalid(_) | MultiHole(_) | Int(_) @@ -169,18 +165,17 @@ let rec var_mention_upat = (name: string, upat: Term.UPat.t): bool => { | Parens(up) => var_mention_upat(name, up) | Ap(up1, up2) => var_mention_upat(name, up1) || var_mention_upat(name, up2) - | TypeAnn(up, _) => var_mention_upat(name, up) + | Cast(up, _, _) => var_mention_upat(name, up) }; }; /* Finds whether variable name is ever mentioned in uexp. */ -let rec var_mention = (name: string, uexp: Term.UExp.t): bool => { +let rec var_mention = (name: string, uexp: Exp.t): bool => { switch (uexp.term) { | Var(x) => x == name | EmptyHole - | Triv | Invalid(_) | MultiHole(_) | Bool(_) @@ -188,8 +183,9 @@ let rec var_mention = (name: string, uexp: Term.UExp.t): bool => { | Float(_) | String(_) | Constructor(_) + | Undefined | Deferral(_) => false - | Fun(args, body) => + | Fun(args, body, _, _) => var_mention_upat(name, args) ? false : var_mention(name, body) | ListLit(l) | Tuple(l) => @@ -198,15 +194,21 @@ let rec var_mention = (name: string, uexp: Term.UExp.t): bool => { | Module(p, def, body) => var_mention_upat(name, p) ? false : var_mention(name, def) || var_mention(name, body) - | TypFun(_, u) + | TypFun(_, u, _) | TypAp(u, _) | Test(u) | Parens(u) | UnOp(_, u) | TyAlias(_, _, u) - | Filter(_, _, u) => var_mention(name, u) - | Ap(u1, u2) - | Pipeline(u1, u2) + | Filter(_, u) => var_mention(name, u) + | DynamicErrorHole(u, _) => var_mention(name, u) + | FailedCast(u, _, _) => var_mention(name, u) + | FixF(args, body, _) => + var_mention_upat(name, args) ? false : var_mention(name, body) + | Closure(_, u) => var_mention(name, u) + | BuiltinFun(_) => false + | Cast(d, _, _) => var_mention(name, d) + | Ap(_, u1, u2) | Seq(u1, u2) | Cons(u1, u2) | ListConcat(u1, u2) @@ -233,11 +235,10 @@ let rec var_mention = (name: string, uexp: Term.UExp.t): bool => { Finds whether variable name is applied on another expresssion. i.e. Ap(Var(name), u) occurs anywhere in the uexp. */ -let rec var_applied = (name: string, uexp: Term.UExp.t): bool => { +let rec var_applied = (name: string, uexp: Exp.t): bool => { switch (uexp.term) { | Var(_) | EmptyHole - | Triv | Invalid(_) | MultiHole(_) | Bool(_) @@ -245,8 +246,10 @@ let rec var_applied = (name: string, uexp: Term.UExp.t): bool => { | Float(_) | String(_) | Constructor(_) + | Undefined | Deferral(_) => false - | Fun(args, body) => + | Fun(args, body, _, _) + | FixF(args, body, _) => var_mention_upat(name, args) ? false : var_applied(name, body) | ListLit(l) | Tuple(l) => @@ -255,18 +258,24 @@ let rec var_applied = (name: string, uexp: Term.UExp.t): bool => { | Module(p, def, body) => var_mention_upat(name, p) ? false : var_applied(name, def) || var_applied(name, body) - | TypFun(_, u) + | TypFun(_, u, _) | Test(u) | Parens(u) | UnOp(_, u) | TyAlias(_, _, u) - | Filter(_, _, u) => var_applied(name, u) + | Filter(_, u) => var_applied(name, u) | TypAp(u, _) => switch (u.term) { | Var(x) => x == name ? true : false | _ => var_applied(name, u) } - | Ap(u1, u2) => + | DynamicErrorHole(_) => false + | FailedCast(_) => false + // This case shouldn't come up! + | Closure(_) => false + | BuiltinFun(_) => false + | Cast(d, _, _) => var_applied(name, d) + | Ap(_, u1, u2) => switch (u1.term) { | Var(x) => x == name ? true : var_applied(name, u2) | _ => var_applied(name, u1) || var_applied(name, u2) @@ -276,11 +285,6 @@ let rec var_applied = (name: string, uexp: Term.UExp.t): bool => { | Var(x) => x == name ? true : List.exists(var_applied(name), us) | _ => List.exists(var_applied(name), us) } - | Pipeline(u1, u2) => - switch (u2.term) { - | Var(x) => x == name ? true : var_applied(name, u1) - | _ => var_applied(name, u1) || var_applied(name, u2) - } | Cons(u1, u2) | Seq(u1, u2) | ListConcat(u1, u2) @@ -304,7 +308,7 @@ let rec var_applied = (name: string, uexp: Term.UExp.t): bool => { /* Check whether all functions bound to variable name are recursive. */ -let is_recursive = (name: string, uexp: Term.UExp.t): bool => { +let is_recursive = (name: string, uexp: Exp.t): bool => { let fn_bodies = [] |> find_fn(name, uexp); if (List.length(fn_bodies) == 0) { false; @@ -322,20 +326,24 @@ let is_recursive = (name: string, uexp: Term.UExp.t): bool => { a tail position in uexp. Note that if the variable is not mentioned anywhere in the expression, the function returns true. */ -let rec tail_check = (name: string, uexp: Term.UExp.t): bool => { +let rec tail_check = (name: string, uexp: Exp.t): bool => { switch (uexp.term) { | EmptyHole - | Triv | Deferral(_) | Invalid(_) | MultiHole(_) + | DynamicErrorHole(_) + | FailedCast(_) | Bool(_) | Int(_) | Float(_) | String(_) | Constructor(_) - | Var(_) => true - | Fun(args, body) => + | Undefined + | Var(_) + | BuiltinFun(_) => true + | FixF(args, body, _) + | Fun(args, body, _, _) => var_mention_upat(name, args) ? false : tail_check(name, body) | Let(p, def, body) | Module(p, def, body) => @@ -347,18 +355,16 @@ let rec tail_check = (name: string, uexp: Term.UExp.t): bool => { !List.fold_left((acc, ue) => {acc || var_mention(name, ue)}, false, l) | Test(_) => false | TyAlias(_, _, u) - | Filter(_, _, u) - | TypFun(_, u) + | Cast(u, _, _) + | Filter(_, u) + | Closure(_, u) + | TypFun(_, u, _) | TypAp(u, _) | Parens(u) => tail_check(name, u) | UnOp(_, u) => !var_mention(name, u) - | Ap(u1, u2) => var_mention(name, u2) ? false : tail_check(name, u1) + | Ap(_, u1, u2) => var_mention(name, u2) ? false : tail_check(name, u1) | DeferredAp(fn, args) => - tail_check( - name, - {ids: [], term: Ap(fn, {ids: [], term: Tuple(args)})}, - ) - | Pipeline(u1, u2) => var_mention(name, u1) ? false : tail_check(name, u2) + tail_check(name, Ap(Forward, fn, Tuple(args) |> Exp.fresh) |> Exp.fresh) | Seq(u1, u2) => var_mention(name, u1) ? false : tail_check(name, u2) | Cons(u1, u2) | ListConcat(u1, u2) @@ -383,7 +389,7 @@ let rec tail_check = (name: string, uexp: Term.UExp.t): bool => { /* Check whether all functions bound to variable name are tail recursive. */ -let is_tail_recursive = (name: string, uexp: Term.UExp.t): bool => { +let is_tail_recursive = (name: string, uexp: UExp.t): bool => { let fn_bodies = [] |> find_fn(name, uexp); if (List.length(fn_bodies) == 0) { false; @@ -396,8 +402,7 @@ let is_tail_recursive = (name: string, uexp: Term.UExp.t): bool => { }; }; -let check = - (uexp: Term.UExp.t, predicates: list(Term.UExp.t => bool)): syntax_result => { +let check = (uexp: UExp.t, predicates: list(UExp.t => bool)): syntax_result => { let results = List.map(pred => {uexp |> pred}, predicates); let length = List.length(predicates); let passing = Util.ListUtil.count_pred(res => res, results); diff --git a/src/haz3lschool/dune b/src/haz3lschool/dune index d9c50213a5..a9f7575c78 100644 --- a/src/haz3lschool/dune +++ b/src/haz3lschool/dune @@ -13,3 +13,11 @@ (libraries ppx_yojson_conv.expander haz3lcore haz3lschool) (preprocess (pps ppx_yojson_conv ppx_let ppx_sexp_conv ppx_deriving.show))) + +(env + (dev + (js_of_ocaml + (flags :standard --debuginfo --noinline --dynlink --linkall --sourcemap))) + (release + (js_of_ocaml + (flags :standard)))) diff --git a/src/haz3lweb/Benchmark.re b/src/haz3lweb/Benchmark.re index 5d0b4390f1..6361b8143e 100644 --- a/src/haz3lweb/Benchmark.re +++ b/src/haz3lweb/Benchmark.re @@ -1,3 +1,5 @@ +open Util; + let sample_1 = {|# Hazel Language Quick Reference # # Recursive Functions (arrow type annotation required) # @@ -43,7 +45,6 @@ let str_to_inserts = (str: string): list(UpdateAction.t) => String.length(str), i => { let c = String.sub(str, i, 1); - let c = c == "\n" ? Haz3lcore.Form.linebreak : c; UpdateAction.PerformAction(Insert(c)); }, ); diff --git a/src/haz3lweb/ColorSteps.re b/src/haz3lweb/ColorSteps.re index fe242aeffc..fe82ab8d02 100644 --- a/src/haz3lweb/ColorSteps.re +++ b/src/haz3lweb/ColorSteps.re @@ -6,7 +6,7 @@ type t = (colorMap, int); /* TODO: Hannah - Pick 7 or so distinct colors from the different color generator thing (HSLuv) Make sure distinguishable for color blind or greyscale - think about related colors for related concepts*/ -let child_colors = ["blue", "pink", "teal", "orange", "purple", "yellow"]; +let child_colors = ["a", "b", "c"]; let empty = (Haz3lcore.Id.Map.empty, 0); let get_color = (id: Haz3lcore.Id.t, (mapping, index): t): (string, t) => diff --git a/src/haz3lweb/DebugConsole.re b/src/haz3lweb/DebugConsole.re index 4e825a27a6..a7f6d8ee33 100644 --- a/src/haz3lweb/DebugConsole.re +++ b/src/haz3lweb/DebugConsole.re @@ -5,39 +5,32 @@ open Haz3lcore; dependency on the model, which is technically against architecture */ let print = ({settings, editors, _}: Model.t, key: string): unit => { - let z = Editors.get_zipper(editors); - let print = str => str |> print_endline; - let settings = settings; - let term = z => z |> MakeTerm.from_zip_for_view |> fst; - let ctx_init = Editors.get_ctx_init(~settings, editors); + let {state: {zipper, meta, _}, _}: Editor.t = Editors.get_editor(editors); + let term = meta.statics.term; + let map = meta.statics.info_map; + let print = print_endline; switch (key) { - | "F1" => z |> Zipper.show |> print - | "F2" => z |> Zipper.unselect_and_zip |> Segment.show |> print - | "F3" => z |> term |> TermBase.UExp.show |> print - | "F4" => - z - |> term - |> Interface.Statics.mk_map_ctx(settings.core, ctx_init) - |> Statics.Map.show - |> print + | "F1" => zipper |> Zipper.show |> print + | "F2" => zipper |> Zipper.unselect_and_zip |> Segment.show |> print + | "F3" => term |> UExp.show |> print + | "F4" => map |> Statics.Map.show |> print | "F5" => - let env_init = Editors.get_env_init(~settings, editors); - Interface.eval_z(~settings=settings.core, ~env_init, ~ctx_init, z) + let env = Editors.get_env_init(~settings, editors); + Interface.elaborate(~settings=settings.core, map, term) + |> Interface.evaluate(~settings=settings.core, ~env) |> ProgramResult.show |> print; | "F6" => - let index = Indicated.index(z); - let map = - z |> term |> Interface.Statics.mk_map_ctx(settings.core, ctx_init); + let index = Indicated.index(zipper); switch (index) { | Some(index) => - switch (Haz3lcore.Id.Map.find_opt(index, map)) { + print("id:" ++ Id.to_string(index)); + switch (Id.Map.find_opt(index, map)) { | Some(ci) => print(Info.show(ci)) | None => print("DEBUG: No CI found for index") - } + }; | None => print("DEBUG: No indicated index") }; - | _ => print("DEBUG: No action for key: " ++ key) }; }; diff --git a/src/haz3lweb/Editors.re b/src/haz3lweb/Editors.re index 95a1d81dbe..f8fa4e0b06 100644 --- a/src/haz3lweb/Editors.re +++ b/src/haz3lweb/Editors.re @@ -1,6 +1,5 @@ -open Sexplib.Std; -open Haz3lcore; open Util; +open Haz3lcore; [@deriving (show({with_path: false}), sexp, yojson)] type scratch = (int, list(ScratchSlide.state)); @@ -40,7 +39,31 @@ let put_editor = (ed: Editor.t, eds: t): t => Exercises(n, specs, Exercise.put_editor(exercise, ed)) }; -let get_zipper = (editors: t): Zipper.t => get_editor(editors).state.zipper; +let update = (f: Editor.t => Editor.t, editors: t): t => + editors |> get_editor |> f |> put_editor(_, editors); + +let update_opt = (editors: t, f: Editor.t => option(Editor.t)): option(t) => + editors |> get_editor |> f |> Option.map(put_editor(_, editors)); + +let perform_action = + (~settings: CoreSettings.t, editors: t, a: Action.t) + : UpdateAction.Result.t(t) => { + let settings = + switch (editors) { + | Exercises(_) => + /* If we're in exercises mode, statics is calculated externally, + * so we set it to off here to disable internal calculation*/ + CoreSettings.on + | _ => settings + }; + switch (Perform.go(~settings, a, get_editor(editors))) { + | Error(err) => Error(FailedToPerform(err)) + | Ok(ed) => Ok(put_editor(ed, editors)) + }; +}; + +let update_current_editor_statics = settings => + update(Editor.update_statics(~settings)); let get_ctx_init = (~settings as _: Settings.t, editors: t): Ctx.t => switch (editors) { @@ -56,39 +79,6 @@ let get_env_init = (~settings as _: Settings.t, editors: t): Environment.t => | Documentation(_) => Builtins.env_init }; -let mk_statics = (~settings: Settings.t, editors: t): CachedStatics.t => { - let editor = get_editor(editors); - let ctx_init = get_ctx_init(~settings, editors); - switch (editors) { - | _ when !settings.core.statics => CachedStatics.mk([]) - | Scratch(idx, _) => - let key = ScratchSlide.scratch_key(string_of_int(idx)); - [(key, ScratchSlide.mk_statics(~settings, editor, ctx_init))] - |> CachedStatics.mk; - | Documentation(name, _) => - let key = ScratchSlide.scratch_key(name); - [(key, ScratchSlide.mk_statics(~settings, editor, ctx_init))] - |> CachedStatics.mk; - | Exercises(_, _, exercise) => - Exercise.mk_statics(settings.core, exercise) |> CachedStatics.mk - }; -}; - -let lookup_statics = - (~settings: Settings.t, ~statics, editors: t): CachedStatics.statics => - switch (editors) { - | _ when !settings.core.statics => CachedStatics.empty_statics - | Scratch(idx, _) => - let key = ScratchSlide.scratch_key(string_of_int(idx)); - CachedStatics.lookup(statics, key); - | Documentation(name, _) => - let key = ScratchSlide.scratch_key(name); - CachedStatics.lookup(statics, key); - | Exercises(_, _, exercise) => - let key = Exercise.key_for_statics(exercise); - CachedStatics.lookup(statics, key); - }; - /* Each mode (e.g. Scratch, School) requires elaborating on some number of expressions that are spliced together from the editors @@ -97,23 +87,20 @@ let lookup_statics = Used in the Update module */ let get_spliced_elabs = - (~settings: Settings.t, statics, editors: t) - : list((ModelResults.key, DHExp.t)) => + (~settings: CoreSettings.t, editors: t) + : list((ModelResults.key, Elaborator.Elaboration.t)) => switch (editors) { | Scratch(idx, _) => let key = ScratchSlide.scratch_key(idx |> string_of_int); - let CachedStatics.{term, info_map, _} = - lookup_statics(~settings, ~statics, editors); - let d = Interface.elaborate(~settings=settings.core, info_map, term); - [(key, d)]; + let statics = get_editor(editors).state.meta.statics; + let d = Interface.elaborate(~settings, statics.info_map, statics.term); + [(key, {d: d})]; | Documentation(name, _) => let key = ScratchSlide.scratch_key(name); - let CachedStatics.{term, info_map, _} = - lookup_statics(~settings, ~statics, editors); - let d = Interface.elaborate(~settings=settings.core, info_map, term); - [(key, d)]; - | Exercises(_, _, exercise) => - Exercise.spliced_elabs(settings.core, exercise) + let statics = get_editor(editors).state.meta.statics; + let d = Interface.elaborate(~settings, statics.info_map, statics.term); + [(key, {d: d})]; + | Exercises(_, _, exercise) => Exercise.spliced_elabs(settings, exercise) }; let set_instructor_mode = (editors: t, instructor_mode: bool): t => @@ -128,34 +115,37 @@ let set_instructor_mode = (editors: t, instructor_mode: bool): t => ) }; -let reset_nth_slide = (n, slides) => { +let reset_nth_slide = (~settings: CoreSettings.t, n, slides): list(Editor.t) => { let (_, init_editors, _) = Init.startup.scratch; let data = List.nth(init_editors, n); - let init_nth = ScratchSlide.unpersist(data); + let init_nth = ScratchSlide.unpersist(~settings, data); Util.ListUtil.put_nth(n, init_nth, slides); }; -let reset_named_slide = (name, slides) => { +let reset_named_slide = + (~settings: CoreSettings.t, name, slides): list((string, Editor.t)) => { let (_, init_editors, _) = Init.startup.documentation; let data = List.assoc(name, init_editors); - let init_name = ScratchSlide.unpersist(data); + let init_name = ScratchSlide.unpersist(~settings, data); slides |> List.remove_assoc(name) |> List.cons((name, init_name)); }; -let reset_current = (editors: t, ~instructor_mode: bool): t => +let reset_current = + (editors: t, ~settings: CoreSettings.t, ~instructor_mode: bool): t => switch (editors) { - | Scratch(n, slides) => Scratch(n, reset_nth_slide(n, slides)) + | Scratch(n, slides) => Scratch(n, reset_nth_slide(~settings, n, slides)) | Documentation(name, slides) => - Documentation(name, reset_named_slide(name, slides)) + Documentation(name, reset_named_slide(~settings, name, slides)) | Exercises(n, specs, _) => Exercises( n, specs, - List.nth(specs, n) |> Exercise.state_of_spec(~instructor_mode), + List.nth(specs, n) + |> Exercise.state_of_spec(~settings, ~instructor_mode), ) }; -let import_current = (editors: t, data: option(string)): t => +let import_current = (~settings, editors: t, data: option(string)): t => switch (editors) { | Documentation(_) | Exercises(_) => failwith("impossible") @@ -163,7 +153,7 @@ let import_current = (editors: t, data: option(string)): t => switch (data) { | None => editors | Some(data) => - let state = ScratchSlide.import(data); + let state = ScratchSlide.import(~settings, data); let slides = Util.ListUtil.put_nth(idx, state, slides); Scratch(idx, slides); } diff --git a/src/haz3lweb/ExerciseUtil.re b/src/haz3lweb/ExerciseUtil.re index 345d79c331..6885b8ae88 100644 --- a/src/haz3lweb/ExerciseUtil.re +++ b/src/haz3lweb/ExerciseUtil.re @@ -1,7 +1,8 @@ open Virtual_dom.Vdom; let code = (code: string) => { - Node.span(~attr=Attr.class_("exercise-code"), [Node.text(code)]); + Node.span(~attrs=[Attr.class_("code")], [Node.text(code)]); }; -let equiv = Node.span(~attr=Attr.class_("equiv"), [Node.text(" ≡ ")]); +let equiv = + Node.span(~attrs=[Attr.class_("equiv")], [Node.text(" ≡ ")]); diff --git a/src/haz3lweb/Export.re b/src/haz3lweb/Export.re index 0aa22384e2..9c9f709fa9 100644 --- a/src/haz3lweb/Export.re +++ b/src/haz3lweb/Export.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type all = { @@ -23,11 +23,11 @@ let mk_all = (~instructor_mode, ~log) => { let settings = Store.Settings.export(); let explainThisModel = Store.ExplainThisModel.export(); let settings_obj = Store.Settings.load(); - let scratch = Store.Scratch.export(~settings=settings_obj.core.evaluation); - let documentation = - Store.Documentation.export(~settings=settings_obj.core.evaluation); + let scratch = Store.Scratch.export(~settings=settings_obj.core); + let documentation = Store.Documentation.export(~settings=settings_obj.core); let exercise = Store.Exercise.export( + ~settings=settings_obj.core, ~specs=ExerciseSettings.exercises, ~instructor_mode, ); @@ -55,7 +55,12 @@ let import_all = (data, ~specs) => { let settings = Store.Settings.import(all.settings); Store.ExplainThisModel.import(all.explainThisModel); let instructor_mode = settings.instructor_mode; - Store.Scratch.import(~settings=settings.core.evaluation, all.scratch); - Store.Exercise.import(all.exercise, ~specs, ~instructor_mode); + Store.Scratch.import(~settings=settings.core, all.scratch); + Store.Exercise.import( + ~settings=settings.core, + all.exercise, + ~specs, + ~instructor_mode, + ); Log.import(all.log); }; diff --git a/src/haz3lweb/FailedInput.re b/src/haz3lweb/FailedInput.re index 199d0b8e50..7e40d69427 100644 --- a/src/haz3lweb/FailedInput.re +++ b/src/haz3lweb/FailedInput.re @@ -1,5 +1,5 @@ open Haz3lcore; -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type reason = diff --git a/src/haz3lweb/FontMetrics.re b/src/haz3lweb/FontMetrics.re index 262ac9ebf2..4ed525c176 100644 --- a/src/haz3lweb/FontMetrics.re +++ b/src/haz3lweb/FontMetrics.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@warning "-33"] [@deriving (show({with_path: false}), sexp, yojson)] diff --git a/src/haz3lweb/Grading.re b/src/haz3lweb/Grading.re index ac7414a5a1..e16827b918 100644 --- a/src/haz3lweb/Grading.re +++ b/src/haz3lweb/Grading.re @@ -5,22 +5,24 @@ include Haz3lschool.Grading.F(Exercise.ExerciseEnv); let score_view = ((earned: points, max: points)) => { div( - ~attr= + ~attrs=[ Attr.classes([ "test-percent", Float.equal(earned, max) ? "all-pass" : "some-fail", ]), + ], [text(Printf.sprintf("%.1f / %.1f pts", earned, max))], ); }; let percentage_view = (p: percentage) => { div( - ~attr= + ~attrs=[ Attr.classes([ "test-percent", Float.equal(p, 1.) ? "all-pass" : "some-fail", ]), + ], [text(Printf.sprintf("%.0f%%", 100. *. p))], ); }; @@ -54,10 +56,10 @@ module TestValidationReport = { let view = (~inject, report: t, max_points: int) => { Cell.report_footer_view([ div( - ~attr=Attr.classes(["test-summary"]), + ~attrs=[Attr.classes(["test-summary"])], [ div( - ~attr=Attr.class_("test-text"), + ~attrs=[Attr.class_("test-text")], [score_view(score_of_percent(percentage(report), max_points))] @ textual_summary(report), ), @@ -83,24 +85,23 @@ module MutationTestingReport = { let summary_message = (~score, ~total, ~found): Node.t => div( - ~attr=Attr.classes(["test-text"]), + ~attrs=[Attr.classes(["test-text"])], [score_view(score), text(summary_str(~total, ~found))], ); let bar = (~inject, instances) => div( - ~attr=Attr.classes(["test-bar"]), + ~attrs=[Attr.classes(["test-bar"])], List.mapi( (id, (status, _)) => div( - ~attr= - Attr.many([ - Attr.classes(["segment", TestStatus.to_string(status)]), - Attr.on_click( - //TODO: wire up test ids - TestView.jump_to_test(~inject, HiddenBugs(id), Id.invalid), - ), - ]), + ~attrs=[ + Attr.classes(["segment", TestStatus.to_string(status)]), + Attr.on_click( + //TODO: wire up test ids + TestView.jump_to_test(~inject, HiddenBugs(id), Id.invalid), + ), + ], [], ), instances, @@ -115,13 +116,14 @@ module MutationTestingReport = { ); let status_class = total == found ? "Pass" : "Fail"; div( - ~attr= + ~attrs=[ Attr.classes([ "cell-item", "test-summary", "cell-report", status_class, ]), + ], [ summary_message( ~score=score_of_percent(percentage(report), max_points), @@ -135,21 +137,21 @@ module MutationTestingReport = { let individual_report = (id, ~inject, ~hint: string, ~status: TestStatus.t) => div( - ~attr= - Attr.many([ - Attr.classes(["test-report"]), - //TODO: wire up test ids - Attr.on_click( - TestView.jump_to_test(~inject, HiddenBugs(id), Id.invalid), - ), - ]), + ~attrs=[ + Attr.classes(["test-report"]), + //TODO: wire up test ids + Attr.on_click( + TestView.jump_to_test(~inject, HiddenBugs(id), Id.invalid), + ), + ], [ div( - ~attr= + ~attrs=[ Attr.classes([ "test-id", "Test" ++ TestStatus.to_string(status), ]), + ], /* NOTE: prints lexical index, not unique id */ [text(string_of_int(id + 1))], ), @@ -157,12 +159,13 @@ module MutationTestingReport = { ] @ [ div( - ~attr= + ~attrs=[ Attr.classes([ "test-hint", "test-instance", TestStatus.to_string(status), ]), + ], [text(hint)], ), ], @@ -212,7 +215,7 @@ module MutationTestingReport = { // |> Zipper.zip // |> MakeTerm.go // |> fst - // |> Term.UExp.show + // |> UExp.show // |> print_endline // |> (_ => Virtual_dom.Vdom.Effect.Ignore); @@ -257,16 +260,18 @@ module SyntaxReport = { let result_string = status ? "Pass" : "Indet"; div( - ~attr=Attr.classes(["test-report"]), + ~attrs=[Attr.classes(["test-report"])], [ div( - ~attr=Attr.classes(["test-id", "Test" ++ result_string]), + ~attrs=[Attr.classes(["test-id", "Test" ++ result_string])], [text(string_of_int(i + 1))], ), ] @ [ div( - ~attr=Attr.classes(["test-hint", "test-instance", result_string]), + ~attrs=[ + Attr.classes(["test-hint", "test-instance", result_string]), + ], [text(hint)], ), ], @@ -297,10 +302,10 @@ module SyntaxReport = { Some( Cell.report_footer_view([ div( - ~attr=Attr.classes(["test-summary"]), + ~attrs=[Attr.classes(["test-summary"])], [ div( - ~attr=Attr.class_("test-text"), + ~attrs=[Attr.class_("test-text")], [ percentage_view(syntax_report.percentage), text( @@ -337,7 +342,7 @@ module ImplGradingReport = { // let num_passed = num_passed(report); // let status_class = total == num_passed ? "Pass" : "Fail"; // div( - // ~attr= + // ~attrs= // Attr.classes([ // "cell-item", // "test-summary", @@ -357,18 +362,18 @@ module ImplGradingReport = { let individual_report = (i, ~inject, ~hint: string, ~status, (id, _)) => div( - ~attr= - Attr.many([ - Attr.classes(["test-report"]), - Attr.on_click(TestView.jump_to_test(~inject, HiddenTests, id)), - ]), + ~attrs=[ + Attr.classes(["test-report"]), + Attr.on_click(TestView.jump_to_test(~inject, HiddenTests, id)), + ], [ div( - ~attr= + ~attrs=[ Attr.classes([ "test-id", "Test" ++ TestStatus.to_string(status), ]), + ], /* NOTE: prints lexical index, not unique id */ [text(string_of_int(i + 1))], ), @@ -376,12 +381,13 @@ module ImplGradingReport = { ] @ [ div( - ~attr= + ~attrs=[ Attr.classes([ "test-hint", "test-instance", TestStatus.to_string(status), ]), + ], [text(hint)], ), ], @@ -426,10 +432,10 @@ module ImplGradingReport = { Some( Cell.report_footer_view([ div( - ~attr=Attr.classes(["test-summary"]), + ~attrs=[Attr.classes(["test-summary"])], [ div( - ~attr=Attr.class_("test-text"), + ~attrs=[Attr.class_("test-text")], [ score_view( score_of_percent( diff --git a/src/haz3lweb/Init.ml b/src/haz3lweb/Init.ml index da597e8f67..4bdbbec0db 100644 --- a/src/haz3lweb/Init.ml +++ b/src/haz3lweb/Init.ml @@ -27,9 +27,9 @@ let startup : PersistentData.t = context_inspector = false; instructor_mode = true; benchmark = false; - mode = Documentation; explainThis = { show = true; show_feedback = false; highlight = NoHighlight }; + mode = Documentation; }; scratch = ( 0, @@ -37,99 +37,71 @@ let startup : PersistentData.t = { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - 81269f55-a66c-48d1-9fbe-83187a492f55)(content(Whitespace\" \ - \"))))(Secondary((id \ - a4e41744-51dc-43bb-b359-47cb9649dcd4)(content(Whitespace\" \ - \")))))((Grout((id ef3fb913-bd26-4ef8-af2f-424a73c5c753)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - 3fd71a3d-9baa-4362-9887-450674850113)(content(Whitespace\" \ - \"))))(Secondary((id \ - 140c0376-4f67-40b6-8056-8cac787af42d)(content(Whitespace\" \ - \")))))((Grout((id 35a88970-2d50-43a7-a476-f81f5b36728d)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - 36ace27f-cd35-4880-b50c-7629d3a8476a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 39a56f0c-5214-443b-8bd9-931ac9a7720a)(content(Whitespace\" \ - \")))))((Grout((id cbfc7b9d-7a60-4d4d-9a04-5239fe7008a3)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - 83b9a843-4947-43b0-8232-fb9ce31f8628)(content(Whitespace\" \ - \"))))(Secondary((id \ - abca2150-7d0a-4c6c-8502-bdef953a11be)(content(Whitespace\" \ - \")))))((Grout((id f292f825-054d-4023-80f7-5e436bbc25ff)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - 520a7c0c-6bb8-4bdc-a548-5431ef003028)(content(Whitespace\" \ - \"))))(Secondary((id \ - dd7c1758-0001-46c0-8ab3-e43a23285e0e)(content(Whitespace\" \ - \")))))((Grout((id 06807411-26c5-493c-8835-258878cb073e)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - c0748728-2618-4872-881c-ccb38dbd0c58)(content(Whitespace\" \ - \"))))(Secondary((id \ - ab68e973-bf30-463d-989b-c7e37921aca2)(content(Whitespace\" \ - \")))))((Grout((id a9b8ab49-ba54-46b5-b504-c85c3f615c64)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - 53f99ea5-f1e2-4c4b-bb11-8bb270cc563d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0595315c-7bd1-43dc-8cd5-ef755f9d7538)(content(Whitespace\" \ - \")))))((Grout((id 6ee496e0-c06a-4c46-bfdd-c844017a8bd2)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - cdc8e64d-6836-4d9f-9353-969397bfe2ab)(content(Whitespace\" \ - \"))))(Secondary((id \ - 82f3fe37-c665-4aeb-af3d-01ad0de37d40)(content(Whitespace\" \ - \"))))(Secondary((id \ - 749ce88d-f0e0-4694-b13a-0831f733b0ed)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4a7e3e85-8563-4160-a121-bc3c0911118b)(content(Whitespace\" \ - \")))))((Grout((id 75ba0150-8d58-4efe-9253-cc2d7f4df1c4)(shape \ + Normal)))(backpack())(relatives((siblings((((Grout((id \ + e87c8d67-9374-4a6f-ba01-5ec8f300b924)(shape \ Convex))))))(ancestors())))(caret Outer))"; - backup_text = " "; + backup_text = ""; }; ], - [ ("scratch_0", Evaluation) ] ); + [ ("scratch_0", Evaluation); ("scratch_1", Evaluation) ] ); documentation = - ( "Programming Expressively", + ( "Basic Reference", [ ( "Modules", { @@ -1236,8394 +1208,8419 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Secondary((id \ - 8068a0c4-8131-4ce5-a850-c17e7e7e38a7)(content(Comment\"# \ + 81369b05-3100-46fa-8519-383f032773b7)(content(Comment\"# \ Internal Regression Tests: Function literal casting \ #\"))))(Secondary((id \ - 3be72b01-de96-4cd5-910f-b6f3ab6a172e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 4d828014-6d8f-434b-abf2-6a662fe33c69)(content(Comment\"# None \ + 661ca937-ef26-4d0f-8e56-34169b5314b4)(content(Whitespace\"\\n\"))))(Secondary((id \ + cec34ac6-7912-499a-9c79-3044a2463686)(content(Comment\"# None \ of the below should trigger runtime exceptions \ #\"))))(Secondary((id \ - c3af568c-60e3-49fb-b4b6-aceb07a91e97)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - e57439be-1c01-459a-bcf9-cd5f3aa8c65d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ce9fa5fe-b457-40f2-b69a-1dd30d72b19a)(label(let = \ + 7226679b-c010-43b2-9dc4-17a1c5810b79)(content(Whitespace\"\\n\"))))(Secondary((id \ + 3286f00c-648a-45c0-b4ba-facb03d5f5eb)(content(Whitespace\"\\n\"))))(Tile((id \ + 9eaeefd6-f39a-4e11-9bbd-7670fa49ae2d)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - cbeba9b0-28a2-4e5f-84d3-1ac692fdadac)(content(Whitespace\" \ + 2b64b7f2-0ed1-4c42-a823-872b8a547369)(content(Whitespace\" \ \"))))(Tile((id \ - 5c050101-1fa6-4df8-b20b-b19c253a622d)(label(g))(mold((out \ + e27950cc-13f0-4e63-b33d-bb38bcf4a33d)(label(g))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f9aa410a-67dd-402d-bb0f-4a7681401d98)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ebd66162-10cb-405d-a69c-87c51113f790)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 364edc1f-bb6f-4b64-b3c8-88889944ab35)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8bd22357-2c15-4dcc-92b8-5aa2f6e4762a)(content(Whitespace\" \ - \"))))(Grout((id f20dff97-39f2-4f4d-8f31-684088be69f0)(shape \ - Convex)))(Tile((id \ - ca20cc5f-f628-4149-9310-d59868ecc7a9)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 5cb83599-6fff-4fe6-8b1b-fbc0f2b16df6)(shape \ - Convex)))(Secondary((id \ - b6ed15b5-4d03-474f-8079-ff23578cb9c3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 90761b49-64e0-4fa1-b3b8-2baf37151b32)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8784e29d-9fb1-47e6-9833-13964e30a390)(content(Whitespace\" \ + cdf12728-5f08-4e00-adff-8d203d2e1406)(content(Whitespace\" \ + \"))))(Tile((id \ + cdeb3cfe-8cac-4efa-856c-92ffd856fba9)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 006b25b5-ccc3-430f-a8ef-0af78f24133d)(content(Whitespace\" \ + \"))))(Tile((id \ + 39909202-da1c-4570-80d2-3144f7ec1544)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 5f48f03b-fb47-4e0d-8b41-f8fb95081600)(content(Whitespace\" \ + \"))))(Tile((id \ + 56ad0cba-9a95-48f0-bc83-75203f7500fa)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 36f39a5d-453f-46f8-84a0-0e54a571aa3d)(content(Whitespace\" \ \")))))((Secondary((id \ - 881872c6-0d5d-4618-a27f-2d8189d891d3)(content(Whitespace\" \ + acaad34c-1ef9-4103-8cc7-a315cb16766c)(content(Whitespace\" \ \"))))(Tile((id \ - ec558c21-a417-440e-8649-5d1e471ac938)(label(fun \ + 58a5cd00-5b25-4258-8de2-4ec58460d679)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 6cafce86-7cfd-4966-890f-1ff63e7c59d1)(content(Whitespace\" \ + 77a7a302-9006-4fdf-8ebb-5a898fe80dda)(content(Whitespace\" \ \"))))(Tile((id \ - e6197a04-5d43-457c-b9ac-2863dc99c9aa)(label(_))(mold((out \ + 848cd28f-e857-440e-a5f1-9377774717b6)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 8bc5b8c6-b9f6-4f7f-bdc0-cca1ee17ace0)(content(Whitespace\" \ + 891dd4d9-3426-4ffc-ba06-67bdfd9e1eff)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5fa91f17-5b9d-4375-8c21-48ea2a17f79b)(content(Whitespace\" \ + 25cccae1-4e5b-4e5f-aa8e-994731827f49)(content(Whitespace\" \ \"))))(Tile((id \ - 729bfaa3-4d19-45ab-b2ea-0ee7cbf89f6a)(label(9))(mold((out \ + 950ba9b6-d9aa-44e5-918b-6e388eb31365)(label(9))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - efb902d5-fca7-4ea6-811b-8fa5cacf00a6)(content(Whitespace\" \ + 4f0f471a-e929-41cd-854f-73fc11a997c5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4b388e57-61f6-4c4f-8288-28300d5c63be)(content(Whitespace\" \ + 3c4aa4bf-2198-4d96-939b-622db1210f2f)(content(Whitespace\" \ \"))))(Tile((id \ - 54988076-8257-438a-800d-614fed5dbf32)(label(-))(mold((out \ + 12aac901-a820-49a5-9de4-6d5efd1821a3)(label(-))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 2))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6760425e-a4f8-4974-8ae4-59d7cb943370)(label(g))(mold((out \ + 3))(sort Exp))))))(shards(0))(children())))(Tile((id \ + a1c315c9-9f6d-49e8-83fb-619021db8ba6)(label(g))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - bfb3339a-8286-43fb-9ba1-28b3ccd4f57c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f2070018-aa3e-45f4-9108-039b8cfe8d0a)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c39698c7-0f2e-4bef-a04f-8a39d9a055d0)(label(1))(mold((out \ + 35429397-758e-443e-a6b4-570c37ab7ed8)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - fa356f00-e672-434b-affe-c17ba6a33b8b)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + cd5a1c96-d516-4740-a615-f329ded8cbb3)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 7816c92f-1592-4df0-b2c9-079260acf77c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - eb8b1deb-50e1-4a00-b58c-c1203e082d85)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c244a67e-156c-4a5b-8976-9c33b02945ab)(label(let = \ + 4f1e5988-02d8-4e2f-8809-130c13e5bedb)(content(Whitespace\"\\n\"))))(Secondary((id \ + a39a6432-d075-43de-821c-91c593ee68b7)(content(Whitespace\"\\n\"))))(Tile((id \ + 7fb82384-cfcf-4395-9f99-4df2fdb7259a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 058e2ec9-8a44-404c-a984-b5e3fc44526a)(content(Whitespace\" \ + 199cb1d9-9622-4470-bcde-98b88d1f2d2e)(content(Whitespace\" \ \"))))(Tile((id \ - d9a0395f-eb34-47a7-9962-cc212a342bae)(label(f))(mold((out \ + 8336854c-f7d3-4b02-bf20-f3de09fe0641)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 700d354d-c0ce-4a53-b12c-cbee7556a60b)(content(Whitespace\" \ + 3339ca2a-6b18-4288-a8fe-f17890b2a4e8)(content(Whitespace\" \ \")))))((Secondary((id \ - c4653559-da72-40fc-a7e7-bcc45abf19cc)(content(Whitespace\" \ + 4455604d-cd69-41fd-8f6b-8d42faf4bf30)(content(Whitespace\" \ \"))))(Tile((id \ - bd681a2c-d7c4-4483-af87-fc929dd43eda)(label(fun \ + 5f379f57-e6aa-4e13-b987-68edf2157c30)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 1a9f798b-6df6-4aac-a512-699c4f0e4914)(content(Whitespace\" \ + 1b144f4e-2ee0-42ee-bc4f-41f39efa24cb)(content(Whitespace\" \ \"))))(Tile((id \ - 998f8e6f-d099-444b-9c75-891ab31f1768)(label(b))(mold((out \ + 57f0523e-58fd-481c-9208-555cebb9f272)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a5faaaaa-e2f9-46ad-932a-0289bd5b39ec)(content(Whitespace\" \ + 62f93351-1cc0-48d3-8ffb-887cdde7b26c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5c84c891-35bf-4c68-a116-83e16699136f)(content(Whitespace\" \ + b3f9ec66-5704-4f88-a893-3fc85a30ef33)(content(Whitespace\" \ \"))))(Tile((id \ - 74466136-5bab-4a17-af60-4e45651ef15c)(label(b))(mold((out \ + fb2434da-6c4e-49f1-ae63-5f7f87aff525)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f9708006-883e-4b2d-bb30-c16eceb968dc)(content(Whitespace\" \ + 3930fcf7-5f96-441d-bc79-8857a1d99eba)(content(Whitespace\" \ \"))))(Tile((id \ - 5b08b814-e7df-456c-b93f-0612e8ae5e9a)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 7c3fd7f6-254d-492b-bfd5-2a68f0a1e69f)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cad35cba-3f46-4c8d-8e95-874ac1cbb84f)(content(Whitespace\" \ + 0cee3916-02e5-4293-99a6-70c6db19eae9)(content(Whitespace\" \ \"))))(Tile((id \ - f130da22-b535-4868-8c28-bb7d6e114694)(label(true))(mold((out \ + 8c13774a-da7b-486a-a9b6-c1ea1f1d8be3)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6e17c3c4-3b95-4524-abd9-64fb1a179665)(content(Whitespace\" \ + 15dc697a-d3d1-462b-872c-1e714ab3de22)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3d264c86-a12c-4dc2-8d06-9bfc92ff1160)(content(Whitespace\" \ + 3e3ea0f4-263e-40bc-b457-322892f972e5)(content(Whitespace\" \ \"))))(Tile((id \ - 53ac5aaa-2c96-4159-a15c-be816540dcf6)(label(f))(mold((out \ + e03c4dbd-e37a-409b-9b36-e3bada070bf6)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3fbf338a-1948-42bd-9d25-93b98002a1a8)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 46a54169-cc48-4153-89c6-02efa923deaf)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 5a6b4ca1-8b45-43e5-88e7-0df7ab9a8291)(label(true))(mold((out \ + f124eb1f-fa56-4867-b3eb-4dc3d2d86531)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 5b9cad15-2118-48bd-8a90-930a1a14fc34)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4c25952b-6297-4560-b56a-3c162d83c8e5)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cd49f1aa-27da-42f3-8f0f-02f845ca8cd3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4b5a4b1a-c654-4b0c-a3d3-53794844fe64)(label(let = \ + 1e81390d-b689-482e-924e-77c9c8ce4484)(content(Whitespace\"\\n\"))))(Tile((id \ + ec4b55d8-e8ee-4c10-a340-a04819b633c3)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 2b4ded00-335f-42d5-af7c-3ddfa436f524)(content(Whitespace\" \ + 9129d50f-afae-49fa-9d6a-2167542620c2)(content(Whitespace\" \ \"))))(Tile((id \ - 083512d6-17a6-4288-a83a-faea34192510)(label(f))(mold((out \ + 3e496a44-1f49-4a3e-ab32-7c0fb8002c31)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a5916772-9b05-4c21-a6ee-9ecbd54516be)(content(Whitespace\" \ + 1df7b1d5-927a-4538-a168-21e4e4465342)(content(Whitespace\" \ \")))))((Secondary((id \ - 666f67e6-24c9-446f-a7ab-38e2c015f9cf)(content(Whitespace\" \ + 708a7cb1-88e5-4754-8031-3143ec4c0383)(content(Whitespace\" \ \"))))(Tile((id \ - f0807ef5-df8e-4eb7-9f78-339003a5b8de)(label(fun \ + 6d4a42cb-0718-4e9e-bca1-0af11cd095e7)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 106fc984-125d-427f-a0b1-acbe77f0ffba)(content(Whitespace\" \ + f2f6342f-640f-40d6-85c7-7d0c5cce62ef)(content(Whitespace\" \ \"))))(Tile((id \ - a049e806-20c5-4b1d-a099-7755a9097b7c)(label(b))(mold((out \ + 6a9756bd-2505-46e0-9493-c1df53e5a1a5)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 43a50e94-546c-4d1a-8dd8-c5b597a73727)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - a2958e5b-2da8-4f25-903f-220583955a32)(shape \ - Convex)))(Secondary((id \ - 2a78f83f-11c1-488f-8e1b-81f27b9d6a73)(content(Whitespace\" \ - \"))))(Secondary((id \ - e24760a0-00f4-411c-bd9e-6ddaafdfa45e)(content(Whitespace\" \ - \"))))(Secondary((id \ - cea3d12d-01b1-4cde-8fab-0249d492ab91)(content(Whitespace\" \ + 3b0b22c1-8b06-454b-bc5b-3bcd047b858e)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + e4490437-dff5-4fac-aaf8-25017c9da92c)(content(Whitespace\" \ + \"))))(Tile((id \ + 5898078f-2261-4a01-ba61-529e85c7a1a8)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 518a4068-d476-4b78-a51d-71da3483d9a4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b1651b66-ecf9-40e2-87b6-1467f19c6199)(content(Whitespace\" \ + 7b57f276-9239-48a5-959b-439c645e6b9b)(content(Whitespace\" \ \"))))(Tile((id \ - 76e9f1a4-edd2-4dcc-ab7d-bb5ce3daa033)(label(b))(mold((out \ + 02e9a8a2-4b70-4386-a03a-c7338edd1ac1)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 29b18195-9677-4596-a89c-b9fc61267425)(content(Whitespace\" \ + b3c18a9e-1da8-4c5a-9d05-5925d467091b)(content(Whitespace\" \ \"))))(Tile((id \ - 43ab9ff3-2fac-440f-ba6f-67cde6a259fd)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + a5a691d3-386c-4599-884a-c8f9aa833e68)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f48bf544-6b5f-45c8-a4b4-2d2b8b8d62c4)(content(Whitespace\" \ + 9a583679-4605-45d0-a43e-52bf5622f396)(content(Whitespace\" \ \"))))(Tile((id \ - c73a3100-a782-46b9-a401-3194788d3ab9)(label(true))(mold((out \ + 6cec4350-c571-4854-b06e-ca6c31ff0d82)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1755c477-85d2-427c-8240-a91649c21dfa)(content(Whitespace\" \ + 69a109a1-5a88-451a-8cae-58b743ef879c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 77a083d4-1e8d-46a3-9844-c2a929afae23)(content(Whitespace\" \ + f587f878-71e0-466c-af3c-6806440c4280)(content(Whitespace\" \ \"))))(Tile((id \ - a40bdf1f-e175-48aa-b34f-c6c3c2ac61d9)(label(f))(mold((out \ + 3f05de1c-201f-4e4d-881c-38096ae05061)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a08d599a-5b8d-4b5d-8f5f-8a28646b9e01)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ff86ff15-f544-4fd3-8dec-e3ac31a240ee)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - a7b66a4e-4c88-4a7d-b325-1ef561c8945d)(label(true))(mold((out \ + afd5101b-29b6-42cd-81d3-21d73058beb4)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 506b50ea-1e13-4309-83ed-9e2646874c49)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 5c651383-18c1-48b1-8e66-b03c769f3bde)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 08da3a5e-3737-4e5e-9fb3-9b18d8142310)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d0c3bbff-de90-4c18-bc64-f06637a0c534)(label(let = \ + f7390a85-d74e-4b67-98d5-bb26e8b8865f)(content(Whitespace\"\\n\"))))(Tile((id \ + 0a704a14-505d-4c2d-a6de-ae4517221ab9)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - bd3ce62f-26d4-4583-895c-b1703388b2b2)(content(Whitespace\" \ + d5e59e75-f4f3-4b5b-b2e4-2019d7673305)(content(Whitespace\" \ \"))))(Tile((id \ - 98686f54-7a2c-4951-b59d-48a861d27aab)(label(f))(mold((out \ + c909509f-18e3-40c3-a5bd-d87fc999b730)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7d9fa3db-ad61-4696-9c7e-9b897a1bf2b3)(content(Whitespace\" \ + 1d89694e-c062-41b9-af8b-8355b392a7b8)(content(Whitespace\" \ \")))))((Secondary((id \ - c3afe279-39cc-4c43-9185-e19ce5ba31ff)(content(Whitespace\" \ + f1853bc9-8e24-4a70-90dd-194539cdb314)(content(Whitespace\" \ \"))))(Tile((id \ - 5965539f-7948-4f36-9160-aa18475144e3)(label(fun \ + 310a11f0-71a7-4b63-a256-7307f27b228e)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d7403374-174d-4a55-a4bd-423d6c907a22)(content(Whitespace\" \ + 1d6f9a93-cc2c-4889-a604-f02951053baf)(content(Whitespace\" \ \"))))(Tile((id \ - 9f58bd61-2540-4de4-877a-275ea138c657)(label(b))(mold((out \ + bf737c42-1b95-4fea-aed2-763f716782e3)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 84123ab9-18d0-44aa-98a8-08f1eb3c0b42)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 58d9ec65-d4da-47ee-a01a-5bd43af058b8)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6134bd22-8950-4612-a5a7-5fff5a16abed)(content(Whitespace\" \ + 91ff0c5e-4435-4908-9722-fc51f4b726dd)(content(Whitespace\" \ \"))))(Tile((id \ - 9a1a6bd7-feb2-4476-9be1-81af953c33da)(label(Bool))(mold((out \ + 25ce4103-1679-4c34-a5f1-5c6930fef1ee)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a2a9a9ad-3751-4443-b863-9075a213e282)(content(Whitespace\" \ + f1c5d99a-e84a-4b86-945a-45eb32da95ba)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7dd4efd1-b246-4cef-a279-e45029f3f048)(content(Whitespace\" \ + a3b5cd01-b0a2-4300-ab04-fd6940ffcd15)(content(Whitespace\" \ \"))))(Tile((id \ - 50d4bc14-0110-47f1-9ff3-9173fb4c799f)(label(b))(mold((out \ + 764204e6-fe9a-49db-9e9f-7576f8c736f1)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1cbbf7f7-82f6-4d5f-8af4-694afddaa340)(content(Whitespace\" \ + 56cad22e-7568-49f8-a934-1ad6645bbb5d)(content(Whitespace\" \ \"))))(Tile((id \ - 07740340-432f-404b-a4b4-58c849178faa)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 2631fc54-11f2-4562-ac0a-357e1d807e05)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2f0a5a7a-2a8a-442a-9b42-bb29ace672ba)(content(Whitespace\" \ + f60d2720-ec79-4276-81de-486df193d1de)(content(Whitespace\" \ \"))))(Tile((id \ - 8cfe83fb-95ca-430d-b614-7ad6a1f060fd)(label(true))(mold((out \ + 0f4609f5-6880-4d39-9a3d-d23db6bc348d)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c49a3f96-09b3-4c92-9d9a-4e0e129bfd4d)(content(Whitespace\" \ + 92118d8a-9090-4cca-91c8-378221c73f3c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ccc17a8b-20f6-41ca-aced-8ab1e37b51af)(content(Whitespace\" \ + f126a678-ad98-49da-9331-c6c933d6c7e7)(content(Whitespace\" \ \"))))(Tile((id \ - 9d4cca74-c8be-47b6-aab7-db4a81519644)(label(f))(mold((out \ + 4658f768-b661-46d7-a228-bda00d6b4630)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b0b5f605-6c2a-4163-91af-2db67039b026)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5c6b8fdf-cc60-405f-b69e-74098d60aea8)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - a52dcc6a-5f33-438c-bfa5-f5065c49dd3a)(label(true))(mold((out \ + 3d9c9325-622f-4a2f-9f27-fbabbf352359)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 823c2d05-bfca-456f-8ea7-3dc327249035)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + e4482912-39b0-49e3-82dd-4a222f6baad5)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6ef23420-91b3-4e62-a6ad-acc727256268)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 812d4f83-80f9-419a-862b-7fbcd5ca14ce)(label(let = \ + f528425c-fe76-45e2-aaf0-3fce94886371)(content(Whitespace\"\\n\"))))(Tile((id \ + e9ba542f-8cee-4258-97e3-b92404ca2681)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 74ec9114-7deb-4131-95fa-ef6596f0727f)(content(Whitespace\" \ + 34b33841-788c-4352-ba2d-7e198a3a7c5e)(content(Whitespace\" \ \"))))(Tile((id \ - 9a1e62b2-f5a8-44d6-be05-e543aa063c03)(label(f))(mold((out \ + 75077e71-5287-4321-9425-d482e7db1ed3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f8d525db-5cf3-454e-93f4-dd805dbfece7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - fe35e44b-a3d8-4d9f-b052-d95ce9dff21c)(shape \ - Convex)))(Secondary((id \ - 68211388-5a88-4811-959f-947ab63a5bcd)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3a3a303f-be27-4df1-9b21-86efdcb6ec46)(content(Whitespace\" \ - \"))))(Secondary((id \ - 442407b8-023a-4380-ba34-3a9d13d031a0)(content(Whitespace\" \ + 27e7e63c-ca04-4945-af58-848913dbf40b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 3b93dd7d-8393-4fe2-9060-72c4fab8280f)(content(Whitespace\" \ + \"))))(Tile((id \ + 143ea473-7035-4a1b-b70d-04cc0ece0c64)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + ee09a346-60da-4faf-af20-4ada2033a7b8)(content(Whitespace\" \ \")))))((Secondary((id \ - 0fc60cb0-46de-4545-a2fb-4282bd97be44)(content(Whitespace\" \ + 8904533a-4cdf-4111-b504-dc6c88ea0996)(content(Whitespace\" \ \"))))(Tile((id \ - d0c96440-b4ab-4e5f-b547-568097937dcb)(label(fun \ + 022f45b7-15fe-4015-b609-048270f33bb5)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - fde88b1c-69da-461c-9b0d-6c47f1a9ed6d)(content(Whitespace\" \ + 95fa2567-2fd9-4c1f-801f-bbec283d6de8)(content(Whitespace\" \ \"))))(Tile((id \ - 32ff1b3a-0010-4190-9ff8-18086ad6e5d8)(label(b))(mold((out \ + b77150c8-ae85-4c15-b80d-4f1e1aa0afe7)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 10d76632-a4a7-4622-8872-8c5886c49e42)(content(Whitespace\" \ + 920818bc-1839-487d-8f28-8ea1ac7f7f6b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1e546a71-cd49-4ebd-aff1-dd6d1aa7c4a0)(content(Whitespace\" \ + 9346d43d-0ae0-4e08-8050-39b3ea8d0ab4)(content(Whitespace\" \ \"))))(Tile((id \ - 808bf4f2-1a68-415e-b997-01ff2037d799)(label(b))(mold((out \ + 476aa9aa-37a4-473a-8ed6-040d0952d951)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 05c7644a-7a22-4c20-a812-1fd5b8e02005)(content(Whitespace\" \ + 412312ee-b030-42b6-9dd2-1547de65ebfa)(content(Whitespace\" \ \"))))(Tile((id \ - 5e74bd2d-8a05-4ebf-aee6-6fb3ec824145)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + da81d26b-5d29-4e73-bb68-deafc87e357a)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ec28d888-794d-4201-abda-94b6e3f1bbdf)(content(Whitespace\" \ + e521bb4a-b193-495a-aeb0-b2c82bacb9b2)(content(Whitespace\" \ \"))))(Tile((id \ - 3ef7de3a-2a14-4188-a55f-51527113ef74)(label(true))(mold((out \ + 4e74bfb1-38c4-407c-8297-69cd09ae8e6b)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 9a6d019d-7e68-4607-acda-eba022cdc741)(content(Whitespace\" \ + ef63ff2c-8ef7-47f8-9710-c4f472c9a9cc)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5aa34837-e964-4ba3-a34c-ad5fd015a710)(content(Whitespace\" \ + 149a46b4-a34b-46cf-a027-cf85fb5b15e1)(content(Whitespace\" \ \"))))(Tile((id \ - 7632724e-1f20-4d15-ba4e-e01b565bbf4f)(label(f))(mold((out \ + 1aae26f0-fc96-44aa-828f-b073e55ff69d)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 002d2fdb-a677-4f81-9c2e-1867a5407bbb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 8e2b1ed4-db2d-49eb-88d2-4728cd09d8e4)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 62820ee1-7863-4a17-90f8-e04dad881c64)(label(true))(mold((out \ + 662cbcb9-b30d-4562-80b0-7364ca66de2f)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 4dfb1076-524e-4527-9a36-4f2b33913898)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + d20c5d46-a170-4403-a97e-a7011ff7cd9d)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ea549dfd-7437-4aa5-83fc-c59393a44e84)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3ac5d13b-c645-4a2d-8500-f753ba61e239)(label(let = \ + 68beb6cf-6acf-4189-a0bd-e243d91237fa)(content(Whitespace\"\\n\"))))(Tile((id \ + f8a81479-e26e-4a45-9dcb-4c5fe7d14ab8)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 3772fc52-5d80-49a9-a915-10132f4413a7)(content(Whitespace\" \ + c482be25-4bc1-44f5-a33f-3821a6c7f273)(content(Whitespace\" \ \"))))(Tile((id \ - 88657220-85e6-4449-91d5-4b282ca9468a)(label(f))(mold((out \ + 5c74dff5-8cce-4dc2-a5b6-49a978fac1e5)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 753a4301-8388-45c4-bd4e-626eeac2f55f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 30afec45-3066-4a0f-817b-4f99697585e3)(shape \ - Convex)))(Secondary((id \ - e534716b-c249-4bc8-8bdc-c492a72acf60)(content(Whitespace\" \ - \"))))(Secondary((id \ - bf464cbe-a15c-4dc8-9376-f14dafd49ee5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 00da0773-8c3b-44a0-93ee-552d6d00d643)(content(Whitespace\" \ + 2d8453ea-d5be-40c8-ba37-3cb7862e3536)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 373f84cf-3935-4a76-b6a5-2553ab4f34ea)(content(Whitespace\" \ + \"))))(Tile((id \ + b6814e99-f3f7-4444-89d1-f5569a465c60)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 02e548b0-bfe6-419b-811a-96f0a293ccb5)(content(Whitespace\" \ \")))))((Secondary((id \ - ff437f2e-8a76-4186-857b-56cc23c8cf53)(content(Whitespace\" \ + f7773304-b9e1-4487-ae33-452466e47a8e)(content(Whitespace\" \ \"))))(Tile((id \ - 28ba42f0-050b-43dc-a8f4-918c72fa935a)(label(fun \ + 4476eff5-8342-4be4-bdd0-ef851d1e911f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 868be89d-7e08-463c-8dcb-33e6c8f69e94)(content(Whitespace\" \ + 2a5dd54d-d7bd-406b-a6ce-f4b9952398e2)(content(Whitespace\" \ \"))))(Tile((id \ - e7c53b17-975b-4397-b6bb-7f4811d6db82)(label(b))(mold((out \ + 1a1b1421-4293-4126-b66b-d6836f42da81)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - d163d4ea-0f31-47a1-aec4-8ae8015d8b51)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - afab5ad9-7a2b-423d-b78a-79c436c4cbec)(shape \ - Convex)))(Secondary((id \ - daa148af-3377-4878-bc2c-d694b57ffbe3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 090d5f42-f40d-40b3-8852-e3df2288f312)(content(Whitespace\" \ - \"))))(Secondary((id \ - 7de52110-c900-4a11-ba4e-037c4505322b)(content(Whitespace\" \ + cb957614-fcf7-4785-b6e3-be86272e251c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + d66453af-7a7b-4659-b53c-8413552ad7e3)(content(Whitespace\" \ + \"))))(Tile((id \ + 194cfbbc-41e4-4896-9af4-a06fe2ec7c6d)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 95d63e9d-e9d1-432e-9738-bcf398544bed)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3ea7ec25-bb44-4ba0-a941-ec8f0e78e32b)(content(Whitespace\" \ + 1ebcd64c-8de0-4d29-a255-24f923bcc1cd)(content(Whitespace\" \ \"))))(Tile((id \ - 9ccb96b2-2464-4556-9643-4c8f617f7308)(label(b))(mold((out \ + 6bda0da5-9b10-4ada-82da-524b09822480)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b961beb3-fa7b-4fd9-b91c-239f69cbcfc7)(content(Whitespace\" \ + c178798b-479e-487b-841a-749464fb5b13)(content(Whitespace\" \ \"))))(Tile((id \ - 93a136c6-b09d-4b15-8b00-d4f06bb96300)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + c311861e-80ca-436c-8789-55ba6c0b16d5)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fb29a56a-0ef8-4287-bdfb-8b44145f44f5)(content(Whitespace\" \ + 6d7edee0-d45a-4f58-a531-a29da2882794)(content(Whitespace\" \ \"))))(Tile((id \ - 88f0e812-40f5-411c-8a59-835cd8fbc13d)(label(true))(mold((out \ + aa66b7b9-ca28-4865-b7d3-568f461a9cae)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 28d36d6d-a119-43bb-8d70-6906b2dae317)(content(Whitespace\" \ + 3f5a7092-d548-4a8a-825c-9268819bbe4a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f599939a-5936-40bb-89ba-7d21ec9a5f63)(content(Whitespace\" \ + 0d5a7f6c-a557-4026-92a1-6bde64f360b7)(content(Whitespace\" \ \"))))(Tile((id \ - 97f492eb-a350-479a-a781-5a08d6abe259)(label(f))(mold((out \ + 174e462f-11c0-4787-a300-09b9e0606098)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - aaf0812f-7972-41b6-8eac-ef5929e5c3f8)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 14587240-3d05-48c1-98ec-999bfa2470a2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 34eaa419-274e-4ff5-bfd0-cce8e39cde76)(label(true))(mold((out \ + 1027ad2a-9348-45a2-aab1-db362dbbbd58)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - d9380579-9c65-4d68-96bf-3abf614f7fe1)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4e933200-863d-4a1c-88e2-8bfa23c82acb)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5caf86f9-67c6-400a-a3ec-80666f040bce)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ae9cf20e-e9fd-4972-8cd6-17fe70d28f57)(label(let = \ + ad93dbcb-2b79-4ea8-9140-71fc17f4882d)(content(Whitespace\"\\n\"))))(Tile((id \ + f4641efb-5ac2-4a73-86ce-4d8253be45bb)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c7ff1ba0-287d-4225-9e45-8c57f590f6ff)(content(Whitespace\" \ + b3ae2558-1ed6-4c2f-9a19-8f3c90d36d1f)(content(Whitespace\" \ \"))))(Tile((id \ - 80f77759-243b-4ab5-937f-081e5b14ffc4)(label(f))(mold((out \ + cb65824d-6678-4e27-b490-6fe1fb699878)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5a385233-70ca-472f-9efa-868afa2fa920)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 6796dd02-e021-4bf4-9af1-a07ef4b1bc74)(shape \ - Convex)))(Secondary((id \ - d110d938-d497-4c04-8e89-066a813de449)(content(Whitespace\" \ - \"))))(Secondary((id \ - ffe2143a-7389-4770-a4ba-5b0979fbb22a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 06d75ddd-e9dd-4ea4-85a0-9cb33d5e406a)(content(Whitespace\" \ + 39c34523-e878-40a5-bc8c-cdd3a3f6f049)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 1e90aa13-be44-40a4-85b0-181ba16ab080)(content(Whitespace\" \ + \"))))(Tile((id \ + fff73ac1-c9d7-4e01-94fd-9ed3f0564eae)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + b6ee7de0-8d58-414c-be1c-33091bb7ca04)(content(Whitespace\" \ \")))))((Secondary((id \ - 834a19b1-916e-4db0-8d77-b31479e219cb)(content(Whitespace\" \ + b5cd6e6e-9aab-4679-998b-f7d1085e0440)(content(Whitespace\" \ \"))))(Tile((id \ - ca32f0d3-79d9-45cb-baab-9a1a818bc52b)(label(fun \ + ada250f8-1efd-4ee2-92f1-b3cb427a1494)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 49378f89-aa16-44d9-aa6f-6e528ad367ca)(content(Whitespace\" \ + 8cfb3720-7e6e-448c-b437-04478b3622c3)(content(Whitespace\" \ \"))))(Tile((id \ - c2dcb59b-085d-422b-b984-96edb2fe98fa)(label(b))(mold((out \ + 4657a01e-d011-4d88-acc3-b9cbb590bc28)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dcbe313a-40c0-4155-89fd-6582504c3f81)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 6c7fbe5c-b345-4db0-ae41-7c98b7d78ea0)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - a1b7d325-6d0e-4afd-a524-d1f2f5e082c0)(content(Whitespace\" \ + e605721b-a27d-4501-8b19-82983084ce1d)(content(Whitespace\" \ \"))))(Tile((id \ - 1dd3c27d-ad8a-4b97-ae84-4a00f750be6b)(label(Bool))(mold((out \ + 6a54d4b4-a690-43ee-aaf0-145d5008ac26)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0d8bce72-a5c2-4493-9f8f-b9befeb6d851)(content(Whitespace\" \ + c68d5b21-d1fb-4a7a-9cb6-d85c71df5a46)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 226181f6-33c1-4475-a7eb-8e4b6d096408)(content(Whitespace\" \ + ba51531a-4f3b-494e-8c04-653a784f9c20)(content(Whitespace\" \ \"))))(Tile((id \ - d28519f5-0922-4439-9fa1-c5f0c3ebf346)(label(b))(mold((out \ + 4a550533-9737-432d-9e87-baf3352eee95)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a1755b32-1b4d-41c7-9f1a-42c71e180ab9)(content(Whitespace\" \ + e3eb9a4e-91a9-42fa-a6be-aa59990d83cd)(content(Whitespace\" \ \"))))(Tile((id \ - e70a5d41-2a81-4b8b-9529-15ada2e2d985)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + ae8e5205-b91e-4886-9a86-1b0f929fc9c4)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a4d0485e-9be2-448b-b811-10012453597e)(content(Whitespace\" \ + a0da3698-12ea-4606-89d0-b8436462a95f)(content(Whitespace\" \ \"))))(Tile((id \ - 6c05f4c4-ced6-4bac-a9c1-ff0cca03b949)(label(true))(mold((out \ + b2ede11e-8ae5-4601-8511-39b74b55fbc0)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2052fc4c-45d1-4ebb-bb45-fc58fe231e86)(content(Whitespace\" \ + f279092e-a9ed-4986-ba12-9c7334c26167)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c69713d2-f7da-4b5c-b8e7-8e34eaa355bb)(content(Whitespace\" \ + 3a262efd-7feb-4e19-93d1-6eacd82878a1)(content(Whitespace\" \ \"))))(Tile((id \ - bcc0d062-fadd-427a-bbbf-393d2c1453a5)(label(f))(mold((out \ + 54033896-bdf3-4539-8149-3987b264fda1)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 73554d67-a033-432c-8893-95c4a1107285)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + b5e74e95-cc04-4c27-adac-4f020ec31405)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f9277e54-1eea-447a-94a2-c46212addbd5)(label(true))(mold((out \ + c820ac31-122a-4958-a0bb-8a8d0baf6e30)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 1d784b8e-e8e1-4428-9fbd-841578540e06)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + fe87eae2-aa00-4eb0-a785-fda1a4dc121f)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f6e71659-ddb6-407c-a44c-fa8ac8b1a95f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bf419f2f-1813-4df4-8df1-06b6521e381b)(label(let = \ + 727a5f75-ac95-4668-9085-b98ec78ab510)(content(Whitespace\"\\n\"))))(Tile((id \ + d30f154d-3759-4ca5-ad0d-d4b7a2b99fc9)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8a12e1d1-a399-476e-9f36-f029c3da0076)(content(Whitespace\" \ + 0b102f64-22f5-4699-9f61-2a7297a36850)(content(Whitespace\" \ \"))))(Tile((id \ - ba5af55f-56ba-4c36-b8b2-4763bd1f8403)(label(f))(mold((out \ + bf0aa727-8efe-455c-b780-110e574f409e)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 231d72bf-ffa0-407e-9a80-dac8576384aa)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ada1e07c-d277-4b01-90c9-3386227cfeeb)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6349b04a-89c5-48bc-828b-601385c813ec)(content(Whitespace\" \ - \"))))(Secondary((id \ - 300af8fe-da24-4862-a697-9fda2ccd15ac)(content(Whitespace\" \ - \"))))(Grout((id 2e1cb501-4636-43ae-a721-3b06106ca7f8)(shape \ - Convex)))(Tile((id \ - 7a863ad1-643f-4ace-abcc-4625e9ea7713)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 325d83b9-7bd5-4d03-b996-98219a52d07f)(shape \ - Convex)))(Secondary((id \ - 914121e7-476e-4557-9696-e8d677b591cc)(content(Whitespace\" \ - \"))))(Secondary((id \ - 08d4b228-9a88-4fcf-86dd-7581a05b4207)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1662f538-d638-42d6-b647-bf9ae68bb3d1)(content(Whitespace\" \ + ac994817-9b21-4f4e-87aa-95a03a6cad5f)(content(Whitespace\" \ + \"))))(Tile((id \ + 5ba369b1-179f-4407-98af-d586fad1b6c8)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + ccfd944f-3870-46ce-82b5-cbc33b7a5303)(content(Whitespace\" \ + \"))))(Tile((id \ + bbf8d0c6-d491-427e-83ae-c75b3db010fc)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 4428fb07-9c36-4477-9c69-466fbd28b185)(content(Whitespace\" \ + \"))))(Tile((id \ + 9d420a65-9363-43b1-b700-ce4a4233b7eb)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 1db2e4ba-abc4-4e92-b34a-e1783befad0a)(content(Whitespace\" \ \")))))((Secondary((id \ - a5131d05-9af9-48d2-8776-4301cee7e196)(content(Whitespace\" \ + 3ed6de05-238b-44d8-97b7-b426127d6b52)(content(Whitespace\" \ \"))))(Tile((id \ - b1ebce05-efb6-4e07-9255-dcf4b9632bc3)(label(fun \ + 41f40d53-d3bf-460c-8970-310ff30cca3d)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ee33ac9f-1e5c-499f-b988-c68f182700f8)(content(Whitespace\" \ + 934c9ba9-32b6-4129-af6d-66464bd39386)(content(Whitespace\" \ \"))))(Tile((id \ - 7b683cf1-7c30-4818-86e1-ad0102609037)(label(b))(mold((out \ + 67607314-a4b3-4b37-bc77-015a22caac19)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7aee4283-eb8d-42f5-bc32-d407f9d046a0)(content(Whitespace\" \ + ccb99062-63b5-4c40-a196-69b672054250)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6ac93f7c-968d-4bb9-8148-f892ae614c3a)(content(Whitespace\" \ + 4e311950-00df-4aad-87f8-4c9995a96d1d)(content(Whitespace\" \ \"))))(Tile((id \ - 04ec40c2-edc6-40e1-ac4d-f1a949691806)(label(b))(mold((out \ + afba7796-49fc-42c6-8c97-978430e3f3fc)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3b678b8d-211a-4fa1-9344-729b448d82bb)(content(Whitespace\" \ + 4f275799-c0b0-4bfc-b77b-4915b2affe8b)(content(Whitespace\" \ \"))))(Tile((id \ - 32608e0e-8fe8-4d33-9b37-28e22c243df5)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + d2a36a8c-6fb3-4261-875e-8822456bbc4b)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a73619dd-e865-4ce1-b758-395688fb1c65)(content(Whitespace\" \ + bfa1515f-4fb6-470f-9ae5-84919b8b59e3)(content(Whitespace\" \ \"))))(Tile((id \ - 12a9a007-8459-4b89-83f8-b0786a30babb)(label(true))(mold((out \ + fc0f19fb-229e-4187-b623-41ff6111b24f)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f1feb2dc-1c4e-4ccd-a46d-9c44fae706bd)(content(Whitespace\" \ + a3f15ef2-e460-4dfc-bb61-fbedba9ab321)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 377b7b06-2219-44a3-a15a-40eefb2e4132)(content(Whitespace\" \ + 7a12e1cc-3f2e-45e1-be62-71b78097957c)(content(Whitespace\" \ \"))))(Tile((id \ - 37969eef-8b95-4739-b8da-f41e471ccfa9)(label(f))(mold((out \ + 8df21149-a38f-49ed-84fe-5f5e83809637)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 596e83c1-9c00-4fdb-b68d-f9384c7b1110)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 0c17f378-49e0-4eb2-b9fb-b90bbb8d740d)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 555b22e7-eb09-4585-977e-99fc324f2db5)(label(true))(mold((out \ + d7b07adf-c1bb-4fef-be0c-920a54d9c5d0)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 9982abb7-950a-4217-be18-20263b12066e)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 888fccf9-8e5f-4760-be1c-d606300b7bc2)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - b8d5affd-d5a7-464e-a101-458fc8ccbb34)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 52c76936-5dc6-4266-9f1c-50728358a6b0)(label(let = \ + 4cc6a91c-e1dd-4f59-ba75-897ebface5dc)(content(Whitespace\"\\n\"))))(Tile((id \ + 44395e54-de4a-4d4a-866d-31c6991e7004)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - fa9b46a1-4671-445e-ba93-4daf9b41dccd)(content(Whitespace\" \ + 345456cd-a4b1-4433-b6d7-aa0cdd8230b4)(content(Whitespace\" \ \"))))(Tile((id \ - 13fcf121-d1c9-4733-a645-16917683156e)(label(f))(mold((out \ + 670001da-ab32-488d-9c1d-abecd21636b3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 3e666899-520e-4d5f-a5b9-741b23fac52f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + d4bc69cd-616b-48e1-8f85-00af9db27d39)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e3916692-423e-42e8-aad0-992b23ba6401)(content(Whitespace\" \ - \"))))(Secondary((id \ - 60a5d2b6-b776-416d-a27a-1f38435c44aa)(content(Whitespace\" \ - \"))))(Grout((id 97f80bde-4e54-4773-bfdd-e1e39bb02e30)(shape \ - Convex)))(Tile((id \ - bdd84f49-6015-422b-bf6b-aa51b66be74e)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 53bd85d3-c103-4f9b-8770-a8581176c6ab)(shape \ - Convex)))(Secondary((id \ - 8aef858f-e556-4ad7-b733-17fb07da11f8)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8a80e9ca-c622-425c-9f32-5fe40508e4dc)(content(Whitespace\" \ - \"))))(Secondary((id \ - 959b2dfc-eb6f-4f46-a02d-7fc57321f8c2)(content(Whitespace\" \ + a649fdc8-3ec7-48a7-81e9-e9f3bf1c066a)(content(Whitespace\" \ + \"))))(Tile((id \ + ed9f4c24-134a-486f-b3bf-6acf3c08a6dd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 49cde020-1dcb-44be-9005-1f389e617d82)(content(Whitespace\" \ + \"))))(Tile((id \ + 3905e512-9aa4-4ab0-b04e-f4786812da9e)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 2654b246-89c3-420a-86c6-1aed89b67173)(content(Whitespace\" \ + \"))))(Tile((id \ + d74ee9b8-3a04-4ede-af2a-a963db19675f)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 5c13fc12-9be4-42e2-951e-68ef1cce1da3)(content(Whitespace\" \ \")))))((Secondary((id \ - 7db316a0-00d5-41f6-a15b-121345f0a3c8)(content(Whitespace\" \ + a6201111-d191-46c7-9586-e5ea7a0d332e)(content(Whitespace\" \ \"))))(Tile((id \ - 430e3009-1f1e-4cba-9ad0-67bf501c5d45)(label(fun \ + 72d906de-8061-4ed7-a353-7c8e6d3dfc6a)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - cb8887aa-ab8c-4ae3-9ad8-1bfce8b545b8)(content(Whitespace\" \ + d413d35c-d803-4c02-ac95-e683efd8591a)(content(Whitespace\" \ \"))))(Tile((id \ - be8254b4-1db5-41d9-a1d0-024dc2fe54aa)(label(b))(mold((out \ + ebc05c7f-07a0-4b3c-ab67-833e556b156a)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 282800ed-cac0-47b3-83ef-ab6843b4ce6d)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 4bd0c0a8-1496-4877-9cb1-f2b5a1ad6f8c)(shape \ - Convex)))(Secondary((id \ - be99f047-d20f-4b32-8c3b-95ae257327d7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 731bf1cb-a888-486e-a008-52cb805d53c4)(content(Whitespace\" \ - \"))))(Secondary((id \ - d734de9f-b9f4-4799-ba57-85b7bd56763d)(content(Whitespace\" \ + e56cab14-55c6-4029-9154-6de5d2dc909a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 558941d2-7be4-4065-83ef-93649f6d8cde)(content(Whitespace\" \ + \"))))(Tile((id \ + 23c9a9af-4407-4213-8ea2-455466c46119)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 0cde4e0a-98dc-468f-8a44-ba2fea56ed49)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 76fe1a22-4d7d-4da9-b93c-723622eb8f52)(content(Whitespace\" \ + 023ddf1d-110e-4830-aecc-8bc19be454da)(content(Whitespace\" \ \"))))(Tile((id \ - db29a378-12ba-4014-88e2-7b1e8788bc21)(label(b))(mold((out \ + 461c4005-40ce-4952-bbd8-f9631528a10c)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4e0e88ad-62f0-4f4d-8187-54829cbd9d3a)(content(Whitespace\" \ + 0cebaff7-5382-4cb5-bb3e-7e445f001f4d)(content(Whitespace\" \ \"))))(Tile((id \ - 6b0463f0-e659-45d3-8a5d-478d3eafa552)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + afc88503-3c16-4243-b465-14e807b66446)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 0e2b6a75-5330-4cef-bdf3-c4daba073b70)(content(Whitespace\" \ + 8c43f148-2876-4ca8-94c3-bd42fe927d4b)(content(Whitespace\" \ \"))))(Tile((id \ - 690f42b0-20c0-41c2-bc14-21afc8e55342)(label(true))(mold((out \ + 8da7da3f-1460-40a0-a975-5c4b6f042873)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 07ed1101-e100-4f00-bcb1-351cdb727daf)(content(Whitespace\" \ + f4806e9d-37d1-4390-8f94-4d1b8446119f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - df7bc075-fd66-4d14-9888-c27d2372de72)(content(Whitespace\" \ + efd7ceff-b80c-43fc-bc38-94c6392e23e4)(content(Whitespace\" \ \"))))(Tile((id \ - e2909eca-2597-49d2-9b20-eda5cb3bc6f1)(label(f))(mold((out \ + 06ec0827-fe93-4fe5-a36a-5357069eb2f2)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d4f0cc4a-52bb-43f0-a22d-c5caa759a828)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + cb5458f9-858d-46d8-b385-e03498a99ee2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2c0ca6fb-edaf-4087-b530-75f284dce06d)(label(true))(mold((out \ + 051ca841-f108-44b7-a7e9-0567c885e11c)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - b03435cc-9239-4a01-9877-8cf2ddbb304f)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 236d7b22-3415-4a10-a0d6-785e958aef93)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - b82930a2-7541-4e3d-9d48-14b74043814d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f764d69c-d357-4aaa-b10b-80245fe61511)(label(let = \ + 3e9d1246-8a0f-424c-b70f-49f31459b670)(content(Whitespace\"\\n\"))))(Tile((id \ + 01d328d8-5a45-44cf-88a6-779b0b5a6614)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e021a7bf-f9fd-49fb-9050-226e8b78077d)(content(Whitespace\" \ + d68c60c7-dd64-4964-90c9-ca00c81958cb)(content(Whitespace\" \ \"))))(Tile((id \ - b4b3dc4f-bcdc-4b56-b1c8-04580c305741)(label(f))(mold((out \ + fef2c656-6496-4d28-91a2-080777feedd5)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ee00a4a4-6dd7-404b-8403-b041de299a00)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 85c1cf30-5e31-469b-809a-fdaa68feb8bd)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6ee4d23b-cbb3-4c17-9faf-8ac1a858a5e9)(content(Whitespace\" \ - \"))))(Secondary((id \ - 222a12ea-0006-4a36-9e2b-701e74fc101a)(content(Whitespace\" \ - \"))))(Grout((id bfea8648-7604-4e2c-a04c-b701e0bfa12a)(shape \ - Convex)))(Tile((id \ - 3406101e-5b28-4a55-a3ad-b2d2e05fa239)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 3f63a985-4fb1-4411-badb-3a71c88787fd)(shape \ - Convex)))(Secondary((id \ - fd038d1b-0f85-46ac-bfc4-c8936b28fa1e)(content(Whitespace\" \ - \"))))(Secondary((id \ - 061a6f1d-8a6a-437c-958c-ee53dffa6704)(content(Whitespace\" \ - \"))))(Secondary((id \ - e9b8e31f-ef12-4386-ab71-737ecc8bb303)(content(Whitespace\" \ + ff8074b7-adc2-49bb-b955-ebffae9334cb)(content(Whitespace\" \ + \"))))(Tile((id \ + 399dd3a5-47b0-495b-a0b3-0adb588825d6)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + e24191c1-bd1a-4198-a7b1-f01bee5b76f4)(content(Whitespace\" \ + \"))))(Tile((id \ + 9dfef0a4-c410-40bb-9769-66b71533bf42)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + a09d3373-094a-440f-8943-680149da8066)(content(Whitespace\" \ + \"))))(Tile((id \ + 86932dbf-7439-46c0-90d4-455c052f4abd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + ff13a0b9-b50e-40df-b336-a3eadb46b42c)(content(Whitespace\" \ \")))))((Secondary((id \ - 79f92bf1-8162-4a61-a2ce-5dc11b32f5b9)(content(Whitespace\" \ + 4c325100-74c7-4bd2-8a89-232f0a0b414f)(content(Whitespace\" \ \"))))(Tile((id \ - ae51cf87-8075-4f34-bc4b-c04a2509c922)(label(fun \ + 2c164671-2faa-4d84-ab2f-c0e341b529eb)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 13f9a6db-c358-467c-b63d-aa80de578827)(content(Whitespace\" \ + 96018f05-2e0a-4eb9-9c97-ec586552a39b)(content(Whitespace\" \ \"))))(Tile((id \ - 53cd4541-4855-4b45-9b57-21a5a55e6536)(label(b))(mold((out \ + 9572156f-8f54-47f7-8575-424ee16e5525)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 419711ed-f234-4d83-a1de-052392ed4f33)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 40486f0a-2699-46f5-b2b3-b5783ddf1397)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0a1c5f44-56fb-424c-b8a8-02be82320d0a)(content(Whitespace\" \ + c3f8dafa-dca6-4ec0-bd3d-dab9ac106a39)(content(Whitespace\" \ \"))))(Tile((id \ - b454ce6b-f260-450f-8fd1-5b061fb59b7a)(label(Bool))(mold((out \ + 7b932435-b4b5-4226-98ef-0ccf56798d13)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b1186b20-55a7-46bb-9e3d-0a2597e8ca10)(content(Whitespace\" \ + 4640e4ab-feec-43ec-966a-2024927f31e6)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f025b713-4446-41b8-b8a1-b9deec7170ec)(content(Whitespace\" \ + 5e3273a2-cf78-465b-97af-ee302b9ceb26)(content(Whitespace\" \ \"))))(Tile((id \ - 6b7eb9e1-a57b-42e4-b4c5-f8c8b7559e8b)(label(b))(mold((out \ + a3f4f6a1-52ad-478c-914f-575b442b1950)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 59076a3b-3dac-452e-bd83-72fddcd63292)(content(Whitespace\" \ + cd921878-badc-4820-8511-ab89a24c2f0f)(content(Whitespace\" \ \"))))(Tile((id \ - e5460c69-8e8c-4c6a-9764-6c2899686e42)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + a8c0da36-61e8-4ce7-9e2d-20afdc25cfb0)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f549d916-2c17-452f-94cb-fcd429bd40dc)(content(Whitespace\" \ + 9a994449-64a3-4aca-8f50-720723c163eb)(content(Whitespace\" \ \"))))(Tile((id \ - 54695a1c-ec86-4a5d-a698-c870608f6b81)(label(true))(mold((out \ + c2aed4b3-9fba-4f50-b40a-d2599b65bd7b)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a5db26f2-f9c0-434c-838c-3e798e9aa599)(content(Whitespace\" \ + 271ee3ad-cfd0-4394-adff-9de4c4c65ade)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bfdeadd1-583c-48ff-a3cb-6a1e25de8e27)(content(Whitespace\" \ + edcd8312-7c21-444b-8465-f865c635d041)(content(Whitespace\" \ \"))))(Tile((id \ - b83e4de4-dba2-4277-887d-7e7342cc2d93)(label(f))(mold((out \ + 3131a2b3-8ad7-4919-aa06-6ddf6f56a2a8)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - fa11dd40-1c46-4ad0-8c2d-cf7714a80450)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 096de3ba-b14f-46e5-997c-d867c81fd6cf)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1afd78bb-0f0c-406d-8315-5a73551c079d)(label(true))(mold((out \ + a1b648d4-1490-4d95-8182-04839dc3f538)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 53a67607-e548-47a7-8ca9-eda64d28b744)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 5d58099d-f550-455e-b274-b8d44b673764)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d3bc7420-82b1-44bf-9f96-8a489511a052)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9fea6b9b-a8d0-40ca-9462-9666163ec246)(content(Comment \ - #ERR#))))(Secondary((id \ - 3c8ad85c-d1e6-42cd-bc0e-8dafcb0ef8d3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 10450a13-ad0b-479a-8e17-72fc85252260)(label(let = \ + 4ba5ad49-1425-44ea-9961-3bb16e514206)(content(Whitespace\"\\n\"))))(Tile((id \ + 96ec8227-f5f6-4d9a-beb1-b6de5b4cfafc)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8fbbccd0-369c-47b8-a053-4bf41f8a5f5c)(content(Whitespace\" \ + ee59cc36-6cc6-4a11-a7b4-863f1e8334b3)(content(Whitespace\" \ \"))))(Tile((id \ - 847efb1d-395e-4107-a3f2-f00078659bba)(label(f))(mold((out \ + 484b4174-f8da-4a33-932a-7644fe992b29)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e4ba3265-8220-49a1-b676-e1b0c7b7e91b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + e8a7e593-6f9f-491d-a3c1-f6fac3e726a2)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8f0f3df3-dae1-4f53-a9cd-cf0fe15fa5c4)(content(Whitespace\" \ + f83f64ae-470e-4f90-9d65-b89c75a4790e)(content(Whitespace\" \ \"))))(Tile((id \ - 18cc88a3-8cbb-4138-ab0f-e21b7e2556b7)(label(Bool))(mold((out \ + c9c237c8-500f-4464-80e6-0b8d7a216447)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 08f5024b-27a6-4292-b774-150a34a9e35b)(content(Whitespace\" \ + c96d378e-344c-4693-92f9-f4f822a91c0e)(content(Whitespace\" \ \"))))(Tile((id \ - edd367c7-2d69-4927-a1ca-9de4cac6e1f1)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 12b2b5aa-dfe0-4ed7-a09b-d661786ba319)(shape \ - Convex)))(Secondary((id \ - a030ef24-0415-456a-bc89-543c379922dd)(content(Whitespace\" \ - \"))))(Secondary((id \ - ecf39cd5-ac32-4876-902d-0fc26899d9c6)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9139333d-80e3-41a6-91c8-5048f147651e)(content(Whitespace\" \ + 620e8167-f2be-4612-8a71-713085cd3c55)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + be87fa75-2b97-4248-9a33-688b219e0eee)(content(Whitespace\" \ + \"))))(Tile((id \ + 4491f8bd-ab06-4105-be04-e3332da642d4)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 54f32652-50c6-412e-ae71-c9b4822dec4b)(content(Whitespace\" \ \")))))((Secondary((id \ - 0ed479dd-00cf-48f9-9c9e-3caff02c00ad)(content(Whitespace\" \ + 97cfd64c-f6ed-4827-b18c-b37ff8ee0ab1)(content(Whitespace\" \ \"))))(Tile((id \ - 973e21b7-9ebd-436b-afc7-0480b31454f8)(label(fun \ + 51d12a97-54a8-42a4-af38-4b46ee5f1fea)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - abae88f5-5ff5-4525-8f11-90e09122b78b)(content(Whitespace\" \ + cdf1bfa9-4c7a-4c90-9219-3bb6cadfc401)(content(Whitespace\" \ \"))))(Tile((id \ - 4af1e9e8-18d1-4bdf-881d-ad039219bef1)(label(b))(mold((out \ + b9caeb1a-13b9-41ba-87a0-7048f4b2c085)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3de8793a-102c-430d-a326-119e531dfeba)(content(Whitespace\" \ + 47d38601-0a62-4421-8186-4725f5e86b0e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b5635065-6adb-44ff-baff-849222e1f9ee)(content(Whitespace\" \ + 404685af-9999-4d72-a83e-f00dee7c3070)(content(Whitespace\" \ \"))))(Tile((id \ - c57cccfe-f3ea-4ff8-b0d0-5557cb6ecc9f)(label(b))(mold((out \ + 5a20a632-5831-4b43-91ee-c89296ac87c5)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 33487927-233d-48c9-bfd6-0368813cb10e)(content(Whitespace\" \ + 27b52b4b-f200-4ea4-a6b4-4a89f1f73350)(content(Whitespace\" \ \"))))(Tile((id \ - 33868a11-98b8-47ad-b7ef-cde8b26ed0b5)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + e46dfb03-2909-424f-a544-eee9173a06de)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c777cfa2-b327-4842-b6ee-886d567092ce)(content(Whitespace\" \ + bc62f67f-2872-48cf-9d3b-d4b161c9713c)(content(Whitespace\" \ \"))))(Tile((id \ - da697965-271a-468f-a241-d2d182c69bba)(label(true))(mold((out \ + 6198cfa1-3918-4af3-93aa-2737f4e2300f)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7f5f7a01-d759-4f6a-8658-6ef3e240647b)(content(Whitespace\" \ + 648999a3-e9cd-4572-a1e8-91069847516f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e45018a7-3a31-4a26-bab5-3dea3da77d2d)(content(Whitespace\" \ + 33ac7908-d5a5-440a-97aa-daa7feae7abb)(content(Whitespace\" \ \"))))(Tile((id \ - 9b183ee0-efce-4c3f-9b41-e6395eb534e6)(label(f))(mold((out \ + 8a3ac91a-9de0-4fb1-a6c6-39f34f5e5ce7)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 91fabbec-4dcb-478d-91a1-617f3c0fec09)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + a6dfbc30-52c0-4961-8359-6a7cbccf5050)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8ead3805-23d3-4ff4-a827-fcb998b0b815)(label(true))(mold((out \ + c1d5a8cd-0c31-4545-b4a7-668574a2262e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - d1051422-7f8c-478e-8cea-291b10007dc3)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + cc7f868d-169b-48a1-8776-708fdbb271f6)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cc586bd6-8b7f-40eb-b338-af3e2832626e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 002eafbf-5cc8-4b0d-ad74-54a1bd7bed62)(label(let = \ + aefaefe0-c489-459c-a90f-676a273e45d3)(content(Whitespace\"\\n\"))))(Tile((id \ + dfb2c3d9-d26c-41ac-acd4-331d8f18fb38)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 10def638-b735-41b9-a4b4-44958a75431c)(content(Whitespace\" \ + 5c1ca163-3b80-4b33-9131-e26af61def24)(content(Whitespace\" \ \"))))(Tile((id \ - 34227ecb-5f39-40a3-b527-77e3060fc15f)(label(f))(mold((out \ + 015a9c9d-49fa-48f4-af81-41f8a9176910)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2e4fe4fb-fe0b-499f-95dd-4c18f2c86746)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + f3229705-7b06-4a16-bf2d-ccad56fdd66b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - cfb7cf79-3941-4e7d-b713-0652acb4798d)(content(Whitespace\" \ + c20b44cd-647b-4dd4-a55e-f52e09387e3c)(content(Whitespace\" \ \"))))(Tile((id \ - adedeb3d-6221-44c5-8f8a-96953097d926)(label(Bool))(mold((out \ + 0578cab9-80e2-469e-a804-283cf1ad16e0)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 60eabbf0-6e8f-40b1-9756-c74fb9dfd772)(content(Whitespace\" \ + 4dd87f5a-457d-4000-84d8-6981913a19a3)(content(Whitespace\" \ \"))))(Tile((id \ - 2d940b34-55d1-43d2-9651-6229281f850d)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - ccbe068b-76b5-4c11-a5de-02bf5c12511c)(shape \ - Convex)))(Secondary((id \ - 309ba515-2819-477c-9d4a-63a3820fff4d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 7d0ca20b-3b04-4dec-9e51-f68ecf607766)(content(Whitespace\" \ - \"))))(Secondary((id \ - fa6b22ec-4842-44c5-86cc-053bb5676bd7)(content(Whitespace\" \ + 4db7eb0d-f6bb-4382-8e9d-7d5855f2e45a)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 4c5bd26c-d016-4aab-a760-87732dc66df4)(content(Whitespace\" \ + \"))))(Tile((id \ + 6a34b025-738a-4211-b0bb-e3aa3bcfaf15)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 2762c599-df68-46c2-ab8f-e71ee885f3ff)(content(Whitespace\" \ \")))))((Secondary((id \ - bc092c89-6f2b-4334-9d03-33fcbf3bcf92)(content(Whitespace\" \ + 5b312070-fc46-4386-9087-2e4eb7a90a40)(content(Whitespace\" \ \"))))(Tile((id \ - f240ac06-da74-44da-b83d-384293baab04)(label(fun \ + c31efc42-92bd-4b1f-98d9-f8403b2bd353)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - b510947f-7fe8-436a-9896-e92cfc6e95a8)(content(Whitespace\" \ + de4d1d1e-a36a-447c-b4a7-b6d388726378)(content(Whitespace\" \ \"))))(Tile((id \ - 79747594-21f5-4d9c-837f-2db67ce70c0e)(label(b))(mold((out \ + e705d8a6-48de-40ac-bf4e-4a993716e2f5)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e534f388-e8b4-43ca-bfc2-9d21ece36b2f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 356dadee-c7d8-4161-a582-4908e0f40864)(shape \ - Convex)))(Secondary((id \ - 030f1466-5e09-461f-915b-7d8409966d8a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8a5cbd13-b805-460c-8b27-f403a65f9c49)(content(Whitespace\" \ - \"))))(Secondary((id \ - a7060bf6-c262-43c3-b510-c0d7155c9a77)(content(Whitespace\" \ + 9faf313a-e902-4342-8bd8-60e31698845d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + c70579cf-0afa-4105-a2d8-e1c1e4ef7757)(content(Whitespace\" \ + \"))))(Tile((id \ + 1d95e5e3-df69-4520-99af-3d7ddf297ae8)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 086964f8-ab1a-46c6-9f7b-9e1dbc607452)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 589cfde4-d192-4a10-8d64-2b696c08e274)(content(Whitespace\" \ + a11341f9-b8a9-44e5-a04c-2579378cfd2b)(content(Whitespace\" \ \"))))(Tile((id \ - 33459de8-1b3b-4b90-9188-34565416cdd3)(label(b))(mold((out \ + bce55a9e-3000-4e8c-8fe4-8fc0a45dbb07)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cf03ebe5-2c1a-4cda-b22d-8aae648ec611)(content(Whitespace\" \ + c6c901f2-2d3d-4788-ab41-bb14f9d81d70)(content(Whitespace\" \ \"))))(Tile((id \ - 24f7b13f-5702-4682-9271-d55c54c4c1f5)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + dd2780cf-f96f-4b13-9520-b06e352c1184)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bd2dedb1-8524-4186-b94f-27880af5efb8)(content(Whitespace\" \ + 2802c239-3dce-4afd-8b3d-a5f17b6c49a4)(content(Whitespace\" \ \"))))(Tile((id \ - 65e6daa9-88ec-4bc0-85e6-720617dfd875)(label(true))(mold((out \ + 554e55fb-140a-41ac-9297-bb637b418b78)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e9e62ff5-7066-41df-aa7f-ac0045157f1d)(content(Whitespace\" \ + 0f1edec5-fa60-469d-a10d-8e83f7deab1a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f4e2682f-8ecc-4221-a1de-9ad09065cc20)(content(Whitespace\" \ + 27eb87fc-73d2-4af0-89c6-c3e9f18db8cf)(content(Whitespace\" \ \"))))(Tile((id \ - d8a5286d-e3c6-4032-8fda-676d2c62b47c)(label(f))(mold((out \ + 64c54a8c-0bf6-4a8f-824e-0c6852b5f9ee)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 1feb8b74-da74-437c-a190-1b721dccc0d5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 3978b95b-b042-4db4-87b7-cfa0c6d07541)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - b029c2d3-b880-44da-846f-783ef7114058)(label(true))(mold((out \ + 01389a6a-40bf-481a-bdf8-292731c99c71)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 58031230-cd07-4bbc-bbe0-8831a15d1739)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4baf1e3f-8382-4e98-8e80-184b54aec095)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ef306d3d-51e8-45c5-a2e9-06fb5c51c094)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ce8b6223-a04a-4fc8-bafe-929344732e75)(label(let = \ + c0dc0ee4-46c5-4477-9cc6-807e9177f9a4)(content(Whitespace\"\\n\"))))(Tile((id \ + 51b97558-4055-45df-927b-fb265bdf5bfa)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 540caf79-e72e-4ee6-aa19-5d937511cefd)(content(Whitespace\" \ + 2b8cae90-b0fe-4b4b-b588-3ab3f0179e6c)(content(Whitespace\" \ \"))))(Tile((id \ - cee423a7-829a-462b-9e9c-6358aa538d77)(label(f))(mold((out \ + 14a62537-ed95-48a3-be96-4cbd3180dfcd)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5f386074-6bd9-4dad-ad40-d1c0520a00ae)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 06c401be-259f-4a9b-b9d1-b1c150e3a242)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - de59295a-8148-40fc-ad40-ba710271d679)(content(Whitespace\" \ + 9e49fe6b-6c3a-490a-91cc-877850d74b7a)(content(Whitespace\" \ \"))))(Tile((id \ - d639b433-4528-4dab-8cae-32118b2788c9)(label(Bool))(mold((out \ + aafc41d1-3e03-4087-9449-a2bf4ed30c18)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - abc9163e-b23b-4a34-bf14-356bf63dd72c)(content(Whitespace\" \ + b9de13d2-fdb7-495f-8439-3b556350ec62)(content(Whitespace\" \ \"))))(Tile((id \ - 23b041df-c458-40d5-9693-d3069569941e)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 96a1c24e-5803-4601-b4c3-1c5dacd7adf4)(shape \ - Convex)))(Secondary((id \ - e07b7063-17c4-40f7-85b9-613e58020174)(content(Whitespace\" \ - \"))))(Secondary((id \ - d7ec1800-e79e-416d-b565-2ba6f602e882)(content(Whitespace\" \ - \"))))(Secondary((id \ - 88e1b34a-9dc5-49a8-aea3-6ccf72a76c14)(content(Whitespace\" \ + 1f096804-096d-4e60-a161-aa5b8fd96038)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 1f258ee2-fade-4ba4-8bd5-7b29b09d788a)(content(Whitespace\" \ + \"))))(Tile((id \ + 7b548d5f-1146-4d20-99ef-463d3ef58ee2)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 28e73001-ebd8-4fde-9258-f4c1246abea3)(content(Whitespace\" \ \")))))((Secondary((id \ - 03e17ec5-2a7e-4ba7-beaf-06ce0a8c8bf7)(content(Whitespace\" \ + 7d2fb8a0-183b-4461-94c0-22094f91e3da)(content(Whitespace\" \ \"))))(Tile((id \ - 52731693-ca1a-44f8-bb49-c956d5eea584)(label(fun \ + ccce627e-8ed9-4548-8b20-fb21c2336f88)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - e984ac11-b7db-46bc-a73c-e1bfee8ee762)(content(Whitespace\" \ + a98e10cf-083b-4fd2-b1d0-8b48158594d4)(content(Whitespace\" \ \"))))(Tile((id \ - b1320a35-0415-4b66-8741-5f9faabdafa4)(label(b))(mold((out \ + 8304c105-574b-4ff2-8bd0-49ec6fff1ab1)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f4b15672-aa8f-4001-b506-3b0d632e7887)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + bfbd35de-d70b-4722-83cc-d8d4274e38c8)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 78a0d7bc-a7da-4f3a-a46d-2f1ab36651a0)(content(Whitespace\" \ + 8eb4dc36-4e5d-4fde-b4d8-825f6a72a669)(content(Whitespace\" \ \"))))(Tile((id \ - 9c67e498-55aa-4221-94cb-12b4b17cb677)(label(Bool))(mold((out \ + 9aa05c03-3d06-4fbf-be2a-4e108738f262)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4cd8a778-6d6e-496d-8cdc-a91177ec34cc)(content(Whitespace\" \ + 03545f59-d1d0-458e-a76c-2f1b3b7f597d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1ed08aee-b8c3-46ab-86ef-20c19c1070fd)(content(Whitespace\" \ + 27cdcb58-f75e-4d2c-8eaf-bbba044374d4)(content(Whitespace\" \ \"))))(Tile((id \ - 9e461602-eb6f-4837-ba1f-f1c1aae17d5b)(label(b))(mold((out \ + e3c8fece-e098-49cf-9aae-f190fdfb8734)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e51c2a8d-d47a-4d7b-ba9f-9ce6b11ff755)(content(Whitespace\" \ + ee56f34e-620c-4943-8e54-35c18c629342)(content(Whitespace\" \ \"))))(Tile((id \ - a0a5f279-8b84-4a83-b12a-5398d19d8196)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 98682a79-5211-4c97-a12b-c19d576a8d53)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f1aae1ab-9373-4309-b756-28aa629b5989)(content(Whitespace\" \ + 3f9aa75e-0848-4a4d-bde1-881c1f0089f7)(content(Whitespace\" \ \"))))(Tile((id \ - 33484890-2dfe-4f33-a4bc-cabc060f846a)(label(true))(mold((out \ + 2bb60bea-2c86-4c12-9b19-968ff80f143e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b932b818-c84b-4ca4-8612-ff0cb53b26ee)(content(Whitespace\" \ + 7175ac98-f0d1-4822-beea-f8d33f878cf7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - aa3d6c49-42b2-41cf-b8ac-083b693ca537)(content(Whitespace\" \ + 9a3fd89e-dfa5-4ddf-9874-5ad61930698d)(content(Whitespace\" \ \"))))(Tile((id \ - 230c52c7-6470-4756-ae9f-4b9d35485b53)(label(f))(mold((out \ + 5e8b3a5a-61ed-4b75-b49d-5a43a09c0f52)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 807d3924-d03b-445a-b24b-7295b4db0436)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + b1f8562d-3e9e-4223-b21d-6f58d4bcc059)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e8b3278f-6914-46b9-8dca-3dfd5762a5a5)(label(true))(mold((out \ + 40d534dd-11e0-40a1-90cc-28113e7763ff)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - a16437a1-ef9f-4168-a489-5024543cf24e)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 0e6526da-0046-4138-94de-e82946772cfc)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 7f71fd7c-ad20-4f09-a306-2153a6870280)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a5a5c919-1120-49b6-8072-0a6f60656704)(label(let = \ + 2ef640fe-5954-4cbb-b021-55b3b587cc04)(content(Whitespace\"\\n\"))))(Tile((id \ + a19c56f1-a816-4e38-aea5-0d6f420485a9)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 139f8553-a9fa-4ecd-b51c-5f19d4bdc376)(content(Whitespace\" \ + 98128ccf-eb80-4274-a9f8-11446c56b5b5)(content(Whitespace\" \ \"))))(Tile((id \ - eb8399c9-8e9b-4f50-8673-15d764bc7429)(label(f))(mold((out \ + e7ea6026-d6ba-4f07-a0c8-d047bd2f7345)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5786939b-f2d2-4c23-81d9-8851344edd85)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 44557d34-334c-4d06-9385-51e758dc83e7)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - f780a436-b288-4066-ad25-25539b6a4aad)(content(Whitespace\" \ + fec09f88-6801-42a7-9175-9ef7303246f7)(content(Whitespace\" \ \"))))(Tile((id \ - 0e575c01-2cda-486f-a77a-bb3ca218c75a)(label(Bool))(mold((out \ + 2c2a1818-84d8-4c58-bc5d-3b33005ddb1d)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2635219c-ea70-4c49-b775-392873cb7458)(content(Whitespace\" \ + 57a45db0-c303-4c3a-bf1e-01f25e6a0ed2)(content(Whitespace\" \ \"))))(Tile((id \ - 49004b33-f151-4e09-8d1f-c8fb71fb8e74)(label(->))(mold((out \ + d7063e08-d506-42fa-ac6c-4ae28161a2d9)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1771e8b3-6fd3-4ee1-88fa-eda3484af174)(content(Whitespace\" \ + 10b217d4-3767-4336-ba63-ba8e6b3cb32f)(content(Whitespace\" \ \"))))(Tile((id \ - d6a736ba-1150-4d21-88d0-08ce100d2e9a)(label(Bool))(mold((out \ + 85bd9a4c-faea-4a76-b8f0-cf6d37a6bc08)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 3dc11eb9-1c13-4155-88f9-7e404000b193)(content(Whitespace\" \ + 2bfe4276-4545-4fd1-a956-8199488be84a)(content(Whitespace\" \ \")))))((Secondary((id \ - db87b2bd-43e1-44b3-8982-01e87cce4132)(content(Whitespace\" \ + a0123bb1-437f-4087-bee7-a806c490d512)(content(Whitespace\" \ \"))))(Tile((id \ - 8be2a7db-bbe3-4d84-afd6-bd4870c8fbac)(label(fun \ + 19d73c19-8fa2-457a-b7af-2df583748713)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c7f3772f-596e-4e5f-a152-736896e548cb)(content(Whitespace\" \ + 3f1e9ee0-1072-41a4-a399-b8883997ad74)(content(Whitespace\" \ \"))))(Tile((id \ - 8be53eff-63b1-4c09-9265-d4e7b070ca60)(label(b))(mold((out \ + 8ff514ba-39bc-4814-b9b2-b2f96459433e)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 24418b5b-65c1-4a5d-b21b-10a3ede829ea)(content(Whitespace\" \ + f4644458-7e5b-4845-a044-ae6258f9b034)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e5c60fa6-987d-4192-ac64-819873e0e19e)(content(Whitespace\" \ + b8374dca-8331-4521-bb0d-fa528029b446)(content(Whitespace\" \ \"))))(Tile((id \ - 004ff029-4290-4c1a-a043-972e79144369)(label(b))(mold((out \ + 5600f0d0-e653-454c-8c78-7ef3c536ccb0)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0d8de894-511e-486a-9e68-1348ae2276d0)(content(Whitespace\" \ + 5ffd63c6-4a32-4a55-9ae1-4678ab18c632)(content(Whitespace\" \ \"))))(Tile((id \ - a8b7f3fa-e086-48f0-90c2-fd03eebc1626)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 9a0d1541-040f-4005-bc06-0de95750ec66)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a8335f03-9b62-408c-8b67-1586b1808b0b)(content(Whitespace\" \ + e388c305-99b7-4e44-86a1-3f0d2f6db4f1)(content(Whitespace\" \ \"))))(Tile((id \ - 843ff32c-c9f3-47ba-9397-134ca2634b5a)(label(true))(mold((out \ + 8ce8a964-f121-45fd-902e-2d3c921b202e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 40d5ca79-00bc-4d8d-b1e7-f51ad765aac5)(content(Whitespace\" \ + 2b9a92dd-ee7b-438f-b11c-8c933b4c5dc8)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4c634236-d833-4c55-87a8-10a074115af1)(content(Whitespace\" \ + 3cdf446c-32f8-4537-b8e2-d19635cba9e3)(content(Whitespace\" \ \"))))(Tile((id \ - cb424cc9-8cf6-4bef-9657-c17e2727bf88)(label(f))(mold((out \ + 885c9638-f14c-4209-a18d-0027b9d60ee9)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 27795b79-de23-4499-a81d-421966b8dbef)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 0959e0af-9d29-4781-ab5e-cb4e47eec8ac)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 483d5d5b-e649-4fda-84ca-e6ea2b3f767e)(label(true))(mold((out \ + df1ede34-f81f-4872-b3a0-40e465e76686)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - b2f02c29-b676-4de1-975c-847fe2d569d5)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4d2fa6a7-1ce4-452d-9d9f-87c6e90ff090)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5bfaf192-0044-460a-bfee-5eb8b975cf4a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e9052dcd-8da9-43d4-8645-d6fcac723d17)(label(let = \ + 2eb49856-902d-404a-b748-5feea0ca1768)(content(Whitespace\"\\n\"))))(Tile((id \ + 7a8e41c6-5e9d-44cc-b4eb-7cbfdacc1553)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 353a4ec8-f2ef-4f11-acd3-e00f4f517d0d)(content(Whitespace\" \ + cfdf24e8-9a1e-4706-a496-1d4e02d66678)(content(Whitespace\" \ \"))))(Tile((id \ - ff603e69-8b64-47fe-bf43-4214de89096e)(label(f))(mold((out \ + 2c18ffbd-d1a1-473d-97ad-5f7ab8b2c912)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a83f0099-fd53-41ef-a4cd-243830c35b16)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 4464bd4d-b398-4b81-9b91-1c1d1bd359fa)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 58c882c8-817c-44e4-9c5b-d02967d09cff)(content(Whitespace\" \ + 83f46475-1e0b-4ef4-b673-b8f1a32d41de)(content(Whitespace\" \ \"))))(Tile((id \ - 944ae72f-edfa-4c02-bfcf-143ee540a904)(label(Bool))(mold((out \ + e9702d52-7f41-4388-af63-657a7220eaad)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 949a8619-56d3-4784-ae02-8e5ae1d73040)(content(Whitespace\" \ + 76b34502-9430-45ed-a772-5fbc6a9be180)(content(Whitespace\" \ \"))))(Tile((id \ - f8b627d7-fd7f-4486-b2d0-47a4f59d2973)(label(->))(mold((out \ + 20ece6f4-e474-4ac2-8694-e3dc032735b4)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3ab54a3f-2d2e-4e59-9148-f64309490357)(content(Whitespace\" \ + 2003cf1f-e928-41a1-a5e3-099d2b178a7f)(content(Whitespace\" \ \"))))(Tile((id \ - 696f179b-9f45-4327-a6d4-878b7d134c8b)(label(Bool))(mold((out \ + 13542ada-13e7-4363-a5f6-26c5368b23c3)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a2435252-6b4b-4121-8341-78e4fbcccca3)(content(Whitespace\" \ + 650ef260-46ab-48b4-8c90-ec74bc051db4)(content(Whitespace\" \ \")))))((Secondary((id \ - a143f8ac-6c26-4f74-9145-2a74fa041f1b)(content(Whitespace\" \ + b4529b9b-30ff-4d26-bde9-1335db00c6c0)(content(Whitespace\" \ \"))))(Tile((id \ - 9ec68868-5105-46e4-9056-5aeb383d4679)(label(fun \ + c6f437ed-3ead-4a0f-a94e-4c26491aa33f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d3048a5e-9bbf-43b7-933d-be81f39adcf4)(content(Whitespace\" \ + 399a8732-ec09-49cf-a7f8-8328d63f0286)(content(Whitespace\" \ \"))))(Tile((id \ - 210a8714-8e9e-411f-9ae1-5c74bac00093)(label(b))(mold((out \ + f90f910d-d864-4376-bba1-541c48e7d7b3)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2f5a5a94-c9ad-4824-aacf-1cac8d5361cf)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 2ed40092-401e-4d29-a9a1-1e68171cb073)(shape \ - Convex)))(Secondary((id \ - c63ef644-91e1-4e9d-82c3-4bc7bcde981b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 16217a54-e0f3-4705-a22d-4a19de000394)(content(Whitespace\" \ - \"))))(Secondary((id \ - 36f1e72c-9c4a-4faf-aded-a88a176d4abd)(content(Whitespace\" \ + 86642454-aab9-4523-ab80-bdd57e8959d8)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 77a85ab8-e478-4505-90ef-92be37a3e9ae)(content(Whitespace\" \ + \"))))(Tile((id \ + 161cc43e-ec94-429e-b91b-c19ba5b78531)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 150ae360-22f9-404a-89d0-5e3ff3b04a35)(content(Whitespace\" \ \")))))))))(Secondary((id \ - eb763170-c55f-47a1-b63b-1e0466b17806)(content(Whitespace\" \ + 9483c348-a09b-47fc-a3df-0ac8e8b889d3)(content(Whitespace\" \ \"))))(Tile((id \ - d15e3c67-be75-4070-81f8-6293e96755e9)(label(b))(mold((out \ + 60f2da67-9cbd-46e7-92bd-a4d6559271a7)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - da81336e-2f36-4358-a49c-6aa2d5c2a613)(content(Whitespace\" \ + 9fc8d718-c1e2-4abe-9c3b-80ae5f211b1e)(content(Whitespace\" \ \"))))(Tile((id \ - 79f09050-aa99-4ebd-8195-1e99f7c2c0a1)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + bbac6b16-cb7f-4010-ba4e-72fb7680e08e)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a5af519a-a045-43e7-8dcf-e3557a425bcb)(content(Whitespace\" \ + 18b1c92a-a5c2-4e65-bdf4-bad8219ac43a)(content(Whitespace\" \ \"))))(Tile((id \ - 133b8fa7-2c8f-4df8-b7e7-2fc18ebcd2f9)(label(true))(mold((out \ + bdb128b4-b722-4d11-b512-4a12bdd52bc5)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - bd4db6cf-e8cc-4f0a-97f3-88ab28476947)(content(Whitespace\" \ + b1f07ebc-d87f-44bf-bf6e-bfd25fc0a1d0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f7f5dd63-8fe4-4ad1-86be-7fc537a46176)(content(Whitespace\" \ + e91971ff-13df-4635-915f-bb0848c342d0)(content(Whitespace\" \ \"))))(Tile((id \ - ec8aa607-2390-4953-ba7c-2f5afdfbde09)(label(f))(mold((out \ + 87cb2b65-acd0-40b7-8c78-029134db7160)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 9d2ff58e-d2d0-43be-b2c0-583ccae1ae7e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + d108db24-3242-40e0-bf0a-b0e7e43c608e)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - bbc53dcb-5eb8-42f0-b216-c6000d58ce42)(label(true))(mold((out \ + b485d614-c9bb-4bc9-a203-16b73ebf346f)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 4364fd68-68e9-4574-9894-16a3956e95ed)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4ddd71d0-4bb2-48d2-955c-ef3328946282)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 36328de6-3b6f-4cfa-8b92-39e50750b06c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e587d340-f37a-4afd-ba21-2cc57548e22a)(label(let = \ + 2152af54-f0c0-470c-8813-e58a1d7bbb60)(content(Whitespace\"\\n\"))))(Tile((id \ + 65043ff3-6dce-41bf-86f4-e2f2702de6fd)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b97a2200-2074-4adb-807f-52356b9fb435)(content(Whitespace\" \ + e5027c61-0c83-4387-aad8-7c57b1e02b32)(content(Whitespace\" \ \"))))(Tile((id \ - 7b53075c-8209-4948-9ce7-776096b5fd82)(label(f))(mold((out \ + dc7273f2-0d50-458a-8f9e-985aa162d16a)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 805b9744-3bee-4bdf-b0f2-67b029f95bb5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 61dcdae9-5537-4509-976f-31ea5a31dfa5)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3058802a-3ce1-4d35-9e01-b66285ba12cc)(content(Whitespace\" \ + ebaaf9bc-ac82-485f-9d92-4646e148468f)(content(Whitespace\" \ \"))))(Tile((id \ - 847c44a3-e6b2-4dc1-b2ac-bb75d953921c)(label(Bool))(mold((out \ + e1430b36-4e7a-40d4-81ec-be2fb3c46e55)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - aa2bb2fb-b9a7-4f6f-979c-22d0c33256ab)(content(Whitespace\" \ + 9279ef56-b02b-424d-8af6-20eb45f33767)(content(Whitespace\" \ \"))))(Tile((id \ - 6bdfb38f-de93-4876-bbe8-022c27d3e62b)(label(->))(mold((out \ + f1f6ca79-b481-4b65-8747-127671befa58)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 353c26c9-5fe4-4e23-90d2-b1a3afc4dd37)(content(Whitespace\" \ + 24e89e5e-4f12-45b6-9d27-cd79d024ab3c)(content(Whitespace\" \ \"))))(Tile((id \ - 7bb6e07e-5595-4d66-9372-56fdef1c0817)(label(Bool))(mold((out \ + 64cec726-87a6-495b-bd78-f2682f07d4c1)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f89ee9c0-d510-4374-822f-9a5eb871a98e)(content(Whitespace\" \ + abe4350e-19f8-4d6c-ab9b-29a77b2f50f7)(content(Whitespace\" \ \")))))((Secondary((id \ - cb72487c-b3a2-4355-973c-eda6e6629972)(content(Whitespace\" \ + 2f2577f7-9dd2-4064-81ee-ecbc3cb8928b)(content(Whitespace\" \ \"))))(Tile((id \ - d93e1d3c-1503-4fd4-9265-469568dc7aff)(label(fun \ + 68eda258-5832-4cd8-8694-37321878756e)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 8e9eaa84-1980-49df-a8eb-375256e3a927)(content(Whitespace\" \ + e502e437-a087-4576-8436-27f3213a2cd6)(content(Whitespace\" \ \"))))(Tile((id \ - d5a87173-b27e-4664-b6f6-a5ab393bb0bf)(label(b))(mold((out \ + a6f283b2-c95d-49bd-a8dd-55947e2a1270)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 98b23989-7819-4d0e-9568-380f4a50c624)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3bab8d58-d0ad-43f2-b149-d84f78dcd61c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 35022138-f989-47b3-8f71-79ee5281736a)(content(Whitespace\" \ + 8bca23ab-78c4-4ea3-ba15-c0223e504d33)(content(Whitespace\" \ \"))))(Tile((id \ - e909e184-ef9c-4329-9dd4-768015c862b5)(label(Bool))(mold((out \ + 3b819b9d-669e-4d1f-ad5e-fd2dfce7f12d)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - dfc0b1b2-b2e7-427b-b2e0-0c0c3a042bf1)(content(Whitespace\" \ + 35c887e9-f52e-47d9-8121-4be61869454c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e25285d2-3ef0-4fc1-a72c-db5ddf07f61b)(content(Whitespace\" \ + 3b036e98-60cf-472a-9e8f-01c5ced8a8d8)(content(Whitespace\" \ \"))))(Tile((id \ - 28c7908c-e262-4380-afc4-db24ef5f8d1d)(label(b))(mold((out \ + 0bb2edf1-0cc1-41f9-8e9a-d80e8b0637e3)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 607388d8-3378-4b51-9a7f-8b7d9668dfe3)(content(Whitespace\" \ + 05d20c47-aa5b-496f-b72d-6d9447cc6d70)(content(Whitespace\" \ \"))))(Tile((id \ - 1e7c7068-6952-4d3a-a24d-cfe1720cd7ac)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 8a5b8d39-1c51-45e9-a788-cecc9ffb450c)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 4a80ae70-7a60-42b1-8ee4-906ad68625c6)(content(Whitespace\" \ + edd46a22-d261-4d93-a5b1-9b5724cdd9a5)(content(Whitespace\" \ \"))))(Tile((id \ - bb91703d-865e-4da7-b4ea-6ab0168bee00)(label(true))(mold((out \ + 13273931-f8a8-414b-97cf-be7a23d73d5e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 87a2590b-ef12-40b8-82cf-831ce54e7605)(content(Whitespace\" \ + 6d496488-09c4-408e-821b-ecffe9f69dab)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 519c4134-b611-4e2c-bc61-1ce1fc037a66)(content(Whitespace\" \ + eba3c130-0ecb-460a-acbc-853a850a1828)(content(Whitespace\" \ \"))))(Tile((id \ - 480ec920-3cbb-4a57-8c18-4bfb5f7b7585)(label(f))(mold((out \ + 29d0aa2d-ddbd-4757-abc0-061e584172c0)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e9396887-20a0-467f-ba0e-b3ada37e8000)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 54dd5f77-6e58-45bd-9033-50415c188e20)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4b4482fc-f137-4c88-83e3-14e58f1ccc63)(label(true))(mold((out \ + 26d73d95-02b1-46bf-aadf-46aec79fd5cd)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - f7a9587c-a02d-4cdd-9a8c-4fb3c5713bbf)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4f7a1bd8-b0ef-409e-9271-181dcb58722b)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e21366f9-7e34-4cc2-91fe-97b547efaf04)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d3450794-e083-4bc3-8c39-d8bc120cfc52)(label(let = \ + 4d3f9222-9f37-4c30-8509-f9dc9613027e)(content(Whitespace\"\\n\"))))(Tile((id \ + 8c441a61-9777-4b1c-9259-86b90fbc4718)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 08462db6-6625-4c95-8042-c53c96efd1fe)(content(Whitespace\" \ + 5e6f8aae-da65-45cc-9786-f1823b777da7)(content(Whitespace\" \ \"))))(Tile((id \ - 2fe1d1ee-8b06-4266-8ebb-498e75a798fc)(label(f))(mold((out \ + 6147717f-ce5c-42ad-adc7-da64a8bd061a)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 79dde745-c7e1-4a32-96ae-c123339e98f2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 7d27c56e-9cf7-422b-9e8d-2fc2a9eededa)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 22664132-0459-4655-9515-f67ce37b3e07)(content(Whitespace\" \ - \"))))(Secondary((id \ - 75be864f-c108-4c59-bd87-096f8d494334)(content(Whitespace\" \ - \"))))(Grout((id 527d475f-3dd1-402a-840a-d61bb10bb04d)(shape \ - Convex)))(Tile((id \ - b7b6082e-0469-40ec-a80f-a7a34c2aa61d)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 1db23200-8e64-4e54-bd1c-7b5cea608b19)(content(Whitespace\" \ + \"))))(Tile((id \ + cfc31226-9350-4c16-a3f8-050d949a08cd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 742f7569-f38a-4c57-aa28-d88b71a6f552)(content(Whitespace\" \ + \"))))(Tile((id \ + 12f7912f-1216-41db-b8a2-eb9671e4d468)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0b9c3818-d16c-412b-86af-335c4ce351b3)(content(Whitespace\" \ + 3be812d9-6334-4edb-aa0a-4a806380e5f2)(content(Whitespace\" \ \"))))(Tile((id \ - 4da3cd0e-7dd5-46d4-b9b1-d031b7ea89c6)(label(Bool))(mold((out \ + 1215de91-8b24-4fe1-a090-de59d0033f4e)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b0c1483c-8d31-47bf-8f2f-f43aa5884c22)(content(Whitespace\" \ + 60fe0844-8a99-499f-a35d-7856f719d576)(content(Whitespace\" \ \")))))((Secondary((id \ - 3eab2831-982a-44e3-a1d8-09b8b659ac3e)(content(Whitespace\" \ + d39b46db-5f4f-414e-a73d-31b5ac910179)(content(Whitespace\" \ \"))))(Tile((id \ - 6d4d20a4-a534-49c5-9a32-76e09040eb1a)(label(fun \ + eca88e9e-819f-45b7-b0a3-1443665ec3e7)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 7a04c6e0-2b87-470b-8593-609afeda4b4c)(content(Whitespace\" \ + 92b93201-1df5-4103-beb5-6ef07e71d16c)(content(Whitespace\" \ \"))))(Tile((id \ - b2dbb36a-f170-4317-9006-bb355cb2f29c)(label(b))(mold((out \ + f8ac367f-8937-4b64-884c-6451195c9543)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 2d891a66-59e5-47bf-8d5d-4e81fd885dec)(content(Whitespace\" \ + f2b8f686-c841-43a5-9d3f-9ab5df0e8792)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 772da6b2-4737-40aa-9814-cf8e6a301175)(content(Whitespace\" \ + 0848f952-375f-4ca0-8e11-5c74437f877f)(content(Whitespace\" \ \"))))(Tile((id \ - 1b7cf3d2-9b01-4ada-b516-3cb6d7385476)(label(b))(mold((out \ + 78ac8eb3-eff9-4e8f-a741-c2910cb15036)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 379f6e7b-a8c3-4660-8303-9c3b0858d87d)(content(Whitespace\" \ + 8be47997-bb67-4709-8576-d501c9c6f7b9)(content(Whitespace\" \ \"))))(Tile((id \ - 873dff3d-0bea-4edb-ac34-db16ac06ef8d)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 581e9b22-4c79-4c52-90bf-e728af94a949)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - db991128-d193-4847-8938-4f806c8665fe)(content(Whitespace\" \ + 4c250464-befe-470e-98ca-80464f349317)(content(Whitespace\" \ \"))))(Tile((id \ - b9d56fe7-3f54-4534-8bcd-49e2ef006a26)(label(true))(mold((out \ + 22f047c1-f8e8-45fb-8195-672ef54f926b)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6a81ab4a-7186-474b-beec-0805abdbdbf8)(content(Whitespace\" \ + b0e7f832-107c-4adf-8423-68ba53a17902)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1abe8e0c-f549-4125-ba51-5981e8fdc4ec)(content(Whitespace\" \ + 53d99323-7374-4682-aa14-ea9ae56ada88)(content(Whitespace\" \ \"))))(Tile((id \ - d9596c34-ab5b-4f96-8d74-5858bf8e8152)(label(f))(mold((out \ + 500fffbe-147e-4431-8c4e-5826fe11871b)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5a4fa3c7-7607-4774-b8a8-18986dc89193)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 846762a1-f79b-491a-988b-38e810cfae08)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e3950884-d2b0-40e7-b32a-01065fd32331)(label(true))(mold((out \ + 912de3d4-1ffb-426e-89e9-42f9cd6f53cc)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 4f32e87f-a0e8-405f-a291-e397d64767a3)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + ca684f2b-9a71-4356-b6ce-ca0f3c9bc0d5)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 05ddc6cc-87c6-48c0-9626-94a4efa6b933)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 694066b4-70c4-4f4a-b6fa-bb51de900106)(label(let = \ + 59f87025-ba17-4b81-9244-ee934bb37bc8)(content(Whitespace\"\\n\"))))(Tile((id \ + dff3d135-c383-41ef-8950-14ecf1c29366)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a3cb892d-00ba-4546-ad7b-7a0d789c7d51)(content(Whitespace\" \ + bd99843e-277c-4bbb-9eb1-4644682ace84)(content(Whitespace\" \ \"))))(Tile((id \ - 97ef53ac-fd0d-4bdc-a808-e9088abeffde)(label(f))(mold((out \ + e9e4dfb6-6c9a-45e7-a321-73d822a3c2fe)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 56b028aa-38c5-4edd-99f8-79e7759b8a1c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 39e0ddf7-409c-4501-bf7c-7d84bf705ad6)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 17052864-ee4c-412e-8183-77ff429eb1b5)(content(Whitespace\" \ - \"))))(Secondary((id \ - e6307017-fc25-4f2c-8c4e-af9eb418e95f)(content(Whitespace\" \ - \"))))(Grout((id d1d34494-d503-42b3-b8a2-7df3e596d360)(shape \ - Convex)))(Tile((id \ - c18f12e6-5888-4299-969b-72b72a2fb3be)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 4fd5037e-379f-4df1-9013-708cd696a48a)(content(Whitespace\" \ + \"))))(Tile((id \ + 669c0122-a10e-4943-b931-f9543b5628bb)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 02199619-4219-4b1c-b040-791e682292b3)(content(Whitespace\" \ + \"))))(Tile((id \ + b4bd5b28-d004-4cb1-a7af-ef7f614e6e53)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 528c0513-d586-41db-804a-3b2951462da0)(content(Whitespace\" \ + fce3b39c-6801-499c-9a84-5503fac6c37b)(content(Whitespace\" \ \"))))(Tile((id \ - bbbfda1e-9479-4d8f-8d81-5e3947c324d9)(label(Bool))(mold((out \ + ec743d49-6c4f-4d11-bd09-0e4f5958e98b)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7558a507-f539-4c5b-a3ac-8549007de485)(content(Whitespace\" \ + 912b285a-0dc3-4e46-b91e-b62db6f93f62)(content(Whitespace\" \ \")))))((Secondary((id \ - fbc4b010-7a1a-470c-96f3-aaaad440f714)(content(Whitespace\" \ + 0413683c-d92f-4bf0-aaa8-0906b9cc262e)(content(Whitespace\" \ \"))))(Tile((id \ - 61ed8466-1264-49b2-aadd-6908f1a9d1f8)(label(fun \ + bd067150-6e8b-4ff9-8ecf-40b1f5d898c1)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 1754e748-c92c-4a85-877b-933e6bf784ac)(content(Whitespace\" \ + cfe6deae-c503-4c4e-9874-641c1c4799a4)(content(Whitespace\" \ \"))))(Tile((id \ - f56d749f-e0d7-4a1d-b695-8920cf16663e)(label(b))(mold((out \ + fea62697-8566-4e39-b7e0-ff85c2769357)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - aba41e3d-8cc2-4126-8254-0afa3d63c274)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 75a04d71-ee98-4080-b655-0ab4fdab1634)(shape \ - Convex)))(Secondary((id \ - 358eb656-bf64-4f3c-8644-3a3ae97941b0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 133f9e97-f882-4ddb-883b-7ca1638b7c19)(content(Whitespace\" \ - \"))))(Secondary((id \ - 7ac0a147-6efa-4d75-889e-ac486cf80490)(content(Whitespace\" \ + af4d8b0d-3b42-4710-8c71-f3f442894293)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 12b568fe-a2b7-4bd2-8340-8d7c9b125b64)(content(Whitespace\" \ + \"))))(Tile((id \ + 954ca980-5411-4dbe-b228-00efb66fa054)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 47fcc2af-ae97-4341-ad02-a256b2b8d307)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 48cd780a-78aa-41a6-b5ef-b6a4037a943d)(content(Whitespace\" \ + d517deff-6469-4b0a-811c-b247359750de)(content(Whitespace\" \ \"))))(Tile((id \ - 4c72163e-7684-4e80-bbc9-155f9b7267a6)(label(b))(mold((out \ + 6b8818fb-8a04-4e9b-a06a-eb9d0d49e6cf)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f998ac7b-9b23-464a-9cd9-1af495c9e983)(content(Whitespace\" \ + 04eb868f-e332-4a9a-b597-a8d0b0280976)(content(Whitespace\" \ \"))))(Tile((id \ - f0cba194-e7a6-42ba-b4ba-0b095fff8574)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + bc0ef424-20c8-4e1d-9677-869abe58c766)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3d42b016-55e9-4e64-9db0-0f9337180909)(content(Whitespace\" \ + 9af80ce5-9846-49be-b7d8-a145136e12ec)(content(Whitespace\" \ \"))))(Tile((id \ - 457f8f99-9f11-4c61-9d85-8ceeb02c5973)(label(true))(mold((out \ + 7aa44f9e-7e49-48c9-8836-6f5b6d425697)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c768e601-28f5-45c3-b14c-e6f70ed32ff5)(content(Whitespace\" \ + eb8f9e3a-a4b7-43e4-97d4-641e4bafd17e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 808aff3e-ddc0-4f41-8471-8828d3304850)(content(Whitespace\" \ + e46f7506-1a51-4a95-bfd7-c1c4bc625d6a)(content(Whitespace\" \ \"))))(Tile((id \ - ca7da666-83be-4b0a-b52a-9d30e756a956)(label(f))(mold((out \ + 3adb1d79-6e7b-4e18-a2c5-57ecd86593c1)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d154ac67-5709-4d9c-8fb4-b5519a268524)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 479dbf3f-ba6a-48c0-ac87-b66e93acc316)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 104ec290-6e09-4845-9b66-1e5dd0a27643)(label(true))(mold((out \ + 85729376-763a-4acf-ac8e-1da370b7df1a)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 8de6cf6b-df21-42dd-a0a4-a00867eb53c0)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 9e5e8178-381e-4c10-b980-7ec168184efa)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9ca66412-77c9-4ecf-96fb-b4a0c7a886cf)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f3edd654-9d34-46d4-917a-a7913eecdb81)(label(let = \ + 497a0d60-0ab7-4d96-9ac1-717fbaf1efca)(content(Whitespace\"\\n\"))))(Tile((id \ + 8f7563b2-9455-4599-9ff5-75ed69af637a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 48b45298-851b-47ba-9bbd-886e14b38a6d)(content(Whitespace\" \ + 28594a45-8136-475b-a6cd-659eaebf389e)(content(Whitespace\" \ \"))))(Tile((id \ - 0c2cd033-a38f-49bf-8f57-8879c4a74478)(label(f))(mold((out \ + fed34b9f-5700-49aa-963a-8956bff955b9)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dd92c069-4f1d-4349-bbea-0bb3b22c5edd)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 7c171d8d-5551-44b8-bffe-6c5309cb8556)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 9492e529-df90-4edd-b524-1d2fb30369a2)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2e2cf058-e06d-4bf7-b828-190af11f6642)(content(Whitespace\" \ - \"))))(Grout((id 15ccf080-e782-45af-84ad-f78c9de1ea15)(shape \ - Convex)))(Tile((id \ - f18005d4-f5ca-4b9c-83ed-283b798c5c98)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + f750c67d-0faa-436c-a510-1e2827d91b5b)(content(Whitespace\" \ + \"))))(Tile((id \ + 61b971be-4988-4f4a-9c17-4b0348f43f99)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 6a466449-56eb-4788-a403-6ecd5a78608c)(content(Whitespace\" \ + \"))))(Tile((id \ + a60b549c-f762-4be1-9777-6089b8b65f28)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 39c1ad08-f549-4d38-a0b9-9ddbbc2a5f57)(content(Whitespace\" \ + 1a7206f3-795e-419e-86c4-8ddd15a4b177)(content(Whitespace\" \ \"))))(Tile((id \ - 35096049-b682-48bf-9450-9fb44612578a)(label(Bool))(mold((out \ + 8520407c-631a-4604-8b4b-e10c4ce52df2)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e2220176-cec9-4e88-bcc0-acd6bad55f9c)(content(Whitespace\" \ + 31fcd1c1-352a-4398-a7b5-8864fa8b506e)(content(Whitespace\" \ \")))))((Secondary((id \ - 1fdf07c6-0e73-4189-9cce-afc15dd53309)(content(Whitespace\" \ + 5f28a5ec-6a33-4f91-893d-dbbd18425817)(content(Whitespace\" \ \"))))(Tile((id \ - 55c8a7f9-eac9-4edb-bf31-adf6688b9c49)(label(fun \ + 6bd798f6-295d-44e0-b703-3c545968fea9)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a358e631-40da-40ff-920e-82620cf0e895)(content(Whitespace\" \ + 4386035e-5010-4d2a-a56b-8e369cdab53a)(content(Whitespace\" \ \"))))(Tile((id \ - 18328c4a-5078-475d-bb8c-d4e90a1b0497)(label(b))(mold((out \ + f942974a-343d-4802-869d-424f82da3f92)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 7ce5810b-541f-460d-9476-252c7e65ff28)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 72d4784e-f6af-42f4-a759-4b7f58932ad9)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 93b31a11-1151-4f2b-8e4e-0a6b37d7d740)(content(Whitespace\" \ + c5db147c-a182-4930-be02-f40882740402)(content(Whitespace\" \ \"))))(Tile((id \ - 48f0b576-c989-4659-bb0b-4273c9b9d310)(label(Bool))(mold((out \ + 7c14bc9e-7371-4820-898a-f282d3fded38)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e067f2d6-080e-4645-9b29-844db6dee9a8)(content(Whitespace\" \ + 860fc3fc-2ce5-4f94-bcd4-5309e35d21ca)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c9253d66-4faa-474e-a6af-b66d3424b61f)(content(Whitespace\" \ + 656d2c3a-adba-4440-b19a-e9f1aba703c7)(content(Whitespace\" \ \"))))(Tile((id \ - a72a1cfc-45b0-43ab-9836-b088e976abe9)(label(b))(mold((out \ + 68ad3de0-09d3-4c4a-b1c5-23e178d5ee17)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7157f70b-705b-49f8-9d25-ae2f34ec0334)(content(Whitespace\" \ + 25ebe2d3-9f7e-46c4-bbe7-ecfd9d4bfa16)(content(Whitespace\" \ \"))))(Tile((id \ - 42e8023c-f381-489f-88b7-706cb8eb8f4a)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 78084462-d834-4411-aadb-07502e58a4e6)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 638378c9-b559-46ec-b39a-1d3583d613ff)(content(Whitespace\" \ + b9fc286d-232b-4c8f-9293-eba980beeb52)(content(Whitespace\" \ \"))))(Tile((id \ - c8c3c6ca-c1a6-4cbd-98fc-88970d20e004)(label(true))(mold((out \ + 4f85fc72-e07d-4025-ba79-945ba8f3a4db)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f5e324ec-914b-44ff-9be2-84edcbbe4e83)(content(Whitespace\" \ + 5c4a559e-2615-499a-87d5-c1c9c03febf2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - eb3d2f44-a836-4d7a-9a09-36b6fbbcc3c9)(content(Whitespace\" \ + 7961eecd-efa1-47a3-9751-23497a93a110)(content(Whitespace\" \ \"))))(Tile((id \ - d22c1b02-a31c-4df4-a4c2-054a58c409b9)(label(f))(mold((out \ + 1df1b019-acaf-4a69-be7a-6536f6063ceb)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 71ca34e9-9611-4e2a-821f-ab7b4c75c2fc)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 12e0b1cf-157e-4218-b357-6f4c0dd10463)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6eab7e2a-5b54-4189-897a-d703a254dd37)(label(true))(mold((out \ + 11553788-86e8-414d-9cc3-756ac478b13f)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - c74ac4bf-c8e1-4cb0-aecd-951a46b6f2ed)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 142047ba-cd7f-4827-85e4-06aa322c1c3f)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 1e4cb0f7-0b78-4ce6-ad15-b3fe169e1eee)(content(Whitespace\" \ + 24c62fb1-1c75-4a40-a4c0-72f2195e96da)(content(Whitespace\" \ \"))))(Secondary((id \ - 24f901a9-f6da-4a53-a22f-5f05c0e30da9)(content(Comment \ + 07002c8e-aa91-4c28-82ab-2a087e3b1612)(content(Comment \ #ERR#))))(Secondary((id \ - 93a274cd-cbc9-49fd-ae6d-3f87e7f7015c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8106b070-02e2-447a-8409-2156ceb7128f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9edc746b-d54c-4cf0-9576-68bf4e5ca2e0)(label(let = \ + f895dfd2-13d4-44d8-be73-e9b703bb1094)(content(Whitespace\"\\n\"))))(Secondary((id \ + 365ca0b0-a697-433d-8514-d6174b4090c7)(content(Whitespace\"\\n\"))))(Tile((id \ + 28164dcf-ff08-461b-92f7-32860f171cab)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b1972565-5233-4b9f-91c9-a2fae3c6a59e)(content(Whitespace\" \ + aef0f946-d973-4312-9e7a-0fcbc51f567d)(content(Whitespace\" \ \"))))(Tile((id \ - f87ffd56-048d-404e-aa36-d0de2fd4e5cc)(label(f))(mold((out \ + 3aaaf7e2-490d-4380-a87f-202778445eda)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - b438fd18-ba07-497f-b4f3-777060017d7f)(content(Whitespace\" \ + 296fdf06-82f0-4404-b7b3-e09d9d81a773)(content(Whitespace\" \ \")))))((Secondary((id \ - f5cff6cf-3e3e-4bf3-b5d4-78928ec0b317)(content(Whitespace\" \ + 7651a4fd-7989-49c6-b4c2-c414bf0fce55)(content(Whitespace\" \ \"))))(Tile((id \ - cbbd8d0c-e584-4c09-b213-894971bc1faf)(label(fun \ + b48f2de7-7327-4256-bc92-d95e266304bb)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 1127e605-9044-46c9-bb28-f6852d7947d7)(content(Whitespace\" \ + 6117c5a7-cb48-4a61-be2f-68af17e7b0b8)(content(Whitespace\" \ \"))))(Tile((id \ - 12846edd-8ef2-486f-a3dd-465462fe4a6c)(label(b))(mold((out \ + 57b917d8-e170-4ab5-b3e1-5bb8a2ae272c)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - f6613404-b691-4a7b-b752-bb166bbdcdb0)(content(Whitespace\" \ + 9b6c7d09-7c66-48ca-9421-9e5abefe099c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 00003fe7-fc85-4b35-9f62-18293b2cbda0)(content(Whitespace\" \ + 17432af9-f82b-4fe3-8527-002b59570bbe)(content(Whitespace\" \ \"))))(Tile((id \ - b4d0244e-e948-4235-892d-ac5bf023ce66)(label(b))(mold((out \ + a6f7ad03-d8f2-48cd-a238-a0a89898f885)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a80b2c39-eb3c-48a0-a2e3-17923969fe44)(content(Whitespace\" \ + 006fd185-4467-4f74-b767-157ac04257c8)(content(Whitespace\" \ \"))))(Tile((id \ - bddcafce-7849-45b1-af50-889c78a390f0)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 5326a8b0-b3ad-4eaf-93dd-9365d65dd0c4)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - aa1221e7-143d-4d1c-b409-a06055fd5761)(content(Whitespace\" \ + 9be71035-77a5-43d1-8c72-757283304ce5)(content(Whitespace\" \ \"))))(Tile((id \ - 5ba03980-b852-4885-a04e-cfa57275e8d9)(label(true))(mold((out \ + ef918a20-47a9-4d1b-aa5e-9f7d37756186)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f8bc12af-f910-4824-b77e-366be5909df2)(content(Whitespace\" \ + 2cf2b8dd-31e9-48b7-98dc-b24932a0f242)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fb7af25f-7598-4f40-802e-a8f1d57365c4)(content(Whitespace\" \ + c43eeb3e-cd6e-495f-b45d-da6be67c0aec)(content(Whitespace\" \ \"))))(Tile((id \ - 820cd996-1610-4f5e-a266-540960f4c4dc)(label(f))(mold((out \ + f048757e-1228-47d8-9ae4-ecd45f8f30e0)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 1333bb7c-855b-4a5d-bcd5-827171f09e6e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 229108a9-3793-4704-a18a-7105709635ae)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1afee2ad-9ad4-4767-822d-d87e99720936)(label(true))(mold((out \ + 17082d93-e429-4240-9500-1fee13b7fb23)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - e967f122-900e-4e89-8a01-57ff820ee1b8)(content(Whitespace\" \ + c90802e0-7bcd-4af0-8857-4e9b2cc894bb)(content(Whitespace\" \ \"))))(Tile((id \ - 232cd412-63a5-4d1c-98e6-c5bb5ffb5eee)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + e48629c9-af5b-40eb-839c-b72e1eef788c)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c3b0d2f8-eb19-4af3-af20-17633157c84e)(content(Whitespace\" \ + 7bda3602-722b-4311-a048-35cb6e8de85a)(content(Whitespace\" \ \"))))(Tile((id \ - de6ced50-9af1-424e-809e-cbf7e7e7e24b)(label(true))(mold((out \ + 76e8a28c-ec7d-4170-ad7b-0cd3eca5a081)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e643707e-b4b7-4f3a-9f1c-e7936f41e676)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 04b6f724-922b-4c05-a750-a42532383cd9)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 883179cf-135d-4b83-8d12-d2409f8a21cf)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3b2da582-d9f3-4e55-8e2e-1508daa5b3b5)(label(let = \ + 24fdccaa-d71c-4b52-a79e-6b8c0a2f85a6)(content(Whitespace\"\\n\"))))(Tile((id \ + 7ed645bf-2e8d-4227-8531-c2d26da9e73b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 0a555ee8-3ee1-4228-bf5b-0d7db686e897)(content(Whitespace\" \ + e4886839-ea76-4438-9006-35be8d065553)(content(Whitespace\" \ \"))))(Tile((id \ - 14bd7839-8eee-43ad-a004-dedecf68e840)(label(f))(mold((out \ + cfd8bd18-0549-4142-bbee-f51cb95d340e)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 6d5e0294-eb7f-418a-a349-a2bbe3a42a20)(content(Whitespace\" \ + c0cbe279-c697-48c5-9dd7-3762b751e91e)(content(Whitespace\" \ \")))))((Secondary((id \ - 4f240250-1391-4dff-bb8a-1d3f48478741)(content(Whitespace\" \ + e05b807c-c4eb-4570-9cc5-f4fbb362ee74)(content(Whitespace\" \ \"))))(Tile((id \ - c8f0ad05-abb6-49bd-91cf-d0a16b72fd75)(label(fun \ + f6ca0585-f98a-4e3c-a885-76f53a4e5ea0)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d66d5683-d914-4dc6-b7d5-a19bbc0af995)(content(Whitespace\" \ + f91d5a37-ad48-4e6b-a7d0-f13200591773)(content(Whitespace\" \ \"))))(Tile((id \ - 142a2136-43c7-4518-905a-4a31ef1833db)(label(b))(mold((out \ + 2795203d-0717-4c13-82b0-eaaa6adc142e)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 77c57bb0-6a06-474e-bc0d-ee283bb8c8ad)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - bd14c4ae-02a8-42d9-b247-2e5547436b33)(shape \ - Convex)))(Secondary((id \ - 1b30100a-435d-447a-bf76-f4f09d78eec1)(content(Whitespace\" \ - \"))))(Secondary((id \ - d0e81340-778c-4ba5-81bd-7f05a8afdde2)(content(Whitespace\" \ - \"))))(Secondary((id \ - 44d45046-c1de-447a-a6ab-6d6b8d4a854d)(content(Whitespace\" \ + 38f334e1-4d7f-4c63-a4a7-a7dc8abb96c9)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 551804aa-483e-4ccc-ae87-0a5030faf713)(content(Whitespace\" \ + \"))))(Tile((id \ + f38402bc-8b52-4db6-a19d-92b4b9fd6be2)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + f73c851c-7dd6-471f-bbfe-7c6a2cfb9626)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 62fa65ea-81cb-4476-88b8-a4bde7674ceb)(content(Whitespace\" \ + f5862777-feaa-4502-8c3c-aada463eeb74)(content(Whitespace\" \ \"))))(Tile((id \ - e43f4d29-9356-4316-9034-81bd15301d71)(label(b))(mold((out \ + 3a66731e-7f72-4f50-af3e-6677babad8c2)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8019195d-613e-4a8e-a0b3-a7c577861ea9)(content(Whitespace\" \ + 510e7bb2-2c72-4196-b5e8-765112670b93)(content(Whitespace\" \ \"))))(Tile((id \ - b75f7bf5-e751-4ab3-9d71-3937cef6fe1c)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 34de1a6c-ae02-4c5a-ba1b-efb4625a70a7)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f48e9313-1406-4f84-846f-03b25a473d67)(content(Whitespace\" \ + 086bb1ba-c2f0-4f57-b659-029ef20eec7b)(content(Whitespace\" \ \"))))(Tile((id \ - bc344eca-3cf8-4f71-9b80-9cbefd835a21)(label(true))(mold((out \ + 9f2e7ca0-882b-4401-ab30-0a0e3dc2cdee)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fa5b2245-39df-4d97-b5f5-80ccd7615228)(content(Whitespace\" \ + f05b8ca0-c141-4846-9d80-fc76455fe268)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4f2129ef-0318-4ca6-b5e0-655b969854d6)(content(Whitespace\" \ + 3b2fe1b9-2db4-4100-a22a-f3f29f0d9525)(content(Whitespace\" \ \"))))(Tile((id \ - 4a4ed116-ca13-4cfc-b767-a231cd11b1b1)(label(f))(mold((out \ + 09b61fc5-5208-4e18-a443-10fa11f413e8)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5f2b05eb-a2de-41fc-b7d2-9dab487365e7)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5e2e3a74-6bc2-4555-92b5-8568aa433ade)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - a94f2393-025d-4798-b63c-48934ba349c8)(label(true))(mold((out \ + dd24a755-0573-433e-8b8f-4af069aa6b9f)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 2cb9581e-59ac-43e1-8cb7-2556aad2954f)(content(Whitespace\" \ + 443b31d5-36e8-4cab-9eb9-f4fd9b862f51)(content(Whitespace\" \ \"))))(Tile((id \ - 1f4903a4-e48f-40a3-bd5b-974a07b9c5f4)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 1b591eaa-2af5-4354-afd5-779d96c24590)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d8c418aa-ab2d-40a4-90c8-f26b9c337273)(content(Whitespace\" \ + 21626e70-35eb-4cfc-b9dc-27778eff7541)(content(Whitespace\" \ \"))))(Tile((id \ - 87d4c21c-3df7-4b91-a381-e8ba84591c1d)(label(true))(mold((out \ + c5549a28-9141-409a-a696-86315e8bab0e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 9cf3d798-b10e-45f4-a5b2-7d268897692f)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + f3f502a0-e05e-4c5d-bac4-0940a4384e5b)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e4075d1c-28d4-4166-8291-de1d3af67fb5)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6f2165dc-3f61-4e1e-8789-0330f088b39d)(label(let = \ + 5e566bac-f713-43cf-9a1c-a446bb10fd72)(content(Whitespace\"\\n\"))))(Tile((id \ + b5e39763-e6ac-4504-ace9-2f702b3bf054)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 839c814b-e1f0-415d-a7d0-672f3253a2b7)(content(Whitespace\" \ + 73215912-7525-4aec-8bb8-5f0d00ed1a2f)(content(Whitespace\" \ \"))))(Tile((id \ - dfc577dd-8a74-4879-adde-0aa4ae95c94d)(label(f))(mold((out \ + c932105d-83e5-4abe-9b59-0700a0f06f5c)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - aa3a36cf-6347-4722-a5d1-09711312efd4)(content(Whitespace\" \ + 0711ed89-a605-4c72-a2f5-db62706870f9)(content(Whitespace\" \ \")))))((Secondary((id \ - 06ddb22b-3499-457f-91ed-05add3c22ee0)(content(Whitespace\" \ + 79c84649-a8b4-48a8-9133-b2f9514bf4ac)(content(Whitespace\" \ \"))))(Tile((id \ - 29786d68-5467-47af-b47d-0e740f4c9a16)(label(fun \ + ead1b462-795f-4041-a54e-4c7f472d05da)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - f37e9a6e-4bb1-4e67-8d50-6fb2a14a8bf4)(content(Whitespace\" \ + d8bacea6-3902-4f36-9f8a-16b330e76f73)(content(Whitespace\" \ \"))))(Tile((id \ - f3ed678e-f223-4cff-9b59-8b8a7a6b9cd3)(label(b))(mold((out \ + 569f3650-bbe5-4ec7-a48a-f53f2fa1df28)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f57a1cef-e80b-40c3-8d30-c57c67d720d0)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 62b71633-f65b-4a48-9ddc-945f9ab163b0)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - dcdca7df-b2ef-4e82-aded-efcc9fae3b6a)(content(Whitespace\" \ + 885fba18-bb5a-409f-b7c4-65bb60ed64fb)(content(Whitespace\" \ \"))))(Tile((id \ - 758f83e9-d647-4d54-a6d1-35deaa585f05)(label(Bool))(mold((out \ + 3e5b1891-31e8-44f6-ae80-c795b070ddc8)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0f584200-d83e-4110-aa0c-9e52a2b137c9)(content(Whitespace\" \ + 8f851483-70b6-4f2d-925a-57a982bfa93d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 504dec65-6792-43c3-8321-1ab79125297b)(content(Whitespace\" \ + 63302d7d-1590-4836-ae8d-ca087abdc208)(content(Whitespace\" \ \"))))(Tile((id \ - 31c5e7ae-c7a9-44a7-ba7a-78bcf230dd5b)(label(b))(mold((out \ + 34430174-6447-4913-bb3c-f34887b89db1)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - feb1b848-deaa-4736-99f0-4beccf61a5bb)(content(Whitespace\" \ + 7bd589a8-1217-4eee-9622-f3953e7611bf)(content(Whitespace\" \ \"))))(Tile((id \ - ac41ac6f-2360-481c-9e37-7bf709f793f0)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 92670b90-4e4e-4643-9196-e85d7be9c26d)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 353887ee-58db-4778-a1f4-292626241948)(content(Whitespace\" \ + 40db8075-75e0-49ac-922a-82cb1cef182c)(content(Whitespace\" \ \"))))(Tile((id \ - cee49f88-02ea-419d-b943-5b1d94c2165d)(label(true))(mold((out \ + ed88a8eb-3d79-4ae7-ac73-79e4ea801760)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6c317419-f723-4623-99f0-078dbaeae142)(content(Whitespace\" \ + 17c87a74-73ad-4e38-9714-ebc1eaa96e3d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - babf0e4d-228d-4726-9a14-ae21b5edc6c0)(content(Whitespace\" \ + a34ed96e-0489-4a39-99be-1b6871fe0b3e)(content(Whitespace\" \ \"))))(Tile((id \ - 2e2eea74-5c81-4fe0-b987-f952f86e01ed)(label(f))(mold((out \ + 5b1f4213-4405-4149-bd2b-79380456c515)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 10511c27-d376-4ed7-a46b-113b5b6a9dfd)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5bd418a2-dff7-433c-b0f5-fdbf88c8ae06)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 888ba43d-2657-4274-a150-e3ec98013f10)(label(true))(mold((out \ + a8102985-99eb-4c36-a3cf-2f85b0abd07e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 50cd1923-dda8-4f7f-8f5b-d320681cc050)(content(Whitespace\" \ + e255d926-3901-4aeb-9260-c3e603719ff6)(content(Whitespace\" \ \"))))(Tile((id \ - 5d023581-7000-44d8-902e-884f0ebadeb3)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 29526314-bcb8-45ed-8379-c444ddcc1886)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ba1de608-148d-4189-b19b-7f4c638f2685)(content(Whitespace\" \ + 40705c42-0d49-43c4-8ef2-d127eefb52fe)(content(Whitespace\" \ \"))))(Tile((id \ - 277903d5-b80a-4d2c-966f-74cf8859bbe1)(label(true))(mold((out \ + 55665ab2-77d6-44c0-ba84-248442384124)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2355d66a-e991-40e3-bfb0-ba8a19f25b30)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 3ef9f1f9-d033-4992-897e-5f2ef8513183)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8cd62e8e-a681-4e84-9392-c4fadbec7779)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e919bc9e-238e-4e1e-b7a3-b36d823a844a)(label(let = \ + 15eee5c4-d26a-427d-84d7-1569e3cb4919)(content(Whitespace\"\\n\"))))(Tile((id \ + 7274d08c-4615-4c9b-be36-990fd467e475)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a264266f-c818-4800-987f-8f159a22edd9)(content(Whitespace\" \ + 39de470e-3675-47b3-aacf-e34fe1e8dca8)(content(Whitespace\" \ \"))))(Tile((id \ - cb8746e0-8bb3-46c3-abd0-139e174dff49)(label(f))(mold((out \ + e3df9d58-e01b-4746-9765-90403ce3d455)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a33ede3e-f25d-4bf2-b792-3b362e7ffe53)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 366cce6a-e675-412a-8dfa-6f649470c506)(shape \ - Convex)))(Secondary((id \ - 08c165cb-2e48-4998-a60e-1cc513301278)(content(Whitespace\" \ - \"))))(Secondary((id \ - da19d4c1-9f19-4e7c-b57e-1e1e3952eab0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4ccc0f28-a241-4e7f-b2d9-749160995066)(content(Whitespace\" \ + 739a28db-0cea-479b-b49a-b7dfed077cf9)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 7c23aec8-8fac-409b-b4ff-ea0c11e1e064)(content(Whitespace\" \ + \"))))(Tile((id \ + 826a23ac-d204-4d9b-b3b2-5ff68758b09c)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 26f344fd-6114-4200-bcfc-0caa5f0cadb6)(content(Whitespace\" \ \")))))((Secondary((id \ - 4c9cab9c-b008-4dfc-b736-063873ed49d6)(content(Whitespace\" \ + 7c2e966c-b4d4-42d2-a1b4-fce00bbf6196)(content(Whitespace\" \ \"))))(Tile((id \ - 1e8b20ae-6b08-4fe5-9f4d-984426b53013)(label(fun \ + 1969789a-458b-4e05-b947-70d23b96bf39)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a5497755-fe99-4b6e-bfa4-2b506ae94ed3)(content(Whitespace\" \ + 5c849bda-0f4c-429a-a820-7dc5e8c5be28)(content(Whitespace\" \ \"))))(Tile((id \ - 32898186-883f-4598-bf5b-ba99c4fd7441)(label(b))(mold((out \ + fc50b426-ba00-479f-b26b-702e44aca663)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 31b7f030-673a-46d2-91a5-802c5d5c0050)(content(Whitespace\" \ + ea9c2647-c134-4639-b2a2-ee96bab7b8e7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e02d502c-b1f9-4ffd-b24e-048db75550fb)(content(Whitespace\" \ + 68abedc9-0113-4009-ab73-af255381a9d4)(content(Whitespace\" \ \"))))(Tile((id \ - a01655cc-bdbe-453c-a35a-81012be7c308)(label(b))(mold((out \ + ca7e0e38-2bed-4d9d-aa61-c4da5526cdd8)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c1a0baed-c8a2-429d-833c-6ed12fbebbb2)(content(Whitespace\" \ + b915f2b7-7aba-473e-b398-efdccca2ac0f)(content(Whitespace\" \ \"))))(Tile((id \ - e57b24c2-2862-4bbd-a3ea-b16447fefea4)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 04bd1c05-913c-418d-9cfb-1fd9c50f6ffd)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c4a4a8f9-4449-4923-9065-f12099c43b50)(content(Whitespace\" \ + 01eada3e-b33b-4741-bcd3-60ceb1882b1b)(content(Whitespace\" \ \"))))(Tile((id \ - 479d118a-5d4a-48c6-bf47-03364c601277)(label(true))(mold((out \ + 018c7cdd-d028-4add-9aa4-941601d4ad01)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3ed7c3c5-9c9b-4b8c-a6cc-e5d38f0884f7)(content(Whitespace\" \ + c88e09ec-9300-4f7a-b731-99d8dc8cb298)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b8b607d6-5e91-4166-9030-e6062c5bdfde)(content(Whitespace\" \ + 7aa4206e-8f62-4ff9-9547-6f1480b86c85)(content(Whitespace\" \ \"))))(Tile((id \ - 09f543ad-eaf3-4890-8f00-364e65bbeb9c)(label(f))(mold((out \ + 7327d675-f536-4078-87fe-69690be87f51)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b1f15536-570c-4dc0-9549-dcb2b230feac)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c83cb139-41e1-469f-8948-fa675b31fdbb)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 064cc832-ce4d-4774-ba20-f8ecf0a48b37)(label(true))(mold((out \ + a1f9cfc5-64be-4a4d-9777-fe6feabba0a4)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 4c73ec7c-d01c-41f3-8a0f-11412cd6a732)(content(Whitespace\" \ + 28d5aa6d-9124-4b2c-8533-552b69bb15c3)(content(Whitespace\" \ \"))))(Tile((id \ - fc65cafe-9149-4468-8ea0-f92ebe2d968a)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 2eb779e0-8654-4ebd-a0b3-f10a2d9fb5d6)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5c9ee7ae-9db7-4924-93c1-1a8418513aee)(content(Whitespace\" \ + 26a7acc4-31b4-4fc1-b5a0-17ef0e1a4f99)(content(Whitespace\" \ \"))))(Tile((id \ - e7cad16e-7d7b-4115-9a8c-af93f221acb9)(label(true))(mold((out \ + b4baeb8f-018f-448f-a10e-b3b593d00a4e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - fa8e5241-13ec-4c4a-8e28-4699b23444a5)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + bb9c6f93-31f0-481d-ae6c-80cab1902cb9)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e779d1de-c381-4048-8509-32d2a4fad77d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 78024387-9521-4a53-ae68-0ede50bf3755)(label(let = \ + 068e9875-3e6a-475d-bfc0-9f2f443b7b63)(content(Whitespace\"\\n\"))))(Tile((id \ + 592c390c-1f19-422c-a471-a5ce868a91cf)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9b5f8ce4-8a09-4d4f-aac9-3b1669efe5ee)(content(Whitespace\" \ + 683e9248-b7fc-4e13-9d75-9e62b8af677a)(content(Whitespace\" \ \"))))(Tile((id \ - 050ad0bc-cd58-4ff3-9517-1d272cfb1dc6)(label(f))(mold((out \ + c96dc41f-dcf9-46c6-9448-d39a4c55d37d)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - fabc0073-2285-41f6-90a3-748f83b2f6fc)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 60502944-c980-4eba-9d89-b341dfaa767a)(shape \ - Convex)))(Secondary((id \ - e3656e85-0260-4a63-9c23-b0fe822eaaf0)(content(Whitespace\" \ - \"))))(Secondary((id \ - a0800885-7858-470d-b5c6-f7350dc5a52b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 22fdd3e9-c9fe-4d4a-96ed-e18661b9f453)(content(Whitespace\" \ + 7efd59fe-7c4e-49c8-8559-fce18a73cc39)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + fcb10726-1403-423f-b442-cdd48dd5d77e)(content(Whitespace\" \ + \"))))(Tile((id \ + 1feba6eb-ebdd-441e-9797-175c910892a3)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 7cde917c-acb0-4f97-9b14-647110bb3aa2)(content(Whitespace\" \ \")))))((Secondary((id \ - a80d307d-9238-49c1-9a6d-114d8cd618b5)(content(Whitespace\" \ + f7d1ce1e-d5f6-4fde-a8b5-3f62db021689)(content(Whitespace\" \ \"))))(Tile((id \ - 3e95229c-1e09-4428-ab3d-778449bfacd6)(label(fun \ + 8f685f57-0c38-4dbd-bd98-f4cc665e1efb)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 345d959c-c0e3-4325-856a-03b451afb788)(content(Whitespace\" \ + 326534a0-3d18-4833-a6d5-c0858a771841)(content(Whitespace\" \ \"))))(Tile((id \ - ad7d9601-3b12-4f28-9d0a-4edb752606e8)(label(b))(mold((out \ + 6e703dd6-b924-4ac5-a880-a2ed7b9f4881)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dd65c356-1ef7-4512-9ab9-eea9984c1092)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - b0782794-c9d5-4083-baf1-32e183dbeff9)(shape \ - Convex)))(Secondary((id \ - e0c1bec2-69ca-4a42-8a3b-be53a3eee8ef)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4f9a74ca-94d8-473f-8e1f-7d9e81720c6f)(content(Whitespace\" \ - \"))))(Secondary((id \ - bcf86e8b-7f81-45ea-a4af-f991a8286ec4)(content(Whitespace\" \ + 7cfddcc5-641c-413f-91ea-383848351b32)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + ac7369fe-9d08-4a4f-b91b-b16761e38d31)(content(Whitespace\" \ + \"))))(Tile((id \ + d4a163e4-32d4-489b-a8e4-7c6d24447c05)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 95ec139b-f320-41a8-a7b1-2ce340b5ad26)(content(Whitespace\" \ \")))))))))(Secondary((id \ - da2a3eb5-e4cb-4596-ba40-b29ee4fafed7)(content(Whitespace\" \ + 04807fbe-1bc7-4bf3-b615-6c68a47735d3)(content(Whitespace\" \ \"))))(Tile((id \ - befc9916-b11d-46d5-847a-875ee9a25659)(label(b))(mold((out \ + 3a8eacec-7507-40b7-9462-216d24509a83)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 419fd78b-a064-4bff-85e5-7a58faec7fe1)(content(Whitespace\" \ + e7a45951-5ea6-47d7-a181-857895da130b)(content(Whitespace\" \ \"))))(Tile((id \ - e93b830b-4890-490c-82c6-1fc52ab97cea)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + b983bb9a-ffbf-4514-ae30-63adba184fe3)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a54cd696-f9b0-4928-bba6-ce8d008cf0b8)(content(Whitespace\" \ + 875af082-d9c8-4784-bfca-fab86f00b08b)(content(Whitespace\" \ \"))))(Tile((id \ - ee86723f-2eb0-4801-b190-3da7822b3246)(label(true))(mold((out \ + b4a60880-3e10-45d7-af87-325b2683a844)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a93e8247-9329-4e31-ab36-bd4fb103c31d)(content(Whitespace\" \ + 3bec3d06-d27a-4d48-b9b7-bdeb8e599860)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6bc7a8f1-a5e1-4c83-95ce-47ab12734e9a)(content(Whitespace\" \ + ebadd770-c138-4ecd-aded-b533211474c4)(content(Whitespace\" \ \"))))(Tile((id \ - 922d00aa-39a9-403f-9e2d-9006299c0089)(label(f))(mold((out \ + 1d35f185-762e-4903-8e47-b6fc0a76009c)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 0cbfc86c-62a2-4e35-846c-419445841b20)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 2004a474-7539-4d12-acd6-5eaf194f1948)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7e1a34cf-d41e-4581-ba52-4bc25e1e3d49)(label(true))(mold((out \ + 242bf2b9-b9dd-451a-be88-46a3b6fb2628)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - a949f8fc-26c9-434f-9b99-db5150203e1e)(content(Whitespace\" \ + 34bd4eea-b342-4070-b657-96707aa51b05)(content(Whitespace\" \ \"))))(Tile((id \ - 6f9b120a-b758-4553-b9e2-4c0c979ed6d0)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + d2593a6c-b878-4f1c-8b86-963c0f18567d)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 74ff733f-c95f-4053-9369-e5d4bfa47efc)(content(Whitespace\" \ + f6f5a0df-9e77-438c-a919-9c4be59126b2)(content(Whitespace\" \ \"))))(Tile((id \ - a4713350-3b6a-4c4c-8976-8773fcc47b4d)(label(true))(mold((out \ + 48d5294e-2b16-432f-8f32-0dcf54ba9587)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 62f78eda-a670-4b8b-a9de-d6804c10abe0)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 7b8dee0e-55f7-4b8f-bceb-960272396728)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3c34799e-b421-4e12-91b9-8f73492669bc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f1cddc20-e71c-4d62-bff2-2c79bb66d03b)(label(let = \ + 9584580c-62ff-45e7-86dc-b5d559efdf21)(content(Whitespace\"\\n\"))))(Tile((id \ + 2e8deaa1-fad9-42f6-b2a2-cc74257fad3f)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9845f59d-6345-444b-b86f-dab9a738fa2e)(content(Whitespace\" \ + 6691d181-75e0-432c-867a-2d3f7b3087fe)(content(Whitespace\" \ \"))))(Tile((id \ - 59cd16e1-b021-48b8-a31a-3eedff49c12f)(label(f))(mold((out \ + c759eba4-9329-43f9-bb98-7a4e0d8fc9d3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c765c652-21dc-4c5c-bc0a-9e2bf54c8d4c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 01b55507-fc6e-4f9b-b7fe-2de70d68ae85)(shape \ - Convex)))(Secondary((id \ - 60a8198b-7d3b-4ae5-852b-1b9279a22496)(content(Whitespace\" \ - \"))))(Secondary((id \ - 63db4e70-84e8-4ad7-a912-6a10b549edb6)(content(Whitespace\" \ - \"))))(Secondary((id \ - 67dc3deb-0f65-4199-b01b-c4d08bc2ede9)(content(Whitespace\" \ + be8e424d-40a2-4be5-988a-077f9141f67a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 4f6b2f24-dd3c-44b2-8445-323f5602a79c)(content(Whitespace\" \ + \"))))(Tile((id \ + b53300b8-7886-4124-bf81-47e1c1888c89)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + f4d020b8-97e2-416a-8985-ebfbb4a45b95)(content(Whitespace\" \ \")))))((Secondary((id \ - c91a4785-3400-4d3b-a807-8ec7cca6fe42)(content(Whitespace\" \ + 46143bec-11d8-45bf-9ffc-d4cc5cf06448)(content(Whitespace\" \ \"))))(Tile((id \ - 4f49d514-2780-4f49-99b5-cdc6c21c42da)(label(fun \ + 5c2c7d78-5f05-4b30-a719-9203af5da3dd)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 13abf15a-a4f0-4319-9d0b-77645ad48137)(content(Whitespace\" \ + efdef946-6b3a-4762-a4d9-abbd2d2ec7f4)(content(Whitespace\" \ \"))))(Tile((id \ - 2f03b79a-01f2-40cc-8619-7ae5d08848d1)(label(b))(mold((out \ + dd40d17f-eaca-40f3-800d-fa71f6511717)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 587eb7c5-6cc7-4678-a196-2808537549d8)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 21292813-ae30-4421-965c-984f854e72dc)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 56a345e3-90b2-4bfd-9cb5-9c47541b310a)(content(Whitespace\" \ + 35207fd7-80ab-42ad-ab06-051c5c964c5f)(content(Whitespace\" \ \"))))(Tile((id \ - 5553baea-93f2-4356-8029-cdbac97a9fbb)(label(Bool))(mold((out \ + b5da4155-cf8b-4f53-8515-95103d0ff286)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 454bcfc8-ecab-47c0-ac70-506d96ae1ada)(content(Whitespace\" \ + 06a7485d-848b-453f-868b-b7f176a87ec7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 218987e9-922f-4609-822c-314279d863bf)(content(Whitespace\" \ + ba271a94-21e3-4364-a8a0-44cf74754fe9)(content(Whitespace\" \ \"))))(Tile((id \ - 7465bb73-9f4b-464a-9f9a-8405eb57c91b)(label(b))(mold((out \ + c24ad3bf-34a7-41d4-bb92-1da639b00211)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 369da5af-5f2e-4f1b-a50f-1515222357ca)(content(Whitespace\" \ + 28692f19-bc32-4bee-9b72-35ffeeadf60d)(content(Whitespace\" \ \"))))(Tile((id \ - 90512813-86e6-469b-bcac-0267834646e6)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + f63006e4-6ca0-48b4-acdb-389ea239b5fa)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 758cb590-8371-4bff-991d-e69e9dc51bab)(content(Whitespace\" \ + 91114bba-c7a3-4852-88ff-bcd85e66ca86)(content(Whitespace\" \ \"))))(Tile((id \ - 97d8cfc9-65e1-4658-957e-8527db8230f8)(label(true))(mold((out \ + 4dfd04bc-ed2c-49f1-ab8c-7888f6815ec4)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cf1feb8c-9f0c-4fac-8457-ccec09dd7719)(content(Whitespace\" \ + 2b3ca272-e046-4eaf-bf98-a9c0634303b2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4a041d67-9016-4ca4-9dce-11ad319cca96)(content(Whitespace\" \ + 0225a667-db44-442a-b448-6c5bce82c110)(content(Whitespace\" \ \"))))(Tile((id \ - c9680e92-4454-4a3c-9e82-23375259b15c)(label(f))(mold((out \ + 59d42b3f-b9d7-4ada-83de-b39f31f3c638)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4bae0ba8-e49a-4e03-8514-633fe6f9fd1f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + cab1f053-ae06-4c71-916e-61b6f7039701)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c8aac4c9-6fcf-4edb-999e-a956693ee999)(label(true))(mold((out \ + 19d26568-fcaf-459e-8d8d-3dc079c0740e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 549eacb0-6d86-46cf-9249-e243a9a4fdf4)(content(Whitespace\" \ + 80489f22-a168-4539-982a-cb574c1f79aa)(content(Whitespace\" \ \"))))(Tile((id \ - e694950f-4597-4e61-b9fd-a05c746abe4e)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 492d97fb-91ad-4d1a-8d6b-e4fd1cdda5fc)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9c2868d5-7874-47b8-93d2-9c506244e763)(content(Whitespace\" \ + 4ac0d076-d615-4341-af02-93207390fbf4)(content(Whitespace\" \ \"))))(Tile((id \ - ddfbe440-e3f8-479b-81ff-3080a5c7b70f)(label(true))(mold((out \ + 535dd6b9-372c-48b6-b804-af8eba2c70db)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 84d65640-d9d2-419c-aae8-d6b04c12bf7d)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 57ce7d30-b2e6-4185-8b69-8909a2fa2657)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 902afcdb-68b6-47f4-af98-7e843ac1fa0e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0559dc24-ae2b-4e1c-9be6-3ac5e82e36a8)(label(let = \ + 7aedf271-fdbd-4ab0-a7bf-cff3ddf5d7a6)(content(Whitespace\"\\n\"))))(Tile((id \ + 9eb6a887-66ed-4e6f-abb1-0fd18cc232a2)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 81499aa1-a36d-4fbe-9411-4d82b5501efb)(content(Whitespace\" \ + 12be4102-aed6-4de1-90d4-30fc48b2488e)(content(Whitespace\" \ \"))))(Tile((id \ - 49a4b0f8-81cf-49d4-9766-a99963214b85)(label(f))(mold((out \ + 1265ef43-4ead-4e57-bd7b-71f40fde0dc9)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a66248b4-bd53-42c6-96d1-0440d70abe68)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 78d8e46a-31a4-447f-a2ab-8d4411270c7f)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - f8502677-bd6f-44b5-a1cb-ab7912281602)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0ccd9911-9e15-42f8-9efa-2e24bb3f9d9f)(content(Whitespace\" \ - \"))))(Grout((id 334adc6c-9f26-45b0-8561-5045b4d7d5fb)(shape \ - Convex)))(Tile((id \ - b2743f3c-ed5d-4a2b-b554-d08eedad8478)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 463a0555-bb7a-4506-9009-8854f2e89e34)(shape \ - Convex)))(Secondary((id \ - c7f29ef8-b541-4037-84a5-905e00927df4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0b2edba7-987e-4278-8767-db5bf683bb2d)(content(Whitespace\" \ - \"))))(Secondary((id \ - b10e02cc-08e1-44da-afc7-c6be0cd97ad6)(content(Whitespace\" \ + ff9beba5-4d7e-438f-a67e-fa1cc6377635)(content(Whitespace\" \ + \"))))(Tile((id \ + 22c91783-af31-4c63-b95e-aba695f8dea1)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 4b97bca4-7324-4df0-940c-f378350c6b7f)(content(Whitespace\" \ + \"))))(Tile((id \ + 0487b328-02db-42ab-8717-e0c2e9ed5013)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 01854715-708b-4087-bde1-070444b998af)(content(Whitespace\" \ + \"))))(Tile((id \ + 849a5e18-db86-48e2-8e1c-90e6d0bff021)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 28071aa9-83fa-4426-8463-3a32fcbc59f2)(content(Whitespace\" \ \")))))((Secondary((id \ - dda0be53-ad2b-4e53-930b-0cb7e6f7948a)(content(Whitespace\" \ + ba98ff4a-41ff-4029-90cd-ae83979916ca)(content(Whitespace\" \ \"))))(Tile((id \ - 3f616dd7-2e1c-4994-bba7-3ff2ae2d009f)(label(fun \ + eb3b3af6-9ea6-4066-af0d-aba8d6d33e3d)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 0f5af089-9bbc-49cd-9265-ee3ca2cf6ace)(content(Whitespace\" \ + c5c594eb-aaf2-410f-98fd-d1c7e4c6a488)(content(Whitespace\" \ \"))))(Tile((id \ - cb0f9f2d-7e60-4990-ac6f-16760eb105c5)(label(b))(mold((out \ + e14ee146-62cb-490c-b60e-1f63352a9c36)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 6636c11c-4be6-4b48-8c28-aa2a07cc7295)(content(Whitespace\" \ + 47f4de57-9b84-41ec-b953-464055365276)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7c664c94-7dfc-4767-8ccf-a6e76913edbd)(content(Whitespace\" \ + cc658ed0-0a54-46c8-b8b0-939f66e278ef)(content(Whitespace\" \ \"))))(Tile((id \ - 81eb253a-5e19-4b4d-804b-f3eaae9d08aa)(label(b))(mold((out \ + 109143e1-f8b8-4fcd-a18a-57ed61bd876e)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4e458e97-f12d-4915-8bde-a822f8d14a49)(content(Whitespace\" \ + f72203fc-cdd6-4153-b644-2c95b4c2ecb0)(content(Whitespace\" \ \"))))(Tile((id \ - 333b9d71-ac78-4403-830e-fcd058dc6a56)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 95e2a609-b4b7-4c81-85aa-85a22eedd5f0)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - deb814fe-e232-4f27-b98d-7a2ea24c082c)(content(Whitespace\" \ + 7e155bae-1731-479d-9f1b-06f61b7a89bf)(content(Whitespace\" \ \"))))(Tile((id \ - 5d3b1805-c4bc-4ba8-9706-f5ea459434c7)(label(true))(mold((out \ + 8bdfc26a-f9af-452a-8a87-6c1fe89f5585)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 79732f22-2121-474b-9db4-46e01e01e900)(content(Whitespace\" \ + 6d64f6df-70ee-475a-9970-04228e13e884)(content(Whitespace\" \ \")))))))))(Secondary((id \ - acc847ff-b677-4327-8def-4345e13297f4)(content(Whitespace\" \ + d9e12550-14e9-484c-a37c-5c4ec208c2ed)(content(Whitespace\" \ \"))))(Tile((id \ - bdb4ad16-b715-49e7-9594-6630dec245b4)(label(f))(mold((out \ + 7a47d4da-93b4-45dc-a181-f5e0e2df44e5)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 00958786-584d-4a6e-b5c3-61ebb8af0fd8)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 3bbb380a-2756-43cb-9c31-47b11ed3b026)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ca939cd1-4dd9-42ef-9ab4-a4292d3042f5)(label(true))(mold((out \ + 8cf40d8f-5131-4b2a-b925-f9a0c73e5c66)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 196a55c4-004f-4997-9a82-4c116c44f58d)(content(Whitespace\" \ + ba2a4838-e96f-439d-82b5-426ea913889a)(content(Whitespace\" \ \"))))(Tile((id \ - 45530c89-21b9-4da6-a411-be788347ff05)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 5b017b05-2dc9-4bb8-9d81-43104f05572c)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 19ccad19-db00-4012-8cd9-090e58e34d2f)(content(Whitespace\" \ + af45430e-6e51-4520-9f9d-49117bfaf4aa)(content(Whitespace\" \ \"))))(Tile((id \ - 65269777-d11f-44d2-a3a8-2bd0703d931b)(label(true))(mold((out \ + e6f67f3a-4b22-4be1-8ed1-36801f42b6d8)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 1f58078f-b848-4839-bebf-8aae0b139a85)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 095ded62-7845-4ab1-b493-867e9ee579b1)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e45cc210-7d11-4115-8e0a-19aa91b5cf85)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 95711e32-58c5-494b-b912-0cd1da1944ab)(label(let = \ + fbb796fa-219b-46cd-b36f-ca75d1a64a3d)(content(Whitespace\"\\n\"))))(Tile((id \ + 31bf6267-878e-4291-8605-72974e318b28)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 05d683a4-b423-4906-b626-95272e089863)(content(Whitespace\" \ + 983167f5-028f-4688-9cf9-f5c8daa9b9e8)(content(Whitespace\" \ \"))))(Tile((id \ - 19b1c876-def7-4ff4-a273-83a47cec3faa)(label(f))(mold((out \ + c10b24c2-ea13-479d-80c3-1bd57b9c337f)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c80439ea-f422-49be-bb47-44ce041545bc)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + dd5ef1eb-f6f0-46d9-91df-ec1a47142b3b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 7c5999b8-ed2e-4914-90e7-883585f46fa6)(content(Whitespace\" \ - \"))))(Secondary((id \ - b66ca63f-d073-4e34-b5cb-5c6a50be38c9)(content(Whitespace\" \ - \"))))(Grout((id 92c3c219-ac9f-4f4d-af39-7a87433ee68f)(shape \ - Convex)))(Tile((id \ - d5a45e15-9eca-41ee-bd0e-91cf154473de)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 9fd54931-31d4-4074-af43-f92faa65f163)(shape \ - Convex)))(Secondary((id \ - a51d6bbe-db2b-470e-a677-c5d553674981)(content(Whitespace\" \ - \"))))(Secondary((id \ - 70408414-c362-4277-974d-5fd9979c2215)(content(Whitespace\" \ - \"))))(Secondary((id \ - bd381de5-1ece-4e62-a2b9-3bcba8736c27)(content(Whitespace\" \ + 4facc02d-9485-45c5-8ffd-6e31b4561856)(content(Whitespace\" \ + \"))))(Tile((id \ + 8c129e44-abf5-46b1-909c-12f7a5fd0678)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + cea8313f-e717-476f-a6cf-b8d6a3cacc46)(content(Whitespace\" \ + \"))))(Tile((id \ + 88cf845d-19b6-4bbc-832c-b6f3cc362b84)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + e44bbf8f-56b5-4d01-a729-f4f01bd36794)(content(Whitespace\" \ + \"))))(Tile((id \ + c405397e-8e8d-46c8-91f4-0fbfbefe836a)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 94a49b3d-a15d-4d2d-a922-1ef745a5fb12)(content(Whitespace\" \ \")))))((Secondary((id \ - 6fd64089-30ea-4435-9635-168ceefce138)(content(Whitespace\" \ + bfbc29bc-ce2e-4086-a397-a391dfbf04a0)(content(Whitespace\" \ \"))))(Tile((id \ - 199a5e0e-7724-468b-b556-44a91bd42ec3)(label(fun \ + 5c2b4d8b-335a-449a-82df-351e7040c582)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ce3db5ad-adb4-4b1e-aadc-17e112447cfc)(content(Whitespace\" \ + 09e3f249-0d35-4992-9e96-442bcf21a0f1)(content(Whitespace\" \ \"))))(Tile((id \ - 9579cd24-36b2-4cac-9bbe-c79e73be06de)(label(b))(mold((out \ + f06585d0-5231-43e2-a7ff-47bfb8476b06)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c47ca04c-8e09-4d04-8690-81d8362a407d)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 514b0fa4-cc73-4f80-958f-7a191a068d88)(shape \ - Convex)))(Secondary((id \ - b7aa5bde-8384-49d2-aff4-ade2cd61d341)(content(Whitespace\" \ - \"))))(Secondary((id \ - f77eaa78-6d27-4e18-b77c-593396192565)(content(Whitespace\" \ - \"))))(Secondary((id \ - 314d6e20-a3cc-4b14-a048-fbd76c4134e9)(content(Whitespace\" \ + a00c688e-3015-4b40-bcd7-dbf738e7760d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 555b1c1a-4bd3-4ae3-83d2-f18125b5bf2b)(content(Whitespace\" \ + \"))))(Tile((id \ + 2c6324e9-7640-4b34-9ccc-777428a6a097)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + d05188c6-65a0-4faf-bd90-87e61219f6b4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - de1bb128-289c-45a2-858b-1b625fb2df55)(content(Whitespace\" \ + 626c5d8c-9b0a-4eaf-b93e-f2fccc236f33)(content(Whitespace\" \ \"))))(Tile((id \ - 53c7c075-ff4e-40c7-83f0-9aef4ece7934)(label(b))(mold((out \ + 603e5f78-5d90-4e18-8940-75b0a639b585)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c0ac69f0-46de-4ac5-a592-0259cf25c098)(content(Whitespace\" \ + c08d9a5b-3e01-4978-8d06-ca262dd66433)(content(Whitespace\" \ \"))))(Tile((id \ - a72518dd-352d-47a4-b054-3778e2240920)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 0332f83c-144e-4b12-9320-c7979fb8e029)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cf693380-0cfe-46db-bf12-02c17a2aa5d1)(content(Whitespace\" \ + c6d0c9f1-eb8f-4055-a5c3-685a6357d708)(content(Whitespace\" \ \"))))(Tile((id \ - 6df1647e-2f6c-4350-b6be-ee0a149948d0)(label(true))(mold((out \ + 1af5fcaf-8498-425c-bc46-7af2d3326375)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1e5d2feb-aeaf-4b5a-990e-721741af9415)(content(Whitespace\" \ + 4b493e4c-08b6-417c-bafc-8466dd14c80b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 82f4bbc0-c3a7-4905-8bcf-24e6dfd3587e)(content(Whitespace\" \ + 534e7df4-07b4-48c9-8551-24fd1cbff076)(content(Whitespace\" \ \"))))(Tile((id \ - a602693d-8766-4acc-a621-b6bc94edff92)(label(f))(mold((out \ + 1df2eb0c-0156-4f35-aee4-d12f57940147)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7efbc47f-66e6-4e95-b592-ca445a855202)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 9d7e38c0-9ff7-45ba-a7eb-cf1927b4a52b)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 158da482-bbcc-4b98-abb5-ae7240ca085a)(label(true))(mold((out \ + 396f8e21-6176-4c3d-8359-a5aeef61957c)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 32241379-1075-4aca-9656-f326aaae6f99)(content(Whitespace\" \ + bcd3e8be-a5e8-4621-8f98-85b4284f6f87)(content(Whitespace\" \ \"))))(Tile((id \ - 37f36a46-08be-4e43-9d0b-d0cc4670f173)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + aeb2eda0-7164-4e3b-b8c8-bc615b928c00)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 33d9fa38-98e4-410f-96ef-3814cda0ca91)(content(Whitespace\" \ + 47e9bb9b-4bb5-410c-8a7f-26ef26fb096e)(content(Whitespace\" \ \"))))(Tile((id \ - ee9cacdc-1f65-46b1-ace9-c3563f8d198c)(label(true))(mold((out \ + d1d5d9aa-aad0-4486-848a-b4623c776bcd)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5d7527cc-81a6-4a4a-b0ba-2fe9d9aad62b)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 22a96e4c-dd62-46b6-8ce0-891312cc0ab3)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c4cfa363-28dc-4c07-8388-89511e2b021d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 20243ab7-fdd6-4be4-849e-084f814706a4)(label(let = \ + 5577a324-0232-40b8-bfc7-cfa11ce76a42)(content(Whitespace\"\\n\"))))(Tile((id \ + aba93dc0-e541-408d-9776-49ac3e7852c9)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 195a02a3-1cc1-4584-b028-c6adab8678d3)(content(Whitespace\" \ + 91a328e7-7d3c-4e21-a464-b370b9e48aa7)(content(Whitespace\" \ \"))))(Tile((id \ - 8914e2c3-7ed0-4184-9de9-c8c71bc84ded)(label(f))(mold((out \ + 7f68f2bf-0d4c-4d82-a5e3-bd51941d58f5)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 45dadb48-ba95-4353-826f-10544c399bac)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 36d8d777-d96d-47ab-af17-f337409ad427)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - afde939f-0fe4-46cd-9044-7190b86fb63e)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9e5b265f-aaa8-4aad-9014-3f91abd0f1fd)(content(Whitespace\" \ - \"))))(Grout((id f43f1d26-9790-40e6-8c26-d559056442b8)(shape \ - Convex)))(Tile((id \ - e6f2d81e-74cf-46b7-9b72-224b017542f1)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 2c8885b0-9e83-49b0-9bb6-eac06b6b1dc6)(shape \ - Convex)))(Secondary((id \ - 678bd368-85ae-4b6e-8f8a-a2106b84d126)(content(Whitespace\" \ - \"))))(Secondary((id \ - 722a324e-a9e2-4819-bdc3-0aa7b19e1a67)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5940e2d7-b76c-40b8-b3ca-2f4e83d89c10)(content(Whitespace\" \ + ebe0f0ea-6143-4542-86cf-7c6f1100a634)(content(Whitespace\" \ + \"))))(Tile((id \ + 858d90c3-9942-45b1-8d27-b42614d47f4d)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 27e8dcb6-2f86-4d82-a27e-03e2093b365f)(content(Whitespace\" \ + \"))))(Tile((id \ + e5437087-ecd8-4120-bfae-bd3bf4c1f9ca)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 7f824a44-5d05-4254-b5e4-2b110d549a72)(content(Whitespace\" \ + \"))))(Tile((id \ + f758da13-d9e4-478a-abca-b3727c19e952)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 08006c22-cdee-47f2-8c9f-c4d51bae502e)(content(Whitespace\" \ \")))))((Secondary((id \ - 6257d75d-660d-4574-abe8-e7af6b9d1b42)(content(Whitespace\" \ + efdc2871-cdbe-479a-9108-be021edb0265)(content(Whitespace\" \ \"))))(Tile((id \ - d357e807-390d-4e1d-a4c6-a258a74260d3)(label(fun \ + 549a5421-45ed-4578-a3ea-f5d53fa0d3fd)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 53d32836-c517-497a-9c8d-4dd4166d72d2)(content(Whitespace\" \ + 79c8bf09-f3d0-412e-9d45-baf44eff9bb1)(content(Whitespace\" \ \"))))(Tile((id \ - bc43d610-5d39-422c-90c1-99c19b61185a)(label(b))(mold((out \ + 57833b66-cadf-4c0f-b734-35cd0aec89a2)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ea17cd76-456c-4f64-865b-97b0809a04e5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + da024268-488f-4095-a6e8-924711139f18)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 9db87b7b-1787-4164-ada7-be267ad1c889)(content(Whitespace\" \ + b9ac481e-9009-4a53-acdf-20ed6956fd64)(content(Whitespace\" \ \"))))(Tile((id \ - e7b890a4-c153-4935-86ba-712f9b6fb293)(label(Bool))(mold((out \ + abb7c9b8-e143-4537-a158-84e720ba8e4d)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f60a55f3-2c3d-4805-b2a5-6aa5180e1634)(content(Whitespace\" \ + 11a68b18-c9ee-4998-a7a4-3028a8b87bf3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a98d7c92-73d5-4dc7-aa1a-698d699c254f)(content(Whitespace\" \ + c292d1ba-61d2-42c0-a51f-5e4ed16fd4a6)(content(Whitespace\" \ \"))))(Tile((id \ - 13163b9a-c8a1-4018-ac8b-f82e9aed7a02)(label(b))(mold((out \ + 83c22315-fce1-44c8-bc66-ab3b21041d30)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c379e843-e2e5-44fe-a233-224a671d9cbf)(content(Whitespace\" \ + a81ae344-dafa-4ccb-8a28-0e036a37139b)(content(Whitespace\" \ \"))))(Tile((id \ - f5eff3f0-1072-4f8d-87bd-624091b2182b)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + c97fa7fd-211f-4f3b-b4ef-311cf83a760d)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 079d9993-25ab-46e5-ba58-99e1e13d5730)(content(Whitespace\" \ + 919e5ad2-faa1-4f1a-844d-4b4363e81670)(content(Whitespace\" \ \"))))(Tile((id \ - 36d45045-38b3-49fe-ba96-21a0596aef7b)(label(true))(mold((out \ + 99cee9a1-3024-4916-9e3a-c21c47e3b386)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 57684621-723f-40b5-b736-65f23b7a539f)(content(Whitespace\" \ + 167d7af3-6b81-4ecf-bd0a-b920001c9ab3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 06c16dfe-8fd9-4672-afa3-f1de2f342e30)(content(Whitespace\" \ + 390c410f-8099-450e-a96a-9396b89f0dd1)(content(Whitespace\" \ \"))))(Tile((id \ - 0af9c58d-aba1-4edb-9a80-5d2e3d3492e5)(label(f))(mold((out \ + 9a350d43-86d2-4aac-88e4-477aee222b3d)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - f57502b2-6858-4af7-bcd5-d899d462eb36)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 74c9597e-081a-44d1-9d6c-59ec236635cf)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - d67bea13-16e7-410e-8473-cc9ebcbeea7e)(label(true))(mold((out \ + 1c0fc16e-ca6c-4930-9d9a-84d3a056bfb3)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 2a06fdca-dcc5-492a-a9eb-b51e87a91fb9)(content(Whitespace\" \ + 48980f08-2293-4e6f-8778-e29f0f7855ac)(content(Whitespace\" \ \"))))(Tile((id \ - b7ee1179-4557-454f-bb83-05a493d357f8)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + bf5d79af-54db-4fd3-b05e-3cfa54046b81)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e14b3dc7-b3e6-47a7-a734-fcfedc9ae80b)(content(Whitespace\" \ + 4b315d42-e151-4ea6-ab9c-546dffc9217b)(content(Whitespace\" \ \"))))(Tile((id \ - fc1a8228-d9a8-4aca-b279-383684bdbe05)(label(true))(mold((out \ + 73438406-c661-409c-b4a2-b87e9f450721)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7867277d-b26c-4ac1-901a-5560bf448222)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 57758ed1-ab57-4e3d-aef9-aa7d1fbf04d5)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 81f3dcd8-5598-45dd-b0ac-dc3aa27ebc1a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e5615653-8302-4f02-9aaa-79e7601a810c)(label(let = \ + e7628ab6-c525-4065-80ea-893de72fa236)(content(Whitespace\"\\n\"))))(Tile((id \ + 8cf8b117-3717-4ce8-bed2-54a0036715cc)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - beb40d29-9522-4c9f-b342-9e626d359fec)(content(Whitespace\" \ + 88d2f074-ef60-4d8b-bfb3-68d035e5706a)(content(Whitespace\" \ \"))))(Tile((id \ - d8571f2b-0932-4396-bee6-337d02c5d442)(label(f))(mold((out \ + 0014f507-6f68-4412-be09-212a19dca949)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 97fd33a0-7de7-42f3-ab59-ee519aafa0fa)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 9482dda0-f933-43cd-ae1a-13ada91e8b18)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2c0875ff-6419-4b2d-989e-35bc2a1a3036)(content(Whitespace\" \ + 9f70188b-9cbc-40a5-95cf-9c189a1f0c85)(content(Whitespace\" \ \"))))(Tile((id \ - de8c86f9-72b4-41a2-8e49-2ae5bd904c34)(label(Bool))(mold((out \ + 3e962086-862c-4c03-bb32-d446a5511509)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f5359fcd-929f-49ac-acd3-cb4e468e95b8)(content(Whitespace\" \ + 2176d7bf-847e-45e9-ad8e-143fc5b7c945)(content(Whitespace\" \ \"))))(Tile((id \ - cba7e26e-5324-45ee-a040-b99f74a6345b)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 92053cf8-4aca-482b-9a75-feaf27038833)(shape \ - Convex)))(Secondary((id \ - cbedb124-6ad6-4594-8995-48b938280662)(content(Whitespace\" \ - \"))))(Secondary((id \ - 92b22cfa-fcd5-4e64-b1eb-42350efa6005)(content(Whitespace\" \ - \"))))(Secondary((id \ - e92bba3a-02e8-49ce-933e-608106fa1d5d)(content(Whitespace\" \ + f70c5e0c-61c4-4ec8-9b51-a630959eba84)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + dcc53af8-a281-4ed8-93a3-a33783043649)(content(Whitespace\" \ + \"))))(Tile((id \ + 69b78a78-6519-424e-97ab-fedcc9002ff0)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + eb70dc44-fd3e-421d-a873-272e02dd88be)(content(Whitespace\" \ \")))))((Secondary((id \ - 20d12cd7-8150-4900-b429-ada033c245c5)(content(Whitespace\" \ + 5d6f4679-6a1b-40b4-b3ef-ef15cec637ac)(content(Whitespace\" \ \"))))(Tile((id \ - e31eafc0-adae-4acb-a0e7-dc70ce82d66e)(label(fun \ + acb8a802-0768-4b63-8e61-b32962743330)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 92e6efec-ea3b-4263-bb24-790ccfaadfa1)(content(Whitespace\" \ + 2884de99-add9-4604-9640-8af3a551585e)(content(Whitespace\" \ \"))))(Tile((id \ - 763f4ad4-9606-4a1a-a5e0-92902c767d9f)(label(b))(mold((out \ + 58f0f730-9a99-4f96-9939-9ecce9c86813)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - dd4eec56-8f3a-42f8-883b-617269d33edb)(content(Whitespace\" \ + 1a0e1918-68a2-47da-9ef3-2fe570911946)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d587040f-8fdc-44c3-bcaa-a2d3673d573b)(content(Whitespace\" \ + 8855824e-2554-4f29-8640-f12da017fb9e)(content(Whitespace\" \ \"))))(Tile((id \ - a8c46661-9b28-4712-8e26-4a5bfd32070c)(label(b))(mold((out \ + 7469b75b-e2e8-4a00-95de-5c75f5f3e5eb)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a75b25d8-23e0-4a7d-be44-026f8ac16c8b)(content(Whitespace\" \ + 842a0b63-629d-4a53-bd09-c7cd1f7cd201)(content(Whitespace\" \ \"))))(Tile((id \ - 3c325158-7e37-4ce7-8851-04b86f9ef104)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + e4f29a70-bab6-4049-9d89-c3bb0621869e)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fd54c5ca-e661-4d82-8153-491bdd93efd6)(content(Whitespace\" \ + 95625354-da02-4b87-aaaf-096ac5051c4b)(content(Whitespace\" \ \"))))(Tile((id \ - 629d7054-84b0-4df5-827d-a53d1d9fcc3c)(label(true))(mold((out \ + 8f5c2142-3f3a-4221-9764-7d8c1bf6caaf)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 45157d16-447b-4148-b709-d756534e56d0)(content(Whitespace\" \ + 17d9fc1b-e994-489d-a515-281c80254886)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d9102e0d-7373-423f-b803-06bd4bbfa12e)(content(Whitespace\" \ + 4649159d-c144-4fa0-b13f-b4b29b6dc38f)(content(Whitespace\" \ \"))))(Tile((id \ - 640ccec8-05de-4d42-8463-99b80258070e)(label(f))(mold((out \ + f0e635f9-1d16-4e70-91c3-17405b229157)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 17d54597-59d6-4e72-bddc-544c46818c04)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 10f6a9e7-32da-4caf-807a-74e8d17beb02)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - aa80ef64-4be6-443b-a6f3-1e61ed8069fd)(label(true))(mold((out \ + b7412d33-2626-4430-99a5-24b64072d705)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 0830394e-ba5d-40e0-98b0-132c96adf0a7)(content(Whitespace\" \ + ebac4da7-9134-41a0-96ba-e5187562426c)(content(Whitespace\" \ \"))))(Tile((id \ - 133b206d-3940-44b1-a424-7f8244505a72)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 66703279-490d-4776-b9a5-2b0dae0b4df8)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 35a3cfb3-0761-4bbe-b332-25bb83b35310)(content(Whitespace\" \ + a911af86-9bdd-4fe9-acf6-770f52193d2e)(content(Whitespace\" \ \"))))(Tile((id \ - 0e6f463b-c79e-44ed-af9b-544e8e6ee43a)(label(true))(mold((out \ + 871b70ce-e384-4741-a0f0-e91dc6c91f2c)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d355c1e9-d709-4fbd-9f06-08c518077346)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + bfbcec2b-6879-44ef-81f4-46bde8f68a94)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2ce5c0a5-2431-49c5-9d55-4eed5b2cbd52)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dc86465f-5c0a-48b5-aef1-51dae9a80e31)(label(let = \ + 90aceb86-483e-4844-b758-9c04a734f56c)(content(Whitespace\"\\n\"))))(Tile((id \ + 5e772249-f1bb-44d3-b037-cbfa1746ebae)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ea6e7924-e38c-4ba0-8acd-622db92a1d3e)(content(Whitespace\" \ + a48e554d-6b6e-4976-b863-47aa3099778f)(content(Whitespace\" \ \"))))(Tile((id \ - 6546cc92-3d5a-4a40-af7e-f081c2b83470)(label(f))(mold((out \ + deb0d572-8fe7-4e81-a6c5-9f7235e230ef)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - eb1aeb12-f9cf-47bb-8a69-c26b20a3779b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 969170cf-4bf4-4299-990e-e0c3f75f3f4c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c9602d72-4ccd-42b1-8542-7b5c8cb8e7ac)(content(Whitespace\" \ + 05efd73c-c11c-4583-9d24-d6fa2e5cbfc5)(content(Whitespace\" \ \"))))(Tile((id \ - 704a5137-6382-4a53-8776-c36c02b40863)(label(Bool))(mold((out \ + 9626500b-0d65-45d6-8cc1-21701b982ee7)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a90dd745-12b6-452e-a3a9-f052298fd2de)(content(Whitespace\" \ + 9ecb9b9b-fded-468c-8cf7-2e3729056b37)(content(Whitespace\" \ \"))))(Tile((id \ - 4266fd4f-6ea5-4dac-9610-97cae7ebb411)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 9adbdab5-f905-434e-a6bf-791180566e08)(shape \ - Convex)))(Secondary((id \ - d8c438dd-8c59-4c3d-b05f-961580fbacf7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1004425b-ab5d-474d-93c4-1911af40434b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 368965ce-b2a2-46bc-987e-d30c517601fd)(content(Whitespace\" \ + 00e07324-83e7-4df7-a772-22d1d8de54b8)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 88fd3332-464a-4fca-8af8-d49c003ff470)(content(Whitespace\" \ + \"))))(Tile((id \ + 3f0cb206-538c-40ec-9d39-03a3390cbb8e)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + db022bb8-9aca-48fd-9690-ae1d6c5bb490)(content(Whitespace\" \ \")))))((Secondary((id \ - ffd37850-24e1-4703-accc-aca35365a4bd)(content(Whitespace\" \ + 2d450b70-0ed5-42be-85f1-f0f933a8483c)(content(Whitespace\" \ \"))))(Tile((id \ - 1f86e198-5228-4a1a-afe3-20887f3b3bcc)(label(fun \ + 8bdfcdc9-d729-47f6-97d7-2ac32198f162)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d4a9281e-b622-4a07-83e4-95836388416c)(content(Whitespace\" \ + 06ddc928-ab64-4781-bd72-dffab779b785)(content(Whitespace\" \ \"))))(Tile((id \ - ceaa600f-332a-4512-ae7d-ccd431312463)(label(b))(mold((out \ + d2319dc5-d1f8-4de0-8d7f-63a147483635)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 0c01a344-f1c9-4c7e-8ad3-573c45ef2a08)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 31b2b80b-fd60-4a15-8201-9fd3775e2356)(shape \ - Convex)))(Secondary((id \ - 3b8d624e-7cbf-4806-88a0-790cc43db5e9)(content(Whitespace\" \ - \"))))(Secondary((id \ - eade9501-66a6-49b4-837b-a005cd7b2674)(content(Whitespace\" \ - \"))))(Secondary((id \ - c0696d59-61ed-46f0-9fab-7577204d5e8a)(content(Whitespace\" \ + c25b9f07-e439-4dfe-a263-5bcaed84a1de)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 9ccf8e55-fcd4-493a-a201-e42102d1e8d0)(content(Whitespace\" \ + \"))))(Tile((id \ + 34769c15-47a8-4e46-aeb5-6eeb8b0807fd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + a87d5b15-7d32-4daf-abc6-1bcc2b50bd34)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a5b77b0a-dafe-4e5c-ae2b-95b835546eb4)(content(Whitespace\" \ + c036a747-29d0-4d85-b17b-6d6b56ffadd9)(content(Whitespace\" \ \"))))(Tile((id \ - 7406966c-01c1-40ae-8438-894d1bd59a01)(label(b))(mold((out \ + a91b0838-4442-4144-b1c7-0c2a9c0baee2)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 97504d19-0589-43ad-9def-8eefdf693b19)(content(Whitespace\" \ + f1649a88-1f7e-4178-ad24-48c3a8a288d5)(content(Whitespace\" \ \"))))(Tile((id \ - b24017a8-1060-45de-8438-0cb0f0c69baf)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + b02e51ce-a0d5-43a9-8da4-661da9b68805)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - dbe84fb8-9cde-4815-8f5b-68370e14c05a)(content(Whitespace\" \ + dac2a560-cb86-4e00-81ff-b562d2ce7418)(content(Whitespace\" \ \"))))(Tile((id \ - 235d8af6-52e2-4b8e-bf91-009e4447eb50)(label(true))(mold((out \ + c00f81b8-8545-498a-96b7-b763e03a4076)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a9d0e871-e802-414e-bd30-bbc48f9f6dc9)(content(Whitespace\" \ + 735cc62a-bfcc-41b3-b850-4dc5498b4f82)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2a7c5668-e30e-4e8c-b140-dc0e219c3a94)(content(Whitespace\" \ + b461d8b4-fde6-444f-b91f-43e54c2196ae)(content(Whitespace\" \ \"))))(Tile((id \ - 742b6c6f-3db9-4d16-9914-a5d914ad92f9)(label(f))(mold((out \ + 3d7259df-8be3-4feb-8be1-879a470dffa8)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a0091632-5ca2-4a0a-8693-af46c964b707)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ed9207eb-e8a6-4812-b49b-18275f649eb3)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 900e40c3-df7f-43de-868e-529a722d69b6)(label(true))(mold((out \ + ee3b1c86-1b07-46d6-8d98-dfa2e9b01333)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 7f669310-1611-4150-9484-022033cbbc76)(content(Whitespace\" \ + 967b9cd8-a392-48d2-af20-89b3d996fdce)(content(Whitespace\" \ \"))))(Tile((id \ - aa13d4f2-71e1-4dd8-b9c8-523e1a2cd552)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + baa5eb0d-189d-4f32-a19f-4ee25cf4e9c9)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 906bec45-5fa8-4910-b1eb-0bd172b39cff)(content(Whitespace\" \ + f8ffbb71-c00d-4ca3-a16e-5af3a1ac39f0)(content(Whitespace\" \ \"))))(Tile((id \ - b493b63b-3673-4cf5-9fc6-bebb42db1396)(label(true))(mold((out \ + 3b24e68b-6cce-4418-a75a-52010aedeedf)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2e133c45-2e48-4006-b0ed-ca719e6d9ddb)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 3db940c0-7cd1-46ff-bd95-848686d62bc2)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 871541cf-13ed-4348-9a2f-b93f45dca05d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4d10f655-2634-4c1b-9762-63ed6a7780de)(label(let = \ + baf9fff8-bdad-4120-a57d-609684b3c00e)(content(Whitespace\"\\n\"))))(Tile((id \ + ced662d0-40b1-49d2-aeed-14e5b19b9bf8)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 45785c6c-5f7a-4373-b7cc-f67910580015)(content(Whitespace\" \ + e86f6dfc-95e6-431d-b7b4-f3951b691796)(content(Whitespace\" \ \"))))(Tile((id \ - bc8d814f-86c6-4f6c-ae4f-3cdf5b2c049c)(label(f))(mold((out \ + 4d1baebc-09a9-4c66-ae7e-cf888cae6a86)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 50bc8550-04dc-4d90-a4a9-be8df5d98a3f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 00ec5f54-d6ac-4b1d-b7be-6a00dc7579ba)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ee84e1a7-15a8-40db-8a5a-4d9870cb2edd)(content(Whitespace\" \ + f87ea09c-c66e-4ff8-a440-2c5c551ab2cd)(content(Whitespace\" \ \"))))(Tile((id \ - a368cd1a-a7f6-4903-b2f7-d3beb1537bdd)(label(Bool))(mold((out \ + e74f7346-d1cf-4e40-b23a-4989d0fa3be4)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 3d1c071c-bfda-4037-b178-019b06488b8b)(content(Whitespace\" \ + 6b8e383d-3bd1-478d-85f4-89ab10769816)(content(Whitespace\" \ \"))))(Tile((id \ - 0fe78a55-a7de-4ff0-8787-ecd69bc9e239)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - ec97cc38-d201-44ca-ae64-28806c5d8d48)(shape \ - Convex)))(Secondary((id \ - 369b2741-2397-4f99-acdc-460eb71dcc12)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8d566925-4560-45ce-af57-70d001f7af47)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2f590b5e-aa3b-4967-b0c4-f7cc737b8d5c)(content(Whitespace\" \ + 045eb834-c416-4178-9684-65571b11ca00)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 9c4a59c1-43fd-4310-825b-aef7ffa892a9)(content(Whitespace\" \ + \"))))(Tile((id \ + 50526889-cf1a-45a8-a289-9e5eef58949e)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 19011eab-4218-454d-8de9-0801934b624e)(content(Whitespace\" \ \")))))((Secondary((id \ - 435c918e-b179-42f3-85a8-1c2de3f745a5)(content(Whitespace\" \ + 158e221a-8e5d-4652-b0d9-a558c0313529)(content(Whitespace\" \ \"))))(Tile((id \ - 162de82e-a946-4fb9-9526-1019b2dc13dd)(label(fun \ + 69a3edf9-3dec-4fa6-8ed2-f216f28fe76f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 19beca4b-cce6-4ab2-b079-15e467628ba7)(content(Whitespace\" \ + 9f7734ab-daaf-4851-b627-af2c546d8b21)(content(Whitespace\" \ \"))))(Tile((id \ - 7e2e4f39-845f-4a7b-82cd-571ec45b852d)(label(b))(mold((out \ + 78cca49d-e3e1-465a-a32c-6bde6671f2bc)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 673c44a7-ac40-4ed6-8b0e-90e7220f4134)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + e6b95480-2132-4201-99f9-26bdc8b5df1c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - feceacc8-a63c-48bf-82ab-7b0b97d47a90)(content(Whitespace\" \ + 91eda95c-2d9a-4bba-a2af-1d20bea73d9c)(content(Whitespace\" \ \"))))(Tile((id \ - 9478b03d-b2c3-4714-88cd-76863e56b029)(label(Bool))(mold((out \ + d6c45d32-a1d2-43b4-8262-6124417d5c86)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - feacb768-8686-440a-b28b-9e33df74853a)(content(Whitespace\" \ + 278e4a58-bc7a-4387-8b49-88616fb2a8cd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - db49bbf6-b497-4ba7-bc17-5a1971908944)(content(Whitespace\" \ + ffeace91-a82e-4ef5-85d7-d28c4d9499a1)(content(Whitespace\" \ \"))))(Tile((id \ - dfde7bb5-0af1-4d93-bcd2-d90bdf3d04c7)(label(b))(mold((out \ + 2b517f29-a6d8-47bd-958c-d4c3e959b530)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1cea4d62-89da-4bdd-b13f-7dcd4608ece3)(content(Whitespace\" \ + 4b2ca458-d052-49fb-b890-328ff5d99d06)(content(Whitespace\" \ \"))))(Tile((id \ - ae82c61c-e474-4d87-9bf1-f9931d692738)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 7ebdd869-99b1-468d-b006-04a41af147e0)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - dd934033-111e-46e7-aaae-b0df65816e53)(content(Whitespace\" \ + 97826df9-82b5-4fcd-bc69-9682b769f0d4)(content(Whitespace\" \ \"))))(Tile((id \ - 9a69136a-bcab-4cf0-8da5-f535f7e26d27)(label(true))(mold((out \ + b096fcee-6c3b-4031-87c3-d4158787990a)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e90533d0-3cce-4094-92c5-72dfcb56abdd)(content(Whitespace\" \ + 5ffc38f4-6c30-427c-9fdd-e1f64dee4636)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c6226fbd-11f6-4419-85ff-ab3c2498e170)(content(Whitespace\" \ + b77b8f48-fd64-4069-9766-8e7031786091)(content(Whitespace\" \ \"))))(Tile((id \ - 41bd500b-631c-4c81-9c59-55f283d35d0f)(label(f))(mold((out \ + 38845d37-0f71-44e6-8043-593ccd979192)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c5598d7f-05d1-4f6d-bda7-d4418e1a4093)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 43c772b1-012c-48bb-bf01-5ed1981c10b2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 52536945-61d2-4a8a-b34c-0f97f74678ca)(label(true))(mold((out \ + 33e62425-ff7c-405a-bd40-4717d7a0e031)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 74bfea44-e314-4b68-aa4e-8624bdc8ce7a)(content(Whitespace\" \ + 2c64ed12-5710-4d17-8537-84505afa0b91)(content(Whitespace\" \ \"))))(Tile((id \ - a263c68f-6725-4707-b6ad-7dd38477d1ce)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 3656e38c-ed7f-4d9f-8137-adfda414a209)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5fb52d35-62b1-4553-95ec-908a25026114)(content(Whitespace\" \ + 64098c03-acc7-4d0b-95d8-38cb950e4ebe)(content(Whitespace\" \ \"))))(Tile((id \ - dd524143-3ef6-4d77-a5aa-1d1607996ea3)(label(true))(mold((out \ + d84f6294-f7b6-4da2-8280-17ff445f9c75)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7e8e6138-15f6-4d0a-a1c2-9a8bbc2408f5)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + eccbf863-8826-4c0f-8e23-8eafad3eb9ef)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6015d050-9f6f-4c94-aab9-b6beb618f94b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9271a2da-695c-4a84-a5f1-782b6d1a0aa3)(label(let = \ + 7aa73962-e3ff-4888-9f19-14fc18bce03c)(content(Whitespace\"\\n\"))))(Tile((id \ + 4c006c03-ca73-450e-a26c-2ede30e78b09)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 34844e16-5aed-43ae-a080-46a40717dadc)(content(Whitespace\" \ + 68b2c91f-1e98-45b5-8a01-6003cc94ea63)(content(Whitespace\" \ \"))))(Tile((id \ - 7dee8226-5eba-4a93-a598-fe1c5f7f7320)(label(f))(mold((out \ + 8a8e5529-a4b4-4ddb-8dad-baa79ba51373)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2e94a4f6-50ea-417f-bf87-9b38816eb882)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 573bd504-f9dd-4047-ad50-be503d5e7c25)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ddfb9fe2-8c13-4c32-a518-c81106179548)(content(Whitespace\" \ + 9f430850-54e1-45a5-a470-4332577ef26b)(content(Whitespace\" \ \"))))(Tile((id \ - 83327e64-693f-4bb9-b698-87a789323c9a)(label(Bool))(mold((out \ + a4cd0a4e-4577-4a05-abf8-fedf9edb7088)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d466c4b0-bfee-4b81-a549-29ff26e5be9d)(content(Whitespace\" \ + 3ab16d71-565d-46f1-8197-42c05146cb1f)(content(Whitespace\" \ \"))))(Tile((id \ - ad3e8603-24bc-42ef-a50c-25f61ba914a7)(label(->))(mold((out \ + fddcb399-67ef-4249-bb64-c99b69dfdb23)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 7a253466-e174-446b-ac4b-1033e9f6b871)(content(Whitespace\" \ + a873c136-4dc5-4a55-b1c3-8872c313112c)(content(Whitespace\" \ \"))))(Tile((id \ - c0fa1d45-e9e0-4a59-9bf7-a5043d8cc002)(label(Bool))(mold((out \ + ff72d139-df9c-4720-9012-189e536af3ce)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 10fd4c96-baa1-4e8f-a53e-100cb36aee6c)(content(Whitespace\" \ + ddfe4334-19de-461f-9167-3fc7e4fadafa)(content(Whitespace\" \ \")))))((Secondary((id \ - 6aa641dc-56bb-4b33-82e3-1cbb94491d1f)(content(Whitespace\" \ + 7d8aaba0-019a-4c4a-8e20-0016858bbcfd)(content(Whitespace\" \ \"))))(Tile((id \ - 2efa7e74-501b-480d-9be2-0b91ab400b25)(label(fun \ + 4e248130-8d4d-4329-9477-f96837affdce)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - bbb4dfea-a227-493d-8320-effb69611423)(content(Whitespace\" \ + 735a66f3-35f5-4bb2-978e-21076b7fd756)(content(Whitespace\" \ \"))))(Tile((id \ - d7d6b45e-36f9-4c77-87cc-9564261d6fff)(label(b))(mold((out \ + b5d9e601-6097-404c-8bd5-7a9b6e9d9c96)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - ac7ab096-53ba-433c-94b6-c05d8703f2cc)(content(Whitespace\" \ + 4f3037e2-cc04-41d1-aa98-ac188b8d017a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 8325b5f5-d41a-4dff-8114-99b59ecd3e85)(content(Whitespace\" \ + 1802abd3-3eb2-44dd-bb5d-06159679e6f4)(content(Whitespace\" \ \"))))(Tile((id \ - e8f221da-21e6-4912-9914-31697964caa5)(label(b))(mold((out \ + 68e24d5b-2d4a-4b13-8334-dcb39571d31c)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f5bf4238-4163-4d18-8580-2313d921959c)(content(Whitespace\" \ + 53156d78-5fd0-43dc-8d39-6181fd47534c)(content(Whitespace\" \ \"))))(Tile((id \ - ce6a2eb1-970d-4e35-96e5-ce797fa6aacc)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 3800df1b-0894-4471-b836-50cd9dab55c9)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 59e29b21-17c5-4c1a-8b3c-54189c96e778)(content(Whitespace\" \ + e2bcd9bc-9d51-4733-977b-7c6e62598182)(content(Whitespace\" \ \"))))(Tile((id \ - d52afa68-cf8e-4632-a745-24e9d0a5253c)(label(true))(mold((out \ + af35b589-3432-4b72-8744-7b95856459bf)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e71e9c30-311d-43e3-8dc5-a28b95f9efd6)(content(Whitespace\" \ + b5061643-74aa-4e45-b68f-0e6a3d467b70)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a8749f93-4f77-497e-b667-a20333ac73ef)(content(Whitespace\" \ + c906fce4-50a9-401f-862e-35769927bc45)(content(Whitespace\" \ \"))))(Tile((id \ - 9101bfb6-4ca9-4ff0-94dd-98f16a638608)(label(f))(mold((out \ + ee3606f9-1e03-4db2-81c5-fa37d8e61055)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 16a464ee-12de-4725-bbfc-30139156c5b2)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 6c140faf-75e0-47bb-a0d9-832ebb0b0ed4)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 026be924-3fc1-4243-ab59-d413f936b923)(label(true))(mold((out \ + 4573a35f-6552-4634-b8ed-99f99f303841)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - b53dda25-5f7a-4033-bf2a-cf2d81e6335c)(content(Whitespace\" \ + 03a86cef-8652-426d-8579-cbb328b035b0)(content(Whitespace\" \ \"))))(Tile((id \ - b65ae5ba-d37b-4317-81b0-b9dd36d60103)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 50b5890d-bb23-4712-8bfd-94ee4e503054)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9d106574-4e8c-4fae-94b5-2c2464948b43)(content(Whitespace\" \ + 52b64aa9-0d10-467e-bcfa-09aca544bfd1)(content(Whitespace\" \ \"))))(Tile((id \ - a8c8b27e-2262-43a1-ad3e-9ce34e3eeedd)(label(true))(mold((out \ + b062a20e-a072-4822-97da-b13ec379c12c)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b4e87bb7-2370-4ec5-91a1-e7fba20e2b96)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 5dd2d4ab-a2b7-482d-8140-78790ff8c623)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8ecd5c16-c27b-4db8-841e-7a7d84b56783)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 56f5b307-ccbd-4055-a5d0-e15d2eee7c3b)(label(let = \ + be1ba7de-ec19-4672-8cb3-0e7482ee9237)(content(Whitespace\"\\n\"))))(Tile((id \ + 226f8cc3-31fa-48a6-bc2a-9fe5bc8b8046)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 91762bf5-6066-440f-98de-eedf468d2efc)(content(Whitespace\" \ + 3bd8505c-e38c-473a-878a-cb3fe94e0e73)(content(Whitespace\" \ \"))))(Tile((id \ - b10c2aeb-2def-4842-909d-39519641905a)(label(f))(mold((out \ + a6dd8947-0a0b-4406-9c7e-c0c19fad54de)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b5dfa606-edd8-4917-b5e8-e167cb639daa)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + a93a0099-ec2a-431c-8a95-0856e25cd900)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 70c3fcf2-0d68-4f7b-ab6e-77544c8ec3bb)(content(Whitespace\" \ + 6ee451cd-b02d-48c7-814c-911907a0bdef)(content(Whitespace\" \ \"))))(Tile((id \ - a8e10085-b0db-442e-8e0e-36280840e81b)(label(Bool))(mold((out \ + 93a0edcb-f9bc-48d4-9bae-a21ecde6850e)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e333d71d-9fda-41db-8e17-86e23097d28e)(content(Whitespace\" \ + ae727d65-13c8-4bd5-bae9-53478a94569a)(content(Whitespace\" \ \"))))(Tile((id \ - 1404d298-b539-42aa-b1f7-2e3d7d4c24b0)(label(->))(mold((out \ + 6b4e022e-1df9-4a73-8a72-8221ad245945)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1a889cc4-fe72-42d2-bea1-e2f61e37ac87)(content(Whitespace\" \ + a8a82dab-6ed5-451a-9407-e30e8264cd0c)(content(Whitespace\" \ \"))))(Tile((id \ - 5ecb8198-c2a0-4664-b928-3c703caf0add)(label(Bool))(mold((out \ + b078e37a-51f2-4658-b847-90f3babecbfa)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 8ba66779-25d9-48b1-926e-5a34765c312d)(content(Whitespace\" \ + b845173a-9104-438f-a364-5dc28a8e781f)(content(Whitespace\" \ \")))))((Secondary((id \ - bd6d0014-9e77-4225-9ff8-c0a7de2825b7)(content(Whitespace\" \ + 9b0c486a-3f26-4bdb-8959-76195ebce31e)(content(Whitespace\" \ \"))))(Tile((id \ - 29dfd12a-2d87-4df6-aece-53cf6bba0c52)(label(fun \ + b2cb6bf5-c0ce-4976-bd94-307ef4475ec4)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 4294c873-5c21-4a94-bf88-758b5fdf2f7f)(content(Whitespace\" \ + 9eb19b00-2c5d-4fd9-bf10-f824f313a3bd)(content(Whitespace\" \ \"))))(Tile((id \ - d466322f-a8b5-47c0-9dc6-bbc7a28d284a)(label(b))(mold((out \ + fe3faddd-142f-44a4-a59a-be380e47159e)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8b147a7a-1da4-46c6-a28d-091fa16861c1)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - e5d814f6-aa9c-47a9-b63c-42fd335f953f)(shape \ - Convex)))(Secondary((id \ - aaa67ede-7822-4cf7-9f19-303fa33f8aba)(content(Whitespace\" \ - \"))))(Secondary((id \ - 6e552c40-4071-4359-b9e9-37aa5802101e)(content(Whitespace\" \ - \"))))(Secondary((id \ - f5a43ffe-b44b-4887-a2f7-c7ad2c748a8f)(content(Whitespace\" \ + a05299d1-ee0e-4551-b400-02f082bfbdcc)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 4bc14b38-90c0-42b0-95ee-e4b609dbbb1b)(content(Whitespace\" \ + \"))))(Tile((id \ + fffb4962-d18c-449e-be30-dc73ed7c3a87)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + a406f0cd-29da-4b48-be85-2fae11da87bd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - afb4920e-7c70-4c30-80a8-b59dda228ee5)(content(Whitespace\" \ + e640fd12-11c1-40ab-92bb-051cdf2a111e)(content(Whitespace\" \ \"))))(Tile((id \ - bf7732e5-78e7-40c8-a9c2-a8ecb70093b1)(label(b))(mold((out \ + 679f722c-2a77-463f-9c38-899e6fc629bf)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ad412ee5-7ba6-43fc-a25d-326aab9770cc)(content(Whitespace\" \ + c768c89f-854d-4aa4-bbce-761603c09244)(content(Whitespace\" \ \"))))(Tile((id \ - 0ca89b07-36d4-48f6-8290-1c8b24c034be)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + f65d928b-18fe-473a-946c-713cc86a9450)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cb3c95fb-ae39-4615-973e-ec79808abb70)(content(Whitespace\" \ + eeac3afa-3ab2-45d2-9973-7c54a9c0ec77)(content(Whitespace\" \ \"))))(Tile((id \ - a6f26646-3b0d-46ef-bbec-37d88efc98cf)(label(true))(mold((out \ + 0156c574-0368-43ec-b561-1d43d1033fda)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 205acc81-396b-4654-a205-a613a8eec959)(content(Whitespace\" \ + 7d723fb5-cf4a-4ea1-9ea4-1e3e3aad126b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a47cbbe4-adb2-4be2-aab0-61f00f9562e1)(content(Whitespace\" \ + eb3fc3da-aea8-4ec2-bccd-92f207dc1f27)(content(Whitespace\" \ \"))))(Tile((id \ - cec4d937-3598-40f2-9397-c6a8e97a8685)(label(f))(mold((out \ + 7cca7ddc-350b-4593-b125-36242c0097da)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 481fb687-e80b-4b1e-ad16-d118f96518d3)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 7f226cc5-4f76-4884-8bb9-0b3062c53ab5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8bec8bab-36e3-4f51-a0ea-e1c25b102bc4)(label(true))(mold((out \ + a961c178-ab39-4885-b37a-001fc0bc9af4)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c515d61f-d2ee-4687-aa95-d27c345d9124)(content(Whitespace\" \ + 27b63192-bf57-417c-bc0d-381ad9744908)(content(Whitespace\" \ \"))))(Tile((id \ - 2987470d-5adb-4c4b-b833-a6053464f507)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + e1548cbb-0fa4-4c62-8841-79d60121366e)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 921d2a1d-8b94-416f-9310-896690875100)(content(Whitespace\" \ + 8da9116e-ac40-44a6-9cbc-db7f25cdeba1)(content(Whitespace\" \ \"))))(Tile((id \ - 1e9ee143-0c04-44d7-9377-b00d030d9e8d)(label(true))(mold((out \ + a73f5960-d7a0-42f3-9f87-b7ab23ee225e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e0eb56a9-fe68-4c96-a5bb-1d4dd7699c0d)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 1ec6b086-98b7-4bcc-acff-3e2ee3747026)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ce674ccd-c248-497a-be93-2d1827321580)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 77df4c7b-d395-4223-9069-a41ccc5bbcec)(label(let = \ + 21363ebd-d485-44f1-ab7e-1007beaffef1)(content(Whitespace\"\\n\"))))(Tile((id \ + 35ec3a37-980a-4deb-9e53-47f783d84412)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 37e216c7-b5bf-4c84-94e2-809bf6f37566)(content(Whitespace\" \ + 33a3e151-e2ca-4555-a38a-43081ecfe350)(content(Whitespace\" \ \"))))(Tile((id \ - 6ba77d63-777a-4ea8-8e2a-b749252fc99e)(label(f))(mold((out \ + 2e706c72-fb01-4054-9822-af7e5d243694)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e7b23270-f09c-49d9-99c9-63cfb246bf84)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 249ac389-683d-4aed-ae34-7598215b4222)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0a0f7a4c-5607-4b44-8f2f-7d7fea49ad79)(content(Whitespace\" \ + fe5dec15-fb65-419b-a94f-d832bf5a3ff6)(content(Whitespace\" \ \"))))(Tile((id \ - 43c8c778-7a13-45ca-84b0-7f325e56c3aa)(label(Bool))(mold((out \ + a507c20b-0f41-43d4-b687-812cc402e307)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 3d7b8db2-5f04-432b-8e91-08dcb9396fc1)(content(Whitespace\" \ + a7e19047-fe26-4af9-bdaf-01484ea9fae4)(content(Whitespace\" \ \"))))(Tile((id \ - 46647b2a-ce9e-433b-b19a-34524e8a3936)(label(->))(mold((out \ + 6b189eb2-a05c-42d2-a1e2-3b8ecc1ebb0d)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2948e58b-e983-47f2-99d0-ee3888d9dd2d)(content(Whitespace\" \ + 8fb1a892-921e-47d4-9327-de260ebd51b4)(content(Whitespace\" \ \"))))(Tile((id \ - b321fb83-884e-48ab-9f0d-821af55f2875)(label(Bool))(mold((out \ + 2557e096-fe29-4849-969c-a1a953831b1c)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 319dd3f4-27e9-49fc-9cc9-c1061871c35a)(content(Whitespace\" \ + 4ebec74c-fb13-4758-a8bf-c4e34b031434)(content(Whitespace\" \ \")))))((Secondary((id \ - 0bd2e23c-685d-4f29-bfe7-a69b36196188)(content(Whitespace\" \ + fee94c78-9e92-4ba3-aa5f-822a0a287c22)(content(Whitespace\" \ \"))))(Tile((id \ - acbfef52-103f-477e-bb21-04b4d1bdffa7)(label(fun \ + 4a2689de-836c-4af7-bf4a-38276bd27dfe)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 41fb3d84-8b61-424e-804d-ec69c303fb6e)(content(Whitespace\" \ + 9c0835cf-0fd3-40d4-a82a-db25807291c5)(content(Whitespace\" \ \"))))(Tile((id \ - 9b5d610f-0469-4739-aca7-5119fecf545b)(label(b))(mold((out \ + 10130787-6c13-47ce-9cc8-8fcd90fac2fe)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c410566c-dabb-4c16-a9d3-529919c4aed7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 673f4447-fc1c-4ee6-ad30-176759e4fc84)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - f58d88f3-e73c-4460-af33-c98310bcf84c)(content(Whitespace\" \ + 3723e8ba-29d8-4751-a6bd-57c6014ebed0)(content(Whitespace\" \ \"))))(Tile((id \ - 74f034a8-1c62-4a1b-949d-3d5d9ab06300)(label(Bool))(mold((out \ + ad007c76-3fb0-4aa4-9d46-7092c82c2992)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 457e1f7b-6d2e-4f14-ab9d-ffdd7504178d)(content(Whitespace\" \ + 867cf76d-01c2-4ea6-b03d-fd57d631c6a2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 068412e9-a2c9-453a-9471-5c85ca109a50)(content(Whitespace\" \ + 6a6bb12f-d4e7-4071-a134-a6022e4dbaa2)(content(Whitespace\" \ \"))))(Tile((id \ - c9e91907-caf6-439b-a853-daf48c23c644)(label(b))(mold((out \ + e259d880-65b2-4f43-8335-cb4cb8a09790)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f2c60bb1-7cf7-4e8a-a851-b2777cefe181)(content(Whitespace\" \ + 58b08f75-9b15-440f-b2ac-162c1bb6fad9)(content(Whitespace\" \ \"))))(Tile((id \ - 377c0269-ab26-471d-82ed-240201592a29)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 28a0c1c6-cf38-4bc7-8d7d-acadf6dae3d1)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9c093f60-be9d-4cb6-a5eb-1da93f0e2024)(content(Whitespace\" \ + 733e13fe-1a99-4140-8d15-708b1a3d3782)(content(Whitespace\" \ \"))))(Tile((id \ - ef606d34-8568-40f3-9202-3c38e4be1b75)(label(true))(mold((out \ + fe0f62c7-19d7-4964-be42-4a45da1dd3b6)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a4529399-1837-4eec-b112-9938302ef97a)(content(Whitespace\" \ + e0e2e3fe-717e-46f1-80d8-bf641a00c9f5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 22922dfd-dafe-4fda-9d42-5edb7349ef5f)(content(Whitespace\" \ + 11d58c19-3c5f-4a3b-89de-31cea5ac4dc2)(content(Whitespace\" \ \"))))(Tile((id \ - d60e887f-7cde-4ee3-bee9-380b0c41f4c8)(label(f))(mold((out \ + 29f2de60-7e6d-460f-9516-72bfcceb8230)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - bebd0d47-8506-427e-bed4-9246a8fa3621)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 186dcf99-1acf-4b9f-bceb-4e1e791b6bcc)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e8d45f5f-4215-4eb2-9887-f5ec0c765f36)(label(true))(mold((out \ + d79997d8-d848-43dd-860c-601908513e92)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - a1fec6ee-8077-4339-bd56-4ad81eb6f9f1)(content(Whitespace\" \ + 70281d27-0079-4001-b1a3-699b60c84b2a)(content(Whitespace\" \ \"))))(Tile((id \ - a821160b-ec97-4f7a-9998-ff6f05d1ed41)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 45ca8fc5-d408-4b13-afa7-083f98723c79)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 7f093f83-8c79-4361-ad05-6c8f5abd5b59)(content(Whitespace\" \ + 4070c4ad-2776-477f-823f-085f4384bed5)(content(Whitespace\" \ \"))))(Tile((id \ - e1640f07-6616-4e3b-984b-dc450a6bd185)(label(true))(mold((out \ + de179e15-928a-4fb5-a7e0-6aaabd17e3c9)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3c27e8eb-4eec-4d0e-a200-069eea15262e)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + a0b183bd-484a-4a7f-9ab8-e8c7c2bf2a13)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 231b5583-44e9-4949-a331-b28a92cd214b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 454d0a65-bb35-4776-a9ad-eb5f8e46878e)(label(let = \ + 95b8cb50-ee78-4de8-803f-a219c8e99e24)(content(Whitespace\"\\n\"))))(Tile((id \ + 1665684e-79cf-41ac-bb87-3b785fd83ba8)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - eaddf229-c03c-456d-92ba-61829c5734ca)(content(Whitespace\" \ + 420f3e72-db0b-458b-a278-2eb3141fe707)(content(Whitespace\" \ \"))))(Tile((id \ - 3ab0bf37-42ac-4125-8e53-97ffa6cfa810)(label(f))(mold((out \ + ac9456a0-a4df-4a4a-a01e-3c61afc49e3f)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 9adba8ee-9969-44f3-8b85-d43128748f9a)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 2042021f-8855-4b02-a0bc-2e0b97717108)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 98c65d51-bfe5-4013-a0a8-51f782896775)(content(Whitespace\" \ - \"))))(Secondary((id \ - bfd8acf7-a1e9-47a9-8fb2-5c081e0b2792)(content(Whitespace\" \ - \"))))(Grout((id 06b65df5-0379-4b3f-aecb-8bf155c70e95)(shape \ - Convex)))(Tile((id \ - 5cbf5af7-2983-4b7a-b9e2-97d2bd4f0d0c)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 0a812609-dea7-4f7d-af3a-e1ee023ce806)(content(Whitespace\" \ + \"))))(Tile((id \ + b1c10962-4a74-423e-8097-7589d7ca18ef)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 84dad8ea-8e76-4145-98cf-e8ac1720e2bc)(content(Whitespace\" \ + \"))))(Tile((id \ + 3c048fd3-81d3-4b96-9508-74eee76c9bf5)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 80529a17-bc7e-4717-a0f5-aa7139bc6ec0)(content(Whitespace\" \ + 5f1d6a94-de73-4914-a521-cb718d275a54)(content(Whitespace\" \ \"))))(Tile((id \ - c8ccd9cc-6cfd-4669-80d9-65d5b3366014)(label(Bool))(mold((out \ + 19323054-da63-4b8a-a870-79856e7ce363)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b35aca9b-0125-4534-baf8-a3c52144bbc3)(content(Whitespace\" \ + d1f08ac3-eef1-4f0c-91db-e92293e0b2c2)(content(Whitespace\" \ \")))))((Secondary((id \ - 1788e3ac-e9d2-4997-8700-1619e77b4c1b)(content(Whitespace\" \ + a72e6c11-44b8-4de8-bca7-120ab8e768dc)(content(Whitespace\" \ \"))))(Tile((id \ - d3debcd2-11b8-4475-820d-10af6ec26e85)(label(fun \ + dc18a635-3244-4441-99a6-b65d9e7cc313)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 2af4105d-3a26-4ec1-affc-268540239e73)(content(Whitespace\" \ + 1bdba6fb-deda-4959-8039-f84359c1044a)(content(Whitespace\" \ \"))))(Tile((id \ - 676d9a2a-d045-4e30-aa75-08aacceaeda3)(label(b))(mold((out \ + 53954186-d29c-4f04-8129-fd4aa6ea680f)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7b4b3bb9-0ab2-49bb-9535-13a4dc5aa33a)(content(Whitespace\" \ + 8e88416c-1019-41ea-8087-4d974d572d88)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2b90b3a2-7992-46d0-85c7-564d7220d786)(content(Whitespace\" \ + 0ec4549b-5c98-45be-8ba7-c6eb7393cf92)(content(Whitespace\" \ \"))))(Tile((id \ - aff6e94c-0622-4fc0-aef8-d37dd2c054ac)(label(b))(mold((out \ + adad0f21-5597-4d95-ba63-a2bf964a490d)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - bee3c868-d07f-4ea9-ac8e-114e44b4238a)(content(Whitespace\" \ + 796ba787-372f-480a-a9cf-d74db2e77b51)(content(Whitespace\" \ \"))))(Tile((id \ - 57a107f3-350c-4caf-90d2-f9b19caf3dd2)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 95f43eb4-a91e-4e1d-8b99-7ad69b68adb2)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 92398e33-19dd-42bc-ba65-f748223fdf19)(content(Whitespace\" \ + a91d6a13-8021-45b5-8c2b-8cc8c6981cf0)(content(Whitespace\" \ \"))))(Tile((id \ - 79ba26a3-029e-42ce-a5f6-e608849dfb20)(label(true))(mold((out \ + 518e5e46-b13b-4f09-91f3-31fa566c58b0)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d275d071-0005-43ff-a9c3-f60932cc73f5)(content(Whitespace\" \ + 15b907b3-5c2f-46a0-b06b-ed21778fd31c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 69a16adb-2f59-496f-8a9e-a7f9a4778ab6)(content(Whitespace\" \ + 792c8302-9378-43b9-b261-57261ee99901)(content(Whitespace\" \ \"))))(Tile((id \ - 4cddd64b-aad4-4393-a692-1229aad0d708)(label(f))(mold((out \ + 155c7c10-94f6-4c2f-8eef-004e14f86a92)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 31699a11-f0f3-4bbe-835c-2d9a0547c923)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 89e0c4f8-e24f-446c-a6a9-0839fc6faeb2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 246914bb-94b5-4385-857d-15a9c726ca94)(label(true))(mold((out \ + bb5b3555-df6b-4b83-9220-073d7b532a98)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 9ac692e8-fd99-4364-8fa9-d900a79de82b)(content(Whitespace\" \ + b3e23749-62b7-4a0d-98a5-4eb5d91e3473)(content(Whitespace\" \ \"))))(Tile((id \ - 56b9fd19-52bb-4f4f-bef4-de4cae06ddc5)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 91d1521b-18b1-4fc9-823e-71811291de24)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - aad6e147-4ced-4e41-9521-29dd02ca74fb)(content(Whitespace\" \ + be75c19e-b32a-4505-927c-827587312b06)(content(Whitespace\" \ \"))))(Tile((id \ - bee762ec-aa9d-4543-aa94-8780dcee6ceb)(label(true))(mold((out \ + 38c33e85-50e7-44b7-9c47-4b338295a021)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 937d88fc-8b2c-486b-9533-462f90c13af9)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 21e4563f-b90c-4e2d-9c5e-4f113b210207)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 209d44df-86f3-47a7-bde2-71f302b90fd2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 59d846d3-03cf-452b-9725-f9c2a788049a)(label(let = \ + 4205826b-a066-481f-9870-987bd9896244)(content(Whitespace\"\\n\"))))(Tile((id \ + cee321fa-2443-4038-a148-61a759151c2b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e18f7773-c0d1-4f56-a7a3-595ee339c11c)(content(Whitespace\" \ + a8a4d5ee-d14f-4435-bdc8-c03d5c572e08)(content(Whitespace\" \ \"))))(Tile((id \ - bdcfa538-d94a-474f-bf0d-a59aa8e41531)(label(f))(mold((out \ + ab5c9b8f-4cd8-47bd-ad7b-896e127394e5)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8573f11e-bd23-4638-8864-ab61cc09d5f7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + c57bdcda-7c9d-42da-8bf0-a017399dea55)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2d10e49c-cc56-4a48-ac01-2b7ab70bf0cf)(content(Whitespace\" \ - \"))))(Secondary((id \ - 93713604-8132-4740-bfe2-f91f72612180)(content(Whitespace\" \ - \"))))(Grout((id b2ac825c-c14e-41d5-b475-0af2705abf9f)(shape \ - Convex)))(Tile((id \ - ed7d0ae5-2e08-4d63-998c-316da7727a3a)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 3450d3eb-af8f-4fa5-ac4d-8251ffe96db5)(content(Whitespace\" \ + \"))))(Tile((id \ + cb3bebfd-611f-4f89-aca6-48289afa5c69)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 014406c2-02dd-4aee-acaa-8f2899602fc5)(content(Whitespace\" \ + \"))))(Tile((id \ + 8839ec01-9b9c-43ed-8f6a-c9db60caec52)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6f194494-9a99-4d40-9500-2f07c3f9b9a1)(content(Whitespace\" \ + 3cf0d400-0787-4327-b46a-7180d93d129c)(content(Whitespace\" \ \"))))(Tile((id \ - f9578f84-93f2-49ba-9361-184e182cd368)(label(Bool))(mold((out \ + dcddfbdc-0422-4720-9b2e-595f1dc069c3)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a7b14fde-e4f7-48f0-ba87-cf4519b613be)(content(Whitespace\" \ + fd270d79-b6e4-465e-8988-9e3d20e3ef54)(content(Whitespace\" \ \")))))((Secondary((id \ - 16db7155-34e2-4ab2-a55a-21336cbc8ec5)(content(Whitespace\" \ + 944ca76d-9d70-49f5-8d99-d69df0e815a1)(content(Whitespace\" \ \"))))(Tile((id \ - bf9a5376-28d0-4a89-9a35-ff5398c40061)(label(fun \ + 924e711f-10f5-4da2-972e-54d6cfcf01f4)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - fab475ce-6534-45a1-b664-32cacf8ebc4b)(content(Whitespace\" \ + 2b02f6d4-2d31-4e60-8cec-6b903fdadae0)(content(Whitespace\" \ \"))))(Tile((id \ - eac01f24-a260-421e-9b9d-29de30d8fda8)(label(b))(mold((out \ + 245fb049-2e05-42ec-8fb2-fa3553a1d525)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e8603777-8e85-41b1-98b9-188469481100)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - b31c69e3-0aee-4628-a3d2-37fc8cc998d2)(shape \ - Convex)))(Secondary((id \ - fc7d961a-a770-42bc-ad2c-0752044409a1)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2af44ecd-cf04-4504-8892-763831adf8c7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5f47194e-e532-4f25-a499-cb5a5b98f79b)(content(Whitespace\" \ + 9a3fccf7-bb56-4d6a-aa7a-9fb7b7735be9)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 2625294e-7343-4fa6-8efa-e8492aca2192)(content(Whitespace\" \ + \"))))(Tile((id \ + c15d7c3e-bf3e-44da-8997-2afc9a4ee9a5)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 2ee1898a-0e53-46fd-8c8e-38e670fdd897)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4a0ea005-9236-45cd-913b-8e19c02bad26)(content(Whitespace\" \ + cf2250a8-a2b1-4f6c-977f-3614e6b8915d)(content(Whitespace\" \ \"))))(Tile((id \ - 77b9aa74-7611-4159-89bc-55f3a1e036c9)(label(b))(mold((out \ + f2b7fc34-928e-4380-a8fb-fe194132b817)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3f713165-a7c3-40d2-9a13-10386afc489d)(content(Whitespace\" \ + 6b4935b4-ee35-49ae-9d8a-2387c77194b3)(content(Whitespace\" \ \"))))(Tile((id \ - 422853f0-6b86-426a-9b6b-573f627c4314)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 9c3c3a45-ccb5-45d8-9803-e7b86d129d39)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fb69c827-bacd-4b12-a1ec-75aed8dc3c8d)(content(Whitespace\" \ + 5ad14a87-f72a-47be-9069-d577535f6c48)(content(Whitespace\" \ \"))))(Tile((id \ - 697fcbee-c3e7-4381-b3ba-dadc5121e8ea)(label(true))(mold((out \ + da4c4043-2748-433c-877e-2c4e7cf1edfa)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5e9c4dac-6fcc-465c-b41b-e23c7207a212)(content(Whitespace\" \ + c87b63b3-b6cb-4083-bf97-4e6f0a4c0539)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5137a4dd-0105-466d-a6b1-004906ce67af)(content(Whitespace\" \ + 6fc08be0-071a-4168-853b-da2f68952816)(content(Whitespace\" \ \"))))(Tile((id \ - 87121951-34c8-4ff8-aa35-d1bcf4cbad6c)(label(f))(mold((out \ + 77cc4e88-4a49-4b92-a107-535cc80424ee)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 38c7acb0-cc5d-4637-b5ed-4829ba4d553c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 0f6f2ecd-a29a-4435-86fc-b9f6c230de48)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 39add059-c1fd-4ae0-9c04-915ae75755ad)(label(true))(mold((out \ + 55c07b75-8a45-4567-b7f8-60d14f7c07ad)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 6bd28861-5fa4-4c01-ac8e-2cc4bd0ebff7)(content(Whitespace\" \ + 1f7669fa-03fa-4f4f-9902-fb47ddcc8530)(content(Whitespace\" \ \"))))(Tile((id \ - 10cf3a56-0d60-43d9-9f29-472c0a9d0f90)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + db81a8da-7e91-4fd6-a92d-9a4c09efbaca)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 20e31d77-bfa3-4c0a-9089-7ddbc5acb42b)(content(Whitespace\" \ + f34cb844-06e0-4ddf-a1aa-598a4e6be420)(content(Whitespace\" \ \"))))(Tile((id \ - 11752607-8680-4bb6-918f-9f4facdd03e4)(label(true))(mold((out \ + 361f292f-39ab-40b3-a65a-613cfe384cae)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7cf700c7-61b1-4da4-9cbe-80dd6b6ea35d)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + b1bf835a-595d-4097-90ba-27001a850978)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 32735b5e-86ff-401f-8f0b-465d864fba23)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a0f39e86-b682-44a7-bb34-187bba6375c4)(label(let = \ + 3aafdf26-ef40-4068-85d9-f27d95ef2621)(content(Whitespace\"\\n\"))))(Tile((id \ + 1abb53f5-ad2b-474d-8c52-4fc4f1d7fd6a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ccfe7ff3-74a4-41b8-a225-ac872f661848)(content(Whitespace\" \ + 5188bb35-71ce-4a97-bde0-e7c7af9ecbdf)(content(Whitespace\" \ \"))))(Tile((id \ - 1b827ef7-8ba2-492b-aaff-51d0b08ad64b)(label(f))(mold((out \ + 0ae1b856-b7b8-4294-8cea-51ebd49ac543)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ea96e86d-1e1d-4f9a-8e0a-e1bbbefede1e)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 7a888086-5e3c-44a1-afa5-b071561256f7)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 13a7fe84-18b7-43c0-85b5-8231c0292f99)(content(Whitespace\" \ - \"))))(Secondary((id \ - cddb13f6-712a-4f37-8118-d9df403cc909)(content(Whitespace\" \ - \"))))(Grout((id 06164e6c-0ca8-4628-97a3-ce5f03f898a8)(shape \ - Convex)))(Tile((id \ - b84ab32d-27ff-4bea-a65b-e1406ec1ff30)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + f8a7feb1-35ea-420e-82a0-ab43d55262b5)(content(Whitespace\" \ + \"))))(Tile((id \ + 127ac2ba-9dc6-4a90-b232-e69d258d94ad)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 408eba72-bae5-4791-96fe-3aa8415131df)(content(Whitespace\" \ + \"))))(Tile((id \ + 5c37f8d8-046b-442f-b258-3f010c032b77)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 047ad6e8-8204-43f4-ac8d-f51e5d516363)(content(Whitespace\" \ + 7714e2f8-31d4-46ad-8346-4a47913e9f37)(content(Whitespace\" \ \"))))(Tile((id \ - 189542d6-5784-48e2-9bde-bc3a1ac46935)(label(Bool))(mold((out \ + 24f4e851-1ea2-4764-b1be-2b072b9fa21c)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 16f3e09a-cd27-4c8a-bae8-8d8dda88b10e)(content(Whitespace\" \ + 6912611d-7e4f-4495-be27-4aafcf1a375a)(content(Whitespace\" \ \")))))((Secondary((id \ - d27e1b79-0ff3-4ec6-ad1c-fa91837a5db6)(content(Whitespace\" \ + a266abef-19ec-45d6-aa58-190ed57e63f0)(content(Whitespace\" \ \"))))(Tile((id \ - 82eb621e-3141-41bd-b780-54d4fe318d40)(label(fun \ + 134292bc-5ecc-47e7-bfc1-f4bcadde17cf)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c30f6128-442c-4625-bd51-6b207dbd2bdb)(content(Whitespace\" \ + 0ae4fdef-dacb-41a4-b276-37e0efc71965)(content(Whitespace\" \ \"))))(Tile((id \ - db25fbde-03f0-4fde-a532-fce4ee36c9d3)(label(b))(mold((out \ + da8967f1-c3a1-4f99-ace9-fa4933bfb579)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f0e23317-b8d0-4b14-a5dd-62255e38dba4)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 52908ba0-5b6f-4f2f-bb5b-c569a70eefcc)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - cbf2e344-bc2b-4988-86f1-ad2ea49ffe74)(content(Whitespace\" \ + 8152e22a-be0c-4854-8dde-0a5e7e301fbe)(content(Whitespace\" \ \"))))(Tile((id \ - 0a7bf2b0-1e40-4c82-8b80-119f187ddaa6)(label(Bool))(mold((out \ + 443b5cb9-1ff9-4aa7-a8a4-fc718f3e9df4)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2f1ea14d-6e80-43af-adb0-ba76c9b97f77)(content(Whitespace\" \ + 54a22bfc-d43f-4b0b-8d64-199bfe9bba14)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5fa8455c-642a-48ac-8e63-9d6ecaa92e58)(content(Whitespace\" \ + 29bbe425-ba82-4208-8c80-2dfa3fd0bee9)(content(Whitespace\" \ \"))))(Tile((id \ - 541d68bf-b628-4eae-9209-ea46219eaa14)(label(b))(mold((out \ + 10e14aa2-591d-4ea0-b76a-bd4a343b358b)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - bedbdee3-8633-46e8-bb14-fcef7a175066)(content(Whitespace\" \ + 559b79a7-9c9c-4472-a187-c6f8e83a9439)(content(Whitespace\" \ \"))))(Tile((id \ - 105d38e5-d35a-40a7-afc9-9c3b508a711f)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 68ae9f08-17ce-463c-a0ea-226fb65a9bef)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 70b7a496-5161-4b21-b196-9ae260847a90)(content(Whitespace\" \ + bb2cd4c6-9f2d-4684-b434-9ac9317667c5)(content(Whitespace\" \ \"))))(Tile((id \ - 33de37fa-e7a3-46d0-9887-5c970f204d05)(label(true))(mold((out \ + ea6534a4-039e-4eb0-a2d1-252aa4947866)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f3222076-490c-48e3-9b8d-f54df590d9ee)(content(Whitespace\" \ + 0a892a3f-b976-4d5a-b137-7f058b3d6a32)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3a2578d7-b939-4ee4-a634-dc8059abede5)(content(Whitespace\" \ + 2b4c6dfe-10ad-4d83-ac59-c7a2a8bdafaa)(content(Whitespace\" \ \"))))(Tile((id \ - 4d6390c4-d52d-4204-97a1-30f0e0521f0d)(label(f))(mold((out \ + 7ccb1bb9-a155-4011-b3f0-a7d0cd616311)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 74708d45-4c6f-4811-93de-4523189e4366)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + bcc83914-ac9e-4923-948a-21fcc6500a97)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 04dfbcc9-1f39-49c5-969c-eb07e2587306)(label(true))(mold((out \ + 3a7f8d7c-2aa2-46ad-8ec6-da7718293b00)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - dc6bc0a1-9b0e-4567-b1e3-260aded8f84c)(content(Whitespace\" \ + 5ca9edbe-5106-4ab9-b934-a8cd11a1ecdf)(content(Whitespace\" \ \"))))(Tile((id \ - 213076fe-ad6d-47f6-9c71-41b1120cfa7d)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + dfb066cd-1459-4f97-a46a-75175abf2f77)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 60fb9e75-75ff-405c-be95-45bd10a55acb)(content(Whitespace\" \ + 3c65fd1d-8ca6-43ed-8c38-887ec2e8d496)(content(Whitespace\" \ \"))))(Tile((id \ - 3460ed7f-7888-49ef-a6c9-0a9880c01706)(label(true))(mold((out \ + ea0b0f78-226e-4414-a4d0-356d0b84ceab)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - cdbea899-1534-4944-8e68-6205942615bd)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + b5b3f373-ffb6-4353-89bc-934c4c890136)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 341dfd2f-b694-419e-82f3-42b57a0ab5c9)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 1fe0bd69-7327-4bfa-a88a-0f435a111ad3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 58c25d88-386f-4029-a5ce-9a66cd7f3861)(label(let = \ + ab179275-22b6-4232-a44e-2c0e3c044bc8)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5f555c1f-ff3c-485b-9c47-514ee5f9d4ba)(content(Whitespace\"\\n\"))))(Tile((id \ + d045a6aa-410c-410d-a561-73837d026f1d)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - de4ab77e-dcb1-4e71-86c6-c3beb4dc4402)(content(Whitespace\" \ + b50b0fb9-3515-4ef8-bcff-7a56cc3eb9bb)(content(Whitespace\" \ \"))))(Tile((id \ - ddbfd7c2-71f2-4287-a290-7b1ddb64c0f6)(label(f))(mold((out \ + d575360c-3482-4ef8-943a-43b5d3c46435)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 562ba7d0-49f0-433d-90a2-23878c49f43c)(content(Whitespace\" \ + 7205c138-01a0-46de-8920-04f964b8dc3a)(content(Whitespace\" \ \")))))((Secondary((id \ - d3b4654d-2960-46e0-95c2-257bbb7cf4aa)(content(Whitespace\" \ + f0a76c58-c581-4081-8d6a-36d54d527ab9)(content(Whitespace\" \ \"))))(Tile((id \ - 2e04c8c8-2563-4a75-b537-9148ae8df736)(label(fun \ + 6c3fd393-d782-41fb-8155-e67c3d2c89a3)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - b7615011-85f7-44e3-9639-c42a9ffe4770)(content(Whitespace\" \ + 0930d78b-5667-4113-9cd1-2889969c1a2d)(content(Whitespace\" \ \"))))(Tile((id \ - ae6bd94c-e8ad-4d2d-8d91-6f1fcfa88725)(label(a))(mold((out \ + e7905658-e2e8-4d46-8516-1d1b3c4b41c8)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f5f77bdc-330a-438f-a0f7-c360c0fff8be)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 62000e68-6de4-46ea-9e6e-abf7e23e8be8)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - d9e63c3c-f72f-43a0-b96f-080430114f0e)(content(Whitespace\" \ + 45c5e6a7-ecef-4ac6-a6fc-353cb942aa66)(content(Whitespace\" \ \"))))(Tile((id \ - 86d5cf2c-52e7-43f4-9010-0c4c94d70751)(label(b))(mold((out \ + 052c1e66-c99d-437f-9566-8634fac4294b)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - cdf4c3bb-f419-46e4-a64b-41c4c1333f3d)(content(Whitespace\" \ + 1cf090b9-5d39-496e-b03d-949f527bdf17)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bbe7464b-c3cb-421a-8618-b5aa0d0edab0)(content(Whitespace\" \ + 93e77fef-ef57-49dd-9553-a7b658579d2b)(content(Whitespace\" \ \"))))(Tile((id \ - 3e4b0bdd-3e68-4f12-8bc2-d17f6056ee2d)(label(a))(mold((out \ + 2d7073f4-0a18-45c1-9602-a363506b2fe6)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 418df9ee-b794-4953-9cbe-f3279474e4b8)(content(Whitespace\" \ + 8860c4ae-d9c3-436a-8d6c-a8dc583a3aa0)(content(Whitespace\" \ \"))))(Tile((id \ - 61a97d93-48d8-402b-9f67-5a283b18c5d9)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 48a43dc5-8cd8-430d-85ea-5ec6919ed8b3)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 09e88407-5edb-4bac-8ee4-1ad7df50e0a6)(content(Whitespace\" \ + 1c27e3fc-635e-4779-93d3-a0b756b6f7c8)(content(Whitespace\" \ \"))))(Tile((id \ - c61d45ed-cec4-42fb-abcc-f4a5f125950e)(label(1))(mold((out \ + bc74610b-ea3e-4bc1-b782-63db54c601b2)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a917be30-7c5f-4298-aee6-38851c2660cb)(content(Whitespace\" \ + 0321da82-0225-492e-a8eb-34226d846a6d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7b259183-e434-47b2-812b-db9642bd94c5)(content(Whitespace\" \ + 9cdb87d8-8303-47b4-9fd8-e628b0a288bb)(content(Whitespace\" \ \"))))(Tile((id \ - 9301cf6a-70a8-41bf-a622-49c49fd00754)(label(f))(mold((out \ + 9e44fb59-8641-4382-9606-bf69cea2a644)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7b9ee891-5f0f-4a58-a32a-e9db8f1ac4f0)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 2bd366e6-1356-4d5f-9a17-799d3d5cf6f6)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - dda4c579-0408-4a51-b1dc-6f97ccdd2e05)(label(1))(mold((out \ + 7f1fe351-9957-40dd-91d7-bf8470ad8756)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 27b1be15-9e4a-43aa-87f5-26de83265103)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 087103aa-873d-4d2e-bc93-1c2dd198003f)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fd081940-f5aa-43bd-8a30-720800cddeb0)(content(Whitespace\" \ + bd48283f-38a9-48c7-be14-2c9f7fbff9ad)(content(Whitespace\" \ \"))))(Tile((id \ - f6192cc1-0d1f-4ea4-bb9f-3666c704a62c)(label(2))(mold((out \ + 3806ef0e-e20f-44cb-9edd-dd82ed1202d2)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - dff5f94f-934b-4588-8789-dfd06aa0fdb9)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 2efb5f7f-eece-4042-ae3e-86b8417c643a)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6a653547-3323-48ae-8e53-9da33293859b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a18871d7-6f65-4b54-a155-4618c6093206)(label(let = \ + 0ceef89a-c47f-4b07-a58d-7268b8b11f6f)(content(Whitespace\"\\n\"))))(Tile((id \ + 21af2be8-1468-43e1-bc58-0e103ff4a70c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 21140476-577b-466e-b4d0-34c4817295a8)(content(Whitespace\" \ + c990349e-8ebb-46eb-8b18-39facf131b5b)(content(Whitespace\" \ \"))))(Tile((id \ - 031c0681-9ef4-416e-9061-b617ef8b6043)(label(f))(mold((out \ + fbaa5097-5d8e-4abd-925d-0696180f3ba6)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 1fa066e4-b63b-4947-807e-63ba8187294c)(content(Whitespace\" \ + a527e9a5-af7a-4147-aaea-7e532e368c5e)(content(Whitespace\" \ \")))))((Secondary((id \ - c4cf3db8-07b6-48e9-badf-0fefbd343a40)(content(Whitespace\" \ + d313e853-7df9-404c-9253-624a99c08413)(content(Whitespace\" \ \"))))(Tile((id \ - 8d0afd46-38a8-4d86-ae34-f16e7127521b)(label(fun \ + be53392f-c141-4f69-ae59-9cdc16f2337a)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 47cc914b-c68b-44e5-abd4-66cf763e18d9)(content(Whitespace\" \ + 120353f7-949c-4378-b0c3-1fab665fc365)(content(Whitespace\" \ \"))))(Tile((id \ - 35fe143c-210c-4fe4-818b-2b6d2ad67057)(label(a))(mold((out \ + a123c1bd-7373-43d3-8c39-4dfde0b58b61)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - bc6a873a-8e9d-4901-970e-4e769873040a)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 2fdf6d92-bf05-497d-b1be-082ae2bfc752)(content(Whitespace\" \ - \"))))(Grout((id 08fd8118-cf68-46df-9f4c-e60d517fcb32)(shape \ - Convex)))(Tile((id \ - 7c634ee5-b6ad-4e60-a1ac-8f56da4145c7)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + a8cd877a-f098-4d76-b861-1a19be8f8c81)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + e90819b1-7393-495c-a509-9bf0d646fa01)(content(Whitespace\" \ + \"))))(Tile((id \ + d32ee69b-6b2d-4f5a-8bac-0ff4ade92fdd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 1e2e65a3-81da-4de1-8eaf-8c7529d36556)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - a63a12dc-947d-454c-b1b1-7161215aa674)(content(Whitespace\" \ + 3863750e-8521-425e-9d11-ada947ea3397)(content(Whitespace\" \ \"))))(Tile((id \ - 0f9334ee-1bdc-40cf-9b6f-58fe6bdc93ab)(label(b))(mold((out \ + 77134c07-8a4e-4194-8e2f-9a0595c4dd48)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - df144b08-6d20-4e11-8a10-0af0c509eb9e)(content(Whitespace\" \ + b07c5dc6-9749-47ba-bec4-a1699f1bfce0)(content(Whitespace\" \ \"))))(Secondary((id \ - 54d73ad5-4629-4898-8a74-12e979918871)(content(Whitespace\" \ + 2ad38361-9f56-40ed-9291-7bdb46f46385)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 31c6a068-93b2-42c9-a71d-b16d3c7f048f)(content(Whitespace\" \ + 41d69c50-1acc-4a12-9481-2c84e758f52a)(content(Whitespace\" \ \"))))(Tile((id \ - 3f505df7-a328-4d45-a811-2c6c355cd953)(label(a))(mold((out \ + 8b78d5e1-1101-4cc4-b650-d063dbc12ad7)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 11ee247a-91a9-4169-a85c-0a13c293b2de)(content(Whitespace\" \ + bb0a7c70-43b5-4508-95b2-f94e2a62baa4)(content(Whitespace\" \ \"))))(Tile((id \ - 34ca9c74-f656-4b8c-8afb-6433b3488aba)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 607f3ceb-8bac-4c6b-a227-ce968b30c6d8)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 05af1d13-4d8a-4b67-85d5-501c72bc0d2c)(content(Whitespace\" \ + f5313869-3019-46bb-bc82-25719e17741e)(content(Whitespace\" \ \"))))(Tile((id \ - 0fd4bd7c-33b0-42ff-ad0e-7b041c6a4854)(label(1))(mold((out \ + de7a2497-ebe3-4ae9-9a61-d5ef34cd8562)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7b8c4ad6-43ea-4219-a589-b62c7573826c)(content(Whitespace\" \ + 4166f028-4812-496b-825c-6ed30562e52b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9410ff28-6598-4d54-a937-8d528a4d52f5)(content(Whitespace\" \ + 2f7715d3-603a-4cf9-8f74-8057b5ee75cb)(content(Whitespace\" \ \"))))(Tile((id \ - cb3a4fbc-6ac1-4633-9873-5182610424ff)(label(f))(mold((out \ + 56a118a5-3b48-4b70-a51c-711916074c7f)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 20263dd0-e85b-4840-9b0a-5ea37bf300b5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 50146bfc-e7d9-41bd-bcfb-9f54a7e150d1)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8e8285c8-a16e-4c6d-9c58-180436ca454d)(label(1))(mold((out \ + c430ad3e-1656-4f70-9f51-9f8372bfd55a)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 08e08e23-695a-4f12-ace7-e7f27ecb372a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 08db6430-c09f-4b02-b317-2e9b1b9acae2)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f7f40d1f-9c7f-4f5a-8509-4651a853ee11)(content(Whitespace\" \ + d2fa3cf9-1b93-4964-8f0a-bb3fd83ea868)(content(Whitespace\" \ \"))))(Tile((id \ - 1a5f1393-c37c-4e56-996e-1b896672296b)(label(2))(mold((out \ + eb18ffe5-0d40-4470-aaaa-9ea0f450fe47)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 9ce44ffd-32dc-4159-9f2f-6d71d7fe5657)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 3508ff9c-84c8-4f0c-8f66-b0bd05fcb640)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 708a3c9e-7292-4e02-a2e2-3debb4ae1184)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f99b4fc8-4211-4b61-953d-b345391a2dfa)(label(let = \ + c9b1ef3b-5b9b-495e-9f82-a67443c39051)(content(Whitespace\"\\n\"))))(Tile((id \ + a5474569-9485-4402-ba63-ee8df3f8a489)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 79116db3-94b8-4afd-8ed6-c05838975946)(content(Whitespace\" \ + 41a2aca8-68d1-47e7-9b73-cfed3e748364)(content(Whitespace\" \ \"))))(Tile((id \ - f4b8b596-cf5c-4544-be05-8f4076334668)(label(f))(mold((out \ + 182041f3-b3ec-4b2c-b6a8-a096763cda33)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 93fcc7e9-2ccd-4dad-b55b-932bf474735f)(content(Whitespace\" \ + 81ba3305-ff3a-44c1-b244-fe2191dd2ec7)(content(Whitespace\" \ \")))))((Secondary((id \ - 8c38d970-3c9f-4c85-aeb9-48cddfbcf8d8)(content(Whitespace\" \ + d4ac2b7b-994c-45a6-b769-b332663df36a)(content(Whitespace\" \ \"))))(Tile((id \ - c0cdf1c5-37e0-4f27-9d65-1f7e8b7974b4)(label(fun \ + 44573832-39da-48ec-afdb-fa5c8900b81f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a4aaa32d-e542-49c5-af81-0f83b813893f)(content(Whitespace\" \ + 5589ba00-c0b4-44f1-b2b4-0f6ef87f82f2)(content(Whitespace\" \ \"))))(Tile((id \ - 96f2f3fa-666e-4636-a17d-cf906d747c29)(label(a))(mold((out \ + e14764ae-97ea-4365-9707-a443a62a56b1)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a2ba97d7-5816-4de0-bfc7-bccecf3f7e1e)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 2b81df7d-9153-4f5a-a776-7256c6def523)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e90d08d3-4008-47f8-9719-8e5850767521)(content(Whitespace\" \ + b07949ac-d3c1-4af4-9ddb-2eca381665ae)(content(Whitespace\" \ \"))))(Tile((id \ - 1df5e4a9-efbc-446f-b348-e2729fa7bbc1)(label(Int))(mold((out \ + fdf70e9f-7fd4-431a-9091-e00a2059dbdf)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 9c17b513-e699-4468-b715-e4b3bef16d7a)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + c621eb2d-7c4f-4203-8e07-44f343ab29d9)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - dc6fe2ac-0844-4831-a69f-8268fee4cd5d)(content(Whitespace\" \ + 2fae53dc-6bdb-47c7-8e34-4e3b19ea3a10)(content(Whitespace\" \ \"))))(Tile((id \ - c7a314cb-ce89-4011-814e-cafb5de89929)(label(b))(mold((out \ + afe54977-bf81-4824-8206-8843f2658b04)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - ecd17226-2fde-4fa3-8ac0-3c5f2b26c782)(content(Whitespace\" \ + f6a23963-e107-48e7-aad0-5f53ce32aee4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f35b75f3-dbcc-48c9-944c-c64cfa85c0cc)(content(Whitespace\" \ + 084974bf-38e0-41f1-b64e-9aaa80f602fe)(content(Whitespace\" \ \"))))(Tile((id \ - 399863c2-7096-4af6-bb8b-69906019eb47)(label(a))(mold((out \ + 2d02e281-1f39-4ce8-a37a-6682815f6ea7)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 113a25c0-9431-4175-932c-78c5f11b03af)(content(Whitespace\" \ + 290ba035-d72e-47bf-bedd-b66a5d707726)(content(Whitespace\" \ \"))))(Tile((id \ - c9c0de07-5476-464b-8e92-b9a68cb7994e)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + ea30219b-4afc-4918-9ff8-b863a7447656)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bf427820-4f8e-45f6-8284-73d63c6b617e)(content(Whitespace\" \ + 984756f5-4774-463f-9618-dc2a72287830)(content(Whitespace\" \ \"))))(Tile((id \ - 359007d5-6cd8-441f-9c23-05b0e723cb23)(label(1))(mold((out \ + f2dc795b-537d-477f-a184-81f2dcc0887d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 9282171f-8148-467b-ad22-90e959765351)(content(Whitespace\" \ + 38460a6b-efd4-44ba-8ed2-d6879e2913ed)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e00be104-2058-4558-81be-4c95e7dba78c)(content(Whitespace\" \ + e9bafdd1-6986-43a6-b851-e746f864b3d3)(content(Whitespace\" \ \"))))(Tile((id \ - a58bd02c-1452-4a03-9c84-f6bddd6119dd)(label(f))(mold((out \ + 81131e23-c1de-448a-82ed-013ba4b8de9c)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2deb153f-02e6-49b0-97a2-7fa27e44684e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ef3edfbc-bcbb-4d5f-aefa-f21de4062271)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 08f00ed0-7003-47db-b330-939913302b0a)(label(1))(mold((out \ + d282eee9-7456-4b6e-a486-0a5fbbc9490f)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6e29a81c-3bae-4035-8877-6e2e7c4d1951)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 8ce2f265-919f-4bab-9c64-179dc041bf55)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 596659fb-ee22-4335-b1f4-01f31c811ecb)(content(Whitespace\" \ + f79bdaa0-cae5-4310-b7d7-f3853127bca4)(content(Whitespace\" \ \"))))(Tile((id \ - 6500abfb-77d1-4b10-8d77-721c7e37c19d)(label(2))(mold((out \ + 9c101efb-ca2b-4724-a233-8f98aec75b25)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 51053908-2b8c-4779-b9a4-b02be031e7ea)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 43038ffb-081a-4011-9594-ede00e3f4958)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 59c89ff7-2830-4fcc-9d7e-fa6772eada69)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fe420401-4767-4801-a917-8196ec3b9195)(label(let = \ + a91c2cb6-4a1a-480b-ae2d-d9c8f6d4f10f)(content(Whitespace\"\\n\"))))(Tile((id \ + 76a63418-74bb-4235-821e-0b41e8dd5274)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6c023ff7-7387-4969-9430-7a5f358234d2)(content(Whitespace\" \ + c84ecc69-f6f7-4a81-b453-4e7dda5d7efc)(content(Whitespace\" \ \"))))(Tile((id \ - fb4ad5d8-8a71-4cb9-a6bb-e886aafebc1e)(label(f))(mold((out \ + 0f25b864-34c8-4e7b-8d19-60b7e20c55de)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 4e30b722-84f1-4351-9558-3b22b4138087)(content(Whitespace\" \ + 0349ca00-580e-418d-ab27-4682e21da633)(content(Whitespace\" \ \")))))((Secondary((id \ - 07bd7835-aba9-4576-a6b0-5b215203f830)(content(Whitespace\" \ + d10c97b2-22e5-4a52-87dc-c2d8d1476b5a)(content(Whitespace\" \ \"))))(Tile((id \ - 734c36fd-3278-44fa-a630-27c45846ad45)(label(fun \ + 1072ad6d-92d8-43ca-b74a-a1977806a658)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 28c0b0f3-1d07-4291-b94e-84c3edb8411a)(content(Whitespace\" \ + c23ad015-92d8-4d63-9ed4-3557fa6224e7)(content(Whitespace\" \ \"))))(Tile((id \ - be3344ab-13f0-4196-a242-d58ddedb4086)(label(\"(\"\")\"))(mold((out \ + 34ace31f-67fe-46ce-96e4-bdfced8edfac)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 74bca819-f017-4337-9415-6c7abcde4ccd)(label(a))(mold((out \ + 8669f34e-aa04-4eb9-aaff-26534e695ba8)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 433b7881-2167-4c49-b41f-34eedd90a1f5)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 0a5099bc-7e37-4c50-a54c-31aa78e1c5b2)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - c90e84a5-c611-4465-abe0-f4a0f0dad107)(content(Whitespace\" \ + d3a849e5-48db-4b4c-b1e1-62bd32e722ee)(content(Whitespace\" \ \"))))(Tile((id \ - 8a2c42e1-3f6a-4f9a-afa9-d8544edeaeb3)(label(b))(mold((out \ + fccbf8b2-a2eb-4657-ba10-5ef78866702c)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - b2e834b5-ed02-412a-a5ef-34a5c16b9847)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + fea27ae3-edd4-40ae-b72d-73acf0c0cab7)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 892d9e90-2a2e-48ec-8487-8695555e6dc3)(content(Whitespace\" \ + 3ef94d2a-f330-4e49-a457-bebd71a0beed)(content(Whitespace\" \ \"))))(Tile((id \ - 1888f269-f7ef-45d2-8512-8d395f78f772)(label(\"(\"\")\"))(mold((out \ + 661b8e37-2726-49e8-9d59-7ecf23f635f4)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 2640ea25-cae1-4f62-bfeb-0ee5e6e2429a)(label(Int))(mold((out \ + 01c7dfcf-e95c-410a-8a8e-eba2f3a3485e)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 66c241fc-9f12-42ec-9efd-d0695cf61f8f)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - e70a85e3-9a91-4a5b-8464-6757d36b6cb5)(shape \ - Convex)))(Secondary((id \ - 4a5a880c-1ee3-48ad-912b-5d7ca04bd101)(content(Whitespace\" \ - \"))))(Secondary((id \ - ec8115ee-947b-4f7e-8bf4-9ecc99e9e230)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - e97f099b-5db0-4e16-995e-0e9f35f7d7b1)(content(Whitespace\" \ + 721ff006-dad0-4010-bde6-e9d592c91227)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 68624def-48c6-45c8-bb9c-1f846819dde8)(content(Whitespace\" \ + \"))))(Tile((id \ + 20623eba-2cda-413a-8c58-1fa4399cea17)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 2566dfae-edd4-4ffe-80a4-56968a475285)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5e268789-9fbc-49bf-a7c8-be69e68b3bdc)(content(Whitespace\" \ + 52609218-3a2a-4dfd-8f40-0ae4e783a13a)(content(Whitespace\" \ \"))))(Tile((id \ - f96c361c-d526-466b-84c8-7de23fbafafe)(label(a))(mold((out \ + 7f6f0c0a-7015-448b-b8a4-642b9304aee5)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 78de6f1c-120f-4090-a3cf-b6970752ec5e)(content(Whitespace\" \ + f490212a-c3dd-4e90-b267-9ca127e20b11)(content(Whitespace\" \ \"))))(Tile((id \ - e0463001-bf12-421f-b5cb-c2aeb6be4e0a)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + c91b4b3e-06cf-4b94-98bc-dc1c261ac807)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 0433e19e-1b31-4c8f-aa0e-bbcdc08ed996)(content(Whitespace\" \ + 0c6805e8-0585-4e3c-ba3d-552516fc782d)(content(Whitespace\" \ \"))))(Tile((id \ - 21d714f3-d2a5-4ac0-9488-b3db501e68cc)(label(1))(mold((out \ + 83a53af1-7c2b-4de1-899e-8d62a47734ea)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a71562c6-dbdd-4ba9-a72a-e27d48aa24bd)(content(Whitespace\" \ + 7af5c6eb-6dc8-43cc-979a-1a50ec56926a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a8ea80c4-6496-4ce0-a907-98037672582b)(content(Whitespace\" \ + 4a781956-8b8d-4ff1-9ef4-a11d0aab7757)(content(Whitespace\" \ \"))))(Tile((id \ - bef81cac-3090-4851-b59e-4034bf3f7e9e)(label(f))(mold((out \ + 3cd3fde3-be6b-4e09-979a-1a021b1d12b5)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ac4038f0-7de1-4828-9dea-d81b7ff60c8e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + cabe87ee-fb11-4d75-945c-4fcc9fcfb176)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ea845820-5614-4597-b0b8-34e9b1de2e3d)(label(1))(mold((out \ + 87674a64-680c-43a7-a493-e9ac20287264)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - f35a801a-8a84-431d-a9df-544c86be377b)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 35c1b7bb-4136-4980-9107-802b8eac8edd)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8313aa88-1111-4b7f-a9cd-b56edca2aef1)(content(Whitespace\" \ + 265f5c13-9c06-45b9-8915-3e97ff54d180)(content(Whitespace\" \ \"))))(Tile((id \ - 5de2a053-2140-4836-8e14-224bbbf67cc0)(label(2))(mold((out \ + c37f722e-97f5-4e0a-83ab-5d0778dfd906)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 74dc559d-c97e-41a4-a44d-9ef55f467189)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + a40df762-a8b8-428c-83ac-0ec6b8cab1d8)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 4f8e4039-136f-4377-89e5-0de00c9c5cf6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4ba7d136-2a5d-414d-955a-8f66fce3bd2d)(label(let = \ + a3dd9552-89c8-482f-8c6d-8b4cc77e1687)(content(Whitespace\"\\n\"))))(Tile((id \ + ebf4c810-7207-451f-a1fc-8c7dfb7a941e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 89151a29-cce6-4e8b-9c00-6faf9e160b4a)(content(Whitespace\" \ + 31d8517a-8873-49a3-9f52-2c53e56d10dc)(content(Whitespace\" \ \"))))(Tile((id \ - 4dd75df6-e379-4371-9ffa-34f0c9ff7b61)(label(f))(mold((out \ + 646f355f-4afb-4689-90e7-c44fd9962b33)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 514bdbff-46e9-4315-94b4-97783bd08e1b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 48378b91-cc9f-406a-98a4-8d74ac57e788)(shape \ - Convex)))(Secondary((id \ - 67d6ed9b-e49a-439d-b198-b354334ac8ef)(content(Whitespace\" \ - \"))))(Secondary((id \ - d6f626ee-ef80-4947-894a-075e9b008492)(content(Whitespace\" \ - \"))))(Secondary((id \ - 071e4f9e-9bc8-424c-a944-1c5899681627)(content(Whitespace\" \ + b22cfa0c-f400-4401-9cf6-72815348b350)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 922b9ec9-9048-438c-b763-dbcc0f0d9bc5)(content(Whitespace\" \ + \"))))(Tile((id \ + fb0a5657-3ebb-498f-81d1-d6a49c21382a)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + e88ccac9-5c7e-465a-8352-c440c1948a24)(content(Whitespace\" \ \")))))((Secondary((id \ - 5394fd6d-55cb-4d03-985c-02b3d8961366)(content(Whitespace\" \ + 7b732b12-0b14-4aaf-9f1f-b74b9ffc2d2f)(content(Whitespace\" \ \"))))(Tile((id \ - a0186f29-bd0a-43f1-a0f2-22d73a560b5d)(label(fun \ + a5aa73d7-4bcb-4c54-9c1f-8adfaf349b61)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 7c2b3512-7912-44e7-ac9a-799ca399e4d2)(content(Whitespace\" \ + 1086b2b9-af49-473e-8e3c-76fc3cb45232)(content(Whitespace\" \ \"))))(Tile((id \ - c1f22398-3f61-47eb-9d20-ba339a9a8d2c)(label(a))(mold((out \ + f82c151d-d67a-47d5-88c6-18d79457fc66)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c4bba7fb-230c-4b77-9cef-718a198e2327)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 01f6c191-045e-447c-9374-1702f7c4358c)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - d1c3d11f-29f6-4d60-8b8c-c11cf055c178)(content(Whitespace\" \ + 4b4d36bc-bab0-4c14-8697-36fb3a4f58d0)(content(Whitespace\" \ \"))))(Tile((id \ - 4f933492-4ade-4884-a3f1-4ba1eee9297f)(label(b))(mold((out \ + c3151bfb-d7a9-4507-b454-2a77c2fef2a4)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 5680848b-ce89-44dc-8028-81bd8dfe6e45)(content(Whitespace\" \ + d0751f56-95dc-4e5a-8142-58b7a9aad3e9)(content(Whitespace\" \ \")))))))))(Secondary((id \ - df436f74-5947-456b-9981-9e3018118299)(content(Whitespace\" \ + d1594cb6-528c-45b5-9ca0-d2f5db646ebb)(content(Whitespace\" \ \"))))(Tile((id \ - fa6a29ae-3613-4579-bacf-2e07389c09fb)(label(a))(mold((out \ + 0c18b4f9-5824-4c13-8b9f-4c03509e3d19)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6e6f3ba2-8ead-4042-b51f-c7bcdaa4c458)(content(Whitespace\" \ + 9dfc4dda-d775-4495-8059-18e3ae60e620)(content(Whitespace\" \ \"))))(Tile((id \ - e56f5829-3e0e-4a9d-9631-85f007248a66)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 59d0bec5-8da8-480f-b9f9-aa2315ac5b05)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a327b0a0-b24b-466f-82fe-4ea35b4b617b)(content(Whitespace\" \ + b65ed8ff-e142-443c-9d35-2b763111bbfd)(content(Whitespace\" \ \"))))(Tile((id \ - 3c4f6c56-8f8f-4d2c-911f-958798355c0d)(label(1))(mold((out \ + 70faba09-22c9-40a0-a244-6dcae68e484d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 981d6f5a-a9e0-466f-a4c0-d4618c137a0f)(content(Whitespace\" \ + 0cda9659-d0a6-494c-8205-976647e3cb23)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9b237eee-32e0-4ad3-8e5e-5f3f4d7d5f6d)(content(Whitespace\" \ + 900e3e11-7858-48a0-83a3-790dda457039)(content(Whitespace\" \ \"))))(Tile((id \ - c758ecb8-91ae-4cf2-b482-eb2c61f6a4d5)(label(f))(mold((out \ + 25766c0d-076a-4f19-9d10-9612247d8f8d)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7c826751-a5ac-49ea-925d-a49796671502)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e2fadbb3-13d5-4a5d-83a7-62487c4ce73f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 78c75c87-1bf3-49ef-a53a-efe6fd959f51)(label(1))(mold((out \ + 2fd60358-4c5b-4667-ab4a-8ea942da4f78)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4a884c1f-cf71-47bf-a614-19d345ffd1ca)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 46368e17-b30e-4543-98a3-75a131df9d7e)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 160f714e-76b5-4219-8495-8bbeb9896f8a)(content(Whitespace\" \ + 1f3531d7-5aae-4dc3-9d36-438653994b0e)(content(Whitespace\" \ \"))))(Tile((id \ - 3b8fcb74-e9f0-4169-b6d8-b695a45fdcae)(label(2))(mold((out \ + b3d9dced-fa23-48c9-9955-ad7f0361a838)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 0e13eb73-fcf5-4568-a51e-5a41c56a73f8)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + e185d3b6-73bc-44e6-b252-c688f844855a)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cc9fccbc-dc1c-46fa-9aae-36da349cdff1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2664e9ba-80c0-46ef-ab8c-05c6eb8d2ba9)(label(let = \ + 2b1f34b8-5a8d-40d4-acd3-b5c0d7f3f520)(content(Whitespace\"\\n\"))))(Tile((id \ + 8667d8c0-adfa-405b-9da1-5f703ef0a4fb)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 886f81a1-cd66-4790-992a-faef2daf7824)(content(Whitespace\" \ + 34fd2d59-25d4-48bf-95ef-7b79db0959c6)(content(Whitespace\" \ \"))))(Tile((id \ - e91fdad4-82bd-47f7-a425-881b8b422fce)(label(f))(mold((out \ + 008a716e-5e30-497b-8ae1-b8da9e34fe95)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 68599205-45d7-4614-94a9-ac84b48fc937)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 59c65e10-9a81-4070-ae86-44ff5b9ce289)(shape \ - Convex)))(Secondary((id \ - 5fe21479-94f2-414c-92ac-a938e4fb0062)(content(Whitespace\" \ - \"))))(Secondary((id \ - ccafed6f-a493-4e20-9dc6-d8e2669a5ac1)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1dd7b3fe-4b2d-4933-8ca4-ccaed398f740)(content(Whitespace\" \ + 4d6b24f4-e671-44af-8f93-e57285d8cd72)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 248638bf-01e8-48b0-974b-a95cac9fe3e8)(content(Whitespace\" \ + \"))))(Tile((id \ + 38b3e39e-bd0f-43ef-acb8-819b06a70b92)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 6c4024cd-2e5b-403b-9526-cbdd6541af54)(content(Whitespace\" \ \")))))((Secondary((id \ - 51e9905b-6f53-4cf3-8ca6-52fda987cb48)(content(Whitespace\" \ + 44eb6358-ca32-4982-9ff1-4c32ebc3ed0a)(content(Whitespace\" \ \"))))(Tile((id \ - 94630f19-e1be-401f-9b44-076440cb1a9e)(label(fun \ + a53112ca-c595-4ee2-8edb-b729b6905c31)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - f44f94cb-b2a0-49fb-b71c-b9baf92c9f24)(content(Whitespace\" \ + 931b44f6-bfdd-44a1-9e42-dfb135be1808)(content(Whitespace\" \ \"))))(Tile((id \ - 4622dd39-aba3-4668-adaa-654ed961417b)(label(a))(mold((out \ + e35ceb10-6c8f-445e-a055-54028bd61344)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ec32b24b-c1f6-483b-b5d5-fd06024a933e)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 5ce24499-96ae-4a74-b2a9-13cddb41f580)(content(Whitespace\" \ - \"))))(Grout((id b08c9fee-9e36-4b3b-b30c-b0cf238462ee)(shape \ - Convex)))(Tile((id \ - c003c497-f096-493f-9b4a-9c7b547de3b9)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + b22b3a28-ef38-4c28-90e8-e20af795e923)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + bf609873-bca2-4b7d-a177-2161e68345ac)(content(Whitespace\" \ + \"))))(Secondary((id \ + d03e9b31-6164-4e7d-92f5-cfae09c720b4)(content(Whitespace\" \ + \"))))(Tile((id \ + 3fc47261-10c6-470c-91ad-2f7b04fbcbf4)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 8dc4e8f5-4f89-418d-bed7-967bb6611d59)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 6ff0b2a2-3cf4-44e5-9db4-5dd98f4f9ca7)(content(Whitespace\" \ + 84c39660-2dbf-45b9-88a8-41dbe2c9fac8)(content(Whitespace\" \ \"))))(Tile((id \ - 34f536d8-c020-4dbc-a269-1f7f0ecfd398)(label(b))(mold((out \ + 742a5e07-30a8-48ab-bd4e-367720619557)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 13599e43-14f1-445b-840e-51d3be3f6e7b)(content(Whitespace\" \ + c95b16bc-5c4e-483f-a9d7-15c0de37a834)(content(Whitespace\" \ \"))))(Secondary((id \ - 3fd11cea-d5c4-4ef9-b938-6d0d036ee281)(content(Whitespace\" \ + fe78d319-78d2-4072-94c4-68a57926dc7d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1b3b4787-4bb2-4274-9835-95747fd0f36d)(content(Whitespace\" \ + 7ff568f5-e626-41a0-9561-73c83659fa01)(content(Whitespace\" \ \"))))(Tile((id \ - 577ef5ff-24ed-488b-ab2b-9047226f4990)(label(a))(mold((out \ + a71e5576-4bbb-4a52-9cb3-24029e2c93be)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 51fdd1b6-69bb-4df6-aa37-b305c5876e34)(content(Whitespace\" \ + 62bd4be1-2085-45db-86af-16f088d5e2a2)(content(Whitespace\" \ \"))))(Tile((id \ - 15ab0441-624a-4370-8461-c15ff7c5aa2b)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + d2a7d9fc-beb1-4d92-9202-8f870729fc9f)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6a0db09c-6038-4b14-9689-ea0e3e922284)(content(Whitespace\" \ + d0d66364-052b-48c5-99c8-c5559fb786b5)(content(Whitespace\" \ \"))))(Tile((id \ - 53b13857-d843-47ff-a268-05d4b137f48b)(label(1))(mold((out \ + 2017864f-e67e-4ad9-8428-f5f095ee0e9b)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6ffb31b7-7893-468c-be10-c1ca3aeec81b)(content(Whitespace\" \ + 755d06b6-4d8a-4149-baa1-e10717916097)(content(Whitespace\" \ \")))))))))(Secondary((id \ - aaac161f-e37b-458c-8db6-fb176d656910)(content(Whitespace\" \ + ad3d700b-0c3d-4cf1-b2bb-678f779aff3b)(content(Whitespace\" \ \"))))(Tile((id \ - 1a524a9b-dd67-429b-845d-e3eebc20f9d3)(label(f))(mold((out \ + e329ddc1-ae46-4cfd-bad2-f9fc4f6888dd)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d52eafd1-b439-4155-a06f-af8fa57c3c01)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 6127d3ae-4daf-446b-b92c-59cc4f92d948)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8806bed7-7e74-4ad7-bd03-908bb6b92d3a)(label(1))(mold((out \ + db5a9d88-e8fd-440b-89c8-ec866a4b0b3d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 8d70c9ef-3c5f-4ce8-8852-c887d0df6bbd)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 2aca8941-c435-485f-ba30-9a34d607a802)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 588413c7-9a41-4dcd-a663-ce8a71232787)(content(Whitespace\" \ + a909d6e7-0e8a-4c13-b21b-0a0c01b20ba0)(content(Whitespace\" \ \"))))(Tile((id \ - 0918c04c-58ce-4b4a-b674-ddd13bdc9088)(label(2))(mold((out \ + 017e8f15-9b57-4c81-8eb9-f0c9baec5039)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - f2fdd943-38a4-49be-868f-551b5e4e8a62)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 266cf2d9-ddca-4fdf-aae5-8ce12ddca4b0)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ff95314a-2a59-448a-91cb-1ea41665a5c8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 46068684-be56-47ea-8364-a9470099dad6)(label(let = \ + 3fe35443-0e62-4b24-88e5-f750b4aad0ad)(content(Whitespace\"\\n\"))))(Tile((id \ + 7aac6064-64b6-4e06-99c6-487a152c14a9)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - fb5080a6-f268-4d34-b2b3-cf14ee08ee6f)(content(Whitespace\" \ + cb48efcf-8e92-4bbe-80b4-6b06ee6e3233)(content(Whitespace\" \ \"))))(Tile((id \ - de1823a7-a2f1-4a51-9b4e-8912840e67ef)(label(f))(mold((out \ + d1a5627b-9bd1-4176-86b5-e20d10810ddc)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b0c9f1c9-5a83-45b2-8431-4d761a9a398a)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - f52d917a-eebb-4dc1-9a76-ec3ac7e334c8)(shape \ - Convex)))(Secondary((id \ - e1ad7bdd-d270-490f-9393-e6788840d8b3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1949e9c6-c52c-439e-bfbc-3b7e841d9d2d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 769bfcb9-ccc4-487d-bf49-c06aaf82ee64)(content(Whitespace\" \ + 568ccf78-b847-4ac7-bbb5-a9bd7b19e077)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 5040036b-e561-42dd-887a-c7d4fbd5f55c)(content(Whitespace\" \ + \"))))(Tile((id \ + 42e92110-d918-41d5-83d3-e60a335946bc)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 8d5e246c-1cbb-4271-a185-9f3a60ddcc12)(content(Whitespace\" \ \")))))((Secondary((id \ - f9524197-e261-4db8-9fb6-7d93bb19b088)(content(Whitespace\" \ + 09dc5081-5c6d-4b8b-b376-2a009458d5d4)(content(Whitespace\" \ \"))))(Tile((id \ - db72b634-32b9-43e7-98c2-6184a6c83281)(label(fun \ + cff47fcd-7087-40db-a920-df7a6b38e08e)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 547ecae3-5664-4e03-9bff-75a7af435cca)(content(Whitespace\" \ + bba7f435-d6b1-4c13-a1e8-e36596f8f4a2)(content(Whitespace\" \ \"))))(Tile((id \ - e8a65c89-9c1e-4ad4-af3f-4a337006262b)(label(a))(mold((out \ + 24236d9e-31a6-4240-b2df-c0a9aa50a2f0)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 22e73070-01e2-446b-94b8-41464ff24175)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ca2dd60d-1ab0-4bc4-9b09-db5d185f5309)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d5481b05-3f3f-4592-b1cc-7ca6727dc526)(content(Whitespace\" \ + b4411e64-f416-48f7-93bb-c15417635b96)(content(Whitespace\" \ \"))))(Tile((id \ - 6bdc3740-20b1-4041-b82d-db05a12f27fa)(label(Int))(mold((out \ + 131b1c95-1913-466c-923b-151582cd1a41)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - a41d0624-2d7a-4ce4-9b2c-00f5ab93b6a3)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 437e049e-0211-43b1-b363-faef322b6608)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - c54283cd-ab5a-4296-a20c-668605ffd54c)(content(Whitespace\" \ + bd1685c7-e98e-4024-8fe9-638aea7ff463)(content(Whitespace\" \ \"))))(Tile((id \ - 38ad3d7c-9721-4a26-a60b-a480602c2ba0)(label(b))(mold((out \ + ede4f17f-8a4d-4f50-b4f2-7e986d88c2b6)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 26a95aa0-4916-41c0-9f6e-bdd8b5dd2517)(content(Whitespace\" \ + 4c547a87-eb59-4fc5-9d19-b23abb75a8d1)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c587fda8-04cf-48be-be91-f59793b2a1b3)(content(Whitespace\" \ + bc0a22c9-2204-44ea-8141-7ceaeb09e124)(content(Whitespace\" \ \"))))(Tile((id \ - 5e438c36-f9b9-4a1a-bd1f-a951182bd756)(label(a))(mold((out \ + 88ded2ef-cc84-4ed9-ab14-3940657f3e65)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2ad47140-867e-4613-907f-b7238c41b8ad)(content(Whitespace\" \ + c1763aee-2ec1-4b29-904c-3e8c8c7ea983)(content(Whitespace\" \ \"))))(Tile((id \ - 1305879a-485e-408b-ae05-1ab69c10e83c)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + f28f183a-6524-4f1d-82ba-3deba2ed10e0)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 223dc1e1-8647-4ce7-8e0e-87e75c67b413)(content(Whitespace\" \ + 13418cf6-15b4-450a-b54e-670b790808b7)(content(Whitespace\" \ \"))))(Tile((id \ - b2669416-0e2b-46be-b416-3df1ad01ae8a)(label(1))(mold((out \ + dcd757d6-a025-4441-b71f-80b7498cae65)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f3d88687-5683-46f0-bb0e-e675637a38ab)(content(Whitespace\" \ + a9c548ea-6dd8-4d2a-817f-19bd5638c43e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 00f23ebe-6645-4707-a8d3-a068bafc36cd)(content(Whitespace\" \ + 88006b00-ad25-4b6b-b8f2-46805805ce02)(content(Whitespace\" \ \"))))(Tile((id \ - 6a4c26e1-181d-4001-8334-582e4251021a)(label(f))(mold((out \ + fb195e21-44ce-4ca5-9b85-ef9072cbef3e)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - f5254ea2-ae5a-49da-965c-354479138abb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 33611903-51cb-487d-8fbf-aa9cf39229d0)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e14346e0-4390-48d6-8257-df82e4c47054)(label(1))(mold((out \ + e6988fdd-0475-48cc-baf5-206e1af0a695)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 395462c3-38fa-43c9-8436-8ea9f4b3ef97)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 04fa7efc-c94e-429d-af5d-96ac6b3e0acc)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8530fc8b-b0d6-4dae-9ec4-c4734ef4f3ba)(content(Whitespace\" \ + 1a410cbc-778d-453c-9ca9-14f9c567cd25)(content(Whitespace\" \ \"))))(Tile((id \ - b4f9b65e-c96c-4453-9ee5-c4c7f4d56ac5)(label(2))(mold((out \ + 0b489afe-f686-4f09-a7f1-8d2d8a421675)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 7c160907-2dd9-4ae2-8995-8aa6880e79bf)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 235f8bc3-e437-402e-85b4-7771adb8778e)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - eab922a5-0028-4211-a2c4-4abeae1b9db1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 12674297-fbe5-4c49-9e96-2abf3ec9640e)(label(let = \ + 30d18eac-2393-47ed-9358-bdefc31e58e6)(content(Whitespace\"\\n\"))))(Tile((id \ + 4780eb65-8f0e-4a67-bab8-107f251ae3f1)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b2dc47f3-8ae7-4d5c-ba85-f3e34b255a2c)(content(Whitespace\" \ + 9baf2aad-35d3-4395-a9c4-05ba8e88388a)(content(Whitespace\" \ \"))))(Tile((id \ - 806579a2-5f5c-4db4-bb44-c9b1e47cdbdd)(label(f))(mold((out \ + 516ad7d0-136c-4058-8589-ead6ff52394a)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 7ad3b972-787b-4d59-beee-cc1e3c4f9488)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 2841681d-6b54-4be4-95ec-4616f4efcfa3)(shape \ - Convex)))(Secondary((id \ - 04ead003-9194-4751-8ae8-b1cf86b01ae5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9a86e8e2-094c-449d-81a8-63e0b970d42f)(content(Whitespace\" \ - \"))))(Secondary((id \ - 969a0f33-e384-4ac0-aeb0-5feaf54ba650)(content(Whitespace\" \ + f9aaed1a-dc5e-4306-bcba-869a3725b6ee)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 9cc431fb-b855-4794-b524-c477c0d9aadd)(content(Whitespace\" \ + \"))))(Tile((id \ + c78cd1f1-2e8c-48e2-9f2e-3adcf55f9768)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 321eac64-1c4f-43a1-b76f-06ac833a5a73)(content(Whitespace\" \ \")))))((Secondary((id \ - a7e7f5cc-cdf7-4fc9-8f2c-f0e7d777928c)(content(Whitespace\" \ + c0a5a1df-825b-49e0-ac29-c186dc016512)(content(Whitespace\" \ \"))))(Tile((id \ - 302b82b5-b847-4354-a263-83cafbaade46)(label(fun \ + e156e57b-8a65-44ea-9cdd-c94fe195c9a5)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 54fde547-0723-484e-a2c0-cfca6293af04)(content(Whitespace\" \ + da46c755-ef24-408b-bb62-07524fd24562)(content(Whitespace\" \ \"))))(Tile((id \ - 080384ee-1937-4627-b9c3-1d44a1039bad)(label(\"(\"\")\"))(mold((out \ + a2866d81-aebc-42eb-a7ae-e26043a74cf6)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - fe621d18-a199-4044-99a8-9e5af1cd5c5f)(label(a))(mold((out \ + 43cff81d-0762-4f05-976e-ce07af1b8a6c)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - bddd4394-5867-4787-ad0f-6bc42af709f1)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 226b9739-c1c9-46a4-8188-3f786f1f2086)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - e9e027f3-f9b2-4dbb-8013-00e9c9e7f64f)(content(Whitespace\" \ + 06f2ab89-0ba8-4e6a-8dc9-9ec181d6564d)(content(Whitespace\" \ \"))))(Tile((id \ - 8879a754-5312-42b7-8a5b-611b7606e66e)(label(b))(mold((out \ + 0feac348-f033-4ccc-8da7-d5f3a85c9307)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - 034fedcf-7741-4990-b024-1b18224cab51)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + b5769b91-2d42-4b21-a507-85f80375b6d4)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 9462a388-8f09-4d9e-8d8d-5320871f0948)(content(Whitespace\" \ + 09e4539f-10b2-47db-a05e-6f0f4ea43ab6)(content(Whitespace\" \ \"))))(Tile((id \ - 120a403b-e816-4400-8da5-17a770d9b144)(label(\"(\"\")\"))(mold((out \ + 0771103c-da05-4a99-aec3-4e8bff1a3536)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - b46908ca-f7a4-44f9-90e0-bed59a3f4438)(label(Int))(mold((out \ + 6492bbc5-95f1-4060-bca6-cb8522f43720)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 6f9cf9da-85a7-4b98-b51a-bbcdbfaf3472)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 49e768ef-d4fe-4182-bf9c-32fb501c9006)(shape \ - Convex)))(Secondary((id \ - c3b1e2a1-420c-4b3d-89da-c590b7d57cba)(content(Whitespace\" \ - \"))))(Secondary((id \ - fa5c7b61-fe69-4f7d-a85f-408d2c19f2d7)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a712a55d-a172-4460-a2e3-de391f93009a)(content(Whitespace\" \ + fa29e80b-ee90-4ca7-8887-96d4dad7e206)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 7709b111-a6f6-4879-9e99-5441ab2571ca)(content(Whitespace\" \ + \"))))(Tile((id \ + d935b558-7c35-46ba-8ec7-58d61f343648)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 973270cb-406f-4118-885e-204c4574a814)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3c1ccce6-3740-41a7-9714-61494d59a8f4)(content(Whitespace\" \ + 1656182a-3530-4fad-b7af-19adeb223861)(content(Whitespace\" \ \"))))(Tile((id \ - 8c08f5b8-a312-4d43-94b3-e8f41d64ea56)(label(a))(mold((out \ + 5486db83-9bbf-4226-9389-3bd6a649e547)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6006a74c-f6b1-4c70-8106-51763d2b8a88)(content(Whitespace\" \ + a3ac746b-4082-4873-9dbf-5f56d0f0f0f7)(content(Whitespace\" \ \"))))(Tile((id \ - d2e37fa9-dbfe-4597-9805-ab213a208b41)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 27ed21fe-1cc0-4748-81ed-28e703e04bd3)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3756b5a0-2564-41b4-aa59-612c18b37f73)(content(Whitespace\" \ + 1fd235e2-06ba-4e14-800c-745e4c75d2dd)(content(Whitespace\" \ \"))))(Tile((id \ - e46d27fa-0dae-4f5b-a5af-9a39e5fc86cb)(label(1))(mold((out \ + c0911878-6939-44aa-845e-4f69b96d65fd)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e228e125-3501-4076-b6e4-ba2680d12417)(content(Whitespace\" \ + 83fa241c-fd81-42d6-b83e-6d2da973399a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 22ae36c3-b80f-4728-bd82-928629215942)(content(Whitespace\" \ + 92f7bbd4-e2e0-4778-9519-0140b26da2ce)(content(Whitespace\" \ \"))))(Tile((id \ - 71a4157f-8ce9-469a-bab7-65f5c72f6b01)(label(f))(mold((out \ + 0c1dafed-ce1f-468a-8354-cb27671f5156)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 64af3b09-a5a3-4800-bbe8-eca9cb2fda11)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 84b9e0f1-6cbf-4334-9df6-6e723b2c1318)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8f1813e0-521d-46b1-9881-4d4b34f153ed)(label(1))(mold((out \ + 930e2d07-21f2-4671-b098-d41ddbb7f068)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 92484a79-9c21-4583-b55d-bca83fb35382)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + c18881a1-4666-4280-9e23-30595fbce237)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ec4c1a18-6700-4f65-81b1-1746daf0050b)(content(Whitespace\" \ + 8e98faa4-6463-4002-a1fd-a50db6eee4b3)(content(Whitespace\" \ \"))))(Tile((id \ - 7effe18c-56ea-40b4-8fb4-a18108acbeb6)(label(2))(mold((out \ + fbc65161-1ffa-4c69-8320-56c51dfd4e2b)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 849cbcf1-5025-45ce-bccf-acf86d3d0c8f)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 91c71496-e60d-4e86-82c0-5f0e8d875382)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 445a7d03-d6eb-4fcc-a222-038aed01e048)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5d926892-1a99-4f8b-ae7d-2ba3a482fc9d)(label(let = \ + b29c15d6-e2e2-496e-9c3d-ae025d33a239)(content(Whitespace\"\\n\"))))(Tile((id \ + 9daa0d58-3873-40e3-94f5-35732774bcd3)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 78227439-828d-48e7-aa75-2576047cce62)(content(Whitespace\" \ + b4fe7d76-e4e1-486a-a2dc-fcd0f3880f45)(content(Whitespace\" \ \"))))(Tile((id \ - 73d41a68-3175-4104-9c11-356b5278aa3c)(label(f))(mold((out \ + a9580d9e-5f69-444f-a882-0a131072e3d3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 6bf2d999-641f-4ea7-9688-d338adc5d4b5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 8f7fff52-3b95-47de-b364-be40c36a715f)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2167d358-4a0f-4a69-b711-d2d00fd6b460)(content(Whitespace\" \ - \"))))(Secondary((id \ - bf4be0e0-b6b7-40a2-9936-5b30c72c55af)(content(Whitespace\" \ - \"))))(Grout((id 4abf0c94-cc8d-4cf6-9a4f-596b77886b83)(shape \ - Convex)))(Tile((id \ - 080e0fba-f3b4-406a-bc52-1fc9790f8247)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - fcd27852-8867-4366-82ab-8a86f14df4d7)(shape \ - Convex)))(Secondary((id \ - 71c84ce2-707c-4eef-9331-2e42187d70d0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 649ff12d-0f5c-4c94-a545-c0d935d5cfff)(content(Whitespace\" \ - \"))))(Secondary((id \ - f3019b50-c74f-4a23-8e00-9ac6b6b1de53)(content(Whitespace\" \ + 31d43ab2-3fdf-497c-a6b4-41f7a796085b)(content(Whitespace\" \ + \"))))(Tile((id \ + 810c4be4-6469-49b8-9415-7bc6938a7bad)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 9c7b8ecf-a1a2-4c06-a36d-7b5dfcba096a)(content(Whitespace\" \ + \"))))(Tile((id \ + 5fce45d1-4122-42c2-a799-a65bc416d8e3)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 04201a4b-4a9c-44cc-b345-52c52304caa6)(content(Whitespace\" \ + \"))))(Tile((id \ + d5781b3a-a856-49dc-940c-2300f377cdcd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 3c58a8ab-71b8-4d3f-bf5b-1f1297ce4581)(content(Whitespace\" \ \")))))((Secondary((id \ - 3d97d579-5011-4e31-8694-1e5e76b459db)(content(Whitespace\" \ + 9f0d4a23-cc87-4332-8e8f-cec5fa3fc45d)(content(Whitespace\" \ \"))))(Tile((id \ - 8b7e5e00-3489-460a-aab3-c9a458041674)(label(fun \ + 4279a28c-7e46-4485-93cf-678207144e74)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 49ac90da-d790-4480-bd4c-33bc5d4fa016)(content(Whitespace\" \ + 215728f0-aa5d-43a3-b5b8-8784aad5b8be)(content(Whitespace\" \ \"))))(Tile((id \ - d6c67aab-bb93-4805-ae55-37c283d8ad7b)(label(a))(mold((out \ + 5138bfb3-2dd8-4371-bf07-92df8b84f6d5)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - fdd53596-ea98-4510-b997-f2d53ce4561e)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 43b443bb-7a84-4866-9377-a2d3f523eef7)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - af47a325-997d-4f97-a611-c82df473381f)(content(Whitespace\" \ + cb7c843d-8ddf-48ce-9c53-6102e8c17822)(content(Whitespace\" \ \"))))(Tile((id \ - fb2b1f51-3298-4121-8cbb-134507d84091)(label(b))(mold((out \ + f30751ef-019a-49e3-9a74-ac42e5673b6a)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 541cef2f-c9df-496a-a353-876f96bce8b4)(content(Whitespace\" \ + 8eb77346-d376-4ea6-ac2b-d428fb0d13bc)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 69bd9432-f733-4df0-af4e-07e6ea9825be)(content(Whitespace\" \ + 12248498-708f-49ca-97a2-628a1be566f2)(content(Whitespace\" \ \"))))(Tile((id \ - 25fe1452-68e8-4b6c-ad91-87bef4266c69)(label(a))(mold((out \ + 9c42e90c-e033-49be-8e59-8d1e28d5e737)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f6cef768-dc51-4ae4-b5f5-69f1026a3731)(content(Whitespace\" \ + 99980d37-c66a-4f16-badc-b912ba8c5c89)(content(Whitespace\" \ \"))))(Tile((id \ - a31e74e4-30f0-4328-85d1-686cd2954c91)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + a3be2bdb-d9c4-4233-b010-0c1bb3e62d2f)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - b3f5a747-7a61-4393-9da4-953a89ea697b)(content(Whitespace\" \ + c2029d3a-1a8a-48af-86e1-cd96cafca897)(content(Whitespace\" \ \"))))(Tile((id \ - 130d4823-80b7-4e70-b9c1-53c8464cc96e)(label(1))(mold((out \ + 11214c70-9a30-404a-897f-a08cce1de0aa)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3a0a21b0-0441-4afd-9bd9-d2883ea6985b)(content(Whitespace\" \ + 89263309-873e-464a-bd31-f7fa7b44deea)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 92d3dc42-f5f0-4df8-98e0-5473fab1b249)(content(Whitespace\" \ + 2db81e68-e20d-48af-b5ea-6f3cf015f8f3)(content(Whitespace\" \ \"))))(Tile((id \ - 79b45272-de5b-4471-b893-b71f6a38e306)(label(f))(mold((out \ + 1f0a271a-c64f-4357-90be-857c771bc969)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 9e3a1f40-64cc-4ce2-ac49-3679b5fe35e2)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 78ef23b6-5143-4473-a21a-79a2069d9829)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ae29e4d4-7dd9-4765-b2c5-b286db3e9ca1)(label(1))(mold((out \ + f24a098f-8ba0-4173-9c92-2994a82bebe2)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 501efae8-0d02-403a-b43d-4b96c6cd5cdc)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 5bfa564f-ee24-4849-b0ae-2b7fde9821d5)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 45db7ca5-2d7d-478d-b678-71059ee0bf82)(content(Whitespace\" \ + f4be52c1-8d60-46ff-aead-61e7a30eae43)(content(Whitespace\" \ \"))))(Tile((id \ - b0be5df8-cfa0-4dd2-9833-b0154c70dfc8)(label(2))(mold((out \ + ffffbcb2-6e3a-4ff6-ae94-f2eb129a8020)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - ea02bd03-e77a-46ce-9402-3d18a13500a1)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + fc3577dc-45a5-4c31-a027-091beae08b06)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 61fc7047-e4b5-41ab-9349-51804a5dad2b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d625be96-fb0f-4ec1-965b-b36a310356c5)(label(let = \ + 32e0f96a-c442-478b-80d1-0823411a57a3)(content(Whitespace\"\\n\"))))(Tile((id \ + 7d3171f1-f0fd-47ba-917d-0c00f109962c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 3346918c-5de4-4380-b7bf-983770dbdf55)(content(Whitespace\" \ + be37c3b9-0f8a-4192-bbb6-5f812ec2a738)(content(Whitespace\" \ \"))))(Tile((id \ - 86a0461f-0286-495d-a979-f9a153bf440b)(label(f))(mold((out \ + 85a13f28-7e4e-49f7-be41-d50bc5384f9b)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dd7fe18a-ecee-471f-a879-b26e3d233dc2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 95565c5e-7083-4a85-9e4e-0cc864ae8745)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 015a5ce2-d221-4141-9119-a9dd23ce66b5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3748be85-000f-4b4e-ae7b-eae258f8cec8)(content(Whitespace\" \ - \"))))(Grout((id 84a4dbd8-f6a2-40ee-934a-0c4b2fa73545)(shape \ - Convex)))(Tile((id \ - 40f12435-4cb3-4ada-881d-eb1bd59e1677)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - f09063ab-291a-4d0c-9357-5bf017bd4ad1)(shape \ - Convex)))(Secondary((id \ - 697f6c93-47fc-4e43-a210-699c5a91ae1e)(content(Whitespace\" \ - \"))))(Secondary((id \ - a8cff37f-d20d-47c2-8c42-6dcbbb58ebec)(content(Whitespace\" \ - \"))))(Secondary((id \ - 19748f4f-bff1-46b2-9a5a-3a398b5e8e04)(content(Whitespace\" \ + a5ce904d-687c-4c40-9557-83d581fa8645)(content(Whitespace\" \ + \"))))(Tile((id \ + 4ac34072-e313-4591-b660-02ec83bdd182)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + c4d930e3-2153-4558-aac4-272b881ba1ce)(content(Whitespace\" \ + \"))))(Tile((id \ + 6a81dc28-84d9-41a5-a122-27e7d6d2dc4a)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + c424dc63-fc09-4504-bdb4-99a9ba65bf91)(content(Whitespace\" \ + \"))))(Tile((id \ + d78e2dd4-ed3b-4412-944c-23e702be7034)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 0d350bb5-3fbb-4cb6-ae79-670c92b1e235)(content(Whitespace\" \ \")))))((Secondary((id \ - 9f778a0c-0fce-4deb-935f-7c8a5f4ed963)(content(Whitespace\" \ + 917381e3-6d3b-4275-8e13-9ebdde15ae75)(content(Whitespace\" \ \"))))(Tile((id \ - 239d2509-e0db-4696-950d-a17acd4746e4)(label(fun \ + 1a04c79e-0f7f-42ed-ac40-b93394f12631)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 2b87fc41-faf5-4f43-a5ae-3a953f6bb3c8)(content(Whitespace\" \ + b27eb762-a874-4dcc-9fd4-b2b9bd1a9ec8)(content(Whitespace\" \ \"))))(Tile((id \ - 170ed6f3-180d-422f-9ec3-1fe79a017bac)(label(a))(mold((out \ + bcd7f101-d67e-458e-b55c-8aa3051f32bb)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c403741c-61e1-4a7d-bf8f-aab2714035fb)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 9ad940ed-bef7-44ab-9cb0-618034dad0c6)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - a456d165-1014-4ece-8ff3-65d980754c5d)(content(Whitespace\" \ - \"))))(Secondary((id \ - a5dd89a3-6bfe-473d-be59-2d8510084b87)(content(Whitespace\" \ - \"))))(Grout((id 9a5a57ba-7fd1-419e-88c9-9d678c421528)(shape \ - Convex)))(Tile((id \ - 4b72b557-625f-4bd0-a3e6-1d893a913fe2)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 8ff2c6ec-1259-4d1d-a73f-069dc7176a60)(content(Whitespace\" \ + \"))))(Tile((id \ + a0bffd21-7c6e-4aa0-9bbe-92d42b9526b4)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + fa65330c-032c-4bdc-be72-60d2c19c5515)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - ea5dad31-fa71-4ed0-bb9b-3729cc6c60e8)(content(Whitespace\" \ + 11aa06f6-cbf1-4a10-b8e6-3a81f2282f65)(content(Whitespace\" \ \"))))(Tile((id \ - 2f75b5d2-dac8-4e96-b1fe-fb20661e815d)(label(b))(mold((out \ + 9a36f1c2-5edc-4cc7-a74f-a5262554f0f5)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 293b37af-4fe1-4822-9640-41696a0d5dcb)(content(Whitespace\" \ + f28ac6f7-38b2-4450-895a-d0f68f224fd8)(content(Whitespace\" \ \"))))(Secondary((id \ - 1c542d7d-962f-4558-a39d-a666ad67bf44)(content(Whitespace\" \ + e64b7753-13d6-4874-ab8c-c4eef4c2840c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fe71147b-6655-46ab-b0a7-845eb47fa595)(content(Whitespace\" \ + 26031709-475d-4861-81dc-e80bb5293980)(content(Whitespace\" \ \"))))(Tile((id \ - 9261fb87-4189-4b5f-a4e6-1e21b0b4729a)(label(a))(mold((out \ + e8bb26f5-7792-4ac4-9dea-d001e93bb861)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8eb5744b-358f-41d3-a484-9d1be69a6fe7)(content(Whitespace\" \ + 9d1686de-5dc0-4382-9f1d-e64add1e0836)(content(Whitespace\" \ \"))))(Tile((id \ - e0b93445-c49e-4af2-bae9-7260f5f0494c)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 708c6b62-ec64-4756-a390-c339b6a5bdad)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d403496b-ccbb-48b1-8a6a-79994e331142)(content(Whitespace\" \ + d0126896-2093-4a1c-9331-a50b4b339513)(content(Whitespace\" \ \"))))(Tile((id \ - 628d219b-3844-497d-acf3-d6906e71ad5e)(label(1))(mold((out \ + eb086815-ad0d-4e96-a4c7-a0f7d75c113c)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a3a0da08-2979-4421-9acc-fc8c9f1bf9bf)(content(Whitespace\" \ + a3ab4231-46af-444f-b0f6-032ae139b578)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 906625c3-05ce-4adb-b987-bc3931798668)(content(Whitespace\" \ + ac89534d-4f51-4f5b-954a-0c4ef1db3098)(content(Whitespace\" \ \"))))(Tile((id \ - 2d5f3fc3-72f2-4e4c-b3d8-8e34e966ee17)(label(f))(mold((out \ + 173223c9-5720-40b4-913f-7998d41105b9)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 62c113a4-2abd-47ee-9cb1-49dc00f1ba0d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f93531a8-8da2-4623-8d44-39df361554d5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c1ac6161-d471-4523-9b42-1a39ed0a18bc)(label(1))(mold((out \ + 3b6568d7-3062-4763-a201-3343957ff3d8)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - af1131ee-b56f-4503-978e-1c5fa6af9e9c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 2f5a6aaf-b092-4c58-b419-5865967b888d)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5ac33347-e517-4b9f-84c0-ba3a3201b496)(content(Whitespace\" \ + 1bd2aef2-5f34-49a3-80ae-47de3ffe6e20)(content(Whitespace\" \ \"))))(Tile((id \ - 51ee0c63-a223-4cf4-9335-585535f92f12)(label(2))(mold((out \ + 0b740331-4b0a-4e2b-8b56-cce39774b935)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 0081d95b-b438-4f2e-adeb-b7b797627447)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 22583b1d-a3dc-4cc1-a660-1474e6cf0172)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e14f57ab-f267-45c0-85b3-b07e5d856269)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 295028a2-3ce4-49c3-91f4-8421256d5aac)(label(let = \ + 913e9b67-b810-4f88-9542-c93baf9535e7)(content(Whitespace\"\\n\"))))(Tile((id \ + f0c54c7e-e7ed-4f1b-8a2f-0e0ae502cb8f)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 193e459a-6a83-4d20-a445-d0ca3e0aa711)(content(Whitespace\" \ + dd0ead85-35f6-485c-abdf-01592a532b75)(content(Whitespace\" \ \"))))(Tile((id \ - c1eabaf8-2eb6-4f07-a16b-7e0321ab34f6)(label(f))(mold((out \ + 9721ed47-b932-4a72-bb7f-bba6f29bc895)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dd895c62-5adb-4ce0-88ed-7db656306bbf)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 93a5e7e1-6ff1-4332-bccc-eab69074ada8)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4690664a-f922-4620-99c0-a13c45a973ae)(content(Whitespace\" \ - \"))))(Secondary((id \ - 123a2b5b-b75f-4e75-a50f-4e049db0a787)(content(Whitespace\" \ - \"))))(Grout((id a2e478ba-36a7-41d9-9a39-7831ceb93168)(shape \ - Convex)))(Tile((id \ - c4842cac-e5e1-4b12-8190-ae237261948a)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 11b87ab0-b173-4c7f-904c-3f0f6cd38a6c)(shape \ - Convex)))(Secondary((id \ - a5e5e515-0398-4227-bae3-7e1d3ab4088d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 78675615-c06b-493c-bdc7-31c9e1a71f64)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0f12b2f5-a0a3-42eb-9841-65fcd4b17622)(content(Whitespace\" \ + 0eafd477-2595-4374-8ce2-dabe0cf00c47)(content(Whitespace\" \ + \"))))(Tile((id \ + 2d83c80d-076a-4d2c-830b-5c996ea46e64)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 0bd5d294-03f8-4a7a-953d-d66fcdf542de)(content(Whitespace\" \ + \"))))(Tile((id \ + 74f87761-a327-4d21-844e-2cc249a3e722)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + af55299c-11eb-4104-8a7c-db502b572d66)(content(Whitespace\" \ + \"))))(Tile((id \ + 78fa88f9-d0cb-4d36-adf9-1377897f3b64)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + c39ae7f9-7aab-45dd-88db-f98605040197)(content(Whitespace\" \ \")))))((Secondary((id \ - ef873d46-5e64-4393-b815-f85d09aaf097)(content(Whitespace\" \ + 38123bbf-a8c5-4134-8127-e7099abfad6d)(content(Whitespace\" \ \"))))(Tile((id \ - adeaa9a8-f7c0-491f-a86f-6f4e573119fa)(label(fun \ + b47d518b-c18d-4409-80a0-c896b2c04a22)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 480cbf26-7bf1-4dde-a11d-cd9a3c784307)(content(Whitespace\" \ + d407247a-3cd8-4bfb-b03a-ffa207457c0f)(content(Whitespace\" \ \"))))(Tile((id \ - 7685fb4c-98c5-4cc2-a8af-0333ec41b51f)(label(a))(mold((out \ + 605c4ae1-95e5-48f6-a0b7-13f9b792a60a)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 7d960d16-91c6-4d23-8e9a-ed26f4be9801)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + efdcbd71-2f09-4272-94ce-a50d047cda39)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4f83eecc-b187-45f8-9784-877665a45a90)(content(Whitespace\" \ + ab734cad-524b-4de1-868c-12c3843405b3)(content(Whitespace\" \ \"))))(Tile((id \ - d0eaf2fb-0ce0-4a2a-a7e7-5129fb36a9ae)(label(Int))(mold((out \ + 0e58d366-e414-43ca-914a-482ce79d1db0)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 13616c24-d14e-4503-9f2d-24311f7142c5)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 246729b5-e397-4814-a3aa-3a88c8b60cac)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 08c5bfc2-9989-4ba5-b33d-83c0ad686d8e)(content(Whitespace\" \ + cabd8d8a-9450-4322-9450-9f8a6c1760b1)(content(Whitespace\" \ \"))))(Tile((id \ - f34dc9f4-43f7-4b4d-b87a-2280cb6e68c8)(label(b))(mold((out \ + 6fe9f703-34fe-4024-9a4e-334b5548f61f)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - bdac8a5e-eb25-4418-b076-6d20660bf23a)(content(Whitespace\" \ + f0eab0f9-ee8a-464c-9ce4-05e0c16b6a84)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a65a5fb4-f650-4b44-b6e7-65d69db483e7)(content(Whitespace\" \ + 92dd92e9-e9d4-4e72-a81d-6c60bbebb5df)(content(Whitespace\" \ \"))))(Tile((id \ - 36735ffe-8a40-429d-aef1-f28220fc9548)(label(a))(mold((out \ + d2d0bc8d-e12a-4e5c-b3d3-8ecb0350e3f4)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 62fae7b1-a85f-406f-b42a-c9d23e11f27a)(content(Whitespace\" \ + 9094e003-b8ab-40cc-a5a4-1ae33722084f)(content(Whitespace\" \ \"))))(Tile((id \ - 942bad54-7d36-40c8-b83b-89559a6ce004)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 376b1959-4013-4e21-85da-8ee6b4696c06)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e7baa58c-aae7-4e4b-9b8a-912d761cb415)(content(Whitespace\" \ + 9b74d115-7af0-441a-a728-8e68aaaaa3ad)(content(Whitespace\" \ \"))))(Tile((id \ - 05f965cd-de14-4e61-9afe-eafa91fb6526)(label(1))(mold((out \ + 542fb2e0-6d43-49f0-ad48-1eb37babd095)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 73625cb6-76b2-40ea-ad68-cd5b1ddf9c5c)(content(Whitespace\" \ + c5fc87d9-58d4-41b9-9c0c-1552eebc7b1e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 34985849-d438-4551-9962-d8076805220c)(content(Whitespace\" \ + d3fcb46c-58b5-49ae-ba6c-27d93650bbb1)(content(Whitespace\" \ \"))))(Tile((id \ - ba2667af-5b5f-4cdf-bf28-b2ec7d910143)(label(f))(mold((out \ + 3c0a53c8-91e3-418e-86a8-282d80a48538)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 74d59911-c7fb-445c-b808-f8f6ca292a0f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f624e90c-dc4d-4102-bfc7-415759cd74f8)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ae7b522f-710f-4ee0-89ba-4d7656b7a569)(label(1))(mold((out \ + 0bc8dfab-0eee-4ca8-83ae-58e5ebe71246)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d8ceb537-4e43-498f-ad8a-aa8018986ddd)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 4dcb54ea-eac4-442b-866b-c3cc047b3c50)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 075edc4a-286d-450b-8e34-ad506c9a8e24)(content(Whitespace\" \ + 3af47f19-2b75-48b1-9d20-7c3e87d1d397)(content(Whitespace\" \ \"))))(Tile((id \ - a6a5be6d-b11e-4492-9297-b076924e611c)(label(2))(mold((out \ + 4c69f1c5-2159-4244-b85a-fe8a7624cdd3)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 1b91d7d4-689d-4758-9ab4-849c73a95988)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 395ff835-cd43-4f7e-804a-8f7751d883c6)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5801334c-7b19-43ec-9a23-a57cd91dfef5)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4784be6b-aac8-4074-8fb5-c2d56d922642)(label(let = \ + 3822a97c-909e-4e0f-9783-aa511ae2e4be)(content(Whitespace\"\\n\"))))(Tile((id \ + dbc95f6f-0dac-413b-9a57-875c91d1bc19)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 01ac6af9-3fd8-457a-8309-02eedc9357fa)(content(Whitespace\" \ + 6d4f1f2b-2cb6-4a54-855c-eba41992f09a)(content(Whitespace\" \ \"))))(Tile((id \ - e81fa8bd-0208-4d16-b5c2-070574775b37)(label(f))(mold((out \ + b2f91c33-d0b4-4a42-8bdd-cb318b160df3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 16792ef2-b245-4c35-af9d-b850563dd853)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3f84fcc2-2c28-4b76-b9c4-7a12a043ddb4)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - dea95d53-1e5a-4435-9ee9-8b5ea379d672)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1087164e-19c8-498a-9049-80f5b349f791)(content(Whitespace\" \ - \"))))(Grout((id 20e37104-d952-4bbc-b6be-4c2f6e5ed58f)(shape \ - Convex)))(Tile((id \ - f32cf633-09b0-4ea7-8a54-0137c0af4835)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - e03c3ca9-0c90-494b-9f41-23bce1b882b5)(shape \ - Convex)))(Secondary((id \ - 216f6702-fc94-4f2d-b957-95df48f24ffa)(content(Whitespace\" \ - \"))))(Secondary((id \ - a68f2ba2-b02f-4e2d-9ff3-59db489401c5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0824765b-7b74-4ff7-bbd9-60471f543c4f)(content(Whitespace\" \ + 849c5444-d52d-407b-a91a-78ecd49eaec7)(content(Whitespace\" \ + \"))))(Tile((id \ + d99c9e74-3821-438c-8a00-2990985f1b27)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + f23c1d14-e2c2-45b8-a766-af783330ef62)(content(Whitespace\" \ + \"))))(Tile((id \ + 3254d589-fc8c-44bd-af59-b32f30bf2194)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 00c77afb-bc00-49a8-8e14-8b24e92793b3)(content(Whitespace\" \ + \"))))(Tile((id \ + cbcd2b8f-95e4-431c-853e-1bd3ebc0c0bd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + d9b539b4-0ed0-4ce0-a3c4-7c796959d9b2)(content(Whitespace\" \ \")))))((Secondary((id \ - 3f96ff97-8384-4e35-b711-43f834e66941)(content(Whitespace\" \ + 005e18cc-6749-4a8d-85f5-513cf98bcbf1)(content(Whitespace\" \ \"))))(Tile((id \ - 677b6530-a329-41cc-8731-9c2b8695cf3f)(label(fun \ + b569b6f7-d7fc-4248-b301-16d955623be9)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 65182407-4ede-4942-8b97-6d5c3a15dade)(content(Whitespace\" \ + e22cb4de-e71f-437c-aa78-7dbddaf539b9)(content(Whitespace\" \ \"))))(Tile((id \ - 71de9629-e701-4c79-99a4-8ba69db8431b)(label(\"(\"\")\"))(mold((out \ + f1cf30d1-5648-4a00-ab7f-3a6ddd790203)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 4c07c419-2a10-4668-96fc-aa784e388c59)(label(a))(mold((out \ + 644e9674-214f-4d11-8679-6d3d920cc2ea)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e9af1d9a-0b31-4c71-80c3-6013787e024b)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 01fecc9f-f74c-4505-b970-87738e766bd1)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 904078a4-049c-4047-b96c-e66b938e76b7)(content(Whitespace\" \ + 786d94c1-6e02-4925-b04d-a4a76d0d4e62)(content(Whitespace\" \ \"))))(Tile((id \ - 63fdef68-cc87-4060-a166-fa2108be6d90)(label(b))(mold((out \ + 2cc9c805-a00e-444f-a440-fbfa3d63c99d)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - d46777a3-c613-450a-a8d2-0381e4387950)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + bcada562-fe9c-4f83-acd4-416e41ef4546)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6f206cdb-a76a-46a1-af12-e859c5584980)(content(Whitespace\" \ + 54b24744-488a-457e-9abf-f70d4947bf8e)(content(Whitespace\" \ \"))))(Tile((id \ - 087add82-77eb-44bf-800b-a0c4d350fd3b)(label(\"(\"\")\"))(mold((out \ + 14508377-cc9d-420b-8d68-d7d5a7fd35c0)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 638a72da-e2f0-40f2-b9f9-b3e0177663e5)(label(Int))(mold((out \ + 501dfb3c-f396-46d9-8838-380c842b63e3)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - a02e4530-703e-4392-8b25-a63a6116c984)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - bf5dc96f-2fba-4b50-a441-2b201a061500)(shape \ - Convex)))(Secondary((id \ - 653c65da-53be-45cb-9da4-dd484fd7a703)(content(Whitespace\" \ - \"))))(Secondary((id \ - eea31b95-8506-481f-92a6-cba41a19247d)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - bc23a34e-bb24-4dcc-9fd5-16531dcd2f43)(content(Whitespace\" \ + 58d2c431-0b68-485f-9fa5-3fbf8823a165)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + b8d97744-b2d7-43d6-a0e0-4cb376efb927)(content(Whitespace\" \ + \"))))(Tile((id \ + 8e3dd6c0-0cd8-4006-a23d-ac23094f5564)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 6cfb4cb5-8066-4a65-b197-b4155ba475f8)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 77374c90-5488-4be8-a13d-5ada491fd096)(content(Whitespace\" \ + e547925e-3719-4132-a268-711329c13791)(content(Whitespace\" \ \"))))(Tile((id \ - 171572bb-446f-4e67-ab14-9a757706f5f2)(label(a))(mold((out \ + f989002e-7cf8-4163-93dd-1043941820c0)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3705eb7f-991a-402c-a12c-333b9f8e83df)(content(Whitespace\" \ + 35b2a690-ccac-466f-b90e-d651f823e56e)(content(Whitespace\" \ \"))))(Tile((id \ - ec6e4dbc-4b5a-4547-9792-342b79568cd0)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 18e0b965-1d34-45fd-9a69-9158d8099c33)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 72eec4ad-1779-468b-98d9-11e9dffbddc2)(content(Whitespace\" \ + b6a82bdb-5fe5-424b-a63c-3edcfb0d08a9)(content(Whitespace\" \ \"))))(Tile((id \ - 51ba0778-4c11-46f3-b6d8-c72feb736cfe)(label(1))(mold((out \ + b7ed8465-5cd8-45ba-a30c-43f845b03341)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cb88c4ba-1178-46e8-9221-9fd4f4f4dc45)(content(Whitespace\" \ + c1b1e3c2-2c9d-46e5-9053-b0d14f2174e7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e8f4ded3-3731-4656-951a-ec3e8d4bc07e)(content(Whitespace\" \ + a391afd6-6206-4a8b-9173-eda0124c5248)(content(Whitespace\" \ \"))))(Tile((id \ - 557d9194-e948-4d44-a147-26245b0841f4)(label(f))(mold((out \ + 04785cf3-a023-4724-b495-a2a5567ff327)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4ab0085b-ae43-4a0b-a5bb-82fcc89d1c16)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 86485503-96d7-4ed0-a017-983fb191bdf8)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 44811b93-d85d-4822-9c16-3fd0a0557bff)(label(1))(mold((out \ + d97768d7-25f9-4967-821c-297c36c93d98)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 33d8f49e-8b26-4bbb-84fe-64b520a6c7d1)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 036dab2e-58df-403a-98e5-a994434a3bdb)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8a8ce6d2-f2a8-4e34-8c20-42bf2ffa68c9)(content(Whitespace\" \ + 465c6146-c520-45ac-93b5-bc90b0691b53)(content(Whitespace\" \ \"))))(Tile((id \ - 7a4c3917-381e-4fa2-b933-65b610b9faf7)(label(2))(mold((out \ + 91f7f8bf-5c5a-442f-9ea4-6f0a90e35e06)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 578f4bbf-4d56-4507-81c5-0c21160d6d73)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + bb0c1e89-3047-414b-b445-dd343fe3f874)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5a31cbd0-f9a4-4038-a7de-cffb1628f225)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e91ab766-2e5e-47df-9880-416186f304e5)(label(let = \ + e0011fca-0dfd-4ec7-a74f-0d8a3cdb2eff)(content(Whitespace\"\\n\"))))(Tile((id \ + 0a16c719-e6b8-4ae8-8602-074ee1ce69f6)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6448c51f-80d6-4afe-a297-c75b7e468a99)(content(Whitespace\" \ + 804b57a4-e5ad-4f42-b1d9-9293f223c724)(content(Whitespace\" \ \"))))(Tile((id \ - a46da087-3433-4654-88e3-4a7f6d422821)(label(f))(mold((out \ + d19a1997-d322-426d-8293-84a4064730cf)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 072d6af1-94a4-4032-a8f7-3def69d0a07c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + b1243561-3961-471b-93fe-f531c58d48e7)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3038b770-0df1-4212-b762-95cbde5f327e)(content(Whitespace\" \ + 6bee335b-b841-432e-9933-0c984252ede6)(content(Whitespace\" \ \"))))(Tile((id \ - 6fb025a5-c0c1-4613-a067-3866714cbf40)(label(\"(\"\")\"))(mold((out \ + e9d13a71-fd23-4b27-a9e9-d5a395ce52d8)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - abb26a18-8364-4e16-90df-6547f7cffe5d)(shape \ - Convex)))(Tile((id \ - 914d5f5d-efc8-4fe5-9986-2388663820a1)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 061bb903-58e8-456f-938f-739acda10415)(shape \ - Convex)))(Secondary((id \ - d1fac0d0-8273-4b40-bd3c-80540dbb49bf)(content(Whitespace\" \ - \"))))(Secondary((id \ - 10e3fb0e-9faf-4a89-b2e8-ee95afebf1ba)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - af376a6f-dfde-49d7-af95-47925e3f6206)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 3e809ff9-9891-4c99-a3d1-573f52645e17)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + da2dccb5-7ad0-4606-9e5b-24011989db77)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + c86d66f4-84b5-4250-b8ec-f48697881277)(content(Whitespace\" \ \"))))(Tile((id \ - 6f68afc5-fee7-49d2-a36c-3a47f8b3ac2f)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 9613b237-74cc-45ea-b5c8-2b17bdd9618f)(shape \ - Convex)))(Secondary((id \ - 0b31ee1d-0ad9-474b-bddf-00154d216769)(content(Whitespace\" \ - \"))))(Secondary((id \ - b410dbb1-fabd-41ca-b784-b99cdcfc5eba)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8fd5f496-31bd-4e3f-b51f-0b6a51ca2dcd)(content(Whitespace\" \ + 0d86b99c-4cd2-4db8-bb41-fa737b3b8098)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + b4431d08-0ed8-4bc4-8e01-83476e937af1)(content(Whitespace\" \ + \"))))(Tile((id \ + 776b88a1-6a5e-4c61-bfee-61b48058cb19)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 9bba64e9-2c26-4c96-b5b3-661db6e4bac9)(content(Whitespace\" \ + \"))))(Tile((id \ + f7cd4a7e-d29d-4758-863a-8d1f40db78b3)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 794f9424-8d84-4c66-8436-da7e719d51cf)(content(Whitespace\" \ \")))))((Secondary((id \ - 3282d800-60dd-4de9-a28e-bf7e684d9b8a)(content(Whitespace\" \ + a23ce396-a5e1-49e1-8344-a2fb1fcee0dc)(content(Whitespace\" \ \"))))(Tile((id \ - e7f2229a-768a-4ad8-b720-4dc50f88daca)(label(fun \ + 408e94b8-448d-4799-ae58-2230a86db98e)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 5b0edbcc-38ea-4108-9bdc-4c6b8394ac8b)(content(Whitespace\" \ + 15117fe1-bcaf-4b56-9a15-01df91847a3e)(content(Whitespace\" \ \"))))(Tile((id \ - 9c9f5baf-4414-4d97-8160-774712d7f699)(label(a))(mold((out \ + 64bdf45b-3110-4037-9f09-64a644be429d)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8a3ef432-cd29-4937-b9bd-312829df51e5)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + cc12782b-2a38-44f4-93ca-092f94e27c86)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - e83f627b-0105-41ab-aa9b-980231731d2b)(content(Whitespace\" \ + 717232e9-1ce3-4caf-be52-0957da124dc4)(content(Whitespace\" \ \"))))(Tile((id \ - 9751b2c6-b35d-43cb-b986-c3c138ffc44d)(label(b))(mold((out \ + 3ea5fc7b-03bb-4029-85bf-318eabc68207)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - e8b29464-2ce0-47c4-97d1-045478b68af4)(content(Whitespace\" \ + ef6659b0-9d3c-4018-af64-4c990e77cf00)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c4caee35-a182-46b0-8c31-ab1f14865df3)(content(Whitespace\" \ + 94106d2b-323f-485a-a3e1-76c8e0967ac2)(content(Whitespace\" \ \"))))(Tile((id \ - f89c6f23-2126-47bc-bfbf-03a141f18881)(label(a))(mold((out \ + 8c52a3d3-a1a8-449f-b12f-b425ba640e16)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c8b42539-e3db-4527-92ca-a28898cc31a0)(content(Whitespace\" \ + 740c5794-82ff-4682-bc1b-196bfc039643)(content(Whitespace\" \ \"))))(Tile((id \ - 793e3c7f-1a50-4f0e-9e3d-a954b62ebb3b)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 0350f5a0-85f5-444b-920f-26294eab140c)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 506ee6ac-f965-4695-86fa-4b6f65c40880)(content(Whitespace\" \ + 1828398b-0858-4850-a283-5e5d7cfc1d8c)(content(Whitespace\" \ \"))))(Tile((id \ - cf41bcdc-fdb1-4fba-9c9d-d9a095157908)(label(1))(mold((out \ + bab4e21f-f6ce-4c13-8560-9cade7290a25)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a2fcc73f-c20e-46ba-a083-d59bf02a54be)(content(Whitespace\" \ + 9a974c5e-b836-4adc-9949-11c3449f7514)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 01c8a13d-464f-493d-b285-b6884c9cfe6e)(content(Whitespace\" \ + be9ff373-e7ac-4dc1-ace7-d25ea830ff61)(content(Whitespace\" \ \"))))(Tile((id \ - 27fa1b9e-1c83-4366-813b-59aaf302a5ef)(label(f))(mold((out \ + 4020ff3d-a6b5-4fe8-b0a2-c4108f7f5fbb)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - de6c5fd3-529b-4805-83d9-5b123615c295)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5fa91144-8aa5-4bb0-9e16-8a80b0199d1a)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 32184568-a8fb-4504-ad5f-4e79abb70bc1)(label(1))(mold((out \ + 13d276a7-8b38-4fc2-80aa-c66c4df6c4fe)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7625ed65-dc23-481d-8cf4-7bec9ce2d61b)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + f073e364-7311-483b-a162-22c31e0dcbc3)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2d64477d-0af4-4e4b-9fc5-6759029362a4)(content(Whitespace\" \ + 3b924d1b-da65-4f96-a649-32783c12fa4d)(content(Whitespace\" \ \"))))(Tile((id \ - eac776ea-6d34-4d5f-8b0a-a5bc742778da)(label(2))(mold((out \ + 9ce3031c-1ed5-4c08-be33-e8e003040023)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - fb93ade1-a5bb-4e65-9f2a-f7ce945af7ae)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 6b955a59-ba44-4b65-99c1-1418fb72ef21)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - b48b8eae-4690-4248-a8a9-e00392cc76a3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 249e737b-7462-4cda-987f-dbd1c040a305)(label(let = \ + 954c6c0f-e515-4725-808b-2f4220144f8c)(content(Whitespace\"\\n\"))))(Tile((id \ + 741f0667-79a0-4c27-bd96-bbea5a774a54)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ab2e61f8-918a-4a8e-804b-6b8258d068ea)(content(Whitespace\" \ + 3f8879c2-d63d-4bbb-b102-47e9875b6860)(content(Whitespace\" \ \"))))(Tile((id \ - 239b9b3a-655b-40e0-ba7b-21e7731d12a8)(label(f))(mold((out \ + 2344e263-fbe9-4cda-abfc-5f3a9161c3c6)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - bcb33fbd-3493-4e9f-8a95-362ec76b082a)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + eb9b1a49-91b3-42db-8c6d-f8f76e750af4)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 855d053d-78ea-4ebc-b206-5d5400dfee1c)(content(Whitespace\" \ + d3470c02-0b2b-43cf-bdfc-25ea54aac84f)(content(Whitespace\" \ \"))))(Tile((id \ - 5a9ac697-149d-4cbf-b476-aab022ee05e1)(label(\"(\"\")\"))(mold((out \ + 86d8bc13-4d1c-44d8-9f74-a523ca09d63c)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - 8f5dd867-a41e-4363-926f-c989367cd3bf)(shape \ - Convex)))(Tile((id \ - a6c7aebb-51f2-4b36-ac15-be1668105a95)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - e4d0ad35-d7d6-4bf1-8ee3-f5e39a905fe8)(shape \ - Convex)))(Secondary((id \ - ab7b2100-5e43-4d55-b7bb-f742bb65f8ab)(content(Whitespace\" \ - \"))))(Secondary((id \ - b393f5db-c3c4-4e85-86ff-0fb0662bc978)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f9757c3e-4bc4-449e-822c-9035e2e36eb8)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + da203b49-ec57-48ec-883f-66907d129de3)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + d48ad174-a0c6-45e0-b006-25be499197cd)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 76528446-265a-4f6c-bda3-7bdee9f7ffa1)(content(Whitespace\" \ \"))))(Tile((id \ - 74f56b23-6fb8-4e03-96b2-06ea9e7040ed)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 6d983f70-23d1-463d-adc0-a3709a640952)(shape \ - Convex)))(Secondary((id \ - 196b58a4-63de-4642-85bb-175c2ea9fd1a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1329bb91-6f9f-4c47-9109-da58bb468bee)(content(Whitespace\" \ - \"))))(Secondary((id \ - ffada2ab-fc36-4533-86ab-de10f916869f)(content(Whitespace\" \ + c1e234b2-70ef-4de7-b98d-fc895acb7dd2)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 54e6d15d-c657-4496-8223-8536938d609a)(content(Whitespace\" \ + \"))))(Tile((id \ + e943d407-db80-472e-90cb-114c35e58969)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 53caf4f7-40d6-44d3-a8b7-e039f221cba8)(content(Whitespace\" \ + \"))))(Tile((id \ + 06707990-cdfe-4aa4-bd7b-c1162c4a4112)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 4ed8f66e-efe9-46a0-ad84-5d342b89034b)(content(Whitespace\" \ \")))))((Secondary((id \ - f40d6acc-e229-4f0e-9184-83d9349dcf7b)(content(Whitespace\" \ + 72286cbc-1586-45ab-acbd-831dcef7356e)(content(Whitespace\" \ \"))))(Tile((id \ - 4c338a43-8850-43e6-afc9-be37ae180fdc)(label(fun \ + 28395633-07ab-40bf-8a0e-f1cf33ac4364)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 534da083-b8ce-459b-b75f-88af8447cd42)(content(Whitespace\" \ + 07fc34a6-e37e-4af8-9585-d7cac87f19bd)(content(Whitespace\" \ \"))))(Tile((id \ - 6ba8154a-1771-4256-b396-678df94f8799)(label(a))(mold((out \ + c663a1d5-5166-449c-8a8c-f33b63652c5c)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b1250a41-9d06-4016-936a-951599368c67)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 776456c4-5444-4a55-841e-3c9ad0e0620b)(content(Whitespace\" \ - \"))))(Grout((id 0ed1f5e7-1207-4b48-bde6-af2b757e9f71)(shape \ - Convex)))(Tile((id \ - 649ce7e2-8418-495d-a672-b758cdece86d)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 5d3e9a69-d15c-48c1-bc13-433923f251cc)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 1e0e0dae-5435-4a5f-96b8-30ecbd84f935)(content(Whitespace\" \ + \"))))(Tile((id \ + 59546d31-22b8-459f-8a9a-153d9a0e4eb1)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 94233aef-7819-4eee-934b-7e7e41136c21)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - fff13e2a-4465-4e20-b5ba-25100a3b1c34)(content(Whitespace\" \ + 28df4ae9-b956-41ac-96b9-37921c16ba2a)(content(Whitespace\" \ \"))))(Tile((id \ - 820aa7a6-d0ef-4680-845e-05ae7b496bd1)(label(b))(mold((out \ + 15ef8426-a983-4b8d-ad31-e8dc4695c37c)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 43a7d8c9-79c2-4a16-8504-4ce744835909)(content(Whitespace\" \ + 1eee4812-6300-493c-b91c-8bcdac410000)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 072b6626-4224-438a-8153-083b3b5cf909)(content(Whitespace\" \ + 9cce1083-a29c-406a-913a-b411aa0a867d)(content(Whitespace\" \ \"))))(Tile((id \ - 7d4ca940-d58b-4a51-b2a4-6c46f63bb321)(label(a))(mold((out \ + 54271780-532f-46d7-8d8d-bdbfd943c10a)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 61afc556-4ad7-44f8-aa2f-a9ccf2777603)(content(Whitespace\" \ + 6a9f7544-aa99-4453-8005-bb57f27065af)(content(Whitespace\" \ \"))))(Tile((id \ - aaad6f7a-5f9c-4d97-93f3-60736e0e1b34)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 7cb13d40-21c4-4886-b704-ca4d1540a644)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9d2e0609-d39c-42d6-9115-6f55f381ae68)(content(Whitespace\" \ + fe14cabf-9f0c-40ae-b739-e8caaf266ab1)(content(Whitespace\" \ \"))))(Tile((id \ - 10dbe8de-b23d-4d56-a5bd-195980d3e27e)(label(1))(mold((out \ + 10253db9-e295-4e30-b51f-81b0aa17d6f2)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2681e2bf-4a97-4b26-adba-f80d88129390)(content(Whitespace\" \ + 4f8f2341-c0db-4772-9417-3c903f090689)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bfb0bc27-e706-49ed-bed3-343d8fe52c92)(content(Whitespace\" \ + 20afd105-6686-4952-8f39-c586e2117c4d)(content(Whitespace\" \ \"))))(Tile((id \ - 4c2b5934-01d6-4447-8b62-e1243765a918)(label(f))(mold((out \ + d303a86a-a801-4b4b-8e90-25d1b8357a91)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c312395a-d53e-4841-973c-2f70d81bd841)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e7595dbf-d4eb-4736-a3c9-ce6a68e5eda4)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 31a6bc96-cfde-4df5-b3fb-b35b53bb45f3)(label(1))(mold((out \ + 3d26e8b7-8786-4c95-b076-d8da4c6d7f6d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d773d0fe-76f2-4e64-b241-48a9802190c1)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 7dc46863-13b5-4677-a034-1f4dd0d1e6b0)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bf8dd4e7-b0b1-4926-8d19-b6cdea0b4c4a)(content(Whitespace\" \ + 00129298-79c9-44d2-8321-31fd74737cb0)(content(Whitespace\" \ \"))))(Tile((id \ - 52c87b39-533a-41a5-b2d3-ecb7b7e09b9d)(label(2))(mold((out \ + 8bdfae0d-2497-4531-be87-393573618a3d)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 77fc0afc-64b0-4b62-9923-01c233655640)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 3ef219e5-fe9a-4c23-aaa4-9f20dc05c015)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3d4f21cb-318b-44eb-8f72-efddcfe42c3f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c497a148-10d9-400f-803c-e5548b970239)(label(let = \ + 02a2101b-a82e-4cb8-b24a-53d750216c90)(content(Whitespace\"\\n\"))))(Tile((id \ + 2f5e8f90-2224-4d16-a860-0c7d00780419)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 4e5f892c-5624-4ba0-877c-ccf641e44ada)(content(Whitespace\" \ + c42ee223-5f97-4d88-a4c9-7b284590e739)(content(Whitespace\" \ \"))))(Tile((id \ - 87f24316-5f4e-414a-a979-eae897c60f04)(label(f))(mold((out \ + e10e2503-6206-40d1-b464-5105931c8f9b)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 020719c3-8271-4308-924e-17d12fc562dd)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 9c6a476c-fe73-452b-8450-d7dc9a141e66)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 901e7b31-f793-4763-af03-e436ea2169ba)(content(Whitespace\" \ + 7b153ae1-dcf3-450a-b553-f434c5930837)(content(Whitespace\" \ \"))))(Tile((id \ - 856c69d4-5ede-4311-a698-b6f151ed6b92)(label(\"(\"\")\"))(mold((out \ + 3a536989-5de0-48bf-ac04-ff566f8638f8)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - aa044aed-35a7-41fd-9251-d9e3b1964b62)(shape \ - Convex)))(Tile((id \ - f34cf6f7-bbfc-48de-b5bb-a95a084b32e2)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 35351958-a081-4ba3-8102-519ceaa460dd)(shape \ - Convex)))(Secondary((id \ - fbb9e319-e64d-482b-bd3b-daef1c8e800a)(content(Whitespace\" \ - \"))))(Secondary((id \ - b6383ff0-91b5-40e4-a7e2-c6b5c46e4890)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a0e9f0c3-86c5-401d-b475-59d17c414966)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 0cd7bac8-34b0-49a4-a098-b5c71b6349f3)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 676531bc-ff4f-40a5-81c0-16b7d027f0e9)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 0f508fc9-6f42-43e1-8098-873e33df79e6)(content(Whitespace\" \ \"))))(Tile((id \ - 72657097-7b58-4dff-bc2c-83d73f538d45)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 9bfde24d-4ef0-4dc2-ab96-ac55fb65de8f)(shape \ - Convex)))(Secondary((id \ - aa2494e4-13cd-4758-8a46-2597daf09c41)(content(Whitespace\" \ - \"))))(Secondary((id \ - bfe5e1c9-9c69-43ca-ba16-ae36fe57904b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 04cbb703-fe6a-431d-a7c2-326e4e6fe519)(content(Whitespace\" \ + 48b8b67b-fcb4-4c51-824a-b835f38dd563)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 7bcff800-5950-4388-ac86-3dd35ba91aa5)(content(Whitespace\" \ + \"))))(Tile((id \ + 73998d82-f3cf-4b57-82b0-5f863ec75a37)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + ac690e38-efaa-40ca-92ca-6d886b0ad0af)(content(Whitespace\" \ + \"))))(Tile((id \ + e689edd7-c1b2-4a19-83ce-96083ef41241)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + c17d167e-66ab-4d55-9c8f-f02f1174147d)(content(Whitespace\" \ \")))))((Secondary((id \ - 9fda2313-41ed-4929-b39d-d2e819057b01)(content(Whitespace\" \ + 354edd89-4de1-4cb3-a062-5cbcc62faded)(content(Whitespace\" \ \"))))(Tile((id \ - 93bc7e43-afa4-4f4c-9862-e580158dc828)(label(fun \ + b5789586-2ff7-4040-ba8f-3a037c96fc16)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 0ac577f5-b8b5-40ef-9d08-173792993634)(content(Whitespace\" \ + 0e9895b8-f3a6-49c3-acb8-ea5973315809)(content(Whitespace\" \ \"))))(Tile((id \ - ae0d121d-1143-436a-9741-a763b0dfdf00)(label(a))(mold((out \ + 019221e7-b7f4-45f6-9cda-eea902b16ccf)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 6aaea59d-b0a5-4e34-996c-5a21aa20bc76)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 097c716f-cd91-4889-8126-f213d5a4202e)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 33f126bd-42a9-4371-b630-847dc42755b9)(content(Whitespace\" \ + 079a0a90-5795-45cf-ad53-78c640a16721)(content(Whitespace\" \ \"))))(Tile((id \ - 493f02cf-9ceb-4e21-afab-d3b601c47b18)(label(Int))(mold((out \ + b2105dda-13f6-40f0-ba81-1ff9f5c2897d)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 6b92ff6d-971c-4992-9f64-bc8c4451b443)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 6ab9139d-165c-45bd-b770-1b3a9cfc66e5)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - cc01eba7-de02-448e-ada4-74122754b6cc)(content(Whitespace\" \ + 15ffc761-de1c-4775-a3ca-56514625808e)(content(Whitespace\" \ \"))))(Tile((id \ - 0d10179e-353f-4668-829d-d7f9efaa9009)(label(b))(mold((out \ + aa33aedf-0177-4014-ba2e-edfc1667b2ec)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 39136aae-8579-4a60-b784-83b9564d6ad5)(content(Whitespace\" \ + f554b45b-9a88-47f3-a1c5-3aa3b6a6da6e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 8fdf301d-12bc-4cda-8a96-b655327d22e3)(content(Whitespace\" \ + e8953ff1-37ea-4353-a6f5-13c3edf9f37a)(content(Whitespace\" \ \"))))(Tile((id \ - 06316225-a915-46a7-8a46-2c2a41ab5c6e)(label(a))(mold((out \ + 0f6519a8-2117-4e17-accb-613a378390b1)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b1f396df-c42b-426a-af63-e32ad23c66b6)(content(Whitespace\" \ + f57c2b2f-9936-49c5-843e-47f78e818dc6)(content(Whitespace\" \ \"))))(Tile((id \ - 393997ef-d898-41b1-8ea5-77ccb7688570)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 5270b18d-7a86-436c-844e-83a2da3ffd13)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3ea85289-f845-48d3-9215-1e6c6deaea89)(content(Whitespace\" \ + 576551ea-b75b-45e6-a53a-72208fe05088)(content(Whitespace\" \ \"))))(Tile((id \ - c8ccff99-0b00-41a4-a306-5035cddb3693)(label(1))(mold((out \ + ac127c5d-a9ef-4fda-94ef-bd72067a5324)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ce407ed0-d44c-4e84-ad83-8934db80e6a4)(content(Whitespace\" \ + a7e9c7b9-4a78-4b62-bf97-52a76358b86b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 90af6c58-0b3d-4556-b921-12f1eb895618)(content(Whitespace\" \ + af3df7b9-93ba-447f-ba68-c9fe69368a1f)(content(Whitespace\" \ \"))))(Tile((id \ - 3668e811-b918-4386-b78d-2dd800c9c0b2)(label(f))(mold((out \ + 5d09c495-1def-4b50-997e-78bffc66ce8d)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 680d3017-66a5-49d4-9337-35bfd56d9c42)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 432f6f29-13ec-42aa-85e3-4046f9b4204b)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 21cdc7d6-400b-422f-b6d8-87863509eda8)(label(1))(mold((out \ + 420455f3-21ec-45fd-af0c-1ab16278482f)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4db36db2-d937-469e-8501-5c4a6627a282)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + ed7445df-264f-4781-8e06-cc89a7277678)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d5fb6cf3-2516-43dd-881a-a13c85df28b2)(content(Whitespace\" \ + 71bf73fe-e5e4-4d9c-af4a-830b6522d37f)(content(Whitespace\" \ \"))))(Tile((id \ - 76602b5a-9369-4d20-90b5-1eebb367c4bb)(label(2))(mold((out \ + 40bc4865-948b-4ee5-b47a-e09f60961fed)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - c243a46a-10bd-4f86-a80b-3b6f94db9b89)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 65ecec74-10b5-4d65-9d07-547469eebbbd)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 90b1ad9e-a0ab-4b09-b59d-50124a8a9b0e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - def5d21f-6b1e-458e-a61c-3839eaa2df48)(label(let = \ + b2c53c9e-6b7d-40e3-ad2d-9b52e1629baf)(content(Whitespace\"\\n\"))))(Tile((id \ + 0cd2dc3e-b0e1-4e8f-befb-f8c713347207)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 63279d89-32a6-4c9f-a91c-b5707e335bd9)(content(Whitespace\" \ + 47feb2d3-9a81-46ce-94f5-6c4709bbfef1)(content(Whitespace\" \ \"))))(Tile((id \ - 6ad6b968-b933-424b-b840-581a0165cc98)(label(f))(mold((out \ + b8275797-9c01-4428-b63c-ab024079adf3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 9bc7a73f-aa25-496c-b777-e0b11ab6159d)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + afe7c5c9-ccb4-4bd9-8757-1f35b2e373da)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 13760f56-38e7-4641-8187-d77e1462bf17)(content(Whitespace\" \ + 97ea9a19-ecaf-4940-aa98-f60b0cca8b69)(content(Whitespace\" \ \"))))(Tile((id \ - da0c998e-d726-4174-ba68-20936cf2f251)(label(\"(\"\")\"))(mold((out \ + 64dd32f3-466a-45d3-8a9d-416d49c7c47e)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - 3669c5a2-0c11-469a-b91a-93575fa3afba)(shape \ - Convex)))(Tile((id \ - 5a694cf5-1c13-49af-8fd5-876c64002b6c)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 24a8484f-e471-4bdd-93a5-4aaf6f44e9d2)(shape \ - Convex)))(Secondary((id \ - f04be29f-40d3-4bf5-b424-99c06bf3095d)(content(Whitespace\" \ - \"))))(Secondary((id \ - e18df519-621d-428b-955a-28f5648c3d42)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - fa73b247-4f0b-4fd8-9690-51f0249d4144)(content(Whitespace\" \ - \"))))(Tile((id \ - de246edd-2272-4f7c-af68-19bc4414c199)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 22631d33-fb4c-4978-816c-e2af9acfef79)(shape \ - Convex)))(Secondary((id \ - cfded247-2e57-4a79-b472-95d5a8600d15)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3cfbb36c-12b8-4430-a2a4-b133cfc3974f)(content(Whitespace\" \ - \"))))(Secondary((id \ - bfaab898-1775-450f-882a-3dd08f985489)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + d74d4b0c-ce2b-44ef-83ff-143918d607bb)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 00c4e1ae-f97c-4dc8-8a34-2880447762e6)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 051317d4-7a19-40b5-ab5b-480bc2189611)(content(Whitespace\" \ + \"))))(Tile((id \ + 64c5f634-8dbc-4e96-86fc-aa459e60a7e4)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + f72f09a2-4927-4efa-aef0-e607f7395640)(content(Whitespace\" \ + \"))))(Tile((id \ + 6f2156c2-f276-4f03-98f4-fb329a4aa303)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + a4056e5b-d4ae-4f43-adec-8b10b535403d)(content(Whitespace\" \ + \"))))(Tile((id \ + ee11d786-4484-49b4-abad-35c0ae7313fb)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 1f580963-ebca-4c1d-ac42-8d6a8f0f23a8)(content(Whitespace\" \ \")))))((Secondary((id \ - c7e883b3-42e3-46b1-9dfc-97656d7be54a)(content(Whitespace\" \ + 67e2966b-fdf7-41ba-b8b1-a08a2a357889)(content(Whitespace\" \ \"))))(Tile((id \ - b3140d37-9cea-4dbf-93ba-6134296486ce)(label(fun \ + 2dae69d8-d8e3-468e-86d7-d8e7e1e84df1)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 7c4a3fc1-3a07-4ccd-9faa-908668202e26)(content(Whitespace\" \ + e5606c6e-7542-4c62-a12d-16ee9db2e3be)(content(Whitespace\" \ \"))))(Tile((id \ - 1d0414eb-36be-4862-a175-e4d6a7cec02f)(label(\"(\"\")\"))(mold((out \ + 4bdd36af-3c46-4017-9797-2f2608dbb63b)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 369c17c8-794d-4aab-8bc6-8a7c7ba854b5)(label(a))(mold((out \ + 36cd609b-5234-452c-a457-0856a2669506)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ab148e68-bafa-4082-b20f-b4163ff35892)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 7f01d606-9f3d-4aed-91fb-caac53e398f9)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - c07e8d76-a161-4583-b953-ca7d9bf2a0c0)(content(Whitespace\" \ + bc94654c-2f20-4f6c-9ddc-f59bd27c35a9)(content(Whitespace\" \ \"))))(Tile((id \ - 7a7bfb79-5e3c-4591-88f6-22e5df3e33ef)(label(b))(mold((out \ + e42001b6-5437-441b-b90e-f4bab5ed406a)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - acb3da75-9cd4-4baf-b2d9-45c8ec3b39e1)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + edae296e-119c-4dd6-bc12-8723e45ce0d2)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - bcb74525-4b49-4270-aac7-7aa74cf41f67)(content(Whitespace\" \ + 5105f7c4-b37b-4830-b60a-8074fd6e6679)(content(Whitespace\" \ \"))))(Tile((id \ - 600185b8-e4f6-4983-b503-5c67dbfb394f)(label(\"(\"\")\"))(mold((out \ + 916b59a6-7696-4c2b-8401-7a096d90377a)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 825efdd7-2e52-4613-8ea0-23f1f08a5c8f)(label(Int))(mold((out \ + d153adf1-31c6-4bde-8248-e8aa30b6d5bd)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 416a3ca4-5560-488a-a774-be822a2a7e32)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 15708ed5-f452-4958-a896-ea9fae8491b0)(shape \ - Convex)))(Secondary((id \ - 37fb9d0d-9315-4c67-987c-236d46a1b702)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9e538009-4c7e-4c7f-b695-3bdc6befaffd)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - e0631ef1-e8ca-444d-baf8-463265173097)(content(Whitespace\" \ + d4b4cfe7-fa85-44e0-82e3-ad28e9b01562)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 069aa331-8134-41ef-96fd-04218183a31e)(content(Whitespace\" \ + \"))))(Tile((id \ + d52e2889-7799-4cb8-b089-dfe46a94a1dd)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 97627ef0-8e55-449c-a860-31b892a436ff)(content(Whitespace\" \ \")))))))))(Secondary((id \ - eba08687-8d35-4697-af6b-2812d6461973)(content(Whitespace\" \ + 0ce934a9-0108-43fa-9ae7-dd73215f01e3)(content(Whitespace\" \ \"))))(Tile((id \ - 7c5b8c16-96d3-46da-b8ea-afceae9437d5)(label(a))(mold((out \ + e3e5b629-a269-4d18-9533-17b4b6b34126)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b91ff2ee-f8ee-4c61-b0f5-9115f6c0f230)(content(Whitespace\" \ + 40114966-50d0-4c74-a078-c09f3924b7b2)(content(Whitespace\" \ \"))))(Tile((id \ - a006a807-6a04-4f10-87ec-54487587aadd)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 897951a3-7a44-4520-83f2-c8b58477f5eb)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ba3ef35c-d7ea-4e3d-a353-5715c665edbb)(content(Whitespace\" \ + 3f06f2d5-c79b-4925-b967-bd136c952490)(content(Whitespace\" \ \"))))(Tile((id \ - 08f3255f-fb50-4034-b5b3-9de9e8a1375b)(label(1))(mold((out \ + 5c51116c-3198-4254-b2bb-9bf9326f0681)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8628da55-6d68-428d-8067-26879297a915)(content(Whitespace\" \ + 02d21a0e-d741-4ce3-bca6-c56712c95003)(content(Whitespace\" \ \")))))))))(Secondary((id \ - abf3eb4d-ca65-45a5-9113-fefba16ac490)(content(Whitespace\" \ + c3012fb4-dbd8-4b65-bd7d-6bc52e02a910)(content(Whitespace\" \ \"))))(Tile((id \ - 97122918-d74c-4094-b55f-07f8f9d3fb5b)(label(f))(mold((out \ + 4c4ee333-dc6e-4d9d-a919-aaa80c32d84e)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3007137a-f275-4b2d-aeba-fdc5c734e34d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 35054f3d-b381-455c-a3e9-2749418b7887)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - da501029-8b89-483d-b62a-1035209f21ae)(label(1))(mold((out \ + d1737bd2-ead6-496c-8810-905f390bdcfa)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - fb3441c0-a2d6-45b3-ba4a-fad65d2cffcf)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 7c4b90c2-b230-4068-9527-3ca580536ff2)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6974d029-9697-4cb9-aee8-8a2fc801adad)(content(Whitespace\" \ + d6f450f3-6aef-4292-b2d1-04e4c7c536e9)(content(Whitespace\" \ \"))))(Tile((id \ - 6f02e6fe-3354-42ce-af69-36f1c2411215)(label(2))(mold((out \ + 4673f3fa-3ee8-4ec3-971d-e2cedd8509f6)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 915fbcf2-5371-450c-9b2e-67e891528a3a)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 98605f14-241b-41b1-ad67-5795c7a108f0)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d9be22e1-cbbe-4821-bd9f-26608d605971)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bf560209-22f4-4ee0-bd63-569256e742e7)(label(let = \ + 376a93e5-d19e-46fe-97a1-75092092e4f8)(content(Whitespace\"\\n\"))))(Tile((id \ + 23838c85-4434-427c-bbf6-ad7216161cae)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 80ac1a50-c17b-4403-a0a6-bcb3b464e877)(content(Whitespace\" \ + b9c403c1-486f-4281-b123-7ac8fe903c1f)(content(Whitespace\" \ \"))))(Tile((id \ - b36b16ef-cf98-44f2-a266-72ad615a819d)(label(f))(mold((out \ + 73e74bb7-c1ef-4170-b168-6385771f6508)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 54b60b1b-fb9b-4159-9699-b283f3c8b73d)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 79ea2e5b-9a88-49d3-8ff7-d109d319824c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ad030d34-b50d-4247-8c95-ee49be92279c)(content(Whitespace\" \ + b06aa8a5-4a29-410c-826e-223657b9344e)(content(Whitespace\" \ \"))))(Tile((id \ - bd41a1f4-e654-41f1-a9aa-44c2caf97687)(label(\"(\"\")\"))(mold((out \ + 2cc8366c-a301-42b8-a2b1-2278cce34ccc)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 1602a4a2-e4cb-4f9c-91cf-99fdfed14c92)(label(Int))(mold((out \ + b0a594f4-645b-4deb-966c-e7f09eee5b8b)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 0d544688-8378-4763-973d-0142b040ef3c)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - d9d067c7-ae3e-46cf-9520-f92e45e3bd90)(shape \ - Convex)))(Secondary((id \ - 607a5271-42e8-4f70-8d7d-7265f5a37e11)(content(Whitespace\" \ - \"))))(Secondary((id \ - 425cbee2-8599-4d9b-9bb8-7d4b74e07400)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 31e910a3-4e72-4adf-b897-e52c3b081c11)(content(Whitespace\" \ + 3f78bcb7-af28-4b2f-9018-374c7035517e)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + c63464ac-b79b-4269-8530-54cc046de68d)(content(Whitespace\" \ \"))))(Tile((id \ - b7a4ac2c-7706-4377-8143-58a9c0dddc05)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 13c642f2-d87b-455a-9803-fa66c8f68c70)(shape \ - Convex)))(Secondary((id \ - 620216db-24ef-41a9-93e5-7f4c86674e2d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2e0af26d-3f9a-492d-9511-120e00c895f9)(content(Whitespace\" \ - \"))))(Secondary((id \ - af907e4b-a3a9-487e-bb69-6c6bcfae8c26)(content(Whitespace\" \ + 4329b2b6-e7ad-4296-88ac-6005713f8cc5)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 0e68f20e-300f-40ff-ae48-bb60dc210e7e)(content(Whitespace\" \ + \"))))(Tile((id \ + 32c8ebbb-222e-432f-a69b-79988c6b6913)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 2e2be603-d2fb-4ecc-997a-adb69d159cd3)(content(Whitespace\" \ + \"))))(Tile((id \ + bf1f0cef-5c7e-4f51-bbda-f85adecf318e)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 8f5b33e8-8b1d-44d5-8638-9c330744c979)(content(Whitespace\" \ \")))))((Secondary((id \ - a07a4037-3c49-444e-9406-ac293aa962ae)(content(Whitespace\" \ + 4d1a8a7c-79ba-490f-a797-e438b620fa67)(content(Whitespace\" \ \"))))(Tile((id \ - f01f6941-3084-4711-9593-85eaadad4101)(label(fun \ + a1495f70-2cd9-482a-8907-5f4ee0ccd14f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - e4e8a34f-56f5-4bd6-a10a-3e6b46fa24e2)(content(Whitespace\" \ + 11439fcd-3a12-45a5-8dc3-eb0e2871a3ba)(content(Whitespace\" \ \"))))(Tile((id \ - 32161cc2-6f99-4954-bdd7-34cf8f0ca2d2)(label(a))(mold((out \ + 0911ba1b-85af-4d18-af1e-1e38c065d78b)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 9274b0d6-af2f-4ae2-8cdf-fe3678efa264)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 605ea2a8-3c81-4bfe-88ce-5b6b94e11979)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - b7ca123b-74f0-4d2e-9c29-8284e2afe6b7)(content(Whitespace\" \ + 78a2bc66-ead9-45dc-a0ba-2ddd00d2e8b9)(content(Whitespace\" \ \"))))(Tile((id \ - 0575a076-e79c-411e-83ef-a100b0917804)(label(b))(mold((out \ + 31237158-256a-4be3-af94-c57ec6a1aa59)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 37f0e61d-c395-44f7-ab59-bdb9b162b1f0)(content(Whitespace\" \ + 6f8baedb-6517-4beb-a178-a67a96a39d49)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f1640ff3-9870-48f8-800e-ca5f4ec1ad9e)(content(Whitespace\" \ + f60f3acd-7836-4436-bcad-f5cedc50aba2)(content(Whitespace\" \ \"))))(Tile((id \ - 38d71e64-e6cd-4040-a7f9-4342a7632a7d)(label(a))(mold((out \ + 8a38855d-d3dd-45f6-8b4b-549a0af11220)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d2ceb287-f66b-4499-9b64-445ef3f32c07)(content(Whitespace\" \ + 27f73a81-432f-47cf-ac51-bfd6795ed30b)(content(Whitespace\" \ \"))))(Tile((id \ - 04053ae5-9986-43e7-8081-c00a8f699105)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 92a165de-27b7-497b-a22a-020a4d4c9086)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e16a258f-cac7-4e38-b790-a7e57addc69a)(content(Whitespace\" \ + 37f14632-9380-4689-a2cd-91df99902c58)(content(Whitespace\" \ \"))))(Tile((id \ - 788d35a7-8e52-4b3d-ae51-82e464d5815b)(label(1))(mold((out \ + c81d480a-d37e-47ea-acbd-05020071cdbd)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 219ca7c2-32c3-46c4-88c8-c07a44f70546)(content(Whitespace\" \ + a59bf95b-6f8d-4218-9845-2c1550ccb6c1)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 69ed07ee-5be8-4064-84fe-b37022365ea7)(content(Whitespace\" \ + bcc8cf2e-e9dd-40c7-a870-05dba9b4f496)(content(Whitespace\" \ \"))))(Tile((id \ - a17a73c2-0f68-49f7-bbb7-550085684c5f)(label(f))(mold((out \ + 83a26342-f298-43b8-90e4-8d8a943f41e8)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b1ae580a-12f9-4106-a59c-86c97ac196ef)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5becf2b3-1143-4ae1-899a-6530a5cc6287)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - d1409192-3c6e-4276-820c-5ac263859192)(label(1))(mold((out \ + 0e53d94c-7040-4c08-8d31-0f1d47ed91b1)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ee65c7d4-9367-480f-bc8a-42714e9e771a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 0b3c3616-4739-461a-8f08-dc7064e70297)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9f0c9bf1-ec71-460b-92fe-7d6f8ae80037)(content(Whitespace\" \ + 7e5a67e7-6fbe-4e4b-a728-c6e160c93c2e)(content(Whitespace\" \ \"))))(Tile((id \ - 391c7891-6ee0-413e-b61d-ff4b533485a1)(label(2))(mold((out \ + a38e504d-eff5-41f8-ad28-3912a77795b8)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - bf8fa20c-d917-47ce-916d-b4ad8a624d01)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + a444a690-dd1f-46f0-8b32-673d85a87cfd)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 26afcff3-cf21-480b-b10f-11b60d0f7314)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 859b9124-2bd1-4ef0-a9b0-440c5346fc51)(label(let = \ + 3c720d05-2dd6-474f-8aef-6c537bc99012)(content(Whitespace\"\\n\"))))(Tile((id \ + 1b3c8184-481b-41ed-af13-ecaee014db19)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a4fa0510-6ae2-48e6-8b02-0443d33bddce)(content(Whitespace\" \ + 804ad984-3c3b-4505-bd75-7d027ffbbdee)(content(Whitespace\" \ \"))))(Tile((id \ - c29e4914-8d49-4e69-be7a-c07f72f9de4f)(label(f))(mold((out \ + f6b17887-aef4-4da1-bfb9-06d14907f573)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c015d488-3679-442b-a2f0-fb95ec525321)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 5ff4205a-bae5-447f-b8f9-2174c5822251)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 15c2b6b0-297e-4582-97d3-369dc2a80d7e)(content(Whitespace\" \ + 13e0fa19-3bdd-4e2f-aa95-9b0e64c4c4ca)(content(Whitespace\" \ \"))))(Tile((id \ - 2bc80c4d-768e-433b-926e-c1e6f16c2e40)(label(\"(\"\")\"))(mold((out \ + e62e7a04-b4ab-4012-bae2-f736e9069860)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - bfd24439-663d-4705-8273-e29b751604f3)(label(Int))(mold((out \ + 807e8383-0fb4-4ab4-8573-db7379c9a427)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 09a3fdf8-a96b-48a3-9ed6-eda73c65a277)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - dff36c0a-c494-4773-85d3-22dc40828194)(shape \ - Convex)))(Secondary((id \ - 82a71844-313e-46dc-ab39-2168277862cf)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8d216058-fbf1-496d-9743-0c5e0cd76feb)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 14415fb7-a422-4548-819e-44934a15fbaf)(content(Whitespace\" \ + dc8738cf-c053-4b5a-96fc-da5b208201a0)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + aae82972-a68b-4ac8-8641-a3dff81bfed9)(content(Whitespace\" \ \"))))(Tile((id \ - 2bf97cb3-fa08-4a66-af35-19f80ebbf18c)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 361a98e7-250c-4a8a-894d-3c142b544a3c)(shape \ - Convex)))(Secondary((id \ - afdf67f8-ca10-4975-a82b-cee627045d6c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1d7ea360-85de-41a0-8d28-2560fce817d2)(content(Whitespace\" \ - \"))))(Secondary((id \ - cc3932d6-ddb5-4b38-bed5-0f804b30c249)(content(Whitespace\" \ + a5ef2480-3805-4e78-8d27-429423d972b8)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 6e73393c-97e4-4bb4-8b6b-025eb39410ac)(content(Whitespace\" \ + \"))))(Tile((id \ + 09f746b3-e174-4027-b328-f256404e5d07)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 0c86de59-8038-40e5-b224-c9090e7f449b)(content(Whitespace\" \ + \"))))(Tile((id \ + 9e2a96b2-d16e-4e02-bbd4-254037dc6100)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 351e167f-b09b-4c76-bbcf-992cfdc6c9a9)(content(Whitespace\" \ \")))))((Secondary((id \ - 0646a454-d94c-4a32-86e5-e945b7ba3281)(content(Whitespace\" \ + d9c64d40-e20a-403b-ad8c-39006832a360)(content(Whitespace\" \ \"))))(Tile((id \ - 1376e637-b0fe-4c0a-ab2e-2e3668294b2a)(label(fun \ + ebbe74d6-7ff0-4c0f-9bea-77069f59676c)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 00d6aabb-0632-418a-991d-3244cbac05f3)(content(Whitespace\" \ + 8d3cffdb-352b-4388-8c11-3256fe3eb3c4)(content(Whitespace\" \ \"))))(Tile((id \ - bc3da52c-3df7-4024-bbed-ccfbc627a7b0)(label(a))(mold((out \ + 5ef11133-5b82-42f5-ab2e-7494af420c15)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2a8f19a0-cfc7-40af-b6b9-3348b68b8339)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 9f76cd87-b09e-4a77-ace3-b7b950b35b5a)(content(Whitespace\" \ - \"))))(Grout((id ba54939c-0b30-45f6-b043-9b78bfc61ccc)(shape \ - Convex)))(Tile((id \ - a3d1bf28-0582-4434-8016-7e16d9c49168)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 2a4ad24b-7659-458b-9672-2b14e466eca0)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + c695b1c2-ced5-4122-84fb-5cc028d9d361)(content(Whitespace\" \ + \"))))(Tile((id \ + dfa59620-e6a9-4077-b9d1-1a4e2ddb714e)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 214ff7f9-27a3-41f1-a3a1-c5d465e3c5f9)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 5224a37d-a8cb-434c-8296-c6848f946521)(content(Whitespace\" \ + ccac5fca-1192-4123-abfb-68f987774372)(content(Whitespace\" \ \"))))(Tile((id \ - 4a059766-ec30-4672-8936-beb7b9222bd6)(label(b))(mold((out \ + 1c78e035-6ab3-4094-ad71-99225db45bfa)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - c1602bc9-19c5-4170-82e8-577d85ed7754)(content(Whitespace\" \ + 13e164d8-e802-44e9-bb9d-907681ea2fa6)(content(Whitespace\" \ \"))))(Secondary((id \ - 8d33d61f-552b-4d9f-8ee8-be0441e23a97)(content(Whitespace\" \ + 7f5f819a-1111-4679-ad2d-4e8cab62e396)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 890ff4a2-a745-448b-8115-b2934cc0b80e)(content(Whitespace\" \ + 0f4ae17d-6028-4ab6-91d6-ca6152c58656)(content(Whitespace\" \ \"))))(Tile((id \ - bf14169f-746b-4146-8c4e-e59d02155bbd)(label(a))(mold((out \ + a39c895c-a577-4fd2-ad3f-a850f7458911)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0df42a3a-eda0-4448-89eb-767d22428d00)(content(Whitespace\" \ + 949db5bc-11ea-4cd4-a3cb-5b3692375071)(content(Whitespace\" \ \"))))(Tile((id \ - 33cd3314-9af9-4322-97aa-077b7aee80b8)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 407e39ce-960e-4fdb-957b-02cc506cdf60)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 36b0afb8-4162-465a-ba53-dadc8ea48eec)(content(Whitespace\" \ + cb7289ce-c7f2-498e-a0e3-74e541699823)(content(Whitespace\" \ \"))))(Tile((id \ - 7acfd26d-e427-4492-8b93-486f2ef7056e)(label(1))(mold((out \ + ed9a05df-34ff-4f8e-b996-714d5a12b28b)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f7e38c4e-9f89-4a5d-9d29-8fc5c23f2cad)(content(Whitespace\" \ + b12e7c69-4c46-44c1-853b-2b45684c1e10)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fb9d57c8-fe4b-4cc1-acbc-0d1a9892bab8)(content(Whitespace\" \ + 6933afb9-f003-440f-ad29-613f73847b07)(content(Whitespace\" \ \"))))(Tile((id \ - ef1b1b01-cf68-4b48-b7b9-46acb5e163b2)(label(f))(mold((out \ + 19e5b8d4-e080-41c8-8bfb-aef2b53bcf65)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6e190c88-1aee-4ec5-8e4e-8a19928c9bd1)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 785addd4-155d-4060-ba64-c2629b94f4e6)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 78705e87-a0b1-4251-8446-d6b43ef044ce)(label(1))(mold((out \ + 44ef56e7-c1ee-40ff-b8af-0c64ad654b46)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 690f7619-8921-4e38-b639-16560567cb1e)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + eb1a9137-8cad-4361-98be-54c32e7941a9)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - eca2e22d-e738-4f42-a208-0ee61aa75be9)(content(Whitespace\" \ + 9b8aeb8a-ff33-4c34-b36b-7c2b481e2cf2)(content(Whitespace\" \ \"))))(Tile((id \ - 0acc0b7b-5590-4de1-8ebf-ce7ce50f99c0)(label(2))(mold((out \ + 57136821-4424-45a8-94c4-2024e1174a7b)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 5e7aa6a5-67db-452b-bc45-bc6613713567)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4fe2861a-a3b4-41fa-83ee-8214e7390ce0)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c4a2663f-7fea-4727-8ac4-10ef3933c70b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f85f8f98-196c-4aea-a519-ea1002fea7d2)(label(let = \ + cea6e21d-7c1c-4617-8ca0-f4f26295f1ad)(content(Whitespace\"\\n\"))))(Tile((id \ + c5630b4f-d0cc-4423-b9df-6c2a5d338e84)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7a1d296d-ddf2-4800-b920-f4116eb01eb2)(content(Whitespace\" \ + 723f77ed-7c7c-4425-9975-e03f5f2796c1)(content(Whitespace\" \ \"))))(Tile((id \ - 9897f8ff-41ce-4364-a5d7-b366ec0bb8bc)(label(f))(mold((out \ + 45b04c53-21bb-49c2-af2e-4db1118b3919)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ce2d263e-6278-465a-8f81-e831b766b1e5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 67ae30d0-142d-4680-a9a1-e9588d253a8a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 967f4497-6a86-4dd7-a089-2f18712a0d67)(content(Whitespace\" \ + 8203e6a2-b957-49a7-9846-7d0321d6de81)(content(Whitespace\" \ \"))))(Tile((id \ - 416de460-73cd-4105-9a1d-676283260d75)(label(\"(\"\")\"))(mold((out \ + 8fee1d03-c759-4bc4-8f2f-c63312efdf58)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 38e4b386-735b-48c4-8a0b-ff4cfdd52bcb)(label(Int))(mold((out \ + 862b2430-3972-4107-b0d9-4a591e811442)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 51976577-6ffd-4315-bc7b-cd2d54f8a710)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - fa144b5b-e12d-4105-af0b-621f0d0ab9ae)(shape \ - Convex)))(Secondary((id \ - 37d11023-6ee0-42b2-aa34-e0c2821a1f46)(content(Whitespace\" \ - \"))))(Secondary((id \ - e3009bd1-94cc-4f72-9d97-3a936ddd965b)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 78c11afd-7779-41ba-847b-bf00b2cd0e23)(content(Whitespace\" \ + 2f675e69-419a-471b-a24c-768cdfe9d195)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 3f4de23b-dcb2-4c83-8b92-499167ac65c9)(content(Whitespace\" \ \"))))(Tile((id \ - 0ab478a8-af38-4bdd-91bc-b042c8fc1a28)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - ac0f5375-8a7f-45fa-883f-22598fb49e4f)(shape \ - Convex)))(Secondary((id \ - 71e88bb0-162f-4acf-b4cd-2d8dfcb98676)(content(Whitespace\" \ - \"))))(Secondary((id \ - 16f969cb-615e-4d0c-a454-9ab748dd889c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 30bd0a7e-1b39-403d-9d29-314fa4015d6f)(content(Whitespace\" \ + 9fceb4b1-bc3d-4a75-840e-3d210eb4c3bf)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + e2a7fc27-64d6-4193-87a0-1a81b005d189)(content(Whitespace\" \ + \"))))(Tile((id \ + a2d90a4d-622f-420f-a01f-604e567a11c1)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + de74e75d-9c88-433d-afce-914ef03f07b7)(content(Whitespace\" \ + \"))))(Tile((id \ + 10ac9c16-ea4a-4595-8a1d-8fdc9afdb13d)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + bffcfa1f-f040-4d33-8a4a-2758d7a4ac9a)(content(Whitespace\" \ \")))))((Secondary((id \ - 63214078-2ba6-41de-ba10-3e4c34a44258)(content(Whitespace\" \ + adf7b8e1-aa0c-439a-8191-28d3bb86d59f)(content(Whitespace\" \ \"))))(Tile((id \ - 09178b2f-ef8f-4ad9-a4e7-832c67204695)(label(fun \ + 8b74d945-578d-4339-b6b2-ed0e3bfb7604)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d5cf9139-9af8-4179-9e1c-7d101750015c)(content(Whitespace\" \ + a199017a-a863-44a7-91af-ca4bab16e0c0)(content(Whitespace\" \ \"))))(Tile((id \ - 3cbc7411-534c-4f04-ad2f-4c62642f92bd)(label(a))(mold((out \ + 1dda4f28-4651-43c4-942f-afc91a06391a)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2712059c-cdcf-41d9-868f-3b47a023519c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 005f0fca-40d2-4347-b0e6-1cfdff1b7abf)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 357f64ca-739e-452c-ac34-6e86af829339)(content(Whitespace\" \ + 3aa11510-029b-47f4-9814-7b849a6b0c18)(content(Whitespace\" \ \"))))(Tile((id \ - 1ef6e3ed-b83d-40d9-80c6-ce7bd066a3cf)(label(Int))(mold((out \ + 8c3b0613-0a5f-4baf-bb13-8e0537ba8a99)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 714e50f1-382c-4b30-ad8f-14a29d00eed9)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 8356a33e-e14a-45ea-9ccb-8643dc7e8c90)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 0eeed07e-8ecc-4400-a0f8-648a08060a9c)(content(Whitespace\" \ + 82610d60-0e70-4286-a06f-027b27f889fc)(content(Whitespace\" \ \"))))(Tile((id \ - d0ad4dfb-81fd-4ea6-9436-34e9aa10d2e0)(label(b))(mold((out \ + 8c1ae8d6-4e32-4fce-9ba3-1abddb49e7af)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - c11d7f64-46a7-4dbb-9ce6-d5e65854762e)(content(Whitespace\" \ + 90b04bf4-97ce-454a-b7a3-0058ad4148bc)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4196328d-f970-4e72-89de-d3dc5a3b800f)(content(Whitespace\" \ + dd298321-2ef3-4941-9f2b-330c29b875ac)(content(Whitespace\" \ \"))))(Tile((id \ - 0ac8ba99-28b0-4c20-b6dc-fdda5208130c)(label(a))(mold((out \ + 71a8e354-93c0-418c-b729-b993dc488fdf)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2701275f-0054-49cc-a806-e50b5a1d9407)(content(Whitespace\" \ + 110aea15-876e-4a86-80ea-89438d64c8a7)(content(Whitespace\" \ \"))))(Tile((id \ - 5c928d16-9a42-44a8-9599-e9a2ef7cb4a9)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 65d321df-a172-45f9-945f-d1b89ae81761)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3992ab52-0322-4a10-8993-9bbc73b4a47d)(content(Whitespace\" \ + 4420f1b9-ac27-4a1a-b018-8b5d87049d78)(content(Whitespace\" \ \"))))(Tile((id \ - c7dee409-5099-439b-9479-cb196bf85da9)(label(1))(mold((out \ + 91cc08cd-3a9e-4c30-8815-bd79da9c3581)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7f472026-0d8e-44fc-bf53-183b363fab7f)(content(Whitespace\" \ + 7f1b07d3-315d-401a-8ce2-6be512c2bada)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 93ca28dc-c1ad-4310-8917-b968a2a3ba0b)(content(Whitespace\" \ + 8e172e2f-ac49-4023-8435-2fee16bb4e12)(content(Whitespace\" \ \"))))(Tile((id \ - d8799670-d6a5-49df-a740-89c175fdb36f)(label(f))(mold((out \ + f1cec1c7-8074-4892-ba78-f85ed01e3c00)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 14eb48a9-3e23-4e76-92bc-3c43c7fff444)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ed95bd43-3ee3-4095-9b70-28884d520361)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 997a2997-4ad4-4248-b9f1-c96ff5941789)(label(1))(mold((out \ + ace88fc4-3a31-45d4-9bdf-69a20bdffd47)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 43a93d20-b827-4f0c-a3ee-c695e5df9e95)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 31350bb8-4ba5-4166-83ff-44b230650a22)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bcb0c02d-7357-4984-9fbc-f93897b4492b)(content(Whitespace\" \ + 623cd71d-5f31-4a56-818c-b14816d3fe21)(content(Whitespace\" \ \"))))(Tile((id \ - 4736d2f7-5fa5-4544-b6b0-30cbda4b5b62)(label(2))(mold((out \ + cfdcf73b-d839-4fa3-b242-335d39050a9e)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 3ab4ec30-9a09-4644-8841-92e7f6cb8847)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 4c26285b-99ab-425b-8eb5-e76daf1d0d54)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 487472ef-1212-4ed3-88f2-63c4ab35afbe)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3d02d2c6-650e-4442-b1c7-67b32cf9b8ad)(label(let = \ + 7c81343d-3896-40ff-9b94-4fe477cfdcfb)(content(Whitespace\"\\n\"))))(Tile((id \ + bc97567d-b5e7-4cbd-8ed9-b977b4202305)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6191f40e-7c16-452e-8c76-6f33eba1d329)(content(Whitespace\" \ + 8cf90a7f-e5cd-45ea-9ff6-8306406d8d71)(content(Whitespace\" \ \"))))(Tile((id \ - fa4b8668-df61-4e1b-8cec-341034c7a3a7)(label(f))(mold((out \ + d53912ff-83a8-4b21-80c5-482a4883d905)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ec67395c-ef7f-4eff-83d1-feb53acd6054)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 0822bcaf-a00a-465a-9755-20e7f4eaf2ad)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 466da28c-9cf0-4722-8957-eaf632a6cd98)(content(Whitespace\" \ + 530c0bde-85f2-47f1-a63c-cdeee2e4d904)(content(Whitespace\" \ \"))))(Tile((id \ - 7f79e5b3-e434-4b06-9b0b-3877b56986f4)(label(\"(\"\")\"))(mold((out \ + dba55abd-232c-4612-b620-8169e50591e7)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - a79ba610-804c-4e2e-994a-155e1833c2c3)(label(Int))(mold((out \ + 44916c8d-978d-41d2-b474-d3bd7cc91117)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 64a932ef-9cd4-45ae-af2f-390ae7392104)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 8b753d04-627b-46e9-8d0e-98d66a31dd4c)(shape \ - Convex)))(Secondary((id \ - 600dac5a-52dd-4c54-8858-a4c872fa3317)(content(Whitespace\" \ - \"))))(Secondary((id \ - a800be14-da4c-403d-907c-b550055bc6c9)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - fa75fd51-22af-47fe-b374-4bf058b6aeab)(content(Whitespace\" \ + 4a19a9fd-2065-4544-824d-000c076f622b)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 55a7648e-3dbe-4016-b2c3-964605fcc1e3)(content(Whitespace\" \ \"))))(Tile((id \ - 5f527de5-501f-4c14-b543-a9512e1869ae)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 053b4322-a3a3-42e2-9188-0287bd43e17b)(shape \ - Convex)))(Secondary((id \ - d85d2f27-47ea-4ad0-bd9b-cf6d50ae2b89)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8029ce44-a191-477b-9785-fa6eb2dc427d)(content(Whitespace\" \ - \"))))(Secondary((id \ - d9665998-b692-44b5-8d1b-97ed7eebd24c)(content(Whitespace\" \ + 9738a782-bfb7-43df-8335-ff637f58f825)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 8a4e86bd-016e-4831-ab72-02b5c3a011d6)(content(Whitespace\" \ + \"))))(Tile((id \ + f966a034-25c1-4736-89c7-fe57d129e3f3)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + e42f3030-e41c-4328-b559-5e79d4241f23)(content(Whitespace\" \ + \"))))(Tile((id \ + 1dfe097a-be5b-45a8-8351-33883acebc2c)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + b93a67ae-2c8f-4c20-9346-0c462298f519)(content(Whitespace\" \ \")))))((Secondary((id \ - 3cfeee66-ca95-4f7c-8969-dd92161cde90)(content(Whitespace\" \ + 6a25cc2a-69cc-4864-a54b-a7764c1676d3)(content(Whitespace\" \ \"))))(Tile((id \ - 1203feeb-b475-4294-ba3a-71af647f676f)(label(fun \ + c423168b-9d88-446a-ae07-0a664c60ecce)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 25158f94-7af8-4d68-9abb-4a365a130b55)(content(Whitespace\" \ + 27dfc916-18f7-420f-b39b-fe53266910fc)(content(Whitespace\" \ \"))))(Tile((id \ - 4b7d5c04-3e4c-4369-8917-f6bd1d93c9dd)(label(\"(\"\")\"))(mold((out \ + f716266b-c8be-4581-b250-984d63b6fbe3)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - db0db77e-bbb1-4738-b207-c118cced483e)(label(a))(mold((out \ + 2bb90dc1-a91f-409d-a4cb-9650a68712ad)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ff1961f4-9798-4200-b14d-fa9ed8c23a3e)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 7ae50a29-9e0d-493f-b4aa-3f2f11f5b789)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 73fdb448-3691-42ae-ab3c-c35be7f073d1)(content(Whitespace\" \ + 2b2f4d71-025b-4275-a0e1-9be7ba4b1179)(content(Whitespace\" \ \"))))(Tile((id \ - 4ab4a56a-4cc3-40cc-9609-3dfa2e644314)(label(b))(mold((out \ + 46e2f0f8-b86e-4826-b2f9-fe1eb4d17d91)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - 50cbfb20-0b9a-4cfd-b962-0e061a417c0f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ec82935f-dbe6-44ba-a061-2bce36224f7e)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ff8c1605-b9e3-419a-9aab-f66d51fb7478)(content(Whitespace\" \ + 30ab007c-c5a6-4d59-99b1-56bac0bb7160)(content(Whitespace\" \ \"))))(Tile((id \ - 8e68bb74-bf64-44f9-9385-d1f66367770e)(label(\"(\"\")\"))(mold((out \ + e3c6e770-7a03-4d1f-a8e9-7feae2a10adb)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 857912e5-bd11-4c26-b394-dd2cd928636b)(label(Int))(mold((out \ + b37f7679-d081-4ec7-97c6-b049015500c7)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 7b50ab67-1a8d-4cb2-bae8-1ec785e3c8f4)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 4ccb8f1c-c712-445f-96f9-7f746b28e6d8)(shape \ - Convex)))(Secondary((id \ - a90928e0-4dc2-4a78-af9b-e03da908d2f3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 677fa960-7bed-4e08-ba47-baed1f64c898)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 187239a0-573c-4dd4-a576-2c9b9f5663cb)(content(Whitespace\" \ + b3a36d6f-2523-4a44-a591-49b433fee592)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + b593a8d9-e18d-41d9-9097-0ed1dfe24101)(content(Whitespace\" \ + \"))))(Tile((id \ + 6f8b7845-29d1-4f3f-90ef-4e4044b448d8)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 5a427452-2351-440f-bf7f-0a5ba3f2946c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - eaed48a1-3bee-459b-b7d6-a039e99046a2)(content(Whitespace\" \ + c5ab0cfd-d873-4b9f-9372-3369a86a25fb)(content(Whitespace\" \ \"))))(Tile((id \ - b925b8b3-6174-407c-8d0a-2c403a01379a)(label(a))(mold((out \ + ca851131-76db-4fc2-b08c-da2f450cff28)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 314d702f-4312-443a-ab9e-57da31954acc)(content(Whitespace\" \ + dfb9a24d-2654-4be3-a601-7a917bf7944e)(content(Whitespace\" \ \"))))(Tile((id \ - 79584246-2c43-4cdd-a2a1-3ff950621fb5)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + d4a1b884-05b7-490a-b7ea-91d37bd6bfc1)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - eb20decf-03e9-4149-82e6-d53e2798b851)(content(Whitespace\" \ + bc2dca84-abca-4423-8743-1ca9ddedce81)(content(Whitespace\" \ \"))))(Tile((id \ - 26e66a82-4bd0-4c87-bd53-fc3ab14145cf)(label(1))(mold((out \ + b06dfd1d-91b1-4352-a36a-076ecd0a2269)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - db3c2d25-3ecd-4d1e-8a7f-0cb819336a6e)(content(Whitespace\" \ + 87eb5fd8-49b2-4fe5-a6eb-655451b1f4cb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 78255577-7358-4a9f-b7dc-bcbbc258d278)(content(Whitespace\" \ + dad9de9e-6e93-484f-bd8c-28df93b0da06)(content(Whitespace\" \ \"))))(Tile((id \ - bd3c7ccb-c3a8-400b-bbe3-3b97a27bf604)(label(f))(mold((out \ + 5df5e410-305e-4e26-b1d4-71e197de9811)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b0902f59-30f9-453f-a11c-f9e0a116cc65)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + dccfc060-0742-4072-bfd4-bc4c04000904)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c22f8cf5-6891-4ec6-bf3f-d8006cdf2c86)(label(1))(mold((out \ + 3a2e58b2-df94-41ad-a531-f0d78b9e3edd)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c33216ef-f39a-4f55-a05e-5301d5c8d934)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 951fafa4-ff14-4695-bc02-207a1895c66b)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 29bc4824-fa3c-4e22-a1d3-c0f603df933c)(content(Whitespace\" \ + b0b19ca0-b024-432f-b2f0-3ec428acf942)(content(Whitespace\" \ \"))))(Tile((id \ - e8dd7c29-5f0d-4c00-82a0-711e5bacd6f5)(label(2))(mold((out \ + a3492fe6-456d-44a0-9159-2da47a11a9c6)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - da788c99-cf8c-425b-9960-ba7e8d1b3ce4)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + cfcced1d-e9f8-473e-8f80-46e5d60af422)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2e1ed404-00e5-4130-bd00-654f0cc85eba)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 41a5d82c-8d38-4453-bf1b-0daa6ee4fc98)(label(let = \ + f9042aa1-ef31-4dfa-ab93-72eb124c811f)(content(Whitespace\"\\n\"))))(Tile((id \ + b94fc01e-4a92-4ae9-bcb6-e4083f81350b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - fc64a15a-4665-41bf-8ed8-9f586450d3e4)(content(Whitespace\" \ + 4c5a73ed-3a5a-4469-910e-21196d2ca81f)(content(Whitespace\" \ \"))))(Tile((id \ - df06f73a-d19f-41f0-a65e-85f120aaa148)(label(f))(mold((out \ + 7bafc498-f448-42c7-be93-7c7251d28b34)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 17834340-4fe8-46df-833b-c36aa06f86ec)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 79cdb704-c1c6-415e-9338-70b0c9a0e35d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 7f43728c-3ef8-4792-b7e1-d5bf79a8f422)(content(Whitespace\" \ + f9d6db4e-df30-4d88-9b2c-73dbf42b8c61)(content(Whitespace\" \ \"))))(Tile((id \ - 6983e2cd-73a9-44b8-afaa-a3889253a938)(label(\"(\"\")\"))(mold((out \ + 162e2661-8105-4e12-ac58-66021e5d958f)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - d26b4c0c-a3f0-46dd-96ca-790b4589772a)(label(Int))(mold((out \ + 4c332712-ca44-4cb4-afd4-cdfe5a432b50)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 156f371f-f261-412b-a0be-cd01f8a543fb)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 88a30c1e-2bd2-4106-b502-ab0183a76da1)(shape \ - Convex)))(Secondary((id \ - 655329c9-8f7d-4667-b71e-dd487c4298ad)(content(Whitespace\" \ - \"))))(Secondary((id \ - ab32ae5e-ca30-489f-be79-3265e7e1ed7c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 431d79db-199d-4e48-8ff3-b61ac052050d)(content(Whitespace\" \ + 9409dddc-4c29-4a44-b6b4-cb1110246ac9)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 01fd3e4c-700c-4c66-a5f1-1337c1d20bbd)(content(Whitespace\" \ \"))))(Tile((id \ - 6ac15623-b03a-4c10-990b-f31481532ee8)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 39d7039f-2ea3-471d-be75-b46eac839be6)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + e897e0ab-e739-4196-aaef-f309c2e6c87b)(content(Whitespace\" \ + \"))))(Tile((id \ + 6fef2665-08d4-4fd9-b7af-45b02a4ff70c)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b3f6b8e8-5b1e-4f84-8891-d5591f5696a4)(content(Whitespace\" \ + 498f37b3-1be3-4414-95ec-bbf672821622)(content(Whitespace\" \ \"))))(Tile((id \ - 107bc734-b12c-4d40-91a3-132fcc830136)(label(Int))(mold((out \ + c0d7bf93-2f43-4d7e-86c2-d56c4ee5f564)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 5a9b1828-9af8-4675-a9b9-c056ba86fae3)(content(Whitespace\" \ + 6688af32-79f1-4cb8-8fd0-1371748bd8f9)(content(Whitespace\" \ \")))))((Secondary((id \ - 1a0fd972-a9c4-419f-964a-8a2b633f33dd)(content(Whitespace\" \ + aa64dd83-1c8e-43e9-af02-9f2f25ca7d6e)(content(Whitespace\" \ \"))))(Tile((id \ - bd8afcd8-74a2-4004-8b4a-7026fef058ed)(label(fun \ + 4911837e-2404-4ec5-8bc1-e50654fa5fe6)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c63a1bee-7e32-4ecb-afd0-a724aef0b98c)(content(Whitespace\" \ + 70805a22-abdd-42ed-9268-322855c90800)(content(Whitespace\" \ \"))))(Tile((id \ - 850fb734-647f-4343-8fbe-52636f374c6e)(label(a))(mold((out \ + 35d7bb29-7017-4bca-a2db-253df116efc9)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c04c80f3-4064-4c68-acc1-ca5c299bbd77)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 345536af-891d-4b2f-809a-4839e3eded8c)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - dd4462f2-7949-4878-a142-a2283001ad6c)(content(Whitespace\" \ + a988b54c-62be-4beb-ab1f-7fde46772d46)(content(Whitespace\" \ \"))))(Tile((id \ - 2cb05f48-5922-48e6-9256-e013f5793cf1)(label(b))(mold((out \ + 8ac8c748-7fd3-4a02-805e-5d5323bc696c)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 339ee181-b96d-46bb-8a43-f3ff8229c30d)(content(Whitespace\" \ + ce28116e-9e2d-43e9-a793-a53572192803)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2061e785-5a18-4a0c-a4de-c1492b30e278)(content(Whitespace\" \ + 8a9e96dc-f7bc-42ff-ba47-01c977440fa2)(content(Whitespace\" \ \"))))(Tile((id \ - c811f868-2b43-468b-94c7-bf3bf1456409)(label(a))(mold((out \ + 2fec9ac7-9339-4f96-84b4-34a9c6f73bfa)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1a797da7-7c1d-441f-a6e9-5e4d028213d1)(content(Whitespace\" \ + c0ec2546-64ca-4bc3-b812-05af6069baa9)(content(Whitespace\" \ \"))))(Tile((id \ - b099d96b-e2de-41e8-bf2d-58c1d7f0f0e4)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 6ff7b3fe-68e5-460c-a9d0-eef19693b947)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 584a877b-b2ac-4742-a979-3005537901fb)(content(Whitespace\" \ + a5b14a37-466e-46c0-b847-f10f9bc1c7e9)(content(Whitespace\" \ \"))))(Tile((id \ - c6077bfc-7116-4a05-ace0-ad4834261381)(label(1))(mold((out \ + c46c568d-4f00-477b-923f-82d0ede12890)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f9963f7f-6ae9-4027-9ede-0b3e538aecbf)(content(Whitespace\" \ + b6188cdf-5f8b-4945-a226-a898fd454383)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3f2145ac-3415-4d74-9576-5563fe64e77e)(content(Whitespace\" \ + 43740e87-1f7d-4182-a068-8485e851c77e)(content(Whitespace\" \ \"))))(Tile((id \ - 59a6b6f1-80d8-45e4-9b6d-67fb47835905)(label(f))(mold((out \ + 569b185c-c138-4865-858c-a1842790e6d2)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b2efdfc0-231d-41cd-8358-d88497d7c6ce)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ed5b1350-b5d6-4104-a2ed-92003976b091)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ac6c8e5d-e4f5-4d7d-b0cb-199a2d89e8c3)(label(1))(mold((out \ + 30d5a125-e373-46fc-a3a5-841fb583bf72)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 47d49893-385d-47eb-8f79-932412df8120)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 9adab38f-695e-43fe-b1b0-2123d6ae4baa)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 1dffae48-7e03-4120-8147-e8e1c71f051d)(content(Whitespace\" \ + eb450173-68bd-4d31-b717-48cb6cea8ed8)(content(Whitespace\" \ \"))))(Tile((id \ - 4407083a-71c2-4a70-be60-1415bf0a1c57)(label(2))(mold((out \ + 36e861e9-c3be-462e-a88b-12970221948d)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - f8cafdb9-5115-454f-8301-cadc935954e6)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 5471073b-c26c-4631-85c6-e5ace2e10f5f)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 186a5f65-820e-4718-9aaf-89d16d38edb1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9bc20274-fb1c-4393-ac92-808ff1b94a79)(label(let = \ + ebc4fcb0-e14c-4cdc-bbd6-72c4124013e5)(content(Whitespace\"\\n\"))))(Tile((id \ + a9d79ee8-1272-4310-adbc-d930a3cd5312)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 13991968-82b9-4964-90e5-0359a90e47fd)(content(Whitespace\" \ + d71737cd-b6d0-43a6-b418-1a7676108e28)(content(Whitespace\" \ \"))))(Tile((id \ - 5b8c99b5-3e5a-4934-944a-ffd97749442f)(label(f))(mold((out \ + 77042751-cbcd-47a4-8962-2ecf6f843eb3)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 80a93c7e-384b-4dd1-b4bb-d9a3911a3ae5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 1e3d6e4c-028f-422c-bbd7-46be30ac4297)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1d9f52b1-a850-490f-a292-b47fb7a96138)(content(Whitespace\" \ + dc5f6381-8b71-4359-8379-da4f9686e73e)(content(Whitespace\" \ \"))))(Tile((id \ - 0816d375-1b2a-460a-a84c-4c5aefa58e81)(label(\"(\"\")\"))(mold((out \ + 67192a2d-7b66-47a5-9a19-173ffa270e84)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - e5f9862a-51f0-4e5d-8ae3-dfb0d14e36ac)(label(Int))(mold((out \ + 7bbe238e-30c4-4032-b5cc-b751f99fe3a0)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - b758d84b-d213-4a78-9b35-18bf57006721)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 7f9a1bde-138c-48a0-a74d-66c75ed7ab5d)(shape \ - Convex)))(Secondary((id \ - f872865f-46a1-4c40-880e-77586055f9ab)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8b11e4a1-23b7-4cdc-8cfd-403715695b01)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 8eec57c4-abb0-4311-b0cf-e092c09d06e4)(content(Whitespace\" \ + 817ba7d5-6946-4522-84d8-3a143da3e087)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + e8f2b9fb-8129-4644-943e-7da00eae86f5)(content(Whitespace\" \ \"))))(Tile((id \ - 2b6083c1-baec-4672-8a01-f6c99b160e64)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 5c334cb8-937b-4791-91eb-90b2a452ac3c)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 6300e6bb-c002-4c64-939c-32f1d635db62)(content(Whitespace\" \ + \"))))(Tile((id \ + 3e209554-611c-4b99-adce-f78c142f9678)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 036ccb48-b246-4a19-9742-35c7ad061176)(content(Whitespace\" \ + 10677ba9-8355-4637-849f-55b0ac355ecb)(content(Whitespace\" \ \"))))(Tile((id \ - 76481d4c-d3b4-40be-8cea-2cadfe14df89)(label(Int))(mold((out \ + f029b7c4-8a6e-407c-bcef-bc60f13ccc6b)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e5c48255-c736-4d2d-891e-fef414217d00)(content(Whitespace\" \ + 4d671960-3dc7-469e-bc94-d9f85304234b)(content(Whitespace\" \ \")))))((Secondary((id \ - fe4cc3df-ecf8-406c-b9be-0a377d0d7813)(content(Whitespace\" \ + 20668536-b9fe-4f52-bcf5-cc921d9c59e1)(content(Whitespace\" \ \"))))(Tile((id \ - 8502085a-73f8-4d1e-8e33-1dc2223a63fd)(label(fun \ + f8b49d68-5a39-4a73-8b96-2df7cff483e3)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 1dc44d66-5a48-4ec9-924f-411b68da14c0)(content(Whitespace\" \ + c290be37-98df-4e95-8d94-c05467574a74)(content(Whitespace\" \ \"))))(Tile((id \ - e3962dae-fd33-47b5-bdf0-82c72409aa11)(label(a))(mold((out \ + e659ae87-013b-4ba8-a9e7-e1c3ab485a14)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5dd93d5d-b656-45b5-ad37-d49fe0ea23ec)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - a10f02bb-a200-4a01-89a1-39e27bb8162b)(content(Whitespace\" \ - \"))))(Grout((id 281e77a2-ba43-482c-a93e-cfe10259989d)(shape \ - Convex)))(Tile((id \ - 23de4bdc-0af1-497e-83e0-cc5bca1b3855)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 0285464f-4c43-46c5-bc12-1dbfb0bfac63)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 399b04af-4a93-4d90-9a23-6e064ffaedf1)(content(Whitespace\" \ + \"))))(Tile((id \ + d8f0975b-c738-4835-b3db-04cf1bf48628)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 73330c4a-f166-4af0-9195-ab12a83b9ed5)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - e64bc015-5917-4465-904f-8af5124b9bcd)(content(Whitespace\" \ + 59c1a946-0b79-4f7b-a95a-2efb120dffb2)(content(Whitespace\" \ \"))))(Tile((id \ - 95ce2ef8-d860-4f18-85d3-9822fc8d459a)(label(b))(mold((out \ + 38f13aca-751c-4a31-8092-30fa65d6c0f0)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 21cd3096-d858-4ec9-9007-2b1ace927c03)(content(Whitespace\" \ + 48e1fca6-4927-46e0-89a4-669ead2fd537)(content(Whitespace\" \ \"))))(Secondary((id \ - 005f8b6e-a906-429e-beb9-439d29d3a76f)(content(Whitespace\" \ + 9d1580b9-18f8-4e36-9b0c-fb724d1fa47c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7cb7b539-3bb6-4782-a60e-b06fe71c43ac)(content(Whitespace\" \ + 9f7637bb-a589-4886-bc2c-84f24bf33351)(content(Whitespace\" \ \"))))(Tile((id \ - 5be6ea6d-0754-467b-9327-5f1578911f06)(label(a))(mold((out \ + 147bf938-d556-4338-a313-106354271255)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8698ee48-48d4-4696-994e-17077bb11986)(content(Whitespace\" \ + a250792f-ee12-4f94-a184-83a6eb901af8)(content(Whitespace\" \ \"))))(Tile((id \ - c360a076-4dd9-45c7-9db2-2b3c60c0303e)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + c6055ca2-f8af-4fa2-9e88-f5878407aa9a)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6e979b62-9763-4e7d-bdae-d0ffb58c60d8)(content(Whitespace\" \ + c518ac9f-8aba-4323-a85a-bef0d466925a)(content(Whitespace\" \ \"))))(Tile((id \ - afa9df4b-9fa9-44bc-8ba3-f77e81e75310)(label(1))(mold((out \ + 378163bf-adfe-40c7-be7c-c5fce772e493)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 79d79ed8-f8cf-4f3a-9a1b-475b14198afa)(content(Whitespace\" \ + c884f25d-30f2-4f04-84b8-ebbdc9513817)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 27f19fbb-97a5-4ed4-8afc-6de00791df62)(content(Whitespace\" \ + 4801cb5a-5927-4d99-864f-ac0d0584c154)(content(Whitespace\" \ \"))))(Tile((id \ - 3c514af7-2182-4b0a-a4ea-19e14d9fae32)(label(f))(mold((out \ + 99fdfc3b-c239-4508-aebb-b8c29052bdb2)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 88dcb230-1f6b-423b-a117-d05d9d446f3f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + baef7d1c-b5ee-45be-9c01-6a8c172cefb5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 690e9897-85c7-4922-991e-0f942c89dc0b)(label(1))(mold((out \ + 26d8cca4-6998-43db-a690-b2e0cc824680)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 70533e9b-4c3e-4ce6-a86e-384267c022b3)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 1e941029-dadd-454c-873b-a2ae7a5f9bdc)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8730d036-9d20-45ec-b09c-daaaec74ce03)(content(Whitespace\" \ + 28414614-8cdd-4dc6-9d41-f518070feeca)(content(Whitespace\" \ \"))))(Tile((id \ - 9f0be8c9-658a-421f-baa1-8a502712cd2c)(label(2))(mold((out \ + c86388a4-c2c4-4680-be35-d62a573b9e19)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 5719931b-6b7d-4eb4-b867-e9eabb4db935)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 637c43d2-1fea-48ed-88b8-ee598e1bfd2a)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 4bdc2209-c2eb-4db7-aa63-043d96e5686e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a872ee48-4669-43c4-bec3-1186db91148b)(label(let = \ + f5d78c30-4c90-4561-9e6c-538ec0121217)(content(Whitespace\"\\n\"))))(Tile((id \ + f1c6a454-343d-4eb1-a928-8d96eff67dc3)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 17434130-d1d1-413e-afa1-6998cc68025d)(content(Whitespace\" \ + e9396021-2f8c-4a10-ab80-a708ea89c266)(content(Whitespace\" \ \"))))(Tile((id \ - 1bec817d-8b8a-478a-af31-abd16028b864)(label(f))(mold((out \ + 4a0ecaf2-f05a-4ff4-8a61-08b3cd066050)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c25eea0b-ab19-4c02-8578-87a0d9ab7f31)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 9b66c49a-b90a-4308-9afa-c509538a4439)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8e40e986-1715-4e9f-8fa2-8473bf0d1468)(content(Whitespace\" \ + 965ba50a-8122-4719-8826-5f71e7f9fb88)(content(Whitespace\" \ \"))))(Tile((id \ - d634c2c3-b754-4067-b7e2-0f8207ced53c)(label(\"(\"\")\"))(mold((out \ + 9a6597f7-ff96-416e-9518-505eb5591474)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - b04350a6-808a-49f8-9e1c-fdc388772171)(label(Int))(mold((out \ + 629c3337-c818-4637-91fc-d49038ab4153)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - fda74513-a1b9-432a-82b8-e3544b49cb04)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 6fe3a505-3d3a-4db2-a2a0-d6c3be91ca71)(shape \ - Convex)))(Secondary((id \ - 4b53b9aa-7664-41ae-a400-e0dd16b62509)(content(Whitespace\" \ - \"))))(Secondary((id \ - 92b30817-375a-433b-915a-1c006150cf4c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9de55cbb-b6bd-4c57-ae4b-fdad96a970cf)(content(Whitespace\" \ + 93b277e8-a338-4b0c-bb42-d8311ac8dbfb)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + faecc857-6573-402e-ba8f-84b59ba2b292)(content(Whitespace\" \ \"))))(Tile((id \ - afda7489-fbc7-4d45-9a54-ff7dc065dcf0)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + ed411ef4-9705-4e3f-a138-e14c8f3d52bb)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 6d921357-b093-4504-b2d5-2f4bc42d12a5)(content(Whitespace\" \ + \"))))(Tile((id \ + 131e03f2-d8ba-446b-9416-9721b12e8ad1)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - da2edaf2-06f9-49b0-9c52-0692d36feb1e)(content(Whitespace\" \ + c18f456d-bfd6-4ca8-aec1-0420159dc26c)(content(Whitespace\" \ \"))))(Tile((id \ - fe5903b2-837a-4bcd-9ef5-1c2428f8a2f1)(label(Int))(mold((out \ + f2a74f31-8bd2-4572-b821-2cdae72eade4)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d0cfffab-e8d2-47c3-a805-8674d049622b)(content(Whitespace\" \ + 3e369f63-3994-4fe6-b356-2dbb4f4cc881)(content(Whitespace\" \ \")))))((Secondary((id \ - dc042fb4-d72a-4240-828f-dd621adbc20b)(content(Whitespace\" \ + 689dee09-afca-44d5-a527-771e64675d87)(content(Whitespace\" \ \"))))(Tile((id \ - fa4a9b14-7e47-493b-b496-b6e38e830ad8)(label(fun \ + 52033ae3-5ae5-4f2a-bf8f-e6a5ea53f6fb)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - cd361305-ba60-4635-9bfc-33eb27e07c44)(content(Whitespace\" \ + fe8cd260-7335-4f25-a872-bcac0a6f6d53)(content(Whitespace\" \ \"))))(Tile((id \ - b14bc419-8dce-4fcf-b8bb-82dd99c04dd2)(label(a))(mold((out \ + 8cf1949f-c811-4003-9e5d-77f94e4d8744)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8a72a69a-b947-4054-8244-0388911347f5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 329e7886-88f2-493d-b858-293e12cdc21f)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d44000e9-2c1d-4260-af86-dbef475879a8)(content(Whitespace\" \ + e68c833f-a788-4ed3-8656-ddd9013ed451)(content(Whitespace\" \ \"))))(Tile((id \ - 6b3a34ab-f687-410d-b155-b117acda0886)(label(Int))(mold((out \ + c20ea726-acad-45ac-a13a-3c9aa82937e9)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 07f3c1ff-5677-4ba5-bbb2-a9eea1932cd8)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 3142844e-d8b4-4d68-8899-fa1047f0e9d3)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 2b485099-40a8-4b37-991c-c13947cfdcf4)(content(Whitespace\" \ + fa296f80-daf0-44e4-8eaa-3ebab1655fae)(content(Whitespace\" \ \"))))(Tile((id \ - cb881fc9-3ea5-4207-aa2b-e23e634e7bc1)(label(b))(mold((out \ + 2f81ff0c-b8db-4ab1-8c1b-fc4d56647e1c)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a415c809-2799-4852-bffa-0cf66d2afaa0)(content(Whitespace\" \ + 121d598a-d31d-475f-8c82-280c804713f1)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 45e22326-9dac-4eb5-8835-9da95894cb0b)(content(Whitespace\" \ + e44b06ba-0433-478f-bcf3-3c4d04adec0a)(content(Whitespace\" \ \"))))(Tile((id \ - 4b9ba7f3-6159-4020-960c-6c725c45c9c6)(label(a))(mold((out \ + 6fd34eac-3ffd-41a9-a461-b6baf8e6b320)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ce206ee6-866e-4bc8-96d6-ad8a58194a73)(content(Whitespace\" \ + c1a99c86-e6f1-4015-a4ad-29f932730b45)(content(Whitespace\" \ \"))))(Tile((id \ - 1112cc54-8977-49a9-896c-f45d78bc0c01)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 7531d75d-4ac5-49c2-942a-b0773f2c18fa)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 53909189-4422-49c1-863d-60707bf196ae)(content(Whitespace\" \ + 378d495c-14b4-4f3b-99b0-83b299b42953)(content(Whitespace\" \ \"))))(Tile((id \ - f76561a1-0b5a-4482-8716-e7bb3a4745ea)(label(1))(mold((out \ + 4f2605f9-27cc-467c-b8de-6b8c5369795e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fbe2251e-9b29-4a4f-8f50-eef65cd19f3c)(content(Whitespace\" \ + 798d8937-fa75-4cd3-b007-06044754abd3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4386e434-302f-4fcd-8350-8b97d76d32b0)(content(Whitespace\" \ + 9c22105f-9b9a-41c2-a7da-31b368ca5268)(content(Whitespace\" \ \"))))(Tile((id \ - d0b49131-03e8-4b32-a97f-d8903d8b8248)(label(f))(mold((out \ + c38a5375-a26a-4cf5-95af-506747effafc)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 0348cc19-de1e-4a2b-ac72-fde8ea77dcf7)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e5af6a96-3548-42d5-bd1e-3af6cf30a9ea)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 0d196b4e-3689-4ee2-a64b-0115793d6302)(label(1))(mold((out \ + 6339f357-ce20-468b-87d7-61ffa266cdd9)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a428c920-3772-4cd4-a9c2-9bfeb9e2954a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + f9a79446-2016-4a9c-aaab-d70887a1c6fe)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 43ffb69a-14e6-40ed-9038-8fd652c5e9f3)(content(Whitespace\" \ + 49fd670b-4f55-44fe-ab34-f407521a63f7)(content(Whitespace\" \ \"))))(Tile((id \ - 6a1223e4-df11-4025-9411-567efebb5f3a)(label(2))(mold((out \ + c4a85424-0297-4aee-858e-9a30c5f98f30)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - d44c175b-4647-4a1d-92b2-95084289ba26)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 87c698cf-8aba-44ba-bb79-a223a452b823)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3896cd69-a0f5-4781-ae0f-7b90b3924dee)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0c77a664-2b94-4237-83c2-e3eea15490e0)(label(let = \ + 241640f0-109f-4e09-b4cc-efc7c097a369)(content(Whitespace\"\\n\"))))(Tile((id \ + fa7004cc-6f59-4317-8084-9b2583a1838e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7c706dfb-7bc0-4154-a062-491cdd811036)(content(Whitespace\" \ + 35d4e102-4c3b-4056-be2b-2fb9392e33b3)(content(Whitespace\" \ \"))))(Tile((id \ - f63ce723-9ddd-41ef-986b-97f097c7bd89)(label(f))(mold((out \ + 7b885957-fa00-45d3-ba15-622c32b6142d)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 74336659-23c4-483a-9d57-8661f8289701)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 9920c06e-bfa1-4f2b-9e81-db63e2a89764)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6b4a8b16-3250-4f2a-a66f-2c63da6f26ed)(content(Whitespace\" \ + 850d0e94-3118-4f4a-8e9f-fc6d16f20d59)(content(Whitespace\" \ \"))))(Tile((id \ - 5c0e2f73-2e73-48d1-8b68-6c7b20076c9c)(label(\"(\"\")\"))(mold((out \ + e73df443-f777-493e-a8e4-8c25d4cb96c1)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f9dacf8a-5014-47ce-ad50-8c8deddfc5e4)(label(Int))(mold((out \ + d9673b28-8854-43f9-bcb2-d1ebfee5d845)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 9bed43c0-a447-4aa8-b21f-50da595d633b)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 613b9ada-fe18-4369-b5d9-70d3f1e53514)(shape \ - Convex)))(Secondary((id \ - c1b1ee36-9ce6-47da-95df-3bd2fabb54c7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3f8dd0d4-b5c3-4a00-be38-632c75924975)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 210586ad-11cb-4fdc-8598-b61597743070)(content(Whitespace\" \ + 35e9c745-e4a9-4450-9ca9-81830b721e61)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + f7c92250-a128-4f09-ad57-e72d878ef5ac)(content(Whitespace\" \ \"))))(Tile((id \ - 2411959f-40b1-45a2-9a26-78b2966fe759)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + c7a7ed1d-a4cf-4787-bdf1-43aeb80f0709)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 733bf0c2-6254-4827-b718-4ba5a5db9ba4)(content(Whitespace\" \ + \"))))(Tile((id \ + 07bd9b7e-200a-411e-ad5d-9e9d526147bf)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8468a458-1d6e-4688-b961-30b672c7b784)(content(Whitespace\" \ + 36f66486-5dfb-4b38-830f-02c75a905c49)(content(Whitespace\" \ \"))))(Tile((id \ - 9636cf6a-c36b-4a1a-ae3a-088c1fa1a615)(label(Int))(mold((out \ + b7a86965-9327-4b77-91e4-648c84c7604d)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - af7b6ff1-4b4e-4353-a76a-34423b12789c)(content(Whitespace\" \ + 9494308a-26bf-41ff-8bac-672fd9ea208f)(content(Whitespace\" \ \")))))((Secondary((id \ - df973686-43a2-49e2-afee-a50d321ec924)(content(Whitespace\" \ + 90f1a775-b049-4401-a27d-381142a796bb)(content(Whitespace\" \ \"))))(Tile((id \ - 7b0dc971-354a-4109-8088-cbcb76976b4a)(label(fun \ + 070297db-ec76-4b31-8d06-82a36b79e375)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 2a59225e-0206-442c-8cb7-d473bdefa5f4)(content(Whitespace\" \ + d64d0383-49e4-4bee-8e88-402364ac2bf2)(content(Whitespace\" \ \"))))(Tile((id \ - f035d365-b3db-4c44-b821-75267fa9e43a)(label(\"(\"\")\"))(mold((out \ + 0980686f-33ad-4301-9340-0cce1fe86647)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 3e446bad-6497-4089-a3df-cd18e6bf487e)(label(a))(mold((out \ + 92d2eafc-6979-4c72-9bb6-32abe12df48b)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - d31d780d-e1f7-484a-a4df-948428a8be88)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + a9e019ac-9602-4109-9423-38f211362ad7)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - c9906747-28ce-448c-b32c-460c1fbfcba0)(content(Whitespace\" \ + 8d809fbe-794e-45a7-8b5f-6ad1b4ed0327)(content(Whitespace\" \ \"))))(Tile((id \ - f26eca5e-f6f6-488d-bb10-84359f8cfff6)(label(b))(mold((out \ + 0bb9c4b3-63e8-4ce1-bd10-870990cb858e)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - f6304be2-2391-41f4-b07c-8577d6723ea6)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 238cbd62-29bf-4ae7-9c87-e8a163811b3f)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - a97d9656-ba87-48a5-9236-16057c6c8db9)(content(Whitespace\" \ + 835b7059-495d-4581-b226-930f0aa2d0c6)(content(Whitespace\" \ \"))))(Tile((id \ - 668b47f7-32b3-41da-aee9-67e935ad47ce)(label(\"(\"\")\"))(mold((out \ + 3041ff42-d3c7-4ec1-ae59-8eb66fb8ed53)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 4a6eb5c5-2492-4036-ab60-2ec5236e63c9)(label(Int))(mold((out \ + c8de1d8b-098a-40cf-aede-66cbe492a023)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - d59e589c-fe70-49e1-a8d7-616b473740c0)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 4ad3a1e2-6569-4caa-afe4-da4da9fe3d1a)(shape \ - Convex)))(Secondary((id \ - d796506c-840e-408b-a08d-0ad475707e48)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8b2e5ede-ec8b-4884-a35c-bfc00af45040)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 95f218f6-5291-4bb1-939a-d2c9c8dce1c0)(content(Whitespace\" \ + 015aeb7e-d5d3-46a3-938c-d10d8e0d2218)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + a093ceeb-07d2-406c-ae44-0fdcf3472e69)(content(Whitespace\" \ + \"))))(Tile((id \ + efbccf6d-0d8b-478a-a595-1413475959f2)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 1c6a2c54-98e3-423f-b2fa-04a0f31c176d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 25d47725-d6db-4a27-adf3-41610dd615b4)(content(Whitespace\" \ + b7e696ee-0072-4504-b813-66ad684ceebd)(content(Whitespace\" \ \"))))(Tile((id \ - e450962c-c9cd-4836-af1d-53fa57875af1)(label(a))(mold((out \ + 9b333115-4981-4abd-a710-06069dc2e201)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fd4721fa-fa6f-4ed2-bb0f-54c0a151fec6)(content(Whitespace\" \ + abb84c80-a7f2-419c-9980-06faaf582b40)(content(Whitespace\" \ \"))))(Tile((id \ - ff6dbec8-5267-488a-b3b5-80ab0d700c44)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + d952b11c-7972-495d-94a7-1342bc85026f)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e5be275a-a1bc-4ade-b700-b97349739cb9)(content(Whitespace\" \ + 8fa0aaf4-5345-4d61-8550-733584d4ef57)(content(Whitespace\" \ \"))))(Tile((id \ - 033a3db3-6138-4464-a9b4-c4869961146c)(label(1))(mold((out \ + 02e09527-8c71-4095-ab6c-6efbcc08be6c)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 94eda17a-ad4c-4393-ae10-8302b53e2d7c)(content(Whitespace\" \ + dcd645d2-396d-4e4f-8c82-353c6e98ec75)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c7067830-b673-4dd0-8655-5f4d97c2aabc)(content(Whitespace\" \ + a52ab881-25b0-4df9-a9b0-fe74890885c0)(content(Whitespace\" \ \"))))(Tile((id \ - 4f724995-67b6-4b4b-bb5f-fcf1893a916d)(label(f))(mold((out \ + 2287944d-f0dd-4ad6-8200-955c20976f79)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 67493c89-eb02-46da-a207-711ea889fdd5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 81022dd8-a05f-4888-a694-153bd0efec62)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6e16ad8d-fbee-4c7b-8fe3-80c0dc66454e)(label(1))(mold((out \ + a2e45f4a-0b70-4af4-8d48-5d25c67aa4c8)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 52bb5578-b1f3-4d68-a8b0-9dab84317f20)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 0e94a859-d72e-431a-b202-89dd534e9fba)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fd6ae394-4a3b-412c-bc4e-281e3aaeb2f5)(content(Whitespace\" \ + b998420a-5352-4820-a0a8-739ed79e6e48)(content(Whitespace\" \ \"))))(Tile((id \ - 894d7f45-79e1-4d32-a6bf-b51d97b102b8)(label(2))(mold((out \ + 8e0c0849-c714-4413-b6b3-27bdcb546b31)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 25bf6d42-5a8f-4449-a3bc-ad9bbfbde8f3)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 84842094-9cfd-44b0-a616-59a635d135a7)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 65967ee6-68c2-4430-bc4f-4fe243a7f89c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bf5cdf3f-9ed1-4e43-bd7a-833e2c043ab4)(label(let = \ + c08a517c-7d31-491a-8ca0-bdb311cdd1fd)(content(Whitespace\"\\n\"))))(Tile((id \ + 973aca77-7a2e-447f-9b8b-79d46c90d289)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b6207fe7-e2ff-440f-b49d-f772f54a8a4d)(content(Whitespace\" \ + e058a9fd-33ed-426d-9a16-9d28aecdb6fd)(content(Whitespace\" \ \"))))(Tile((id \ - c5fd7629-2245-4de3-ad4a-e43577f378d4)(label(f))(mold((out \ + b56a3be6-f44d-477f-8bc1-9035556d7e7e)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8b77b9a3-da5a-49d3-89d9-2389716d38a9)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 64a0ad2a-f57a-4021-873d-65799d736b60)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - da6cf85e-784b-4688-b4bb-a5de6895cb9e)(content(Whitespace\" \ - \"))))(Secondary((id \ - c9436d2f-9525-4014-81e0-13627c84fed3)(content(Whitespace\" \ - \"))))(Grout((id f72daea4-0e1c-46d4-a577-11dc663c4c3c)(shape \ - Convex)))(Tile((id \ - 3f04215c-9c0b-418a-9fed-5a345edc51ae)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 138862a5-5864-4e64-8d38-a7733be25a9e)(content(Whitespace\" \ + \"))))(Tile((id \ + c85f2fbd-f802-43df-a8cc-b16441205ddf)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + cccc5c68-3881-48ee-875f-36701f4416cc)(content(Whitespace\" \ + \"))))(Tile((id \ + 1c7771cf-00e8-40bd-87df-b14712ddb613)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4505142a-ee63-4255-b9a1-45967d536e7d)(content(Whitespace\" \ + 62318fea-bb9c-48db-895c-93fccb51a26a)(content(Whitespace\" \ \"))))(Tile((id \ - 850f1156-171d-450d-a697-2d7426fef890)(label(Int))(mold((out \ + f37a26dc-c159-475b-936a-6524364575b1)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4c43eaeb-6058-41ea-9175-5593ce489446)(content(Whitespace\" \ + c86d7fbf-5672-4471-8dc7-00417019c03c)(content(Whitespace\" \ \")))))((Secondary((id \ - 4ac2e2d2-5e2c-483a-8419-90979d2acb87)(content(Whitespace\" \ + 485e90e1-b228-4a73-b1f8-98596532febe)(content(Whitespace\" \ \"))))(Tile((id \ - 45721068-5191-41c0-97d7-0ecec60d398c)(label(fun \ + 2109b5ea-d867-4d42-95b3-e0219286c4b5)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a10f8fd9-bcf7-44d9-aeef-b09b800ef4e5)(content(Whitespace\" \ + f99b0538-9b95-42b5-96b4-15afb3485b66)(content(Whitespace\" \ \"))))(Tile((id \ - 72f6c14b-dbe3-4b2a-bc68-c3b77326634e)(label(a))(mold((out \ + bd3a7a7f-89c7-4c87-a0f4-b200c691d177)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 9a531af1-8ffc-43f1-b926-4dc9f2c11e75)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + cad85f10-72e6-418c-865c-270742dca8ee)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 1e8944ec-aed0-4ae0-9f09-dcadc92e3a1e)(content(Whitespace\" \ + cfb8dbac-bf36-46f2-890d-e9f9c6ffd884)(content(Whitespace\" \ \"))))(Tile((id \ - ef3da217-434a-4bd8-8fe9-d314eeebd0b2)(label(b))(mold((out \ + cef6028f-59f5-4e7d-b194-f7adec478ed8)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 8fd1e860-a469-4bbb-9ba0-a21f39f8a73a)(content(Whitespace\" \ + bd1d38d8-0d67-4f80-a35b-59588f1383a7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 34aea284-bd45-4f35-a7ca-dabfac1a7c40)(content(Whitespace\" \ + b5c8eab9-9902-4bd3-a066-8c6c229d14c1)(content(Whitespace\" \ \"))))(Tile((id \ - 9b3e623d-741c-4c2c-8792-9e1cb669ec9b)(label(a))(mold((out \ + c76cb56d-201a-4f93-bd11-5d35c69bc89d)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7ea12851-27c9-438a-a64e-60d23f7d2fdb)(content(Whitespace\" \ + 80810ecd-fde1-4b31-8708-ce638f46760c)(content(Whitespace\" \ \"))))(Tile((id \ - 68c7ad7c-cb45-4e5e-95fb-62e8b057459a)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + e9a90d2c-09c6-435e-a04a-41da2cfc2756)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 4b02ca6c-e206-4d48-ac79-e586dacf95c2)(content(Whitespace\" \ + 7692ebaf-e2b3-47c9-903d-909d8d496964)(content(Whitespace\" \ \"))))(Tile((id \ - 590fbd3a-dc13-4b98-8b16-cff8ede68c0c)(label(1))(mold((out \ + fd793831-f96a-4b94-aee9-e6723a91ad60)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 855f8c1d-1b60-4b7d-b241-00508971446a)(content(Whitespace\" \ + ea9c4db9-1dc3-49dc-835c-0069653696d2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6d3a220e-5996-4892-8c80-3a1a2f0db1f2)(content(Whitespace\" \ + 2c7872cd-b918-4c6d-8175-4089080e36cb)(content(Whitespace\" \ \"))))(Tile((id \ - 93989e5e-b66c-4af9-b823-b4c08c5f4fc5)(label(f))(mold((out \ + b314e3ce-371e-49f3-8c4b-0447af69010c)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 424566f7-fea8-497b-be94-cecbf4bad21f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + be253910-1720-429d-8ed9-f81db0449dd2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 870675ce-55e5-49ca-a65b-dddca83a5ae6)(label(1))(mold((out \ + 2fe89d4f-097a-44bf-8771-168063c819d6)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 1187b178-0c2a-43d5-a21d-e143d9341953)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 4062f46d-48c1-4138-a0e7-5732094e221c)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 0cb654fb-692c-45d3-ad49-91eb6b083f7f)(content(Whitespace\" \ + 10f5853b-e255-44c6-95c6-9180bc8f6904)(content(Whitespace\" \ \"))))(Tile((id \ - 40aacc49-f016-4522-8928-3acda44d7542)(label(2))(mold((out \ + ea4764e3-37cb-497d-ad34-c2470daf273a)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - a2a6aadf-7f5b-41f7-8171-6779ec582301)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 8996cc25-1f48-4ca3-94ce-6eaa7498aa5a)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a8d850ee-6980-4d7b-92f3-36da569100ce)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 61c23189-a6bd-423f-80d0-1835a313ccf1)(label(let = \ + 0a78844d-935d-498c-9a44-a68f43962170)(content(Whitespace\"\\n\"))))(Tile((id \ + 47790c08-a9e1-47d3-95ce-6030c0d06c09)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - db64bd98-a11e-4305-b7f3-b452b1888ba7)(content(Whitespace\" \ + 916f9b14-621e-48c9-9edf-4cab8499a8ea)(content(Whitespace\" \ \"))))(Tile((id \ - d67f7404-2ac5-4079-ae12-a9ed9fb85d31)(label(f))(mold((out \ + 45f53c2f-9d60-447a-bd89-d0225a86528d)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f69341bf-96a7-4961-9a5c-2d3f200f22fc)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 0557d6d0-211a-4761-9c80-f5f4cb88fa3d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 20e3841b-6918-428c-a2af-1bad8782d4bf)(content(Whitespace\" \ - \"))))(Secondary((id \ - b724bbf3-7f25-4669-ad55-bb9bbf4e8115)(content(Whitespace\" \ - \"))))(Grout((id cf84f16e-f166-4b51-b4e6-049b1ce1dec9)(shape \ - Convex)))(Tile((id \ - 0abbf0b4-2348-4efb-aacb-52012081dc37)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 06199b86-2bc6-46f3-95c7-dd38fa7f9044)(content(Whitespace\" \ + \"))))(Tile((id \ + a7ba4ee6-1a03-404a-9900-b08e2d86b8de)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 98d56171-c361-4f62-abcd-d7fd00394a67)(content(Whitespace\" \ + \"))))(Tile((id \ + fb920087-9166-4c09-8737-8c90bbbe6c9f)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d46fa747-5e85-489d-9d69-059a7f07f977)(content(Whitespace\" \ + 0f7c6467-0079-417b-818c-1fafb365ec21)(content(Whitespace\" \ \"))))(Tile((id \ - a0a02c22-c092-4ceb-b17a-450331c8d17f)(label(Int))(mold((out \ + 8377ab57-5d90-4acf-bd9d-6795d80c6299)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 639db5f8-2ee5-4660-b6d4-5852f63d6b99)(content(Whitespace\" \ + 3489484f-1413-496f-be53-4f7ccccaeec9)(content(Whitespace\" \ \")))))((Secondary((id \ - 6fa1692e-f4dc-47f6-904a-f6efc37a65b2)(content(Whitespace\" \ + 3880508f-a25e-42a2-9a6d-1e7c02a2261a)(content(Whitespace\" \ \"))))(Tile((id \ - cdf83aa5-2b6b-4e42-97ab-f6c922a3b3f6)(label(fun \ + f87f7e93-5c74-4015-9324-ea4c3fa1c193)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 3fe95f8a-f9d1-40c6-bb91-d31bea6aafcc)(content(Whitespace\" \ + d91f0622-9b52-4b1f-8c5e-cd32d8482079)(content(Whitespace\" \ \"))))(Tile((id \ - a1ebc17b-a578-4ebd-bda3-8fcdaa59d3eb)(label(a))(mold((out \ + 117385a4-0f99-4ceb-bd55-e80ccc7eba79)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 9d1ddd32-a36a-4514-970b-4d6651f8c4ba)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3acc077b-8e8a-4963-bf80-97d7a061bd9a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 51f2df2f-b75e-44fe-abdf-5f5e0179e334)(content(Whitespace\" \ - \"))))(Secondary((id \ - 67fb4d36-10b1-44d6-a3e7-21dd1060c696)(content(Whitespace\" \ - \"))))(Grout((id a7fb5a73-2ad4-45be-9217-a15421b94b51)(shape \ - Convex)))(Tile((id \ - 17a41687-b08f-4ff2-98af-2fea47f95f24)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 4a4ca8a2-7112-4fba-867a-c4a9ed22d911)(content(Whitespace\" \ + \"))))(Tile((id \ + 82cafc59-177f-42cd-8838-13edbfec33cb)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 37a5fd62-d26b-48c6-85b9-277d9b99787b)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - c406ea25-c689-4fc6-9a0b-a86d384636bf)(content(Whitespace\" \ + fb335f33-ec02-42ac-b9d2-125f3052f46a)(content(Whitespace\" \ \"))))(Tile((id \ - 16ca4023-75c3-4218-878c-8f629b0dedd4)(label(b))(mold((out \ + ed32223d-470f-4237-b2d9-39b0a016a0ac)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d926a732-ae87-4767-a100-e9858bd52605)(content(Whitespace\" \ + 0fd75c65-531e-4cc9-8f00-30107fab4d69)(content(Whitespace\" \ \"))))(Secondary((id \ - b640f897-88a9-4dce-b9e3-7473d6e85e22)(content(Whitespace\" \ + b53880b4-4e39-4e65-967c-aa45f62540e4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f0f645d4-8e99-42a1-ac9e-69bd4f9cd1b5)(content(Whitespace\" \ + 1622b77a-1b36-40dc-a463-d69ef002c5dc)(content(Whitespace\" \ \"))))(Tile((id \ - 35053850-23f5-4acd-bf45-2f1258d00b66)(label(a))(mold((out \ + 73290c21-6b8d-4840-943b-56de0499f532)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ce99772e-caa1-4d3f-ac59-6d4ad3a887dd)(content(Whitespace\" \ + 72470713-6edd-4809-8262-48506fdb6cc2)(content(Whitespace\" \ \"))))(Tile((id \ - 963ab1b4-4cfb-4718-bb45-9dabf362279b)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 35e74c6e-7dfd-472d-aadd-b0a25422f83d)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e58ebe60-aa42-4470-925b-062afaa8f755)(content(Whitespace\" \ + e9849eb2-92e1-45b5-983d-b4c4efc443c4)(content(Whitespace\" \ \"))))(Tile((id \ - f9dc59ff-5f53-4d2b-8633-516f300f2be5)(label(1))(mold((out \ + 72ee6f9e-5c3b-4635-8740-5ec010bef5c9)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d66d2f4c-5c43-4cbe-9fcc-b9839b8c81b3)(content(Whitespace\" \ + 42d11360-d68b-4e83-896c-fab41052dea1)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 357f7de3-fa55-47cf-a63e-546895193402)(content(Whitespace\" \ + 0540387f-c191-4f0c-b011-0e02a99ac216)(content(Whitespace\" \ \"))))(Tile((id \ - d85833ba-41c6-4a25-9b63-4b8b3a2fc33c)(label(f))(mold((out \ + 97db6dea-f3a8-4f3e-897f-45d739106e7a)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 09900b61-5baf-4d89-a9d0-a211fcdbaf30)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + d8fb6e78-61d3-408c-831a-155561751f4a)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 3a620d4b-f98c-4e09-90e2-edc51467b958)(label(1))(mold((out \ + 17b14124-2913-4406-9ee2-c4e49a51745d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 54ed2b3a-d7ed-46a5-b5e9-6062e3d706b4)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + ff8bf59f-351a-4bd0-b3ed-0bea707aed25)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fa59e47e-78df-4f99-9887-513007871ab6)(content(Whitespace\" \ + 99aeb614-c1d6-421f-bea5-38c265e0da1e)(content(Whitespace\" \ \"))))(Tile((id \ - 20aed684-0a33-4837-9c91-b6f388a392a4)(label(2))(mold((out \ + 60f943d1-a0d0-4835-b63a-163b57faea38)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - c3ec9096-55e5-4952-a2dc-c38d9a1934e3)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + b5e14b9b-d4f7-4c17-befb-ce5bd8c907cf)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 4a957aeb-2c1f-4f0a-8186-0e897c718626)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0068b781-4219-4451-8db5-cae8ea87da2d)(label(let = \ + 623f89b2-f4b9-4708-abd9-4858f4b6c685)(content(Whitespace\"\\n\"))))(Tile((id \ + 2a11ed63-c77a-41a5-98c6-9944b775106b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7748ffc0-75ef-428d-9b58-4580dd7c3b78)(content(Whitespace\" \ + 81c32cf6-5e3a-4eb6-b206-bdd0ca210a0c)(content(Whitespace\" \ \"))))(Tile((id \ - 5b1744c1-7cc5-4cab-95c6-c805bfb455bd)(label(f))(mold((out \ + 9580051a-1fc1-4512-aa4f-33afba464fac)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a9b7c3da-34fd-4c13-ba76-8d12eaf8b013)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + f3d33f33-6988-4dbe-8653-9609aee12615)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 668fe660-3748-42f2-8750-1d9233647860)(content(Whitespace\" \ - \"))))(Secondary((id \ - 792a7fe1-914a-41ec-8e3c-6946087ccb17)(content(Whitespace\" \ - \"))))(Grout((id 09163549-d4c0-4420-8fde-0ee1b95a3e00)(shape \ - Convex)))(Tile((id \ - f21a218e-97b1-4cb9-a0a5-e5f1548d6c1f)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 902e2355-2372-4218-be02-7a49ab8671dd)(content(Whitespace\" \ + \"))))(Tile((id \ + 3939a4ec-1d35-4fa8-bb31-b2a2b7e17313)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + c64c35d5-b8ed-4955-9f83-b5c301360a61)(content(Whitespace\" \ + \"))))(Tile((id \ + 78b3eee1-7d12-470b-9f9c-145e913c9167)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1b95ea63-2f0a-4cd3-80ae-4e148633c82c)(content(Whitespace\" \ + 4ceadb13-0558-406b-b5fb-7e50ee87fdf8)(content(Whitespace\" \ \"))))(Tile((id \ - c1b4fac6-c1d1-42b0-b94e-1f77eef60360)(label(Int))(mold((out \ + 02253eaf-3c18-41c4-aa2f-97ee47ea29bf)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 661f88ef-101a-4467-875d-74cc19f532ff)(content(Whitespace\" \ + c540e15c-3b2a-4146-861c-b415cef3701c)(content(Whitespace\" \ \")))))((Secondary((id \ - 0c5f4384-d374-490e-baf6-73c6fba62014)(content(Whitespace\" \ + c788a07a-9849-4102-b17c-f3d4a5e1e1e8)(content(Whitespace\" \ \"))))(Tile((id \ - b0a61c54-5ce1-4d07-b2aa-0c24d8d47304)(label(fun \ + 16105dd2-b42d-428c-bc82-66c19b810b91)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 03c97a1e-5e63-43ff-9f90-9fb5071cefc4)(content(Whitespace\" \ + f18ab206-6397-424f-bd01-8ec1de2af31f)(content(Whitespace\" \ \"))))(Tile((id \ - a269e135-5e34-40cd-bbaf-5d7ca7264d07)(label(a))(mold((out \ + c54bae36-a6be-45cb-a175-f11b640c14db)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 7085914d-118c-4596-8040-01e10f0c7a3b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + deee1609-2695-41ff-b342-01d2c118feb4)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 38face3d-4e38-4679-b334-0641b60b839c)(content(Whitespace\" \ + 31dc3c6b-40d4-4df3-99ae-e84ce7b7fb45)(content(Whitespace\" \ \"))))(Tile((id \ - 21029f89-c5b9-4076-aa4c-f2dcfcd21835)(label(Int))(mold((out \ + abfee07b-f80b-4cbb-8932-b8ab45fa79af)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 705b9a88-adf6-46d4-b9a8-5bbc2648d9aa)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 0f82c4fc-c292-4b5a-b3ce-2c96a41dae0b)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 75f847fe-c467-438e-b118-f885dfe12d11)(content(Whitespace\" \ + 2aa9f93a-2604-4b31-abff-6e1e73aa94ad)(content(Whitespace\" \ \"))))(Tile((id \ - 48befa9f-1d82-43a0-8a9f-b4a551b4f538)(label(b))(mold((out \ + d644270f-ef6e-49e4-84a3-e7cb8fbb4ca7)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - f8e72f0b-089c-4495-a457-0d036c53b27d)(content(Whitespace\" \ + 6eb9b226-f651-416f-883c-85365a10311e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b6019a27-ed9d-46e4-a071-aac0a9f7c1fa)(content(Whitespace\" \ + 809318ff-8155-415c-8990-23b5fad263c3)(content(Whitespace\" \ \"))))(Tile((id \ - ee76ee53-6f9c-4531-92ff-d337918caa29)(label(a))(mold((out \ + 222f3893-83f7-4142-b4f9-3e4db52a5692)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 776ef91f-ca17-4184-a363-23134f2301f2)(content(Whitespace\" \ + 4a86a391-f008-40a2-9245-aceaa2b75b6f)(content(Whitespace\" \ \"))))(Tile((id \ - 7f03b0d0-5251-4546-ae2d-c920f979d361)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 485796d0-1475-429b-be51-2c738aad651f)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a84bf77d-1b35-4af4-99e4-57dd207e2da7)(content(Whitespace\" \ + 2d4487e4-3410-4ab7-b761-b552f65db9ea)(content(Whitespace\" \ \"))))(Tile((id \ - 8d0a816c-0467-461b-addc-9f0d300a86bb)(label(1))(mold((out \ + b6a8ad38-c1fd-4d69-8832-67206f0d1f53)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7e60b9c4-2c25-4122-9031-34457a0806ff)(content(Whitespace\" \ + 23b3f6fb-10d5-4caa-a9a9-057575a66052)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ddbb24ed-5566-4c35-95b5-860a12dd5248)(content(Whitespace\" \ + 5158275a-4ab2-44b0-aa30-6c099c173abd)(content(Whitespace\" \ \"))))(Tile((id \ - 0cf8366e-ca71-475b-8399-e9d2a34c9a0f)(label(f))(mold((out \ + 1e924e79-7a16-4de9-9a3c-e4ff9ad48333)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a0c66c4d-d74c-4be8-b2e4-964ebf05472e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 299dab18-d0a3-441a-aae1-b30ea66fd395)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 44160bdc-9ad4-44a8-89c4-6f50038919a0)(label(1))(mold((out \ + 477383e7-bc41-438f-8955-434f3fc33fee)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b34e08c3-7662-496c-96df-e9111bd1f643)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + a5fd3ab0-498e-4f4c-8302-78dc766caebd)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 4853538d-a2c9-4fbd-ad15-1d72ee2b3cc4)(content(Whitespace\" \ + 8bebd1d5-97af-49b5-814e-d2ed6db0a6b7)(content(Whitespace\" \ \"))))(Tile((id \ - 56533393-9f93-4caa-80e8-59db930e67e1)(label(2))(mold((out \ + b57f8ebf-002d-4f04-9d78-700c8208d5d0)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - d2ca34fe-412e-47e4-b04a-41ad670be882)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + f8b67ad0-d8da-4614-b1e7-0dbcc7b19ae1)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 94500cf2-356a-48b2-ac6b-86ccaab5b10a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 36893a4d-0c01-4b09-a92c-59fc51e0fe57)(label(let = \ + 225913ec-3b8f-46d7-a43f-1ff784f26662)(content(Whitespace\"\\n\"))))(Tile((id \ + e14eec4b-d7f7-4085-902f-c5b99493873a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ebd1fe9e-621b-49d5-a3a1-fd8d35b79b76)(content(Whitespace\" \ + aa1cb2c3-44fe-489c-92ef-f22d198c90d6)(content(Whitespace\" \ \"))))(Tile((id \ - 46873372-79aa-46af-8ad8-a39a129c39e0)(label(f))(mold((out \ + cc232e4d-fb0e-40b8-a483-cd83dc15ebc9)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 54a7084b-48ee-4a0f-8ef8-147037d2a9c7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + f0b36e59-61ee-469c-83fa-ff5bd5c2985d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 40a726b4-63f5-477b-a0bd-e2b03a68185c)(content(Whitespace\" \ - \"))))(Secondary((id \ - e2bb9e20-2b1a-4334-960e-72614d04a5a4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 38119e9c-e593-47bd-88f3-c67c7f07eada)(content(Whitespace\" \ - \"))))(Grout((id 1039458f-6394-4c7f-b3fa-21bf51f0f87f)(shape \ - Convex)))(Tile((id \ - 6dc643c3-18a1-437f-88ae-150eb3ac249f)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + f765efa2-eab5-4665-9965-c4ed7f3b5400)(content(Whitespace\" \ + \"))))(Tile((id \ + 3241dc2e-cbe0-4905-b83d-63d45dacc896)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 0f4ce747-c45a-427d-8f29-29f50f4d0036)(content(Whitespace\" \ + \"))))(Tile((id \ + edb6f7cb-4f54-44ff-b297-9e4e6e80d8b5)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ec6c3bba-8579-42ad-b386-2c2ce60b5abf)(content(Whitespace\" \ + c4c4173d-2af1-415e-8f02-2415ed7e6892)(content(Whitespace\" \ \"))))(Tile((id \ - f95ad0a8-1d39-4985-9d77-a9a93b7efeb8)(label(Int))(mold((out \ + 6b18af98-5b9e-4e1f-be93-d02a3768a806)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 689ea5ce-5b0e-4a75-b13f-b09246c6a669)(content(Whitespace\" \ + 583ba5ee-ae97-4b56-b85c-214ec904727b)(content(Whitespace\" \ \")))))((Secondary((id \ - e920b192-de5e-4855-ace7-75ba3208fddc)(content(Whitespace\" \ + cea0ece3-97ef-4970-9332-49dbc49b80cc)(content(Whitespace\" \ \"))))(Tile((id \ - b6495520-5564-40e9-bbea-d38a193c72ac)(label(fun \ + 733ef178-7a6f-43e8-9397-e0583cfecf6d)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 0e052a09-7aba-466c-bfb4-81468b12f9fc)(content(Whitespace\" \ + 89915481-daa5-42f3-954f-948c1aff1549)(content(Whitespace\" \ \"))))(Tile((id \ - 2daa0ef8-d29d-48ae-a138-61fc401ad950)(label(\"(\"\")\"))(mold((out \ + a53dceac-6fe5-405e-a1d7-97343fbc9030)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - be490e19-a602-45dc-b654-6715e590f251)(label(a))(mold((out \ + 0b692918-371b-49dd-9f3d-6c93800c3f31)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 22e34140-165f-4fac-9ec4-d8e7ab2a3c6f)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + a1517b07-805c-43bf-88df-39d427604f7d)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - e768b6ff-d460-4807-8e1a-576f981d6fe0)(content(Whitespace\" \ + 6331eeb6-db80-4c09-9f8e-3d1fa91e34b6)(content(Whitespace\" \ \"))))(Tile((id \ - 76dde3d8-37bc-4d08-adad-a0c2bb6ca9b9)(label(b))(mold((out \ + ff25c371-f52b-4aca-adea-44556eaa65ea)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - 7e067617-dee0-4e7e-9bef-685a9c58dd46)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 30df784d-d6a7-4e72-b333-743de0028917)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 28a0ef59-40cb-436c-b2f4-ca6fcfcaa5db)(content(Whitespace\" \ + 783606ed-bd62-4b30-bae2-b3c9125c6582)(content(Whitespace\" \ \"))))(Tile((id \ - 8da29f2d-2d2b-46e2-94b6-aabbaf1d97ae)(label(\"(\"\")\"))(mold((out \ + 658854e3-0c3b-4297-b35c-f9f082a3b7fd)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f5353b7f-ffe4-4905-a0dc-1ccd0ae837d1)(label(Int))(mold((out \ + 41a1d469-33c7-427a-bf48-cf9dc5011380)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - f30a6544-8281-4ce8-84f0-74b01fee295e)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 36b63b80-40b3-4279-9a52-c4ebc96ef1b9)(shape \ - Convex)))(Secondary((id \ - 90dac9a3-cfd2-40e8-bc28-60071381900c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 763d28e2-674b-430d-b1c0-542d17ea7b09)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a8eed44c-5714-46bd-8ba6-e588a046a98e)(content(Whitespace\" \ + 37c77d32-4cca-4788-8b0b-9cff76192356)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 8b12e819-c936-468b-af2c-7b2e0eb84f8b)(content(Whitespace\" \ + \"))))(Tile((id \ + 90c22047-605e-4f41-9b93-d7cd0404ded9)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + d35fea4a-36de-4e10-9512-1873c1965654)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5a58bc3a-ca4b-4d00-81bd-45b88acc6ab8)(content(Whitespace\" \ + 8b51bb9e-3510-4ca9-afaf-579d5e4d05a6)(content(Whitespace\" \ \"))))(Tile((id \ - 92f7f67d-26e0-425d-8322-757c09aa842f)(label(a))(mold((out \ + fa6f5d9a-7e59-459b-b5cb-0fa241021151)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2d14adb7-a543-4fbe-8716-dde2b18f1cb5)(content(Whitespace\" \ + a658832d-570e-4d64-945b-2fe3a5f49666)(content(Whitespace\" \ \"))))(Tile((id \ - 0a8920a0-6a21-4b0d-af8b-b051f64a1706)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 652a04e7-897d-4ec3-b0f7-1b63e64e7b20)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 60571abd-7342-438a-bd31-f359378027cd)(content(Whitespace\" \ + e94b2239-27cc-468b-9214-a42d2a497929)(content(Whitespace\" \ \"))))(Tile((id \ - c8fda687-4976-4c47-a208-15ebb62dffdb)(label(1))(mold((out \ + 9a2efcf0-6410-465c-8871-909dba1b381c)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0b01d85b-d751-4392-824d-6b52b3b6aea1)(content(Whitespace\" \ + 30c12b6a-6d0f-419d-8fdd-c898449e2237)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7860cae2-6f31-4aa9-b131-39cec4057ea0)(content(Whitespace\" \ + 2836f94f-1d02-470e-85ad-b0fee4aa4c22)(content(Whitespace\" \ \"))))(Tile((id \ - 0ca76690-1cf4-41c4-8da5-d4360b4f861f)(label(f))(mold((out \ + f07dcef0-5700-4c69-afad-63e79497701e)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 1fe1d913-15ab-4a15-a3f3-81ea684b4397)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 452a38b7-3724-47ae-91d2-b397871e54c8)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ff2435e9-c2e0-4316-ac4c-5fe3d2fb687e)(label(1))(mold((out \ + 8a70ca24-26f2-4608-a159-1f11ed4901c0)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6d0b606c-d057-42b3-9d3d-33679988a5a0)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + f340d87c-adff-463e-9045-fcac56ce16fc)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 617a93e3-6dd3-46e4-9def-86803cd285d2)(content(Whitespace\" \ + d439aade-1f27-494b-9e00-1930511c5192)(content(Whitespace\" \ \"))))(Tile((id \ - b7f7bb7b-95dd-4cb0-9f3d-b119c4e00b2f)(label(2))(mold((out \ + 59050d8e-66da-4abd-8ed4-5e6febdb06a8)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - c9999f9e-81e5-457f-bcf4-6fe7400c3e28)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + f485a019-0a07-40d3-899a-9512d4def50c)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 726577bf-09ce-4f2e-beae-8218ea89f6ef)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 52fbcb6c-95d9-4124-85d3-f3ce3a042329)(content(Whitespace\" \ - \"))))(Secondary((id \ - 177b5c85-7c56-4a83-a5f7-51cdd52cbba7)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 12f1f2ad-fae3-4ca3-a8fe-fa6fe4b1b167)(content(Whitespace\" \ - \"))))(Grout((id 2b4b41a7-f15e-4558-a584-c0cdce779d18)(shape \ + 5633975f-c769-481e-9b92-68cb2685176c)(content(Whitespace\"\\n\"))))(Grout((id \ + ec5fef77-52f4-4093-a5fa-7e07d30a822b)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = "# Internal Regression Tests: Function literal casting #\n\ # None of the below should trigger runtime exceptions #\n\n\ - let g: -> = fun _ -> 9 in -g(1);\n\n\ + let g: ? -> ? = fun _ -> 9 in -g(1);\n\n\ let f = fun b -> b && true in f(true);\n\ - let f = fun b: -> b && true in f(true);\n\ + let f = fun b: ? -> b && true in f(true);\n\ let f = fun b: Bool -> b && true in f(true);\n\ - let f: = fun b -> b && true in f(true);\n\ - let f: = fun b: -> b && true in f(true);\n\ - let f: = fun b: Bool -> b && true in f(true);\n\ - let f: -> = fun b -> b && true in f(true);\n\ - let f: -> = fun b: -> b && true in f(true);\n\ - let f: -> = fun b: Bool -> b && true in f(true); #ERR#\n\ - let f: Bool -> = fun b -> b && true in f(true);\n\ - let f: Bool -> = fun b: -> b && true in f(true);\n\ - let f: Bool -> = fun b: Bool -> b && true in f(true);\n\ + let f: ? = fun b -> b && true in f(true);\n\ + let f: ? = fun b: ? -> b && true in f(true);\n\ + let f: ? = fun b: Bool -> b && true in f(true);\n\ + let f: ? -> ? = fun b -> b && true in f(true);\n\ + let f: ? -> ? = fun b: ? -> b && true in f(true);\n\ + let f: ? -> ? = fun b: Bool -> b && true in f(true);\n\ + let f: Bool -> ? = fun b -> b && true in f(true);\n\ + let f: Bool -> ? = fun b: ? -> b && true in f(true);\n\ + let f: Bool -> ? = fun b: Bool -> b && true in f(true);\n\ let f: Bool -> Bool = fun b -> b && true in f(true);\n\ - let f: Bool -> Bool = fun b: -> b && true in f(true);\n\ + let f: Bool -> Bool = fun b: ? -> b && true in f(true);\n\ let f: Bool -> Bool = fun b: Bool -> b && true in f(true);\n\ - let f: -> Bool = fun b -> b && true in f(true);\n\ - let f: -> Bool = fun b: -> b && true in f(true);\n\ - let f: -> Bool = fun b: Bool -> b && true in f(true); #ERR#\n\n\ + let f: ? -> Bool = fun b -> b && true in f(true);\n\ + let f: ? -> Bool = fun b: ? -> b && true in f(true);\n\ + let f: ? -> Bool = fun b: Bool -> b && true in f(true); #ERR#\n\n\ let f = fun b -> b && true in f(true) && true;\n\ - let f = fun b: -> b && true in f(true) && true;\n\ + let f = fun b: ? -> b && true in f(true) && true;\n\ let f = fun b: Bool -> b && true in f(true) && true;\n\ - let f: = fun b -> b && true in f(true) && true;\n\ - let f: = fun b: -> b && true in f(true) && true;\n\ - let f: = fun b: Bool -> b && true in f(true) && true;\n\ - let f: -> = fun b -> b && true in f(true) && true;\n\ - let f: -> = fun b: -> b && true in f(true) && true;\n\ - let f: -> = fun b: Bool -> b && true in f(true) && true;\n\ - let f: Bool -> = fun b -> b && true in f(true) && true;\n\ - let f: Bool -> = fun b: -> b && true in f(true) && true;\n\ - let f: Bool -> = fun b: Bool -> b && true in f(true) && \ - true;\n\ + let f: ? = fun b -> b && true in f(true) && true;\n\ + let f: ? = fun b: ? -> b && true in f(true) && true;\n\ + let f: ? = fun b: Bool -> b && true in f(true) && true;\n\ + let f: ? -> ? = fun b -> b && true in f(true) && true;\n\ + let f: ? -> ? = fun b: ? -> b && true in f(true) && true;\n\ + let f: ? -> ? = fun b: Bool -> b && true in f(true) && true;\n\ + let f: Bool -> ? = fun b -> b && true in f(true) && true;\n\ + let f: Bool -> ? = fun b: ? -> b && true in f(true) && true;\n\ + let f: Bool -> ? = fun b: Bool -> b && true in f(true) && true;\n\ let f: Bool -> Bool = fun b -> b && true in f(true) && true;\n\ - let f: Bool -> Bool = fun b: -> b && true in f(true) && \ - true;\n\ + let f: Bool -> Bool = fun b: ? -> b && true in f(true) && true;\n\ let f: Bool -> Bool = fun b: Bool -> b && true in f(true) && \ true;\n\ - let f: -> Bool = fun b -> b && true in f(true) && true;\n\ - let f: -> Bool = fun b: -> b && true in f(true) && true;\n\ - let f: -> Bool = fun b: Bool -> b && true in f(true) && \ + let f: ? -> Bool = fun b -> b && true in f(true) && true;\n\ + let f: ? -> Bool = fun b: ? -> b && true in f(true) && true;\n\ + let f: ? -> Bool = fun b: Bool -> b && true in f(true) && \ true;\n\n\ let f = fun a, b -> a + 1 in f(1, 2);\n\ - let f = fun a: , b -> a + 1 in f(1, 2);\n\ + let f = fun a: ?, b -> a + 1 in f(1, 2);\n\ let f = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f = fun (a, b): (Int, ) -> a + 1 in f(1, 2);\n\ - let f: = fun a, b -> a + 1 in f(1, 2);\n\ - let f: = fun a: , b -> a + 1 in f(1, 2);\n\ - let f: = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f: = fun (a, b): (Int, ) -> a + 1 in f(1, 2);\n\ - let f: -> = fun a, b -> a + 1 in f(1, 2);\n\ - let f: -> = fun a: , b -> a + 1 in f(1, 2);\n\ - let f: -> = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f: -> = fun (a, b): (Int, ) -> a + 1 in f(1, 2);\n\ - let f: ( , ) -> = fun a, b -> a + 1 in f(1, 2);\n\ - let f: ( , ) -> = fun a: , b -> a + 1 in f(1, 2);\n\ - let f: ( , ) -> = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f: ( , ) -> = fun (a, b): (Int, ) -> a + 1 in f(1, \ + let f = fun (a, b): (Int, ?) -> a + 1 in f(1, 2);\n\ + let f: ? = fun a, b -> a + 1 in f(1, 2);\n\ + let f: ? = fun a: ?, b -> a + 1 in f(1, 2);\n\ + let f: ? = fun a: Int, b -> a + 1 in f(1, 2);\n\ + let f: ? = fun (a, b): (Int, ?) -> a + 1 in f(1, 2);\n\ + let f: ? -> ? = fun a, b -> a + 1 in f(1, 2);\n\ + let f: ? -> ? = fun a: ?, b -> a + 1 in f(1, 2);\n\ + let f: ? -> ? = fun a: Int, b -> a + 1 in f(1, 2);\n\ + let f: ? -> ? = fun (a, b): (Int, ?) -> a + 1 in f(1, 2);\n\ + let f: (?, ?) -> ? = fun a, b -> a + 1 in f(1, 2);\n\ + let f: (?, ?) -> ? = fun a: ?, b -> a + 1 in f(1, 2);\n\ + let f: (?, ?) -> ? = fun a: Int, b -> a + 1 in f(1, 2);\n\ + let f: (?, ?) -> ? = fun (a, b): (Int, ?) -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> ? = fun a, b -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> ? = fun a: ?, b -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> ? = fun a: Int, b -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> ? = fun (a, b): (Int, ?) -> a + 1 in f(1, \ 2);\n\ - let f: (Int, ) -> = fun a, b -> a + 1 in f(1, 2);\n\ - let f: (Int, ) -> = fun a: , b -> a + 1 in f(1, 2);\n\ - let f: (Int, ) -> = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f: (Int, ) -> = fun (a, b): (Int, ) -> a + 1 in \ + let f: (Int, ?) -> Int = fun a, b -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> Int = fun a: ?, b -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> Int = fun a: Int, b -> a + 1 in f(1, 2);\n\ + let f: (Int, ?) -> Int = fun (a, b): (Int, ?) -> a + 1 in \ f(1, 2);\n\ - let f: (Int, ) -> Int = fun a, b -> a + 1 in f(1, 2);\n\ - let f: (Int, ) -> Int = fun a: , b -> a + 1 in f(1, 2);\n\ - let f: (Int, ) -> Int = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f: (Int, ) -> Int = fun (a, b): (Int, ) -> a + 1 in \ - f(1, 2);\n\ - let f: -> Int = fun a, b -> a + 1 in f(1, 2);\n\ - let f: -> Int = fun a: , b -> a + 1 in f(1, 2);\n\ - let f: -> Int = fun a: Int, b -> a + 1 in f(1, 2);\n\ - let f: -> Int = fun (a, b): (Int, ) -> a + 1 in f(1, 2);\n\ - \ \n\ - \ "; + let f: ? -> Int = fun a, b -> a + 1 in f(1, 2);\n\ + let f: ? -> Int = fun a: ?, b -> a + 1 in f(1, 2);\n\ + let f: ? -> Int = fun a: Int, b -> a + 1 in f(1, 2);\n\ + let f: ? -> Int = fun (a, b): (Int, ?) -> a + 1 in f(1, 2);\n\ + \ "; } ); ( "ADT Statics", { zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Secondary((id \ - 28357f24-0bee-423a-8233-69bbb2cfd787)(content(Comment\"# \ + 8f545503-9ccc-4a1f-9570-51cc80ed498b)(content(Comment\"# \ Internal Regression Tests: ADT Statics #\"))))(Secondary((id \ - da7d803e-5f91-4afc-b529-fbd0ec0eaafd)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 505df48d-38fb-4b63-8962-c4aa88f70e50)(content(Comment\"# All \ + 7df37433-694f-49e1-bd34-5e440ddce095)(content(Whitespace\"\\n\"))))(Secondary((id \ + f1af6a08-8b94-424e-bf1e-94bb5efddca9)(content(Comment\"# All \ commented lines should show errors as described \ #\"))))(Secondary((id \ - 70e54a1b-8e3f-4e8a-a0f2-f132102dcca2)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0c97d2fe-e4fa-4699-889c-26f406fc97b7)(content(Comment\"# No \ + 19de118a-4634-458e-ab3d-fa2ddd45182a)(content(Whitespace\"\\n\"))))(Secondary((id \ + 94a20bbb-796f-4b4b-b587-ad228fc451ed)(content(Comment\"# No \ other lines should show errors #\"))))(Secondary((id \ - d99dce2d-ee04-4e13-bcef-375f0608d8c9)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - e13aaf5d-7c93-429f-93ff-47ddd45609b7)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 545d83f6-f159-4fe2-9fb6-f9514dd064b8)(content(Comment\"#type \ + e3134ee0-6c81-431e-a0e9-019b4a005233)(content(Whitespace\"\\n\"))))(Secondary((id \ + ced5b603-67a5-4d6b-8c60-e20d3dc77d8e)(content(Whitespace\"\\n\"))))(Secondary((id \ + bfd76574-e632-450b-8129-cd813c164e53)(content(Comment\"#type \ definitions: no errors#\"))))(Secondary((id \ - b8fe9b8a-9e2e-4774-8e8d-c5202e4d567c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 54e23d33-2b44-4416-baa9-b82dd9d49fcb)(label(type = \ + 5bbfdda1-e2fe-4fe2-97b5-8e83fe230690)(content(Whitespace\"\\n\"))))(Tile((id \ + e9e303cd-7ef7-4fb5-8cde-6a1951181563)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - db084c97-20fe-487e-8d52-80bc76bd2ede)(content(Whitespace\" \ - \"))))(Grout((id 7273a907-7f31-458a-b84a-ea0a5f3bcab0)(shape \ - Convex)))(Secondary((id \ - 1b874263-3f04-4e50-8ea6-a6a6631c789d)(content(Whitespace\" \ + a72a561d-27a9-41f2-8ef3-8065d19a5fde)(content(Whitespace\" \ + \"))))(Tile((id \ + 850533e9-4d0b-46dd-ba43-5be3eef2406a)(label(?))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + fadcfc44-7cdf-4c69-9f56-1a64ce2ae893)(content(Whitespace\" \ \")))))((Secondary((id \ - 540a9dc5-a060-46f2-987e-8c45d8a3d040)(content(Whitespace\" \ - \"))))(Grout((id 99c6cef7-771c-4b30-afc6-648a2a9b52eb)(shape \ - Convex)))(Secondary((id \ - 67a07a9c-618f-4947-87a0-229733d058e4)(content(Whitespace\" \ + fb0ed68b-3058-49d0-a2d0-658170c04016)(content(Whitespace\" \ + \"))))(Tile((id \ + 1e0c1cb1-d251-4e7b-86c2-e7b1cc089924)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 606fc561-7a9f-4c4c-81ab-f4b09c51a78a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e7b21ff9-855f-4af8-b136-61cdf82cb732)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bbd37bb2-75f6-4660-bc03-060f3fcb88d3)(label(type = \ + 90da604d-57b1-465b-b94e-da7571018abb)(content(Whitespace\"\\n\"))))(Tile((id \ + 5b223b93-1ca6-43d1-a140-1d1f9d2e3757)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 28baacf9-b184-4689-89d2-5898e15b4425)(content(Whitespace\" \ + 44600d02-12bf-4611-b2b2-dfaf8c4f73a6)(content(Whitespace\" \ \"))))(Tile((id \ - a215e8bc-91aa-4d2a-864f-8779cd29c147)(label(SingleNull))(mold((out \ + 25749c0b-386c-48e6-aced-da78f71607a0)(label(SingleNull))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 5f8c6a8b-efdc-4ae1-a9e1-34ce7faad82f)(content(Whitespace\" \ + 9c55ef7a-f168-4466-95e6-cf2e96e9c35e)(content(Whitespace\" \ \")))))((Secondary((id \ - 6689bd94-617b-47c9-807e-08b9cf84b8c5)(content(Whitespace\" \ + f7222135-1e0a-47d8-9768-4a2b3d5b3e41)(content(Whitespace\" \ \"))))(Tile((id \ - f98d916f-8631-461e-a64e-95d75cccc6fe)(label(+))(mold((out \ + 093b56c5-d1d7-4ba8-87ed-36e778e18b0a)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - ae3f938a-935c-46ea-b4ca-e8fb41f6e001)(label(One))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 6297bd3a-a4c4-42c6-8d3d-7235cb78a5e3)(label(One))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 50a7b73d-2fc8-4357-ae31-b83c1f5bd467)(content(Whitespace\" \ + 5e9d7baf-7bc1-4d27-9dd8-805d474e307e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 41b177e8-90f3-4af9-8186-cda93d46bc46)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5d191c2c-9036-42a0-bdcb-92b382e55d8d)(label(type = \ + bce476d9-96e7-420b-aa17-a10481fd5513)(content(Whitespace\"\\n\"))))(Tile((id \ + 38657977-bb27-4f27-b328-eac29facdc1f)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7a6b25d9-e7d3-4b55-b5e5-404c4c2ae4f5)(content(Whitespace\" \ + cbc3f8f9-1bcb-4982-8560-19c6f2033323)(content(Whitespace\" \ \"))))(Tile((id \ - a7de9e4b-174d-4958-9e7f-7d36445348e0)(label(Single))(mold((out \ + 0e48e761-87ef-4c15-8414-430c07a0394a)(label(Single))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - d45238b2-8b1d-4f18-a077-3827151dc45e)(content(Whitespace\" \ + 40acbb91-7ae1-4440-aa80-7e9db8847fd1)(content(Whitespace\" \ \")))))((Secondary((id \ - 0425820e-04bd-4c29-8adb-4124b681d57f)(content(Whitespace\" \ + 273f1a10-a364-43ae-9db2-1f9cf1530b06)(content(Whitespace\" \ \"))))(Tile((id \ - 01b63189-aee2-41a6-aa07-ffd4bddc1a49)(label(+))(mold((out \ + aa249f07-8299-4dca-abd1-d1e7102410fd)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 0f58b71b-37d1-4270-8ce3-21eeb577bfb7)(label(F))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + eebac9c4-570b-4c43-8afe-d12787a0b613)(label(F))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - fa9a4146-4da4-469f-a26e-81cf3f45b2ae)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 1cff1dc4-0d8c-4419-b45e-74800a59f801)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - d110cf17-d811-464f-8726-e6dfc9f8b6bb)(label(Int))(mold((out \ + 2438e51a-a325-41a3-bd4b-80d5eda4baa6)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a109dce3-009c-4f4c-aefe-7cab4536d392)(content(Whitespace\" \ + 705a3f01-40fc-409e-81f4-60a687da58ce)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b7cdb552-04a7-48b4-9cfb-998bf9d18055)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f54c8ce4-d565-4704-b224-8e252cb8cbd3)(label(type = \ + 1fd480bc-ad4c-421d-ab12-fb3de2efa08b)(content(Whitespace\"\\n\"))))(Tile((id \ + f3fb89fd-da2f-4ea5-a873-0e6ea51f7686)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - cfdef333-8e4e-4e5e-8fa9-58da5cb2bbdd)(content(Whitespace\" \ + a1d9f6ad-6108-4538-84bc-9a180eb438b0)(content(Whitespace\" \ \"))))(Tile((id \ - e0846c5c-ed48-4e17-8047-68e9d0bfd72d)(label(GoodSum))(mold((out \ + 9ea2359a-3961-497a-addc-e22277787da0)(label(GoodSum))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 16a4fa3b-9c47-432b-baa5-e268c973baf5)(content(Whitespace\" \ + 1092282e-966b-44e8-bf8c-945357a3cc3f)(content(Whitespace\" \ \")))))((Secondary((id \ - 967321aa-0d95-49e6-89e0-9d388d6da469)(content(Whitespace\" \ + 7ba4f93b-19ce-4ec6-aaaf-7d58d797054f)(content(Whitespace\" \ \"))))(Tile((id \ - 149bf644-2adc-49e6-8d53-81b03ecf4d49)(label(A))(mold((out \ + 3c887993-bf3a-415e-9ea0-89b1fd7fbfa4)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6c0d12c7-17a4-44f0-a149-19aa3f780d21)(content(Whitespace\" \ + 75df5c25-26cc-415d-8499-47e9b3600101)(content(Whitespace\" \ \"))))(Tile((id \ - 7294404d-be7d-4cb7-ab89-fa2b0d214512)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 1b27d94b-d652-40da-8cce-e7b2189adcfe)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - faac7e2c-4caa-46ff-b72c-fd1b78b76f75)(content(Whitespace\" \ + a250a98e-aca4-4877-bab2-bcef86ee67d0)(content(Whitespace\" \ \"))))(Tile((id \ - 4e5dcc2f-b3f6-43fb-a906-5184199c86df)(label(B))(mold((out \ + 96094693-c7fc-4383-82b6-577a3cbcf77b)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 37516c52-36a1-4c80-99b1-a0d857c1dda7)(content(Whitespace\" \ + ea434234-d808-4877-8316-a333f6bb3569)(content(Whitespace\" \ \"))))(Tile((id \ - 86c8fa45-1c54-4752-9ffc-c889dc6a8e52)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 4b1fded6-5bb6-4c85-807e-962dd99e69fb)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 45cd1be9-10c7-48e1-979e-6549e563f9b9)(content(Whitespace\" \ + 6476f6ba-2b42-45db-83c1-ceba76a59a71)(content(Whitespace\" \ \"))))(Tile((id \ - 2a3ba33f-56e2-4b87-99c7-733ca87a6dce)(label(C))(mold((out \ + 282335bf-c355-4b0e-8326-d44bca6d1a41)(label(C))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - ee980372-17e2-419f-bb0f-a575cf8e7fc2)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + d759ff34-5570-453e-8ec8-87014426ef87)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - d95d1829-297a-4db4-8e52-fea95862c74a)(label(Int))(mold((out \ + 97b4d24e-63a5-40ac-9fc5-ee2dded33c16)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 6bc9a1c5-257c-4cd4-80b8-236a3ae60b01)(content(Whitespace\" \ + da11db79-7646-478a-93d3-7b2aae1321c0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ca4f5031-e534-43f7-87b2-d78f8cda1acf)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e7ed2a86-c44c-4a31-ba4b-608de76fd6a2)(label(type = \ + 9e98c17c-260d-4a3e-855e-1bbc0ade62fc)(content(Whitespace\"\\n\"))))(Tile((id \ + 3234a4fa-88d6-4747-b851-0f64ed1d53f2)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 69656e33-f418-48a4-a438-00db04b42210)(content(Whitespace\" \ + 8b90c0d6-41fd-4f20-aba6-f5c804258112)(content(Whitespace\" \ \"))))(Tile((id \ - 3218a5c6-c361-4146-be25-3bfb3d172ea3)(label(Partial))(mold((out \ + 500a71f2-abf0-45fd-a7f4-70cea3d59ec2)(label(Partial))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 0e2357e6-9d96-42ef-bef6-f72319502c77)(content(Whitespace\" \ + eb010edf-9908-438c-9c25-af7d412cc0b5)(content(Whitespace\" \ \")))))((Secondary((id \ - 2b2cdc66-752f-428d-965f-1a79b080ea98)(content(Whitespace\" \ + 8283b850-34d4-48ea-9b2a-663d9fcb7292)(content(Whitespace\" \ \"))))(Tile((id \ - b8972117-909f-48c0-8f59-7a51b7cf5db7)(label(Ok))(mold((out \ + e2b74d99-c07e-46ba-904d-7f5c699cc458)(label(Ok))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - febdbbdb-4585-4803-9e84-bcd3304ffb1f)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - c7b12338-0a19-4fe2-820d-1cb076b6dca3)(shape \ - Convex))))))))(Secondary((id \ - eab5c8f9-998a-4cc3-b3d7-f453b90dbe8e)(content(Whitespace\" \ - \"))))(Tile((id \ - 319b516d-0c4c-4a26-976b-bf76cd5c0ada)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 24ae6999-d0e6-426f-86d6-dc39fa14c86a)(content(Whitespace\" \ - \"))))(Grout((id 5fd021dd-31d5-4767-8e92-1c1526e9d3c0)(shape \ - Convex)))(Secondary((id \ - 7448de20-a1c9-4b99-8495-60e37df82175)(content(Whitespace\" \ + 23ae11d9-84ba-4845-856c-a6ae7bfd231e)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 25765f53-2720-4ddb-b92f-01e30b090d2b)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + a3fbdb78-95db-4b70-9085-2b346153bc9d)(content(Whitespace\" \ + \"))))(Tile((id \ + c9c8b322-afcd-4739-ad8b-d91db8b9b9fd)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 4))(sort \ + Typ))((shape(Concave 4))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 4156bc1b-fa1f-410a-b4c1-2ce7c746e3f1)(content(Whitespace\" \ + \"))))(Tile((id \ + cff577c5-d75e-4b4d-b9de-4e60864398b9)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + e55f0796-7068-490e-8de1-3f3c58002c3f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ed8aed8b-a1d6-438b-a7a4-ed310d325dbb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 10a6df79-02e4-412b-b1d7-f4690c81ccbf)(label(type = \ + 114869ba-22a8-49c8-9c73-a3fe57060dc9)(content(Whitespace\"\\n\"))))(Tile((id \ + e5c55242-63a8-4cb5-8e95-1fdb58a10b7f)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d77a36ab-5548-4eca-8db5-66b91ba8b3f3)(content(Whitespace\" \ + cbc14084-5dd4-4efb-b4fb-6210346bafed)(content(Whitespace\" \ \"))))(Tile((id \ - 8a111ed2-1c78-4c10-bac2-2e855f655112)(label(DoubleAlias))(mold((out \ + e5096ae9-33b4-4725-9848-480b6860d80b)(label(DoubleAlias))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 1b510d24-fb50-4d72-982c-3b584ef54135)(content(Whitespace\" \ + 9a886244-fd66-4b8b-9c1f-fa80b5e46baf)(content(Whitespace\" \ \")))))((Secondary((id \ - 8c5b5b7c-6f48-4730-a1cd-23ad4911baae)(content(Whitespace\" \ + dcafc866-530b-449d-89ca-fe43873db8a6)(content(Whitespace\" \ \"))))(Tile((id \ - 765c6668-f5f8-4fa6-8c23-46cbf50a2169)(label(GoodSum))(mold((out \ + c9ac785d-96dc-4bf2-aaaa-97ab942a5efd)(label(GoodSum))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 8ab02e4d-1f40-4182-b669-3002e91971d8)(content(Whitespace\" \ + c7b80047-311b-4153-aa1b-803f990d0efb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2f94abb3-22ba-49ed-b336-378757f564dc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8d517f36-a20a-4cd2-a280-8a24d56a2b25)(label(type = \ + 47eac0d8-d8b1-4c4c-832d-4014d5744812)(content(Whitespace\"\\n\"))))(Tile((id \ + a665ab2e-2e67-4c71-9289-6c2f901f8528)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9ed73f0a-2269-4eb6-a371-a8710e4f9a1e)(content(Whitespace\" \ + b3ed006b-88b8-475e-8246-059f0963e8b2)(content(Whitespace\" \ \"))))(Tile((id \ - d78a7e50-97e1-4487-94c5-7620f7057b62)(label(VerticalLeading))(mold((out \ + 9c3a5271-84e6-460a-a195-9bcd098804cd)(label(VerticalLeading))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - d0fa2c86-1a80-4489-8dad-0864eac411ce)(content(Whitespace\" \ + ca7977ef-64e8-47a5-a112-53afc400788c)(content(Whitespace\" \ \")))))((Secondary((id \ - c550f4d9-2252-459d-881c-1ea2d5113920)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 48ec824c-86ef-419c-bea4-01af75ab209c)(label(+))(mold((out \ + 98521797-da85-45ce-bf2e-4b3fe7f96b0e)(content(Whitespace\"\\n\"))))(Tile((id \ + b2a63a1f-2688-4dcc-8782-f925d6b3d3e0)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a3f051cd-9ac0-4f5e-a687-7436f35311fa)(content(Whitespace\" \ + 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ + d11152e3-a36c-445b-9535-d43bbd2ce4ad)(content(Whitespace\" \ \"))))(Tile((id \ - 110f994d-9f94-435a-a662-650195526a66)(label(A))(mold((out \ + 207a47c3-ae84-4ff6-9d06-9e1c93ad092a)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - de227626-c88d-4f8e-9b7d-8d239bc6b7a2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b7b57d94-9f0b-41ff-8805-383757288c54)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 6ab9c507-8c80-4da8-b18a-87d203ba5a79)(content(Whitespace\"\\n\"))))(Tile((id \ + 10e3b054-9c7d-4c1b-bb3d-5f92086ffd9a)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e76c4cf4-6b52-4f61-8613-8418c2b54e04)(content(Whitespace\" \ + 8622b766-c2d9-4373-8a98-e0816392af05)(content(Whitespace\" \ \"))))(Tile((id \ - 4de6fd61-26fa-4770-842d-f6c40b502f33)(label(B))(mold((out \ + 4c846cd0-efd1-452f-918e-951d53257907)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - e0d70e07-aba6-40e3-897f-ac02915c5454)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 5e702525-8caa-48bb-8b05-a040df4feeb1)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 375f169b-7f67-4190-b980-3292822c286a)(label(GoodSum))(mold((out \ + af22edeb-5ad1-4335-8169-7734317f43d1)(label(GoodSum))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 226a9d4c-109f-4813-aee7-94e2ad45fae2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a38444fb-d2c4-470c-b660-47c92bb89991)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 05a0f029-d61e-478e-8dd1-aa49da039942)(content(Whitespace\"\\n\"))))(Tile((id \ + f5f27106-f728-424a-bb07-15ce11337657)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c587c505-748c-41c1-8279-71522de8cec6)(content(Whitespace\" \ + 9c5937c6-d774-4d89-9ae9-56fd4e82ce1f)(content(Whitespace\" \ \"))))(Tile((id \ - 974020d7-e351-4812-9397-5018920e0a45)(label(C))(mold((out \ + ca286fac-9afd-4b52-9b2c-69fdae486a24)(label(C))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - d080e933-5349-49b7-b35b-2e5f24d3b007)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 27fadc50-d16c-43db-a863-944dbb0b04b1)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 78af8147-201f-46f3-b58d-4bcf7bfdf0bf)(label(Bool))(mold((out \ + b5fe7d27-c744-42ea-922e-caba356871d2)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - d873c642-102b-4997-bac4-f1f0b75a1624)(label(->))(mold((out \ + 40de0ab6-2db4-4168-b17e-b43bf92712ad)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Tile((id \ - 3676c2d8-c573-497e-b7cb-d61cae5b5da6)(label(Bool))(mold((out \ + 967acf6e-dc2d-4b97-8cb4-5bf5eaf9986b)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - f1e2ccb2-8186-4934-a292-57abb525d91d)(content(Whitespace\" \ + d4f393e4-197c-4f5d-9992-9273a2230d42)(content(Whitespace\" \ + \"))))(Secondary((id \ + 8c283036-2528-457b-8f84-4917ce721da3)(content(Whitespace\" \ + \"))))(Secondary((id \ + 1dff48cf-d5db-4ca5-8e97-1a87f837ca91)(content(Whitespace\" \ \"))))(Secondary((id \ - 546c1a20-e58f-4db5-88be-c29ff7e117e2)(content(Whitespace\" \ + 03b2a113-7e4b-43d2-9db7-66e5b018ac80)(content(Whitespace\" \ \"))))(Secondary((id \ - 2f7eeab0-c2c0-462f-8a7f-6dce1a9479ec)(content(Whitespace\" \ + 45705bc6-5bb1-4392-b2e8-3631305c9ca0)(content(Whitespace\" \ \"))))(Secondary((id \ - cc3e6a4c-73de-4450-97b7-d622e501a65d)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 50745623-8820-453c-bc0f-62ef453d38f0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f71ed59f-f6c7-4b69-a8c4-e12a77a9b82e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - dec0a291-91c0-413e-942e-2cf40b652dcf)(content(Comment\"#incorrect \ + 191bed93-83d6-4e87-9a28-5a654c14a84b)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + b637ddf4-6636-4263-9d49-a7614a1e6f5b)(content(Whitespace\"\\n\"))))(Secondary((id \ + 15c3bd9b-901a-4765-b0ae-2321e7367199)(content(Whitespace\"\\n\"))))(Secondary((id \ + fec3d60e-028e-4a0c-8796-d5fc09e3da83)(content(Comment\"#incorrect \ or incomplete type definitions#\"))))(Secondary((id \ - ff85a206-092e-4b47-8496-75171a46cb21)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2a29b5e5-296b-423e-8876-ea638cf99c39)(label(type = \ + 489eb08a-1e8a-4ec9-9c5b-03752b32bd3e)(content(Whitespace\"\\n\"))))(Tile((id \ + 7558ae1d-c2d2-4189-88a6-12ff215a1bee)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 88097564-6cb6-40df-9dbf-8726f15e8023)(content(Whitespace\" \ + 6b2fa0dc-76c5-40c1-8a12-9434217efb46)(content(Whitespace\" \ \"))))(Tile((id \ - bc56b1af-baac-4afa-927b-5b260ef9528d)(label(badTypeName))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 06bec89d-de70-42d6-85ac-73cd1ddc86c7)(content(Whitespace\" \ + f149a8bb-910c-4022-a578-92dfd9d66bc1)(label(badTypeName))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + a7d39551-cdfc-4990-9f97-923c226ca6da)(content(Whitespace\" \ \")))))((Secondary((id \ - 46400187-d912-4ba4-a220-7326db747f86)(content(Whitespace\" \ - \"))))(Grout((id 71cde0f8-e7ce-4994-9f73-381e4eeb7e3d)(shape \ - Convex)))(Secondary((id \ - bbd999fc-99d6-4022-beec-290ae2883829)(content(Whitespace\" \ + f43043f5-2d04-47f9-8c63-f7d6a2ded9f3)(content(Whitespace\" \ + \"))))(Tile((id \ + 845cc059-2fe3-44d1-9fa3-25eb07e67e41)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 35957e0c-336f-4eca-bad5-41e410c3e733)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 06fea02f-7527-4678-b8d4-23eb2895fced)(content(Whitespace\" \ + 62c1a220-7594-4725-b900-92624aee8c45)(content(Whitespace\" \ \"))))(Secondary((id \ - b76fdcc0-e6df-4bc1-a494-6c22207a0088)(content(Comment\"#err: \ + 2f2977d9-316c-41e1-98c8-bfd503b77a35)(content(Comment\"#err: \ invalid type name#\"))))(Secondary((id \ - 8557100e-b121-44a6-9904-88d04e14afe2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 037ed10b-ec8f-4e74-91ab-8b5ac06d43e4)(label(type = \ + b6e233d0-cb62-4f6a-ba0c-f8d1db0cc567)(content(Whitespace\"\\n\"))))(Tile((id \ + 888f016c-d7c0-4c93-a18f-f5c834c9593b)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d07a788d-e8bd-4292-815c-c1b2aeb50ce8)(content(Whitespace\" \ + 2a6d65ad-d513-4e19-ba4e-ca19cd2524ff)(content(Whitespace\" \ \"))))(Tile((id \ - 0fbc61fe-ea41-465c-8229-5c191b82ad22)(label(\"(\"\")\"))(mold((out \ + 417bcb5d-9cb2-4517-9ecd-8b4b4bd4953b)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Grout((id \ - bd55016e-8768-4ffa-9206-24cd3b8ea73b)(shape \ - Convex)))(Tile((id \ - 5e281346-8c28-4270-9131-df8eadaa2d7a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - d70d0656-a8c7-4daa-9f47-f63a09e7581a)(content(Whitespace\" \ - \"))))(Grout((id f61afea0-f3fd-4f9c-8917-0aa5e600782e)(shape \ - Convex))))))))(Secondary((id \ - 6f6d1712-ed54-43e9-bfcc-2aca0a93ceca)(content(Whitespace\" \ - \")))))((Secondary((id \ - d2d9a292-469b-401f-b5bc-525561ca82da)(content(Whitespace\" \ - \"))))(Grout((id 18cb0921-300c-4001-8c45-e4950ce6b20b)(shape \ - Convex)))(Secondary((id \ - 4dec9e0d-5df5-4954-8107-2d3a56728db3)(content(Whitespace\" \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 4ebd01e6-6e0d-48e6-be97-7e9b9e3023e7)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + ffab4ae0-0982-43d4-9142-646be82ce4a0)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 831e5d76-6628-4ac5-832d-a5d0973f9cfa)(content(Whitespace\" \ + \"))))(Tile((id \ + 1152135c-eb19-4e21-9a70-6705b8eb3c01)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))))))(Secondary((id \ + 226c107d-b679-4359-b700-0af5fb9c0fef)(content(Whitespace\" \ + \")))))((Secondary((id \ + 9a69480f-3749-46b7-b006-3782a8a22bee)(content(Whitespace\" \ + \"))))(Tile((id \ + 3e670739-b668-428b-94bd-89f9357a6c93)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 560d14c8-767f-4b3f-bf8e-4262f4e955d8)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e16bf39c-26cb-47fe-89f4-33a1a9970651)(content(Whitespace\" \ + 2f5b0d39-8a13-4ddb-8ba5-e2835d9098c8)(content(Whitespace\" \ \"))))(Secondary((id \ - d950efef-1383-4e50-a303-aff3be6cfa78)(content(Comment\"#err: \ + f5a63c87-020d-44e8-9cf1-1cf2ba871078)(content(Comment\"#err: \ invalid type name#\"))))(Secondary((id \ - df4aa51e-b18e-4cd1-98f1-446b1c9d721d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e93edd08-38c1-4e34-afd9-33525f28d292)(label(type = \ + da7ce790-90ae-4d95-a9cd-cff65cfe54c7)(content(Whitespace\"\\n\"))))(Tile((id \ + f2cfc44a-3702-4143-8cb4-019ec2a2c620)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e3a09bfa-b86c-4849-be8b-7c9929b754ed)(content(Whitespace\" \ - \"))))(Grout((id bb1bee1a-abe7-47aa-993f-85fa842b6fbd)(shape \ - Convex)))(Secondary((id \ - e5a4c884-61e0-46e0-ba51-aa8027c03b75)(content(Whitespace\" \ + 7003d5c2-5b64-4a4e-885d-9920ef0ff644)(content(Whitespace\" \ + \"))))(Tile((id \ + 827977a7-08d5-4025-b655-27cc3f0e00e0)(label(?))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + 2cbc15af-8797-4931-8a58-70050e5d26d4)(content(Whitespace\" \ \")))))((Secondary((id \ - b245fa5f-585b-4a67-94e2-2510e636670e)(content(Whitespace\" \ + afedc638-2702-4c31-880c-49e842d7f452)(content(Whitespace\" \ \"))))(Tile((id \ - 52ac5bf6-1b0b-4acf-9c46-e099e018c4ee)(label(badTypeToken))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7c99b199-bb9f-42d3-b28e-3940e92a3533)(content(Whitespace\" \ + 93bce54a-4065-4016-a4b5-1d15f708a2d8)(label(badTypeToken))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + a72c322a-fe7c-41ca-bfc2-54d2364a63c5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 248b83b9-3ed2-4889-b3a9-4728d8345ad7)(content(Whitespace\" \ + 8bc487c7-e4b4-4ff2-b8be-7b588c67660b)(content(Whitespace\" \ \"))))(Secondary((id \ - a561938e-1e8d-485f-92f5-0976d7377be1)(content(Comment\"#err: \ + 4b8f7eb8-e810-406e-9cc3-50ab038b4b98)(content(Comment\"#err: \ invalid type token#\"))))(Secondary((id \ - d7d0d95b-1e27-492f-91a5-97176f237c71)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bbc7927d-aa81-4f04-8190-92349f23e545)(label(type = \ + 8a476536-be07-4be4-8146-0d8c81610946)(content(Whitespace\"\\n\"))))(Tile((id \ + 4c8d3376-d0be-44f8-bbfe-c641ce6b59cf)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 5c927f79-7c3e-49bc-afc5-355081fc688e)(content(Whitespace\" \ + 673e7954-6578-421d-a70b-21447b7bb549)(content(Whitespace\" \ \"))))(Tile((id \ - 4f7eda69-8e88-46f6-af92-18e977fc4e57)(label(NotASum))(mold((out \ + f2b11e88-da5b-4726-8d82-e3005b81346a)(label(NotASum))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 514b34b5-fae2-434a-b5ad-3c180fc704e1)(content(Whitespace\" \ + faf0684c-a771-45df-b295-72f9356a2e46)(content(Whitespace\" \ \")))))((Secondary((id \ - 2158eae1-2f2a-4df9-a342-b5fa191925cf)(content(Whitespace\" \ + fc1e4372-cf3c-4dbe-8f98-802f11b882c1)(content(Whitespace\" \ \"))))(Tile((id \ - ad1bd59c-b07c-4854-878b-fb73b714bb34)(label(NotInSum))(mold((out \ + 39854dea-8bdb-4fa6-9f10-446ff45a80af)(label(NotInSum))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - acb6b1d5-bda5-45c2-aab3-b9bc747ceb49)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + f587e15e-acad-4996-aaf9-27a513104173)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 553dfa61-d24d-4394-ac50-4aa83e07bb21)(label(Bool))(mold((out \ + 6b9a7e4f-eec6-42f7-8f29-9287a34e2e24)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - c55a91f3-69b1-4505-b31c-ac9db253b5f2)(content(Whitespace\" \ + 21c07099-370a-45e5-9bdd-31ae5da95622)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 51fb312c-cdcd-4db6-9a97-c06f9349262f)(content(Whitespace\" \ + 6b7811b8-66ed-4179-8cd9-7e1a22227120)(content(Whitespace\" \ \"))))(Secondary((id \ - bdcdee76-a147-457c-bdc5-911d1b51a26a)(content(Comment\"#err: \ + abba8456-f770-4b21-b4ff-67fd687eac02)(content(Comment\"#err: \ cons not in sum#\"))))(Secondary((id \ - f2cd045f-7c64-4ea8-8452-c4ab758dec7a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4221a1d8-bcd9-4132-9916-5bec3de4a625)(label(type = \ + 064d2987-ae17-4864-8575-c9100308435c)(content(Whitespace\"\\n\"))))(Tile((id \ + fbd98944-622e-41b7-95a7-bb7078744918)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9d96a3ba-2e82-4741-a739-916745c2095a)(content(Whitespace\" \ + 28135f7e-a78d-4845-9f04-862039a4e609)(content(Whitespace\" \ \"))))(Tile((id \ - 1fe95f07-86f7-4ba0-83ca-ecfcca5215f8)(label(Bool))(mold((out \ + f711c7c8-ab69-4969-9b01-cfe6842f118b)(label(Bool))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 7fe1273d-e45b-4e86-ad79-a9a30cf0afd6)(content(Whitespace\" \ + 2d1cfbbd-67cd-45cd-8fb1-ffa8aaf9606a)(content(Whitespace\" \ \")))))((Secondary((id \ - 290c38f5-c4da-4a8e-b556-8503adc36c8a)(content(Whitespace\" \ - \"))))(Grout((id c27057f8-540d-448e-855e-692824076cb2)(shape \ - Convex)))(Secondary((id \ - c77c2cb7-8f94-4093-9dc1-3dc1c76202b0)(content(Whitespace\" \ + 712836fd-f2d8-4ae8-b834-2a5aa6b977aa)(content(Whitespace\" \ + \"))))(Tile((id \ + 6ebc6774-4004-4a73-b437-2fced0dd6e1d)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 9fc204c2-7649-4f75-a90b-14786125145d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e93265b2-2163-4c24-a77b-75e0743fdefc)(content(Whitespace\" \ + d9987d7d-53c3-4a6a-bfd9-381501eb8fab)(content(Whitespace\" \ \"))))(Secondary((id \ - cd8907a9-81d2-40cf-a12f-cdf75f85ecae)(content(Comment\"#err: \ + 5d07411f-534d-4a78-9711-33221ba5e1f3)(content(Comment\"#err: \ shadows base type#\"))))(Secondary((id \ - ce97e91b-7183-4964-9dad-5248b847cb2b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 524585ce-43ab-4dc4-a476-d2be15591182)(label(type = \ + 3776f836-6b87-4867-8a6c-66f2fc169050)(content(Whitespace\"\\n\"))))(Tile((id \ + 8aa7fa01-948d-4c05-99f9-04cb40145e7d)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 033bf566-1b52-4a6c-966d-45efa4175c0d)(content(Whitespace\" \ + 5d0ad717-41f3-4334-97ac-991ef377dc85)(content(Whitespace\" \ \"))))(Tile((id \ - 41911e97-fb92-4173-b3cf-f5d4eed85938)(label(Dupes))(mold((out \ + edf15f0e-fbc9-46b4-b65b-866ff4a0b469)(label(Dupes))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - ff3b3be2-040d-47a2-b628-d957c263c18f)(content(Whitespace\" \ + 333d60a4-e8a2-4ac8-8ea1-49ab56a3463b)(content(Whitespace\" \ \")))))((Secondary((id \ - de16dd5e-f90f-4941-b9b8-232e569d9078)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 94ecd3bc-97eb-403e-9563-421273cac80f)(label(+))(mold((out \ + 8e14082b-8052-494c-99b9-a57524671756)(content(Whitespace\"\\n\"))))(Tile((id \ + ee19dcaa-71a2-4c91-b05d-ac96faab20cc)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - adef1e3d-eab2-4810-9a16-263d1a6d36bf)(content(Whitespace\" \ + 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 8e965307-1027-4a51-b2a6-08e37ecfd206)(content(Whitespace\" \ \"))))(Tile((id \ - 4d3a0426-5dbe-4845-a282-d11a40094d78)(label(Guy))(mold((out \ + b5bc14f1-e275-4212-bfd7-2589e0b8b725)(label(Guy))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - b710d3be-0810-42a3-89d3-358051f7013b)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 6ba5f098-b3b6-4b70-a3c0-2e69db74db7d)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - c9d5f791-f9bf-4844-9869-3c064b839810)(label(Bool))(mold((out \ + 862f4151-b0a4-4db2-8f90-acdf96709681)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 9058a038-a0f4-48ee-b778-3fc60e5c9fb7)(content(Whitespace\" \ + ceb028b0-c0d7-44d8-be8b-6c3f585ba993)(content(Whitespace\" \ \"))))(Secondary((id \ - afea3bbf-04a5-4e37-972b-6c9f976e7a4d)(content(Comment\"#no \ + dd51ee1d-84b7-4b04-bee8-a99ce3e56807)(content(Comment\"#no \ err#\"))))(Secondary((id \ - f837183a-06ad-4583-b423-4d17dbbc4aae)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cfde56dd-4d78-48db-b5b9-e3349e8ba3dc)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + a901b57c-69b7-45df-b69e-b21c0450a157)(content(Whitespace\"\\n\"))))(Tile((id \ + 3cd85ba6-17b3-4c71-a2a2-f54c3427a32e)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d81137df-f2cf-49dc-bb0e-fe21538e3a64)(content(Whitespace\" \ + c8470ef0-70ed-4753-83ea-edaaf49503df)(content(Whitespace\" \ \"))))(Tile((id \ - 02201697-1922-4a2e-9180-4dcea7428a5c)(label(Guy))(mold((out \ + ed69a782-cffe-4064-9481-3425c8cd4b8d)(label(Guy))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 4868483e-5f32-49c6-adc4-6630dbe6ced7)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 8185ed69-8f1c-48fa-b3ec-220316630eea)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - fc54a64a-a135-44c8-9cf6-a7ce8a527315)(label(Int))(mold((out \ + e7493c3a-23b2-45b0-937c-100e294c19a4)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - fadea698-7c37-48a8-8c95-2787e6e3b20a)(content(Whitespace\" \ + ccc73854-35fa-4755-bf66-0b841830108e)(content(Whitespace\" \ \"))))(Secondary((id \ - 9571f9ca-05e9-4a77-accb-b92d6f3b5368)(content(Comment\"#err: \ + 15e3ca84-9d18-4355-b07f-485f3928f0aa)(content(Comment\"#err: \ already used#\"))))(Secondary((id \ - 55aa05ad-0b6a-4f64-ac40-113f79ffe7f1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8c570671-41ed-4e52-a50b-3cf2809fbbe0)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 90cb768f-ee69-46da-85e9-02bdf81188bf)(content(Whitespace\"\\n\"))))(Tile((id \ + 908ca012-d4ef-460a-99b7-bbfbb3c8d082)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - de416faa-f1fa-4900-9ad2-f32009445925)(content(Whitespace\" \ + ea87f61f-56f5-4bb7-96e1-a2a5a0d1068f)(content(Whitespace\" \ \"))))(Tile((id \ - 7feec638-5149-4401-92cc-65748cf149ff)(label(Guy))(mold((out \ + e0c22a11-1546-4c87-a199-a5662d0eabde)(label(Guy))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 1e3d16ab-a72d-4342-b2f9-0b8b1fe14657)(content(Whitespace\" \ + e52f1b9b-5946-4f70-a3d7-9d5512ca7832)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5a84c480-9a4b-47c7-9d5f-cf03b1112f4b)(content(Whitespace\" \ + cef7901f-0389-4ba6-a5e9-6520626a378d)(content(Whitespace\" \ \"))))(Secondary((id \ - 79a4e032-0c92-41ac-b21f-198802c8ed00)(content(Comment\"#err: \ + 83d2b79a-91b6-4ac8-b769-845f1c62733f)(content(Comment\"#err: \ already used#\"))))(Secondary((id \ - 3c76eb37-d0d6-4e5d-8b6d-fe3e0a29815d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dc4a691d-60ff-4962-96b6-9f50d0fee6d7)(label(type = \ + fa95b24d-693a-4f12-81de-fe1c4c53ab2e)(content(Whitespace\"\\n\"))))(Tile((id \ + cf385365-40b7-45eb-ad57-2021c268f397)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6f82cfca-5b64-4104-8719-e56652b83ca8)(content(Whitespace\" \ + 824f2d46-1063-4c08-9778-b3efae1d6b64)(content(Whitespace\" \ \"))))(Tile((id \ - 55211581-d61b-4ea6-8c0e-43853ab7088e)(label(BadCons))(mold((out \ + 3ec9ae2a-cbed-4c90-814a-d211077d49f2)(label(BadCons))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 541a269d-3b0c-4c6b-b421-cf2757f096d6)(content(Whitespace\" \ + 96fd6772-8725-4875-b5de-c9a15b8f5973)(content(Whitespace\" \ \")))))((Secondary((id \ - f24cb71c-259a-4d1f-8a4b-04e51ed80b23)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a034eadb-e82a-4983-b0da-52deba544b92)(label(+))(mold((out \ + 2dcafd6c-e8f2-4304-97c5-9b36d13d932c)(content(Whitespace\"\\n\"))))(Tile((id \ + 002acdc1-a61a-4ed9-a081-b8230078dd44)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0ae1f486-6b64-49f1-9839-a3071a4d5e26)(content(Whitespace\" \ + 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ + b78bcd1e-362b-44ce-9d85-a480eba224a9)(content(Whitespace\" \ \"))))(Tile((id \ - 576f5861-9df1-465d-aa6a-02b20f6e63c4)(label(Um))(mold((out \ + c6f91064-ec82-4995-8bc5-db8ee018a756)(label(Um))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 8b8364bd-ddbd-470d-95ca-8d3eca892887)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 7c9464b5-3b7d-45d2-80eb-d91ab8cfd62e)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 327a32a4-b4b8-4537-a4a4-ff819776b7d8)(label(Unbound))(mold((out \ + fa5518e3-4eb3-4be6-8364-c39ef2608c95)(label(Unbound))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 4f4387fc-fbdc-41b3-90ad-1def00e5713c)(content(Whitespace\" \ + 99e81a33-186b-457a-bfce-f5145b9bd050)(content(Whitespace\" \ \"))))(Secondary((id \ - 8892cd2c-0885-4957-80ab-3e2675f4bb75)(content(Comment\"#err: \ + 8592d68d-3e53-46c0-935b-16d1c836ba58)(content(Comment\"#err: \ unbound type var#\"))))(Secondary((id \ - 80d01050-b2ce-4ac8-9ec6-0170deda3533)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2b1798d7-13de-432e-95a5-48bf480f4831)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 204f4073-1e00-4bdd-bd93-385d46f05b13)(content(Whitespace\"\\n\"))))(Tile((id \ + ca0c6033-2ddf-4f79-b055-b48b89831a05)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 469c772a-6cdc-4419-bb66-aaee9d260caf)(content(Whitespace\" \ + 2d6e17bd-d828-47e3-b4be-350c0b73bffe)(content(Whitespace\" \ \"))))(Tile((id \ - 18f0f427-bf66-4c29-8220-dce417a0dad5)(label(notvalid))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c1667cf8-ac3a-4b57-a1af-5add1cadbdec)(content(Whitespace\" \ + e5e19711-bab1-44c1-b80a-558676c264fd)(label(notvalid))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 5b817dd7-3b08-4638-bc49-927e1191e4d5)(content(Whitespace\" \ \"))))(Secondary((id \ - 7a66d06b-fdbc-4a07-8f9c-fb0cab06be80)(content(Comment\"#err: \ + c329adb2-8abb-4f15-a2cc-54e1a9666062)(content(Comment\"#err: \ invalid#\"))))(Secondary((id \ - 9b1ca2ba-300f-4f4a-a664-85b57811b1c6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 78cee115-8bb2-4e76-b6c6-3f104bfe0764)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 1f6b7a3a-6544-4793-bd5b-2cedcedd362a)(content(Whitespace\"\\n\"))))(Tile((id \ + 47e1980c-6bcb-4d35-917b-0aa366e82a00)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d54d1a84-8d14-486b-a4e7-a47e9a71bbe8)(content(Whitespace\" \ + 71915789-4894-45a2-89e0-aaff76f7afce)(content(Whitespace\" \ \"))))(Tile((id \ - 688f920e-c2a2-442b-b6be-4fd3aaa2bfe9)(label(Bool))(mold((out \ + e1df3e66-0559-4e29-a642-fb9249ce3a79)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 42a13800-3507-4688-b610-92bd8f40b64a)(content(Whitespace\" \ + c0d5da6d-8291-468f-9811-17af4efba571)(content(Whitespace\" \ \"))))(Secondary((id \ - 3f5bc604-c1a1-4b28-b62a-f379cb00bf13)(content(Comment\"#err: \ + a7dec1b9-aaf6-48ed-92b9-48f6aceef004)(content(Comment\"#err: \ expected cons found type#\"))))(Secondary((id \ - fac092ba-b3ca-4bfe-b67f-7b1712db8cf6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a34b8831-ac9c-4b15-9f36-bad3a9623bea)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 540ed3f5-7525-42a5-b484-c71a160b49ad)(content(Whitespace\"\\n\"))))(Tile((id \ + bd587c31-7fb5-4d25-8723-596f77315616)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - a744ef23-572f-40e9-835f-814d1ced928f)(content(Whitespace\" \ + 5eefc185-3a52-45c2-ba3a-5f4b13d8dbb7)(content(Whitespace\" \ \"))))(Tile((id \ - 0658f89a-28ce-4de6-a50b-dae44302c439)(label(Int))(mold((out \ + 8f4a1a30-5205-4374-b4b3-63fb25420490)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 98717293-02df-4aa6-9b0c-0c4adee6cf7d)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 71d3afac-3e1a-41d9-984e-e5ea6da607bf)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 57276d63-e061-4585-9e5f-3c0a07471900)(label(Int))(mold((out \ + c5a4bce2-945a-4220-ad1b-f4dcf6c3149c)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 32f93082-70cc-490a-bd9a-8b1b863ea1c4)(content(Whitespace\" \ + e2d76872-4c0a-4466-8156-a165ff424b2a)(content(Whitespace\" \ \"))))(Secondary((id \ - e4902f69-d522-4a3d-9480-c4bf75b44cba)(content(Comment\"#err: \ + ef25dfa1-8d2f-4eb0-8610-d032e6e75600)(content(Comment\"#err: \ expected cons found type#\"))))(Secondary((id \ - 5df67ca1-51f1-4f0a-9e42-60b4955d7370)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3723b143-134a-4d1b-9482-e3db9ca2b754)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + c4609ea8-b2d1-4650-b0eb-543cc0b23a83)(content(Whitespace\"\\n\"))))(Tile((id \ + 8a9fa4fc-41ba-43bc-9a11-d971243df488)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4c7b2401-fc05-4a9a-8005-5a731405d897)(content(Whitespace\" \ + eb8dad38-7aae-4245-b33a-59a5a8dcb957)(content(Whitespace\" \ \"))))(Tile((id \ - ee423a74-19f5-4331-96ec-32fbec96ac1f)(label(\"(\"\")\"))(mold((out \ + 71968b46-dda7-41c3-bd0c-ec1ae8e9d8e5)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - 69b680ca-10e8-4999-a9ac-cd35c530f38e)(shape \ - Convex))))))))(Tile((id \ - 4127b3bf-d6f0-4328-a943-09f3937d4335)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 4b70551f-8d18-404c-abc2-7be85297eaeb)(label(Int))(mold((out \ + 4d687c4d-078a-447f-89e2-de2bfaf42ddc)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ + 976267ab-9b5c-4220-846e-1b135314b98e)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + de8c7cfb-4375-4637-b416-844c9e54d7f7)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - c162b951-60e2-40c5-b2ce-7fcf5abb6129)(content(Whitespace\" \ + ea0e5687-1874-4236-8834-272136dac6f3)(content(Whitespace\" \ \"))))(Secondary((id \ - 1f35f928-4a5e-4d0f-83f0-f92ad23e37e8)(content(Comment\"#err: \ + 7468b44f-805c-4e0c-ad77-c4cb4f848e6d)(content(Comment\"#err: \ expected cons found type#\"))))(Secondary((id \ - e11318ea-b24e-4c36-bc1e-48f0cf45a6ab)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bb584618-cce6-4fde-9fd5-d7664d50a6ac)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 4a153c35-5ce5-43fc-bbcd-7e43cbb18953)(content(Whitespace\"\\n\"))))(Tile((id \ + 18c08f07-6b58-4a22-8f4d-682810773cb3)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e3341aa8-5447-4345-b26e-771ef6594422)(content(Whitespace\" \ + 7cd788b7-0236-40ae-b1da-2f20ab6a8cf4)(content(Whitespace\" \ \"))))(Tile((id \ - a89f44e0-6c1b-4392-aa86-a40eb1ad7d60)(label(A))(mold((out \ + f1feabaf-5ddb-4db9-b69a-b7e6eca70bf9)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - cf28523c-f133-4218-ae35-7036d973c1d5)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 8d82ae98-be0d-4f2f-beb9-3fcb2490a4a0)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - d5667e50-e604-4129-a70f-12d796a23781)(label(Bool))(mold((out \ + ffadc84f-e2c3-4bae-b968-b9ca33bc496c)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 1e352928-e4c6-4fca-ba2e-11cef32fefe4)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 2f1dab86-7106-4f52-a424-32ff23639a18)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 1ed09b61-a337-4e8a-a34d-2ab888561c24)(label(Int))(mold((out \ + ba7db097-40b6-4d66-b4a1-2059036739f8)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 7da994bf-6340-45c4-8599-a03ca2341769)(content(Whitespace\" \ + bd06261b-be63-4826-8c7a-2e82956837f5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 671e969b-0148-4345-b52f-d953506f9225)(content(Whitespace\" \ + 3ebb1024-ba7f-4a31-87e6-e023edacceae)(content(Whitespace\" \ \"))))(Secondary((id \ - a99ba882-d549-424a-8bbb-e6bb6cc14f5b)(content(Comment\"#err: \ + 76dd8410-d31d-4d22-ba0f-50559b87f636)(content(Comment\"#err: \ expected cons found app#\"))))(Secondary((id \ - dafc64b1-0620-41c6-88cc-4d3700a91400)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 63fd0ca5-5526-4d63-8602-7dc819005e93)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 56d28a0f-2244-4055-97e7-d87e504f59e6)(content(Comment\"#sums \ + a4f7906a-e44e-4c54-822a-2839c0cdb322)(content(Whitespace\"\\n\"))))(Secondary((id \ + cadf4e99-f2ec-4447-b970-7f972a395d06)(content(Whitespace\"\\n\"))))(Secondary((id \ + 98cb10d1-3207-476f-9e61-2af22fc00094)(content(Comment\"#sums \ in compound aliases dont add ctrs to \ scope#\"))))(Secondary((id \ - a292fd1c-d0c3-4aff-aea6-54fb47db6aad)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 4df5e4d4-8390-4158-a53e-ff75907deb30)(content(Comment\"#but \ + 685006ca-8fa3-4967-b9ba-183f7f154ecc)(content(Whitespace\"\\n\"))))(Secondary((id \ + 33f054b4-f4a2-40b2-8783-394a2d1299c6)(content(Comment\"#but \ compound alias types should propagate \ analytically#\"))))(Secondary((id \ - 3fda8862-fca6-41ca-a9e4-bc4154218455)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c6539017-bac8-4921-b1a2-dbd7686fd99a)(label(type = \ + 80dcf596-5dfa-4e32-ba56-a72707cb677c)(content(Whitespace\"\\n\"))))(Tile((id \ + 9642e332-c9b2-4f1a-9692-bd1569f5a63f)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c9219eb3-0e7a-447a-8e35-254101e3dd24)(content(Whitespace\" \ + ecd9880d-5dd7-4f39-a08b-9b91d584ebbc)(content(Whitespace\" \ \"))))(Tile((id \ - db95f67d-acf2-475a-ab91-4fa87ab97edd)(label(CompoundAlias))(mold((out \ + d1adeb5c-ab3f-4494-97d5-607502c6b76b)(label(CompoundAlias))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - e6628e78-f477-4bab-a09a-929b617b2083)(content(Whitespace\" \ + 61dfd748-f518-464f-a1e1-b9652cb0def6)(content(Whitespace\" \ \")))))((Secondary((id \ - 4a64ac40-4679-4366-91a0-b89dca268279)(content(Whitespace\" \ + 81f58e1d-3115-422a-be90-01d086075c5f)(content(Whitespace\" \ \"))))(Tile((id \ - 34933335-7008-497f-9d8c-b31135833d16)(label(\"(\"\")\"))(mold((out \ + e5325ade-d364-4f8b-9a04-bc74b904f07d)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - c218a674-f28d-4146-930b-eb6f796111e0)(label(Int))(mold((out \ + 40fef070-2b38-4421-beb6-5c8f2c6a308b)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 76077180-868e-4535-9870-6f45077f1279)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + e4d6f8f0-6d32-4a70-956e-9b656b7c6d2b)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2fdfc791-1dbd-4794-ac3d-acb08e108b1d)(content(Whitespace\" \ + bbb249de-9308-4a5e-b8d4-9101cf6102ac)(content(Whitespace\" \ \"))))(Tile((id \ - 660b1ff5-f543-4a94-9e0b-040501cb6950)(label(Anonymous))(mold((out \ + a029348c-f2d0-48e4-999f-ed821dce66f1)(label(Anonymous))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - ca0b24b7-26e4-4f18-a5ac-03da0194292a)(content(Whitespace\" \ + 03d4c0a6-1e17-4343-9428-9d215e96d0a2)(content(Whitespace\" \ \"))))(Tile((id \ - e54319f0-eba4-46ba-8904-e80e9db0b1da)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 43fc2bdb-d0e4-46b2-babd-5429c35a9e9c)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b5119751-b957-4a65-a4c2-ccdc1ab2bc89)(content(Whitespace\" \ + 8be1ea2c-fd19-41e8-a831-dfee3966e1a2)(content(Whitespace\" \ \"))))(Tile((id \ - 148914d3-99cc-446c-8bb2-3422cc4a553a)(label(Sum))(mold((out \ + 81dec1b6-4128-4881-bcd9-50e3a3e428c7)(label(Sum))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a3295e9c-3446-4e30-81b6-f9ea31d00099)(content(Whitespace\" \ + 6235a423-f744-439c-8353-fb9c24e1691c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 85cfca79-ca13-4d16-82c1-5f9b090483d0)(content(Whitespace\" \ + 29066f68-1f40-44db-9c83-efb0ba7a84c4)(content(Whitespace\" \ \"))))(Secondary((id \ - 3addc8b5-77a2-4d3f-b240-a42a1bdbacea)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4250cef5-a35d-47b8-97c5-c92a48b1c8db)(label(let = \ + b632fcd7-4568-42e4-ac0e-594cd4bb40db)(content(Whitespace\"\\n\"))))(Tile((id \ + d716fa00-7df4-413e-9916-3a0a6e640604)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - f2a63b3a-1ebe-4375-9749-4f12edd18d35)(content(Whitespace\" \ + ea39fa11-773b-423e-81d5-3b02f76bd085)(content(Whitespace\" \ \"))))(Tile((id \ - 714cbc78-0a5e-42e9-a83d-41a301f4dd1d)(label(_))(mold((out \ + 5d57e03a-351b-41ba-ad6a-ace053f8968a)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 6724882b-9190-4687-9383-cacd82d63928)(content(Whitespace\" \ + 87bb2a66-42f1-4be7-89e6-bb9556f13fd3)(content(Whitespace\" \ \")))))((Secondary((id \ - fd8b2b27-0be7-4768-a187-fe62a0a02300)(content(Whitespace\" \ + 0f036fb7-2f6f-4758-8aca-d454055eec0c)(content(Whitespace\" \ \"))))(Tile((id \ - 2da8f63b-a4ba-4fe2-9e78-af2a352f2036)(label(\"(\"\")\"))(mold((out \ + 1917ca65-db0c-433c-a8a0-0f5051b124be)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 503e30a9-aeeb-42d7-a42f-c02ef125b0e2)(label(1))(mold((out \ + caf1b5fe-02ce-4776-93b5-83ee336cb24e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 0d92f21e-fd16-4b4b-a512-afae726117e3)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 8ec33430-e0e9-499b-aa7f-37d478bb31b9)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 0fd5bd23-a708-4b48-98a0-4e4b9fa05c32)(content(Whitespace\" \ + a6561beb-8516-40ed-b30c-d79e85b5a1cf)(content(Whitespace\" \ \"))))(Tile((id \ - f9d77557-184b-4f52-acde-16f41d4166fe)(label(Sum))(mold((out \ + f26865be-cfc2-4eea-9a3d-ccb233775511)(label(Sum))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 0f2dbf7a-c881-4050-ad37-0ad7f6d6a7b2)(content(Whitespace\" \ + 52415178-0882-473e-81b0-85dfeb97fbb8)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 917c166d-0721-45a6-bed2-681f750485ca)(content(Whitespace\" \ + 4fc6a41a-cbab-4ee8-831d-f483c05d51fb)(content(Whitespace\" \ \"))))(Secondary((id \ - bbefa4fc-0966-4f39-835f-64d3516e5f53)(content(Comment\"#err: \ + 75d63fc9-22a0-4b25-b03d-c8c60d01cdef)(content(Comment\"#err: \ not defined#\"))))(Secondary((id \ - 60bc2aa4-0b81-4356-943c-e68f7ac510ad)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c01847f6-15bb-44ff-9f05-209367f03f7d)(label(let = \ + 5902d467-dad9-4d76-9289-cff3d2d908a8)(content(Whitespace\"\\n\"))))(Tile((id \ + 13e603bf-456c-4a68-a4f8-081ab1f27467)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 591380d8-d43c-47cc-94ca-249f078a157e)(content(Whitespace\" \ + 9e33f211-e11b-4123-a996-98e3b239b091)(content(Whitespace\" \ \"))))(Tile((id \ - 3fd95373-6092-40e3-b2bf-8f178061f9c0)(label(_))(mold((out \ + c419a6c2-109d-473e-b10f-4f86044ab502)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 4fdc4342-3d28-4d46-a063-da90e9b4d7bc)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + cdd7be54-b091-494b-90f2-4f33a24f36c3)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - cd43dede-f632-4f59-9e54-d8ad47755667)(content(Whitespace\" \ + 8fe7c565-b854-4710-adf5-93e4e8435308)(content(Whitespace\" \ \"))))(Tile((id \ - e1c2481f-fa45-4215-8081-d2eef4f8e8b5)(label(CompoundAlias))(mold((out \ + 8f2faaad-3556-4dd4-a893-34427cf0f0e2)(label(CompoundAlias))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6188a6f5-c684-4af8-ab9e-3256c23b7c1d)(content(Whitespace\" \ + 1a941975-2d17-4e9d-b59e-03a046859a51)(content(Whitespace\" \ \")))))((Secondary((id \ - 016923aa-5b98-4d44-9372-e16836d64f36)(content(Whitespace\" \ + 27b694ae-7a7c-4b1d-9ba6-9d1765ad3d35)(content(Whitespace\" \ \"))))(Tile((id \ - f705a020-a72d-4355-a982-13faad65a8ec)(label(\"(\"\")\"))(mold((out \ + d86c44c8-d177-4816-ad64-e2a102636bf5)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - eefcbd7f-aec0-4db9-a17a-b9ff21d5bc95)(label(1))(mold((out \ + 5df66e2e-0f4d-4712-b312-8a8f4270717e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - cbdd1550-c48b-4dcd-95f4-bce1f98a6d1d)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 1463a015-88ce-4310-8732-2674b62f0269)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 98a3cc68-afee-4809-aba5-75e733c673cd)(content(Whitespace\" \ + 976861eb-837f-4057-90cc-423961503364)(content(Whitespace\" \ \"))))(Tile((id \ - 37d16e1e-6da9-47f9-a9fa-50cdc3cd94a5)(label(Sum))(mold((out \ + 660a30f5-d516-464c-9f00-27468adc7df4)(label(Sum))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 4ae0a91d-b46b-4c3b-8f85-52bd7748fedf)(content(Whitespace\" \ + 6991618c-9ca3-4a66-9320-8cbb1033e337)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 40bb855c-6b45-4476-adb8-20151c081ee9)(content(Whitespace\" \ + 7af72e22-e007-4afa-84f7-1129f90e471b)(content(Whitespace\" \ \"))))(Secondary((id \ - 39500a9e-b189-468f-9103-b24cf76f040d)(content(Comment\"#no \ + b0520746-880f-4eb9-8d0b-62b8ce50c5fc)(content(Comment\"#no \ error#\"))))(Secondary((id \ - e7eb628c-3fa7-495a-a51b-e110980554fe)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a1406680-cf51-4b14-8f13-9a43b73fba46)(label(type = \ + eca69d84-ccaf-4136-b2b7-aee3aff06565)(content(Whitespace\"\\n\"))))(Tile((id \ + 9c7e2a19-1253-4730-b97f-41371b0b2633)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - f98204ac-7408-40ef-8189-a32946d1c192)(content(Whitespace\" \ + d9b31d92-3b25-43f3-8a46-1e8fb77a9ef1)(content(Whitespace\" \ \"))))(Tile((id \ - cbc36712-eb03-4be1-919b-c80e5bf9822a)(label(Yorp))(mold((out \ + 8215a985-87cd-4eeb-b453-019c74ddebc6)(label(Yorp))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - fc7c8c66-f357-43de-9b25-a108f59d2910)(content(Whitespace\" \ + 2827e281-ad0b-4392-a3d3-3697aedc866b)(content(Whitespace\" \ \")))))((Secondary((id \ - 14ab2d99-a891-4eb9-b55c-0b38ab4fcb0c)(content(Whitespace\" \ + b03f72ee-9893-4b0f-919b-167c8ff201c7)(content(Whitespace\" \ \"))))(Tile((id \ - 20f829db-22e2-431e-ab11-8eddaa088129)(label(Int))(mold((out \ + 97e12b1d-da88-4adb-af7f-02f2cb0a955b)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4fce041b-ac8c-434e-af8e-391e3ae60d74)(content(Whitespace\" \ + d704f7a1-04b8-4bc9-a9e9-b2ef79f39b3c)(content(Whitespace\" \ \"))))(Tile((id \ - a301e74b-6e03-4455-9cc3-2e325e942fa2)(label(->))(mold((out \ + c05204ce-ae3e-43d2-b444-335cc6009080)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 839e1f10-a8d2-40f4-9bc9-3dd5941cd664)(content(Whitespace\" \ + 9fd48464-2d3b-4c89-a74e-842fec231177)(content(Whitespace\" \ \"))))(Tile((id \ - 4630be6e-eca5-4718-a71e-239de5a48d4e)(label(\"(\"\")\"))(mold((out \ + 968a2ab4-cddb-443e-85d5-f239af736833)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 697f3706-b9ac-42b0-917b-2b57ad0f1c95)(label(Inside))(mold((out \ + d32c9b60-af33-4ad7-b306-bc5e609399bc)(label(Inside))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 8399b277-7d98-453b-a117-a188b78a2f7b)(content(Whitespace\" \ + 9223590b-d737-4178-97d5-ecd925664de0)(content(Whitespace\" \ \"))))(Tile((id \ - bb39161b-72ad-42c8-bbcc-2011a7bb0927)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 81131e9c-b78a-44f4-94af-d1f420b664d7)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0ca22f75-e67e-4179-8574-0251182b7355)(content(Whitespace\" \ + 5d6e9cb5-37df-492f-a934-aa0d860d6c4b)(content(Whitespace\" \ \"))))(Tile((id \ - 11752147-f120-4116-9aa3-c51df039f52e)(label(Ouside))(mold((out \ + 4d419704-0928-43ed-9a67-75baf0450c7b)(label(Ouside))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 3890ca6c-f213-4520-9198-cdb016151871)(content(Whitespace\" \ + 683ec632-064c-4ce2-bb3b-db1f40743bc9)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3ee55537-d8e2-4bc6-9bbf-fbf18d98d1e5)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7a297494-386f-44f7-b248-19650fadbab5)(label(let = \ + b764ddf1-4e23-4e43-9262-25a977d70164)(content(Whitespace\"\\n\"))))(Tile((id \ + c5ef6303-8e2d-4e18-9460-d9fce711a99a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d826df8a-e45f-4b11-b7ef-a6180ef6a475)(content(Whitespace\" \ + b7ecad3c-1945-40a4-bff8-104c3980e9d6)(content(Whitespace\" \ \"))))(Tile((id \ - 2d440fcf-b0de-4f95-a41f-cf7c6458ce03)(label(_))(mold((out \ + edf1b2b6-a5cd-4598-b1bc-62abfc8f8471)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3aa15bb2-877d-414f-afc3-ae075ea7d51c)(content(Whitespace\" \ + b55e4ea6-81c8-46d3-b9ed-fb88e8b44dc3)(content(Whitespace\" \ \")))))((Secondary((id \ - 6892ff00-0519-4456-89cd-7592ef4f1bfc)(content(Whitespace\" \ + 06c6d274-c0e0-4a72-9157-64143d5d0f5c)(content(Whitespace\" \ \"))))(Tile((id \ - 83e43479-5702-4249-a6b3-9715fb2223e9)(label(fun \ + 64e7b454-4aa9-4c96-8426-bf8cbd295349)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 56a67b30-cab3-4c6f-beb6-a0624c4fe56e)(content(Whitespace\" \ + cd07032c-3d70-452f-bef9-5fdec314dbf3)(content(Whitespace\" \ \"))))(Tile((id \ - e1100f99-f60d-4b5d-9df2-c8aa54744ac9)(label(_))(mold((out \ + 0d0bd496-2b14-41d6-abcb-892da1b50942)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 943e41f1-b39e-46b1-a484-115aca74a68a)(content(Whitespace\" \ + bf3bdc70-f358-433f-a0a3-b73129be9db0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 79623b4d-7d1a-4db8-bd72-22f39a30e159)(content(Whitespace\" \ + 069d87f2-30b4-4343-aa89-452af86019d1)(content(Whitespace\" \ \"))))(Tile((id \ - 2cf9dd1c-d6f8-4592-80e2-2deb9c8e0d22)(label(Inside))(mold((out \ + a8f6e316-23fe-43d6-ae87-da77a0e18daa)(label(Inside))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f295d8a6-6d2d-4b4e-86b3-38c9846765e3)(content(Whitespace\" \ + 2742564e-af1e-4eac-8903-ed5bf573e87c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9f125b81-04ab-4719-9aa9-32ad8fddb18c)(content(Whitespace\" \ + 15277889-0200-4dde-91c5-71ec68eadc99)(content(Whitespace\" \ \"))))(Secondary((id \ - 2e22a04a-a6fb-4372-a13b-f2ef4f66411b)(content(Comment\"#err: \ + 2f15e27b-2392-4415-ad40-7e8379abf40b)(content(Comment\"#err: \ not defined#\"))))(Secondary((id \ - aa6021c3-7440-4d98-ab16-742f2f2233a3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 712b71b1-7293-47bd-900c-abe487b15154)(label(let = \ + 4df8184e-4312-4e2c-acb8-c5ee10245bad)(content(Whitespace\"\\n\"))))(Tile((id \ + c9f910cb-2fd2-47d6-8168-5fc7fbc22eed)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - f833c960-f1ea-4226-8132-55f684151f32)(content(Whitespace\" \ + c58180a2-e049-43d9-9bad-f92c834a3985)(content(Whitespace\" \ \"))))(Tile((id \ - 44154061-c60e-475b-b9e5-23afba0699d2)(label(_))(mold((out \ + 4062b7bf-5df9-4c00-9402-610143ee006c)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 6ab2c025-ed6a-4bf4-b339-28982ccf8ee5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3d8c91f2-1199-4f2b-8be0-4df8f0c5e7a8)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - aa8f8cbf-d98e-4dc1-b9a0-841b244cfb78)(content(Whitespace\" \ + 08df780b-4967-4ae6-b8f7-835b9a1123e3)(content(Whitespace\" \ \"))))(Tile((id \ - 7046ff8f-5b8a-4d57-a39d-f5bd20916f68)(label(Yorp))(mold((out \ + 360ff087-6ce5-44ed-8278-6eb5c71de0e6)(label(Yorp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f14c92c8-9975-4598-baad-febacbc66ced)(content(Whitespace\" \ + 25804b46-4434-43af-9d40-9586e09e1ce5)(content(Whitespace\" \ \")))))((Secondary((id \ - 65eef072-dfab-48aa-a0bb-9f35dc517f96)(content(Whitespace\" \ + 8dec9189-efa4-4ce3-9077-9d6106c3c6bc)(content(Whitespace\" \ \"))))(Tile((id \ - 1d7f6f4d-2b5c-42c6-8fd5-e6e978b7da18)(label(fun \ + 84422b9e-b9e7-43db-ada4-8a2177cc8901)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 89ddccbf-2594-4e32-ad8b-9f360d7b2de3)(content(Whitespace\" \ + e18535e2-f9f1-483c-9517-83078bc5ee2e)(content(Whitespace\" \ \"))))(Tile((id \ - 30add1cd-018c-4a6d-b28a-ef0301b8f0e2)(label(_))(mold((out \ + ef219832-75e1-441b-8242-dfd0ccfaa943)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - b0884aed-306d-4f86-adca-5545e9d2cae5)(content(Whitespace\" \ + 3198f7fd-fcee-4d60-8d8d-c4ae93b689e1)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ff752faf-57fc-4b58-a8c3-d6739562f516)(content(Whitespace\" \ + 9676f68c-e9ee-435c-8426-55fb03b74826)(content(Whitespace\" \ \"))))(Tile((id \ - 7281c949-f27a-4bb8-b84f-50a2d364a4ce)(label(Inside))(mold((out \ + 11c55eaf-752e-434c-8205-aa0979c70a1e)(label(Inside))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fd023a10-7c70-40dd-9b9f-0d0e60a6118a)(content(Whitespace\" \ + 3be6bd7b-123b-401e-b91a-cb0b02b0eb7c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ee8c6a7c-5bfc-4974-8e61-edbefe26b78d)(content(Whitespace\" \ + 4272fc24-30cb-494b-a5e9-60979153011d)(content(Whitespace\" \ \"))))(Secondary((id \ - 5202ef3d-18f0-420e-9931-73e28fb1fe38)(content(Comment\"#no \ + 3bdb9f62-9fbe-40e1-a936-0b0684424ab8)(content(Comment\"#no \ error#\"))))(Secondary((id \ - 1efcebbb-8780-4255-a3f8-d175f1ee073e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e1e7b69d-469b-4ba0-a495-e75b857b3f20)(label(type = \ + c1d66da1-2de4-45f8-b572-9526f49a365b)(content(Whitespace\"\\n\"))))(Tile((id \ + f3eb8a20-1606-466e-80ee-1f088bb340e1)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 99a1a829-4099-40b8-bd35-b503867a2c46)(content(Whitespace\" \ + 9c360795-0f31-496e-a2ab-a77bc0920ed1)(content(Whitespace\" \ \"))))(Tile((id \ - 36788d6a-dbb4-4e09-9fb8-2b47e13d425b)(label(Gargs))(mold((out \ + 2f503192-c953-40cc-b196-1d1214f905ef)(label(Gargs))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - aa5ad82a-3e90-49f0-8d2e-a906d1993166)(content(Whitespace\" \ + 359fc616-3a4b-4fed-a987-4d7807047de7)(content(Whitespace\" \ \")))))((Secondary((id \ - 1975dae3-c37c-4e2e-87ef-3e34676c43e4)(content(Whitespace\" \ - \"))))(Tile((id 9a270162-b5c3-4967-9e80-4500ba8315f6)(label([ \ + 3d54b95d-6b3b-4b1a-8a3f-331e9388cc0a)(content(Whitespace\" \ + \"))))(Tile((id 53ae9864-aca9-4018-a3cb-76662425bb1a)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - cf62e16d-8837-43bc-9925-2b62630a4d2e)(label(BigGuy))(mold((out \ + ba0cf0d4-6a4f-4826-a6a0-457bf5fd4209)(label(BigGuy))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 67a6ef6f-0833-4b56-9cfa-dc35a26e5267)(content(Whitespace\" \ + 7ce7f928-26b8-4c47-b868-b942afe727bd)(content(Whitespace\" \ \"))))(Tile((id \ - 3e5b4c41-f8a7-464c-aa35-0497b093c87e)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + c4805da2-317a-420e-b323-9bd9eb774057)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 33950ea1-db28-4d4c-80fd-5d9458c01376)(content(Whitespace\" \ + 0b36e8bc-f4fa-45b1-b3f6-11bb5fef5c0d)(content(Whitespace\" \ \"))))(Tile((id \ - a7d579a3-3c20-42ee-84bc-fd774067d9c6)(label(Small))(mold((out \ + a3d1a1dd-4eb6-4815-b7ca-baad6d12848f)(label(Small))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 57f96072-51dd-45a6-8a75-1e3c5b61f249)(content(Whitespace\" \ + 72286b6c-144d-466a-9b7b-dcac3b30df97)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 01577e64-bf58-4a7f-bd69-f78e1fc244b0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d898b799-4ca6-4d0f-ba7a-05f5457b1f3a)(label(let = \ + 6f508128-be53-47d7-9740-eef28d7f19d3)(content(Whitespace\"\\n\"))))(Tile((id \ + 6bce35d6-75ee-4d08-b9c3-e2a5327f2485)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8f4217dd-d8cc-4ebc-a8be-6681e68928c9)(content(Whitespace\" \ + cad7c8a9-49c1-4f5a-9251-58a59b2c7705)(content(Whitespace\" \ \"))))(Tile((id \ - d68dff3e-1a30-4cf7-a591-82353680b3a2)(label(_))(mold((out \ + da19fbb2-f967-4b5a-8161-914738d791d7)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - dabef24a-a341-4bb6-ac2b-11634c79d0f4)(content(Whitespace\" \ + 12f4c6f4-5e75-4676-8fc1-a4190972d660)(content(Whitespace\" \ \")))))((Secondary((id \ - 98584257-10e7-42b6-a45e-7c7e92a94153)(content(Whitespace\" \ + 153ec2cc-a592-4bd9-8bca-f5ca2f0c32f5)(content(Whitespace\" \ \"))))(Tile((id \ - 19c2c0cd-dc53-49d2-ac55-69c81f10a046)(label(BigGuy))(mold((out \ + ab7ae389-6044-4351-97c6-2bee09c2166e)(label(BigGuy))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4c7017d0-6c48-4ee3-9e52-333862ef0c21)(content(Whitespace\" \ + b1ee7f84-e4bc-4268-800c-c049640e7bda)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 440e44c5-ed6e-4921-b99f-f2595612e93c)(content(Whitespace\" \ + 66a51d54-e827-4852-94db-1370f29bb85e)(content(Whitespace\" \ \"))))(Secondary((id \ - 0f6e0333-dac5-452f-b3a4-d45adad5af85)(content(Comment\"#err: \ + 980a8c78-aa73-4018-9bfc-0e207bdba09a)(content(Comment\"#err: \ not defined#\"))))(Secondary((id \ - 90807928-26cf-4f5f-806a-9164725c1556)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0e8a3461-af04-4423-b651-9fe8c006f323)(label(let = \ + c7a0c81b-b344-47ba-9245-773a86757cf9)(content(Whitespace\"\\n\"))))(Tile((id \ + 53dfb2bd-bad6-412c-b6ab-78879e4403ca)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 50404f5d-c653-41c6-bba8-42e228222987)(content(Whitespace\" \ + d81c625d-ebb9-426b-86f7-13e8bc98c6a2)(content(Whitespace\" \ \"))))(Tile((id \ - d96dca89-99af-4d53-a42c-c655ff25b297)(label(_))(mold((out \ + 85617da9-8478-469b-a8e7-cda34854c231)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 0ba9f9c6-47c4-4b3a-a90d-60ee56bee461)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 7297dfc4-5962-4253-bcb6-d309acfcfb7f)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c6f76877-8139-4175-b824-ea94b3c86e5e)(content(Whitespace\" \ + a7c09e56-d6ef-4c42-9ca2-2eb8ca5deda2)(content(Whitespace\" \ \"))))(Tile((id \ - 6f6c6001-5a0b-47e4-aa39-5153f95cf4a5)(label(Gargs))(mold((out \ + fccc6f0c-3f02-41c3-81b7-ad93aea8dbed)(label(Gargs))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - dfab673a-1f3e-4652-9586-549617a9401b)(content(Whitespace\" \ + 49451f76-6cd9-48d5-a581-278713aaebea)(content(Whitespace\" \ \")))))((Secondary((id \ - 41d055f1-a91f-45cf-9c01-c3b1e2db1161)(content(Whitespace\" \ - \"))))(Tile((id 8c8bac84-8384-448a-9df0-cfa8bce1af0f)(label([ \ + 0ed843cf-0d95-459c-8fb7-e58e27a324e5)(content(Whitespace\" \ + \"))))(Tile((id db1c004c-7614-4977-9da5-7085a98e4b62)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - 1acf9314-5f5b-4fb5-872d-0343ea92d419)(label(BigGuy))(mold((out \ + cc1be8b8-7922-4929-af7f-ff1e4da6688f)(label(BigGuy))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 08897f29-c87f-481a-8c6f-a22edb0788ba)(content(Whitespace\" \ + 32e124dc-cbc0-4262-a5fe-0c1b168fbb97)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 92cfe191-ff9d-442c-955f-5f995271f866)(content(Whitespace\" \ + 7e8879d7-3d03-414d-a3a8-0de23660d184)(content(Whitespace\" \ \"))))(Secondary((id \ - 9810fba7-a0fb-4af2-9cb0-dd4b84e377ae)(content(Comment\"#no \ + a5f8a52f-0f56-4bd4-bec6-b4e7591c342d)(content(Comment\"#no \ error#\"))))(Secondary((id \ - 66ceb841-6611-4337-a31a-12a5cbd24089)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9c2b5104-6ccd-4899-bd24-18b19dc8ca1a)(label(let = \ + a86b7b7d-6fbc-4fab-98f9-e189251fcde1)(content(Whitespace\"\\n\"))))(Tile((id \ + bcb8b7b5-d04d-4468-b57b-8a8fe8346bbb)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ff106bd8-3e77-44e0-8776-98534a59abe1)(content(Whitespace\" \ + 892fe1b4-bc15-44ab-a8ac-d9b3e0fc3cfb)(content(Whitespace\" \ \"))))(Tile((id \ - ca8e9c0b-34b4-4bce-bc7a-b389e315ddae)(label(_))(mold((out \ + 9760067d-18d9-4e53-a3a7-83063c46471c)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 37b16295-00a0-4622-a632-7147c389de04)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + e0d9c8f9-26e9-4468-9c53-ef358b7375a9)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0c26e47f-4c09-43f2-850c-54878337e8b1)(content(Whitespace\" \ + 76a580f6-97bf-4f8f-b092-6dc14c007099)(content(Whitespace\" \ \"))))(Tile((id \ - 89c04f2d-1440-4140-98ed-728ab5007f3c)(label(Gargs))(mold((out \ + 74dcfd27-8e04-4048-9af6-8f7faa3c6205)(label(Gargs))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 374242b0-7851-4223-bf66-05a4ec39e3f4)(content(Whitespace\" \ + 744ac54b-7d7a-4a77-9671-afa4377e0da7)(content(Whitespace\" \ \")))))((Secondary((id \ - c8c6ece6-9625-47ac-8268-fd5b088022fb)(content(Whitespace\" \ + 7a45b4c7-1be5-4b93-a83c-063816ecc75a)(content(Whitespace\" \ \"))))(Tile((id \ - 23a2160b-4511-4bf4-93b4-1f683c8ea3e0)(label(BigGuy))(mold((out \ + 2210880b-3ca7-4fb7-8ba4-cdf2370fd5e7)(label(BigGuy))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0fcfb4cb-206c-4271-8e01-21b8f8b8a829)(content(Whitespace\" \ + 87f1fdb2-694c-429f-8182-2f4d8afa5fa7)(content(Whitespace\" \ \"))))(Tile((id \ - 2231f476-155a-4eb4-95b4-2ffd29b80a7c)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + a5af65b7-739b-4450-a82a-8abfae4ef5e4)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 487db073-d8c5-48e5-b123-ba3a2f6db6e2)(content(Whitespace\" \ - \"))))(Tile((id c76ec439-420a-4861-b42a-8e79930609d1)(label([ \ + 5b7e41a8-9c5b-4057-9e85-2d91e682f321)(content(Whitespace\" \ + \"))))(Tile((id 1b855c82-2dca-48f8-80ec-f170ee04cc98)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - e5b75fe3-89f4-40c4-b9a4-b5cb51fac788)(label(BigGuy))(mold((out \ + d390eba9-9726-4f6b-9f8d-ae0134346520)(label(BigGuy))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - d3dd54fc-7ffc-4d0c-8dd0-bf7ef6457b44)(content(Whitespace\" \ + 5fbb51d9-4772-4a81-beba-43f39d796d34)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e339ef99-da83-4e07-b97c-0ea6eb0bf0d2)(content(Whitespace\" \ + 6f3fe04b-7b9c-4748-b084-da7657bb7cb0)(content(Whitespace\" \ \"))))(Secondary((id \ - 07b8ca66-0b3b-4ff9-96a7-1b6c3d1ee2e2)(content(Comment\"#no \ + 98fed9d3-9bbc-491c-ad55-49794b84bfdb)(content(Comment\"#no \ error#\"))))(Secondary((id \ - f4fbbeba-e830-4d0f-bc01-c7fcf2c72149)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 798f7692-dcd9-4a69-b8d4-d864b81d9e46)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - ccb10986-e1c2-4717-9e40-f483a023fe77)(content(Comment\"#unbound \ + 071ab1ab-da5f-4d4f-94d0-a0b69ab6ec3d)(content(Whitespace\"\\n\"))))(Secondary((id \ + b16d13cb-4267-4304-8b52-755c370859d2)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5a95e82b-b85b-4723-8b24-bfc5f5e2994b)(content(Comment\"#unbound \ tyvars treated as unknown-typehole#\"))))(Secondary((id \ - 8fbfacd7-4f4c-447c-8cee-8b8389804820)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 219161a8-500b-4644-96ca-3cc60f837891)(label(let = \ + d2cf3c36-b459-43d8-aa91-ae0221ff256c)(content(Whitespace\"\\n\"))))(Tile((id \ + b9e7ec75-0c3b-466b-bb1c-b6b6215f7727)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 4d5a6229-7faf-48de-947a-95bf207cae81)(content(Whitespace\" \ + b5419758-62d3-4051-8954-1173793960cd)(content(Whitespace\" \ \"))))(Tile((id \ - fda91126-1717-4aa9-80d9-eccc25f22d69)(label(a))(mold((out \ + 856b4cb1-a394-4709-a2d0-036af0f19670)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2404d77c-60d3-405f-b281-1780231f4fcb)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 4f2ce133-7e82-4eaf-9e1f-031b5fe7fbf0)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Tile((id \ - afd302f2-0780-438b-aa2e-cc8d650057da)(label(Bad))(mold((out \ + 2153f84b-2abb-4b57-a8be-5d1fc665615e)(label(Bad))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 74226087-3a3d-4492-94e3-6e9eec279213)(content(Whitespace\" \ + a17fefb5-1e4d-41fe-929e-fbce980b67d6)(content(Whitespace\" \ \")))))((Secondary((id \ - 87c77f09-c937-4d5b-b4fc-af4cde8e96c6)(content(Whitespace\" \ + f23000bf-b847-42cf-b29d-69a356970fae)(content(Whitespace\" \ \"))))(Tile((id \ - 44d53111-ae73-4baa-bc1e-21b2bcdab066)(label(0))(mold((out \ + de8d5585-a42b-460a-9796-915ca91c4356)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b6420725-968b-47e3-8088-b6f9ad69191d)(content(Whitespace\" \ + d8858983-ce84-463c-a302-c45b539cbf7c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d1463fc7-e198-4505-bde2-3194a4b9f059)(content(Whitespace\" \ + 7bd09626-9b70-4fdf-a296-ebb4af0dd9e0)(content(Whitespace\" \ \"))))(Tile((id \ - a40251c7-b8fe-4d13-88ab-7099f374f1ea)(label(a))(mold((out \ + 02df711b-d66d-4835-8335-fdd3f524712e)(label(a))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a67ce1eb-c586-427f-8760-73d05c4a0868)(content(Whitespace\" \ + 8ec22496-f1bf-466e-8993-45fed884410a)(content(Whitespace\" \ \"))))(Tile((id \ - 5c6ac5ea-9314-44bd-b505-3555f3fda0c6)(label(==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + 6fc53113-fb3a-42c7-819a-be8d9649012b)(label(==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f27a6e17-4598-4c77-97aa-b23ad5c57c30)(content(Whitespace\" \ + 26ab1f83-fce3-46cd-8c21-44013553f7ac)(content(Whitespace\" \ \"))))(Tile((id \ - 5f4aa276-21ab-4df9-837d-47fc7f5c2329)(label(0))(mold((out \ + fe6adff9-71b5-4800-ae43-9ae4f588a231)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 790d9673-2597-46f1-a7a8-ca126695ca31)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + b7d331ee-30f0-4a40-a640-ddd610dc52aa)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - be418afa-4704-4ff2-8fa7-518de2ea1b7b)(content(Whitespace\" \ + 86c66d93-4bd9-472e-829a-c115e17106c2)(content(Whitespace\" \ \"))))(Secondary((id \ - 1163438f-7bc2-45f0-ab80-d831fe6e89e9)(content(Comment\"#err: \ + c1a9a07f-fc20-4e71-b95b-c5b424a23210)(content(Comment\"#err: \ not bound#\"))))(Secondary((id \ - 96b31255-b1fe-4de1-9617-e368995784f0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 25e19ea7-ad9a-4c94-ad6f-afa03f50fd1a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7199f788-c3e2-4104-957d-9773562d080a)(content(Comment\"#non-sum-types \ + 8f4f0f64-2f3b-42b4-b20c-d0a9ebbb56cb)(content(Whitespace\"\\n\"))))(Secondary((id \ + a8fae9ba-bd75-44d0-be17-06bba380ccc5)(content(Whitespace\"\\n\"))))(Secondary((id \ + 668a740b-bdd1-4180-9d7b-25471ec9226e)(content(Comment\"#non-sum-types \ cant be recursive#\"))))(Secondary((id \ - 93fdc15b-1031-418d-843d-6337df2d79a5)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 89d68700-afb1-4562-838e-9db767e0c312)(label(type = \ + 52a8a716-06fb-44dd-b635-3472a9792d61)(content(Whitespace\"\\n\"))))(Tile((id \ + 3f4bef85-fc5f-49e0-b818-cba9f0778272)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a4301ab5-ef0c-44b6-a261-a7d4e497d257)(content(Whitespace\" \ + ce58cc68-cd82-4524-9d4c-4d1d5047e395)(content(Whitespace\" \ \"))))(Tile((id \ - f0e88a3a-e5bb-42d0-a432-76e6acaf6d68)(label(Lol))(mold((out \ + 5d934397-aaec-4a28-8c44-eacd648fda6d)(label(Lol))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 47321d59-c948-4d9b-bc9d-3275566f8c45)(content(Whitespace\" \ + 4849bc0a-a3ce-450d-b289-ee60cbe65069)(content(Whitespace\" \ \")))))((Secondary((id \ - d19fa033-9912-429a-9ca4-5dd4838bac64)(content(Whitespace\" \ + 573ad4ad-4e13-4420-a6f1-a66f43279941)(content(Whitespace\" \ \"))))(Tile((id \ - ab3fb279-a3ca-4074-81dd-0ae7c80527e8)(label(Lol))(mold((out \ + addad050-0502-4c05-b6f1-5fce268bb700)(label(Lol))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c293d6ff-8104-4f4f-acc5-12d691fb5ac9)(content(Whitespace\" \ + 0553f523-a997-4901-bb0b-87a05b432b03)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f93712dc-73e7-40ae-8a21-42d313da2ff0)(content(Whitespace\" \ + 9a819086-2078-40ee-9a1a-21606d02b8a1)(content(Whitespace\" \ \"))))(Secondary((id \ - 6f1c746b-deaa-4270-bf25-4c85957dc2a5)(content(Comment\"#err: \ + 4e27451a-40ef-4ba0-a12a-44643e57fa65)(content(Comment\"#err: \ not bound#\"))))(Secondary((id \ - 405eced9-cd91-478f-b4e2-de6e57f425ba)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b5021224-ac6e-4754-9f51-a2bddece86e6)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 29d254a0-4e1b-49a3-a099-668728f1c89c)(content(Comment\"#no \ + 676e00de-3544-4f33-95aa-e7e322b86be9)(content(Whitespace\"\\n\"))))(Secondary((id \ + 43cd4830-f9d7-48a8-8a40-85f79433fd39)(content(Whitespace\"\\n\"))))(Secondary((id \ + 731b69d8-dd1a-4ff7-9163-7ce9e016d7a6)(content(Comment\"#no \ errors: analytic shadowing#\"))))(Secondary((id \ - 686f7f49-42c4-4b2a-9a23-ee4512165db0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1ff64461-15b5-446b-a76c-24c13d5d444a)(label(type = \ + fb9de40b-6639-4a0c-be97-ca55eee77bc0)(content(Whitespace\"\\n\"))))(Tile((id \ + 39502d12-2289-4cb5-aa7a-85f2e1d9b629)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8edfaff4-4919-49e7-9e15-8520f5b09f76)(content(Whitespace\" \ + 42b4daad-1a04-410c-a934-c396cc336feb)(content(Whitespace\" \ \"))))(Tile((id \ - 1becea0c-d28f-4f43-b256-9ae031247317)(label(Tork1))(mold((out \ + 1a31b4d3-44dd-4bbd-bd16-8f516ad4c165)(label(Tork1))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 3f451423-322f-4a03-803c-a9fe4469059d)(content(Whitespace\" \ + a77ad622-e03d-4625-8513-3ce6c86c213d)(content(Whitespace\" \ \")))))((Secondary((id \ - 149cde0a-a955-4583-bf00-ba75531fb9a8)(content(Whitespace\" \ + bc4a9379-e76b-4f6a-ae51-6c03368cd39d)(content(Whitespace\" \ \"))))(Tile((id \ - 525b3590-dec9-42c1-a039-3a89cec2c3a3)(label(+))(mold((out \ + fab7bf8e-aa55-4fd3-9bb9-73e89e845a54)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 9f71a0e6-300e-4185-9579-11f23a8c84be)(label(Blob))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 267c0915-83c3-489b-b8c9-34f72da1a4b7)(label(Blob))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - fd7ac165-1225-4f0a-a44e-9e63673f88ee)(content(Whitespace\" \ + 1578116b-1db5-45e7-b9ec-22154096c988)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 25c9763d-04cc-4384-8fa3-1b7bd69ed0e5)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 16d2afaf-e258-4525-b753-8c2bf7f491ff)(label(type = \ + 8f69102f-a33c-4164-8e74-fd20ed811617)(content(Whitespace\"\\n\"))))(Tile((id \ + 5494416a-7f58-4f45-9c5e-6b3bcd96984c)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a83010c6-6c5a-462c-82c0-61ae9e2321a6)(content(Whitespace\" \ + 14171c46-0000-4f49-a18d-5e0685e098b3)(content(Whitespace\" \ \"))))(Tile((id \ - 30177813-493b-425d-b6b9-0882ddc5599a)(label(Tork2))(mold((out \ + b12148ff-2252-4d1f-a498-18ff70f482a2)(label(Tork2))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 2990e467-ad88-4071-be30-5931c90b96d2)(content(Whitespace\" \ + 30f486e0-9a72-467e-b01a-c88c92b6c5e2)(content(Whitespace\" \ \")))))((Secondary((id \ - d591a449-b5a5-4b2c-9816-7b60f1319af0)(content(Whitespace\" \ + eaf29043-93b7-4b43-a6d4-9d84dced4e6f)(content(Whitespace\" \ \"))))(Tile((id \ - 2572cd15-f6fb-4b7a-8d0c-3359281fc897)(label(+))(mold((out \ + 4bdb6b0b-11f0-4f48-97c0-00f3b611a4f3)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - daba6aeb-2bd4-4768-9c28-a5197ed2e69d)(label(Blob))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + bc845647-1464-4956-950a-fcefa5cfa454)(label(Blob))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7c56b1d3-71b0-421b-9093-f54733ab5a14)(content(Whitespace\" \ + 4bd9bccc-858d-4fc8-a1e1-45dd6c674c2a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0a54f1bb-05ab-474b-894c-0b29d1449cce)(content(Whitespace\" \ + 5941d2b6-3311-485b-a367-186680ce45a2)(content(Whitespace\" \ \"))))(Secondary((id \ - 30114535-b613-4192-b939-eef1e5ccb79c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2a304f33-da99-4aa3-979c-e747ef575d92)(label(let = \ + 30b9b699-1c26-46ee-9d6a-cdb083508986)(content(Whitespace\"\\n\"))))(Tile((id \ + 63873fc6-b24c-474c-8451-f0319ea31c48)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 81d70396-09a7-49cf-b791-a13e263e658e)(content(Whitespace\" \ + 8a5a4915-58e6-4f9e-af2a-dd5a6ec31e74)(content(Whitespace\" \ \"))))(Tile((id \ - 35f31cae-e178-4ee3-b131-a2e4e9d05c3c)(label(x))(mold((out \ + 44aef16a-7cc6-4170-bb27-1bdd1b46699f)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 21d5be43-0bd5-4b04-9451-cd49e298eb43)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 84f3b1af-624b-43c9-909e-2ff6c15f324a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Tile((id \ - 8c464058-23fd-4d6d-8989-199cd73fc794)(label(Tork1))(mold((out \ + 563d7c82-ad90-4b47-afed-b9cbdf4f12a1)(label(Tork1))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f917dbed-94bb-4c09-9661-5869bd3c2f73)(content(Whitespace\" \ + a6011ca4-93c4-419b-a67d-75e9c863fd9b)(content(Whitespace\" \ \")))))((Secondary((id \ - 8c883f5c-19c0-4005-8d64-7b957c3875e6)(content(Whitespace\" \ + 10f0588d-7294-40e8-9840-f9826db9e133)(content(Whitespace\" \ \"))))(Tile((id \ - 29ec207b-0631-4208-95c3-fbafcfd0b834)(label(Blob))(mold((out \ + d0ff59ed-ac6c-4d3b-bbfd-8ace04c855fd)(label(Blob))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ded79c28-cd8f-43e0-a245-7b07826d1f68)(content(Whitespace\" \ + ebd81c08-01af-4e2a-be8f-6610e2df9b5a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9c15d35c-6b79-4da6-94be-31c638ff9d74)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 4221f40f-9932-4357-9991-6036e9995b01)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - fd3ef32c-2c79-4426-ae9f-fc1167b82b4b)(content(Comment\"#exp \ + e8fea8d3-bde2-4255-9da9-6b90e611d582)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5b5026f2-8cb9-49ad-9e5d-ea4d14c0c035)(content(Whitespace\"\\n\"))))(Secondary((id \ + 00e9c695-8e0c-4ff9-acb4-d7c5024c3479)(content(Comment\"#exp \ tests: happy#\"))))(Secondary((id \ - adf5313e-1df5-4df1-864d-9b7c5a812667)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d4348036-dc0a-4680-bb8e-cf0047c0940e)(label(type = \ + 9f913f02-d26b-41a2-9a8a-0aedeeb827cc)(content(Whitespace\"\\n\"))))(Tile((id \ + 4182a900-50f0-4321-9cd9-c31e262f6cec)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8086acf0-34a1-4686-be8f-26863527daee)(content(Whitespace\" \ + c469b0c2-9808-49d9-8de4-2859a73e7d98)(content(Whitespace\" \ \"))))(Tile((id \ - c5aecbc7-c328-4ba8-8cd9-9d7a00e0cb21)(label(YoDawg))(mold((out \ + 5b48c769-1d49-4aec-ba7a-782b729ec0c2)(label(YoDawg))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 7b2e209a-0ea1-4915-9cf2-f3c2be5a2879)(content(Whitespace\" \ + 9df2cff0-9acc-441c-95bb-62b62988d87b)(content(Whitespace\" \ \")))))((Secondary((id \ - 820a2676-823e-4bc6-b300-5214aa0789f1)(content(Whitespace\" \ + 88a87e8c-1f6d-4afd-bae2-501813299849)(content(Whitespace\" \ \"))))(Secondary((id \ - d15001dd-0eae-4e73-afd4-482ab7a3162f)(content(Whitespace\" \ + d71f5c70-8e84-4fe4-8487-f0a372363384)(content(Whitespace\" \ \"))))(Tile((id \ - 0d01ffdf-6b97-4486-8ff9-044f5a9b3022)(label(Yo))(mold((out \ + 6ec93fab-9058-4dd5-a7f5-bfaaebc268cc)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - ac7e5081-6998-4cb3-9c1a-c40837a12f5c)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 20e367dd-ed59-48cf-a9f2-d83f26fc98df)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 99b838e7-8c34-4a56-b293-1b1ae38a1049)(label(Int))(mold((out \ + 217d5faf-873c-4015-ae58-f7a9678c0e31)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 0c38c8bc-db43-480a-841e-10779cde50a6)(content(Whitespace\" \ + 24adf632-92fc-4100-8f64-4e1a408953f2)(content(Whitespace\" \ \"))))(Tile((id \ - b0edf54b-6bef-45ba-838d-7403aadd4f27)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 4a4a927f-90d2-464b-a95d-5bbafbd24056)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 5cab4b3c-9cb4-4ab2-9d42-924eba8f3aa8)(content(Whitespace\" \ + 9587ea62-dee9-4b1e-9ad1-ddea2b529084)(content(Whitespace\" \ \"))))(Tile((id \ - e51124be-f1a0-49e6-8574-38bc09feb291)(label(Bo))(mold((out \ + 4df62e34-08fa-470e-b792-e1c4cc6acbf0)(label(Bo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 64254a44-0afb-4267-b67e-45209d5fd9e5)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + b284f0c6-7f23-4625-a3ca-65858679d9d2)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 5ef14ff0-0634-4e9e-bb53-8288e942193c)(label(Int))(mold((out \ + 0e485ec7-96b2-435f-9331-d55870bdd079)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - e9ac6fe6-8a71-45a7-8da8-1f5f90f28133)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + a548fa6f-b407-4b99-80ce-3c47d53886bf)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 155ba47c-7565-4213-8397-d934baca7e3d)(content(Whitespace\" \ + 0741c58d-7c84-4eac-938e-c9ec2fb17845)(content(Whitespace\" \ \"))))(Tile((id \ - 4037ef97-2006-4a44-8e3f-52e9f386789e)(label(Dawg))(mold((out \ + ed51fcf7-2b2e-4822-8b12-c6bf2d325112)(label(Dawg))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - c29d5af2-a7e7-4eae-80be-e02c08500412)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + d7b0d16d-ef67-4086-8797-317f1f927b7c)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f193a595-7f99-4b7d-9d65-7d8e43ec39be)(label(Bool))(mold((out \ + 518d24c7-158e-468d-8727-271691e8e966)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 72564c9c-d9d3-427d-afd2-4ac8076568c3)(content(Whitespace\" \ + 3a411ead-118d-4d09-8221-5b0008492ded)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3f1708db-324e-4323-b079-049b8b24bf4d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 39838558-510b-43f5-94ea-1123d44a4893)(label(let = \ + ba581f63-51bd-4ea8-9ffb-9b7112c94ac9)(content(Whitespace\"\\n\"))))(Tile((id \ + 7ea2869b-d8dc-4d26-80b9-dcf8dd905ebd)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a9543098-44f2-4343-a935-103e66129cd6)(content(Whitespace\" \ + 8611ee0f-e191-4ed6-b93b-0694008bc466)(content(Whitespace\" \ \"))))(Tile((id \ - a4bb3cc6-2f5c-4aa4-b759-64f98efebc6e)(label(_))(mold((out \ + 3deebda3-10c9-4729-9e69-94f502d90a44)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a952baf6-5bcc-4bb5-9b5f-ec904f22493d)(content(Whitespace\" \ + c07c68e0-cb81-46c8-a113-3cf234300050)(content(Whitespace\" \ \")))))((Secondary((id \ - c05f234d-1302-4f88-a783-8cdf34d3d40c)(content(Whitespace\" \ + 5633aeb4-fabd-496e-a88b-481a77aed6b6)(content(Whitespace\" \ \"))))(Tile((id \ - 41e38c8d-fb14-449f-b631-c92243735859)(label(Yo))(mold((out \ + 0609b923-6418-4c8c-aaca-eb1f494e84a0)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2af715e2-01fd-43a7-b51f-11eb8b512622)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 018de1d3-a5f4-4082-a5ad-a42bea8c06f4)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7bc5dec7-96f1-4cf0-b1c0-4656eaea8caa)(label(1))(mold((out \ + 23e547bd-dee0-4773-a433-3866a7267348)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - acc97d46-0081-47cb-8390-cf07cd221dfd)(content(Whitespace\" \ + 69d8352c-9acb-4a0f-b1c7-0e3752a0cf57)(content(Whitespace\" \ \")))))))))(Secondary((id \ - faafe673-8162-4792-9f78-ef39ad8711d9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e440a940-5e6f-41d0-b461-d2623f941031)(label(let = \ + e6934fe0-6183-49f2-bcb9-fb2617ca934d)(content(Whitespace\"\\n\"))))(Tile((id \ + 758d4f0d-2bff-40a0-bf73-1e3caeaa1fa2)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 108659a4-8b68-4b8c-b7b5-6b789ceef204)(content(Whitespace\" \ + a576f3a1-8c9a-4961-9e11-94b0e2883a03)(content(Whitespace\" \ \"))))(Tile((id \ - 4c444ede-7a17-4cc4-b1cf-a5c908b81294)(label(_))(mold((out \ + efa64c22-a5eb-4860-894f-6f746b51ba7a)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 73c083d3-7732-4eb4-8805-320031e221c9)(content(Whitespace\" \ + a8239952-bdb0-43ef-9064-9bd523f851dd)(content(Whitespace\" \ \"))))(Tile((id \ - 55113fea-afb6-4ce4-86f8-2eaeea055cb9)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 8b547667-485f-4402-99f4-9d83fe051555)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 75cc1d9e-47cd-4b09-a995-76d799797482)(content(Whitespace\" \ + 29fa8cba-2a39-46ab-bb61-e3cc1dc81acc)(content(Whitespace\" \ \"))))(Tile((id \ - 66fde9e3-e01f-4432-ac18-3514f5d420e2)(label(YoDawg))(mold((out \ + 3a05b5c2-008f-4806-b0bb-c5bc1b07bd04)(label(YoDawg))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - ad6b6fa0-0ed3-43e5-bc22-33ff5e4474d1)(content(Whitespace\" \ + 36d9b47a-0198-438a-b69c-5c2a1ee4197d)(content(Whitespace\" \ \")))))((Secondary((id \ - 8c87c560-68ee-4aa6-ae62-b51025662c41)(content(Whitespace\" \ + 7afb0598-72b4-499a-a91c-97f43295d956)(content(Whitespace\" \ \"))))(Tile((id \ - 7c917f3c-12da-47df-bce7-dcaef2e9d144)(label(Yo))(mold((out \ + 374f4d02-c663-48b7-898a-05a756f90058)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - dfc92cba-547f-46e3-a1ce-33d261945c01)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 88135158-74e8-49e5-8c6b-1e04b4e6e0dc)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6ce99c4d-452a-407b-a6ad-9ee8c8b794bf)(label(2))(mold((out \ + 27c7b963-af6a-4a2f-b844-90d93e5b34d5)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 5cb5dc92-6dc9-4099-8240-b068232de661)(content(Whitespace\" \ + 7c0175a7-f9eb-4895-8691-4efe369afc92)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 8d2d26b3-42ba-435e-a638-b38b16e28cbb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e09c21c8-8a84-496d-813a-f55700f64d96)(label(let = \ + 8903a4ef-12cf-49aa-abce-50c0e1a680ce)(content(Whitespace\"\\n\"))))(Tile((id \ + a0d5fac0-2b33-4cf9-8752-2d290ebbd037)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - dd2a10c9-a86b-4cc6-9a2f-8b27d8d75b11)(content(Whitespace\" \ + 80490997-4865-40fa-a3dc-9a7227828f75)(content(Whitespace\" \ \"))))(Tile((id \ - af04d0da-9208-45b3-addc-a29c293f6f40)(label(_))(mold((out \ + a54667e7-1a73-4819-845b-9c5fb6847209)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 35ccdacb-fc30-4f21-b258-7f69e627d7e2)(content(Whitespace\" \ + 901300c2-00b0-4a66-8d60-bf855b4aa00c)(content(Whitespace\" \ \"))))(Tile((id \ - f558961c-a720-4e29-a7ce-0c632b872292)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3c36dca3-d1a7-41b4-9c24-23510cdec65a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ca42123c-25ad-4a5a-b973-594607c93d58)(content(Whitespace\" \ + 7b209393-e207-49f4-888d-0d0fbee59b76)(content(Whitespace\" \ \"))))(Tile((id \ - f52df601-dcc7-48bf-b6fe-b341c76aaa8b)(label(+))(mold((out \ + c32e1882-e0c2-4233-9d70-e0fc62430d98)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 147816da-20b4-427b-9dc1-ede6c2110c6c)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 5000688e-60b7-4a42-ac2a-614df5411e40)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 357b2aa0-b570-468d-92d2-6875660183dc)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 80ad2888-082c-4a46-b9bf-263fcc096af9)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 20b39e9a-6f5b-44b1-8ddf-ce4dcfa8026b)(label(Bool))(mold((out \ + ef6f8c87-edda-43ec-92ac-4958593d3718)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - c8716d17-a9b6-41be-995d-ef7e42e6f73b)(content(Whitespace\" \ + cc9762f8-ee24-4e48-b515-6a1838cdd558)(content(Whitespace\" \ \")))))((Secondary((id \ - ab2471b5-5cda-4a87-98c4-de2f8dabc2de)(content(Whitespace\" \ + 2c7b046a-bbff-45af-8630-a70df49318ce)(content(Whitespace\" \ \"))))(Tile((id \ - f845997e-ab21-4c3b-92af-c65664ab5dad)(label(Yo))(mold((out \ + e22785da-8071-460a-8bd5-468c24fc33c6)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 377ba38f-d98e-40ba-ac48-e4fda0ca1581)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f2d4cc0a-29f9-40ca-ba5c-d80ac5b1e925)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7d3a00c2-3da9-4479-a008-90b827278327)(label(true))(mold((out \ + 717ddcd0-da26-4e94-9418-bf511b61d000)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - ee221f24-9e4c-4268-a868-bffb24fcadaf)(content(Whitespace\" \ + 75a9a7cb-4c09-428e-a033-4e54a5ddb080)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 68ca6027-bc33-4fcd-a466-07a44cdd968d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a70b3bf3-5204-4dd0-acbe-760d495de0bc)(label(let = \ + f415e599-9f2b-49ce-b1c5-a1e09e83bc0f)(content(Whitespace\"\\n\"))))(Tile((id \ + 00629c83-c79d-48ef-a1d3-0d6a6e48e4fa)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 297e5d36-9fb0-425f-9580-d5fffbb4cc1b)(content(Whitespace\" \ + 2ac253e2-e1c6-4bc8-a084-5ed0735d9dd9)(content(Whitespace\" \ \"))))(Tile((id \ - 9d07da15-bb00-4575-ad9f-2cdce9a942e7)(label(_))(mold((out \ + d9870e6e-925a-4928-b300-3f3177886a4b)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a2a2fd58-2ac5-4b0b-a55b-01646a3b4dde)(content(Whitespace\" \ + b5cc3ada-64a5-41d9-943c-b1eb5738ae18)(content(Whitespace\" \ \"))))(Tile((id \ - 34107bf2-3ea5-46b6-aae0-89f6cd092b45)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 08f2a947-1887-4801-a7ff-4047a16decc5)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 113c2063-7bd7-481e-87b9-2aa4059e6231)(content(Whitespace\" \ + c4390cfe-f6b7-40ca-b069-e2b2a31c1a76)(content(Whitespace\" \ \"))))(Tile((id \ - b5dc00aa-d47c-4504-b69f-17fb572dfdb3)(label(\"(\"\")\"))(mold((out \ + 658cc676-c304-4f97-a8c9-b4f8dd78ae1c)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f55ed323-bad7-4e71-b23a-4e6453806221)(label(Yo))(mold((out \ + 8e68bd7c-4aaf-442f-8d61-89a54b44a86b)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2149c166-a141-457c-b055-391325a4286a)(content(Whitespace\" \ + 77020cad-e77b-470c-9205-5b34a8db8000)(content(Whitespace\" \ \"))))(Tile((id \ - b9604112-c199-4512-809b-c28949c61ec6)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 88c2074c-0d6f-48d8-a589-8e5a9e5ea5f6)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - db69385d-7e0f-43f1-b596-64d0716e89cd)(content(Whitespace\" \ + cf4afd65-2f04-4915-b7a0-8f8c8adbc659)(content(Whitespace\" \ \"))))(Tile((id \ - ed502769-4b80-4bcf-90ea-7475b3465f16)(label(Dawg))(mold((out \ + 7e4de056-3b42-4d31-a720-e4b8a9123b53)(label(Dawg))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 5c5a7f0e-8ec1-47d0-aa25-88b1a5d2240d)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 6e0e60db-d22e-47c4-a504-2a866757356e)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - f786b8df-f704-401c-8f06-03146741d04b)(content(Whitespace\" \ + c78001da-a824-4f52-b50f-b5c4196f2fe9)(content(Whitespace\" \ \"))))(Tile((id \ - 408c24ca-b6ed-43f8-b6cb-d173502ce7a4)(label(Int))(mold((out \ + db833a2d-eef8-4f61-bf48-b887257553ff)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - f6263446-35b6-41a1-b626-78f8b2081d88)(content(Whitespace\" \ + 18825e56-2657-4e8d-84d7-d84eb4cd5b1a)(content(Whitespace\" \ \")))))((Secondary((id \ - 9240e351-39af-4a2d-a743-047f38fd4264)(content(Whitespace\" \ + b36fb0b8-1f59-475a-97ce-6d6c52223de6)(content(Whitespace\" \ \"))))(Tile((id \ - 44e42610-d59f-41f1-9fec-349064f14fa8)(label(\"(\"\")\"))(mold((out \ + 3a3bbd7f-51bc-4970-a7ab-6d31bc2b2e4f)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 9b5de60d-6b0f-4263-8c72-4400bfa1ca8c)(label(Dawg))(mold((out \ + fddaa12b-c8f2-4607-87d1-ef1a04d1a286)(label(Dawg))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7f9eb770-d68a-4627-ace4-c65c6b0ab48d)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + d8e4e469-a96e-40b2-bd84-c8b633c7f347)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 2eff9e96-1453-4d9c-ae1c-bf2556b1d509)(label(5))(mold((out \ + 305f396f-76b2-4e64-ad37-32f8f9416252)(label(5))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 18fdf605-7889-4a62-80ae-2690a3eba6fe)(content(Whitespace\" \ + 8e266bfa-c793-4582-89ad-3bc2de0f7c0f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 17c91e4a-08af-484b-9e62-38bed1629b38)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - daf02719-0436-46e2-9554-1cc670d63753)(label(let = \ + 3077ea8d-15af-4e8f-bc98-fd2351906844)(content(Whitespace\"\\n\"))))(Tile((id \ + c5851048-c074-4a28-8ca2-505dfaac422a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - cc5f08f2-7e67-4773-b6ed-089380bd1fcb)(content(Whitespace\" \ + e1ba212d-5d7b-4c20-8a00-24b5f09726a0)(content(Whitespace\" \ \"))))(Tile((id \ - 5a84271a-4bd5-44fb-aaa1-91f75980da76)(label(_))(mold((out \ + 1dab764a-2cbe-41c8-b6a0-f3db9d2798fb)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - dcabb994-94a1-4658-873c-3f4e26f8e8f2)(content(Whitespace\" \ + 59644349-255f-4870-adbf-0372eb23bd1d)(content(Whitespace\" \ \"))))(Tile((id \ - e45f5970-56f9-4229-ab5d-2eb80e7c7289)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + e844b36c-30ed-4bde-b77f-6fe477eb02e1)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e1af6915-c79d-4580-b3bf-2ec99966c111)(content(Whitespace\" \ + d02658d7-525e-49fe-b351-31a488012226)(content(Whitespace\" \ \"))))(Tile((id \ - 2eaeb051-8993-404a-8188-3f1f0e0d4d28)(label(DoubleAlias))(mold((out \ + 40d0f545-f344-49f9-bbfa-b57a3d6d2dd6)(label(DoubleAlias))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4c25bfa1-4b04-4d21-b44a-0f03571f90e4)(content(Whitespace\" \ + 97e21d03-4db1-4046-bc4e-1525a2f8264d)(content(Whitespace\" \ \")))))((Secondary((id \ - da448888-f8a0-4e10-8564-68af9da9e873)(content(Whitespace\" \ + e86ed589-e41c-46dc-a54e-6222bfdae78d)(content(Whitespace\" \ \"))))(Tile((id \ - 71f1c710-a5db-4a42-89af-ca5f7b12e3be)(label(C))(mold((out \ + 26303c5c-343a-40e5-9cc6-7a40a8e508af)(label(C))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 63858904-cc65-4fd1-a40d-500f743980dd)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 3b509558-816c-4984-b3f3-91be6bed0933)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 3876d9ab-2ce6-449e-8b16-33ff4191f02d)(label(4))(mold((out \ + 0ebe4931-5b86-4c04-a89e-038e093b7fa3)(label(4))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 23806cf2-01ce-4bea-9d88-13e6981f1bb0)(content(Whitespace\" \ + 9da434d0-9649-457b-9a10-77a0c2230f0f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 387918c2-75b1-4cef-bd48-acf19e9e2f38)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f1e04837-231f-41a2-99ea-bdfc6e060045)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 52bd8fd8-f689-4946-891c-2291dc031ac1)(content(Comment\"#exp \ + 172ce5e5-a9ba-4be3-99e4-d9930c8e581d)(content(Whitespace\"\\n\"))))(Secondary((id \ + 1729d413-62ce-4ae0-8641-87c9f7d21b55)(content(Whitespace\"\\n\"))))(Secondary((id \ + db0ad058-8fe9-4579-9648-b9b254a65481)(content(Comment\"#exp \ tests: errors#\"))))(Secondary((id \ - b2be6e9d-fc09-46bd-aa5b-b4390c4ef179)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4214db3a-ee62-4418-80f2-85552aceee58)(label(let = \ + 10a117eb-4654-4278-9757-988a7ded611d)(content(Whitespace\"\\n\"))))(Tile((id \ + 73babe77-0cd0-4838-85f3-90e3d6552f96)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 09711721-4aa6-44e0-bbca-862af2e9ccad)(content(Whitespace\" \ + c85965d9-d8bd-44ee-abb2-c14b5d8b2854)(content(Whitespace\" \ \"))))(Tile((id \ - a3bcab3e-81d4-44f5-a4b8-e3a2f9e02b1b)(label(_))(mold((out \ + 88f05cc5-882e-4aeb-9a69-aec8f1c834a0)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - b028f571-25be-4657-80f6-de23b1a02bd3)(content(Whitespace\" \ + 3b358b26-043c-4014-b2b3-17427d0e9e28)(content(Whitespace\" \ \")))))((Secondary((id \ - 2c29cefe-10a5-4367-ad6e-d6db9b69f8f2)(content(Whitespace\" \ + 902be936-0f0d-4eae-aac4-bb1520f9e5d2)(content(Whitespace\" \ \"))))(Tile((id \ - da5545a4-8e25-4438-be2d-1138f4cddee1)(label(2))(mold((out \ + e7a77377-dc0b-4e16-9887-10d80eca58a6)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 19964660-f5a3-4d24-a945-ceb4ae1e444d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c06f9e60-5269-4a80-8c3f-a619ed8583ff)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 502113ba-b30b-48e6-a02b-8916e4099f10)(label(1))(mold((out \ + 17de1940-b64d-43b9-b345-f0e8e0d116dd)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 923b8dd5-2b03-49c1-b375-c3bd8a5be1cb)(content(Whitespace\" \ + 61b30a2c-2b2a-4051-81bf-8132887f7407)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 08f65795-5f41-4555-8738-a9d7ba8f4db1)(content(Whitespace\" \ + 2d920922-a509-4841-aca0-54b087f60540)(content(Whitespace\" \ \"))))(Secondary((id \ - 4ac9fda9-dc04-420c-8de4-71f715a8e8ce)(content(Comment\"#err: \ + 6fcdb14c-abde-4932-95d7-72e7c13ac08b)(content(Comment\"#err: \ incons with arrow#\"))))(Secondary((id \ - 9cc1e342-4765-424f-8588-b2da5a3c8812)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7f83fafe-e3fd-4d48-b9bd-c981ab1ec228)(label(let = \ + 39442e53-9274-4324-85dd-6cf5bce6b5fc)(content(Whitespace\"\\n\"))))(Tile((id \ + 0c223090-20f3-4f22-8efc-fee48df2781c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 2ed49797-a540-4383-a55f-7f997769fcf8)(content(Whitespace\" \ + c9b02368-418b-4df5-99d1-0ad69958dadd)(content(Whitespace\" \ \"))))(Tile((id \ - b0d6c8d9-0f55-4622-8540-ad3ec40e8dcc)(label(_))(mold((out \ + 5b39fedf-37cc-4f43-838b-39b0f9f1c2f1)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 931434c2-9bfd-47fb-b860-4f94fb56abc6)(content(Whitespace\" \ + 3065ec16-72f3-4023-9bb8-445a97f78bc6)(content(Whitespace\" \ \")))))((Secondary((id \ - 0c45d1da-dca6-4bcf-824e-086ff3619e11)(content(Whitespace\" \ + a0343f13-c93d-4819-9511-ea92cde2096a)(content(Whitespace\" \ \"))))(Tile((id \ - eeec54a7-e110-4085-9e20-e2587dd419b5)(label(Undefined))(mold((out \ + e73e8c8f-3edf-484c-9b9a-f05f00143378)(label(Undefined))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6dfa2802-7123-4ecc-af5c-d24ab138e89b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 16dc6341-d18b-4d97-988a-669f78d198ce)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4871baec-a321-43d7-99d5-c51059493083)(label(1))(mold((out \ + 2e2e7a3c-fe6d-4bd5-b56e-b5702fb5c1d2)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 74f30173-b867-483a-bf32-5b5649f34e00)(content(Whitespace\" \ + 85dc7c8f-21d7-4b7d-a9a1-57fd1798aa22)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f489bf80-e026-44ed-9f51-b40da91947bf)(content(Whitespace\" \ + 2c75819e-5ccb-4557-8137-cbbe09c142e6)(content(Whitespace\" \ \"))))(Secondary((id \ - bdda38c1-44fa-4426-a68d-90e1e3f577a8)(content(Comment\"#err: \ + 0b1fcc6e-1bb1-4906-9aa3-a2cc51f12a56)(content(Comment\"#err: \ cons undefined#\"))))(Secondary((id \ - fa273c71-3434-46da-a671-626cc6049caa)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7dca8b6c-989c-4741-a4a4-f1ae62408a90)(label(let = \ + f9753fda-7c14-44e5-9887-2da79acc4ef2)(content(Whitespace\"\\n\"))))(Tile((id \ + e56f3824-4687-4784-882a-57d25e7b7736)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9cb2acad-feff-4672-8d7c-43c467f8e391)(content(Whitespace\" \ + 39e56916-37bc-4e7c-975a-08b2bdcae0d7)(content(Whitespace\" \ \"))))(Tile((id \ - 75506b66-e182-491d-b788-99a377d7e3d6)(label(_))(mold((out \ + 94c7474d-c5a7-4649-a426-f940639f2da2)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d53d0f49-aebd-470e-9c65-7d77561bfd5a)(content(Whitespace\" \ + cd1b4bb9-c519-4160-bc92-74fc716c7834)(content(Whitespace\" \ \")))))((Secondary((id \ - 32bfdb59-116b-4f75-82fb-7b7a7a9ee1fc)(content(Whitespace\" \ + 78456efe-a8cd-4942-801e-7c1c568c5ceb)(content(Whitespace\" \ \"))))(Tile((id \ - 7a5c1b27-7917-43cc-96b7-68c9a0aa125a)(label(B))(mold((out \ + 9aaecd1c-de39-4dde-bf86-80ff9b121174)(label(B))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6d2f6d4d-5b34-440c-99ef-1b173e491ca2)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 26947d51-19ac-4960-b331-87eb064a9b12)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4265c52b-55ce-4fb0-917e-79f99b4545c6)(label(\"\\\"lol\\\"\"))(mold((out \ + 2d7ea60c-4cd9-4605-9cb0-aa1f40ea8912)(label(\"\\\"lol\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 126bad8c-fff3-4a21-85ff-3a93fc73af37)(content(Whitespace\" \ + 6f41caa4-e793-43e5-950b-2451a5cefb75)(content(Whitespace\" \ \")))))))))(Secondary((id \ - acc21816-6762-458e-b052-98fb57fcd6e8)(content(Whitespace\" \ + ac53eca5-8625-407e-a1ad-2281ac35cbb2)(content(Whitespace\" \ \"))))(Secondary((id \ - 2e7148d4-ec87-4c83-a879-b1cb5a5ed1df)(content(Comment\"#err: \ + 229f231e-9a04-4fd8-bde1-80cc909c2d64)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 29738cc2-dd27-4ee6-bf83-f0d00a16d47a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c9c142a0-b9d1-423e-afa6-950070639487)(label(let = \ + 9ffa0c85-ba8a-4a2b-82fa-ecd84cce8827)(content(Whitespace\"\\n\"))))(Tile((id \ + 060d0018-0184-4097-a885-3d64cb237f16)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9ca198f1-a4ab-4e6a-b9ee-7af24b2b0ddb)(content(Whitespace\" \ + dbab8e3a-df62-4f50-bfde-c7f9e0765a00)(content(Whitespace\" \ \"))))(Tile((id \ - 17ff72b2-b93a-4051-b699-dbcdae7307c6)(label(_))(mold((out \ + 0cf71d90-72c5-40d0-9894-55d940a94d15)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - bc97a62f-b7e1-4ec3-81bf-83184a4c8c87)(content(Whitespace\" \ + 02e6f5ad-23e9-4d1f-a220-4943fbea949e)(content(Whitespace\" \ \"))))(Tile((id \ - fec091dd-0e47-4833-ae00-53762c786ab6)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + c5bcec1f-7b5d-4f51-b75b-357c4ec79be6)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 62922425-2203-4454-9523-f8fcbeb03c9c)(content(Whitespace\" \ + fc764113-9280-4631-a4e0-d3ca3851a486)(content(Whitespace\" \ \"))))(Tile((id \ - f82a5fb1-5509-44b0-bd40-44313f75c4c1)(label(+))(mold((out \ + 894ababd-404e-4611-ab5f-63bc2e441f55)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 3161a5c3-aab6-4b37-abdd-0b4545799278)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + c7a0147e-f286-464f-b21a-3cfc2939722d)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 8b7427f3-fa5b-436f-92b8-7d8c6cc0d036)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 42a145b5-d264-4ba6-995c-5e91e7e8b217)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 89074e55-142d-4e4a-a5e8-7a442c699a0f)(label(Bool))(mold((out \ + 79ea25ba-5b88-4f75-88a9-707f7e6f056d)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a0d5f29a-cd3a-4686-a1b5-09113a40195c)(content(Whitespace\" \ + 7e96eda6-a731-44e5-9ab4-5fdd5c6ec3db)(content(Whitespace\" \ \")))))((Secondary((id \ - af4c6438-89a1-4132-9ad5-c4ffac91fd1d)(content(Whitespace\" \ + e4e86da3-8591-4b82-bbf2-6c0100bc5cac)(content(Whitespace\" \ \"))))(Tile((id \ - c580e9e7-7d6e-4e80-82be-25aaca79b942)(label(Yo))(mold((out \ + d35f6618-a0f1-43a6-bbc3-01f05160ed11)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a8c5832b-cebb-4c6a-92e6-07b5e552505e)(content(Whitespace\" \ + 69962f92-29b4-4699-8b9c-067e1719a34e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 631f4c3c-a5f4-4edc-ba88-8af7bac59d7d)(content(Whitespace\" \ + 0cf81286-de18-4452-954d-4c45b694da7f)(content(Whitespace\" \ \"))))(Secondary((id \ - c75d5e54-515d-42cd-953e-a5b2af960eff)(content(Comment\"#err: \ + 8ad0ef5f-8824-4367-92bc-6ae3b1602b24)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 8e89e058-3e4f-4213-b1b5-21b75a12b3b0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 092d401d-4681-45ca-a417-469e1b9521fd)(label(let = \ + f46d36e4-93ab-4763-b967-324c23c0a4fb)(content(Whitespace\"\\n\"))))(Tile((id \ + dc8cd3c7-4a48-4fd9-9174-851a4d1923df)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 1f09dee4-0e3a-4be6-95dd-bbe0e77c4996)(content(Whitespace\" \ + 0a2bac0e-f13e-4ac5-9e09-729cb92d6f0d)(content(Whitespace\" \ \"))))(Tile((id \ - bba1db7b-a310-4067-a50d-809d39548a5f)(label(_))(mold((out \ + 6462ed56-8be1-4d25-93f0-87f27edf0cda)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 5d32cae1-d451-4c5e-827e-5452b099b557)(content(Whitespace\" \ + a7b6f370-8124-49c5-8231-95a396b3f505)(content(Whitespace\" \ \"))))(Tile((id \ - 44e0dc21-fd90-4f29-a33d-2939e59e8c1b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3ca81a8a-8b09-4be1-8a31-acea0f5a7247)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 947af2f6-7b71-4b9c-9fa8-0dad02fbe631)(content(Whitespace\" \ + 06d04220-7fda-4d1e-bb35-6f0bb6360d1c)(content(Whitespace\" \ \"))))(Tile((id \ - 33d7eb57-0fa1-4227-a093-3c10974b72e5)(label(+))(mold((out \ + fc476958-fffc-45af-9b54-080e46c48471)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - a1bb260f-f11d-456c-8bfc-75d85af29ea0)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 04ec44aa-b941-4879-8fd8-849548703d55)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a80caa08-c6d5-409c-9047-32909e2a96c8)(content(Whitespace\" \ + bc5b26e8-6ce5-490e-8ced-3e7fdc202999)(content(Whitespace\" \ \")))))((Secondary((id \ - 10e0b8c8-f01c-4ea6-9a00-1da27c35bc5d)(content(Whitespace\" \ + 45285b00-e55b-4680-ba77-388c0febbd96)(content(Whitespace\" \ \"))))(Tile((id \ - d4b9fb5f-a627-4acd-99da-4ff3a79d4782)(label(Yo))(mold((out \ + f83ed236-3162-4d6a-8941-f997d85a42c8)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 58f18f4d-3c5c-4dc8-9cf7-eb7aca80bcfc)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c33ccba9-5882-4b71-85ac-eb442083ad44)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 0e6f2c44-e90d-4caf-9e77-11d74a519530)(label(\"\\\"lol\\\"\"))(mold((out \ + 0229a695-22ed-452f-ab17-c69dbd835997)(label(\"\\\"lol\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 49e4c7bf-e9e2-41bb-8f89-52a403aabc6a)(content(Whitespace\" \ + 2c3a9067-6693-4c96-998e-028a49f3bd3e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d8476ff7-c2bf-441a-8010-64bc558158dd)(content(Whitespace\" \ + 11029e14-4ee2-4690-88ac-1dc1a96caa7b)(content(Whitespace\" \ \"))))(Secondary((id \ - e0afd264-4a2a-4076-a01d-578a8ec5cf5b)(content(Comment\"#err: \ + 7e89a745-73eb-45ae-8a63-0d2f6fc70a39)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 7f48028e-59f6-4128-ac3a-07f1fc61b14a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 76de4e86-0d10-4065-938f-690716ff4bff)(label(let = \ + 3b1c7a5f-0e33-49a4-a91e-a6f5fd788e1f)(content(Whitespace\"\\n\"))))(Tile((id \ + 89221aec-def6-4533-b1d9-d77d394bc462)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6a975e3b-202a-47e0-84d8-ab9d28b36ccc)(content(Whitespace\" \ + 59b6c4a4-38cc-453e-b0ae-d1148a78f1e3)(content(Whitespace\" \ \"))))(Tile((id \ - 775aba62-6b92-4402-a930-1a8b15b99f76)(label(_))(mold((out \ + 281014c0-b42b-4f20-848f-4e0cc7023d09)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 43f8939b-a9a3-47c2-919b-c24b285fd642)(content(Whitespace\" \ + aa72d88c-aabe-451c-8efa-8187361eadfa)(content(Whitespace\" \ \"))))(Tile((id \ - 9c4ae5b8-87ef-4f46-9482-cae3eb81109c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 5b8e13ec-459b-438d-adfb-a154a2982f19)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 316d061f-b6d3-4f58-812e-b7e4e2e1b221)(content(Whitespace\" \ + a3692277-0f9b-4f8c-abd4-b3d2090ce140)(content(Whitespace\" \ \"))))(Tile((id \ - 07bd9186-3e71-43d9-beb6-397adeb4ed79)(label(+))(mold((out \ + f56867a0-f29e-457a-a3c5-bcdb758aba49)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 982bbf83-da17-4f60-a07a-69b6caca0038)(label(One))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 52e1f681-b546-47c8-b19d-6471ee733d1b)(label(One))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a61b9df0-6312-4630-b350-b179a7a9a30f)(content(Whitespace\" \ + 8a891615-85d0-4a08-9215-cb462624c741)(content(Whitespace\" \ \")))))((Secondary((id \ - f6598e2d-13a0-48aa-98ad-3bba23c0d16c)(content(Whitespace\" \ + 2fb4da19-cebc-46b7-bb09-b3098a576148)(content(Whitespace\" \ \"))))(Tile((id \ - 030259ed-1473-41ff-a554-df49181075a9)(label(Yo))(mold((out \ + 923d34de-ec8a-420c-9590-a36fa2801243)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6015f8df-0de0-4ab4-a83e-5846c4f017b5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 66f5633b-93ab-45aa-8e11-1b8375729418)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 84f01a2b-fcb7-47fb-a22f-d967376f38e1)(label(1))(mold((out \ + b4b082d1-ece0-43ab-9db8-bbb7f2cfeba4)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 83aeee2b-8f73-42cc-8897-cca9982f73a1)(content(Whitespace\" \ + 51432b32-38d5-44d6-ae42-02a0d3575bec)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 81bcef3f-ffc3-415a-8b6c-a91f427a7934)(content(Whitespace\" \ + a3864107-bfc6-4b34-9f08-ab6571694a12)(content(Whitespace\" \ \"))))(Secondary((id \ - 3ae4dd0c-cdda-4e6f-9ddc-7b71bf749d81)(content(Comment\"#err: \ + 5b226d35-d4db-471f-a332-633e5e84fc28)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 5b4942b1-ead9-41cf-83e9-330b23a2c28d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7a0bde0e-fe2e-4c7a-8fa9-7c59d491a73d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - facdf460-efbd-4a8f-bda7-5328fbb74d3f)(content(Comment\"#pat \ + abec3962-ea64-427e-8a56-3570e446a099)(content(Whitespace\"\\n\"))))(Secondary((id \ + e38dafb5-0007-4aeb-a7cf-20ae51aff3f3)(content(Whitespace\"\\n\"))))(Secondary((id \ + 98367f9a-54e4-4638-b9de-e29f9e3b72b2)(content(Comment\"#pat \ tests: happy (but refutable patterns so \ weird)#\"))))(Secondary((id \ - 9672874a-6ef2-4808-9a41-030964442d7c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 87478aa3-bc82-40d0-a792-6c51cf93c3d8)(label(let = \ + 82419db0-dbb3-41fa-881c-a0b395420c6f)(content(Whitespace\"\\n\"))))(Tile((id \ + 74ee3271-d727-472c-9b7a-755a81b148c4)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 19b5021a-5029-4545-a177-18d27abb34f6)(content(Whitespace\" \ + c37e3135-8c25-4079-983b-7e6d11553e4b)(content(Whitespace\" \ \"))))(Tile((id \ - ebea4bf6-feaf-4db6-a7fa-3147fdb83b21)(label(Yo))(mold((out \ + c6c45579-718b-4fbf-b5c2-eb0cb2581e75)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3ab932af-9e52-4585-bb64-81ed59f509c1)(content(Whitespace\" \ + 934de2cf-33f9-4073-90e9-2d99cb12cf2f)(content(Whitespace\" \ \")))))((Secondary((id \ - 6e6d5123-a846-4667-8ec0-1b27e6e2ec6b)(content(Whitespace\" \ + 2ba42a3d-ac18-49d9-b5ee-22aad89796d1)(content(Whitespace\" \ \"))))(Tile((id \ - 028c9ff6-4c62-4be3-ba26-494728ae1efe)(label(Bo))(mold((out \ + 09942f4b-696f-4933-9f40-963c1bbc22f3)(label(Bo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 61354972-9371-4232-86a2-e92f1d27a98f)(content(Whitespace\" \ + a3d4bf99-e1c5-4fac-85d4-0167384467c0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e83fe24d-38d2-44d1-aa05-3817739b773d)(content(Whitespace\" \ + 29e781b4-6d3c-407c-b6d1-33d81b2bb7e8)(content(Whitespace\" \ \"))))(Secondary((id \ - 2b7f6a39-b9e4-4cb2-99cc-d42e1e4b4aaf)(content(Comment\"#kind \ + d92291d1-a349-41e5-b7b0-015b0a846d58)(content(Comment\"#kind \ of a weird edge#\"))))(Secondary((id \ - b56d91c3-10bd-449c-871d-be476400ea3f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9da4f6bf-678f-4b02-9ac2-4925236ac534)(label(let = \ + 04065439-22c2-4a92-a291-1dc6779ccfdd)(content(Whitespace\"\\n\"))))(Tile((id \ + 2987f3c5-988a-4315-a6d9-d6d6b242051c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8a332dfe-bd12-4417-8093-292b405b2b78)(content(Whitespace\" \ + d296d3c3-63e5-4481-8c2a-07696d29853e)(content(Whitespace\" \ \"))))(Tile((id \ - 4934e3fa-894a-4c64-b751-47e621d2a0bc)(label(Yo))(mold((out \ + cf24cf90-884f-4d6f-ada6-2b46a8ca6dfc)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 32edf020-9d2c-424a-b69e-2bffa87a176d)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + e17631cc-a217-455d-abca-8b35898ef3a5)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - ac0a556b-6a81-4ca3-9d80-1110548c7c60)(label(1))(mold((out \ + c040ae99-c01b-4f13-a1fc-1bb028d9f085)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - ddbf95e4-acdf-4db1-8a31-a52f98d75fb8)(content(Whitespace\" \ + 474c6eee-bb86-4fad-92e6-9ba03ab18537)(content(Whitespace\" \ \")))))((Secondary((id \ - a4ca8e82-2d64-46dd-ae43-dfd45f37faaf)(content(Whitespace\" \ + e58d09f8-58b1-498b-96d0-dea2fe449ece)(content(Whitespace\" \ \"))))(Tile((id \ - 285005da-5608-4b20-ad60-34aa36ded1a5)(label(Dawg))(mold((out \ + a3613d82-5366-45e7-94f1-b4d43d832ad4)(label(Dawg))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 89b853be-6ea8-4173-8737-247ec8f3dd37)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c6acc4c6-f532-454b-8ae1-3bbb69270eb9)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - cf4b208d-9082-4bb6-9f2f-3868800212d4)(label(true))(mold((out \ + 21399fe0-e53e-4011-9ab2-01b7a3be3ad4)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 9b875fb6-0c4c-468d-aa82-18749ecbe1a9)(content(Whitespace\" \ + 1f0d94c0-bd67-4102-9d6f-57e08fa18f6a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bb1cdf42-36d6-4749-8f12-26f768697db7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f2f1e474-be18-47e5-a81f-ede837a58503)(label(let = \ + 4668e4f7-6556-4105-9e88-e3d624fed446)(content(Whitespace\"\\n\"))))(Tile((id \ + 4a5e94c4-e144-416b-b7f4-9e9c35a78871)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 37471869-cff9-4e2c-99c0-cbbe41031313)(content(Whitespace\" \ + 552c30fc-8f6f-4e2e-bf18-7b605a87163a)(content(Whitespace\" \ \"))))(Tile((id \ - 17306267-01f4-422b-86f6-e90290fc8340)(label(Yo))(mold((out \ + 05f3167a-e7bc-4fff-9189-522d2c7748c6)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5a398483-25d9-4d05-af57-c3add5818c4e)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 885ed06b-03d1-4c10-a904-a19cba98c39c)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 743a1786-64d1-4319-a7db-e5def2b888e5)(label(1))(mold((out \ + 14e90ca6-5af1-46dc-bbe6-9de949619595)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - f4913a6b-385a-4d2e-bdb5-902204fc96bd)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 7369e8a4-18da-47d4-9f71-797f291e12ae)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0e0c4ecc-2cd0-4d3c-afd4-479780fdf901)(content(Whitespace\" \ + 9bf05f8c-dd06-4b49-afde-8cbff13591ce)(content(Whitespace\" \ \"))))(Tile((id \ - bfca73b7-2533-4426-8b6d-967344d52775)(label(YoDawg))(mold((out \ + 3006e375-d4b9-49b3-8ab9-8c70f8e6f00f)(label(YoDawg))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - ae231901-3e7e-4334-954e-be65ef71da82)(content(Whitespace\" \ + f029e25b-76f2-4dbb-86af-58be1c8134bc)(content(Whitespace\" \ \")))))((Secondary((id \ - 048dc25c-8c5d-4fc6-8674-b2b85230ef7c)(content(Whitespace\" \ + e6ff0d3d-10c2-4a5a-b29f-ca16071b5cc8)(content(Whitespace\" \ \"))))(Tile((id \ - 04b01334-7bd7-44ae-875e-f4d004293df4)(label(Yo))(mold((out \ + 10cc07d5-3f39-404a-9d8f-9ac3d642e79b)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 470e3d11-7f3b-40ba-8882-9ecbef346aa3)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 49435d1e-8f89-43c5-b7db-61a04e4050b3)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1120437b-69c0-4271-b846-5560a4c64ce2)(label(1))(mold((out \ + 043825b9-ea6c-48b0-8063-0e21512dc15a)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c00fd96f-d9b4-4d7d-946a-794a850b31f5)(content(Whitespace\" \ + dd5d2c31-5b33-4b17-bd03-3e2f7636b4e3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 603225be-d862-42fa-bca2-d3d5898f15d8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8d653abc-56e0-4e76-976a-e8abc021d345)(label(let = \ + 6d83b889-d239-44e8-a807-e4e2f8b58e84)(content(Whitespace\"\\n\"))))(Tile((id \ + ac60c582-7bb8-4778-9559-252d39c7e120)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ba4a7022-18d2-48fb-a0b5-8624b0252a05)(content(Whitespace\" \ + 0497a41c-c55b-44af-99c2-319db9cf2ced)(content(Whitespace\" \ \"))))(Tile((id \ - 87220d72-4069-495a-a94c-a2a1e6c3f80e)(label(Yo))(mold((out \ + e18d8293-00c5-4588-b6d2-3f6da8ee5de5)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ea68f412-bb42-4e52-8533-e2b2876392fe)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 0ea19010-bf72-4bb6-b0ee-2fd4cfc3e3dd)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 7d1323f8-b578-4b93-91ec-2273541b966d)(label(1))(mold((out \ + eb35e362-1ddb-4e09-b9d2-07067677f998)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - a7042e19-faef-466b-949d-be90992ec96e)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 93560007-02f0-403f-b96c-5dfd77520c84)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - dcd5a0ab-43fa-4aed-96b0-4a704f143233)(content(Whitespace\" \ + 0aa1fd45-6160-4f96-a5d8-008246fc1e39)(content(Whitespace\" \ \"))))(Tile((id \ - 6829f579-c85b-430c-9d47-307edf992813)(label(+))(mold((out \ + b73b1762-d5c7-4662-be47-efd98f8bd301)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - d9f466fe-3676-4684-aee6-870eb758fee7)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 1605fb6c-33de-4f58-9074-c5c6804afb4b)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - c9302141-725b-4f6d-bf9d-b3fb3f237e0a)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 379c2c3d-f2d2-475a-81ab-23d638698db4)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - d2b79cb8-a093-4f5f-b1cd-e8a4e3f5e3ac)(label(Int))(mold((out \ + c5657013-c7c4-4c6a-989a-e10af52d755b)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 6fc2c1ef-de22-4fa2-a5ca-eaae9a0dbd60)(content(Whitespace\" \ + 65e051b4-cc5e-411f-8958-74ad48ab1440)(content(Whitespace\" \ \")))))((Secondary((id \ - 8956dc3f-1f16-415a-9565-91cf792b6a31)(content(Whitespace\" \ + 1cfa6465-d43b-4daf-885e-7ccc598f5e90)(content(Whitespace\" \ \"))))(Tile((id \ - 34979d88-fd64-447c-ba5f-c90d9e1be29a)(label(Yo))(mold((out \ + d3f0f888-1c3b-4c7a-a868-14332a85da75)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d6145fb8-ec69-414e-99b4-d1bb527f22d1)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 6a0d4b17-d652-43bf-adff-47286219adc9)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - b3bb92a7-8f3c-49c7-955f-adbac8cd5a34)(label(1))(mold((out \ + 6e0b7827-3503-4a32-81de-7480f5e13f65)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 74397f51-da57-40e2-bb99-f9e9c241666a)(content(Whitespace\" \ + e5ea7a3a-4f95-4eed-ad98-32596b62c0bf)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 99ee253c-d3d3-4ac9-b37f-a5ccceb64cd7)(content(Whitespace\" \ + 291f46e0-9178-4976-9e86-7b2f332d0ebd)(content(Whitespace\" \ \"))))(Secondary((id \ - 69ee0c5a-b23f-44d0-8bfb-62b8267da47f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0d21753e-2df4-473a-bbc9-12b716724f3f)(label(let = \ + 0557cefb-0a67-4225-a091-ef042e9bd8d0)(content(Whitespace\"\\n\"))))(Tile((id \ + 2400981a-a21b-435f-b4c9-74c170410a3c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 0ef0fe1f-8d88-474a-b172-3b5ec3cb2473)(content(Whitespace\" \ + 5e3af61c-abb6-4ed5-983b-f5ed29403cf4)(content(Whitespace\" \ \"))))(Tile((id \ - 38ca55d1-d269-487a-a9f5-8e7a0b7e5446)(label(Yo))(mold((out \ + 5f1904d3-2c7f-494a-9581-50247918f776)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f1d45f10-46ee-4276-96e5-903c3d4b6b3f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 6cc139e1-2196-47bb-a063-6d0c65a0fde2)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 59227245-38f5-43b2-b1b9-29434daf00f9)(content(Whitespace\" \ + 4ad5c266-b9f2-49d1-85c0-fa5214b13875)(content(Whitespace\" \ \"))))(Tile((id \ - b59a80b2-6ed7-4ba5-bb10-8dce157ceeca)(label(+))(mold((out \ + 7e6b4d8c-e8f9-4dc9-bb72-d279f9c241eb)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 99f4dc6e-ecf1-4532-8203-078a97d19f10)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + f147dc6a-5763-4703-9573-c7f83cc62d19)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 27761368-5a50-4e8e-b8f0-41259759a1a2)(content(Whitespace\" \ + c74b0fd0-aa83-4d16-a69b-7040a205c28d)(content(Whitespace\" \ \")))))((Secondary((id \ - e5fe4f26-2152-4c3f-846c-711489198670)(content(Whitespace\" \ + d24b98e5-8b67-49e1-a8f2-8c6a158dadff)(content(Whitespace\" \ \"))))(Tile((id \ - 2f85b493-700c-459d-8626-bc8f043093a8)(label(Yo))(mold((out \ + bc8c255b-06df-46ff-a2df-5b95c0c8d15c)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 42b17dfc-8cb7-4156-94e6-ef3f49b5388f)(content(Whitespace\" \ + 66ecd51d-2c4c-4871-8d6f-290292f2676c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0005e1fb-699c-4d2d-ac84-3967e4c3b4c9)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 99be389b-359b-4e3a-b5f1-434da0700342)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - dcd15daf-e021-4d15-af44-137ce8d9bdf3)(content(Comment\"#pat \ + 47579907-86de-4297-8471-432930da4e96)(content(Whitespace\"\\n\"))))(Secondary((id \ + bf7e940d-b5f0-4b41-94fe-dc8edb452e0f)(content(Whitespace\"\\n\"))))(Secondary((id \ + ac272e0d-2b96-4409-9bc4-7e6df47d7326)(content(Comment\"#pat \ tests: errors#\"))))(Secondary((id \ - c1d20c23-9d73-428f-9de4-d2ce26b62ad3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f7043c28-61f8-4276-a523-22734fe2ccf0)(label(let = \ + a6780edf-171e-42ee-8f60-2a36c35a243a)(content(Whitespace\"\\n\"))))(Tile((id \ + 747964a5-983b-4661-849d-0f45ad0c6372)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 16ce1daa-556e-492a-a19d-6a7d6c4f2e40)(content(Whitespace\" \ + 7b4d5727-bb7d-4f18-9fc1-f654732af2c6)(content(Whitespace\" \ \"))))(Tile((id \ - 3e134eb5-90ed-4db7-8884-b94ec7e43566)(label(2))(mold((out \ + b4c15fde-eb2a-40a4-873c-090daa97b5ad)(label(2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - d0b3234b-c864-461a-9860-dcf461d1b332)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + e3354125-74e9-4ff4-94c6-cd8061f28f44)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 0ba9f9c2-a06f-4d45-9fa9-52f59e56e3cf)(label(1))(mold((out \ + 7b7c99a7-82fa-4b6b-8e15-cbab5b13c31c)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 5ccb3070-1bff-480b-83b5-976c5b0ddebb)(content(Whitespace\" \ + aa274e10-27b5-4c20-b297-f6212a305db1)(content(Whitespace\" \ \")))))((Secondary((id \ - 627509dd-1b5b-4b67-b157-8ff4a6c7bd79)(content(Whitespace\" \ + e18d3fe8-0830-4b6f-a595-01f119415633)(content(Whitespace\" \ \"))))(Tile((id \ - 2c8b196b-845e-4d71-98fc-c11abb4fe871)(label(3))(mold((out \ + ff6f023e-de31-4350-b2a6-d6f1e611f521)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 232ebf71-0266-4aae-b171-c3d7291da09f)(content(Whitespace\" \ + 2f9d628d-f7c5-4071-bdd4-2619ab225306)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0db41a09-1502-49f5-9212-3418316cddf3)(content(Whitespace\" \ + 7a38b925-1325-45c4-bb69-0a36b8d0cdb8)(content(Whitespace\" \ \"))))(Secondary((id \ - 6e676ae9-c84d-4607-ac2d-b39dce08c6a0)(content(Comment\"#err: \ + 3a387dcf-0e09-4d30-a83f-a1818624741b)(content(Comment\"#err: \ incons with arrow#\"))))(Secondary((id \ - a5d07dd2-c839-4a86-a27e-ac069da4196b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2261eb15-0137-4a31-a46d-5043f25d2af4)(label(let = \ + 68d5dcea-8c23-485e-865a-69fb7d2d0cd5)(content(Whitespace\"\\n\"))))(Tile((id \ + 1cfee09b-9e29-4c55-a3bb-5d82a4654443)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e85ffc30-fd07-4215-97f6-cff1b2ecadd9)(content(Whitespace\" \ + 45f6c185-2057-40e6-a7b2-f993dee36b38)(content(Whitespace\" \ \"))))(Tile((id \ - 0f625d9f-3a8c-4801-b7f8-02f3bc063e60)(label(NotDefined))(mold((out \ + 24fcb149-2bc9-4224-ab03-4b73b789c75a)(label(NotDefined))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e273c063-be34-4fd4-9a35-b903acc3a802)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + a3194e38-6789-4ccf-aa76-9e30d81bcaef)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 1a6295b6-34f2-4fb9-bef6-651891713eef)(label(1))(mold((out \ + 6a56fd51-2c30-42f4-aca4-2b6f2001bad3)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 0f61bbef-58f7-4b51-a327-0bcc1a98908d)(content(Whitespace\" \ + 2ee595e2-a45e-44fa-944b-a5c5a3980f12)(content(Whitespace\" \ \")))))((Secondary((id \ - 9cb5a580-8a59-48ff-9d23-87f89f52c545)(content(Whitespace\" \ + 097341b1-0662-4d31-b275-7a3250d6df9d)(content(Whitespace\" \ \"))))(Tile((id \ - c2dd289b-773f-4558-89d3-c71533b1918e)(label(3))(mold((out \ + 59f9db5d-6597-4b10-bd72-8c4376dd57f3)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8711ef21-fb8f-4896-ac90-d8e807c603d6)(content(Whitespace\" \ + 552bfeb6-0c14-4e09-8697-f954043641be)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9ddcfd63-e8f9-4897-906a-ce1835a858b5)(content(Whitespace\" \ + 6e34c413-854e-4e4e-8e7c-a75d5ad9eccd)(content(Whitespace\" \ \"))))(Secondary((id \ - 225f955d-f886-449c-9169-21343059976d)(content(Comment\"#err: \ + 6d8ed302-ad46-4a6c-af7d-cf01d4dd8634)(content(Comment\"#err: \ cons undefined#\"))))(Secondary((id \ - a0f66cdc-ced3-42af-bc8b-95ded65e92cb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fc859cc5-5a32-4e42-82be-7ffba942d78a)(label(let = \ + 1477b677-d5bb-4ef9-a13d-b87c8b91a8e0)(content(Whitespace\"\\n\"))))(Tile((id \ + 3c79f252-7420-4763-8237-112308e155d9)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6ee1493e-7726-4647-96d9-e324c567637f)(content(Whitespace\" \ + 1dbefa01-f9e5-4e22-b8de-10bd967bd27b)(content(Whitespace\" \ \"))))(Tile((id \ - dd9d06db-d1b0-4ff4-be65-eb761215eeba)(label(Yo))(mold((out \ + 4bd1289b-aee7-4514-bbe1-cd35485b60be)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 9dd81776-5dcc-4238-b329-d0e580eb7fd4)(content(Whitespace\" \ + f0c94efb-b145-41db-885a-23f645e73f2c)(content(Whitespace\" \ \")))))((Secondary((id \ - 919d5599-af66-4117-9e83-75d41dcfd62b)(content(Whitespace\" \ + 496132cd-7941-4aec-8191-6ecaac65c6ef)(content(Whitespace\" \ \"))))(Tile((id \ - 6da4a8d0-c40a-433d-9cde-44badc3f8c39)(label(Dawg))(mold((out \ + 0740a149-b697-4026-9e9b-ec29c4a7aa66)(label(Dawg))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a9d80421-dfb3-4924-b95f-f6a7ee7088cb)(content(Whitespace\" \ + 5b1d44c6-9417-4d04-bf10-97cbe162afcd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 40ef07ac-93a1-4395-9330-c4e072117398)(content(Whitespace\" \ + ef158770-1bc3-4173-b611-b8fbd1f27729)(content(Whitespace\" \ \"))))(Secondary((id \ - 309c082b-63a8-4b11-8aba-2285ab9d193f)(content(Comment\"#err: \ + 56d60993-c631-40fa-93bb-4f3b5d79e0d6)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 0ae6873f-533a-40ff-a569-7ce95ca44dd2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - faaa3700-62e3-48e8-a99e-e02391eb2d1b)(label(let = \ + 5467b9d2-f344-4488-8e3b-fa31d1e9fdfb)(content(Whitespace\"\\n\"))))(Tile((id \ + fd3189c7-ec41-47d4-924d-722f367814e5)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 04510299-1775-44ea-a1cc-92023d978c25)(content(Whitespace\" \ + abbad808-aeee-4dfd-835c-6242b07d3a66)(content(Whitespace\" \ \"))))(Tile((id \ - 31056011-4c43-4c4e-9e3b-fd949414c4ba)(label(Yo))(mold((out \ + 4ded6b0c-2ffc-466f-a1d9-f1838f88daaf)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c47761a7-9949-48f4-8e22-1815b341ef77)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + a66a61bc-f07f-4f4d-b2c5-9443c3b92ef8)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - cb6a6a22-b518-40ad-9e76-8cda4bad6e5a)(label(true))(mold((out \ + e3793a27-2fe8-4fe5-8012-f6f93ee0282c)(label(true))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - f47230bf-0ec9-465d-acb3-436f7d3ac327)(content(Whitespace\" \ + 4e2b1df2-acdc-4220-a8d8-bec2da6e8dc6)(content(Whitespace\" \ \")))))((Secondary((id \ - d44997ac-687e-49bf-9dad-b882ecc68087)(content(Whitespace\" \ + c70d9704-e535-414b-88e9-b2f12a9ff81d)(content(Whitespace\" \ \"))))(Tile((id \ - a0377840-0185-4f2c-a48d-864237d3ac9e)(label(Dawg))(mold((out \ + 1838c569-5adf-4504-885b-dc4f2d886cb8)(label(Dawg))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 93552a27-48fd-484d-86f8-b30e33acc3eb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 645e6d17-5158-430d-94e1-2a793fdccf1a)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - fe0ec8d9-e77e-445c-8535-556c6adf09a2)(label(true))(mold((out \ + ae692be0-b769-44db-ad29-aea36deb7bb2)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 44532396-e223-4a97-9bd0-005fc9dd24e5)(content(Whitespace\" \ + af8963d1-1dc4-4f9f-97ff-ac5005522868)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2a27fa8d-a1fa-40c1-a553-5a6f8b9a530e)(content(Whitespace\" \ + 7972f163-be4e-4604-9db6-5beb9262aa8d)(content(Whitespace\" \ \"))))(Secondary((id \ - 006c55f2-7a22-4df0-9914-a74f44528b25)(content(Comment\"#err: \ + 6cf2575d-0cf6-4514-a0da-412b6ff330fc)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - ff7e8d0d-1807-42b3-8e01-33cc58484288)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c5929ebf-a9b9-4639-97d7-d45df8ce563d)(label(let = \ + 371c71ca-ce1f-4445-a32e-8cc0d9c787ea)(content(Whitespace\"\\n\"))))(Tile((id \ + 4678bd74-a463-4330-9673-bebaa7171afe)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 14377e51-1ceb-4217-ba71-24186a229e16)(content(Whitespace\" \ + f7722f08-3f4c-47e6-aa34-f74de83df240)(content(Whitespace\" \ \"))))(Tile((id \ - b7ca14d5-2c58-4ed1-b454-d77b649a3f72)(label(Yo))(mold((out \ + 957b7080-04cf-4239-a808-66bce517a27a)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 73942125-9603-4035-b063-cc8f9ce8e8b3)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + a47e1438-766d-422c-bbac-6485cac8ff5b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - bf2e76ca-ac2d-43c0-a4a5-32e199987375)(content(Whitespace\" \ + 3ddd4701-a255-4a9c-9559-a1310a8cef99)(content(Whitespace\" \ \"))))(Tile((id \ - c1fd18bd-1abc-4a6c-8cfc-957b3167497a)(label(YoDawg))(mold((out \ + 57b1e5c6-1cfe-47cc-af6e-8fa24d2c4dbe)(label(YoDawg))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e1bd4b1c-a5a5-4b76-a8b2-c51089b8635f)(content(Whitespace\" \ + fdf155d4-47ba-40f7-8b0d-af84ec5ff4e3)(content(Whitespace\" \ \")))))((Secondary((id \ - 19c5cc34-ee6d-4ad6-81c8-02a31d41368e)(content(Whitespace\" \ + 5af81087-c4fb-4c6c-b7ef-186ac975dafd)(content(Whitespace\" \ \"))))(Tile((id \ - c6a966cc-66bd-4799-9f6e-16b8efa36237)(label(Yo))(mold((out \ + 283431e9-9b8f-437c-b2e6-0b28dd6e03d2)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b57f4012-d255-4bb8-bc8f-c0ca8ed64c7b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e2546fa0-3f81-4b31-91a2-5b26a8cff08c)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 69b99e6b-7806-4f7d-a721-c4aeac388080)(label(1))(mold((out \ + a125e9a1-dc78-4a84-88b7-c88624ab287a)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 56b02ec3-8d51-4298-88f0-5572b396b603)(content(Whitespace\" \ + 51b8f15d-1a4e-41ce-a8cd-11b414c0495b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1ba0434f-fdad-40ce-b432-f91c01300a1f)(content(Whitespace\" \ + 47c794f7-9830-418c-8408-eb4644359bfb)(content(Whitespace\" \ \"))))(Secondary((id \ - 01433e43-66b8-477b-acfe-f3101dd678b2)(content(Comment\"#err: \ + 2fe2672c-a1eb-4422-91c9-28f96189e086)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 43c8e876-a506-476f-a6f7-0e9ce18b22c7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 01a1d3e7-079b-410e-81e4-6c0b19bcecf4)(label(let = \ + a21c7c06-d846-4ffd-a66d-0cb8dd3943b3)(content(Whitespace\"\\n\"))))(Tile((id \ + 4a29d2ca-b4fc-4218-81e1-e00d703f1caf)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 2539a505-366f-4f35-bc49-dd92fa17035a)(content(Whitespace\" \ + aac398e8-d04e-43a6-82bc-4d6c5b8b01e2)(content(Whitespace\" \ \"))))(Tile((id \ - 9c8d4db8-d8cb-469d-a818-8f06c6a65576)(label(Yo))(mold((out \ + 78c85bb7-d49a-4cd0-9fb1-4504e6a1574e)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2e124a6c-1a98-416e-9c2d-a31b456af5c9)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 0419619e-aca5-4a6a-be3b-8713b65ee9de)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 06aa313a-1705-4684-88c3-0959c3456677)(label(1))(mold((out \ + 239b648d-0d54-47e1-8d64-52f65ea5caab)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - c0eb07fc-ca46-4c7b-bbe1-b437ed8e4f82)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + d6d46558-6953-4184-8116-29ee654d7f2c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3cbd9746-08e3-461f-8e59-bf1188c06a79)(content(Whitespace\" \ + 27d85969-1b27-4022-8122-98fea5b240f8)(content(Whitespace\" \ \"))))(Tile((id \ - 4295854d-6f35-4530-87ad-d5056108d538)(label(+))(mold((out \ + 8f0a8f1a-27fd-45a4-8780-bafc5a81adec)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - f83eeec3-4a42-4349-9f82-9a23e4661390)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + 44958aa4-27c6-46ee-acda-3795393e0304)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 56ce20b5-fc60-4b53-98af-baa07854f2ae)(content(Whitespace\" \ + 3e45e42d-7d1b-44ef-ba8d-8292d76a4f97)(content(Whitespace\" \ \")))))((Secondary((id \ - 5e99023e-fb6b-48ee-afb3-b79638d7fb38)(content(Whitespace\" \ + d0bfaf87-69c7-4620-9a8b-eaa2a2aa9b79)(content(Whitespace\" \ \"))))(Tile((id \ - abdf3b80-2a39-4b01-a168-20c5e1b62e3b)(label(Yo))(mold((out \ + ba988a26-e1fe-483a-89a7-e582b5930976)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ec5f0ad6-fe8e-4470-9a18-2aaf51bbfba3)(content(Whitespace\" \ + 23da4a46-5a55-485d-bf49-ca9cb37f9b8e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 89289d11-4938-45b7-93c1-8f10c467ac12)(content(Whitespace\" \ + 65b76e43-e90f-4949-a8dc-3f65d02cf433)(content(Whitespace\" \ \"))))(Secondary((id \ - 7b8f1c99-37f4-4758-95a0-daf1c8f99266)(content(Comment\"#err: \ + 4a5337ad-ca72-4bb9-a06e-13d7c445baff)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 02b2a52a-b5f4-4e41-80b7-a58fe6ea9585)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 500da527-7942-4a58-8238-b0c358ce8b91)(label(let = \ + 8f1a8e25-ed7c-41c1-93ac-315c7d1b78a6)(content(Whitespace\"\\n\"))))(Tile((id \ + 6ebabf70-eb4a-4cd1-8dd0-9a5011ea543c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7f530aaa-806f-408a-b53e-c4f023e17eb2)(content(Whitespace\" \ + de134bc5-85e5-42ab-b577-641580301cd7)(content(Whitespace\" \ \"))))(Tile((id \ - f89111c8-e5bd-42bb-8a23-4692cab1d8df)(label(Yo))(mold((out \ + 372c9949-0bb7-416f-887f-cdbbc82974cb)(label(Yo))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 758ce654-335a-43bf-87e1-4cc3ef54f7a6)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 4b5198e4-8521-44a1-b72f-f1937d92b857)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 8b69bf15-b0cf-4810-846a-29593e01dd15)(label(1))(mold((out \ + da8e6a05-ae9f-43a6-a9a5-749eb1b35ccc)(label(1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - 9d1bab07-4373-4f1f-a03c-25097e994811)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 69107009-8a96-46f6-b78a-1ec6433104b6)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - cc5e2c3c-0713-4cfe-9344-a925edd6c853)(content(Whitespace\" \ + 5ef53553-c599-4f7c-8006-52b176e08cbc)(content(Whitespace\" \ \"))))(Tile((id \ - 1084ff97-4032-4a02-be04-a951d295cb8a)(label(+))(mold((out \ + 664e8b1b-5445-48fc-bca8-5e13ee6a1d14)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 085cf9ea-0a85-4760-a949-dc22490dce25)(label(Yo))(mold((out \ + 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ + e23ff446-f4c4-41f6-84ea-22d262787f42)(label(Yo))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - c8a2b1f6-e183-4841-ae4e-b609d91b7a3c)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 8e254e29-b385-4d76-bf22-db4319416fb5)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 930f5a73-f1c0-476a-ba8c-8a113bc9669a)(label(Bool))(mold((out \ + 999c4101-8ebd-4d93-9906-b556bb305e2a)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a5b78531-9d59-4865-a4f0-23232aaad93d)(content(Whitespace\" \ + f0238c1a-3945-4c7f-9966-2545926eb26a)(content(Whitespace\" \ \")))))((Secondary((id \ - ec7248c7-90ca-447f-8192-89917f308bfd)(content(Whitespace\" \ + 800201b5-5580-49dd-ad62-99ce0b47c89d)(content(Whitespace\" \ \"))))(Tile((id \ - 6ea16184-54d7-4ec4-b8c1-0a7146937b23)(label(Yo))(mold((out \ + 5f57a0cd-5a53-4ada-9763-8140b101bb3a)(label(Yo))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 161d2a9b-370b-426a-a206-fbbaf8959b85)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + fb796612-8216-4817-94fb-3f09f8795f2f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - cc4bb669-3a95-4bd9-bf9f-8290ae158a85)(label(true))(mold((out \ + b76aa6bc-00a8-4153-89bf-3a9e8789aaf8)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 1a9b1b31-8fc5-4c30-b7a8-f4842dd8e199)(content(Whitespace\" \ + e8e11231-b230-4b90-b83d-cfdb94b2d52b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - eb20e134-9a53-4f56-ae7d-269ee258279c)(content(Whitespace\" \ + 5f4d8d62-4c94-45cf-8386-31cfcfb681ce)(content(Whitespace\" \ \"))))(Secondary((id \ - c248cce3-ba8f-435d-8a74-cf066d9e31be)(content(Comment\"#err: \ + 60550c2e-99ea-4d67-a46e-7bfd21e3c12f)(content(Comment\"#err: \ type incons#\"))))(Secondary((id \ - 13e9a30a-2b86-4f35-8b75-a70f09c615d8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5a2fdd2d-99ff-4488-9a13-d03a37eb4f65)(label(\"\\\"Thats all, \ + a324778b-19b4-4577-b891-afd8d0a8ed6c)(content(Whitespace\"\\n\"))))(Tile((id \ + c2c4604a-ea41-48ed-954c-d825082fac69)(label(\"\\\"Thats all, \ folks\\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 54a6e50e-2bf0-4f4d-a156-5746fe45d59e)(content(Whitespace\"\\226\\143\\142\")))))))(ancestors())))(caret \ + f321b9fc-2601-4ac4-a8e8-49860032d8b9)(content(Whitespace\"\\n\")))))))(ancestors())))(caret \ Outer))"; backup_text = "# Internal Regression Tests: ADT Statics #\n\ # All commented lines should show errors as described #\n\ # No other lines should show errors #\n\n\ #type definitions: no errors#\n\ - type = in\n\ + type ? = ? in\n\ type SingleNull = +One in\n\ type Single = +F(Int) in\n\ type GoodSum = A + B + C(Int) in\n\ - type Partial = Ok( ) + in\n\ + type Partial = Ok(?) + ? in\n\ type DoubleAlias = GoodSum in\n\ type VerticalLeading =\n\ + A\n\ + B(GoodSum)\n\ - + C(Bool->Bool) \n\ + + C(Bool->Bool) \n\ in\n\n\ #incorrect or incomplete type definitions#\n\ - type badTypeName = in #err: invalid type name#\n\ - type ( , ) = in #err: invalid type name#\n\ - type = badTypeToken in #err: invalid type token#\n\ + type badTypeName = ? in #err: invalid type name#\n\ + type (?, ?) = ? in #err: invalid type name#\n\ + type ? = badTypeToken in #err: invalid type token#\n\ type NotASum = NotInSum(Bool) in #err: cons not in sum#\n\ - type Bool = in #err: shadows base type#\n\ + type Bool = ? in #err: shadows base type#\n\ type Dupes =\n\ + Guy(Bool) #no err#\n\ + Guy(Int) #err: already used#\n\ @@ -9633,7 +9630,7 @@ let startup : PersistentData.t = + notvalid #err: invalid#\n\ + Bool #err: expected cons found type#\n\ + Int(Int) #err: expected cons found type#\n\ - + ( )(Int) #err: expected cons found type#\n\ + + (?)(Int) #err: expected cons found type#\n\ + A(Bool)(Int) in #err: expected cons found app#\n\n\ #sums in compound aliases dont add ctrs to scope#\n\ #but compound alias types should propagate analytically#\n\ @@ -9690,4356 +9687,5493 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Secondary((id \ - c02465e1-d580-455a-aa60-b6aeb9216493)(content(Comment\"# \ + 4b993118-7181-44f4-9ebc-5135577cb42e)(content(Comment\"# \ Hazel Language Quick Reference #\"))))(Secondary((id \ - eac6ad58-e3bb-434f-9db0-2e8fd6072393)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8a5b7f9a-b19d-4d34-9d0c-c880eebb5d39)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 33151d9c-2446-45f8-a398-c06e4328a468)(content(Comment\"# \ + 3d39cc52-4179-4dbd-8d7f-8444c8c48de9)(content(Whitespace\"\\n\"))))(Secondary((id \ + 3ab06844-7eec-4f8f-a87d-0e3001a93b11)(content(Whitespace\"\\n\"))))(Secondary((id \ + 660bfaf3-fa8e-4961-84e1-b1ab5e2ee342)(content(Comment\"# \ Empty holes stand for missing expressions, patterns, or types \ #\"))))(Secondary((id \ - c8cc13c9-440e-4c52-a8ef-429a39de48d6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2fffac84-5d83-47ae-b058-6d237944ec5f)(label(let = \ + b4bd89a7-3836-47a7-ae3f-ddc44c38f63f)(content(Whitespace\"\\n\"))))(Tile((id \ + bf501ab4-ecae-40cb-92a0-9d647a99869c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ca102bc0-c98e-4779-a3d0-29482db11528)(content(Whitespace\" \ + 3d0bf2f9-4dae-493f-a12a-c91a69304b52)(content(Whitespace\" \ \"))))(Tile((id \ - 23d28c28-f709-48fd-80a2-91a1261c65a9)(label(empty_hole))(mold((out \ + 9cbd9e9b-4487-4788-90e9-c28bb96ad6b8)(label(empty_hole))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a19670da-602a-43b1-98dc-be30daf8027d)(content(Whitespace\" \ + a3705e23-36e4-49d6-bc51-c89215d22537)(content(Whitespace\" \ \")))))((Secondary((id \ - 9be33140-aae6-45d2-b3af-d7236ae2fa80)(content(Whitespace\" \ - \"))))(Grout((id 10150851-d9f1-4c1b-88c1-6eb9cc5ef8b3)(shape \ + fa5cdc0b-fca9-4405-924f-26e7854788c0)(content(Whitespace\" \ + \"))))(Grout((id 736aa798-6b99-4d74-90b5-86362fac847f)(shape \ Convex)))(Secondary((id \ - 2826cf66-55bb-4b97-8e94-d11a05b82536)(content(Whitespace\" \ + 9b90b22f-953c-4c44-b66d-f9775ffbf704)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f1ca0924-2102-4d29-a917-84ed940bed3a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f8475082-76c2-4eb8-a3fb-647d9045149b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 23d2e2a0-ff71-4ff1-b0a7-97f7ca53bfde)(content(Comment\"# \ - Integers #\"))))(Secondary((id \ - c0b7cecc-18fa-4e0b-a69f-1f1fd0f4bc77)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1a5bb703-4fc2-4a12-956f-28017ffd7729)(label(let = \ + d6de8893-5e8f-499e-a60b-4bb98d8287ac)(content(Whitespace\"\\n\"))))(Secondary((id \ + 7c56a6a5-2b97-43a2-bcb7-8427d98d4b25)(content(Whitespace\"\\n\"))))(Secondary((id \ + 7a57d160-9fec-41b1-a798-9698db0d9922)(content(Comment\"# \ + Non-empty holes are the red boxes around type errors \ + #\"))))(Secondary((id \ + 0bbd0db5-d159-448b-9309-d6d1a62f9acf)(content(Whitespace\"\\n\"))))(Secondary((id \ + eb0e72d7-aca5-4fbf-9f96-4014d26702cd)(content(Comment\"# (you \ + can still run programs with non-empty holes) \ + #\"))))(Secondary((id \ + bb719100-e8dd-4526-8f87-fd6a7820a55f)(content(Whitespace\"\\n\"))))(Tile((id \ + ed7ac66c-6dde-4648-89b4-580a79ed2d8e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 6fb983fb-2e59-46ca-968c-ca1e8977e0eb)(content(Whitespace\" \ + 0b5e8152-d002-426f-933d-2979e0d17dd7)(content(Whitespace\" \ \"))))(Tile((id \ - acbb1a16-353e-40fc-b2cd-1e1e5fbf323d)(label(int_lits))(mold((out \ + 5c5191a3-bd21-4580-9e1e-fc55767f0b14)(label(non_empty_hole))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - cd520e4a-49ec-4ba0-aefa-29ea494ce3f1)(content(Whitespace\" \ + c3e57b97-f59f-473b-b722-63e553f38ba1)(content(Whitespace\" \ \"))))(Tile((id \ - aad44b6d-55b1-4e71-9a3b-0dd9a5398b50)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ef7ca920-f58d-427f-9aae-9a1a89783317)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 58477ce1-301d-412b-b1f7-1ac9f7aba4bb)(content(Whitespace\" \ + 525770e4-1524-4e6d-85ce-12d93cc21ce9)(content(Whitespace\" \ \"))))(Tile((id \ - ee9010f8-c67e-43e5-965b-e4532e62cbdc)(label(Int))(mold((out \ + c2664c78-f796-4942-ae39-b1ac905775f7)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0a73b46a-1d11-402c-b8d0-f9fec6af22ea)(content(Whitespace\" \ + 155ca8c1-fd5d-4fc0-9c70-40a0393ba9cc)(content(Whitespace\" \ \")))))((Secondary((id \ - 586e8fad-120e-4a52-929e-85b9d8f28b1e)(content(Whitespace\" \ + 8096339d-a032-4643-9b56-8949687b308f)(content(Whitespace\" \ \"))))(Tile((id \ - 062a379e-884f-422c-aa61-721b97b3e20a)(label(1))(mold((out \ + 9b3bab41-f41f-4ac5-a520-84ee8f4042cc)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 425a6af2-5fc0-47ea-96f9-b5f92c2c0957)(content(Whitespace\" \ + 791ed55a-ce5f-4398-8772-54209ad86244)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d1e0b19c-3d09-4eee-970c-3b50fea7d15f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - aba91b6f-c7b4-4dd4-a962-0954aeb11b3a)(label(let = \ + 100e3ae8-5942-4b9d-aecf-3be6f603808b)(content(Whitespace\" \ + \"))))(Secondary((id \ + fdee7287-47a8-48ce-b823-9f59fc313629)(content(Whitespace\"\\n\"))))(Secondary((id \ + 0141e36d-2974-43ec-994d-30cb244fa5c6)(content(Whitespace\"\\n\"))))(Secondary((id \ + a0f55543-a78d-4fa0-b763-8ba69aba702a)(content(Comment\"# \ + Booleans #\"))))(Secondary((id \ + a08d87a6-c940-43e0-8c7b-9ac699933c1f)(content(Whitespace\"\\n\"))))(Tile((id \ + ee0ebe75-b5cd-4519-8d2d-7c1831a633cd)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 5942a084-27cb-41c8-8048-c0c4c6fd2532)(content(Whitespace\" \ + f364b57e-2fbd-4364-9ae2-e1814619a202)(content(Whitespace\" \ \"))))(Tile((id \ - 753c2bc1-4dd7-413d-b35d-754a16eb667e)(label(negation))(mold((out \ + 989cd45e-2ed1-48e3-9546-1c82558ee3ce)(label(bool))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 1d10b712-3445-44e6-ab94-6502ef325682)(content(Whitespace\" \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 05926ea4-9b3d-4371-90a3-fe8c2b4cd893)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 3c81c789-e5cf-4b7c-8157-1ff9121b1205)(content(Whitespace\" \ + \"))))(Tile((id \ + 37bd5a94-8a24-48f2-90fa-dc9c26dbefdc)(label(Bool))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + c87c752d-9251-450b-a00c-ad2ad02f68e4)(content(Whitespace\" \ \")))))((Secondary((id \ - 7ae5f68d-af34-4e15-8764-257a5a4d685f)(content(Whitespace\" \ + bbdde6f7-5dcf-4604-99e2-8290687f2a67)(content(Whitespace\" \ \"))))(Tile((id \ - 91a73ee8-d7c2-4390-af1f-5e8b8f74c4ab)(label(-))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 2))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 52032473-7237-4de7-aaef-1572d21778d4)(label(1))(mold((out \ + e0f43d1e-ca1e-47bc-a005-9208e06f576d)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 9fd2d207-8aef-4b51-985e-6b4b0f85cd50)(content(Whitespace\" \ + cafe7e8c-16f0-44f1-bc68-55a9cbc819cf)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 35e9fd97-0dfa-4760-94f4-54a56efc7bc6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 994e8699-eae6-4f4a-89e4-e8ad228936d2)(label(let = \ + a939976f-0365-45b4-afef-bf55ae0ca282)(content(Whitespace\"\\n\"))))(Tile((id \ + e197b30f-cbac-4be4-85eb-cbc8bd93515a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a90dbe49-f009-4b7b-9c2a-1c67ebfa886f)(content(Whitespace\" \ + c36a29b2-d4ed-4834-965a-42392b214224)(content(Whitespace\" \ \"))))(Tile((id \ - fe5e28ce-5530-4c62-a241-5d8069f21e4e)(label(arithmetic))(mold((out \ + bec60015-6e5d-40df-a85e-d3a130e743e9)(label(operators))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d5090a02-9928-482a-948f-1b616daa5209)(content(Whitespace\" \ + 02fea887-d7d8-4ffe-b7e3-937a3cdf6dce)(content(Whitespace\" \ \")))))((Secondary((id \ - ef75cb3f-3312-4415-92ff-8a8b8cbb4912)(content(Whitespace\" \ + 8e07feea-4dd1-4745-ae81-f2178975d9b5)(content(Whitespace\" \ \"))))(Tile((id \ - 688e886f-8b0d-4a1d-b344-f53a8d213f33)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 696aa524-06f5-4717-b164-62e42ae4b9bf)(label(*))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort \ - Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - fca66189-a9ff-441f-a9ff-b9a343fa1ef5)(label(2))(mold((out \ + e29b6f75-747b-4c97-b0a4-883acdbafba6)(label(!))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape(Concave \ + 5))(sort Exp))))))(shards(0))(children())))(Tile((id \ + a6e7434d-60c3-4696-a530-26543476055a)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cd9d89ee-03af-481e-8578-4ada75839252)(content(Whitespace\" \ + 3ce80b7e-f65b-43c6-9347-abc191064d63)(content(Whitespace\" \ \"))))(Tile((id \ - 2baadfe4-7246-4cf1-81a9-3185efc1f88a)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 151bd74a-bb5f-4b6b-a37f-a7bb075c71bb)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 34ef2209-3967-4fd8-bdf8-1d1d4ea84fb6)(content(Whitespace\" \ + cf40a348-9ac1-4c52-ac4b-a467db3c2a5c)(content(Whitespace\" \ \"))))(Tile((id \ - 772bfc49-b7cc-49de-b663-5c1ad40e7cd7)(label(8))(mold((out \ + 3728509b-a1aa-4f22-a234-512b5c796ebe)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - f3898cfd-cbc8-45c7-92ad-e5324a4fed11)(label(/))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort \ - Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 37791357-7f10-4c88-a855-cf12f41d6a2e)(label(4))(mold((out \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + e409bef1-eaa4-4fff-b6fb-9ff47350d198)(content(Whitespace\" \ + \"))))(Tile((id \ + efbefbf3-af38-4216-99fe-fe33bd0d3e48)(label(||))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 11))(sort \ + Exp))((shape(Concave 11))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + fdf01626-8549-4571-b120-a5505f73b734)(content(Whitespace\" \ + \"))))(Tile((id \ + f6c6eec6-3670-476c-957d-3e606a13da53)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 79f7ba83-5c4e-4cf1-9a37-730a65fb8efa)(content(Whitespace\" \ + 1d286709-5457-4823-bd0c-e9ab6a951653)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 233fa61a-b3a1-44d1-ac9d-468a4da6bc52)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 28c99e4c-2557-4b6a-9148-6dc1ba8ccbbd)(label(let = \ + d04513ce-8bb7-4bba-b50b-0885cec7201a)(content(Whitespace\"\\n\"))))(Tile((id \ + 1aca07d7-1bd6-4035-977e-29691cc4e4c8)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 3fa533d1-50c5-4996-b74d-deef2a46df2f)(content(Whitespace\" \ + 3b97d260-89c9-43bc-8443-18e81985a8fb)(content(Whitespace\" \ \"))))(Tile((id \ - 3ad542ed-202c-4fde-aa12-d66033759eac)(label(int_comparison))(mold((out \ + 49bad33f-9d16-4da6-a10b-c97292676a42)(label(conditional))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a59ad00c-eca6-4f06-bc76-8502bc1f09cd)(content(Whitespace\" \ + bfdfe4cc-3fd3-4f38-9b0c-537d66cf909f)(content(Whitespace\" \ \")))))((Secondary((id \ - e545925d-3d0d-4ec0-93b5-23ca30e74756)(content(Whitespace\" \ + e4dff186-cbf8-471b-b886-9ed399add7cc)(content(Whitespace\" \ \"))))(Tile((id \ - ca563165-e29e-43f4-9be9-194fa465c401)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1305e5ea-5a8d-4d44-8f20-3e61da4b9ce7)(label(10))(mold((out \ + cc4633cf-869f-417f-94ba-97d4b05c478f)(label(if then \ + else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 05796a14-e236-471c-b8c4-412b4220a00a)(content(Whitespace\" \ + \"))))(Tile((id \ + ff0e36b0-801b-47c0-8be2-84ad2a10d30c)(label(!))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape(Concave \ + 5))(sort Exp))))))(shards(0))(children())))(Tile((id \ + a066f075-01d2-4d66-bcf4-7c02b972dab1)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b9ef2359-069b-414e-8799-eb98bc569f00)(content(Whitespace\" \ - \"))))(Tile((id \ - 0175b8c1-ec18-4b46-9155-bf421c7f2b6d)(label(==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - e71af419-adc4-45be-b7dc-0e7dabc8bb7a)(content(Whitespace\" \ + 85caf20b-e08c-4c7f-8902-b2b40fa80040)(content(Whitespace\" \ + \")))))((Secondary((id \ + 4e88f790-af24-467e-9e9b-1c14d2a0fe27)(content(Whitespace\" \ \"))))(Tile((id \ - ca973cd7-e43d-473a-9d3f-575739c51abc)(label(10))(mold((out \ + 8b827ddc-8b12-4245-975d-d2c8139dcc7c)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5497f005-b6a0-41c4-802b-a270309d38bb)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - ee4f26c1-cb5f-4576-a06e-777c650fb863)(content(Whitespace\" \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + a9b861a5-13fe-49b4-b098-be76f2b75a12)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + bc034320-358e-4c70-a571-82c2c3dc0259)(content(Whitespace\" \ \"))))(Tile((id \ - dfa9b54e-06b1-411c-bb4d-cc17c9c15c42)(label(1))(mold((out \ + 06714853-cf80-467c-a697-19d6731a422c)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 98a978e5-494a-45d6-a857-9f8a1120cac7)(content(Whitespace\" \ + 16e558ce-b1eb-4986-a773-3cbeb12ed69a)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + a14ef0b6-77de-47ab-9c54-606953449e0c)(content(Whitespace\"\\n\"))))(Secondary((id \ + acde2183-f63e-4cfe-99da-0374bbe55f04)(content(Whitespace\"\\n\"))))(Secondary((id \ + a8846210-25f1-499a-befb-bbdd05e4c7ab)(content(Comment\"# \ + Integers #\"))))(Secondary((id \ + 71c8f972-e274-4b62-b8e7-e3a6a41b316c)(content(Whitespace\"\\n\"))))(Tile((id \ + a0f1b8fc-d464-4b8d-9146-b2e42a77de64)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 28023d9d-3eaa-4e82-8e05-7f29a37b0797)(content(Whitespace\" \ \"))))(Tile((id \ - e47da472-40dc-4850-b65d-c0ecac9b7cbb)(label(<))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 1d349a92-ca96-49eb-9e9a-a69c0776b1df)(content(Whitespace\" \ + e0537630-0d80-455d-bf3e-bfdc3f262d27)(label(num))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 2d76dcfd-10da-4d29-9e0a-701c3465e23c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 29988631-a0e2-4758-8729-a39038e19c08)(content(Whitespace\" \ \"))))(Tile((id \ - 477c7f95-29af-4c05-9c3c-9158c1de4fda)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c8480c5d-ff1d-43ab-ae22-43754f3a7deb)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 269b997c-d282-41e5-8dab-d322d6d58255)(content(Whitespace\" \ + 7a17edb8-4adc-4437-92a7-325c0de914a9)(label(Int))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 86bf1862-2943-4ef0-a74e-25b47c2cd8a4)(content(Whitespace\" \ + \")))))((Secondary((id \ + b5066be8-f6ee-4f38-add3-5b791b10d3cb)(content(Whitespace\" \ \"))))(Tile((id \ - 0d107bec-b49c-41b9-81ab-e15c5742796b)(label(2))(mold((out \ + cf716f06-33f9-4db6-852a-ebd336683bb9)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 16314a7a-c788-43dc-8f24-2bbbbc00aed1)(content(Whitespace\" \ + da3c6d61-9e44-43c7-b197-6db94ac91a01)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + e635d747-a2c1-42e6-8cad-81202874441f)(content(Whitespace\"\\n\"))))(Tile((id \ + 72063092-2d1a-49be-bf07-4a82bd224c5d)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 7fd477d7-8dd6-4d97-b01f-8590ed062b85)(content(Whitespace\" \ \"))))(Tile((id \ - 289a01fc-7255-4354-b855-42270b1af4d4)(label(<=))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 07533539-c3a0-460b-a50a-cfacd93b624d)(content(Whitespace\" \ + 6fe8faee-fd1c-4064-97dd-934d01cd98fb)(label(arithmetic))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + f8c0c491-c666-4fdf-9d62-6e65f6a1e47f)(content(Whitespace\" \ + \")))))((Secondary((id \ + d05f1456-d916-43a1-ae31-d9a59d748136)(content(Whitespace\" \ \"))))(Tile((id \ - d451038b-964a-4f8c-8535-2ff829bf5e8f)(label(3))(mold((out \ + db3f06bd-fb34-492d-8230-373116091f74)(label(-))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape(Concave \ + 3))(sort Exp))))))(shards(0))(children())))(Tile((id \ + 71932955-38b5-45a8-9ff8-43ca66a225ff)(label(num))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - dcf1dbdc-44c6-4b1c-a7ca-a3a6fed31a92)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9a1479e1-d046-42ae-b275-121dcb765884)(content(Whitespace\" \ + 8ba0f793-e47f-4952-a927-185a56d7d522)(label(*))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 5))(sort \ + Exp))((shape(Concave 5))(sort \ + Exp))))))(shards(0))(children())))(Tile((id \ + afd959dc-fdf8-4afe-97eb-fdf15ed87f5d)(label(1))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 4819b145-ade2-4985-855f-068c65cf6c07)(content(Whitespace\" \ + \"))))(Tile((id \ + d9a5be33-4b85-4e67-a79a-e565fdb4923b)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + eed4d8c9-9007-4eab-9413-c6cc143d8c3f)(content(Whitespace\" \ + \"))))(Tile((id \ + 71a337ef-e671-473a-9f62-ce76c4a9a04a)(label(2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 3356f10d-907f-4cad-ad38-9f116b41a3da)(label(/))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 5))(sort \ + Exp))((shape(Concave 5))(sort \ + Exp))))))(shards(0))(children())))(Tile((id \ + 8e9a3d43-271d-4d23-86ad-5618cca60149)(label(3))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 1f769a74-617a-4b4e-9b3d-61efe6596381)(content(Whitespace\" \ + \"))))(Tile((id \ + de1aac72-33dd-4df0-b78c-9f263ce2e083)(label(-))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 440bd36f-e481-4f12-90b8-8ba10a69ab79)(content(Whitespace\" \ + \"))))(Tile((id \ + 5633c8da-9d4c-49f1-833f-27835a8f1f2d)(label(4))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 1581a027-42b4-40c1-8d76-8691cbd20762)(label(**))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 4))(sort \ + Exp))((shape(Concave 4))(sort \ + Exp))))))(shards(0))(children())))(Tile((id \ + 9643e743-46da-46bf-9332-143bd4993d6d)(label(5))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 7fd1c1c0-58c4-4062-90a5-dd6570f027e8)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 137e161f-7034-4a58-9cc2-ea8ccf152a1b)(content(Whitespace\"\\n\"))))(Tile((id \ + ad829bdf-b922-493b-b026-8ed010ca473a)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 07fae274-cd6d-4097-9c03-04ad5268a5a7)(content(Whitespace\" \ + \"))))(Tile((id \ + 86c55165-0682-4f0a-98f0-81c09d1face0)(label(comparison))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + a6b198fd-00c8-40a4-9b59-eb852d78a191)(content(Whitespace\" \ + \")))))((Secondary((id \ + 8d79e96a-c93e-4648-9937-533654896d92)(content(Whitespace\"\\n\"))))(Tile((id \ + 8f8f4629-ee0b-4dc9-8dd1-401e136e33a4)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 477b9cb3-1295-45b4-ad50-5469aef92106)(label(0))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 801bc2f8-c84e-44e2-a4ba-4564f27bd5f4)(content(Whitespace\" \ + \"))))(Tile((id \ + 751053a2-1239-48d3-ad02-f80fdf38d762)(label(==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + c6ea8251-adb0-4f31-9ab2-bd745d8c9c9b)(content(Whitespace\" \ + \"))))(Tile((id \ + 1077608e-e82b-4d61-842d-02f1db2a2be2)(label(0))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 7459af01-0213-46f7-98ef-9e86cd303fe7)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 39428c8d-bd58-4b26-ad5e-f5ace9e682c2)(content(Whitespace\" \ + \"))))(Tile((id \ + 8aa97239-f03e-4d22-98fa-828340fff9a9)(label(0))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 2bf9baa7-d1ef-4ca8-bc7a-7cc41ed47f51)(content(Whitespace\" \ + \"))))(Tile((id \ + 530edad9-0b14-40c9-a279-d057fb836e18)(label(<))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 2a7b4aac-3e9c-4565-a981-fedbf5ed786d)(content(Whitespace\" \ + \"))))(Tile((id \ + 6cc717e6-6cc0-4965-a1ca-7b7c9415b62d)(label(1))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 890301b6-3925-4cb6-89f0-a16fe4087c1d)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 8211e0e9-eb22-4af0-aab3-bb5f59b5b735)(content(Whitespace\" \ \"))))(Tile((id \ - 9fc4fae9-20d6-4a61-8da4-5336cb74d4e2)(label(3))(mold((out \ + d3d6cac7-f24b-4fb7-9e7e-8757c68d785b)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1afdbff4-96e9-42e7-876d-5051adc8fa27)(content(Whitespace\" \ + 7a852fe9-0f8b-45a5-8879-825f8621049d)(content(Whitespace\" \ \"))))(Tile((id \ - d57fd5e4-cbdd-47c9-ab11-527b431d5bf3)(label(>))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + 0c8a3170-9d76-4bc5-b212-a270b27dba5b)(label(<=))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + b5c3c93d-04c3-402e-bfbb-5d8d8669ee8e)(content(Whitespace\" \ + \"))))(Tile((id \ + b567f167-a7b4-447f-8f40-b6675ccaa0b1)(label(1))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 456b4db0-2b4e-4231-8560-de6cc9f9f940)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 39eb1a82-8220-442d-85a8-ffac84f969ad)(content(Whitespace\" \ + 93b2e8e5-c4c1-4f96-8c8f-49344526f42c)(content(Whitespace\" \ \"))))(Tile((id \ - 089c2640-84cf-436f-95b9-d54450d8b6d4)(label(2))(mold((out \ + 076d2481-04a9-4a06-bee0-603332b06c5b)(label(2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 62e9b463-5cd4-40ee-acdd-264d50311e22)(content(Whitespace\" \ + \"))))(Tile((id \ + 8b441965-9711-415b-b146-07dae87e0d85)(label(>))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + cf085b1e-59c3-47bb-bc9c-7306e5eb5d91)(content(Whitespace\" \ + \"))))(Tile((id \ + db7895db-2349-4e97-b138-de0d095ee6ba)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ce10a8eb-da2c-40eb-aeb4-28663f03871f)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 4b0fca1f-e324-4b2a-b949-99540e72e07d)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cedc559c-d11a-4f5a-bfa0-bade4341794b)(content(Whitespace\" \ + cea607a3-9504-4622-919a-34e528733961)(content(Whitespace\" \ \"))))(Tile((id \ - 8bed2e43-0314-4f22-acc3-acc4d3e8ffb4)(label(2))(mold((out \ + df88d4d8-99ab-45e7-b6eb-0b4b5c8327b8)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 29d534fa-5a4a-43ae-8f66-3a185856c570)(content(Whitespace\" \ + a8eeda59-c775-4580-85a3-08e579d0eaba)(content(Whitespace\" \ \"))))(Tile((id \ - 257e50c9-e66c-4246-9e28-3006b1ebc81b)(label(>=))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + 5f6e842d-9c1d-4bc1-bdd0-429d66630790)(label(>=))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 559b5241-a336-4121-823b-1d7dcf167fa5)(content(Whitespace\" \ + 593cdc9a-cbc4-42ea-90e6-a71732add5ca)(content(Whitespace\" \ \"))))(Tile((id \ - 8c70323e-6c0d-4073-a23d-0d3a2d8fdcdc)(label(1))(mold((out \ + b0b079b5-0588-4cc1-aa98-8253d1adfb02)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 8cecb774-93ed-4a93-8c1c-98ce749d0554)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 13fdc7ae-e70e-4da7-b6a2-9666dbaca4d1)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f73cb689-d184-4dde-9be8-3a0f61d1d46b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7b53cf5e-1184-49ed-9d7c-4726c8e0b117)(content(Comment\"# \ + 67a01455-da82-4d7f-aca2-3e9990af1a3a)(content(Whitespace\" \ + \"))))(Secondary((id \ + 9bee5285-97dd-4029-94ef-ae48c856d65f)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + ba596e6e-a4fa-4145-b7d3-5f40b7a7ab5b)(content(Whitespace\"\\n\"))))(Secondary((id \ + 22297d6c-432e-4b8f-8e77-6a0b2fa0d02c)(content(Whitespace\"\\n\"))))(Secondary((id \ + 162e13c3-0a85-4d8f-b2e7-d5a33bfe3cb3)(content(Comment\"# \ Floating Point Numbers #\"))))(Secondary((id \ - e12f8c8d-b356-463e-9d35-3f289845d9d4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 10aa8ea5-d891-4d07-97ae-684f3cc0989e)(label(let = \ + dd3432a2-c03a-4cb5-9759-64f6074adb5d)(content(Whitespace\"\\n\"))))(Tile((id \ + 01237b9c-1f71-4e5e-9c44-a104d800519a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 8021f30a-9d89-44ee-8ffd-b1d995c1d518)(content(Whitespace\" \ + 2cdb61cf-7d6a-4f6e-84ae-c2fa6da6bbf6)(content(Whitespace\" \ \"))))(Tile((id \ - f7b293e6-340a-4681-b019-c5124e45c0ff)(label(float_lits))(mold((out \ + 18771196-7dc8-4b0a-8dce-d3d6edcdc774)(label(float))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 2f6ed6ae-11a1-4e72-839d-12ca19cd93d5)(content(Whitespace\" \ - \"))))(Tile((id \ - e432a2f9-7792-4f40-9493-eeab3c60da34)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 5a5d242d-d835-47e1-8799-319167654d3c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3ce58267-880a-4f6f-b440-68864aa1efb8)(content(Whitespace\" \ + 2bc8b167-a805-4a6a-b0c7-cdef41e58bde)(content(Whitespace\" \ \"))))(Tile((id \ - 8055bb96-c5a4-421c-bcf2-ccd8c3bd4173)(label(Float))(mold((out \ + e5e03fdc-7efe-469f-b8a3-1759d785e07e)(label(Float))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0bec24d1-5e30-478b-bcef-3ae4772e8a8b)(content(Whitespace\" \ + 20729cf4-b8e3-4792-9f1e-e9cf247ae1c3)(content(Whitespace\" \ \")))))((Secondary((id \ - e49338a9-9ae8-41d9-b647-51bcfc609b03)(content(Whitespace\" \ + 4c4d2fa2-f403-433a-b91b-eb5befffc93e)(content(Whitespace\" \ \"))))(Tile((id \ - 4c9483f1-3795-4998-aab9-c3511077b5e6)(label(1.5))(mold((out \ + c86219c0-4068-4c1d-9161-bf94d990485f)(label(0.1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ceefb970-0cda-476b-928a-c7d6cda446b5)(content(Whitespace\" \ + 9ba791a5-e795-4557-9506-6226a61312be)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fc5cd16d-6e3c-4a63-97db-b428ae944398)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b8131072-fa39-467c-b055-ec955668d644)(label(let = \ + 72c52716-3901-464d-ad2f-a790786c3c92)(content(Whitespace\"\\n\"))))(Tile((id \ + a16b6a44-f793-4706-805a-3a68079d89da)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7a9ce07b-0aaf-4199-93f1-8e736cc615a9)(content(Whitespace\" \ + 6fa0b5da-1fea-4936-9d00-0135ecee95f3)(content(Whitespace\" \ \"))))(Tile((id \ - ed296500-3bbe-479a-ba87-1e336133d935)(label(float_artih))(mold((out \ + 61605777-fb9c-44a4-91d0-baf4ce95c861)(label(artihmetic))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 5d42b5fb-391d-4afb-9d9a-9584ab3c05da)(content(Whitespace\" \ + 5a50e12c-e2f4-46ea-a4c3-dac58a336c26)(content(Whitespace\" \ \")))))((Secondary((id \ - 3659a1fd-5038-4106-851f-99f679d91e4e)(content(Whitespace\" \ + 892a1905-1235-4f29-9178-6942976922a8)(content(Whitespace\" \ \"))))(Tile((id \ - 3e918251-1956-47e4-b049-5ad8ccc7a2f7)(label(1.))(mold((out \ + b340781d-ae26-4132-9b62-45d043a8b88d)(label(0.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 97dfebff-d305-433e-ad00-96a6efc718b8)(content(Whitespace\" \ + c0eb63ae-f9c9-4170-a00e-8059364b3ed0)(content(Whitespace\" \ \"))))(Tile((id \ - d5b59097-6064-4f40-9a09-f3d44cd5215b)(label(*.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort \ - Exp))((shape(Concave 4))(sort \ + 6d11ef9e-f048-48c7-bbc5-79123fee54f5)(label(*.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 5))(sort \ + Exp))((shape(Concave 5))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 93992b9e-6f82-46b6-8a9b-f5a34e3d0dbc)(content(Whitespace\" \ + \"))))(Tile((id \ + e52a03c6-758c-4411-b172-99180b14bcf7)(label(1.))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + cd52bc5d-0d4a-4d07-9a46-9c1a3aaf8e4b)(content(Whitespace\" \ + \"))))(Tile((id \ + b046d878-9ea1-4578-9587-90df217783b7)(label(+.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ca8d362f-94a6-4df6-a803-5f248e528219)(content(Whitespace\" \ + 857e394d-4e6d-4827-afca-f62900cfb6e3)(content(Whitespace\" \ \"))))(Tile((id \ - 7d99d9a9-d2cf-422b-891d-616f124b2112)(label(2.))(mold((out \ + 80981623-ddb7-41e5-97f4-55cdffbe4529)(label(2.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 377e3e95-982f-4470-b6dd-c5e8132e5e5d)(content(Whitespace\" \ + a2e640cc-6343-42ae-8395-45657f9a7f7e)(content(Whitespace\" \ \"))))(Tile((id \ - b3ce0733-8039-4f1a-b19c-b2e643a6f4ef)(label(+.))(mold((out \ + c6bb1c9b-c306-4236-bb80-4c2c95d7ba50)(label(/.))(mold((out \ Exp)(in_())(nibs(((shape(Concave 5))(sort \ Exp))((shape(Concave 5))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - be550181-cebb-4e2c-88f4-56e9ac3f8d06)(content(Whitespace\" \ + 9da03f58-69b1-4a1a-9cfd-ff59e3c0eaf4)(content(Whitespace\" \ + \"))))(Tile((id \ + e358b4a0-0212-482a-a134-41dc5ec4480d)(label(3.))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + f51e5aae-e2c3-41c8-972a-9e6752b00afb)(content(Whitespace\" \ + \"))))(Tile((id \ + f4745bd1-845d-4545-bd88-55e0c828bd03)(label(-.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + ce6cb69e-0284-4ba2-9515-61282191dc85)(content(Whitespace\" \ \"))))(Tile((id \ - 9720963b-38c5-44f8-ade5-28d3b93ac28e)(label(8.))(mold((out \ + 321f4291-c1fe-45b4-ba41-304d5e184fb1)(label(4.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 79327816-38f3-4b35-9c61-64d67c0dc8d8)(content(Whitespace\" \ + 91de8f02-67db-437f-b1a2-fdb203c67cd9)(content(Whitespace\" \ \"))))(Tile((id \ - 87e5293d-5940-49d8-b964-46507d81b79f)(label(/.))(mold((out \ + 48078403-3e3e-471d-94cc-a67891048d4e)(label(**.))(mold((out \ Exp)(in_())(nibs(((shape(Concave 4))(sort \ Exp))((shape(Concave 4))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a9072680-b79c-4a15-a3ef-3448e283709d)(content(Whitespace\" \ + bef2fe19-fb45-43ef-913a-db8b4442f8db)(content(Whitespace\" \ \"))))(Tile((id \ - 2af4956c-32e2-434e-8b23-9ff35fcbb97b)(label(4.))(mold((out \ + 73752db2-3560-413f-af04-b58677b4dad0)(label(5.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7741c9e4-a581-44bf-b1f3-196699159b85)(content(Whitespace\" \ + 112deae5-f361-42c7-979e-90f7fe1f55dd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b1bcbfbb-4588-45f3-b5c1-6e622a6c22f7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 13c0ef1d-f81e-4a02-aa26-e2c91e94ee5a)(label(let = \ + 39794c4d-de44-4353-80b5-1d999908e1bd)(content(Whitespace\"\\n\"))))(Tile((id \ + 7f38fb45-678f-4cef-9a6e-60f590c8454e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9fc6b971-83c4-4ee5-8432-112dacb86695)(content(Whitespace\" \ + 58de9aad-3733-4520-aeec-c09d9fbc314a)(content(Whitespace\" \ \"))))(Tile((id \ - 5bc77122-3aef-4f4e-89d3-01002a1696ed)(label(float_comparison))(mold((out \ + 10777d3e-00f9-4590-b2fa-68c40b19a1fc)(label(comparison))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 06f39d6b-8ef0-4e11-9a45-369cdacf2998)(content(Whitespace\" \ + aa6ea894-d520-4a20-a7eb-97b28f4f7093)(content(Whitespace\" \ \")))))((Secondary((id \ - 46124981-91e7-4f5e-ae47-7fc33e3e4858)(content(Whitespace\" \ - \"))))(Tile((id \ - 6ea34e57-cb97-4450-9d60-df6a6524e2af)(label(\"(\"\")\"))(mold((out \ + f51ae2f9-406a-4cd4-a5f5-01eac0a1d654)(content(Whitespace\"\\n\"))))(Tile((id \ + 10a6b962-031a-4573-8fd7-510c3ea87404)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4545c34b-9969-4077-96b2-3898dba2acad)(label(10.))(mold((out \ + 756c6617-884c-4603-b5a1-a336fd3ecf06)(label(0.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - dcf22383-1322-49f0-9596-48309d4bb77b)(content(Whitespace\" \ + 2a49b824-3411-4f3c-b3b3-e542fc0ee7dc)(content(Whitespace\" \ \"))))(Tile((id \ - cbbf25af-750f-4abb-b1f6-f521816cb828)(label(==.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 91f1f6e6-c035-4020-a9d2-8c2f419c7338)(label(10.))(mold((out \ + 3492897c-68e9-4929-929c-c248c722a813)(label(==.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + ca67f9c6-7951-4e7a-ade8-0f2cbb0f6c4c)(content(Whitespace\" \ + \"))))(Tile((id \ + dfe47847-3820-4e20-bc55-b3551d984137)(label(0.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - caeb3fc4-872c-4dcc-83ac-803b54a46463)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + f58d1ced-2807-4295-a73c-518e8ffd3544)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cfd3c907-699d-48d2-a60f-bad9adebba48)(content(Whitespace\" \ + 23c22334-b3cd-4259-8e62-6dc1df1bdd12)(content(Whitespace\" \ \"))))(Tile((id \ - f5bb85ce-27c0-4351-a71c-51a88ece8ca1)(label(1.))(mold((out \ + ef4cab3b-dbcb-42f7-a0bf-1a9875b04af1)(label(0.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 51283b8c-c360-4468-a559-45cbe3454d72)(content(Whitespace\" \ + 8de2ab3e-705e-4f0f-8869-b3d5fc5037ed)(content(Whitespace\" \ \"))))(Tile((id \ - 8da7e8a9-a288-45db-9dd8-aead3ec13f8d)(label(<.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 10048c15-f857-4c9b-a89c-509462d60f7c)(label(2.))(mold((out \ + 499a8a53-86c8-4b09-b0bb-00c0e957daf6)(label(<.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + a984083e-9714-4f96-aad5-2b7079ad37b1)(content(Whitespace\" \ + \"))))(Tile((id \ + e5978a40-0050-4f26-83be-23ae0a13e833)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 525c7176-b079-467c-9aaa-c8dfa4d5fc28)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 5ca2b7d1-0738-409a-a4eb-a3826d43c532)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ccb3dbb2-65af-45c6-a35a-dbdb2de55eb0)(content(Whitespace\" \ + e327604d-7675-4f0c-a38a-464967f25349)(content(Whitespace\" \ \"))))(Tile((id \ - 882890e3-6922-4f01-adb2-3849a28c6068)(label(2.))(mold((out \ + 28d9924a-eb8f-4af3-9cb9-85ff700087db)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0d952e96-5ece-4b36-bbf0-23fb298da825)(content(Whitespace\" \ + 9017c568-c9f4-454c-b12d-7e7ad6e3f998)(content(Whitespace\" \ \"))))(Tile((id \ - edb705d3-f107-42cb-ab2e-27b45622c9a3)(label(<=.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - d845e2bd-f60b-4a23-84cb-d9557b04db16)(label(3.))(mold((out \ + f68c18b2-f0a4-4a58-ba53-433803dfbe65)(label(<=.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + c44fdc26-3bc4-4d71-a197-1417af51ee08)(content(Whitespace\" \ + \"))))(Tile((id \ + 2a93b83f-3f29-4f3b-ab1b-3ceb18ece4a2)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6c24749c-9a0d-46d7-b509-290abf75f7c6)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 5aaa6b8a-3e52-4e90-befb-cc5a87a095b6)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9d2432cd-b491-457d-8d3a-ead7face4508)(content(Whitespace\" \ + 465020ea-9f27-423b-929a-639c62012260)(content(Whitespace\" \ \"))))(Tile((id \ - 68b23073-d57f-4327-bb1e-66a2c4a98c01)(label(3.))(mold((out \ + e642072a-43f4-4f87-9eaf-a38614b26850)(label(2.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 944dfcc5-247e-42ee-9a23-be664c184d68)(content(Whitespace\" \ + 909b7b97-a882-4470-8032-afe70386a637)(content(Whitespace\" \ \"))))(Tile((id \ - f32aa2cb-9347-4346-ac24-4c432d04de80)(label(>.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 4438a2e6-cbcc-435b-ab93-71426659fb2d)(label(2.))(mold((out \ + ddf857a1-d4ca-4ace-a233-f1876cedbaee)(label(>.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 5c4dc41c-5712-4ad9-9c87-88ebac4211a3)(content(Whitespace\" \ + \"))))(Tile((id \ + a1490857-ac74-429d-ba11-6bd5bc08299a)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 915dae41-1a85-4e35-9f83-837aefb453fa)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 1c96a4ce-d742-44ec-99b7-4095fc9fa1a8)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e5370413-5b1e-4ec5-856a-635c8b100507)(content(Whitespace\" \ + c672f0ac-202e-422c-afa4-142a8b7d9eac)(content(Whitespace\" \ \"))))(Tile((id \ - a2e396ff-220b-4fad-af54-5f40174f68c8)(label(2.))(mold((out \ + 29a8e8de-eb70-40cd-a0a3-fb2a57e56b0f)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1e3874d4-1503-4342-aa07-2c1f6c40798c)(content(Whitespace\" \ + da1b39fd-215b-4146-b0c5-30a2eabc83be)(content(Whitespace\" \ \"))))(Tile((id \ - 517b75ee-a1bf-46f7-8c0b-1bb226a37c27)(label(>=.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - c2729f80-24a7-4f7c-bc80-deccb52dabc0)(label(1.))(mold((out \ + 8ea26cfb-ae2e-4ae3-92b3-be60961607a2)(label(>=.))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 2be24eee-796a-4e32-a595-fe66fdec7a28)(content(Whitespace\" \ + \"))))(Tile((id \ + a619c16b-5e98-4a1d-9a7d-ead44eaa63d8)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 6c5b7ee8-f5bc-4286-bb44-b2fd976670d7)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - dd1eda4c-8e3f-481e-a7f7-b4df78bd7f0e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 48792ba6-48c5-4e97-a8e7-5ad2456a4012)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 4701234f-7f8b-4288-a974-74493d1a47aa)(content(Comment\"# \ - Booleans #\"))))(Secondary((id \ - b29f594f-41ca-42bf-beae-4c366fc6db0d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b89ffb32-c3e9-4d29-adeb-3403b1e7c886)(label(let = \ + 6e884b5f-7331-4171-beb3-216cc889474a)(content(Whitespace\" \ + \"))))(Secondary((id \ + dc14b64e-8c01-4fa9-98a8-200c916a51f3)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + ae9436be-c012-47e3-a242-71a303f8486a)(content(Whitespace\"\\n\"))))(Secondary((id \ + d9a8b9a9-833d-4878-8d67-a46a57e9cb17)(content(Whitespace\"\\n\"))))(Secondary((id \ + 415affa2-3006-4e07-bc03-34c60b1e86f1)(content(Comment\"# \ + Strings #\"))))(Secondary((id \ + 042b8358-f751-4485-aa25-063c43696514)(content(Whitespace\"\\n\"))))(Tile((id \ + 185178dd-2fa6-4278-a6c8-db28fe4375fd)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d2218c04-1f82-4248-a3bf-94f5563410f3)(content(Whitespace\" \ + c46aa33c-e66b-41a5-8b78-57146cae4d84)(content(Whitespace\" \ \"))))(Tile((id \ - 06ebaa5e-ac57-4ee9-b32d-68006232ac5f)(label(booleans))(mold((out \ + 5e7ae119-978f-4023-b8b5-0235c8649cd0)(label(string))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - a9eabb41-480f-4fd8-b5ce-a2b8132102aa)(content(Whitespace\" \ - \"))))(Tile((id \ - 11525367-baeb-4cb8-b43c-ec0dee35fc86)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - bc65dad5-9674-4e00-8b83-5d53c42f3f1d)(content(Whitespace\" \ - \"))))(Tile((id \ - 0017b84a-a249-4b4b-a9c6-ef0e21976328)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - bf457a18-2af1-4715-a4df-7481611d0eb5)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 2632699b-a021-4bc3-a548-16d4c315fba7)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 6e417997-cea7-483e-92ed-d3e875bd3c3d)(content(Whitespace\" \ - \"))))(Tile((id \ - 17c1c64a-dccb-4902-bf6a-1a2849ce66df)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 7f2b15c2-2a1d-4cef-9313-60fb2a87cdd1)(content(Whitespace\" \ + 7a5b3bc3-6c99-4c87-80bc-f86048a1edb6)(content(Whitespace\" \ \")))))((Secondary((id \ - f39ac63f-d80e-4669-bf62-fd97661c0065)(content(Whitespace\" \ + a6819e93-71a7-4d6c-b4ea-82e192d9fbf3)(content(Whitespace\" \ \"))))(Tile((id \ - 5389dc89-11fe-4bd4-bfce-50920c3c0310)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c8ab23c2-f2ad-43c0-ba6b-2ca69043a1f0)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 78255f29-5055-4f97-9433-0c7b0a4c6d2e)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + fab8653e-c5a0-43fa-afca-b7a4011553f6)(label(\"\\\"Hello, \ + world!\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ + Convex)(sort Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3a58111e-8c4f-4516-90b0-999ba0db4cfa)(content(Whitespace\" \ - \"))))(Tile((id \ - b9dcd9c2-f7fe-48c3-a94e-1849355867e5)(label(false))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 13ddd06c-da67-4e37-8486-85ddeeb8a98b)(content(Whitespace\" \ + 1d0473fb-c794-4cef-804f-324b9a1fce59)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a09e6f3d-bd02-416b-9948-6ab04eb17da1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 06ae542d-6ca1-4225-9e6c-d8cd47fea13d)(label(let = \ + 91a59c5c-f769-4985-9c41-f6ff3f0db39e)(content(Whitespace\" \ + \"))))(Secondary((id \ + 81348781-11e4-4290-a6f4-52973732b5e1)(content(Whitespace\"\\n\"))))(Tile((id \ + a618324a-ffee-4efe-9d2b-f13879ae838b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 5ff510c7-a2e9-4b2d-aea8-4bbdd5622502)(content(Whitespace\" \ + a719321b-6232-44f9-8b18-341359975676)(content(Whitespace\" \ \"))))(Tile((id \ - 25019522-ee88-47bb-98dc-21be74263f85)(label(conditionals))(mold((out \ + b6bb4a32-4b36-4689-991a-1b62b7a4b14e)(label(concatenation))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d186c457-dfa8-49bd-a338-7cd988da6112)(content(Whitespace\" \ - \")))))((Secondary((id \ - a39c092f-c169-43a0-b94d-7fe57db457da)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ba62a4d9-9cd3-46f4-8add-960015a5b252)(label(let = \ - in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - bb015ac9-1e95-47e1-b42c-dbf3babd1fb2)(content(Whitespace\" \ - \"))))(Tile((id \ - 75aa8a68-196d-4751-a3f3-28526299fad2)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - e92cd801-e46f-491c-90f9-61aa20887bdb)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b220a3ab-eda0-4504-bd78-c8aa5a72c2da)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - de75ac47-32b5-466a-a94f-73665f45f35f)(content(Whitespace\" \ - \"))))(Tile((id \ - 55c42244-25d6-4091-9a4b-5f964b6f7f7f)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - a8c611d6-6b7e-4741-9aff-c6f4966ef5d7)(content(Whitespace\" \ + 3fee7685-ff3f-4803-b2dc-b7d54015093e)(content(Whitespace\" \ + \"))))(Secondary((id \ + 9d9ec990-d5c0-4ee0-aa90-3de48324afc1)(content(Whitespace\" \ \")))))((Secondary((id \ - 1115e119-2ff6-4b0f-b5f4-a6489526c495)(content(Whitespace\" \ + 032caae1-90a7-4ab3-a334-88fc2f798d5d)(content(Whitespace\" \ \"))))(Tile((id \ - d5b01572-55be-4c94-af8a-59e2cc585251)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e1e9c08a-7fc0-4039-ad1f-f70055edf2f1)(label(2))(mold((out \ + 192aa42b-4a58-43bc-9e3a-e066aed7d3ec)(label(string))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1350068b-2330-4bdc-bcee-27854fc5b571)(content(Whitespace\" \ - \"))))(Tile((id \ - 38855989-1b25-413c-b04e-dc83ab9f7412)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a7c39806-2f69-4b06-bd77-743bdd88df3d)(content(Whitespace\" \ + cb7a976d-413d-47d9-b07d-67e96d409d24)(content(Whitespace\" \ \"))))(Tile((id \ - a604aac2-13bf-4599-94ee-f03612813c7a)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a9b89e7c-7281-4b13-b482-479e2e604067)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 21bfc6f7-eda7-4670-a121-db6a2b6a247b)(label(++))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - dfee5ecb-7620-42dc-9521-7db3a7e87a90)(content(Whitespace\" \ - \"))))(Tile((id \ - dfe1ed00-63ff-49a9-9768-5e484279aee4)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 165809d9-9678-486d-a22e-b11f342f3ef3)(content(Whitespace\" \ + f369739c-aa87-4a9a-a86d-f269f61e6dbb)(content(Whitespace\" \ \"))))(Tile((id \ - db753586-baa7-4352-9397-9e5da9231c8d)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + 5502cf66-be6f-4254-ac7e-ed5db8c811e4)(label(\"\\\" \ + Goodbye.\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ + Convex)(sort Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 481882af-2b8c-4841-b809-5f2b37790bea)(content(Whitespace\" \ - \"))))(Tile((id \ - d9d12b04-5369-4361-94e2-6bee82e2a455)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 37ddd62d-1e25-4f9b-9295-4546f4c6e3d1)(content(Whitespace\" \ + 793f1b1e-7bbb-44a9-8074-ae6cf016ed27)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f08346b3-1795-4f8d-85b1-2d956b4780ae)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 859845dc-92ed-4678-b675-6eb12df4fb73)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ + 84632134-c477-42f9-b8ba-6c4f26b61976)(content(Whitespace\"\\n\"))))(Tile((id \ + 9db5d325-302e-4e45-a50c-fb6a8b0c9511)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 229d1f1b-c9ba-4442-9d3a-de760c44278b)(content(Whitespace\" \ + 4385ad9e-08ac-4a0f-8072-0d2654d69995)(content(Whitespace\" \ \"))))(Tile((id \ - 970099b8-4c8b-4899-8116-1650ef88e17f)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 712518bb-722d-4c72-ad7f-d5fc8f25d36f)(content(Whitespace\" \ - \"))))(Tile((id \ - e762e87d-b774-4252-a1ab-c34bea3b6b15)(label(>))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - f3bb6def-0e7b-4c50-8b25-69bcb18bf3c6)(content(Whitespace\" \ - \"))))(Tile((id \ - 19dbccf6-f10a-4ab5-a593-ae02caead949)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5c33a7b6-45c7-4c06-b2ba-2b911215afb9)(content(Whitespace\" \ + 82961d0c-5ede-463b-9ee2-fd176ce9089a)(label(comparison))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 2bbdfd4b-c25f-4ccf-baba-2ae5dc01ae32)(content(Whitespace\" \ \")))))((Secondary((id \ - b09f12cc-5e07-4817-9453-eda2f17d0de8)(content(Whitespace\" \ + 38dde99e-0b9e-49f0-9eb5-fd451addd36b)(content(Whitespace\" \ \"))))(Tile((id \ - e34a2a9e-3a4b-493e-842b-6660b9f9660f)(label(1))(mold((out \ + 9f634ad6-6491-465b-b40c-586125a827fd)(label(string))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4698ffa7-5be7-4a30-bafc-9173a684345d)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - fa20e15d-c1c7-4a2a-b289-4e2e63224c51)(content(Whitespace\" \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 2985292f-ee8c-4870-9b49-ad673e920a30)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 7a1b3ff5-df08-45ac-b554-c8bfc4cc9574)(content(Whitespace\" \ \"))))(Tile((id \ - 769479d5-4a41-4fb3-b311-9694b67ecdac)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e5771d07-cff9-438b-b15a-bfac4e7fb62a)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 6bebf9b7-d402-42d1-832e-d9655757744e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c81e9cc0-f7ee-4f8a-a423-ccb229c01d90)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 994e1938-e562-4bfe-ac53-ee9870827b80)(content(Comment\"# \ - Tuples #\"))))(Secondary((id \ - bd4094ad-28ee-45ac-b9a6-f41706a255b6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5d821910-ebb1-42da-a79c-eee1368d6e03)(label(let = \ + b8fd12a4-7234-4d09-a41f-e54ef6aed750)(label(\"\\\"Hello, \ + world!\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ + Convex)(sort Exp))((shape Convex)(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + dd91c949-1d0c-4be4-924f-164eda31b28c)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 66697ba3-e061-41cb-8d2b-5317587ae924)(content(Whitespace\"\\n\"))))(Secondary((id \ + 768a384f-b35d-4051-9922-373171b92a25)(content(Whitespace\"\\n\"))))(Secondary((id \ + a582ebb2-6202-47e5-971d-b6fdb47246d7)(content(Comment\"# \ + Tuples (Destructured with let expressions) \ + #\"))))(Secondary((id \ + b941f892-e39a-4b1c-98a6-04e03ab1aa0e)(content(Whitespace\"\\n\"))))(Tile((id \ + dbff8adb-98a9-4135-b354-5e91ba5fe18e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 82843ab0-2415-4a11-bc88-1b633c52f922)(content(Whitespace\" \ + d780894c-6834-41a8-aee4-44349cec1f8f)(content(Whitespace\" \ \"))))(Tile((id \ - c93c847c-7ab8-494c-a6e9-422662c7e8d4)(label(tuples))(mold((out \ + 7d99c7bc-0b22-4442-962a-d16ae31ad693)(label(tuple))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 9eaf76ed-8964-409d-b6af-3b95c6e5dfe1)(content(Whitespace\" \ + 69ffc8f5-5d35-40dd-b813-9af29662cab7)(content(Whitespace\" \ \"))))(Tile((id \ - cd39681a-c09e-482d-8097-b460aba0d9b6)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 83737bc8-6c2a-4ec4-b10a-983eae37ac16)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 5be55fff-5bcb-4702-a9f4-b7268e24df06)(content(Whitespace\" \ + 1123d894-d7f3-4d9a-9130-06c6f57b1365)(content(Whitespace\" \ \"))))(Tile((id \ - d321c385-1d0a-4b0c-aaa3-08219a0f753e)(label(\"(\"\")\"))(mold((out \ + c4b93045-c4e1-415a-abca-60ade52c0342)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - b3335759-3082-40c4-96a7-0bb91ec4b5a5)(label(Int))(mold((out \ + fb9d3340-2024-4e96-a409-e245398ef650)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 078e0901-8966-4b75-8c49-a4b7538e3c52)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 36bf4127-b306-436a-973d-d6796ff967fd)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2f09e9ed-8d04-4886-9132-62f7016141ee)(content(Whitespace\" \ + b983de5d-ece7-4f87-9ca3-af38b86be0b3)(content(Whitespace\" \ \"))))(Tile((id \ - e840f2c5-8cf7-4c2a-8205-6721b3fdcaf8)(label(Bool))(mold((out \ + a32a13ca-808b-4a8b-bf46-7ff594b4f2e4)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 9a0d92f9-ce88-4739-9542-96da69513ed4)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 935fc04b-669e-4798-b505-de5c8594c71d)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 84d5437c-c902-4e56-a124-15eb74f4186a)(content(Whitespace\" \ + c770137f-f04c-415d-883c-76d218e0288f)(content(Whitespace\" \ \"))))(Tile((id \ - 0af23744-9cab-4df9-81d9-6215876eedc3)(label(\"(\"\")\"))(mold((out \ + 4e069dac-6a53-4b6d-a3c2-8a887e632eb5)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f0ead96e-cb4c-4764-99fa-796245a2abca)(label(Bool))(mold((out \ + e355a28d-f459-495d-ae9c-7c72f6b9c9ef)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - efd7ba45-af47-47e7-880e-3a64aeb9eb04)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + ba21221b-5a45-45f8-bfe4-ea57ce394783)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b01501a6-df97-4345-bc78-4f0315501c31)(content(Whitespace\" \ + e540ead9-44e2-471b-9398-922cc36feed8)(content(Whitespace\" \ \"))))(Tile((id \ - b9b464cd-b0e1-476c-8b2c-6c633e1e483a)(label(Int))(mold((out \ + 24848ae1-6799-4646-ae6f-50990854e7bd)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - 8ac7fc3f-a8b1-43fc-824c-4b6c18070fee)(content(Whitespace\" \ + e6ef0460-ab40-4b87-9f32-d39750f6dd70)(content(Whitespace\" \ \")))))((Secondary((id \ - a575cd4e-ecea-4688-b661-02d63708740c)(content(Whitespace\" \ - \"))))(Tile((id \ - c7f190a0-f72b-4072-8eb1-8b5c77540988)(label(\"(\"\")\"))(mold((out \ + 6362b93f-e4d4-4bbb-9772-51c5c52be641)(content(Whitespace\"\\n\"))))(Tile((id \ + 4a4d43ae-0dc1-4aab-abf8-bb56796f1178)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 9142de4e-e8df-44a9-8fca-6d04fc13158c)(label(1))(mold((out \ + 6e13e1af-9dc8-48dc-86c0-f40187d3a1fa)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 166ef475-8dff-4bb3-b595-1e84944625ab)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 6d84146a-db39-4627-906b-15e87550e99e)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fe4aeee1-32e1-4274-bf64-103e3491570c)(content(Whitespace\" \ + d9f36583-cc52-4cea-bb2d-9d09f48d0531)(content(Whitespace\" \ \"))))(Tile((id \ - 5b8af094-0994-4401-ae76-a1332b3af9e3)(label(true))(mold((out \ + 51b5c1d6-da0a-4f7f-933e-2990c782c918)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a09e402e-92a6-4f6b-b855-cd8d34161442)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + cb6bc751-00fe-4eb2-9a3c-ef17bbc7928e)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - eea23743-15f8-4d76-8892-b00491dd662e)(content(Whitespace\" \ + 890f9d61-43c8-4847-87fb-651c9cc6d783)(content(Whitespace\" \ \"))))(Tile((id \ - e6659b71-12a7-46bd-bf69-a700d2abc4cb)(label(\"(\"\")\"))(mold((out \ + 678a3654-b63b-4e8c-b153-115e0802a14b)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 11784350-3981-454d-b66c-1232d578b152)(label(false))(mold((out \ + 4cb0536a-993c-402d-bff2-72b8d350e071)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 578571ed-ad92-4f0f-af8f-99bb5511beed)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 8aacc30b-1b53-4f3d-94da-0ad570ad5bc3)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 1043854d-79a4-4a87-b984-1a51ba60810d)(content(Whitespace\" \ + a49b560d-c07a-43b4-b817-0cbc3b6f0eb3)(content(Whitespace\" \ \"))))(Tile((id \ - e380669f-f318-4d4d-aab5-661105700301)(label(3))(mold((out \ + cacecdfb-5092-49ad-b275-2354937e28e2)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - b1beeeac-1210-4341-bcb7-e5ecea396dc6)(content(Whitespace\" \ + 234730f6-9254-4fce-b6a4-d4055fe78385)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1394f1e7-0251-4c39-a51f-8d7151035854)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0a24e707-5aeb-48d5-bea0-c72c22a1feff)(label(let = \ + 214e23c3-de11-4c55-9d73-78218007a0cc)(content(Whitespace\"\\n\"))))(Tile((id \ + bb635b02-126f-42b3-91e4-be98480744b5)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 730775b2-ed6e-4cda-9058-2ab2e381ce55)(content(Whitespace\" \ + 094eb0f3-45c3-40a3-b2c1-2c7c50795acc)(content(Whitespace\" \ \"))))(Tile((id \ - 8c838d69-2f5f-4144-bc7e-d386d25d4f35)(label(\"(\"\")\"))(mold((out \ + 63a60180-896d-4fdd-8421-a2bdc20a8d3f)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - d587513e-d54c-4c85-98ba-e861d28f5bd9)(label(a))(mold((out \ + 4f478d72-4296-4f68-8b69-e41446416b33)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ee1e68b8-37dc-4ddb-ae70-11fcf5d15929)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + efb0afde-2902-4486-bd87-49d72186b6c4)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 0f0080da-d789-478e-8e4a-6628b9f1bf9e)(content(Whitespace\" \ + 68362033-056a-4352-800a-d20ae1371696)(content(Whitespace\" \ \"))))(Tile((id \ - 554496e6-8ef3-4843-a4c9-8e2def5c7244)(label(b))(mold((out \ + 4621b047-3396-4c73-8135-e28e59d51d49)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - bd865f8f-6aa7-4c07-a96f-1bf7a35d2f87)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 710da941-4780-47a4-a190-7cef49b99101)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 91807c7d-746d-4d3b-887b-11e3d0ab95c8)(content(Whitespace\" \ + ae892d6b-aa05-4d44-8138-2f11373c4dc0)(content(Whitespace\" \ \"))))(Tile((id \ - 3300f21b-c939-418d-80e0-c2258d21bc03)(label(\"(\"\")\"))(mold((out \ + 5943c0f3-83a2-4a05-a22e-c51ba422a44f)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 0c7ee6f1-5cc8-439b-b6b9-42c27efa173a)(label(c))(mold((out \ + 8973b17d-2539-4fd9-82ca-42cf727ae426)(label(c))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 2e8d812b-b09d-4791-89cd-0254d2ad937e)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 972f1cbb-d9e3-4eba-a6a6-3a1b7b763d96)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - a3651e80-e491-4606-a7a8-3f61793c7f50)(content(Whitespace\" \ + cc86449d-e55e-4199-8670-84d253759e7e)(content(Whitespace\" \ \"))))(Tile((id \ - e16ad8c4-62ec-472f-99ee-e63f1f5eb4d2)(label(d))(mold((out \ + 9ac0dfd9-479f-46e1-8b68-7c5bbb72f4d5)(label(d))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children())))))))))))))(Secondary((id \ - 25012974-8c3e-48a9-9788-c95fa9403027)(content(Whitespace\" \ + 26df8488-ba9b-47b2-9889-6412d8bf7f11)(content(Whitespace\" \ \")))))((Secondary((id \ - 400972a1-6061-49cd-8081-fb56d05fec71)(content(Whitespace\" \ + 8cbf3a61-29b7-4dcc-8275-b2b0ac8fb2bc)(content(Whitespace\" \ \"))))(Tile((id \ - 16396d07-b06f-42a8-81f2-d6492bd1f4a1)(label(tuples))(mold((out \ + 0afe36b3-bf8e-4e67-8288-de1febf576b4)(label(tuple))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - df60af23-f967-4ff9-bdc4-860afaa2d598)(content(Whitespace\" \ + 90e0e2a5-5448-4d6c-be8d-618a5976dee3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 89e15fb4-911c-45d4-82b2-69b6c5f841d0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 25dc978f-32eb-4bd5-98bb-9f285f419bbe)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - aaba7119-46ab-4f2d-a84f-7592bef45bc6)(content(Comment\"# \ - Functions #\"))))(Secondary((id \ - f44d3b93-1361-4bf0-b905-8a299258389c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 78d576a7-23ef-4ec3-bc22-fc278b11000d)(label(let = \ + 2d04e537-5f26-4ee8-a778-77c1ffcb9554)(content(Whitespace\"\\n\"))))(Secondary((id \ + 1b0f3415-897d-4cbb-a173-1a709f6950d6)(content(Whitespace\"\\n\"))))(Secondary((id \ + e40aac64-3e9e-4e8e-b034-b656664017ea)(content(Comment\"# \ + Functions (Take a single argument which can be a tuple) \ + #\"))))(Secondary((id \ + 38b7eb67-43f4-4d03-8072-43f95c9cb205)(content(Whitespace\"\\n\"))))(Tile((id \ + 22815978-5913-483a-a03b-9922f7eba75f)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 4e1855ef-e374-47ec-97d4-ccfd78d8ac2a)(content(Whitespace\" \ + cb976c62-2d2e-453a-92fa-949441b5fe3b)(content(Whitespace\" \ \"))))(Tile((id \ - 018babaa-c3ed-4ec9-98fc-465dcafb8798)(label(y))(mold((out \ + cae60720-eb2d-44be-bb20-5e5012352a1a)(label(y))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - e11491b9-4080-4101-bfb4-e494f2143143)(content(Whitespace\" \ + db416289-5d93-420a-ae0e-17985b6f75ba)(content(Whitespace\" \ \"))))(Tile((id \ - f78cd590-2607-4e10-b542-d8146cde96d1)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ec534bac-db9b-4469-b8d1-fdf5efdeb89b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0173a2d5-2e2f-41f8-bfd6-a073f7748090)(content(Whitespace\" \ + d0c5714f-1180-47db-bc01-4a553e7a62fd)(content(Whitespace\" \ \"))))(Tile((id \ - 19468059-8f7d-4c76-8c90-85749aa5d436)(label(\"(\"\")\"))(mold((out \ + 790d420c-55db-47ea-b905-d231b4aa3cb5)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f1a3b0cf-b00f-4c14-96a7-8938cb74a2e7)(label(Int))(mold((out \ + b00875fd-aff6-4fcb-9d61-51db0e6a2575)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - ec2c7da3-499d-46eb-98b1-acd76e907036)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 870b349a-7ee1-4ae1-bfe6-0c9a90d5e1e9)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2d50fd9a-ce13-41f3-876e-8d02f1f38930)(content(Whitespace\" \ + 7c249bd8-aa01-4ab5-9014-0cb7969e6a66)(content(Whitespace\" \ \"))))(Tile((id \ - 64af5514-8356-4031-a08e-cc595e5dadeb)(label(Int))(mold((out \ + 0c723ebf-9158-4329-9e92-e9007c97f32d)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 7b4a7722-e9d5-4003-b838-4bdefa5caedf)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 34751550-07ce-4ec8-90af-554af3376aea)(content(Whitespace\" \ + f0c3b100-82f9-4c0c-9694-3731210853de)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + f3ac8333-1f40-496f-9e69-b9648844a826)(content(Whitespace\" \ \"))))(Tile((id \ - 2f20e50f-8b20-4330-9bb9-b19e8ca65a2c)(label(Int))(mold((out \ + 2962ea2f-17df-4d9b-823f-a9e85824bd9a)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 85852b82-d059-4b20-842c-4901f989b8d3)(content(Whitespace\" \ + 76084e06-9e14-411f-b5ed-2058ec172824)(content(Whitespace\" \ \"))))(Tile((id \ - 84eda9d6-e032-4d41-be2d-d60a116697c2)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 4ea5ed55-80cb-4852-ae89-25564abd7930)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e812ed1e-cde2-4588-b818-e214db723b0b)(content(Whitespace\" \ + 956bf182-5324-44eb-9ceb-a16e6ef06e6f)(content(Whitespace\" \ \"))))(Tile((id \ - 14d6d02c-a6e5-4151-a161-01f262720c99)(label(Int))(mold((out \ + 403b06c1-49e5-4b59-8080-261f1372f7b0)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6d90b837-9847-4018-9cf0-788ea8b1e643)(content(Whitespace\" \ + affc3911-267a-4de3-8fbb-45c1210e6721)(content(Whitespace\" \ \")))))((Secondary((id \ - 7ac2f5e0-a88f-4974-9438-3b26b3637730)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ed89344a-b7bb-4ec3-83b8-3ef8d8348fc9)(label(fun \ + c347f88b-2f39-42d3-8ab1-05081820c387)(content(Whitespace\"\\n\"))))(Tile((id \ + b73d695d-7115-4387-8986-286753c6895a)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 2ec9cd63-1606-4c15-9d51-c385430e1aab)(content(Whitespace\" \ + bd4ecc6c-c22b-41f3-85b1-6b7ba8b993ea)(content(Whitespace\" \ \"))))(Tile((id \ - b19e4e41-705f-4abb-a2fd-9478598ccf65)(label(\"(\"\")\"))(mold((out \ + 7252502a-944b-4f68-8a42-de8ff6d5c019)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - c97b3392-0c6f-4392-9dca-37e9bfedf333)(label(m))(mold((out \ + ebec6552-e2f7-480d-a4be-ed7b898cb068)(label(m))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 12a742d5-f2ab-4986-ab82-2f77bce7b302)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + cd6b15ed-61f8-4afe-bdef-9c68e885fdd1)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 28403564-8d15-4a83-8372-bcba2aef2b62)(content(Whitespace\" \ + 87e76dc5-c38e-43b7-890a-dfaea878f55b)(content(Whitespace\" \ \"))))(Tile((id \ - 2c37665c-5b98-4ebf-bdbc-04754f00ede7)(label(x))(mold((out \ + e9a63148-8c4a-4831-a13f-bfc0a7e14fc8)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - bfb06ed6-3467-4b99-81ca-47c3bc03479b)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 1034461c-5f83-433c-84a5-a6e9d6f3a75a)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 9b2fe42c-e350-48ac-9916-7ce10c6a18f3)(content(Whitespace\" \ + 9f02b604-9b07-4218-a87c-0c27e19b4db6)(content(Whitespace\" \ \"))))(Tile((id \ - 8df94600-730b-4e93-8c03-3023049b1d62)(label(b))(mold((out \ + ae32288f-fa55-4f15-8092-13bf7a01fff0)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 21a86c61-9700-47ca-b83a-6988d5fbb78b)(content(Whitespace\" \ + 93efa935-0af2-40dd-9b54-c409f98fe6c9)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 8891190b-2c30-4763-9b83-da5a512f0497)(content(Whitespace\" \ + 7cb37ce1-caae-406f-a942-e42253423adf)(content(Whitespace\" \ \"))))(Tile((id \ - ab616f81-d96b-48e2-8413-d5de88522b8d)(label(m))(mold((out \ + 740c1538-65bf-4172-812e-f4b834b10722)(label(m))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5c095f11-6a61-4769-87b2-7296227ab352)(content(Whitespace\" \ + f36a2cc6-1456-4d8c-af20-79ac2cd3be23)(content(Whitespace\" \ \"))))(Tile((id \ - d1527394-e012-41b5-b514-99e3b2f442be)(label(*))(mold((out \ + 453427e1-2fb2-46a7-952c-f22328ae22d8)(label(*))(mold((out \ Exp)(in_())(nibs(((shape(Concave 5))(sort \ Exp))((shape(Concave 5))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e17038d2-e745-4544-82f9-edd70afbe263)(content(Whitespace\" \ + 4a8b783f-5c3b-460d-9d44-21b96dd42ab0)(content(Whitespace\" \ \"))))(Tile((id \ - bd895bb2-9b48-436f-80df-69d110ca0e59)(label(x))(mold((out \ + f68966ac-fb29-4a7a-89e4-9dfdb5ff345d)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3cf62237-e7a6-4a53-bb9e-136fa5da1a41)(content(Whitespace\" \ + 96ef482c-7806-45ec-983b-58f1f671e18d)(content(Whitespace\" \ \"))))(Tile((id \ - b79be3d6-b663-471a-86ab-afa3d5b6106c)(label(+))(mold((out \ + bc24944d-bf59-463b-8ace-1cb86a04fd49)(label(+))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6d877ae4-a7c6-4a3e-ab2b-9a0aa7c1541f)(content(Whitespace\" \ + a41e5ef0-7500-44cd-9fda-ebb7e84cf8ae)(content(Whitespace\" \ \"))))(Tile((id \ - 93c6ff12-7ff0-4130-9f29-5a4aa4e48a60)(label(b))(mold((out \ + ba843560-d51f-4b77-b23a-8792cd52dccf)(label(b))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 77c5849e-5dd2-49d3-a2de-64f3110d7d62)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 65cb9542-9565-465f-90bf-d34da80fefb5)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5008fbd3-bdd1-4c2a-a1a2-93157ae9ea18)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - eb863a3e-f0e7-4ec4-8532-4372ac9aea38)(content(Comment\"# \ - Recursive Functions (arrow type annotation required) \ + 2d93c6d9-b12d-472d-92b8-92755566f498)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 5a477805-8d4f-48f6-a1d1-556f8e0705e1)(content(Whitespace\"\\n\"))))(Secondary((id \ + 8b560c77-4eae-484a-b217-8f82452831ac)(content(Whitespace\"\\n\"))))(Secondary((id \ + af3f9a0b-059a-4971-9dfd-73220377bc27)(content(Comment\"# \ + Recursive Functions (Arrow type annotation required) \ #\"))))(Secondary((id \ - fe6f4241-8508-4c6a-809f-09e529aeb12c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6021d47f-f9c3-456b-af3f-21beb230e9e5)(label(let = \ + e4f3191c-9d2b-49cb-9ac6-9a940526fcac)(content(Whitespace\"\\n\"))))(Tile((id \ + 68ea713f-f9a1-459b-97e2-97f3cd55df9e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 71af5914-9062-4019-a727-cf8107020c6f)(content(Whitespace\" \ + c6d7e9f6-cfa6-4778-967b-8df2407a832b)(content(Whitespace\" \ \"))))(Tile((id \ - 1e80ee10-eac1-47f4-ad70-3607d85a55ee)(label(double_recursively))(mold((out \ + 9d75b836-45a9-401a-b0d6-276996aba1d5)(label(double_recursively))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 2c8f5d4d-3967-43a6-8188-9bf00878a5d6)(content(Whitespace\" \ + bec83f29-1913-4497-9584-5a0aa670fb27)(content(Whitespace\" \ \"))))(Tile((id \ - ba2859cc-929a-43ef-a37f-8d5a4abbffb7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 2ff45885-389c-4f77-84cb-782281163887)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 77c87eca-53b2-423e-a8a5-f15b6a9cc983)(content(Whitespace\" \ + 4bc88e37-2ad1-413d-8ff2-51e95dc24a96)(content(Whitespace\" \ \"))))(Tile((id \ - 35b83201-eeca-4c96-a14d-054a17a6c158)(label(Int))(mold((out \ + 19005318-6634-4773-9916-43bec700ec48)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 30326705-2cc8-40b0-a555-ae8fd88f3c33)(content(Whitespace\" \ + eb234934-d296-4dcd-ac37-d68155e607dd)(content(Whitespace\" \ \"))))(Tile((id \ - 3471cacc-1f76-4cb7-ad52-c7ebf4b898c2)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 8a5cb1e1-caa3-4399-ab61-7aed794fc1a9)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d3d4d1ac-3d65-495d-bedd-8da3b3959647)(content(Whitespace\" \ + 4841a528-55b4-4837-83a8-dc8a4bb5297c)(content(Whitespace\" \ \"))))(Tile((id \ - 5a5068f9-6f81-4922-98bf-d341ae555940)(label(Int))(mold((out \ + 6bac3400-a019-4617-8877-b2e181533635)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7e9e7b9a-3565-4ab3-a609-d03ea47e1b09)(content(Whitespace\" \ + 41009e36-9c24-49e0-ae61-b49b6b57f384)(content(Whitespace\" \ \")))))((Secondary((id \ - a7a33cba-40ab-4ad7-9f7a-fcde3444a5bb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d6bda773-e64c-4bc6-bda6-e5052186143a)(label(fun \ + 646ebdda-ba87-4c02-9f5d-6a4b73731115)(content(Whitespace\"\\n\"))))(Tile((id \ + e38ed077-2eb2-4b6b-9f05-10c6a3ac431f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c00e394a-ec9a-4b6d-83ef-402c2249f362)(content(Whitespace\" \ + c453d1a7-38ed-4cc1-8f2c-b1a3a2d57570)(content(Whitespace\" \ \"))))(Tile((id \ - a0306582-db7b-4c38-898e-bce7b292eddb)(label(n))(mold((out \ + 2cd31fc4-19b6-4da4-915d-d34223011183)(label(n))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 1fc1b0df-dce7-417f-a5f4-d5ea3f46583c)(content(Whitespace\" \ + 7e6457ce-584a-46e7-a712-8a7cc52e8202)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c93de8ec-faad-4636-a415-eeaf61a0ab8d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ff02cd1d-7545-495c-80c6-042df0a797e4)(label(if then \ + cc562fa4-1041-4664-aa18-68a141a2929b)(content(Whitespace\"\\n\"))))(Tile((id \ + df423f16-af29-45fd-adba-cae64935815d)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9eb7bd90-5172-47a7-bbe9-195f35ed72c5)(content(Whitespace\" \ + 58b06d12-d67c-4aa9-b5b8-96fc3756b064)(content(Whitespace\" \ \"))))(Tile((id \ - f2054b2c-e699-41a9-9fb3-0ee0fdeff49b)(label(n))(mold((out \ + 97536683-8297-48d8-abc9-4739535c031a)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cbc67dc2-bb04-4f84-8461-14c0629fbbdc)(content(Whitespace\" \ + 2f02fc1d-bff3-48ff-9bff-697ed99571bc)(content(Whitespace\" \ \"))))(Tile((id \ - b6785035-f1fb-4420-bb00-3ef83c5d893d)(label(==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + 7200b984-0ccf-4c36-8d8a-79bb51bc7e19)(label(==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 10646012-b57b-4e19-8c89-a668b16c98f0)(content(Whitespace\" \ + d516fcda-d88a-4579-94d3-cc9c3ac8b2ff)(content(Whitespace\" \ \"))))(Tile((id \ - 397b06df-1410-467c-88f2-e6cb0c6160b6)(label(0))(mold((out \ + 7e72fc29-af8b-42ee-a180-e90a46e3e7f2)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b65c10ff-2e33-4490-bb73-66a08244d442)(content(Whitespace\" \ - \")))))((Secondary((id \ - b519ba78-08c5-4912-9d83-0c0ca0723291)(content(Whitespace\" \ + 10da9024-301d-4f23-8186-10b24f25e05e)(content(Whitespace\" \ + \"))))(Secondary((id \ + 88097f50-8a9e-4f25-9021-92f55a25b55a)(content(Whitespace\"\\n\")))))((Secondary((id \ + adc723de-0916-4234-9fa7-2de6c335f21e)(content(Whitespace\" \ \"))))(Tile((id \ - 587a6001-8bb6-4534-a871-85fa11ba1f88)(label(0))(mold((out \ + 2257d9d9-7003-45b4-ad58-fd17b4947b19)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 782d7a46-80b6-4ad1-be96-4f3150fadb1c)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 66237ba5-bceb-48e5-8397-3344adb5931c)(content(Whitespace\" \ + 32319d27-9fd2-47be-afc1-8dc4f2be8488)(content(Whitespace\" \ + \"))))(Secondary((id \ + 05edaccc-a9aa-4194-addf-a84ae12c1c41)(content(Whitespace\" \ + \"))))(Secondary((id \ + 6daff4d8-28e3-41cb-852d-1490aa79997a)(content(Whitespace\" \ + \"))))(Secondary((id \ + a70429cb-c48d-467b-a7eb-9f698abc0415)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + e2847689-c852-43c0-8892-964499d8be3d)(content(Whitespace\" \ \"))))(Tile((id \ - 4eb3b54a-f436-4d6d-9b9f-bf2a67de99d2)(label(double_recursively))(mold((out \ + 9489e4fc-8276-4f93-b89b-6f6c2c87959c)(label(double_recursively))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - cd795135-261a-4008-bbe8-5c6e68da52ed)(label(\"(\"\")\"))(mold((out \ + 978c0e77-61b0-4931-ac7f-f99be85a8fce)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 79419365-8519-415b-b6dc-1adad6e01c38)(label(n))(mold((out \ + 8cfc2aff-f614-448f-ae33-3defa2448ad9)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c3cfc0aa-8f1a-4bc8-83ee-3b56b065912f)(content(Whitespace\" \ + d27400f1-95c3-47f5-a4a6-9254980f7ba2)(content(Whitespace\" \ \"))))(Tile((id \ - a3bee0aa-8e39-41c0-868b-2c65354a9477)(label(-))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + d57dc014-37c0-46c3-8999-d7c4eba94294)(label(-))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 02f993e6-62c6-4ca2-a70d-94da454ef05b)(content(Whitespace\" \ + c9afbb83-c544-45e9-8c8d-721fc4f00f07)(content(Whitespace\" \ \"))))(Tile((id \ - 5f2b5629-2925-4b3c-992e-b597a799436f)(label(1))(mold((out \ + 97702fb8-6603-4bf8-a452-5335943725e9)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 76a93d87-c2e4-4b20-b682-29d9c26874f0)(content(Whitespace\" \ + 73f0881c-0f2f-4bda-9112-3bc891b652f8)(content(Whitespace\" \ \"))))(Tile((id \ - 3e684fb6-d094-4b83-a1f6-cf691595c0e8)(label(+))(mold((out \ + c2103d1b-66a5-4644-9d2d-a7e09b495239)(label(+))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d5a052ff-f03b-4776-86c7-0e467b007971)(content(Whitespace\" \ + 1e679a20-e2e2-4861-8d5e-d9bf8dbad5af)(content(Whitespace\" \ \"))))(Tile((id \ - 8d7620cd-9920-4a3e-8866-49a03e1897a9)(label(2))(mold((out \ + 96e7f6ea-6cfc-414f-80c0-dbcb200c918b)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 209e7f6a-02eb-46a9-ad71-0d1ff589ea18)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 744d9375-ec77-44e7-8abf-e55daef79b5b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f57276cd-1b21-47f9-b0de-79c8a5ccc729)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 21682988-ab76-42e8-8145-cbec7f79d25e)(content(Comment\"# \ + afd69223-e7d2-4fea-9361-944764560f20)(content(Whitespace\" \ + \"))))(Secondary((id \ + 22efc857-c184-400b-91ee-bae75d2520c3)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 49fc53d9-0448-4f26-a9e2-96afc50062b6)(content(Whitespace\"\\n\"))))(Secondary((id \ + 10def280-ba27-4351-bf61-9cf482994195)(content(Whitespace\"\\n\"))))(Secondary((id \ + 8779834f-35de-47aa-b280-c81c7bb89c85)(content(Comment\"# \ Mutual Recursion (bind tuples of functions) \ #\"))))(Secondary((id \ - 2fdd235d-bc05-4c17-afe4-debffdaa0550)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 795b707e-7109-4d20-ad0d-ed71a5fd5320)(label(let = \ + 51917ce5-1c79-4fd4-a5e3-0014fb6a3d40)(content(Whitespace\"\\n\"))))(Tile((id \ + 4b5c912e-3a06-4a26-a7b8-af8ddc88df80)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 34636584-d529-4f9a-9899-eee7fc4254e0)(content(Whitespace\" \ + 09c58788-4089-4d14-9fca-9d459b2f1eef)(content(Whitespace\" \ \"))))(Tile((id \ - 468c8a03-14ec-493b-8fad-738ea20890b7)(label(\"(\"\")\"))(mold((out \ + ba07e025-8d26-4694-bad9-4adb34ec309d)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 24ed2e0c-084c-4768-81dd-18f8a7c0e21f)(label(even))(mold((out \ + 1d4d4dad-9302-4772-9585-5c89f8a04b5b)(label(even))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 33b889e9-edcc-4a96-81c6-2e26ce57c835)(content(Whitespace\" \ + bdfd1baf-1ad0-4e88-8208-f856aacd5771)(content(Whitespace\" \ \"))))(Tile((id \ - f329bd36-e7b2-4fa2-bf7d-8af168d6142a)(label(:))(mold((out \ + 11174e0a-fdf3-4d52-9acd-2e233d07fc08)(label(:))(mold((out \ Pat)(in_())(nibs(((shape(Concave 12))(sort \ Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1ad6b08a-539f-4057-a7f2-bc17ac6fb0c0)(content(Whitespace\" \ + 6b2a33ec-3081-46b9-9ca7-5ea81ead8d18)(content(Whitespace\" \ \"))))(Tile((id \ - ff09f6cd-85b8-4699-804b-68b65b757b01)(label(Int))(mold((out \ + 3261fe04-1216-49be-afe4-0eca2ae33085)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 19b2af46-e3a2-4e79-8ff7-14fd27397317)(content(Whitespace\" \ + 898903de-a271-49a1-bce7-9bb6dee647bf)(content(Whitespace\" \ \"))))(Tile((id \ - 092849e2-d4e0-4824-9834-f4d102b9fd8d)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + ef9c776b-8571-42b8-bc8c-2d9823e5e7bb)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - f6bae77d-566b-4d0e-a72f-37807ea8baef)(content(Whitespace\" \ + 86d22d0f-2bc5-4533-9451-71dcfc7956d2)(content(Whitespace\" \ \"))))(Tile((id \ - cb642ef8-23b8-4497-bb6c-5e7e19b14124)(label(Bool))(mold((out \ + 5fe73c7a-6b01-45d2-8b62-1adb757e5d98)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 3a249574-39dd-4fbb-b458-d47e0955d0b1)(label(,))(mold((out \ + 3fd9a6fa-b81f-4533-af76-f6c37dd0f082)(label(,))(mold((out \ Pat)(in_())(nibs(((shape(Concave 15))(sort \ Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 01a3ebbd-88e1-49eb-9f85-67382e210d00)(content(Whitespace\" \ + 54d09f94-d260-4fbf-809b-140f503edba2)(content(Whitespace\" \ \"))))(Tile((id \ - 6d96c4d1-e4b5-490f-b0b3-b90f4a27664b)(label(odd))(mold((out \ + 6b6cae28-1b64-494b-8064-31a135d4f798)(label(odd))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 5b5481b5-764d-499a-8b1b-88b3a304f6aa)(content(Whitespace\" \ + 50f73dfe-5347-44b7-bc61-1f13c0c52fb4)(content(Whitespace\" \ \"))))(Tile((id \ - d3390775-46a2-465c-890f-044b8941b460)(label(:))(mold((out \ + 8ffc2405-8e7c-4bc3-a7c5-922c53caa97f)(label(:))(mold((out \ Pat)(in_())(nibs(((shape(Concave 12))(sort \ Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 07c9b3f6-903a-4a28-aeb0-6facbfea6a81)(content(Whitespace\" \ + 3791868a-4c0c-4e46-b143-8b7b83a58331)(content(Whitespace\" \ \"))))(Tile((id \ - 92e70a3d-5e6a-4eea-8c6d-545265822f0d)(label(Int))(mold((out \ + eae8a74c-31f3-40ec-a77f-27bccfdbe958)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b0ece690-3230-445b-9c69-389d7ed404da)(content(Whitespace\" \ + 48cae6f8-4248-4c50-811f-0f35807de4af)(content(Whitespace\" \ \"))))(Tile((id \ - c6e392cc-d53b-423b-9ac0-4acb9d920787)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + dd2807f6-b5df-4729-a08c-10d1c96dbfbe)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 60350d4d-f9f6-4cb1-b2bf-eabd28761d11)(content(Whitespace\" \ + 5071f72a-82fd-4f6b-8b68-c85c570426a2)(content(Whitespace\" \ \"))))(Tile((id \ - e78084d1-75d0-4ecd-9c09-82c18a68457d)(label(Bool))(mold((out \ + f87442ee-2141-433b-8ab9-c4ab40265c25)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 22ef9500-6a1a-4ffb-ad2b-ddf6b3dd7621)(content(Whitespace\" \ + 9d942502-f33f-4048-b93c-5cc9cffd155f)(content(Whitespace\" \ \")))))((Secondary((id \ - bfcb4fae-e7be-4d95-8063-ee6939d9b08a)(content(Whitespace\" \ + 88e3b86a-05b5-4560-9919-8260787c1c52)(content(Whitespace\" \ \"))))(Secondary((id \ - 42c2c64d-fa66-4ffb-a9ce-565af4f949b7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 27ca6a6c-4baa-4e06-8166-e8a7faedb9bc)(label(\"(\"\")\"))(mold((out \ + ad2fe433-cb2d-41ee-8dd1-257c50a17a6e)(content(Whitespace\"\\n\"))))(Tile((id \ + 8570dba4-ad7a-48a8-b580-23dc58a734c6)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c79048e4-07ce-4712-bb16-b9c6a9b29629)(label(fun \ + 9ab88092-89d4-4fba-a86d-c26e2d2b7fac)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 83c79eca-ce78-46b8-8c99-adb12bca13b9)(content(Whitespace\" \ + d0cdf7e7-ff51-4a18-8826-2dd5f4ebbce3)(content(Whitespace\" \ \"))))(Tile((id \ - 26ab53ad-5803-4cbd-a25a-b88f44d7093b)(label(n))(mold((out \ + 0c870bbb-234a-4c59-9c16-249b3cfb6aaf)(label(n))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - ff69bf4a-d901-4a82-ad50-42ef7511dc46)(content(Whitespace\" \ + 367401b1-9d57-429b-9f4f-4e420866853e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0e935a25-d455-4bf1-8bb4-ed3b6e4fdee9)(content(Whitespace\" \ + 6c1876dd-e179-4ff5-9f52-0e0090b0d0e5)(content(Whitespace\" \ \"))))(Tile((id \ - 7fbdde16-29a3-431e-961a-62596700943d)(label(if then \ + 632206e5-319e-4393-9acf-dfe13cb27814)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c57d61ae-49de-48fb-9338-eba7699b46ce)(content(Whitespace\" \ + 4ce07279-b9fc-41d7-b701-6b65328e7075)(content(Whitespace\" \ \"))))(Tile((id \ - b619f444-4657-47f6-93ad-3762a6472d53)(label(n))(mold((out \ + fb13777c-960d-4c96-bdaf-9b8f3e99b9f5)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7d9c7b39-b911-4228-b18f-3c95c6712629)(content(Whitespace\" \ + f7c70590-621a-4917-ba51-bf69a4cc4f18)(content(Whitespace\" \ \"))))(Tile((id \ - b475efbf-ea64-4aa0-bba3-05a343505bfb)(label(==))(mold((out \ + b2f534b0-c7ad-4b66-b7e4-bf60317b9901)(label(==))(mold((out \ Exp)(in_())(nibs(((shape(Concave 9))(sort \ Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 76175f11-f532-4bdf-b4b0-04da417feaff)(content(Whitespace\" \ + 49fa8ddf-3a35-4edc-b429-5ba3b71885fa)(content(Whitespace\" \ \"))))(Tile((id \ - 29980061-05a6-46c7-ae51-fadb5e0e52cb)(label(0))(mold((out \ + 85b2ba58-bb3e-445a-b266-8e81caab03d6)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3bda6593-11de-4ebb-a3f2-04fe1273c5f1)(content(Whitespace\" \ + cd932d88-e045-48f2-a445-ac161e49eef4)(content(Whitespace\" \ \")))))((Secondary((id \ - 798f751a-5397-43c4-a328-55dea819e2a3)(content(Whitespace\" \ + 7465aaaa-0cdc-46a6-b65c-aa97a19e27b1)(content(Whitespace\" \ \"))))(Tile((id \ - a2ad2dcf-9529-4e49-8948-63d35cb3fb06)(label(true))(mold((out \ + b3c661a5-29f8-48f0-a7c9-9700f70b5a9b)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a69273a2-2dcf-47af-8e96-42d81bfc4ad0)(content(Whitespace\" \ + 6410b1b2-58b8-4662-a70b-107ff11cba54)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6986d4f4-4191-4b9c-b2ff-6ee2e84a7b2b)(content(Whitespace\" \ + c02af1d6-617c-463e-ae25-8064244a314c)(content(Whitespace\" \ \"))))(Tile((id \ - 558b5c64-370b-4bc4-bd0e-fb45d281ecd3)(label(odd))(mold((out \ + c910c578-71af-4583-a9f8-b90603f4983e)(label(odd))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 37bc5a6d-6d3a-40fd-9f52-fdaf023a3905)(label(\"(\"\")\"))(mold((out \ + 4e9b453c-2fbf-4b57-a67d-1ba0d0827f46)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 76a1384c-3190-4081-a831-ef9e6f55920d)(label(n))(mold((out \ + fc92406a-cd3b-4edd-be37-c4fa5d97e74a)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8b855248-7315-463f-b88e-b452d84d5991)(content(Whitespace\" \ + a62a6f96-1014-4bdf-b9bf-856fb284b50e)(content(Whitespace\" \ \"))))(Tile((id \ - 4694a35c-fe55-453a-b0c0-1e105485a95d)(label(-))(mold((out \ + c56b8e02-c64a-44b3-9db6-941a244e0e70)(label(-))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 54bbe267-63c6-4af2-936c-85b0d968d381)(content(Whitespace\" \ + fd5a0720-7d10-4c28-aa3c-93b61b9fd20e)(content(Whitespace\" \ \"))))(Tile((id \ - d12a0549-7471-47b2-9a98-3315039b9083)(label(1))(mold((out \ + 4928caf9-5912-4cd7-9976-77cd4c7f655d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 019aaa02-080d-48d4-98a0-964ba9dba11c)(label(,))(mold((out \ + a016a7f1-e059-496e-9e9a-e4793b268967)(label(,))(mold((out \ Exp)(in_())(nibs(((shape(Concave 15))(sort \ Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ba9dddac-48ea-452a-b8ca-2733098100b3)(content(Whitespace\" \ - \"))))(Secondary((id \ - a92df521-eb76-47a3-8b62-bd83cb10f6ad)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5be4b2e1-4fbc-4a85-b08e-ef0caa32843e)(label(fun \ + cd972c58-9f5d-46bc-8fa8-29fa33a38ebd)(content(Whitespace\"\\n\"))))(Tile((id \ + f31e7879-500d-405a-b1c1-0369f06fa316)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 660939be-3d19-4c1c-825d-a74818cb155b)(content(Whitespace\" \ + 73ecfdb8-56e0-438d-ba17-db4a328e4c56)(content(Whitespace\" \ \"))))(Tile((id \ - 1c286633-1343-4436-a515-8ca3a26ff114)(label(n))(mold((out \ + 734578ec-4071-4142-9113-a0a080c659ec)(label(n))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 5a8d6d17-75c0-4b32-b0e0-6a5d5097d5d1)(content(Whitespace\" \ + 4e0bc869-e4a7-4fd2-88dc-d4c602bc5a5f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ae62b299-dba7-4fc8-a19f-fddbef3c8953)(content(Whitespace\" \ + 9c0d0928-a493-4307-85bd-3da3bec92561)(content(Whitespace\" \ \"))))(Tile((id \ - 57795e6b-d0b7-415e-b723-5afe6a52fb1d)(label(if then \ + 7455a270-a241-4287-9081-874536803332)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b181684d-e011-4e72-bba3-bfeca88dc33f)(content(Whitespace\" \ + b7bf3770-a0ba-432f-8144-b48c642fbf4e)(content(Whitespace\" \ \"))))(Tile((id \ - 3ee3433c-9ddd-41f1-8ac2-dd20d29a9579)(label(n))(mold((out \ + 581bcbac-d688-4c6f-a56e-45777025f089)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 713c9b7e-dda9-4d77-bb51-f5f0bbd727eb)(content(Whitespace\" \ + 15a8c6f1-9949-452d-8fd9-aafb514adc4d)(content(Whitespace\" \ \"))))(Tile((id \ - 609c9c74-2d7f-4447-bee5-6caba6cc48f1)(label(==))(mold((out \ + 2678e593-9da1-471b-b20e-912d2b425843)(label(==))(mold((out \ Exp)(in_())(nibs(((shape(Concave 9))(sort \ Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5054788f-0281-4c45-8f2b-646024f29573)(content(Whitespace\" \ + 910144c4-aa54-4271-87a6-f1af2ee8b76b)(content(Whitespace\" \ \"))))(Tile((id \ - fe22b068-0daa-483e-bcdc-e0333558634a)(label(0))(mold((out \ + 1ffe5969-add6-41dd-9803-4c2847920c80)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 191cde3d-c5b5-478a-934e-3ef751ed8a92)(content(Whitespace\" \ + c402ac54-7dc8-49c0-8942-a2d1f7a184f4)(content(Whitespace\" \ \")))))((Secondary((id \ - 8c42c9f8-8e84-41b8-b3f1-f8de8693b9fc)(content(Whitespace\" \ + 46fc5c06-04ea-42b9-a215-7e3f08aa8161)(content(Whitespace\" \ \"))))(Tile((id \ - 46d23158-db60-4773-9924-92108214770e)(label(false))(mold((out \ + 891ec4e4-68a3-4c77-858c-70df7c69e374)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8d993695-ea95-442a-a012-1bba3d32022e)(content(Whitespace\" \ + d7faa563-d7b6-4442-86d2-97e51eba685a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c5777d7c-d156-48a8-bcc8-8c11cec85d7c)(content(Whitespace\" \ + b009e801-ee28-4aa7-8e81-c8bc10577f71)(content(Whitespace\" \ \"))))(Tile((id \ - 4fb367c2-05c2-44ff-bdeb-a7b608115fef)(label(even))(mold((out \ + a8f8900f-8d96-412a-9063-807470394bbf)(label(even))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 85025033-6ce3-46b8-be42-843aabf8c1e0)(label(\"(\"\")\"))(mold((out \ + 62223ff6-6f8e-462f-8696-8c73393efa08)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 30d0945d-c20a-431a-a654-00138c1d3f8f)(label(n))(mold((out \ + 74bed36e-ddc0-416e-8f47-f40a3a46f0c9)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1da0e433-1d84-4595-965e-704d73693902)(content(Whitespace\" \ + 1861ddf8-78e1-40ad-9a8d-7d5d8395be2b)(content(Whitespace\" \ \"))))(Tile((id \ - ead48485-51fd-4578-981f-26216e9377f3)(label(-))(mold((out \ + 771cf030-c801-487f-ba1c-c8b9c29ece21)(label(-))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6445a5ab-30e7-4191-b378-3d9f83dca28b)(content(Whitespace\" \ + 8fcc6f2c-2bd5-4634-a35c-b8eee716f96e)(content(Whitespace\" \ \"))))(Tile((id \ - 5c2fb766-8513-4caa-a416-173cf3f1ee3b)(label(1))(mold((out \ + f44c64a4-496b-4f6c-a635-087319218a1e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 3644fce1-3634-44e1-8c2b-6c80621ae068)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - c1e2d794-fb97-4e09-ab64-e339bd2b61a3)(content(Whitespace\" \ + 2e21024b-2d78-4f80-b800-548695c10a33)(content(Whitespace\" \ \"))))(Secondary((id \ - bac0da86-7b99-4039-a855-e71423c4e243)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 961a93f1-32c1-495b-b2b2-2ace1f642b17)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 78e100cd-53af-4229-ba9e-3ee7e6d32bf2)(content(Comment\"# \ + b377fc9e-5b2f-4760-98a2-278916fd4c67)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 57bb0d23-590e-4dcf-90d7-7f4230b190ed)(content(Whitespace\"\\n\"))))(Secondary((id \ + dd941822-d10c-42f4-b77b-6cd6d924ee34)(content(Whitespace\"\\n\"))))(Secondary((id \ + 71b4b6d5-7ab2-4681-b595-81abd7424053)(content(Comment\"# \ Lists #\"))))(Secondary((id \ - 35c19804-5897-4218-ad2e-faf7f4b6eb3d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b4ee3364-3899-4aac-a842-68fbcd05b78f)(label(let = \ + 1219e4dc-e0ec-4b5d-8377-c7e5fe715a5a)(content(Whitespace\"\\n\"))))(Tile((id \ + a8b96e25-08ea-4780-9eff-6d5eb3a2f4a8)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e96e6634-c77a-4fa5-8d7f-a15284bcda36)(content(Whitespace\" \ + 234e032d-bb9a-45aa-8826-be504dff4f8c)(content(Whitespace\" \ \"))))(Tile((id \ - 17c3ca0b-431f-431d-9995-32b54a17970f)(label(empty_list))(mold((out \ + 278b0038-39de-48ec-95f3-ac841840eb00)(label(empty_list))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 79d3a3df-8b56-4076-ace5-4126ded2d025)(content(Whitespace\" \ + 0effa9a1-f5da-40b4-aa14-a78bde6f6af1)(content(Whitespace\" \ \"))))(Tile((id \ - bd6cf356-7705-4477-af1b-2a93bc4c00e8)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ec63c161-95ec-4a37-8a2f-657e3d8c40cf)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 7a6009a2-c76e-49ec-9c69-5885da3b52c5)(content(Whitespace\" \ - \"))))(Tile((id 60c043b0-a18c-4078-9ab4-61163d201924)(label([ \ + 9f5d137f-f7be-4bcc-9aa0-d5bfa6134634)(content(Whitespace\" \ + \"))))(Tile((id a0d17c75-7234-4fae-8f01-bf2d682a22b6)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - fc97d9f0-c37a-4edf-b433-1965717eb972)(label(Int))(mold((out \ + 63a6e027-dd1c-4688-b433-926bc45a5ded)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 5470966b-c43d-4f14-88f8-742ff48e9cbe)(content(Whitespace\" \ + 63855d98-3fa2-4ed6-8998-0843747fa85b)(content(Whitespace\" \ \")))))((Secondary((id \ - 9795d258-7fa5-4deb-ab7c-ab4ba14eceae)(content(Whitespace\" \ + e4b1459f-4738-4970-b0ce-46564fd26007)(content(Whitespace\" \ \"))))(Tile((id \ - 047d638a-8dc9-49ff-be48-26179ed85615)(label([]))(mold((out \ + 0a5be6a8-023d-4a35-98cc-4277b6b42b03)(label([]))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5b8cc8bf-7895-49f0-ba87-36395960d433)(content(Whitespace\" \ + 2e0daaef-d0b2-496d-94e9-35db2ea68e6a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d6c76a6f-5bc3-44cd-b72a-e8d8d6055d77)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0cfaa336-d277-4057-b392-b932d0590ff3)(label(let = \ + c579c967-0bf6-4e8b-999a-7418f33c6fa5)(content(Whitespace\"\\n\"))))(Tile((id \ + 8ec4c868-aecb-4462-8758-e374a19332b1)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c7fe2de7-957c-4f58-ace2-e05f7e40b246)(content(Whitespace\" \ + 8aa54798-ca1d-4834-a234-09025793b13f)(content(Whitespace\" \ \"))))(Tile((id \ - 9c9971c6-9ce6-4ff0-bd8d-6d9964896089)(label(non_empty_list))(mold((out \ + 3d07d45c-2099-4f10-bcf2-6d19839f7f45)(label(non_empty_list))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 56c6a900-7672-4584-b42a-8420648405e4)(content(Whitespace\" \ + ca818725-0f9c-46e2-9ac9-aa5b485abc6e)(content(Whitespace\" \ \"))))(Tile((id \ - c4331229-6241-4bc7-87c6-b6023d075304)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 943bf04f-ee28-4989-bdd9-5fe0fc2f4be6)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 9c7fd3be-8e4a-4293-8ac3-ab7fd54268b0)(content(Whitespace\" \ - \"))))(Tile((id 6aba9166-b530-4f2f-9765-dd9d7396454d)(label([ \ + e5e17cc4-07cd-4f5b-81fd-851566edfce6)(content(Whitespace\" \ + \"))))(Tile((id f573ccc4-bbac-40c3-95e0-9be679a96e83)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - b4bc8dab-fcf3-4a45-acc9-e8ebaa90ef54)(label(Int))(mold((out \ + 83931dcb-f69e-4b8b-9a4f-bb71bde2b970)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 91d78a6c-d6bb-4ae2-93cb-3872465754a7)(content(Whitespace\" \ + a1d7f4fc-e6be-4b7a-9f03-521ccfd53869)(content(Whitespace\" \ \")))))((Secondary((id \ - f01f5411-0591-44bd-8710-d2911c719d57)(content(Whitespace\" \ + 97d1a9fb-35a4-4c6f-b33e-39eae7c6bcc0)(content(Whitespace\" \ \"))))(Tile((id \ - de00ac61-5f29-4b64-a60b-07be2fbe3180)(label(1))(mold((out \ + 96c0e4bd-4735-48cc-bc93-1e57ba234755)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c447dd9f-57cd-47a1-8983-57ba22b3c16b)(label(::))(mold((out \ + 9f6cfdad-225e-4f5d-b149-b55765bca66d)(label(::))(mold((out \ Exp)(in_())(nibs(((shape(Concave 7))(sort \ Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - ed93c8a1-82c2-48fe-85a3-7a86bdca69e2)(label(2))(mold((out \ + 2bf83d33-30b2-4625-85a0-5211d5b2f1c0)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 032bea77-674f-4dea-8ac1-559fe947f6bf)(label(::))(mold((out \ + 170b7d93-4563-49fc-b5d8-26e20359d442)(label(::))(mold((out \ Exp)(in_())(nibs(((shape(Concave 7))(sort \ Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - b2942d52-aa7b-4f8b-b705-6a3c57a67cdc)(label(3))(mold((out \ + b26c7834-4567-4525-946b-76d33a53b2f2)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d19ebc20-bfff-48db-ae95-185f3efdd46b)(label(::))(mold((out \ + 1ccc1751-fe8f-4a6d-a3ef-ca9dd41af6b7)(label(::))(mold((out \ Exp)(in_())(nibs(((shape(Concave 7))(sort \ Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 9c33b3af-b95e-45ac-b165-77038efb602a)(label([]))(mold((out \ + 2e6c0f52-d181-4ec1-8de5-f18cc21e8f39)(label([]))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ded4f5c7-72ae-4476-98d7-6906325de4e1)(content(Whitespace\" \ + 3f07880e-1e83-4718-ae57-f1a526f21243)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 715a03d5-5d58-4eaa-9ab5-5b33da845f14)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cf2e40c8-e04b-4711-bcdd-38513d108052)(label(let = \ + aa6fb8b0-c705-4062-a2d6-cb482d249302)(content(Whitespace\"\\n\"))))(Tile((id \ + f0728bfe-c25f-416e-9aef-a22af7be7e8d)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 11b3cdb3-3362-4f2b-93c8-593710a60c2c)(content(Whitespace\" \ + eaa79f2b-4312-4846-b780-ab84964ed70e)(content(Whitespace\" \ \"))))(Tile((id \ - 2cae279a-a22d-4cea-990b-dee583b7b675)(label(list_literals))(mold((out \ + 9714ee95-ad4f-4554-a1e8-8a46b18f8653)(label(list_literals))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 04b8fa4d-70eb-4ce5-b35f-c33276ff9a91)(content(Whitespace\" \ + d9672dfb-d75f-4d66-b595-ea19d9ea31f2)(content(Whitespace\" \ \"))))(Tile((id \ - a23c17e2-0be0-45c5-afc0-45ad662c2367)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 06ea8604-9a04-4e9c-a5fa-3a0f4ebe22f0)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3ea34ae2-086e-4424-9508-3498891ff06a)(content(Whitespace\" \ - \"))))(Tile((id 2007e421-be10-45e2-ada6-742bc2819b21)(label([ \ + db749b03-c59a-4ff4-b0ed-1f2d07dd4af9)(content(Whitespace\" \ + \"))))(Tile((id 4a1ddbee-8334-4bda-b821-29319e2251ee)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - b53a9bf8-7a7a-4fbd-abff-e14d83c48701)(label(Int))(mold((out \ + 4a754f38-6e06-4ff3-88f1-567a72540cda)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 1d386def-e315-447e-b24f-4b86314e0c08)(content(Whitespace\" \ + add027b4-ef99-4b72-a082-37a1899379b8)(content(Whitespace\" \ \")))))((Secondary((id \ - 57a10c26-224b-4820-b1fe-fe61df094fda)(content(Whitespace\" \ - \"))))(Tile((id 54d0e0b2-3c9b-439c-8b7f-d8b524bc69e5)(label([ \ + d38308a3-489d-4534-a261-db7febce6474)(content(Whitespace\" \ + \"))))(Tile((id d98d4b4e-5190-402d-8085-958d54b39932)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - 920d4b0f-1b4d-4f04-88e6-3fe87e7a65a2)(label(1))(mold((out \ + b7652c8f-85bd-4265-bb30-4214dd8165a0)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5f69d188-7d03-473c-9140-a15f2499c561)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + ec621586-e52d-41bc-8b00-d1835ee7f334)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - eec2c6b0-f47b-429a-aaec-d1ef320ee675)(content(Whitespace\" \ + d629d163-8c10-43c1-8936-0fbb0142b993)(content(Whitespace\" \ \"))))(Tile((id \ - 1dfd11d6-3b87-4c62-b2a3-96c4b524bffc)(label(2))(mold((out \ + 6e817772-9b30-4541-a582-8cf1cf0ac213)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4ffefd84-9e8e-41fc-80da-263bcf450a35)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 563987ff-d717-447b-b944-7e2fc8c64bb3)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 967333b4-fff6-44d1-938e-f7de598266ad)(content(Whitespace\" \ + ac73fa56-6125-4b1a-adc7-0fedf95ad369)(content(Whitespace\" \ \"))))(Tile((id \ - db5d965d-a45f-4e3d-977d-56ae69bf0ff6)(label(3))(mold((out \ + 5d23e4e8-575d-4d93-a6b2-04deffa4e6e4)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c5d264bf-7f1b-472a-ab12-33b1e9c1651e)(content(Whitespace\" \ + 798c0684-45ae-474e-9882-08a1a277b93e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 15882211-ecd0-4ab8-ab58-6579fc6dfefb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4d1c6d2c-5fda-40ec-a1ef-6cccf71fb769)(label(let = \ + 7ac73171-4868-4664-8bf7-8c6de537bcd1)(content(Whitespace\"\\n\"))))(Tile((id \ + 0f863f28-9b72-4b35-8154-775515a7ba47)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 99522f41-83e8-445f-9c64-5888fcd99a41)(content(Whitespace\" \ + 2cead4e7-fb1a-4fd5-a7b2-c49a81150269)(content(Whitespace\" \ \"))))(Tile((id \ - 3b19f467-00f9-4ec9-a59b-b3783d9c480b)(label(length))(mold((out \ + 720182d2-5f18-4848-aa31-1f56c2c29bf5)(label(length))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 438c2f11-7687-40f1-ac6c-77b52b5ae19a)(content(Whitespace\" \ + 1753a9ea-34a4-4b57-b17e-7a1abf579d52)(content(Whitespace\" \ \"))))(Tile((id \ - 0a57c206-20f1-4e10-b9f3-bbb7d7586800)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 24f42660-c778-461e-b4ee-39e0cdbd192e)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4ece4618-8d70-48be-9c3f-9da04343855b)(content(Whitespace\" \ - \"))))(Tile((id 06de5f69-5c47-4c4b-a8e9-e412a85b5490)(label([ \ + bb8f6acd-fea3-47b2-9000-595be4b4e469)(content(Whitespace\" \ + \"))))(Tile((id ed796634-9066-4b05-b4dc-f81394279a16)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 7ca778cc-b87e-48e8-911c-958b79e1cf92)(label(Int))(mold((out \ + 02c81eaa-d509-4135-8a6a-f8e33db3642d)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 4e580f3c-fb6c-4eff-ab45-b6d665f917b4)(content(Whitespace\" \ + 0097e1e5-eb34-4de7-a1ea-e268cbbafa59)(content(Whitespace\" \ \"))))(Tile((id \ - a4e7f377-5905-4d1d-854a-81a7a8dedaaa)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 42337162-6c0c-448b-b714-2d353d0f26bb)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6dc204ae-c92d-465e-b046-db7ad394938e)(content(Whitespace\" \ + 46af5aef-487e-4b7c-996d-8f1bb474f9e7)(content(Whitespace\" \ \"))))(Tile((id \ - d2f90cec-a6b8-41c5-83d3-2f145cc05f99)(label(Int))(mold((out \ + 572ef01a-340e-4c54-911b-708536edbb66)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6058204c-92a8-4b46-b823-4ebd9aeabd24)(content(Whitespace\" \ + 091bb5c5-e40d-42d2-81b1-765ef1245059)(content(Whitespace\" \ \")))))((Secondary((id \ - 164bd788-aaf3-437a-8206-647a2bc132eb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 18c66069-7229-4d7b-a013-74ec2d67d237)(label(fun \ + 4b8844e5-e552-447c-955b-89ff88bf3bab)(content(Whitespace\"\\n\"))))(Tile((id \ + 338324bd-aa69-46e7-a303-5393e5765a7e)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 1946d033-a508-4a4c-9b22-6233aec311ea)(content(Whitespace\" \ + 506c0645-38a3-4c3a-988e-7e39de102be6)(content(Whitespace\" \ \"))))(Tile((id \ - 644d0e44-e2fc-4fd7-a6bb-eb3306f49eeb)(label(xs))(mold((out \ + 0e584d9e-56e0-490b-a173-a8ca496726a0)(label(xs))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3710885e-498b-4047-a332-fb855a982b84)(content(Whitespace\" \ + b2e48b92-7648-407b-a274-cf191bd1bd72)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5e52c8bc-9c27-4755-9107-de2867a85244)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 486ec00c-6ff6-4523-9def-90ab86bf90c3)(label(case \ + 2089d6f7-a56d-484b-8d77-794ea0633780)(content(Whitespace\"\\n\"))))(Tile((id \ + e0531ee8-00ec-4a29-aee6-3d74a7ff97b6)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - e5fdbc48-7e48-4c89-8909-31cf2b62cdc0)(content(Whitespace\" \ + 409c65b9-7ab8-4f89-9cbf-aeb95f80a77e)(content(Whitespace\" \ \"))))(Tile((id \ - 7f1d7ec1-01a6-4fa4-ba9d-85db637c553f)(label(xs))(mold((out \ + 6b27f723-4145-4766-9e23-0de5877ffdce)(label(xs))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ce6cdbcb-93c7-43d5-9714-092ea2630cd4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - efe768d5-5682-4768-bf10-c756fad7a038)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + f69b6995-83ef-42c4-a7b3-1426dc564211)(content(Whitespace\"\\n\"))))(Tile((id \ + 59be4678-ed0c-4387-a717-991141c1483f)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - e132ee92-6f29-44f3-bcd2-0a21689ea8bf)(content(Whitespace\" \ + 5dcf1c1c-8186-4500-89f7-71e49e2a2b40)(content(Whitespace\" \ \"))))(Tile((id \ - 017ead53-406a-412d-a23d-d21c6313a0a6)(label([]))(mold((out \ + 0f21155e-0057-4296-ac44-8dba7f0af4ac)(label([]))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d229c1dc-26a2-468a-b36a-d5eb92d7535d)(content(Whitespace\" \ + be3fbc8b-0808-44b7-b143-1cf20219e119)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 36244853-42a8-4b21-8fab-6447580622f5)(content(Whitespace\" \ + 180551a1-df74-40c1-bea3-10e9269358ab)(content(Whitespace\" \ \"))))(Tile((id \ - 1919b6f6-63b4-4a2f-8411-a49d2b0de0e9)(label(0))(mold((out \ + 08cba38c-5586-4340-8be7-7079b36ac3e5)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 117345cb-4180-49d8-81cf-5720bc09a76c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0b0c160b-a1ee-45e1-b330-44150a7f263b)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + ad0c36e5-1a5a-425f-a9e4-0e4b3511af67)(content(Whitespace\"\\n\"))))(Tile((id \ + 090b2775-02a5-49b0-adbf-b200d5b9a48e)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 61f79bfd-9396-40f4-ba0f-cce78ebb2ca4)(content(Whitespace\" \ + 78f5aa37-e417-4b21-acc7-1e9d8c0f70e9)(content(Whitespace\" \ \"))))(Tile((id \ - e59f2cf1-4e84-449f-9cb6-b003d07605cd)(label(hd))(mold((out \ + bf88a00c-626b-40d5-8896-4512c4f9e6f8)(label(hd))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 80c95d1a-b038-48d5-8413-249df02caf5c)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort \ - Pat))((shape(Concave 6))(sort \ + a742ff3c-4618-4f4e-aa62-216702663502)(label(::))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 7))(sort \ + Pat))((shape(Concave 7))(sort \ Pat))))))(shards(0))(children())))(Tile((id \ - 4ffa0ea7-c3d0-48f4-89e1-d508d974d9a6)(label(tl))(mold((out \ + ecd78e97-60fd-4e5d-a8a0-5d748d8c53d6)(label(tl))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - c086568f-d41a-4696-ac05-f33a13a3d612)(content(Whitespace\" \ + 69dbef1f-a24c-4ea5-b0d6-4fc665c507f4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 28b2008b-39bd-48ab-803d-e3e00d69f67e)(content(Whitespace\" \ + cd8585e8-e3d0-478c-b789-567c735a09ab)(content(Whitespace\" \ \"))))(Tile((id \ - 7df6c8b5-9636-42a4-9bc0-42d61b5f4631)(label(1))(mold((out \ + 552f403c-4816-46d2-8476-ed38ab0030b3)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 56c79884-7a1e-49d6-a659-ef07c7383eba)(content(Whitespace\" \ + 29136312-c096-4ba0-b404-6d681b334673)(content(Whitespace\" \ \"))))(Tile((id \ - d293b8a7-037d-406a-be45-fd9ef543e423)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort \ - Exp))((shape(Concave 5))(sort \ + e8f378b5-ea5d-4c22-83fa-33cae5e0ed42)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2fcc2671-4432-40ab-bc0c-085df34a1034)(content(Whitespace\" \ + af6fd625-0fc6-4e0b-8ff0-f2f63757dfb5)(content(Whitespace\" \ \"))))(Tile((id \ - 3cbc29ae-1f9f-49cd-ad81-21cdd6154572)(label(length))(mold((out \ + 1cc6ba76-0448-49e1-8d65-7e8d86f3b7c7)(label(length))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ca76747e-a814-428b-ba6a-d6e88d0b3a94)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + acb3224c-cb2f-45ab-83e9-7eb423fc4be0)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 483daf30-152e-4a61-960b-ea2e34e399d8)(label(tl))(mold((out \ + bb782277-f429-434d-bde3-57b9923de661)(label(tl))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - a191cf7b-f477-4064-9c81-eeed31cdb12e)(content(Whitespace\" \ - \"))))(Secondary((id \ - d95e09c9-f6ba-45f6-a42a-07039d5780f4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0b868e0b-e1e4-4ff7-bf91-0fdd16adf9a5)(content(Whitespace\" \ - \"))))(Secondary((id \ - d5824218-661d-4526-99fa-1b195dbd0a7b)(content(Whitespace\" \ + 129fec7a-1f7e-46d7-806f-ef1101649565)(content(Whitespace\" \ \"))))(Secondary((id \ - fccf51d0-1ab5-4f82-a218-e924c212937a)(content(Whitespace\" \ + 02ca50a2-4726-4291-82e1-1ff9f1d09af2)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 2bce8bca-9510-4e27-afea-a12014cc3805)(content(Whitespace\" \ \"))))(Secondary((id \ - 947e47dd-107c-436b-8f20-6fc2f7fad6c2)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - f210e7bc-619c-4848-847b-8cd228c43340)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - e8ccaf1d-bb31-4062-b2df-cce7f5a3b7dc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 75d95dc0-f522-4943-ae54-90856201704f)(label(let = \ + 8c5d24f2-f0cd-4ef5-9a97-54da118f4d3e)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + c9eb6fc8-8e39-4ace-a7b8-0376eb1b8ac1)(content(Whitespace\"\\n\"))))(Tile((id \ + 67493383-bc38-4c7d-8020-b57d99a1716d)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 78c38d95-74fa-4054-93ba-118df77e2a80)(content(Whitespace\" \ + 1114af1f-d23c-4f20-b4d8-10adb6626d58)(content(Whitespace\" \ \"))))(Tile((id \ - 68dc4a80-94b7-45d3-b317-3ce1931ee52d)(label(has_at_least_two_elements))(mold((out \ + 4beb20fb-c84b-4fc6-80a6-61f0e87af8a5)(label(has_at_least_two_elements))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 42441ccd-6ea2-4579-bf36-6eb359bbd275)(content(Whitespace\" \ + fc3e404b-3c28-46da-be70-b8109703eaad)(content(Whitespace\" \ \"))))(Tile((id \ - 1ef2f1b0-58cf-434d-ba60-e84b082c7bf7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + b13af813-c37a-48e3-bad0-071d08e535a3)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - e5c0d335-dbd4-47bd-af72-43b9c782cc1e)(content(Whitespace\" \ - \"))))(Tile((id 4721add5-b41c-46d4-9ff3-b44b1bd24770)(label([ \ + 6861240e-7900-483b-bb7f-033e992455d8)(content(Whitespace\" \ + \"))))(Tile((id a42e29bc-e22d-468c-9f3c-b072e97ca208)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - fdb7d4f9-dd01-4919-b227-f0d3fffc1cd7)(label(Int))(mold((out \ + 160553ef-e8d4-41a8-9786-316ca0c6accb)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - e14c1521-9da3-4cf3-95d8-59b32257b662)(content(Whitespace\" \ + 0240450a-d12e-4be5-b946-02fbc84d7ce0)(content(Whitespace\" \ \"))))(Tile((id \ - 08920087-d272-4ba6-bdf3-93edaeb021bb)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + c619af16-6b56-4331-90ed-b5ee98851546)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0c620183-6b6e-4605-8c7d-a07c526a86be)(content(Whitespace\" \ + 1e09d6c1-e1fe-432c-a720-19bf6b8537f4)(content(Whitespace\" \ \"))))(Tile((id \ - 16612644-16a2-4fa7-b22d-b74db2ad9333)(label(Bool))(mold((out \ + 853bc160-02c4-412f-b502-d8dd51e5b68c)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 74a3ee2d-ac2f-4712-9110-ce522f9851ec)(content(Whitespace\" \ + 2a466f81-bf44-41c0-a512-7948f8482227)(content(Whitespace\" \ \")))))((Secondary((id \ - a44e9372-c563-470b-a735-1109ac1dd743)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 961459a6-7b3b-4efd-ae2d-f0e7b724fb6c)(label(fun \ + 6d482a7d-d7a1-414f-a82b-cf9da8be68ac)(content(Whitespace\"\\n\"))))(Tile((id \ + 1df737a5-97da-43e8-a818-37ac256ad597)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 9ee89b19-5be4-41b8-b870-75d5903eee7f)(content(Whitespace\" \ + 23f344c2-961d-4806-ba82-6411ab62f0a7)(content(Whitespace\" \ \"))))(Tile((id \ - e2b8680f-34ae-41d7-9885-125463b8ccb6)(label(xs))(mold((out \ + 5caf2e9a-65db-4072-a127-40be338aa66f)(label(xs))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 81ee8032-53c6-4792-a186-53e68c504c80)(content(Whitespace\" \ + fa741f12-edff-4cd4-bb25-fa5d84e5c187)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 81159f4d-fcb2-4c97-bd22-9696c01c3e9c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d183c63d-aa0c-486a-9b47-82d275f02ae2)(label(case \ + 809c3fcf-a4e1-4668-80a4-6da1690b979a)(content(Whitespace\"\\n\"))))(Tile((id \ + eaba2e70-b1ea-439d-bd25-aea2e12dc9eb)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 6526e4c6-356b-4e5b-82f0-d2f9534c1f1b)(content(Whitespace\" \ + af5acb1b-c849-411b-a84f-66656dfc44d4)(content(Whitespace\" \ \"))))(Tile((id \ - 0389bee6-2ab8-4792-a69a-821b4f610819)(label(xs))(mold((out \ + bea7d84e-a18d-4f3d-9189-b5812c4662af)(label(xs))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 200c3e5d-86cd-4317-983e-fa56aaab1870)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e44bb1a9-af82-438c-bd25-08eb88f89a2d)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 44136b6d-81c8-46ab-99a7-6808b2319ae7)(content(Whitespace\"\\n\"))))(Tile((id \ + ce8bdb37-110b-4eaa-b8ea-1fe8333c95f7)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 28c01c20-ac76-400e-ac3f-327a19705d0e)(content(Whitespace\" \ + e3522aa2-a809-4b93-a032-d4a675c94a64)(content(Whitespace\" \ \"))))(Tile((id \ - 470c6bd2-f5fc-4523-8a8a-3e77d2ae7466)(label([]))(mold((out \ + a06ea66a-6efa-44b1-974a-3beba73ea9b7)(label([]))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 1dd29e31-4b83-47aa-a6e0-0e5629837f2e)(content(Whitespace\" \ + 690a9e90-bf58-41d6-8408-c3fd72862f1d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a2b392fb-58d6-4ae9-850f-7278730f70d1)(content(Whitespace\" \ + 9fb09a67-5cea-4099-b990-758936a69462)(content(Whitespace\" \ \"))))(Tile((id \ - d77b6106-b354-4c67-bccb-4e91e2f4a9df)(label(false))(mold((out \ + 492bea48-19e8-4694-9602-faa4abb12815)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6532c791-0e40-41c6-8bb3-5816c36a1919)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1cc4d6e3-777a-44c3-bde5-35748d34caad)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 63bb9a48-9ba9-4526-b2a6-0cf398acf027)(content(Whitespace\"\\n\"))))(Tile((id \ + 6d14620c-208f-4011-96fa-92a50bd9c816)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - f2709538-ddb1-4c95-a2d4-04f93bcd8825)(content(Whitespace\" \ + ee6e1a23-dcd8-479f-a699-9ca122edbe9b)(content(Whitespace\" \ \"))))(Tile((id \ - c3dda5a5-bf3c-4312-921b-2c15dfd824db)(label(hd))(mold((out \ + 6db6e228-c0da-4fc8-8bb3-0668f7cbfc32)(label(hd))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e14d689e-6556-4bbc-a7a9-7e57e71e4f6a)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort \ - Pat))((shape(Concave 6))(sort \ + 6a69bf6d-f476-4407-a709-7e24da2afb26)(label(::))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 7))(sort \ + Pat))((shape(Concave 7))(sort \ Pat))))))(shards(0))(children())))(Tile((id \ - aae8d9a7-16f3-4a05-b3c9-2cf987bce74f)(label([]))(mold((out \ + 2c6e5f8a-caeb-4f73-bc98-95607c590c5b)(label([]))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 894e780d-dffe-46bc-9d20-1f46b3d20f22)(content(Whitespace\" \ + fc136558-1e0d-4180-bc82-ec0d6e819ba2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 22c0fd84-c1e7-4c44-8d24-32d783b04658)(content(Whitespace\" \ + 30c88215-a2ad-4b7c-bd20-8ec640136306)(content(Whitespace\" \ \"))))(Tile((id \ - aa21c0b5-6f37-4332-bea8-ce5f16b8b1b0)(label(false))(mold((out \ + 67a5b457-c6cc-4756-8d66-d24be5d26ceb)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - eab907d2-1671-47b7-a390-850ad7261f77)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3e3d0450-5fa6-457a-9ec0-0a3673c9edfb)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 81dd084d-769b-4c8d-88b9-882e4a6b6c7d)(content(Whitespace\"\\n\"))))(Tile((id \ + d6a6eb47-8d9c-43d4-b379-cf0ad5689f8d)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 930b7c09-b500-482f-a897-2046cc8df242)(content(Whitespace\" \ + a0469247-afd0-46f9-83b8-2557d0bc7e84)(content(Whitespace\" \ \"))))(Tile((id \ - 7001fdd3-9677-4c8e-8aee-8584ad908830)(label(a))(mold((out \ + 4fa3e2a6-d464-4e64-a79f-a1e31a90f2a4)(label(a))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - d26ed733-a684-4163-9df2-13070819d911)(label(::))(mold((out \ + 9ea0a12b-28e3-471d-b9c7-244df64777a8)(label(::))(mold((out \ Pat)(in_())(nibs(((shape(Concave 7))(sort \ Pat))((shape(Concave 7))(sort \ Pat))))))(shards(0))(children())))(Tile((id \ - b38f41fa-3940-4c03-91ad-6835f8b61c55)(label(b))(mold((out \ + ce0a7639-c6e2-47ed-856f-758549b19b80)(label(b))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 01869da0-f0c2-4280-92cf-9006f82beaf7)(label(::))(mold((out \ + cb079634-4c60-4034-86ca-c9c78ef2daea)(label(::))(mold((out \ Pat)(in_())(nibs(((shape(Concave 7))(sort \ Pat))((shape(Concave 7))(sort \ Pat))))))(shards(0))(children())))(Tile((id \ - acfc3a3a-6e41-498a-8c13-ea99fc347d7e)(label([]))(mold((out \ + e88e7c42-8b59-4cc8-be8c-bbd61606ad58)(label([]))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 0dab81fa-5f4e-402b-a32f-f536b7919b90)(content(Whitespace\" \ + 9b552e61-bbe8-4fa5-bef2-681aac14aaed)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0e6808c3-004e-4a9c-8de2-dfa7d8cc2983)(content(Whitespace\" \ + 48d05eff-fc8e-4ffc-bc76-55004dcc5381)(content(Whitespace\" \ \"))))(Tile((id \ - 5f515da4-5076-436a-bcc6-3f7eafb1ec57)(label(true))(mold((out \ + 74848765-dc06-4790-84e9-0fbda1e1cca9)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e9889fed-8b2a-4c88-ab41-a5090959af3a)(content(Whitespace\" \ + 32ec6c4a-6f4d-496d-83ec-fb0437bfbe07)(content(Whitespace\" \ \"))))(Secondary((id \ - e26de303-8012-41b2-b4ea-220f9af7ea76)(content(Whitespace\" \ + 9905ba19-d790-441d-9010-05a7a0304a9d)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + baf3910c-3a5c-4c5d-811a-3a25993dd369)(content(Whitespace\" \ \"))))(Secondary((id \ - 91c4cba3-5758-4231-8a47-289da8a1df17)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8cade609-6be5-4ee9-9b21-4447c6ef69c4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9c89af83-7b53-4adb-8cb7-0907b7734acd)(content(Whitespace\" \ - \"))))(Secondary((id \ - ba102ddc-ef92-487c-b01f-3e1dc2efa6c2)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 33dd8e04-138e-4c10-a0d3-21170aac493f)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 9991f3a8-0275-4b2d-b84b-dc1f08b7f0c0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b90baab9-f7d3-4fbb-addd-99040020a2d6)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - edfce7ce-180d-431a-b9b2-a2e7a51639ef)(content(Comment\"# \ - Polymorphic Functions #\"))))(Secondary((id \ - d74ffc8b-d059-4d7a-9e68-c03ea87db97d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - be30a708-71f1-4d22-b019-f2fa6a852c36)(label(let = \ - in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + b46e0619-eaa5-4c79-990f-468bc2f95032)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 1647be06-245d-42a3-8385-5a71c4af1766)(content(Whitespace\"\\n\"))))(Secondary((id \ + 40d25578-5212-461c-92f6-ae14a391e37b)(content(Whitespace\"\\n\"))))(Secondary((id \ + b4f27a9f-6db2-41b8-8abb-e5dc432174c6)(content(Comment\"# \ + Algebraic Data Types #\"))))(Secondary((id \ + ea5f2e47-c4b7-4397-9e93-7d285161895a)(content(Whitespace\"\\n\"))))(Tile((id \ + 6c18c48d-ff41-414c-8949-18314c82d911)(label(type = \ + in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ccf15e74-30da-475b-a0c2-478d1625f8bf)(content(Whitespace\" \ - \"))))(Tile((id \ - b7f6dd49-e74e-47e0-9442-c67a9337c079)(label(poly_id))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d3788600-3613-40f5-8a38-d4c3f512bd11)(content(Whitespace\" \ - \"))))(Tile((id \ - edc9de0a-0f75-46a9-b412-17ea5fbafe3f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 12))(sort \ - Pat))((shape(Concave 12))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 25a95d9b-158a-4afc-9aee-a6f3663a5267)(content(Whitespace\" \ - \"))))(Tile((id \ - 6eea38a1-2acb-405c-b00a-175c767b094c)(label(forall \ - ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ - 1))(children(((Secondary((id \ - 19b97957-796a-4a68-bed4-e9bacb1a438b)(content(Whitespace\" \ + be7d171f-44f7-4cc4-b195-9d3fad23c89d)(content(Whitespace\" \ \"))))(Tile((id \ - a9f2034f-6f84-43f1-825a-4222508c85ac)(label(a))(mold((out \ + 9898e73d-674d-4816-8647-9409dd552310)(label(Exp))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 79e3788d-780b-44f3-bebc-bb7b72b6c4f6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 330b36a2-7516-479c-b8d0-d3296ef52d22)(content(Whitespace\" \ + ea20211e-b125-4b1a-a0b3-9c10852578a8)(content(Whitespace\" \ + \")))))((Secondary((id \ + 853fb3f2-c94d-4d0b-8acb-21509113036f)(content(Whitespace\"\\n\"))))(Tile((id \ + cb2c9b9b-7417-4b08-950c-ff12747ae504)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ + 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ + dfbb56ad-82ce-4e19-ab52-a994e3e2acbf)(content(Whitespace\" \ \"))))(Tile((id \ - aa180020-b296-4890-91d0-23b42ae036f5)(label(a))(mold((out \ + b693d291-3a8f-445b-bfc8-4f02314f2c88)(label(Var))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 07a039d0-ad3c-425a-8351-ea29333cbe86)(content(Whitespace\" \ - \"))))(Tile((id \ - dcb3a139-8a15-4ca5-804b-7790b2db8454)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - b546a9d7-62e6-4831-9951-02257cd8be0d)(content(Whitespace\" \ - \"))))(Tile((id \ - 29e8d470-5c3c-4446-a49d-1510641e1489)(label(a))(mold((out \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 5b19219b-28e1-49ef-accf-10c6b6cf2e2a)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 7b645a2c-401d-49de-a704-cd98150d64ff)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 3c96f25f-b9b8-4a4d-bd88-970efe02a038)(content(Whitespace\" \ - \")))))((Secondary((id \ - ea0072f4-75ba-4373-8200-b1d1cbfa944d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a30494f3-c10f-449f-a47e-9cac67ec43e4)(label(typfun \ - ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 8b4c1606-1f5f-4619-b841-2bd570127056)(content(Whitespace\" \ - \"))))(Tile((id \ - 29351975-8dc7-455a-a313-eb4133370d9e)(label(a))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 5fc9ced0-2b6f-4f95-98e8-e6871ee17cf8)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0351c740-c538-4e10-b168-2a19621720cb)(content(Whitespace\" \ - \"))))(Tile((id \ - 3edfb2a6-ae95-424f-960b-3a8165db4d2a)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 4237578d-8437-47d1-8135-0dd226630c52)(content(Whitespace\" \ - \"))))(Tile((id \ - f1f49520-1f5c-4c42-8c1e-0afbd693de61)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 523cb91b-d643-4bce-aa48-7e75bfca2eb6)(content(Whitespace\" \ - \"))))(Tile((id \ - fe554f4e-89ee-4d69-b788-d78d5e43b0a4)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 12))(sort \ - Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + bba9714b-81b9-4455-8f06-f9c89e5ecf8e)(content(Whitespace\"\\n\"))))(Tile((id \ + 5770b324-b8b5-4743-933c-4954039c09f3)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 4))(sort \ + Typ))((shape(Concave 4))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 77dc15d2-f278-43a4-a720-45082382fe8e)(content(Whitespace\" \ + 5ce4060b-b0d7-46a4-821e-d26a9e9f77fc)(content(Whitespace\" \ \"))))(Tile((id \ - c86b754d-9643-4cc0-b5dc-de2074cc9486)(label(a))(mold((out \ + 6d57be85-cc61-41b3-9af5-aadb4a8cb293)(label(Lam))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 3afe26ba-61a0-4712-8369-f75dba447c41)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - fceafefa-bde0-4f4a-8250-e480e42a456e)(content(Whitespace\" \ - \"))))(Tile((id \ - 821578a3-efe2-4747-968c-1af34fa66cd8)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 43e7a315-d368-4859-bb56-66839a8292e7)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 17810f4f-b62b-46e7-8613-a80821e1f896)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 547b939e-ffd6-46ff-929f-2b0e225fe9df)(label(let = \ - in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - b66c0b83-c059-4925-b25f-9c23c0cc6413)(content(Whitespace\" \ - \"))))(Tile((id \ - 31be1813-03d0-4110-b37b-d710f5dcc43c)(label(apply_both))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 06a274cd-38db-4c54-98d8-69fe9c184c5e)(content(Whitespace\" \ - \"))))(Tile((id \ - 6ed96af6-8bf7-4fb1-b1e8-d2c9814299b1)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 12))(sort \ - Pat))((shape(Concave 12))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 9dd0b82e-5563-4cd3-a81d-069903c7b67b)(content(Whitespace\" \ - \"))))(Tile((id \ - 490bc44f-0166-4717-b032-82cffdddff56)(label(forall \ - ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ - 1))(children(((Secondary((id \ - 1425337b-b260-4e7b-b37a-b8b6dcf8d34a)(content(Whitespace\" \ - \"))))(Tile((id \ - 832da6f4-dbd5-43ad-ac4c-cfe93abf8ea5)(label(a))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ - Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - d46f7c08-56dd-4a91-a99a-4e9465f96c26)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a502d207-63e7-4c91-80ad-5ff3a9db03e6)(content(Whitespace\" \ - \"))))(Tile((id \ - 4c3e1db6-5c4d-4594-8220-1f9c07d8357e)(label(forall \ - ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ - 1))(children(((Secondary((id \ - 91b1a7e1-a477-4be0-89f2-6640bb6f9d0f)(content(Whitespace\" \ - \"))))(Tile((id \ - 84ff8f7c-f5e8-43a2-907f-614545ee7614)(label(b))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ - Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 51a93e99-b088-48da-8904-bf952381385c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d23b8939-dba3-4a78-b463-6ae659079d06)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 98703e4f-6c3e-4702-8684-564ad220603d)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 0c9b52f1-fc92-470a-82b7-0b252cc40514)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 1569f18f-bf5b-4e0b-b373-0968d9c027a3)(label(forall \ - ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ - 1))(children(((Secondary((id \ - 52872153-6dab-4f58-aafe-36daf66c1385)(content(Whitespace\" \ - \"))))(Tile((id \ - f11f90e4-ad88-4379-b935-aca0278995aa)(label(c))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ - Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 5b6cdedf-02b7-412e-9a23-2bcdefc0f4b0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 78f728ff-af0b-4aa5-adf0-edb7af8dc68c)(content(Whitespace\" \ - \"))))(Tile((id \ - 4dcddeed-ee1e-4c65-b636-26ce6a4646ab)(label(c))(mold((out \ + c35a43b3-5a59-4d7c-9112-f63650663f02)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4c82fe91-2252-4282-85e2-8b188cd8079c)(content(Whitespace\" \ - \"))))(Tile((id \ - 004a40c8-8e5b-4985-b0e2-9703a1ef0a94)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 7f439ec5-4d4b-4d6c-b564-68b1925f1d30)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c9ba11bb-0b6f-4fc7-8cf8-d979f001b850)(content(Whitespace\" \ + 1a641eaa-5def-46a2-b19e-0fb0f9ed5692)(content(Whitespace\" \ \"))))(Tile((id \ - 1601c6aa-0e48-49f2-a921-4d98f128ec7a)(label(c))(mold((out \ + 0f33d3f6-0450-432c-992a-191bf11c7b2e)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 50de9230-1cb3-4967-8e5d-2686ab33b797)(content(Whitespace\" \ - \"))))(Tile((id \ - a3015949-a4c0-4cd8-9346-6323090d0c55)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 73ce5af4-d7b0-4d46-bf3b-fa4d77d4e9df)(content(Whitespace\"\\n\"))))(Tile((id \ + e91b0d6f-060f-4c66-a49d-7d8e163303a0)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 4))(sort \ + Typ))((shape(Concave 4))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - a758f40e-83a9-42dc-b97e-38f432a461e6)(content(Whitespace\" \ + fa71b286-d19b-4cff-8944-2da8c8f7dcf8)(content(Whitespace\" \ \"))))(Tile((id \ - 80d2b6e5-cc53-42e1-a34e-302cb24435bf)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 62d3e953-d36e-40a8-bb31-d3a1d29c9d25)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + 07e4923d-bff0-4af5-8475-f8f4e483816f)(label(Ap))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 276a9f50-5d64-459a-bae6-34bcd8b150fa)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 129b9f69-db91-4538-a078-58f8eb5795e8)(label(a))(mold((out \ + a37581c1-4dbd-4cfc-be55-3f18dc61642c)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 7370cc86-5f2d-480e-a154-aa2c09d32826)(label(,))(mold((out \ + 9c176087-4d7e-4874-afea-e384d4f330ee)(label(,))(mold((out \ Typ)(in_())(nibs(((shape(Concave 15))(sort \ Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d94c8dc7-3d78-49a5-b93e-50d2b18af498)(content(Whitespace\" \ + f0c33e25-5d29-43a2-8701-0fa56d162911)(content(Whitespace\" \ \"))))(Tile((id \ - 0c251b37-e176-459c-bbfb-925cf7d09987)(label(b))(mold((out \ + cd8b6bf1-0225-416f-9030-38e4e377c430)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - bdb464cf-15d6-4023-84cc-fe983c5e8467)(content(Whitespace\" \ + f9e1e57b-a5a1-4979-a01c-e98ac44fecb3)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + e2267cf5-64a7-4e52-8d50-0109dccce57c)(content(Whitespace\"\\n\"))))(Tile((id \ + 51215e08-3df1-484a-b0db-fe6e658d0b28)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 48e98510-44ad-4efa-953c-4649cd77a606)(content(Whitespace\" \ \"))))(Tile((id \ - 79b66a41-0336-4baa-81c4-ef5e7107e431)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + ad816713-3a69-41d1-a242-80b4c958dc9e)(label(exp_equal))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + cb10d2fb-5e5a-4bbe-b06f-41758ecd53ee)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d52538e2-1524-47a7-b72f-ff70dc2bf97d)(content(Whitespace\" \ + d05375d8-9f08-4654-8aa0-6c98e9671b12)(content(Whitespace\" \ \"))))(Tile((id \ - baa44352-3f92-40d8-94ac-dcdb590fa503)(label(\"(\"\")\"))(mold((out \ + 563c9b36-fe7e-4c0b-ad4b-b3358162919d)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 6cb20c8f-1360-4b44-b423-56addbd92f44)(label(a))(mold((out \ + 6c8cd5d7-aee4-4100-aa4f-57d15a87784a)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 83172c4a-d27c-44f0-8fd0-3942f74e3635)(label(,))(mold((out \ + a1f7e431-4318-4b18-b805-908473a41bad)(label(,))(mold((out \ Typ)(in_())(nibs(((shape(Concave 15))(sort \ Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ff148a90-409b-4903-97b3-5869b166b5f3)(content(Whitespace\" \ + 642d75fb-9ffc-4b63-b32b-1fd5a303a714)(content(Whitespace\" \ \"))))(Tile((id \ - 07c72e86-9abe-415a-be06-5b9fa5f2adf8)(label(b))(mold((out \ + ec466d11-a768-4ade-9ab7-0504a9fc3efa)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ - Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - b975b9e6-9750-4a57-8a27-499653bb604e)(content(Whitespace\" \ - \")))))((Secondary((id \ - 66e8dcdd-d358-4a3b-8d4c-c93140df5369)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - debae5ca-2828-4460-9307-929eb725736c)(label(typfun \ - ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 3144ba77-8417-456b-9345-0d6b5e7c590c)(content(Whitespace\" \ - \"))))(Tile((id \ - 35d9db9c-3710-47b1-997b-3dcea9b83b6e)(label(a))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ - Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - b9f0d6e7-d029-455d-ac83-b17de4aa172e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 8192adb7-ad34-4ab1-8844-0ab46b5c4771)(content(Whitespace\" \ - \"))))(Tile((id \ - aff9b212-bbe9-4333-a769-8caf2115d8de)(label(typfun \ - ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 25e1ce2d-c3c8-413a-8e9f-5e9792b44f1e)(content(Whitespace\" \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + ba6c7d9c-0450-49f1-afb4-224bf34b2810)(content(Whitespace\" \ \"))))(Tile((id \ - 7a612d19-b4bc-4d31-bfb0-cc7dbc80d5fe)(label(b))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ - Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - f26f75e0-b159-4e1b-805c-e405170e82f5)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - cc766fc6-23b5-4600-b2b2-082aac3a14b7)(content(Whitespace\" \ + b5344707-cbe7-4b31-819d-cab55e63e8e5)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 51da58aa-6755-447c-b825-9646805918e2)(content(Whitespace\" \ \"))))(Tile((id \ - 01917c22-4fb2-4a0b-94f7-b244e9fbfda2)(label(fun \ + 66438ce7-ac7c-4ea2-980f-fbe75fd62f01)(label(Bool))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + f92c651d-1d9d-4eb7-bcf5-350e17e9de52)(content(Whitespace\" \ + \")))))((Secondary((id \ + a40dd41f-b7d8-49d5-b9fb-13ef5cb82d48)(content(Whitespace\"\\n\"))))(Tile((id \ + 9f6d8dfa-6391-4593-8d5c-d02c879ec0d6)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 8f4768bf-6ca2-4f3f-b2f6-8038ad7d73dd)(content(Whitespace\" \ + ce7cf269-04db-4a47-bab8-2d005e8686fa)(content(Whitespace\" \ \"))))(Tile((id \ - f7e1fe6d-3867-42e8-9fa5-99d50953da90)(label(f))(mold((out \ + e04f7179-9375-4357-8d3f-9e15d6cc0b68)(label(es))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 54c5b743-ac18-4099-835f-666dc529f5cc)(content(Whitespace\" \ - \"))))(Tile((id \ - c55d17ae-d41f-461f-bf4f-4be94bd65762)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 12))(sort \ - Pat))((shape(Concave 12))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 33481f20-38ef-4609-ad30-d2b1833d9fd7)(content(Whitespace\" \ - \"))))(Tile((id \ - d27fd47d-eebc-4f61-b6e3-8b3ef398ec1c)(label(forall \ - ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ - 1))(children(((Secondary((id \ - 651e3781-854e-4e7b-98bd-e3fa6cc6003f)(content(Whitespace\" \ - \"))))(Tile((id \ - 4b997e0a-bd24-4396-b8bc-aecdb8b036a5)(label(c))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ - Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - c352e753-c5ff-48de-8b59-0ec50c239e6e)(content(Whitespace\" \ + a54627fc-c3f2-4a10-9499-68c3065850aa)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 796833a7-5f5b-42a6-bb69-8ae8d17fb133)(content(Whitespace\" \ - \"))))(Tile((id \ - 6545b7f1-f73e-422a-8435-a07c9da93673)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 8add133a-0bac-4b51-9946-8b321359410d)(label(c))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7cd03ffe-2c25-4828-b6f6-dbf473064a4c)(content(Whitespace\" \ - \"))))(Tile((id \ - 662e2713-f973-4583-9cc9-0790cbb04af4)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 7190604a-1045-4ce3-be03-e2a25c9ac980)(content(Whitespace\" \ + e75935b9-a0bf-4584-8ce0-2184bda29547)(content(Whitespace\"\\n\"))))(Tile((id \ + fbb14c36-4417-4110-a815-0546c624c3e8)(label(case \ + end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ + Exp))((shape Convex)(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + 3eb798ed-d718-4d14-b8e3-4243cc6234f0)(content(Whitespace\" \ \"))))(Tile((id \ - 657cba03-c1df-436a-96a6-7de49ee86436)(label(c))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - b0264a1d-e50c-4ffa-9d11-0bc306f1e9a8)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 8c303280-adaa-402a-85ed-8fe1442c8903)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 184871c4-f611-4679-9af9-6d31f7d1c094)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 9bfb5142-311c-456c-9598-9cf0fbe3a0dc)(label(es))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 7137309c-b19b-47d2-aee7-0b93b8d3cd66)(content(Whitespace\"\\n\"))))(Tile((id \ + 5cde9141-0600-4bd2-a572-3b585622e6dc)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 411cc97e-44aa-44e5-88f7-90d5f53924ab)(content(Whitespace\" \ + 73e2edf4-4188-4175-a302-4038720413b5)(content(Whitespace\" \ \"))))(Tile((id \ - 41df693e-7029-4f55-9048-63be308c4ef5)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 943e8fea-aee7-4392-b251-df60f3101e77)(label(x))(mold((out \ + 2473f4a9-91a7-46a9-8ccd-2e03499e75df)(label(Var))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8eda0e7b-49cc-4234-b390-0d18d5444c55)(label(,))(mold((out \ + 8d87ac45-7522-4913-b9b5-6e4918b99f44)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 6fa70f91-6305-48db-8e0c-7eaead1b1dfe)(label(x))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ + 1bd46b12-42c5-4a4c-ad6f-4301f6201bda)(label(,))(mold((out \ Pat)(in_())(nibs(((shape(Concave 15))(sort \ Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 9f925a0d-487f-4dab-bc1b-91b7c2b6d77d)(content(Whitespace\" \ + 33dca95f-b012-4cee-89c8-83af77811874)(content(Whitespace\" \ \"))))(Tile((id \ - c60b29e0-2207-4f8f-b2d6-4d318a896fb1)(label(y))(mold((out \ + 580c7c28-a895-4db6-8cc6-bfead1521aaa)(label(Var))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + b562932e-82b6-46d3-b8d4-54f78f338de1)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + f927d4a7-7c3b-4638-bd8d-1d188d70239c)(label(y))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 3fe52b30-bc25-4360-8e49-7d383c6d7630)(content(Whitespace\" \ + b6d4d43e-c33a-4ec0-8039-80e012d04acb)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 0512901d-9011-4bcb-8789-eda3b62e9b47)(content(Whitespace\" \ \"))))(Tile((id \ - 6b64f1db-59d9-427b-b91c-a9586a46a423)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 12))(sort \ - Pat))((shape(Concave 12))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 76ad5b97-a2a2-487a-8e08-ef95afdcfaba)(content(Whitespace\" \ + f80de902-7fb1-49f3-b886-17745459f7cb)(label(x))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + e5bd2c1f-d358-4d8b-bd42-ecdad83d2942)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + e2b74564-c7b0-42ab-8208-cdae622dc778)(content(Whitespace\" \ \"))))(Tile((id \ - 8fc5e79c-5af4-4a87-b340-e49d3a07108d)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 3981524e-b182-4229-9558-317c5e3b674e)(label(a))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - d1d74e3e-b370-448c-b8fa-a2a3354cd25d)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 15))(sort \ - Typ))((shape(Concave 15))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 5f875c31-b3fe-4d3f-a673-fb0c4d82820c)(content(Whitespace\" \ + a3efe7a9-0b75-4f26-a03c-1c5d0dc6f533)(label(y))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + e221d134-2ab9-4a7a-bbb0-ae8f390cc8af)(content(Whitespace\"\\n\"))))(Tile((id \ + 1a12d804-f211-4085-8703-868302408e49)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + d0de6371-de93-437c-b23a-36cd26d1e7d7)(content(Whitespace\" \ \"))))(Tile((id \ - dfc82e9a-f945-4b24-aa6f-72245f4a5c61)(label(b))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + d2c5047e-e07b-4c95-83de-0f139cf5ce10)(label(Lam))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + bd6e0713-b88c-4903-a0d3-4d6ec2a75f89)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 16b54a46-fc84-4cdd-b9ab-0363bff376fe)(label(x1))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + f52c4bbb-421b-4e23-b32a-57e923df7291)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + e96e76da-c062-4994-8bbc-ada1d170f6df)(content(Whitespace\" \ + \"))))(Tile((id \ + 41d88136-9aa8-4a12-86cc-dac2eec1f827)(label(e1))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ + 1044fc2d-24ae-4e85-a671-27dd4c6127c3)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + 6dd3e438-b966-496a-ab43-1815d0715d56)(content(Whitespace\" \ + \"))))(Tile((id \ + 80c8b2a6-b4f3-4d65-b103-2dfe5793db55)(label(Lam))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 45441bbd-1bb0-4eff-a363-fc288c099422)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 366b7f7e-b62f-4aad-858d-4fc78336bc62)(label(x2))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 82ce0fc7-f1c9-42e1-b403-f8d88c4feedd)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + 5aa2f354-2bae-447c-b8d3-e677fab95297)(content(Whitespace\" \ + \"))))(Tile((id \ + 9ab407f9-74ac-4397-ae55-1a29022e4e86)(label(e2))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 131ac428-7dea-47f1-afd3-ef87d2185aaa)(content(Whitespace\" \ + Pat))))))(shards(0))(children()))))))))(Secondary((id \ + 184dbeec-2eea-403f-a620-ce93755db8e4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f4c1b938-fc33-417a-b232-08b15a775042)(content(Whitespace\" \ + 4203f5a8-4457-416c-a6e8-2cd5627df6b6)(content(Whitespace\"\\n\"))))(Tile((id \ + cb070c1b-06b6-4b5f-bb0e-b17d70b0ef75)(label(x1))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 2ca3539e-8d66-4f75-af85-95c9c9d7c307)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + ec6180b3-9abf-43de-924e-8dfbe1978b33)(content(Whitespace\" \ \"))))(Tile((id \ - b3ddaea7-5ebf-4049-bb7b-608b9bb0403c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2e7b5910-8655-4268-a6c4-e7c7785b6e26)(label(f))(mold((out \ + d55ee4a1-96b0-4c18-a179-8f98ef0a9021)(label(x2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 8b5e7264-c601-44d1-82e9-e65da50cd81c)(content(Whitespace\" \ + \"))))(Tile((id \ + 39b8edf1-d4b4-4c00-851b-604612036924)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 2db032a1-f25e-4dc8-8edc-712ccfe46db0)(content(Whitespace\" \ + \"))))(Tile((id \ + 4fa69fb6-22de-4a55-a6d1-35618a7bbfbf)(label(exp_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b5cf1c4e-0da5-4b49-bb26-4f50f5f3e629)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c7950c78-5a3d-4088-9b03-0a2af7dc6e9f)(label(a))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 4ed40475-c207-4ebd-bc7e-49afe8c8f0a4)(label(\"(\"\")\"))(mold((out \ + 5336591a-fffe-4bf6-9179-577ff28407c0)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c3ec60f2-6f1e-4301-8dca-4cf7b809395d)(label(x))(mold((out \ + 79eece89-c412-4182-a6b3-e7e33686e543)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 529625d9-356a-493c-a793-5fa4f7b93e41)(label(,))(mold((out \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + bf6a90d4-7a46-4b16-8e15-923a0ecbc3b4)(label(,))(mold((out \ Exp)(in_())(nibs(((shape(Concave 15))(sort \ Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - b39992d0-0283-4224-9d1a-e51bc9440f95)(content(Whitespace\" \ + 56c7e98c-5f85-4680-9043-110016fa605c)(content(Whitespace\" \ + \"))))(Tile((id \ + 6b808427-5617-47d4-8e9c-cb9a264915e3)(label(e2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))))))(Secondary((id \ + 612677e9-e699-42f9-8f09-c6d855c0e253)(content(Whitespace\"\\n\"))))(Tile((id \ + ba9c9196-4ec2-4606-88d5-9b9564a055e7)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + d67e31e5-c5fc-457a-94a3-6192a76e503b)(content(Whitespace\" \ + \"))))(Tile((id \ + 0aa8c0ed-356e-49c9-85e1-a4ccadc089be)(label(Ap))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 2368c483-f71c-4a9d-a8f4-18a8fa678a3e)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 14bdc3a0-7bde-4b29-a3fa-63678eabbc4e)(label(e1))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 3f15ac18-ca10-477b-ab37-913c4c38b301)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + 3212ab6f-e2fe-4515-a72a-de3c59ea91ec)(content(Whitespace\" \ + \"))))(Tile((id \ + 3ac4e9f4-ce72-453f-9ef0-addaf0d4611c)(label(e2))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ + f19ed5f1-6293-4d2e-98fb-239a0df4ceac)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + 9428fea4-fa31-430d-b4de-54fc99702cbd)(content(Whitespace\" \ + \"))))(Tile((id \ + 931c9943-40ef-411a-84b4-de5568f67502)(label(Ap))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 471cfcb3-ebe0-4721-a336-110da0e75e19)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 7d023c3a-4813-498a-af9a-785fbb2b2684)(label(e3))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + b33870d7-b8db-4db5-a9a3-9e1cfb4b73ba)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + 9f3f3cbb-2f70-4de3-94ab-8790adc272e5)(content(Whitespace\" \ \"))))(Tile((id \ - 7542242b-5136-4bc2-9b9c-30735f140547)(label(f))(mold((out \ + 284072c4-6f92-47c2-a791-0cc52586a465)(label(e4))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort \ + Pat))))))(shards(0))(children()))))))))(Secondary((id \ + 63512553-a9f8-40fb-987b-9228d1ab24dc)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + ffda2a8c-6202-411f-9638-e1cd76c2ef11)(content(Whitespace\"\\n\"))))(Tile((id \ + 6f52f1e8-7f52-4aa5-81d1-e84aed80d3b4)(label(exp_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b5304c8f-34c9-4605-99be-d0507f4e6672)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ + 311e534d-8333-42af-a4ec-55f5661adf31)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2a0d138e-74ba-4db7-9962-7ef419c56dc0)(label(b))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - e859f280-7c20-474e-9199-d461338ed7ba)(label(\"(\"\")\"))(mold((out \ + e425f361-851a-4f2b-94cf-c792d1be0152)(label(e1))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 57e01382-bcee-4e8e-8a25-45423aa11654)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + fc866e65-ecc1-4ff1-a264-666bf8bc1fa9)(content(Whitespace\" \ + \"))))(Tile((id \ + c8943cf3-f80f-4dfe-93a5-a2bcfd67b09d)(label(e3))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))))))(Secondary((id \ + 98d14051-9737-4724-af2c-2d7a0b81b269)(content(Whitespace\" \ + \"))))(Tile((id \ + eabd030d-f0a3-4b22-b912-58042f5af9e8)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 2a2801c9-edb1-45e7-8acb-8e0b1e56d186)(content(Whitespace\" \ + \"))))(Tile((id \ + 958ccc9b-2204-4dae-a408-866f586c3e0e)(label(exp_equal))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + bc348ae6-b80a-4169-aff3-338302747669)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 500daabf-5b93-41be-8d74-e888efccc3c6)(label(y))(mold((out \ + bb40c4db-d0c8-477e-a091-4fbdbacad42a)(label(e2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 15130784-96d6-42f7-b6a8-ba39fe8974ca)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + f63050fd-549e-498e-b8a6-42cb43bd1a65)(content(Whitespace\" \ + \"))))(Tile((id \ + bb5d2473-9746-433c-9097-9eeccb9cb4bd)(label(e4))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - f9008b43-eb37-4f20-8288-21730a00cfbc)(content(Whitespace\" \ + Exp))))))(shards(0))(children()))))))))(Secondary((id \ + 22c4fe99-1bba-4082-bc90-7ca734efcd47)(content(Whitespace\"\\n\"))))(Tile((id \ + fcf121c9-113b-4b79-905e-33bfef8c69b4)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + 0b93478d-a22f-47d0-b896-3491da89e81a)(content(Whitespace\" \ + \"))))(Tile((id \ + a072855f-49d7-469d-8238-d4e4d467552a)(label(_))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + c071f73e-bc0b-4f84-ad64-667935be077a)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 42b17249-cec7-48bf-95cc-660b967e95a0)(content(Whitespace\" \ + \"))))(Tile((id \ + a4ddd9a8-fb51-46fa-b48f-66c8ba6f555a)(label(false))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 46c58dff-cc68-4bbe-9590-b0214f6add3d)(content(Whitespace\" \ + \"))))(Secondary((id \ + df388361-831a-4342-8cf5-c36942c631bc)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + dac31c9c-f9f9-4000-9db7-0669c5471c67)(content(Whitespace\" \ \"))))(Secondary((id \ - 75ceecb7-3e64-4d27-b023-695cf1c84001)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - e62cbb30-9d9b-4379-860b-7cd8ba6b7a46)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 667c7f20-f052-4b97-a3dd-b218e6e0ca36)(label(let = \ + 453b6339-60c5-4da7-8b9d-36d51917feae)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + e9b63795-81e1-4689-a0db-a5e8c2844298)(content(Whitespace\"\\n\"))))(Secondary((id \ + 8dc764b8-5dbf-405e-ab57-0542d396b7cd)(content(Whitespace\"\\n\"))))(Secondary((id \ + a834a562-85fe-4f09-91cd-bd3bb1ee2b0e)(content(Comment\"# \ + Polymorphic Functions #\"))))(Secondary((id \ + 504456d4-e497-4dd9-99cd-b47a79faf844)(content(Whitespace\"\\n\"))))(Tile((id \ + a6ccf9ca-236c-460b-97ff-1a046906eb00)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 75e69bc3-13ab-47ab-a5fb-8c41efc2ab19)(content(Whitespace\" \ + e717987d-94ce-4abc-95db-6dd49044c575)(content(Whitespace\" \ \"))))(Tile((id \ - b87b594b-269c-41e6-a0d4-3ef656087765)(label(list_length))(mold((out \ + 5af7c338-b36f-497a-9926-7fa5fab75cb4)(label(poly_id))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 96cba48e-755b-48a3-9205-81c4895f9823)(content(Whitespace\" \ - \"))))(Tile((id \ - 29b7ad19-9afa-4988-a121-e849985757cc)(label(:))(mold((out \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + e0782873-c991-4491-af44-c7356981e882)(label(:))(mold((out \ Pat)(in_())(nibs(((shape(Concave 12))(sort \ Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1d792ce3-2829-4a10-b39c-da41929c6f8b)(content(Whitespace\" \ + e0c000a8-d8a3-4af1-9ded-44fc9dc62ec6)(content(Whitespace\" \ \"))))(Tile((id \ - 673bb7d6-17d2-48ff-b510-7f263e931dc5)(label(forall \ + 7b90296e-1019-4a04-86fb-608661f6367c)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 990868f0-0b96-48f2-8be3-dc46a5e646ec)(content(Whitespace\" \ + ec116057-480b-4b48-8a09-95c8c4faca1b)(content(Whitespace\" \ \"))))(Tile((id \ - 1344c73d-4fa9-440b-99db-6ffbbf521ffe)(label(a))(mold((out \ + 9c6e18cf-4771-4e90-8e4e-ab0ae0d73b9d)(label(a))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 8936b101-cda3-4ab5-b814-ca4cf531bc1c)(content(Whitespace\" \ + 25f589d7-1970-4fb1-93b0-bf97b004e7f2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ea04d1fc-1502-432a-9d50-5c67eda840c4)(content(Whitespace\" \ - \"))))(Tile((id 65a53d44-aa06-486a-b2c2-da74363f6569)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ - Typ))((shape Convex)(sort Typ))))))(shards(0 \ - 1))(children(((Tile((id \ - 7a3e47cc-1fa7-4cb8-9d21-a8e2a2056394)(label(a))(mold((out \ + 5726bc0d-d2ae-4647-8c81-b1991af6d067)(content(Whitespace\" \ + \"))))(Tile((id \ + 05035924-b062-4edb-b1ee-4c4e645c32c2)(label(a))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 1d890687-75e1-4e6a-8667-a6698bd7cfad)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 2a89b8ee-83c6-467c-ab93-046dafb25b49)(content(Whitespace\" \ \"))))(Tile((id \ - c204f982-3974-4638-8d45-474543fe2d98)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + a55c99f8-7404-4802-b5bb-7b79faecef20)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 45eae717-5578-4faf-a4eb-88ad779586b9)(content(Whitespace\" \ + 2049156c-4999-4448-9bd1-5b7335e2e207)(content(Whitespace\" \ \"))))(Tile((id \ - 9dfbcc29-143e-4401-b6be-65368b51b436)(label(Int))(mold((out \ + 7a481beb-c75e-426f-98ae-355eb03e457a)(label(a))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b06a2789-c2aa-41ca-902f-c8461eea3fb7)(content(Whitespace\" \ + d03f21f5-87cb-4aef-acc5-87932fa35b20)(content(Whitespace\" \ \")))))((Secondary((id \ - 148a1cb1-7874-4a6f-8f87-bee712bd36df)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c889e055-d438-4564-b5a8-a3e12bea4882)(label(typfun \ + 1675e432-20ba-4a92-991d-6de887bc9bf4)(content(Whitespace\"\\n\"))))(Tile((id \ + 8b142766-2c5b-486b-b4a6-fd39a8d78b19)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ec5f5c24-9fe1-4597-8c16-47111b2d9326)(content(Whitespace\" \ + 65df76e3-04ba-4034-aa96-266e0585e360)(content(Whitespace\" \ \"))))(Tile((id \ - cc54e849-a52f-4199-a7d4-9fb85a2e659d)(label(a))(mold((out \ + 0ffc2d52-2a70-4046-adc0-acca10dfe074)(label(a))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 6381761f-cd9f-4d53-b9f7-33f3934836ea)(content(Whitespace\" \ + f6d19061-dbb6-4e35-8dab-c1040fb7f7ef)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 55908c47-4807-4903-b209-7d2e1c97f444)(content(Whitespace\" \ + 9943fd24-eefa-48f3-ad9c-06a4be86d1e9)(content(Whitespace\" \ \"))))(Tile((id \ - eeca22d4-8f3f-417f-bb29-1fd63e213dd8)(label(fun \ + 15b9ba4e-478b-4c12-be7b-23d76fba9605)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 4e8322c3-bbe2-4e31-a317-0ac6a7f5c4eb)(content(Whitespace\" \ + c2d33445-f140-4439-b196-943bfdec984c)(content(Whitespace\" \ \"))))(Tile((id \ - 4ca6ea59-fa8f-413d-a50c-73bd8c42ca1e)(label(l))(mold((out \ + deb78d0c-a374-4aab-b607-418f29edb496)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7a8be493-8da0-4cb7-88c7-32fdca9fd952)(content(Whitespace\" \ + eeae06c1-9d95-497c-abb5-47abf475d274)(content(Whitespace\" \ \"))))(Tile((id \ - 2b0587d4-bade-4601-a255-131007e9aa54)(label(:))(mold((out \ + 16c5ca46-ccb7-4b1b-9ea8-862b2db66dc9)(label(:))(mold((out \ Pat)(in_())(nibs(((shape(Concave 12))(sort \ Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 81f7e8c3-9791-4af2-a104-14c08fbc8a69)(content(Whitespace\" \ - \"))))(Tile((id cc82b421-4cdf-4cac-8e48-43e0b8e17707)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ - Typ))((shape Convex)(sort Typ))))))(shards(0 \ - 1))(children(((Tile((id \ - 55955b07-22bb-42ed-9303-a3fc1e391a7f)(label(a))(mold((out \ + 2f4411d4-0850-4d85-9f2f-d05659b9dcf1)(content(Whitespace\" \ + \"))))(Tile((id \ + 4d92252e-61d0-40e4-8547-22e47a698429)(label(a))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 2ad5c071-2227-468e-b04d-5446fbe2b615)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 2de896ed-0d18-4f4d-aa77-7d510d8768dc)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 022ed86b-84b9-4b3a-b141-57a61504e634)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6fcf1112-9f01-4925-b436-b07c25b97ff2)(label(case \ - end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ - Exp))((shape Convex)(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 01273f90-4def-4b70-a62d-b1ba96c336e9)(content(Whitespace\" \ + c0fef234-fa75-47c9-82d3-1a0c9bf8d023)(content(Whitespace\" \ \"))))(Tile((id \ - fa1d5f5a-66af-4665-ad51-ac09e5f1381b)(label(l))(mold((out \ + 22597661-c996-43c7-bf4d-da120d18f579)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0d3c9e5e-4e5c-4608-9256-59d58e9751c1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 386721b7-716b-460c-8627-ed4178a545fb)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ - Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 1cfb6cc3-eed6-43d6-8725-a2910ea65758)(content(Whitespace\" \ + 8d982af9-a6dd-4189-9a54-d404a65617fe)(content(Whitespace\" \ + \"))))(Secondary((id \ + bc2e4d49-77a6-4b8c-ad2d-f9b9fed4c191)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + c04a39ee-986a-4df0-80af-fede97451717)(content(Whitespace\"\\n\"))))(Tile((id \ + 986bd301-7a0d-47e0-8a66-113ad93d5656)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 7edb8d53-788b-4f37-a4d7-64cdb25314b5)(content(Whitespace\" \ \"))))(Tile((id \ - 5ef0f099-e7a0-4314-8270-07db3a1ccb1e)(label([]))(mold((out \ + 4bf76bc3-1fb6-4dac-9221-54e86ed3d76d)(label(apply_both))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - cc25fa53-916a-48dd-a0bf-4568830e311a)(content(Whitespace\" \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + bd75d15e-c6e7-466d-ba7f-faa76739e4fe)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 6e543817-66b4-4b7e-a32d-637bad5f1f68)(content(Whitespace\"\\n\"))))(Tile((id \ + 6789d0b6-f5a9-4e10-acb8-c312971fea67)(label(forall \ + ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ + 1))(children(((Secondary((id \ + e32e33a9-b900-429d-9354-a1bb57b7b19b)(content(Whitespace\" \ + \"))))(Tile((id \ + ca5a707a-22e4-4a6c-97db-e25d5ed66abd)(label(a))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + 9d5c24a7-7df3-4aff-99c2-1fd8cfaf1bba)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6a9989f1-e856-486c-bee9-ae166a274e20)(content(Whitespace\" \ + 30f01286-79d5-47d4-aaa5-4b5eccea0f3b)(content(Whitespace\" \ \"))))(Tile((id \ - c738920d-a28a-4491-984f-37974eac24b5)(label(0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f434b12c-1dfb-4171-a491-eef97c57cb51)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b4fc4437-f64e-4f18-9767-e3d07eb58283)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ - Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ + 85729ecf-d811-4b67-8cef-8875cb3170e1)(label(forall \ + ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 15b71a7f-e121-4cb7-87e7-6cd34311578c)(content(Whitespace\" \ + 142f4460-da8a-44b1-879c-9a4a4945c67f)(content(Whitespace\" \ \"))))(Tile((id \ - ef2a816b-8c42-4d03-9341-318a0849283d)(label(hd))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b3b13782-65c6-4df1-9000-dc2709d67c06)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 7))(sort \ - Pat))((shape(Concave 7))(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 10df6bbe-686d-4739-986c-504de476497a)(label(tl))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 560ba905-59ed-4b0f-b958-3c4b9e5813c1)(content(Whitespace\" \ + 9c2fa8c5-40ee-4f79-a545-fbdf3dd2d50f)(label(b))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + 07602871-159b-434c-88e0-f126f9f472d3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 51358db7-933c-456b-b73c-7ab0bf112d71)(content(Whitespace\" \ + 87084595-3f07-463e-866c-11fde31aa692)(content(Whitespace\" \ \"))))(Tile((id \ - a86bedfb-70a7-4906-ba28-631c705586b2)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 519ad1eb-b19a-4447-a2a9-bf906527765a)(content(Whitespace\" \ + dc5b66bd-1cd5-4dae-9e4b-628428bf3585)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 3c6f04e4-3ed2-462e-a25a-f78b5c7c080d)(label(forall \ + ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ + 1))(children(((Secondary((id \ + 5fc0853b-8758-44a7-b02d-d7829f4adbbd)(content(Whitespace\" \ \"))))(Tile((id \ - d777f3b0-b2ea-4725-b928-a462e00d9281)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4d229f35-897c-4d30-8bdb-0425dd7031a2)(content(Whitespace\" \ + f70b9dec-d712-44ff-9e41-b4a81661e62d)(label(c))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + ecc7a57c-08e7-405e-8c2d-2a09fec68018)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 63ace5d9-a8f5-491c-99cd-c723a70f5148)(content(Whitespace\" \ \"))))(Tile((id \ - 29f706a8-64c9-42c9-ad50-85feaf02b0eb)(label(list_length))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2d373321-8994-4495-93f1-2eb2a498df5a)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - a9464742-2fa7-4b5a-8bcd-e167571c719a)(label(a))(mold((out \ + 2322ce92-9b45-4b05-b83b-b9fe98ea6835)(label(c))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - c8d0ab0a-1ac6-49c6-9e3f-1827b74cad60)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - bffbd8ae-8579-4588-9453-68634acf5441)(label(tl))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - a4a52e3e-c4fe-4b62-a7a6-2e3ca370ccca)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0bf24958-e48d-4e88-b326-1700d756dea0)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 1d2368d0-fdce-4ebb-9fbe-514b6e74e232)(content(Whitespace\" \ - \"))))(Secondary((id \ - bacbb401-f981-45a2-a27c-b789bce6074e)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - ae7692c4-5cb7-4ecc-afcc-c60ad2fd7cf1)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 325d816c-fcaf-4734-a327-3c7e241b7d9c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 272ef5a0-043b-451d-a6e4-3f18571d2c60)(content(Comment\"# \ - Strings #\"))))(Secondary((id \ - 4d0dd9cb-c943-4384-a682-8884ac792b31)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 26109999-748a-492d-8991-dedcf22f3c8f)(label(let = \ - in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 4b4ec423-bdf0-4f77-9cff-633eca5eb8f6)(content(Whitespace\" \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + c503027c-fbb1-4cbb-90bf-d380bced39a5)(content(Whitespace\" \ \"))))(Tile((id \ - 8f2bf699-8a6e-4a4a-acce-4a801b081fc5)(label(string_lits))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 76fa4320-9686-418b-bae1-2e16981ef6df)(content(Whitespace\" \ - \")))))((Secondary((id \ - dc5fbac0-a612-4966-b776-a5b222ee2837)(content(Whitespace\" \ + bfb59d38-9bbe-4e6c-ac3a-6ab85c75ca1a)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 7ed28810-9085-4bf8-9f9c-f1639fd19803)(content(Whitespace\" \ \"))))(Tile((id \ - eb0ff38c-7c16-49f9-9547-019753f2f677)(label(\"\\\"Hello, \ - world!\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ - Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4561c14d-dc9c-4e62-9c83-2258ba03da27)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 8387e074-4d46-46a6-a37c-d10aab222c02)(content(Whitespace\" \ - \"))))(Secondary((id \ - a6f7d9a5-1f93-42a7-9365-fb6f3beb8c74)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d573bc1e-fc6e-4c9b-bd47-b21d74a42b50)(label(let = \ - in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 0a7aab63-f372-4baf-863a-99f536c5764c)(content(Whitespace\" \ + 5e8f1cb5-9d69-43f0-b278-ce50d0dbe5fb)(label(c))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 7243e1f6-77f9-41b4-b125-ca613f519428)(content(Whitespace\" \ \"))))(Tile((id \ - 41148c0d-9e2b-49b5-be97-c798c36ec89a)(label(string_equality))(mold((out \ + 77ca92ba-4de5-40e3-a2cf-941ed3c3d64d)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 41736f6e-0e26-4753-afb6-443e5b921035)(content(Whitespace\" \ + \"))))(Tile((id \ + 93a8bf41-3c7f-489d-a4db-c14fe6cc350f)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 86254ab3-80c6-4a90-aa6a-11daba837968)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 085c5df0-30f3-4437-b83b-c7a238b486fe)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + ce3729cb-124b-4fce-a92f-bc94c06fe084)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 4c0a754b-23a1-44b8-b5b2-46f8bf35d497)(content(Whitespace\" \ + \"))))(Tile((id \ + 2c322ae5-541a-4505-ba0b-44512d66bf55)(label(b))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 08b33875-e9c7-4cee-988e-b176615c1298)(content(Whitespace\" \ + \"))))(Tile((id \ + d4bd5f71-add1-4ed4-989a-16d9e1a704c9)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + bef29a9f-99fc-4755-8e90-e0d37589dcf3)(content(Whitespace\" \ + \"))))(Tile((id \ + 26308b60-98c2-4524-9f73-8f10df1bc70f)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + b5d99729-01b8-45aa-9685-b6a6b243f609)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + cce0f7d0-18fa-4ce5-a16a-9a3b1941b317)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 13354c4d-1fb4-4bbd-96df-94bb5ffffc5b)(content(Whitespace\" \ + \"))))(Tile((id \ + 1bbdb209-6122-453c-96cb-fe5ccac60219)(label(b))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ + b6cc0c1b-b3ac-44fd-99e1-4e6663fcf130)(content(Whitespace\" \ + \")))))((Secondary((id \ + 3e706ebc-7724-492e-9262-3e16062a807e)(content(Whitespace\"\\n\"))))(Tile((id \ + 3dd57715-ac7c-4ecc-8ae0-3751bc4bacc7)(label(typfun \ + ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + e6a935f2-8c27-40a2-9c1b-5af70e166afd)(content(Whitespace\" \ + \"))))(Tile((id \ + ebc6fce0-33c3-4a42-a142-2d354cd541c4)(label(a))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + c1ccb3e4-54ed-402f-ad4e-4bd5f515b9c1)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + f5bb5d3d-7d7d-4419-ae54-3b75a7aac1e2)(content(Whitespace\" \ + \"))))(Tile((id \ + cfec9ab4-9734-43ae-ab3a-cbac0561ee03)(label(typfun \ + ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + 575adbe2-c29d-41c9-be23-9b09e3592e50)(content(Whitespace\" \ + \"))))(Tile((id \ + 8c7df4f6-a56b-49e5-80f2-1665571c72f6)(label(b))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + f44968a6-1573-4bb5-9315-8b549d2f516c)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 0c7eb7ab-feb0-4dbf-a8f3-ae960ae97ab1)(content(Whitespace\"\\n\"))))(Tile((id \ + 3cdcaf13-29ae-4bf1-9c25-d4702cba70b0)(label(fun \ + ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + bf8c1296-c5b2-47bd-aaa7-7fffba6ee704)(content(Whitespace\" \ + \"))))(Tile((id \ + f805684a-dbaf-446c-b3e4-e82df0f3be2a)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - fdbb6a30-47a8-4665-bd2b-709aad04126a)(content(Whitespace\" \ - \")))))((Secondary((id \ - bfb84ac4-7973-473c-b655-71b846366ae4)(content(Whitespace\" \ + 26bccb0b-6ee2-47b7-a1c6-3c2efe731b6a)(content(Whitespace\" \ \"))))(Tile((id \ - d2e0ac51-b1d5-47c5-9d9e-28671583db5c)(label(string_lits))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c14d9212-5436-4359-aed1-4c12bc651145)(content(Whitespace\" \ + d4fe314c-fbb4-415a-bbc5-846f1e3f9de5)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 3993c903-27e6-4b4a-9166-29fb3eeb5a2b)(content(Whitespace\" \ \"))))(Tile((id \ - 479deac9-99cd-44c2-afd7-83aa87dc31c3)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 92d22bfe-5056-482f-ad46-5ed1c4787fa1)(content(Whitespace\" \ + 96a43ee2-93b4-4505-996e-42d8c6221b23)(label(forall \ + ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ + 1))(children(((Secondary((id \ + 3efecfc8-4c64-4839-bd91-9fa5d43a80b8)(content(Whitespace\" \ \"))))(Tile((id \ - dec5173c-0001-412c-acec-9d1dc2ca4424)(label(\"\\\"Hello, \ - world!\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ - Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 242b38cc-9ec3-496b-a61b-180d2dab6eee)(content(Whitespace\" \ + 4a443d22-0848-4817-9e49-aaba44700fdf)(label(c))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + 5612f32b-d059-4819-8cad-ef88eb1d253f)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 7986bec5-94f0-4a50-80fd-cb1c5bfa24ce)(content(Whitespace\" \ + \"))))(Tile((id \ + 7063fb92-3cfb-4efe-a9c3-bdeda4fc3149)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 03441983-972c-4c7a-8b61-c950f3a6d1ce)(label(c))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + cb619c8d-74d9-448b-bb54-ef124e93c407)(content(Whitespace\" \ + \"))))(Tile((id \ + 452df538-7083-4510-9781-5e729a0c2db0)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 7fc4f393-b572-4d1d-9be0-3a1c3d1ed61f)(content(Whitespace\" \ + \"))))(Tile((id \ + adec6372-6b9f-4b06-a110-a44bf6893be9)(label(c))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + b1768b90-841e-4086-886f-7cfffca7608e)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 42d489f1-bfad-4ed3-b692-dd6778a3115d)(content(Whitespace\"\\n\"))))(Tile((id \ + 333c079f-c27e-42a5-ac69-aa8052b1f767)(label(fun \ + ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + af761054-2e46-4a45-8131-e4e00d061ce0)(content(Whitespace\" \ + \"))))(Tile((id \ + bd06f41b-da48-49d5-9d9f-15d735399f18)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 5f538e47-ff60-4bf3-bb42-2f6bd9939200)(label(x))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + b4c3d6b4-2f86-48b4-a6f8-973195225258)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + a9a8d704-1567-49da-bee0-eaaed1869b88)(content(Whitespace\" \ + \"))))(Tile((id \ + 1111b53c-bc7b-47aa-9e29-2c95ce1c4a51)(label(y))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort \ + Pat))))))(shards(0))(children()))))))))(Secondary((id \ + 375c5b6b-b999-45c2-9b59-b05122179e53)(content(Whitespace\" \ + \"))))(Tile((id \ + 4974e787-283e-4fec-af8f-2fbddbc2fed7)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 60b26609-2674-48b9-9338-87b04fb347cf)(content(Whitespace\" \ + \"))))(Tile((id \ + 8df906dc-7438-43ec-beac-bc6f8ae5e74c)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + 167b514c-f202-426d-b0a3-e7da4f77e245)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + a51c891a-c100-479b-8df5-76d0ae3682c7)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 10780b5e-6b42-489a-b478-8fa4918e4a3e)(content(Whitespace\" \ + \"))))(Tile((id \ + 35985887-3c99-4046-85af-e9942531655a)(label(b))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 55667446-df52-465f-8313-9b20861b5327)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2fcdc646-7a16-44a7-bdbd-2db157c25c29)(content(Whitespace\" \ + 59cc16e1-2b4b-41e7-8223-b116efb5fc81)(content(Whitespace\" \ + \"))))(Tile((id \ + ab527d8c-6fb0-4ee8-bd7a-bd50ac90691c)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + c171a55e-f58c-4b76-9c60-0c99cb2f9deb)(label(f))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + f457d095-9b7a-46dd-a032-df154f8e7d66)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + b19a7335-2372-42e3-97c4-f43cf2da19b7)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ + fdddf9a9-eafc-4859-8f84-4d0fe5eb197f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + f3214d84-034c-4366-aaeb-efbbbdf1eed1)(label(x))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + 6218abb6-5f91-4db1-a84a-9040b65588c7)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 174b154a-a414-4f17-b34e-eff23c270c8c)(content(Whitespace\" \ + \"))))(Tile((id \ + fcdd28ac-e8c8-4be0-872d-99b5c68bd6ac)(label(f))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + c696479f-e52d-43c2-8381-e16280c837ac)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + e5d29456-ce44-406e-a270-d5705026c7ba)(label(b))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ + 293dc6cc-9739-43c8-b99f-32d20aebbafa)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 1e36b93e-80d5-41ea-aafd-cb180c9f9674)(label(y))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ + dd60b4d3-8c43-4503-9e98-3665c632c691)(content(Whitespace\" \ \"))))(Secondary((id \ - 0916a810-eeaa-4b3b-a5d3-3750e01e4ec9)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 3f1d1253-4e0e-4331-bf9c-180e141079b2)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 29d208e1-0c45-44d2-9d94-99224e7b7bae)(content(Comment\"# \ - Non-empty holes are the red dotted boxes around errors \ - #\"))))(Secondary((id \ - 394efbca-78fe-4391-aed8-7cf3e9954cff)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5501da01-0362-43bd-90d2-2f73051ebd5d)(content(Comment\"# (you \ - can still run programs with non-empty holes) \ - #\"))))(Secondary((id \ - 83366e95-3f7a-43c0-b6dd-b8b856c15bff)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8ff64362-463c-4a28-b9fb-c5874d923bb7)(label(let = \ + 25c0cf10-0f56-4ba1-82e9-decf3713982b)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + aeb31005-a681-42ec-9fbb-80f743adabbc)(content(Whitespace\"\\n\"))))(Tile((id \ + 94cc5701-6289-4ea8-848c-2d600b5122c3)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 907bcaba-6a39-4298-be9c-a9933d6bb965)(content(Whitespace\" \ + 674a6c4d-bdbe-460b-a241-2b00846a7f95)(content(Whitespace\" \ \"))))(Tile((id \ - e3cc5308-0a4a-486b-8505-50d4759fadea)(label(non_empty_hole))(mold((out \ + 6239aadc-e290-477d-8027-ddbe0c323473)(label(list_length))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3869b181-7c6a-4947-8188-34ac4be2e935)(content(Whitespace\" \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + fce3a01c-346b-4b57-b907-1b578934c133)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + b61ed4ce-2a0c-4d6b-93ed-a549467bb67b)(content(Whitespace\" \ + \"))))(Tile((id \ + 01aaea2f-8850-4ea8-b7b4-a6dd3b2ad657)(label(forall \ + ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ + 1))(children(((Secondary((id \ + 34aeb152-116e-4add-ab9d-f66c04bcdc79)(content(Whitespace\" \ + \"))))(Tile((id \ + 0ea281be-401c-4814-a962-4f7f60ecd510)(label(a))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + 5dce1e82-977b-4194-8ad3-e4c2709da42e)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 5223ad0d-e87f-4218-9602-a5072bf60153)(content(Whitespace\" \ + \"))))(Tile((id 21f91008-0d01-47ff-9d46-a924604ecee1)(label([ \ + ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ + Typ))((shape Convex)(sort Typ))))))(shards(0 \ + 1))(children(((Tile((id \ + 597ef350-c233-4353-b833-8286e49bc32e)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 33e96963-2d40-45ce-9ab2-8b6f99e22e79)(content(Whitespace\" \ \"))))(Tile((id \ - 6116797d-7f61-4299-8d03-b3b55489807f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 706da43b-7c2f-43e0-89aa-75f10783b763)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2c2c4658-b792-43a5-8414-1cb5aae4c7c1)(content(Whitespace\" \ + cb27497d-bb5c-47b2-b902-94e960ee4b63)(content(Whitespace\" \ \"))))(Tile((id \ - 3778ca66-6e86-4b5a-984e-de82e05a54e1)(label(Int))(mold((out \ + 37182dd9-7cd0-4883-83eb-a97fe1f871a1)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7406cf71-6145-4be2-80b9-c2a2a292175b)(content(Whitespace\" \ + bc16f3da-343f-4ef9-a848-f0d11d98b04b)(content(Whitespace\" \ \")))))((Secondary((id \ - 3d632ecf-da09-4334-8577-c8b9ede604d0)(content(Whitespace\" \ + 687df62f-d373-412a-8fe6-3eaa449bd81d)(content(Whitespace\"\\n\"))))(Tile((id \ + 4ebea11c-f7f2-4027-b2a7-c761f351d264)(label(typfun \ + ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + bf6af98d-7ecb-4961-bee6-a19be7722b6f)(content(Whitespace\" \ + \"))))(Tile((id \ + 9538a9b7-0a68-491f-a497-c17ceb666dc8)(label(a))(mold((out \ + TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ + Convex)(sort \ + TPat))))))(shards(0))(children())))(Secondary((id \ + 3cc50505-545a-413f-be38-1156162225d7)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 896aa4dd-2356-4dbf-ae97-da7548c1b201)(content(Whitespace\" \ + \"))))(Tile((id \ + 25ca542b-1285-4243-8903-2c04bd343f70)(label(fun \ + ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + c21302a8-fa84-488a-956b-68fd8b7bcec7)(content(Whitespace\" \ + \"))))(Tile((id \ + 4068a812-3167-4a70-826b-20452a73daca)(label(l))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 0be065e7-6bdd-4470-8076-ef9e2e61389e)(content(Whitespace\" \ + \"))))(Tile((id \ + f2c497d5-d083-4a2f-bf72-ced4d1927312)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 914e91c4-06ea-4269-b129-859b8a294fe9)(content(Whitespace\" \ + \"))))(Tile((id 6412a0a4-ac70-4bca-ba11-9b4cd002ac42)(label([ \ + ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ + Typ))((shape Convex)(sort Typ))))))(shards(0 \ + 1))(children(((Tile((id \ + d07ac1be-ed43-4913-9366-a1915e538ead)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 84355a32-6df4-4ebe-a314-cfc652e51f69)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 916ecce0-82a7-4c4d-a29d-7d41986b2086)(content(Whitespace\"\\n\"))))(Tile((id \ + 2f7c4ea2-6186-41b0-9096-579817043ec8)(label(case \ + end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ + Exp))((shape Convex)(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + 7c454284-ebff-4487-acd5-f168d00a668b)(content(Whitespace\" \ + \"))))(Tile((id \ + 97eb0fcc-d5cc-4fc0-b1ee-78fc06dbc053)(label(l))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + eabd5e89-c146-41b9-bb42-6e32fc91457b)(content(Whitespace\"\\n\"))))(Tile((id \ + 7c6a957a-dd81-4fcb-9399-e0b7a2a0904a)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + 2291574a-6353-4f25-ac51-fd758dc757c2)(content(Whitespace\" \ + \"))))(Tile((id \ + 31aa68cc-7483-43a9-8ccd-263bd2b7a7ed)(label([]))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 65ff3d16-a69e-4150-ad75-10dabef8f726)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 9e7aa6d9-ea7b-472e-a702-9604484452ea)(content(Whitespace\" \ \"))))(Tile((id \ - f5fb9f60-65fd-4b86-ac03-f79a42e79876)(label(true))(mold((out \ + 8c3d56b1-ed28-4755-959c-098d924440ff)(label(0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d9032067-95b2-4bc6-8813-402fb0516108)(content(Whitespace\" \ + 54b64cfd-3aa6-4469-a3d7-483b8c12efcd)(content(Whitespace\"\\n\"))))(Tile((id \ + ce39dd1e-2641-42c3-b2cf-f56018f630c5)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ + 1))(children(((Secondary((id \ + eff6cf49-55e7-43e1-af2b-b7be31f1b6b0)(content(Whitespace\" \ + \"))))(Tile((id \ + 44cf48ea-46b5-4469-ab8c-02edb59f8450)(label(hd))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 4eec30e5-0f87-4999-b4ca-2f3837ed2890)(label(::))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 7))(sort \ + Pat))((shape(Concave 7))(sort \ + Pat))))))(shards(0))(children())))(Tile((id \ + c68ad92f-d175-4d81-a7f3-3dbf972311d9)(label(tl))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + ed61a729-65c0-412a-b9af-cac593518713)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1add6c79-d411-4ab9-b51d-581ef672ed1d)(content(Whitespace\" \ + ceaaf3af-b462-44c3-9236-951ac541b526)(content(Whitespace\" \ + \"))))(Tile((id \ + 2c9f1347-713d-45c5-b00a-503277a68bc9)(label(1))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 297a105c-5668-4898-b623-15b6448d5ac4)(content(Whitespace\" \ + \"))))(Tile((id \ + dc03019a-ae05-4d15-bd59-62132bed6f82)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + a827b6e8-a5fa-418c-bab8-b0348e97129b)(content(Whitespace\" \ + \"))))(Tile((id \ + 42e05399-dcf4-4a5a-b623-7c952d5be6aa)(label(list_length))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 15d2f010-369e-4f37-9e48-82c5d73cc436)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + c2a8c56e-e013-42d9-b9bd-efb5ab76ef2a)(label(a))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ + 3c8892bd-ee35-43d7-af7a-e656fa18af41)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + b1efc418-a503-425b-9ed6-200b443b88ac)(label(tl))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))))))(Secondary((id \ + 4aba6063-067d-4b9f-9dc1-a1eb4d8debca)(content(Whitespace\" \ + \"))))(Secondary((id \ + e5f59a97-e6e6-4831-9d47-7826b529adb5)(content(Whitespace\" \ \"))))(Secondary((id \ - efe99dcd-cd32-4bd1-ba0a-32508d520ddf)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 96260b30-8ae6-454d-8da1-c532a1efa904)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 376a24fd-5524-4558-902c-6fc859f4e3b0)(content(Comment\"# \ + 69616509-8982-44a8-91ce-bea322782616)(content(Whitespace\" \ + \"))))(Secondary((id \ + bbb5c133-f403-4cb8-8414-c1ba5fdb845d)(content(Whitespace\" \ + \"))))(Secondary((id \ + 719d3eae-49ec-4b48-b28d-61cbf52d5320)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + afec3dc1-635c-4552-9808-97c2a5206aea)(content(Whitespace\" \ + \"))))(Secondary((id \ + 0ebde483-a3cb-450a-9b11-dea18a5f1450)(content(Whitespace\" \ + \"))))(Secondary((id \ + 5152e7d3-3b22-4d1d-be55-2dba6c65cdeb)(content(Whitespace\" \ + \"))))(Secondary((id \ + 061e0f0c-9fcb-404d-a843-e2071aff3e09)(content(Whitespace\" \ + \"))))(Secondary((id \ + b41b8db3-5c3b-4912-9a63-016cb9a2bd61)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 73a87579-0861-4313-b26d-fad6890ef0d4)(content(Whitespace\"\\n\"))))(Secondary((id \ + ed2eba28-14b2-43f3-a960-96184f6a0453)(content(Whitespace\"\\n\"))))(Secondary((id \ + 743fc067-9e5e-4259-be92-2cfc52ac072b)(content(Comment\"# \ Tests, separated by semicolons #\"))))(Secondary((id \ - aa070fd5-bc99-4e35-bf85-988cf2e6f881)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 25740099-dda9-4234-9886-803c1d4d51af)(label(test \ + 1123a883-d5b1-4c32-9322-83ff54244bae)(content(Whitespace\"\\n\"))))(Tile((id \ + be192105-476a-4d15-8ca8-698e51ac5d14)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - e86c5199-a0ce-4e44-9ad3-692c435fe93d)(content(Whitespace\" \ + 6a6e6e35-a886-40b1-bc53-7d4754a47fb0)(content(Whitespace\" \ \"))))(Tile((id \ - d6db200b-52b4-4ed8-925f-579fdf8b2c6d)(label(2))(mold((out \ + 57ff9001-83e7-4eeb-a97e-c2ae9b0e4920)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5f310898-295b-4f16-9d11-b01123b2ea2c)(content(Whitespace\" \ + 60f93a90-fa9b-476b-8d55-b2a436173a53)(content(Whitespace\" \ \"))))(Tile((id \ - 1e38b972-1809-4feb-8c1c-4f67d652d375)(label(+))(mold((out \ + 3d0c0b1e-4c5e-4335-b161-e6a572f474ba)(label(+))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 8ed6c237-4bd0-412a-971c-dcf07e161f93)(content(Whitespace\" \ + 5dff9ed1-e5c9-4a7b-b0f6-0b9741b4dd64)(content(Whitespace\" \ \"))))(Tile((id \ - 3ac3b7c8-a4ff-4f33-bfa2-d218822fcd19)(label(2))(mold((out \ + 71fce18b-1f8a-42c7-a5fa-29a2f7a5b89c)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f572a698-4a16-4dbf-a54d-6e6945297665)(content(Whitespace\" \ + 9e1c040b-03ab-4a84-a553-e4703c01cdff)(content(Whitespace\" \ \"))))(Tile((id \ - 132cb08f-c280-42b5-b6fd-c1e85d17ec5c)(label(==))(mold((out \ + e4018927-a561-4e91-91f2-5c59ef42c517)(label(==))(mold((out \ Exp)(in_())(nibs(((shape(Concave 9))(sort \ Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 709f0d1f-d997-42e8-bb16-23abf054df5f)(content(Whitespace\" \ + 89cdd693-518f-4ab3-a7bb-617dc08b14bf)(content(Whitespace\" \ \"))))(Tile((id \ - bafddf28-368f-4c9b-9759-a5e16424a41d)(label(4))(mold((out \ + 92f91eb9-4e55-47c2-89c0-e65cb389e1b4)(label(4))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - eba3a299-0151-4d0e-b13d-0d61577a6733)(content(Whitespace\" \ + d14060c1-5ffd-4687-a29e-dac00477d0c4)(content(Whitespace\" \ \")))))))))(Tile((id \ - 607a9a2f-36fd-416b-8f2a-0dcd654a3f56)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + b87e716d-126b-4a1e-8a25-06d8e3b48940)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3a0443fb-e5e5-4675-a280-c675d359ed87)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cb3e52f3-b846-49c6-813f-2066ca14e149)(label(test \ + 68411645-46cb-4064-9519-e7899951a0a5)(content(Whitespace\"\\n\"))))(Tile((id \ + a7ef42fc-b10a-4765-9662-1e17b96cee51)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a51bf06d-4934-4799-ac2e-a4652aaaafe7)(content(Whitespace\" \ + d69bf48e-2c97-4895-a654-4d9b7a5dae5e)(content(Whitespace\" \ \"))))(Tile((id \ - f2c74fe8-2500-4886-a23e-5a5d5155ae8b)(label(3))(mold((out \ + 5cb1ac15-bd9d-4e5f-8474-21cd9de9586b)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 09d392c0-e2cc-4307-89d7-0483627378b7)(content(Whitespace\" \ + da026499-7b4f-4e56-bca9-46d095b425f8)(content(Whitespace\" \ \"))))(Tile((id \ - b85776e4-f63f-49a1-9b09-77c013375af7)(label(+))(mold((out \ + d8467f2c-764c-42be-9e73-342a8111d08f)(label(+))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a4c131e0-fc31-4fcb-aa84-b16c046436ee)(content(Whitespace\" \ + da92842e-93ed-4cd2-99c4-cdc95d67c4cb)(content(Whitespace\" \ \"))))(Tile((id \ - 18d3169f-ed3f-4138-b5b9-9610e304c013)(label(3))(mold((out \ + 765eb7aa-464b-4189-9a36-d0ac82c60d30)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0b7c6984-8436-4b21-8258-c37dd6be30f2)(content(Whitespace\" \ + 9fc189d6-d530-45fa-929e-f01d07752616)(content(Whitespace\" \ \"))))(Tile((id \ - c63b9193-5ad3-4d09-8187-b9b13b9a5210)(label(==))(mold((out \ + 2853eead-ce88-45bf-be4e-087bad885633)(label(==))(mold((out \ Exp)(in_())(nibs(((shape(Concave 9))(sort \ Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - be000067-f14a-4cf6-a64a-384a94fa32ac)(content(Whitespace\" \ + 9b805a57-2696-4ad9-b9a7-0d98e6b2fce9)(content(Whitespace\" \ \"))))(Tile((id \ - 005342e2-5425-4530-b074-13babb8f58df)(label(6))(mold((out \ + 5b35f7fc-2a24-4838-ac54-60f2f1c13217)(label(6))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 12cf1b4d-dcf5-4070-a839-a70b836df238)(content(Whitespace\" \ + 07a2586d-f68a-4758-b6d7-fbcd25f03b15)(content(Whitespace\" \ \")))))))))(Tile((id \ - 6dce00b6-58ad-4711-922d-182cb8ae2b7c)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 84e74920-e856-4e38-8197-b67f150e8280)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3f85c74f-7e59-4d18-ab32-2fc003551cae)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 69c51fcc-36be-4bc1-a336-cfea114e8780)(label(test \ + eb5dc0b5-9bce-422a-abb0-c9fb2a061482)(content(Whitespace\"\\n\"))))(Tile((id \ + 1007b290-a32b-4932-abaf-71907d6b9226)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 45576ba4-4586-4df3-888d-3bfef94972be)(content(Whitespace\" \ + 86299159-3d39-4bde-96ac-a7e690666a00)(content(Whitespace\" \ + \"))))(Tile((id \ + f27787fa-392e-4503-aea4-53f0674ab69b)(label(2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 1f7c7c77-8238-472d-8566-6fa926a42fe6)(content(Whitespace\" \ + \"))))(Tile((id \ + bb0552be-7e7e-4d10-9642-9f34800af9f1)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + 8655e10c-2c99-46db-9f8a-a8fc4030a7ab)(content(Whitespace\" \ + \"))))(Tile((id \ + 2d646883-c14a-47a8-a008-967a311ea0fb)(label(2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + 0b139f15-6838-49ef-82e4-cbc793728a74)(content(Whitespace\" \ + \"))))(Tile((id \ + 6fb1e073-7438-4730-baca-fcceff91fdd3)(label(==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + a54cdde1-509e-425a-9324-c9c193506f2f)(content(Whitespace\" \ \"))))(Tile((id \ - ea9e7253-a352-4836-881f-0127b1c871b8)(label(2))(mold((out \ + dacd2803-8d82-473c-bcb7-67361214f2d2)(label(5))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + fa4b0d41-fe34-4970-a3f1-2b64178fd114)(content(Whitespace\" \ + \")))))))))(Tile((id \ + c4ef4f30-4ea8-48a7-a48b-9379b68a1933)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + fa633e11-2211-44dd-ae73-69f3aa368032)(content(Whitespace\"\\n\"))))(Secondary((id \ + 2dddcb80-8751-4337-a04f-a5b915d7264c)(content(Whitespace\"\\n\"))))(Secondary((id \ + 52ba9392-cb17-4a17-9424-1ec23bf8c424)(content(Comment\"# The \ + value of the program is shown at the bottom \ + #\"))))(Secondary((id \ + 1025583f-c9fd-4bdf-ae33-39d591894f63)(content(Whitespace\" \ + \"))))(Secondary((id \ + ed6fa8ec-6f73-40d4-974b-fb5a6e500413)(content(Whitespace\" \ + \"))))(Secondary((id \ + 82208130-4678-4f0d-aa70-71bab80882fc)(content(Whitespace\"\\n\"))))(Tile((id \ + edd07cfe-f3d0-46b8-bae7-8c8c7e98a471)(label(2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ + c18ac8c5-f3b1-4264-bb1b-edda6e53fcfc)(content(Whitespace\" \ + \"))))(Tile((id \ + 7dead34d-45fb-4be7-8cc3-3036b7d1bcc2)(label(+))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 6))(sort \ + Exp))((shape(Concave 6))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + ffaeee98-c1de-4d9c-b8d1-ec6f1c2e2f80)(content(Whitespace\" \ + \"))))(Tile((id \ + f31878be-5cd4-4e79-827d-a1d16c837a27)(label(2))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))))(ancestors())))(caret \ + Outer))"; + backup_text = + "# Hazel Language Quick Reference #\n\n\ + # Empty holes stand for missing expressions, patterns, or \ + types #\n\ + let empty_hole = in\n\n\ + # Non-empty holes are the red boxes around type errors #\n\ + # (you can still run programs with non-empty holes) #\n\ + let non_empty_hole : Int = true in \n\n\ + # Booleans #\n\ + let bool: Bool = true in\n\ + let operators = !true && false || true in\n\ + let conditional = if !true then 1 else 2 in\n\n\ + # Integers #\n\ + let num: Int = 1 in\n\ + let arithmetic = -num*1 + 2/3 - 4**5 in\n\ + let comparison =\n\ + (0 == 0, 0 < 1, 1 <= 1, 2 > 1, 1 >= 1) \n\ + in\n\n\ + # Floating Point Numbers #\n\ + let float: Float = 0.1 in\n\ + let artihmetic = 0. *. 1. +. 2. /. 3. -. 4. **. 5. in\n\ + let comparison =\n\ + (0. ==. 0., 0. <. 1., 1. <=. 1., 2. >. 1., 1. >=. 1.) \n\ + in\n\n\ + # Strings #\n\ + let string = \"Hello, world!\" in \n\ + let concatenation = string ++ \" Goodbye.\" in\n\ + let comparison = string$== \"Hello, world!\" in\n\n\ + # Tuples (Destructured with let expressions) #\n\ + let tuple : (Int, Bool, (Bool, Int)) =\n\ + (1, true, (false, 3)) in\n\ + let (a, b, (c, d)) = tuple in\n\n\ + # Functions (Take a single argument which can be a tuple) #\n\ + let y : (Int, Int, Int) -> Int =\n\ + fun (m, x, b) -> m * x + b in\n\n\ + # Recursive Functions (Arrow type annotation required) #\n\ + let double_recursively : Int -> Int =\n\ + fun n ->\n\ + if n == 0 \n\ + then 0 \n\ + else double_recursively(n - 1) + 2 \n\ + in\n\n\ + # Mutual Recursion (bind tuples of functions) #\n\ + let (even : Int -> Bool, odd : Int -> Bool) = \n\ + (fun n -> if n == 0 then true else odd(n - 1),\n\ + fun n -> if n == 0 then false else even(n - 1)) \n\ + in\n\n\ + # Lists #\n\ + let empty_list : [Int] = [] in\n\ + let non_empty_list : [Int] = 1::2::3::[] in\n\ + let list_literals : [Int] = [1, 2, 3] in\n\ + let length : [Int] -> Int =\n\ + fun xs ->\n\ + case xs\n\ + | [] => 0\n\ + | hd::tl => 1 + length(tl) \n\ + end \n\ + in\n\ + let has_at_least_two_elements : [Int] -> Bool =\n\ + fun xs ->\n\ + case xs\n\ + | [] => false\n\ + | hd::[] => false\n\ + | a::b::[] => true \n\ + end \n\ + in\n\n\ + # Algebraic Data Types #\n\ + type Exp =\n\ + + Var(String)\n\ + + Lam(String, Exp)\n\ + + Ap(Exp, Exp) in\n\ + let exp_equal: (Exp, Exp) -> Bool =\n\ + fun es ->\n\ + case es\n\ + | Var(x), Var(y) => x$== y\n\ + | Lam(x1, e1), Lam(x2, e2) =>\n\ + x1$== x2 && exp_equal(e1, e2)\n\ + | Ap(e1, e2), Ap(e3, e4) =>\n\ + exp_equal(e1, e3) && exp_equal(e2, e4)\n\ + | _ => false \n\ + end \n\ + in\n\n\ + # Polymorphic Functions #\n\ + let poly_id: forall a -> a -> a =\n\ + typfun a -> fun x : a -> x \n\ + in\n\ + let apply_both:\n\ + forall a -> forall b -> (forall c -> c -> c) -> ((a, b) -> \ + (a, b)) =\n\ + typfun a -> typfun b ->\n\ + fun f : forall c -> (c -> c) ->\n\ + fun (x, y) : (a, b) -> (f@(x), f@(y)) \n\ + in\n\ + let list_length: forall a -> [a] -> Int =\n\ + typfun a -> fun l : [a] ->\n\ + case l\n\ + | [] => 0\n\ + | hd::tl => 1 + list_length@(tl) \n\ + end \n\ + in\n\n\ + # Tests, separated by semicolons #\n\ + test 2 + 2 == 4 end;\n\ + test 3 + 3 == 6 end;\n\ + test 2 + 2 == 5 end;\n\n\ + # The value of the program is shown at the bottom # \n\ + 2 + 2"; + } ); + ( "Projectors", + { + zipper = + "((selection((focus Left)(content())(mode \ + Normal)))(backpack())(relatives((siblings(()((Secondary((id \ + c3fe923c-f1b5-4fe4-91f3-1920083a48fd)(content(Comment\"# \ + PROJECTORS #\"))))(Secondary((id \ + 82e9ab71-8f1a-473b-8719-bca4ac1abb73)(content(Whitespace\"\\n\"))))(Secondary((id \ + c2aeea8b-6a4b-41c8-ae37-6957844cc632)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5083b6d7-9860-44f2-a372-a7982bac5411)(content(Comment\"# Some \ + kinds of syntax have dedicated GUIs. \ + #\"))))(Secondary((id \ + 685340fd-64fc-47d0-9478-1146c2a75fd0)(content(Whitespace\"\\n\"))))(Secondary((id \ + 95a769cb-ccc7-4050-be14-6c316a60273f)(content(Comment\"# The \ + menu at the bottom left shows which GUIs \ + #\"))))(Secondary((id \ + 1912ca64-3e07-4dcb-9ca7-7d2134c7cf8a)(content(Whitespace\"\\n\"))))(Secondary((id \ + fcbdfc8d-3d9d-4a71-a6ea-7651147d365f)(content(Comment\"# (if \ + any) are applicable to the current term \ + #\"))))(Secondary((id \ + d7774693-9d72-4d87-8f4e-b43c785f4251)(content(Whitespace\"\\n\"))))(Secondary((id \ + 7a231164-a872-4d26-8184-823adee3e3d7)(content(Comment\"# \ + indicated by the caret. \ + #\"))))(Secondary((id \ + 013fc5f7-e8d4-48f7-bcbe-9429f55e4fb2)(content(Whitespace\"\\n\"))))(Secondary((id \ + e72ec872-a3c5-4cd3-ad82-c792dcb3c8b8)(content(Whitespace\"\\n\"))))(Secondary((id \ + 13ee2a51-1c77-428b-a88a-86c662cf961c)(content(Comment\"# Fold \ + projectors cover terms with abstractions. \ + #\"))))(Secondary((id \ + c3f89d08-bdef-4590-be4f-3072c9bd534a)(content(Whitespace\"\\n\"))))(Secondary((id \ + 77d14b50-f736-4c3f-af1c-e0ada25aaadf)(content(Comment\"# 1. A \ + simple fold roles up any term, replacing \ + #\"))))(Secondary((id \ + de94238a-f9da-4725-a7cd-8c262def9569)(content(Whitespace\"\\n\"))))(Secondary((id \ + 1f4aecb5-7b1d-4516-9689-86d55a50eca8)(content(Comment\"# \ + it with ... until it is expanded again. \ + #\"))))(Secondary((id \ + 943b3a44-589d-4acb-9ec9-a4335a102c65)(content(Whitespace\"\\n\"))))(Secondary((id \ + 0064f32d-87a1-4d3c-8ca7-2d986a42811c)(content(Whitespace\"\\n\"))))(Tile((id \ + b3a3bfee-bcdb-438f-ad33-e3f7e336b3ea)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + e992a23f-ce0a-4e05-a49a-09e84388f1d2)(content(Whitespace\" \ + \"))))(Tile((id \ + d776d3ac-ddeb-4cdc-9bb8-3c3b487840be)(label(fold))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 8e21014a-816f-4572-b065-34a5a04dc6f9)(content(Whitespace\" \ + \")))))((Secondary((id \ + d983dc5b-b4b8-46e8-ab8a-a6c5297ce98b)(content(Whitespace\" \ + \"))))(Projector((id \ + 3d5d8571-e287-4660-889d-019fd826d793)(kind \ + Fold)(syntax(Tile((id \ + 3d5d8571-e287-4660-889d-019fd826d793)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 9403eac8-9e96-4c73-84ab-ff94fbcb1864)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 81926204-d883-4cc9-ae43-6ccc4ab42857)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 2cfeb841-d069-4aa6-9ad8-931ef62214bc)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 0b6d67f7-b22c-402e-9fe8-9fa10c54adf2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 25ec067f-2025-45f2-bc61-5e1839184086)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + e0716c75-b708-491e-9844-48d0424e6545)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 6057d41b-727d-4f1d-91b4-4f78e45607a2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 33e14eaf-32e1-490d-b554-574e60d7a8ea)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 9ff9a3be-2da6-427c-a42d-0b8f699e4de0)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + a6bb2777-ba78-455a-a252-dcc8f6ac664c)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 7269fe06-4f65-439c-a289-dfcdcc6d230a)(label(\"()\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(model\"()\")))(Secondary((id \ + 695e3712-f2c0-4fb1-98c8-5c4dae7bef90)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 0746c10c-3faa-4fca-875f-34dacf07e128)(content(Whitespace\"\\n\"))))(Secondary((id \ + 0116db5a-a7b9-4a59-8f20-bde869ae5cbf)(content(Whitespace\"\\n\"))))(Secondary((id \ + 22e07ba4-9f84-47c8-ac0e-3cbf64f8a41a)(content(Comment\"# 2. A \ + semantic fold covers a term with a property: \ + #\"))))(Secondary((id \ + 2324126a-fd02-4d46-8dca-f54ecc1f3c53)(content(Whitespace\"\\n\"))))(Secondary((id \ + 3246672d-f43f-48d7-aff8-14b4179ace2a)(content(Comment\"# \ + Click to toggle inferred & synthesized types \ + #\"))))(Secondary((id \ + 83092344-09b3-4027-b669-02cd44e7e379)(content(Whitespace\"\\n\"))))(Secondary((id \ + c2c02009-b47d-4948-8679-da0ed059a6d2)(content(Whitespace\"\\n\"))))(Tile((id \ + 844dec42-9f30-4750-ac38-a51b56142ee3)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 7bb8fe9e-04a0-4ee7-9d36-4a31dfd14c05)(content(Whitespace\" \ + \"))))(Tile((id \ + 1865a79f-c653-44f5-8081-ce2c140f2d80)(label(folds))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + e819a137-478c-4ba7-9085-f4cbc8335c7d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + d67fb96f-9d3f-4488-b4d9-2a59566cc091)(content(Whitespace\" \ + \"))))(Projector((id \ + 68602b6d-43bb-402b-9a24-bf990bf1c22c)(kind \ + Fold)(syntax(Tile((id \ + 68602b6d-43bb-402b-9a24-bf990bf1c22c)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ + d4f45557-5d33-4376-aacb-21c1e9a1f0b4)(label(Int))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + ec4942d0-661e-4086-8ca7-8b076abb5813)(content(Whitespace\" \ + \"))))(Tile((id \ + 1ec7773a-82e6-4fae-aa59-4762e198c98a)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 6))(sort \ + Typ))((shape(Concave 6))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + a89b1307-c340-4055-9a7a-17d319ac6fcd)(content(Whitespace\" \ + \"))))(Tile((id \ + 54bf5314-84f6-4701-bc2a-008fc9485ee2)(label(Bool))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children())))))))))(model\"()\")))(Secondary((id \ + c3061b0b-9b43-4426-b14f-2f08c245f300)(content(Whitespace\" \ + \")))))((Secondary((id \ + e614e364-e221-402f-8556-50e8caf3b940)(content(Whitespace\" \ + \"))))(Projector((id \ + 2b8a4030-bf70-47b6-8546-4cbe256e5cae)(kind \ + Info)(syntax(Grout((id \ + 2b8a4030-bf70-47b6-8546-4cbe256e5cae)(shape Convex))))(model \ + Expected)))(Secondary((id \ + b6c9f4cd-120e-471a-8874-24b43aab5df9)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + df00c631-b6c1-42ba-b179-22bfbe078fcd)(content(Whitespace\"\\n\"))))(Secondary((id \ + eb6977fb-0298-4bd6-8106-515bf6274105)(content(Whitespace\"\\n\"))))(Secondary((id \ + a46616c8-f52b-4755-9bf1-e1a324298a9a)(content(Comment\"# \ + Projectors on literal data are called livelits. \ + #\"))))(Secondary((id \ + c507ba49-0c28-49ba-ab08-be00b86f7cfe)(content(Whitespace\"\\n\"))))(Secondary((id \ + 7c56f9a4-5c09-4a53-952d-9261a9f17ec8)(content(Comment\"# \ + Three base types literals use inline views: \ + #\"))))(Secondary((id \ + 5bd865da-3375-478d-9b93-1d4861cb6a22)(content(Whitespace\"\\n\"))))(Secondary((id \ + a58a0cc6-4614-440c-8093-c54b3d3b19c2)(content(Whitespace\"\\n\"))))(Tile((id \ + c2ab8eb6-631f-4976-a9bb-cc92eca07f78)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 6d0b5f74-5e96-4be7-847d-05afbe3955ab)(content(Whitespace\" \ + \"))))(Tile((id \ + 7fd412a0-6516-4d01-bb44-c735d79b4a4b)(label(guard))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 5c956f02-69a9-4dd7-882a-48e8e73f874e)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 9e02c123-880b-4f88-9675-501fcc7f2ed2)(content(Whitespace\" \ + \"))))(Tile((id \ + 0d782687-5bf4-4317-8e23-22bf7f91758e)(label(Bool))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + ef93835e-4a99-4b7c-824d-b51cf70ddd60)(content(Whitespace\" \ + \")))))((Secondary((id \ + 13722973-e012-4c13-b9bb-aa8d9a1de6b8)(content(Whitespace\" \ + \"))))(Projector((id \ + efd30209-5976-4ccc-835c-3ea6ae1ab13b)(kind \ + Checkbox)(syntax(Tile((id \ + efd30209-5976-4ccc-835c-3ea6ae1ab13b)(label(true))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + e5b36263-d7e9-4927-be88-7d4d9c2924b6)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + d24bac73-2ba2-4b2f-853e-50c123946a33)(content(Whitespace\"\\n\"))))(Tile((id \ + 4892097f-1fd3-4a33-abcf-ac4c55757fa6)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 034b65f9-e9a1-4aa0-9626-b600062d3c11)(content(Whitespace\" \ + \"))))(Tile((id \ + 112fc7f9-ce6e-41d2-9774-4722ef92bd06)(label(phase))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 3ec69819-dc39-4266-ba08-a08fb08718e7)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 6842035c-1e3f-48a6-b922-78b770510221)(content(Whitespace\" \ + \"))))(Tile((id \ + 2234dc42-947d-48bd-bae1-b8ce61de2020)(label(Int))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 8e8e1227-03c6-466d-ae1c-1784bbe5ba33)(content(Whitespace\" \ + \")))))((Secondary((id \ + ffc5eb91-0f98-4587-a956-f55e0115fcfa)(content(Whitespace\" \ + \"))))(Projector((id \ + 2b03a748-4f50-474d-adae-814785dc3692)(kind \ + Slider)(syntax(Tile((id \ + 2b03a748-4f50-474d-adae-814785dc3692)(label(44))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + e14500bd-7737-41f9-af43-3e06b6d9d3fd)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 0d9164c7-2310-4ce0-8e74-d22008f2984d)(content(Whitespace\"\\n\"))))(Tile((id \ + cbcc44ec-1ab4-43a8-bd41-1e76afcaa012)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 7d7b5b27-6af3-4ca1-96f2-c1073ead531d)(content(Whitespace\" \ + \"))))(Tile((id \ + a42f4aad-ae62-4024-b157-f44502f3f96c)(label(float))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 9d656f04-dd32-4594-8b63-a579f2774e9c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 81a8b0cc-0433-4234-938f-f6d16e0cf314)(content(Whitespace\" \ + \"))))(Tile((id \ + b9066610-92a5-42df-97be-b261927b7e0e)(label(Float))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + eff1cce3-2d0f-4d2c-9d12-a4a4763c6c7f)(content(Whitespace\" \ + \")))))((Secondary((id \ + f1df0e58-a7f3-4494-812d-a558c96c0c63)(content(Whitespace\" \ + \"))))(Projector((id \ + 043196ac-dc43-489c-85e8-4bf31d6853c7)(kind \ + SliderF)(syntax(Tile((id \ + 043196ac-dc43-489c-85e8-4bf31d6853c7)(label(79.00))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + d2618e65-e9a8-46c1-b5c4-4d6ee1b25a77)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 47e6a486-67d1-4b89-b005-1aad616e4012)(content(Whitespace\"\\n\"))))(Secondary((id \ + 0ea2f253-0d49-49f7-88fd-e2775aedbab4)(content(Whitespace\"\\n\"))))(Secondary((id \ + d2a60e8e-a397-4fde-9b3d-8de7d44c435b)(content(Comment\"# \ + Inline error decorations (same as for tokens) \ + #\"))))(Secondary((id \ + 89c3bf87-33f1-4bd8-84ac-794962a1b06f)(content(Whitespace\"\\n\"))))(Secondary((id \ + a2b7b074-9f8b-401d-8277-433283b3dd3d)(content(Whitespace\"\\n\"))))(Tile((id \ + 5c88bf9f-3a1c-494b-b9b6-ab25e9f8c748)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + ba3c4c94-a6d3-4e67-8f8c-fe1ef283e42a)(content(Whitespace\" \ + \"))))(Tile((id \ + be3365c0-8223-46e9-bf78-1355cb4b9963)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ + 2528ecd7-2bca-4088-8642-07347f97dfe6)(label(a))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 0d999b5a-f816-4d8d-93ac-31800d93edac)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Tile((id \ + 3f3703f7-333f-4e29-b21c-377af36cca38)(label(Int))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + d99b5782-c227-4008-9446-c36b0c1b98c9)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ + Pat))))))(shards(0))(children())))(Secondary((id \ + 046a4766-e8ec-41f2-b458-01129c599528)(content(Whitespace\" \ + \"))))(Tile((id \ + 58292f14-1e4c-4936-93fe-6780f53b9b48)(label(f))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + b2844336-ccf3-4198-856e-10181c19b357)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 6ed09a11-ecba-4d05-9ee6-3aa7ddbe7195)(content(Whitespace\" \ + \"))))(Tile((id \ + 8342017f-290a-410a-abeb-99cb7f7c2e12)(label(Float))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + a0c9eae6-7599-4723-9a73-8739578452dd)(content(Whitespace\" \ + \")))))((Secondary((id \ + 520a0dab-48a7-4998-af8a-42121ea7c03b)(content(Whitespace\" \ + \"))))(Projector((id \ + 73403eff-1a14-4a95-aa97-08847365f7f7)(kind \ + Checkbox)(syntax(Tile((id \ + 73403eff-1a14-4a95-aa97-08847365f7f7)(label(true))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Tile((id \ + f2ebe0f4-7569-4327-a816-302a359154dd)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ + Exp))))))(shards(0))(children())))(Secondary((id \ + e22631a3-3621-4bc7-8df0-034c3dd83ef0)(content(Whitespace\" \ + \"))))(Projector((id \ + 1b9c2559-9fa5-45e0-8136-45cf1ba5a153)(kind \ + Slider)(syntax(Tile((id \ + 1b9c2559-9fa5-45e0-8136-45cf1ba5a153)(label(28))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + d9c1a18b-7ece-4b06-923d-5f41364ee432)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 5a1ba563-db2a-4084-947e-9086b6e75501)(content(Whitespace\"\\n\"))))(Secondary((id \ + d1e25e85-434f-40d9-b8c8-41ed2e3b5928)(content(Whitespace\"\\n\"))))(Secondary((id \ + 32f12f1f-4721-4be5-9864-b8a852649666)(content(Comment\"# The \ + String base type get a multiline view: #\"))))(Secondary((id \ + b4568a57-45a5-4058-b04c-17693cad93bc)(content(Whitespace\"\\n\"))))(Secondary((id \ + 34e3a828-278f-4b76-9794-a02b9f40ed6e)(content(Whitespace\"\\n\"))))(Tile((id \ + 4757c00d-9783-4b47-806b-872b9728e17c)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 25de0cd1-e0cd-40e2-b298-bba63463e402)(content(Whitespace\" \ + \"))))(Tile((id \ + 007595ce-99f5-4d6b-bc0d-157c343ee846)(label(_))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 15c0db9c-4ffc-4a65-85bf-1f7663ffb7a6)(content(Whitespace\" \ + \")))))((Secondary((id \ + 7b655a09-dea7-489f-8c63-4bae6cf1ddb5)(content(Whitespace\" \ + \"))))(Projector((id \ + 56d4b3d2-48ae-485f-ac8f-4465bb35110f)(kind \ + TextArea)(syntax(Tile((id \ + 56d4b3d2-48ae-485f-ac8f-4465bb35110f)(label(\"\\\"\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + 39c7d0a1-2b1c-434e-969e-f3a8d480b98c)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 5c35b6c4-e575-4907-975b-94ca40431ea4)(content(Whitespace\"\\n\"))))(Tile((id \ + cce56473-5258-4c91-8036-41fdfa6ba6b1)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 85a1dc46-86fb-4585-aac0-3281491cd83d)(content(Whitespace\" \ + \"))))(Tile((id \ + 5b032c7b-bcb3-4af2-951e-40f7691af336)(label(__))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 86e081ce-920e-4f89-8ef3-0c54d43d6693)(content(Whitespace\" \ + \")))))((Secondary((id \ + 2d5a8239-42f4-4bc0-ae3c-ee19a920124f)(content(Whitespace\" \ + \"))))(Projector((id \ + f0c0f5d9-251b-4e16-a0b9-0ea8cd416b67)(kind \ + TextArea)(syntax(Tile((id \ + f0c0f5d9-251b-4e16-a0b9-0ea8cd416b67)(label(\"\\\"\\\\n\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + 66e6258f-a354-4df0-950a-5416915fbb9c)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 2fe9926a-316d-44ce-b729-6cb5031c1e95)(content(Whitespace\"\\n\"))))(Tile((id \ + 95aeb505-339e-4761-bce3-1f39778bb748)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + ada7f019-d3d4-4b7b-8755-e26aa8256731)(content(Whitespace\" \ + \"))))(Tile((id \ + 4c1360b2-dafe-422e-b3b6-b96ec36e7ac8)(label(___))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 0d894ba4-cf26-403f-9a23-267609fe46f4)(content(Whitespace\" \ + \")))))((Secondary((id \ + 9d4ceb1c-6b22-4a06-a218-633b4a5890dc)(content(Whitespace\" \ + \"))))(Projector((id \ + e7f57a83-ecba-45f4-b7c3-e576c0452edf)(kind \ + TextArea)(syntax(Tile((id \ + e7f57a83-ecba-45f4-b7c3-e576c0452edf)(label(\"\\\"a\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + ed6e4e97-cda5-4f4a-b917-01a2e251030f)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + c0e84d18-89a3-456e-ae6f-853eac5c6e24)(content(Whitespace\"\\n\"))))(Tile((id \ + 0e2a557d-8235-4160-ba5a-137b96581ee7)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + d174d025-b139-4cec-94b8-bf1739822683)(content(Whitespace\" \ + \"))))(Tile((id \ + 51b2e64d-97dd-4136-a322-9567742961c7)(label(____))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 5975f35a-5be5-487c-9c60-684e8196ee5e)(content(Whitespace\" \ + \")))))((Secondary((id \ + 655b0f6d-81ea-4402-b279-6b1ae84beba4)(content(Whitespace\" \ + \"))))(Projector((id \ + aed58904-b2f8-4101-8472-45e7f1f12683)(kind \ + TextArea)(syntax(Tile((id \ + aed58904-b2f8-4101-8472-45e7f1f12683)(label(\"\\\"shift\\\\n\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + 437dcb66-6719-46ca-9822-d869d8e8360c)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 4579fb70-9d19-4a24-abd3-5683a11e35c2)(content(Whitespace\"\\n\"))))(Tile((id \ + c182f185-1c46-4fbf-8554-8a31b842934b)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + a256562d-4dd1-4c1f-8b3a-61488ef8203e)(content(Whitespace\" \ + \"))))(Tile((id \ + 73420d3d-60aa-48f3-af7f-9e0271b218f9)(label(_____))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 09b22cf6-e566-43df-a6ef-9a2b8cc5b124)(content(Whitespace\" \ + \")))))((Secondary((id \ + fc90fed4-a5d3-4d27-9f7a-cd75421abaee)(content(Whitespace\" \ + \"))))(Projector((id \ + 41dbf9b6-0f60-4ab3-bb0e-a5fdc9512d82)(kind \ + TextArea)(syntax(Tile((id \ + 41dbf9b6-0f60-4ab3-bb0e-a5fdc9512d82)(label(\"\\\"\\\\nmalicious\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + e2d4adfe-b2e5-4e21-a5f0-8f8a1384582c)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 941557a3-c4d6-4c32-91c9-8e3ea317335e)(content(Whitespace\"\\n\"))))(Tile((id \ + 1eb285f2-a7d4-4cff-a8a9-79fc4bdc3047)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 92fa5f2d-59f7-4fe5-91d6-a327ba868447)(content(Whitespace\" \ + \"))))(Tile((id \ + e7dd8df0-14df-41f3-8ebb-747d42daf6ce)(label(______))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 50a8159f-2f81-4ac8-bb46-c93c6d1c3a36)(content(Whitespace\" \ + \")))))((Secondary((id \ + c8ba0030-44ed-43ff-915f-1fd4afc25529)(content(Whitespace\" \ + \"))))(Projector((id \ + 7d31fa70-e091-4443-89af-6d6380fe31f0)(kind \ + TextArea)(syntax(Tile((id \ + 7d31fa70-e091-4443-89af-6d6380fe31f0)(label(\"\\\"a\\\\n \ + shift\\\\n malicious\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + b30e104e-26d2-48e5-acb1-8b1857c4f7ec)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 6d752567-c069-4bc2-aa74-ab77e213936e)(content(Whitespace\"\\n\"))))(Secondary((id \ + 71cd9b4c-db26-4ddf-888d-affbc48abbe9)(content(Whitespace\"\\n\"))))(Secondary((id \ + 934e0d04-e4c9-4442-99c1-3ce6a26cc38f)(content(Comment\"# \ + Multiline error decorations #\"))))(Secondary((id \ + 1a2d4d43-52ba-4bc2-a92d-72000df5929c)(content(Whitespace\"\\n\"))))(Secondary((id \ + 62f74d6d-efb5-47a4-9512-79ed238f03ae)(content(Whitespace\"\\n\"))))(Tile((id \ + 28fef6b0-7141-4ca5-a327-811d58ee2058)(label(let = \ + in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + 8edbca7a-12c5-4751-a236-c6c59f036b4c)(content(Whitespace\" \ + \"))))(Tile((id \ + 96dabc0d-1364-4af0-b557-a01c20442170)(label(box))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ + 952e73a0-52ca-4a10-8d5f-11fc0f6e25db)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + fcd699c8-85dd-4eaf-98b8-cf8d1749218a)(content(Whitespace\" \ + \"))))(Tile((id \ + 9153ca41-34c1-4033-8ea0-07d786aac3b7)(label(Int))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 663d4b08-149b-4a22-a648-28ee7fbaf563)(content(Whitespace\" \ + \")))))((Secondary((id \ + 98446bd1-f187-49a0-88b6-675489b23464)(content(Whitespace\" \ + \"))))(Projector((id \ + c5d4d591-d15a-4c66-88f0-7a88f3a6ce78)(kind \ + TextArea)(syntax(Tile((id \ + c5d4d591-d15a-4c66-88f0-7a88f3a6ce78)(label(\"\\\"\\\\nmalicious\\\"\"))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + 70a41503-246e-4418-b534-83cdbb15b99f)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 3696b18f-b1e7-4e15-9dbd-f56d1aa7b8d9)(content(Whitespace\"\\n\"))))(Secondary((id \ + 590c1453-d66d-4f00-a5de-8b3f5260eac6)(content(Whitespace\"\\n\"))))(Secondary((id \ + ef7baae7-4b97-4e0a-a47e-46016f4081e5)(content(Comment\"# \ + ERRATA: \ + #\"))))(Secondary((id \ + 21fb30f2-004b-4a3a-a1dd-3b91cc0b4e8f)(content(Whitespace\"\\n\"))))(Secondary((id \ + ff763ee5-f5a4-4e0f-a850-7b9a91a5d58b)(content(Comment\"# The \ + bottom toggle can also be used to remove \ + #\"))))(Secondary((id \ + 19b420fc-4ede-4dcd-80d5-b81c38f14ad6)(content(Whitespace\"\\n\"))))(Secondary((id \ + b6babb47-898f-4849-9c28-5b743c812dd0)(content(Comment\"# \ + projectors. Currently only bidelmited terms can \ + #\"))))(Secondary((id \ + cefebeb8-fb83-4c6e-a7fa-84a49405466c)(content(Whitespace\"\\n\"))))(Secondary((id \ + bf02836d-ff10-4a96-942a-453c62a31581)(content(Comment\"# \ + projected, so some may have to be parenthesized. \ + #\"))))(Secondary((id \ + bd3e1e37-6d64-4f8b-9ca8-ffbdc7764025)(content(Whitespace\"\\n\"))))(Secondary((id \ + c2918a56-dd9e-4f8a-a4cd-b2b23942beb2)(content(Comment\"# \ + Projectors are persistent across sessions, but \ + #\"))))(Secondary((id \ + 080de242-c6d2-40ca-8fa9-f468ba2a1d38)(content(Whitespace\"\\n\"))))(Secondary((id \ + 774c7448-85eb-4a6a-a386-85d9b22afaf3)(content(Comment\"# \ + currently are lost on cut/copy. Both these \ + #\"))))(Secondary((id \ + 76a6c462-75ad-4993-b3df-7edb908e4ce7)(content(Whitespace\"\\n\"))))(Secondary((id \ + 1fd463eb-40fa-45a3-a0ef-2914f7eef9dc)(content(Comment\"# \ + restrictions will be removed in a future update. \ + #\"))))(Secondary((id \ + 0f713bb7-d313-4787-984a-a2eaa053543e)(content(Whitespace\"\\n\"))))(Secondary((id \ + e97ef593-1455-45de-836a-da7c5d454188)(content(Whitespace\"\\n\"))))(Secondary((id \ + 756174a2-3850-4d3c-8446-6c258a43a511)(content(Comment\"# \ + Projectors playground #\"))))(Secondary((id \ + b7272053-6d1b-4720-90bd-8d6ec1cebe37)(content(Whitespace\"\\n\"))))(Secondary((id \ + f30d8335-627f-4c75-80ee-5e4cd5fd8f03)(content(Whitespace\"\\n\"))))(Tile((id \ + 03bbbeb6-15ad-4496-8d90-07207ebe0b32)(label(if then \ + else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ + 2))(children(((Secondary((id \ + ffc0838c-d5c7-41c9-b38a-0a7a7b9e9d22)(content(Whitespace\" \ + \"))))(Projector((id \ + ab0e5a46-5dc9-41fc-a3eb-fa7092c96743)(kind \ + Checkbox)(syntax(Tile((id \ + ab0e5a46-5dc9-41fc-a3eb-fa7092c96743)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f3e14f9e-507a-4d26-a2df-78c11523af0a)(content(Whitespace\" \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + 4881d63e-4bbf-4886-b66d-e3cdadc4dcd3)(content(Whitespace\" \ \"))))(Tile((id \ - becaa096-cb19-4568-9e9a-5863d1ae1c96)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + 4672dc0c-7aa8-418b-aba0-1ddd7074d933)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c450606e-1ef4-4fbb-9773-d9566f54d260)(content(Whitespace\" \ - \"))))(Tile((id \ - 60e938aa-3416-4c33-81a8-25f37ef306d9)(label(2))(mold((out \ + 51194cca-2e77-473d-b3e3-4254ea244aaf)(content(Whitespace\" \ + \"))))(Projector((id \ + 896fd2a0-1a52-4682-a1a8-339f35598512)(kind \ + Slider)(syntax(Tile((id \ + 896fd2a0-1a52-4682-a1a8-339f35598512)(label(23))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cd32360c-d3f4-430d-8ad2-5dbd660e8158)(content(Whitespace\" \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Secondary((id \ + 3894d54d-16fc-4c23-9c5c-b79e283a0f75)(content(Whitespace\" \ \"))))(Tile((id \ - ac66d29d-6f93-47a8-872c-b26ae92463a4)(label(==))(mold((out \ + cc5b00d9-271e-41c6-9240-5efd33ec90eb)(label(<))(mold((out \ Exp)(in_())(nibs(((shape(Concave 9))(sort \ Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f58eeaed-a321-4813-a71a-d99e1684c500)(content(Whitespace\" \ + e54fbf76-4619-4105-ac16-219f9a814f31)(content(Whitespace\" \ + \"))))(Projector((id \ + e558a2ae-0f7c-4b18-8c14-0a74a46d99f3)(kind \ + Fold)(syntax(Tile((id \ + e558a2ae-0f7c-4b18-8c14-0a74a46d99f3)(label(int_of_float))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\")))(Tile((id \ + 61f8a887-0683-4244-be2d-9019dab7ca88)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Projector((id \ + c3f9b779-70cf-4804-a3fc-e22e6d1f4249)(kind \ + SliderF)(syntax(Tile((id \ + c3f9b779-70cf-4804-a3fc-e22e6d1f4249)(label(51.00))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort \ + Exp))))))(shards(0))(children()))))(model\"()\"))))))))(Secondary((id \ + c0ff7f58-0399-47d4-b09f-514ba8ce40cb)(content(Whitespace\" \ + \"))))(Secondary((id \ + dcf2be48-52ad-4e0b-ad07-9b9f68bc9976)(content(Whitespace\" \ + \"))))(Secondary((id \ + 413f4b3f-f014-4df4-9ce9-014b91e05c00)(content(Whitespace\" \ + \"))))(Secondary((id \ + 8022f14b-5c0a-4049-8c3c-27edb94feb58)(content(Whitespace\"\\n\")))))((Secondary((id \ + 3525db18-faf2-4ec5-ad70-0ac6fdd50fd4)(content(Whitespace\" \ \"))))(Tile((id \ - ee4b755a-2962-4a97-9b71-1fa874175270)(label(5))(mold((out \ + e5c608e3-25ea-45ff-8a7a-fad0b8dc7a00)(label(______))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0efd8178-50ee-47dc-9f5d-f6f503733d3e)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 01eef806-3025-4681-841a-138b95f6f827)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 0db5d3e5-2b7d-45d2-b95b-61d98714837a)(content(Whitespace\" \ + \")))))))))(Secondary((id \ + 39204644-e773-4467-851c-fb459c28a6ce)(content(Whitespace\" \ + \"))))(Tile((id \ + 7e1ddfda-aec1-4a60-819f-ae130b1f8bde)(label(\"\\\"its: \ + \\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ + Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f59bc277-d399-48e3-8d1b-72164b9e13bb)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 446ce379-8fef-47e5-85d4-f7d3fc16dd6c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 31a81066-ecfa-49ce-a762-34904947da99)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 77d8a251-42c9-4631-a941-094827a503c4)(content(Whitespace\" \ + d2f4aa93-bb34-4a08-80fd-8d190108e9b1)(content(Whitespace\" \ \"))))(Tile((id \ - 546b42b3-2f6a-4f08-9e69-854b8e88b1be)(label(+))(mold((out \ + 1678ec8b-2af6-4026-8a41-6c698dd6f4e7)(label(++))(mold((out \ Exp)(in_())(nibs(((shape(Concave 6))(sort \ Exp))((shape(Concave 6))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 28d8c0a0-4515-4637-98ca-22e78630cf20)(content(Whitespace\" \ + 781aa58a-70d0-4c88-864d-ac9970391b53)(content(Whitespace\" \ \"))))(Tile((id \ - 09d04b4d-2f29-4aef-a73b-badd00299b3b)(label(2))(mold((out \ + 671dc1bb-b869-4ed2-b37c-76cbfa69df25)(label(box))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))(ancestors())))(caret \ Outer))"; backup_text = - "# Hazel Language Quick Reference #\n\n\ - # Empty holes stand for missing expressions, patterns, or \ - types #\n\ - let empty_hole = in\n\n\ - # Integers #\n\ - let int_lits : Int = 1 in\n\ - let negation = -1 in\n\ - let arithmetic = 1*2 + 8/4 in\n\ - let int_comparison = (10 == 10, 1 < 2, 2 <= 3, 3 > 2, 2 >= 1) \ - in\n\n\ - # Floating Point Numbers #\n\ - let float_lits : Float = 1.5 in\n\ - let float_artih = 1. *. 2. +. 8. /. 4. in\n\ - let float_comparison = (10. ==.10., 1. <.2., 2. <=.3., 3. \ - >.2., 2. >=.1.) in\n\n\ - # Booleans #\n\ - let booleans : (Bool, Bool) = (true, false) in\n\ - let conditionals =\n\ - let (x, y) = (2 + 2, 3 + 3) in\n\ - if y > x then 1\n\ - else 2\n\ - in\n\n\ - # Tuples #\n\ - let tuples : (Int, Bool, (Bool, Int)) = (1, true, (false, 3)) \ - in\n\ - let (a, b, (c, d)) = tuples in\n\n\ - # Functions #\n\ - let y : (Int, Int, Int) -> Int =\n\ - fun (m, x, b) -> m * x + b\n\ - in\n\n\ - # Recursive Functions (arrow type annotation required) #\n\ - let double_recursively : Int -> Int =\n\ - fun n ->\n\ - if n == 0 then 0\n\ - else double_recursively(n - 1) + 2\n\ - in\n\n\ - # Mutual Recursion (bind tuples of functions) #\n\ - let (even : Int -> Bool, odd : Int -> Bool) = \n\ - (fun n -> if n == 0 then true else odd(n - 1), \n\ - fun n -> if n == 0 then false else even(n - 1)) in \n\n\ - # Lists #\n\ - let empty_list : [Int] = [] in\n\ - let non_empty_list : [Int] = 1::2::3::[] in\n\ - let list_literals : [Int] = [1, 2, 3] in\n\ - let length : [Int] -> Int =\n\ - fun xs ->\n\ - case xs\n\ - | [] => 0\n\ - | hd::tl => 1 + length(tl) \n\ - end\n\ - in\n\ - let has_at_least_two_elements : [Int] -> Bool =\n\ - fun xs ->\n\ - case xs\n\ - | [] => false\n\ - | hd::[] => false\n\ - | a::b::[] => true \n\ - end\n\ - in\n\n\ - # Polymorphic Functions #\n\ - let poly_id : forall a -> a -> a =\n\ - typfun a -> fun x : a -> x\n\ - in\n\ - let apply_both : forall a -> forall b ->\n\ - (forall c -> c -> c) -> ((a, b) -> (a, b)) =\n\ - typfun a -> typfun b -> fun f : forall c -> (c -> c) ->\n\ - fun (x, y) : (a, b) -> (f@(x), f@(y))\n\ - in\n\ - let list_length : forall a -> [a] -> Int =\n\ - typfun a -> fun l : [a] ->\n\ - case l\n\ - | [] => 0\n\ - | hd::tl => 1 + list_length@(tl)\n\ - end\n\ - in\n\n\ - # Strings #\n\ - let string_lits = \"Hello, world!\" in \n\ - let string_equality = string_lits $== \"Hello, world!\" in \n\n\ - # Non-empty holes are the red dotted boxes around errors #\n\ - # (you can still run programs with non-empty holes) #\n\ - let non_empty_hole : Int = true in \n\n\ - # Tests, separated by semicolons #\n\ - test 2 + 2 == 4 end;\n\ - test 3 + 3 == 6 end;\n\ - test 2 + 2 == 5 end;\n\n\ - 2 + 2"; + "# PROJECTORS #\n\n\ + # Some kinds of syntax have dedicated GUIs. #\n\ + # The menu at the bottom left shows which GUIs #\n\ + # (if any) are applicable to the current term #\n\ + # indicated by the caret. #\n\n\ + # Fold projectors cover terms with abstractions. #\n\ + # 1. A simple fold roles up any term, replacing #\n\ + # it with ... until it is expanded again. #\n\n\ + let fold = in\n\n\ + # 2. A semantic fold covers a term with a property: #\n\ + # Click to toggle inferred & synthesized types #\n\n\ + let folds: = in\n\n\ + # Projectors on literal data are called livelits. #\n\ + # Three base types literals use inline views: #\n\n\ + let guard: Bool = in\n\ + let phase: Int = in\n\ + let float: Float = in\n\n\ + # Inline error decorations (same as for tokens) #\n\n\ + let (a:Int, f: Float) = , in\n\n\ + # The String base type get a multiline view: #\n\n\ + let _ = in\n\ + let __ = in\n\ + let ___ = in\n\ + let ____ = in\n\ + let _____ = in\n\ + let ______ = in\n\n\ + # Multiline error decorations #\n\n\ + let box: Int = in\n\n\ + # ERRATA: #\n\ + # The bottom toggle can also be used to remove #\n\ + # projectors. Currently only bidelmited terms can #\n\ + # projected, so some may have to be parenthesized. #\n\ + # Projectors are persistent across sessions, but #\n\ + # currently are lost on cut/copy. Both these #\n\ + # restrictions will be removed in a future update. #\n\n\ + # Projectors playground #\n\n\ + if && < () \n\ + then ______ else \"its: \" ++ box"; } ); ( "Types & static errors", { zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Secondary((id \ - c2890a35-b3f1-4653-9767-8d5f9752ead5)(content(Comment\"# \ + 5da92fc0-10cd-4354-bf0b-1a22accca803)(content(Comment\"# \ Internal Regression Tests: Type errors #\"))))(Secondary((id \ - 090c5ddf-5c26-4a14-a1b9-eab92cb073c4)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5a4d6644-ce5b-4818-a4c6-2905ca7b9d43)(content(Comment\"# Each \ + 42a2f89c-4a95-4199-8800-f53809f593ba)(content(Whitespace\"\\n\"))))(Secondary((id \ + e86dd07c-7157-40bc-bdaf-59d06e0034c9)(content(Comment\"# Each \ line should show errors or not as indicated \ #\"))))(Secondary((id \ - 49670809-d955-4be4-8de7-a13e0c26ec98)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8b8ae6b5-2df0-42a9-a2e7-d53e2e0517fe)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d69298b9-16ce-48c6-a813-04d4c6acbb6f)(label(let = \ + 1d55398b-0045-41ec-8690-4a4664980596)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5294d45d-964b-45c9-a85c-c0c11464bd39)(content(Whitespace\"\\n\"))))(Tile((id \ + 758d9a9b-d1f3-4df6-9100-9f81566a6a37)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 87784971-c398-4a3f-9537-9a2eba847372)(content(Whitespace\" \ + ecc545ce-876a-4a70-ab47-8bfe9a428248)(content(Whitespace\" \ \"))))(Tile((id \ - 9cc5b09c-65a4-4a8e-853d-62d8f15d4e24)(label(_))(mold((out \ + e16f00db-fd89-4065-b35a-64904016ae29)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 1e775429-5e8e-4b11-b66c-9cc3c1324739)(content(Whitespace\" \ + 5518e231-da7f-4a7d-8d45-05d910e7f0cf)(content(Whitespace\" \ \")))))((Secondary((id \ - 04d76c28-7577-41c5-964a-fc54eeae9062)(content(Whitespace\" \ + a29c4eb6-de40-4bb4-aaac-10f598b07123)(content(Whitespace\" \ \"))))(Tile((id \ - 51f991bb-2c1f-435a-920a-a20148cbc2dd)(label(unbound))(mold((out \ + e7743ed3-3268-45dd-be07-e34b23633d36)(label(unbound))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - bf68d8ff-145a-4e77-a735-120746818a4b)(content(Whitespace\" \ + 651970c7-502d-48de-b4d4-870b276c3233)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4491f5f7-9ada-4420-acb7-fa9e6ec73fe9)(content(Whitespace\" \ + e52d4513-49e6-4f2f-8fd1-939e723da309)(content(Whitespace\" \ \"))))(Secondary((id \ - 474b7d65-a3a0-4c3e-b0f8-cf2a0ad43887)(content(Comment \ + d21dcb5b-762f-4047-9a8b-51cff4e4d5d8)(content(Comment \ #err#))))(Secondary((id \ - ffe1df31-0a25-4513-97c2-c36fc135468b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ff782a2c-aef7-4a7d-9ae0-848429b11fbd)(label(let = \ + ab1dff56-08b2-4c50-a2b5-fa5a36fbcdab)(content(Whitespace\"\\n\"))))(Tile((id \ + 4d41990a-b92b-444e-a1a3-bb7844e88871)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e2eca969-e0a4-4a91-a89e-878e09aec2f6)(content(Whitespace\" \ + b0ca9c49-112c-47a8-950b-8d0d7bc59a23)(content(Whitespace\" \ \"))))(Tile((id \ - 3c035ee1-6d4f-47fc-a76f-94f51898e718)(label(Undefined))(mold((out \ + 33aec8d3-3eb0-4679-a386-2dac5a304783)(label(Undefined))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - dc02b1d3-06fa-4b3e-aa76-9766d01c3bc2)(content(Whitespace\" \ + e5497533-ea66-474d-bd69-cc76b4a5653d)(content(Whitespace\" \ \")))))((Secondary((id \ - 1d42290f-3641-4c65-a280-94551377a573)(content(Whitespace\" \ + 51530a4b-7d00-47bd-b5ec-10682b5207d9)(content(Whitespace\" \ \"))))(Tile((id \ - 0b3c4696-05af-4c34-8ab1-515fbae5550f)(label(Undefined))(mold((out \ + 442205d8-cbd4-4bdc-9066-f486206b94fa)(label(Undefined))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b56b3924-e775-41ca-9e61-ac4112c6d40b)(content(Whitespace\" \ + 527c9d07-1ec6-4aec-bca1-b1a50cd3af43)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c2c7deac-19e5-41d8-9cc2-fe9e73a29960)(content(Whitespace\" \ + 3c09f1b8-0796-4cf6-a79c-0bcc0832d91c)(content(Whitespace\" \ \"))))(Secondary((id \ - fec4e3ce-5421-40fb-96fa-8474e5a9fab3)(content(Comment\"# 2x \ + 25d84317-ce77-4faf-9025-10a68eed8e6a)(content(Comment\"# 2x \ err#\"))))(Secondary((id \ - 02f65251-ccbd-4e70-b60e-cbe1e13adc6c)(content(Whitespace\" \ + 97db46c7-ce76-4cee-9703-f04949d45340)(content(Whitespace\" \ \"))))(Secondary((id \ - cadfcea7-7c09-433f-8e03-df9e89dfd9e2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6c52236e-4a4a-4b7e-b318-84bd95c543ed)(label(let = \ + 924f65ec-e7e5-46e4-ab2b-4e652571f60e)(content(Whitespace\"\\n\"))))(Tile((id \ + 55a5b34b-daf5-48cb-b7de-4b76f16a960f)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 557dc615-9e1c-4a9e-a00f-15234e53a953)(content(Whitespace\" \ + 7c0fb53d-c7e1-4548-acb2-8faa621271ce)(content(Whitespace\" \ \"))))(Tile((id \ - 13897887-613e-408c-b120-59b8666fc0b6)(label(true))(mold((out \ + 21d17081-0c7d-4a64-aead-e9ec099e9eb1)(label(true))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 34fd4c5a-2433-40a8-9ded-9c6500142356)(content(Whitespace\" \ + ed0e1fc1-a44d-44a8-b50e-91e38cf14712)(content(Whitespace\" \ \")))))((Secondary((id \ - 83207004-3161-4071-a526-cf9459533d67)(content(Whitespace\" \ + a297d308-da82-4733-81ba-6c15026cac9d)(content(Whitespace\" \ \"))))(Tile((id \ - 2f5a444b-0006-47ac-bd94-14c9ffd80548)(label(2))(mold((out \ + 1abd1a01-f0b5-498f-9446-4b285f25055b)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 503d2940-fcd4-4a54-879d-81d129596ad1)(content(Whitespace\" \ + 862e2271-7b23-48e6-a013-c50d7e8240eb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e425406e-6252-47b9-8a4c-c8870d3c1376)(content(Whitespace\" \ + cd54c7ae-3f6a-4aed-bb62-39cab8c5166a)(content(Whitespace\" \ \"))))(Secondary((id \ - 13255468-04e2-4816-9461-74dce40c9b27)(content(Comment \ - #err#))))(Secondary((id \ - 9d763cf1-1e07-4c47-b8ef-2b6435de5a49)(content(Whitespace\" \ + 526f32dd-17b9-444d-b697-3a49874d86ab)(content(Comment\"#2x \ + err#\"))))(Secondary((id \ + 3fa82081-4e36-4899-83eb-0194fbb8a152)(content(Whitespace\" \ \"))))(Secondary((id \ - d2541b33-1f10-4474-9939-cd2e164493c2)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 26b81a4e-e0a8-4a8b-8b59-e0278cb81758)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f412044b-ae99-40e1-ac43-a8785e7a2ce1)(label(let = \ + 22947c17-9809-4e12-b52b-fd9b018be69b)(content(Whitespace\"\\n\"))))(Secondary((id \ + 1a9bbbc8-33ba-42ef-a9a8-96b4936f83d2)(content(Whitespace\"\\n\"))))(Tile((id \ + d46a196d-925c-4f7f-9d9b-f73ef61410a5)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 96732395-1218-4909-b454-484f2dc33583)(content(Whitespace\" \ - \"))))(Grout((id fdd65dce-3851-4173-8c0d-a8ac07ced2b6)(shape \ - Convex)))(Secondary((id \ - 3dae5dc2-012e-4f8a-b54a-3562c4f88afc)(content(Whitespace\" \ + ae1c0f3c-1692-4f10-9076-bcda8da909fd)(content(Whitespace\" \ + \"))))(Tile((id \ + 685cd41c-494d-42eb-803e-262e8ebeb39a)(label(?))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + cabf0162-6154-4020-9ff0-f16aa1e5e9a8)(content(Whitespace\" \ \")))))((Secondary((id \ - ba4613e8-5288-4f23-a6d1-7e3206f398d6)(content(Whitespace\" \ + 31e7b59a-ecef-4a68-907b-dd2c315acd63)(content(Whitespace\" \ \"))))(Tile((id \ - c873fdfc-ead5-4cab-bbf9-f319e65eb545)(label(if then \ + 1fc8b7c5-f735-4e45-9969-d03b430a1f0f)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 4fc68723-e8b9-4d8e-ac28-3066739c26f9)(content(Whitespace\" \ + 4c64ce16-b737-4ab9-aac5-2c47d8f59c38)(content(Whitespace\" \ \"))))(Tile((id \ - f36c50b4-776a-44c5-b033-a70e463f1813)(label(true))(mold((out \ + ce6095e0-6573-4575-915d-77625cad241b)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 537690ac-06c0-4b1d-84c1-6d4acc73e474)(content(Whitespace\" \ + 360306a1-d0c2-4b1b-8b91-98050159c120)(content(Whitespace\" \ \")))))((Secondary((id \ - a1d0648d-8c62-4713-b170-bc7db0c20504)(content(Whitespace\" \ + 9076b31c-ca93-4931-a1b1-a3c6978acfb0)(content(Whitespace\" \ \"))))(Tile((id \ - 5247456c-6550-4072-8cc9-980f61c699d1)(label(1))(mold((out \ + f3d56cf8-047d-4491-990e-2faa2345ed52)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2acd1b5f-7510-4a74-a56f-36267b0a512b)(content(Whitespace\" \ + 163e8baf-71e8-4c62-9bb5-a9789b912f9e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7616aa0a-4eeb-4db8-865f-5b61dc1263b8)(content(Whitespace\" \ + 35b94740-b1b8-46d1-8c65-a2d9699cf5d7)(content(Whitespace\" \ \"))))(Tile((id \ - 81bfcb19-79c1-4bf5-b34c-3dcc7cfd192c)(label(1.))(mold((out \ + 32fd3308-b7d7-46ba-b40b-8c4739821951)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4b260629-7c2f-4a27-9081-844c47be8ff3)(content(Whitespace\" \ + 359922bf-8f7c-4756-bce7-dfbdab6768eb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c71f0361-b8aa-41a1-8b35-ac1d81df2bda)(content(Whitespace\" \ + 0aef1054-7de3-46de-b629-1712252e36c5)(content(Whitespace\" \ \"))))(Secondary((id \ - abe0800b-ccae-4935-b9f1-0db885b79a53)(content(Comment \ + bc921273-eecc-40dc-b037-bd352a9ba17e)(content(Comment \ #err#))))(Secondary((id \ - a6632e31-7765-49e2-8b18-3359f88183b2)(content(Whitespace\" \ + 27b24844-827f-4aaa-ac1f-22be23ed9e04)(content(Whitespace\" \ \"))))(Secondary((id \ - 890064f6-db5c-48da-b11e-79a014c051cc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9c0e9437-19f4-4071-aada-9b464e0479f2)(label(let = \ + 7f2c237f-d86d-4e3f-afdb-498d07823331)(content(Whitespace\"\\n\"))))(Tile((id \ + 1c454cf8-ecd5-4033-bbf8-19b68014191e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d821f513-71c8-47e0-91f0-012fd7269dd2)(content(Whitespace\" \ + c2387c61-33ff-4a77-a91d-9268e9fbac09)(content(Whitespace\" \ \"))))(Tile((id \ - 81c8a5e4-c8b9-444b-b66b-29dd2bd98f39)(label(_))(mold((out \ + f04265e1-9788-4653-a1d6-e266c5a59d66)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 955b5d47-5dfe-4140-8ebe-f1cdb5d166df)(content(Whitespace\" \ + 3c92d98f-a523-4344-903f-fcd44b7b8d13)(content(Whitespace\" \ \")))))((Secondary((id \ - 60ba9fd8-2ae1-4031-aab1-0d31582db521)(content(Whitespace\" \ + 1f170ec6-a88f-4e37-98ff-43df1627bb74)(content(Whitespace\" \ \"))))(Tile((id \ - 09d1e608-b3e5-43c8-b5bd-f3986790dd19)(label(if then \ + 3b52bb5e-ec3b-484c-ba60-48fb0c1db7d6)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d0d97c16-df70-43e7-8c19-4b2618e3df63)(content(Whitespace\" \ + fb073b60-2128-4c75-b741-84dd5eec14b9)(content(Whitespace\" \ \"))))(Tile((id \ - 67304d61-8d7a-4779-84f0-e4d60a495118)(label(true))(mold((out \ + 0b5b8922-658a-4a9f-80bd-da3794c121d3)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - da91c6a5-b71d-4e9b-8206-f9b83d98dd89)(content(Whitespace\" \ + 949b9c01-395e-47f6-8cce-b5e6b6425c8c)(content(Whitespace\" \ \")))))((Secondary((id \ - 979e7fce-a579-46b9-995b-464e1d6d5210)(content(Whitespace\" \ + 2cd662be-b43c-439a-a48d-51f072e4b301)(content(Whitespace\" \ \"))))(Tile((id \ - 4728443e-07bd-46eb-a07a-876ab64a9b5f)(label(1))(mold((out \ + 69458974-8dd8-428a-8cee-887b4d3e1011)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 317643ae-3383-413d-9708-f183ee4971f1)(content(Whitespace\" \ + 781060e1-c57d-4d6e-882a-8ad6560f230c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0dac4f18-67d7-4bca-acf1-50183a763e9d)(content(Whitespace\" \ + 1b9ba2c3-4ca1-48d8-90b9-63e250bd1136)(content(Whitespace\" \ \"))))(Tile((id \ - 6e4f414a-719a-4eda-93c0-baab66a8296e)(label(1.))(mold((out \ + 74cc524f-7218-4dba-a0de-0a18046194e9)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2f303db8-f575-4235-8ccd-dca273aae20c)(content(Whitespace\" \ + 635bcde5-e132-4058-978c-61533458ed13)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 526338c8-55fc-432a-9c0a-b9b6f877b413)(content(Whitespace\" \ + ddc7f71e-ca6a-465b-8c87-5462853072a6)(content(Whitespace\" \ \"))))(Secondary((id \ - a9d1100b-abd6-4d20-be7d-a58c5ed507b5)(content(Comment \ + 923041c3-09ef-40f0-a53f-de812afcebf8)(content(Comment \ #err#))))(Secondary((id \ - a3580f56-6d80-4396-9869-c50ee7735d62)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 50e8b8e5-6ce5-4536-bda6-3ddf728ea643)(label(let = \ + 0bb4658e-b3bd-4d03-bd98-e4d3eb402e32)(content(Whitespace\"\\n\"))))(Tile((id \ + 2c1d0ea8-7cb7-4202-af0f-9911fbd1ec26)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a5e847c7-5a2d-400b-8328-943165b1db2b)(content(Whitespace\" \ + 5b4eeb14-e111-401c-8248-3aaf6b1c554e)(content(Whitespace\" \ \"))))(Tile((id \ - a4e3d9e1-8d16-4e74-b645-9e9c10b71d13)(label(_))(mold((out \ + 9e766167-bcea-4bd6-9217-17aa21f80cb8)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - fa1d3aa3-edea-4d2d-afed-e613ec30dab2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - a2bb9040-1c54-4168-9f49-8716cbc12dfd)(shape \ - Convex)))(Secondary((id \ - ded9718d-58e0-44cf-83fd-1b6c5a46562d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5acbe062-4da5-47a8-a6c0-4f2ead2bbdb6)(content(Whitespace\" \ - \"))))(Secondary((id \ - 36a49252-eb7f-4210-b283-24e08b053000)(content(Whitespace\" \ + 8ef5ab6d-6cc4-4081-b092-6a7721669dda)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 34d1a24a-41ae-4d51-8f5e-2a1d0570a6ef)(content(Whitespace\" \ + \"))))(Tile((id \ + 5e923e13-50b3-40a1-8a29-2f66a2693330)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + ada81658-b24c-447e-8e91-142f404fe596)(content(Whitespace\" \ \")))))((Secondary((id \ - e648f5f6-a693-42fa-8995-b4a20961ba07)(content(Whitespace\" \ + ff02d723-d855-4161-8cac-3aa34b6249d9)(content(Whitespace\" \ \"))))(Tile((id \ - 46b21c79-7191-46bf-94e9-4fb884c21526)(label(if then \ + 0fdedef1-300c-4640-9f6b-91b8c72008cb)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7d306a94-ff74-4f62-be10-af0f06529c21)(content(Whitespace\" \ + 9b034a88-063b-4b56-805a-c33455450427)(content(Whitespace\" \ \"))))(Tile((id \ - 7276eb67-791c-48e7-94b2-240b9d7e3fe6)(label(true))(mold((out \ + 668e5861-da35-478b-9c16-76563698bea5)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 8ad575d3-bede-46e4-a4d7-f942c2aa8640)(content(Whitespace\" \ + 000b9574-ea77-49fe-be7d-4c90e2805ab9)(content(Whitespace\" \ \")))))((Secondary((id \ - b32b622a-da19-48f3-af59-95accf570e1f)(content(Whitespace\" \ + 87175621-3ea5-46f2-a49a-b5e5c1cabfcb)(content(Whitespace\" \ \"))))(Tile((id \ - 275151f6-414f-46ff-8927-653979248dc5)(label(1))(mold((out \ + 9d8b813e-c6f9-4f92-ba80-5f0ff87be342)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 9ba58510-58c1-479a-a9f6-6a70a07df983)(content(Whitespace\" \ + 8da20320-b9f3-4174-81d7-125940998614)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 78eed0fa-3bcb-41a4-b6e7-fa15bbf05d29)(content(Whitespace\" \ + 7c2f93a8-d19a-45f5-a0e3-e927e22231ac)(content(Whitespace\" \ \"))))(Tile((id \ - 5513e260-636a-402a-94c7-c2a8cce3d454)(label(1.))(mold((out \ + 0b07d2df-14f0-4363-bd27-b9869c80d813)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0ed17b54-7b3a-45d8-bd6e-1604f8af3da3)(content(Whitespace\" \ + 81cfd0cc-d03a-4fc8-8fa6-b3a95c031543)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 72fe8d09-0a4c-4c0d-8ca0-50d5057a9eeb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d95a7a94-7e7d-4841-b9d1-fd772e2d80dd)(label(let = \ + be5eb0b5-a089-4a75-90c2-0762c9803900)(content(Whitespace\"\\n\"))))(Tile((id \ + 1339c79c-f1cb-4065-a6e6-6d93094c6e88)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d8e95474-b6f1-44e0-85a7-ed0cc7dbde42)(content(Whitespace\" \ + 3c521c1e-0569-43e8-98eb-13a6e83c0360)(content(Whitespace\" \ \"))))(Tile((id \ - 73906d81-9d17-41e3-9632-7bf31280bc99)(label(_))(mold((out \ + 171b8fab-f5da-457b-8bfb-0c0ea484b619)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c556f619-c3cd-4aed-8ee2-92848aece57c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + af9669f3-ac9d-4d4e-8178-118a658c1acc)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 260c4a39-fa49-4a42-8ca5-f6bfd86d705c)(content(Whitespace\" \ + 8c96f25b-ee85-4207-bcfc-92b8c44ad284)(content(Whitespace\" \ \"))))(Tile((id \ - c3e638a7-2c00-4098-94cd-05563acab569)(label(Int))(mold((out \ + 95e80aa6-dfe1-449a-bdf4-d98b80a465b6)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - cd497267-e360-4eb6-8b8e-7384fc549dbd)(content(Whitespace\" \ + e07a80d8-0c00-45d1-8309-5dd1212fb23d)(content(Whitespace\" \ \")))))((Secondary((id \ - d696e851-3001-4a34-ac58-cc213ab1f833)(content(Whitespace\" \ + 761c39c7-7f56-4c6e-8301-77177c9271b7)(content(Whitespace\" \ \"))))(Tile((id \ - b5f73e45-81d0-44c7-b1b5-39f0ed28d790)(label(if then \ + 919ca3cd-b67d-4eb8-9a75-712c864a22a5)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 895d56e8-04dc-4c2a-8edb-aa307da44814)(content(Whitespace\" \ + 273a02dd-9e8e-49bf-8bff-f682950cb549)(content(Whitespace\" \ \"))))(Tile((id \ - 7bdc158c-09c4-4303-98a2-95ac217c0d7b)(label(true))(mold((out \ + baeddf76-ce9f-493e-aa38-54b5d2ee57d6)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7f09b95b-c5ab-4274-8803-eece59459312)(content(Whitespace\" \ + 0049890b-ab90-4167-b71c-7703d5f2966a)(content(Whitespace\" \ \")))))((Secondary((id \ - bc2998b3-bf64-4a57-aa06-33d6e3f57b29)(content(Whitespace\" \ + 9dbdd12e-99d0-4f1a-b122-44e155bd502b)(content(Whitespace\" \ \"))))(Tile((id \ - 503aa496-5d44-4876-b72c-22f53e38841e)(label(1))(mold((out \ + 53f267e6-4ae2-4ec2-9da8-0a50a319eaa2)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0c5a8275-a28a-4f93-817b-4dad704c3671)(content(Whitespace\" \ + c9cebc13-1f7f-4352-9f4a-4893ea99c2bf)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bee57263-7e8b-4736-bc4b-177652f48018)(content(Whitespace\" \ + 6ebe2987-1ed7-458f-a412-3f95909fbef6)(content(Whitespace\" \ \"))))(Tile((id \ - 24bd3d9e-ef99-4acf-b267-51739222ba13)(label(1.))(mold((out \ + 8dbb7302-d5b4-4ee8-ba5e-50f0b47ba53d)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5c7038c0-6b3f-4f97-905f-2ac8a826a9a1)(content(Whitespace\" \ + ec52f0b3-744f-4efb-9487-cedac5fa1216)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 79209500-88d2-4efb-ae12-36961422af5f)(content(Whitespace\" \ + d18b91a6-dc68-4e1b-b84a-02573a655b65)(content(Whitespace\" \ \"))))(Secondary((id \ - c15476f2-b945-4bd3-9d0d-b56187d74ac0)(content(Comment \ + 4179bbc1-2373-4a36-9a36-ae430f8f4e69)(content(Comment \ #err#))))(Secondary((id \ - 9d3164ad-7956-48c7-9060-1585f2263536)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8f8e5371-c0a9-4882-abab-4793d534ae95)(label(let = \ + 2d009bf6-b3d3-4a73-9a88-3c16ce0c0a22)(content(Whitespace\"\\n\"))))(Tile((id \ + 18731ed3-13d7-4121-83cc-dc8da7d518fd)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 5171b496-42b3-4ad6-afbd-734e7dfab18a)(content(Whitespace\" \ + d1ec2c86-e9da-4e1d-9e96-cd7c4817bc01)(content(Whitespace\" \ \"))))(Tile((id \ - 597937bb-e437-4f79-8336-62f0bfe633b7)(label(_))(mold((out \ + 0dc32826-da12-41a5-a8d9-bf97a424af3c)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 93961230-3aeb-4fe0-aa51-724650152a86)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + bc032bcb-92a5-4c8a-a5b7-e1100f6c16cb)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - bad1b945-64ed-46ba-b27f-6e6ec46b3207)(content(Whitespace\" \ + 847833a9-9721-4f0c-842e-e7fe5ecb85f5)(content(Whitespace\" \ \"))))(Tile((id \ - 936b28c1-68b5-4e53-88b7-838ee7cbbcd5)(label(Fake))(mold((out \ + b111eada-6fdf-4ff5-935d-a4792d1b1e6a)(label(Fake))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f1a2e20b-212c-4dae-88d4-fd0e86aa2998)(content(Whitespace\" \ + b0409219-b018-4004-ac62-49b4fe302b3f)(content(Whitespace\" \ \")))))((Secondary((id \ - 660312dd-2c63-4eb7-a6c0-ab34eae4ae85)(content(Whitespace\" \ + 1a525c37-234d-425d-9ee5-8ae791190501)(content(Whitespace\" \ \"))))(Tile((id \ - 8520a1ed-7cc4-43e2-8a2b-66821f37871f)(label(if then \ + e8188ebc-d8b3-4345-b1c5-70e67dee6527)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c65d4f9e-96fe-4c50-af8a-0acd2f008513)(content(Whitespace\" \ + 17677456-b3ca-4d04-9dbc-a7ac432d1fda)(content(Whitespace\" \ \"))))(Tile((id \ - 1f09612d-cdf3-4a5a-8634-b7e7f4edd704)(label(true))(mold((out \ + fd34bee1-1b68-4096-80e9-9cd3ae539e12)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fc30bcc8-3a0a-4801-bbe4-54e44fef77e5)(content(Whitespace\" \ + 7e3d2df2-cdd1-4cd9-8398-57f1d67a70d6)(content(Whitespace\" \ \")))))((Secondary((id \ - 19280f06-f9c1-4ecd-a813-9783f1377a5d)(content(Whitespace\" \ + aa6e7a7a-cf03-4a05-a0cd-5fa657d6d55a)(content(Whitespace\" \ \"))))(Tile((id \ - ed3868a2-eeb4-4028-b399-7170800c18dd)(label(1))(mold((out \ + 4bdf9d6a-924c-4f89-8314-7a95270142f2)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e180c714-6f53-42f0-a7bc-c014691ea0a7)(content(Whitespace\" \ + 2211a089-86da-4fd4-8474-fa51c99dcff7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 862e99a5-2143-4e3f-bfa7-fec564a23095)(content(Whitespace\" \ + 1b1e7516-cf21-4360-94ba-5d30aa572f65)(content(Whitespace\" \ \"))))(Tile((id \ - 5f88e61d-db92-494f-8b44-fa1fe0518da0)(label(true))(mold((out \ + 917ee296-4347-414a-aaae-e2f5a97a87a8)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 412a6380-f0a9-495b-a742-f8c4600f6638)(content(Whitespace\" \ + ba6ffa57-1c5d-4b9d-a1b5-3b1328849511)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d030eb4f-0f88-41d1-a12e-1a8aa9d7c4c6)(content(Whitespace\" \ + 5be2c2bd-da80-4512-bd2a-0a30f87d9958)(content(Whitespace\" \ \"))))(Secondary((id \ - 472d7373-2de2-4699-ab83-06dbf689e446)(content(Comment \ + 21bd2e10-a4d3-4951-a573-87b2c8f4eb1a)(content(Comment \ #err#))))(Secondary((id \ - 5946e251-b954-444b-8571-73a07f028d0f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7c9b44aa-0b0c-4493-b4d1-b596ccfb5860)(label(let = \ + f131d865-8f16-4925-8f5b-6c2a42c446ce)(content(Whitespace\"\\n\"))))(Tile((id \ + f4c75534-a83a-4d04-a4fb-7714e1a2be7b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 3d187f37-a8db-44b9-b5eb-79988c3e2c5a)(content(Whitespace\" \ + 13883334-6745-4000-8735-9cd577a74d56)(content(Whitespace\" \ \"))))(Tile((id \ - 5f4e0850-7a82-4784-a8c1-e0cdb072b720)(label(_))(mold((out \ + d7da986a-907c-4d43-ba60-f2868db14ab9)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 37ec8304-8678-40ac-a78c-e1564cf1096a)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 00317a8c-b6b0-41e7-8284-f69f9970dc32)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 5e98976c-354d-4f26-86f2-cefb7a80ee5c)(content(Whitespace\" \ + 668a2995-d1b6-48a2-8fd2-8662d288bcd1)(content(Whitespace\" \ \"))))(Tile((id \ - 79281c40-1b91-4475-8293-ffdb3420f211)(label(_))(mold((out \ + 46c49881-a9b2-4dc8-9cf2-c8231ba08662)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3dc98b9e-8880-4035-a61f-346a23cb05e8)(content(Whitespace\" \ + af269db2-934e-4855-b194-d5fc2381b7d2)(content(Whitespace\" \ \")))))((Secondary((id \ - 4cfd5f82-9500-4f00-9fbf-de9d15dcb2c5)(content(Whitespace\" \ + 19bdbfd5-876f-4ac5-9b43-86c6d99586e0)(content(Whitespace\" \ \"))))(Tile((id \ - 78fe5eeb-03df-4ff0-b565-41e9c49c239f)(label(if then \ + 5d8d2765-7c51-41ed-8af9-8f56488444e2)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ede7a6c1-c15f-4648-9310-48732cd24e51)(content(Whitespace\" \ + 9f5c3366-b61c-4de3-a8b1-9b9513755bd4)(content(Whitespace\" \ \"))))(Tile((id \ - 0db9775e-926b-43b2-b3f5-d078c14cf73a)(label(true))(mold((out \ + a1c41de4-fce7-449d-a78d-845ed7b83fc9)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b03a6005-6308-475e-8f5e-4eff52656710)(content(Whitespace\" \ + 95f34ebc-0dbe-439d-95dd-294cee252ec3)(content(Whitespace\" \ \")))))((Secondary((id \ - 9a9b8d8b-d056-4aab-9156-470737187412)(content(Whitespace\" \ + a567c3ac-db02-4442-ae43-87ea60064fc6)(content(Whitespace\" \ \"))))(Tile((id \ - cb245d33-d282-4db3-a227-b645e9b75790)(label(1))(mold((out \ + f2c2d679-cf1a-45eb-8e5b-a3fbf5f0d7e7)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2cd250fd-dc35-4a9a-bc4f-9426959354e8)(content(Whitespace\" \ + 82fd11dc-9d43-47bb-bba1-107c55f26962)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 787ba6f3-84b1-4f93-b5dc-a8b870e9ba4c)(content(Whitespace\" \ + d355dfc2-04e3-4e0e-a8e7-768021d31816)(content(Whitespace\" \ \"))))(Tile((id \ - 9a45395d-bcf2-41c3-b21b-cedec3e6a113)(label(1.))(mold((out \ + 4c708eaf-93c2-4d51-81de-2fd3eb5d8d11)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3105b687-fd5e-473d-b967-9da7c0647341)(content(Whitespace\" \ + dacb6033-fcc9-4b12-9aab-49ea9fc94687)(content(Whitespace\" \ \")))))))))(Secondary((id \ - db3f8bb1-72d2-4aca-a6c4-c7c554a879ef)(content(Whitespace\" \ + 8fc791a7-579d-45c6-bd6e-9bb72239af77)(content(Whitespace\" \ \"))))(Secondary((id \ - f0d098d6-5609-4f15-a04e-0ede743aeb94)(content(Comment\"#2x \ + f0ac9f87-1bf4-4061-90c3-7ed6ff0c9676)(content(Comment\"#2x \ err#\"))))(Secondary((id \ - 4d693f72-81cb-4c75-bde0-23592716a92f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d8b04ba0-8b64-4a94-9a97-70c2920e2530)(label(let = \ + 62d1b5fe-cc31-4090-9d73-9eb0d2f3f492)(content(Whitespace\"\\n\"))))(Tile((id \ + 4d1bde0b-6567-41e5-ae93-f10d8db5a6f8)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 2a8bf909-8ac9-434a-956d-cf4efbcc8af8)(content(Whitespace\" \ + d7c01def-cc22-4d2a-ab20-4592a0774cfc)(content(Whitespace\" \ \"))))(Tile((id \ - f6d6e84d-8550-473e-853d-b77f12bbefae)(label(_))(mold((out \ + 16ae4dec-6c75-4fc9-8f43-1846e10b4f4f)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 02f88e70-2821-4de0-b7a6-73287b575c61)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 2d5b145d-9d10-42d9-a2c3-ab290a406e98)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - a1648162-6ae8-4d24-8b93-6c537e8aabcf)(content(Whitespace\" \ + ddcfb4d1-ad7e-4511-99dc-d3bc7e287e2e)(content(Whitespace\" \ \"))))(Tile((id \ - 253ac0e4-fd26-4abc-aa21-1149fad7d43b)(label(_))(mold((out \ + 72098cb3-4e14-4a8d-aa8f-f549c9ff9c31)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 0ba56612-4438-4f63-9617-78d3c4ffa5bc)(content(Whitespace\" \ + 14e3f792-983c-41b7-9613-c5cf7ba10fb9)(content(Whitespace\" \ \")))))((Secondary((id \ - ad6af5c1-5817-4b0c-ba82-321f042705f2)(content(Whitespace\" \ + a21af13a-3af9-49c7-a039-10fa5ba0c227)(content(Whitespace\" \ \"))))(Tile((id \ - 0ba4458d-bee8-48e6-933a-18d06c343a42)(label(\"(\"\")\"))(mold((out \ + ece3978e-1cd4-451b-bf45-7d6afcc0d8e0)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 608bb807-8d6c-4844-8d59-d3efe58d3843)(label(if then \ + e9ad479b-4b32-4aa4-95c5-8f2331660129)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 77d36a72-5ba6-4ed4-aa9a-12b37970424c)(content(Whitespace\" \ + ee8bde47-cc2b-400c-8842-875321687b3f)(content(Whitespace\" \ \"))))(Tile((id \ - 5af082f1-4d3e-4854-8ff1-1ffdaad55851)(label(true))(mold((out \ + 3abe37ed-1dc4-403f-9333-13f50ab3c89a)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d48e22a5-f65a-4767-a9d0-1a40cc32b3d9)(content(Whitespace\" \ + 46d7ce17-b064-4267-9d04-d43ff1a44b37)(content(Whitespace\" \ \")))))((Secondary((id \ - 9609e0a9-f5f0-4fa6-b677-3a82f5b3c887)(content(Whitespace\" \ + 8e44d5ee-ce2a-4383-9b6a-927091bb8bad)(content(Whitespace\" \ \"))))(Tile((id \ - ff4f682c-091a-45ea-ac96-feb28081efc3)(label(1))(mold((out \ + 877923e2-726b-4015-bfb7-5f086e094f31)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2cce8860-ee1b-4ec9-a66d-c8a748a30290)(content(Whitespace\" \ + 8bacec5f-e164-4eb4-b98e-8cff5fd06fae)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 324ceb15-0215-4d88-8cf2-060903955c6f)(content(Whitespace\" \ + 13781ee0-dd5a-4c44-a4c6-e6b92703a646)(content(Whitespace\" \ \"))))(Tile((id \ - e9a7860c-6db8-4a81-8ae4-bfdd79d70282)(label(1.))(mold((out \ + 67fb18f1-dcf0-434d-90d7-12148e6309bd)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 275a0228-3bff-48ff-a304-8f6edc108009)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + afccfd4d-9f21-4236-bf03-6b343c979790)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Grout((id \ - 17047b05-1174-4151-937d-b4833dfd6d1a)(shape \ + fd18e452-a794-4379-86b5-8dc753604a8d)(shape \ Convex)))(Secondary((id \ - 13edcba8-486c-44b4-93d8-c1bf41f98fc5)(content(Whitespace\" \ + 5c9c94b5-7024-4306-bc51-615d6fc286b8)(content(Whitespace\" \ \"))))(Secondary((id \ - 1bdbf758-cf85-4d57-9d74-41588be677bf)(content(Whitespace\" \ + 90824032-b495-4713-aca0-0ddad77318e1)(content(Whitespace\" \ \"))))(Secondary((id \ - 3a70753f-0da6-4a2a-bd04-12907709acb1)(content(Whitespace\" \ + a4e74869-0e3e-4d7a-bf27-333cde7cadc3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - aa17c661-b339-4613-87f5-9cc5ab23d5cf)(content(Whitespace\" \ + e627a0a2-dee6-4187-9293-25c03387df95)(content(Whitespace\" \ \"))))(Secondary((id \ - 80b2cb6c-da1b-4a39-8396-bbcb94900dbc)(content(Comment \ + 766bc24d-9b24-4e05-975e-dd9e2d97b7e6)(content(Comment \ #err#))))(Secondary((id \ - d1468a7b-ca13-4ee5-be11-c9d8ee744a90)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 11a94a5f-356a-4c36-855d-dbb81005f92d)(label(let = \ + 78f71957-8efa-4d59-a575-caa4cf32bfc1)(content(Whitespace\"\\n\"))))(Tile((id \ + 2d69dac9-2ccb-4011-9aab-4eca07c7c92c)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - bd717dc5-9699-42e4-819e-a605ae33c705)(content(Whitespace\" \ + 23b22068-b02d-4ab8-89a9-4540fef47d7c)(content(Whitespace\" \ \"))))(Tile((id \ - 90b78761-c7bf-40e4-a659-a899afa81b5c)(label(_))(mold((out \ + 5365281a-a023-4791-9839-87684bdf31e8)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 1c9d9db0-dd3d-42eb-b038-aaf42bd3b7d6)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 9fca87f4-9b31-4e5c-8982-03f73b8d1b00)(content(Whitespace\" \ - \"))))(Grout((id 29f35a2c-4d0e-46f3-a17d-cdb6f0b58159)(shape \ - Convex)))(Tile((id \ - 3d63fe1d-8723-4fc2-96a7-579952450f50)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 9e80647c-ac36-45a5-b0c0-5fc8961430cf)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ + Typ))))))(shards(0))(children())))(Secondary((id \ + 06ba9142-925a-46df-964e-9df82c1833c1)(content(Whitespace\" \ + \"))))(Tile((id \ + 02a74c5f-e222-4858-a38f-42908b41c0d3)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ + 90156175-90f3-4dfa-a9f0-56d255aa26c1)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 8cff05d8-1ceb-4dc5-abd5-601a0737609e)(content(Whitespace\" \ + 49903fe9-0d39-42b7-9c7a-0f14e4a9fd21)(content(Whitespace\" \ \"))))(Tile((id \ - ae9cbd45-3c84-4a8e-8580-4fae57ee8c20)(label(_))(mold((out \ + 7dec882a-5c45-424e-8102-6436a5c671f3)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 25aaeff6-8269-4919-a321-5ae18d116be9)(content(Whitespace\" \ + 529eae4c-f6cd-4acd-ae7c-d5b58803bd56)(content(Whitespace\" \ \")))))((Secondary((id \ - eaacbf10-9ca6-47d5-8f8f-e286b53ce6ce)(content(Whitespace\" \ + c765dacb-776a-45b9-a193-78e5a748c823)(content(Whitespace\" \ \"))))(Tile((id \ - 1c286055-6c42-4648-b43e-330a792f075b)(label(\"(\"\")\"))(mold((out \ + 3e445b08-a4f3-4933-9996-7830a0748b46)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4db679dd-6f17-4ff2-b8f1-2a08acc594a6)(label(if then \ + c9aaa257-c542-4379-ba42-6abf5bf2006e)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d22f9463-63f4-451c-9850-be72b1d06b56)(content(Whitespace\" \ + d637ba05-504e-4018-88eb-c977bd5560dc)(content(Whitespace\" \ \"))))(Tile((id \ - c5d62b24-fd05-404d-a7c0-21cdfeacd1f4)(label(true))(mold((out \ + a5f17386-4e7a-4e30-86fb-2abf74b4fc06)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2336603c-c334-408f-a1e6-5f61132d0687)(content(Whitespace\" \ + 2c0726e0-3036-400a-81c6-70bdc8621e82)(content(Whitespace\" \ \")))))((Secondary((id \ - bed23ec7-8aa3-4470-8236-81e76586c7a4)(content(Whitespace\" \ + 9132c14f-825c-44da-935b-1658fd9cea66)(content(Whitespace\" \ \"))))(Tile((id \ - 6fc53068-7615-432a-a026-eb54d842336f)(label(1))(mold((out \ + 7f3f8048-bd87-46f0-846b-58d34d6c5f62)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ffd73edf-b438-446a-990e-1b05534f81c4)(content(Whitespace\" \ + 2e982fe5-0106-43be-938e-ac667a719c41)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ee921cb7-b3fb-4dd1-a280-c91d2d9223d6)(content(Whitespace\" \ + be5ed0e3-dc75-4069-bdae-ed34c43bd28e)(content(Whitespace\" \ \"))))(Tile((id \ - 3d27f98b-ba04-4145-98ff-501bc97c9b23)(label(1.))(mold((out \ + a79ea06c-1476-4c69-8beb-4145646d4894)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - a9ae7e4e-dcaa-45cc-823f-edcb1cbdf947)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + e26977b4-dd03-4e05-8265-c3646e724205)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Grout((id \ - 4e543e67-9133-4e9d-b1ff-b835632a681a)(shape \ + 29b37a58-9bb0-4715-948c-b7c133046248)(shape \ Convex)))(Secondary((id \ - c39d6789-d1f4-4a6b-a29c-c8c25b5a0838)(content(Whitespace\" \ + 2cefdb81-8d32-44cf-a3a1-21c297ad2aa1)(content(Whitespace\" \ \"))))(Secondary((id \ - 92e67be4-ea93-497b-a2ea-45c9966fea4e)(content(Whitespace\" \ + f3715eff-bae1-4485-b3a7-2e4468b968b6)(content(Whitespace\" \ \"))))(Secondary((id \ - 110afdaf-1fde-4e5c-ac9b-6e0bbb6d1d30)(content(Whitespace\" \ + d76e0966-3276-4ecc-bca4-a948545fe45d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5189f641-bafa-420d-b91a-204be24e470a)(content(Whitespace\" \ + 3b8b0cca-8049-4d93-9103-87ae36c44270)(content(Whitespace\" \ \"))))(Secondary((id \ - c3c3b2ea-b824-40df-a919-9a4e441d8759)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f9090b6a-5094-4660-a053-22404727e172)(label(let = \ + 0ffc8e0c-89e2-41a1-848b-552c97f843fd)(content(Whitespace\"\\n\"))))(Tile((id \ + 2f891405-da40-48a2-b79a-5f3b55251a76)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 12e87a6a-048e-48da-82ea-382dc457ceac)(content(Whitespace\" \ - \"))))(Tile((id 8e8628df-8459-456b-84d6-2cb36af4b9e7)(label([ \ + d4fbe7f2-6e55-4160-a618-a1d1a09eb6e9)(content(Whitespace\" \ + \"))))(Tile((id 8dbef8da-e68a-4ec8-b75e-3a29fe9c8502)(label([ \ ]))(mold((out Pat)(in_(Pat))(nibs(((shape Convex)(sort \ Pat))((shape Convex)(sort Pat))))))(shards(0 \ 1))(children(((Tile((id \ - cf25941f-eaa9-4a1a-b357-8c5b117c95ee)(label(_))(mold((out \ + a49b7ef5-f798-4643-9265-f8cf8c42b783)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 3a1a98da-cf5a-4fcf-aa2c-548aef9e0b9e)(content(Whitespace\" \ + 2a4ac6a7-0d55-4174-ab52-697d276c6fa9)(content(Whitespace\" \ \")))))((Secondary((id \ - 67cc35c8-7838-4a4e-ad76-367c9369ab0e)(content(Whitespace\" \ - \"))))(Tile((id e262c9fa-ae87-4fc8-9057-a9461bfd9bd5)(label([ \ + 61d291b8-7b27-4fa0-ab09-ff412a99362a)(content(Whitespace\" \ + \"))))(Tile((id 6b1de325-1191-4962-8899-bf6988fe56f1)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - a7254a23-019e-4314-af62-6d9c7bfb672b)(label(\"(\"\")\"))(mold((out \ + 7b855072-62f4-415e-8452-952458cffca7)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 10ec1999-7398-48f7-863d-d1d5e36f3d2f)(label(if then \ + c790af14-829d-48fa-bd81-ee93a0f1b4dd)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c7ac74b1-6e15-4e71-a746-39bc1efc8c27)(content(Whitespace\" \ + 1ff71883-a48a-4ea0-b098-8d76e476a935)(content(Whitespace\" \ \"))))(Tile((id \ - ba2f5cb7-3230-4ec9-a771-b691c357108a)(label(true))(mold((out \ + c02edbab-daee-4395-98fe-757cd6fee237)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b7fc917b-738e-423c-904d-05a96059bced)(content(Whitespace\" \ + 8ce9a5b4-babe-4bf5-b061-7f45c282dadf)(content(Whitespace\" \ \")))))((Secondary((id \ - dd935528-15f2-4c7d-8804-a4d472b14489)(content(Whitespace\" \ + d401bb56-0198-4147-af77-8a5aee9d583a)(content(Whitespace\" \ \"))))(Tile((id \ - ff4d570b-28f6-4b30-a316-3a409235447b)(label(1))(mold((out \ + 4f91be41-e3df-44a6-8a12-a15454048adb)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1fb75734-2d7a-4769-9753-b17b1592087b)(content(Whitespace\" \ + b5540fb4-c645-42a2-ada2-3b805f1984a5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - eed1455f-cad2-4bae-8f40-ea91ebc25208)(content(Whitespace\" \ + 55622bb1-19e8-46d3-bf1d-e34363fc9e0f)(content(Whitespace\" \ \"))))(Tile((id \ - 2371b8a3-f2d4-46ec-bbc4-a60cbf89ef6d)(label(1.))(mold((out \ + 518b51cd-a4c8-404d-a231-6f429a6b644c)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - f1e569ab-92b8-47e3-a64f-35fdc0407aa3)(content(Whitespace\" \ + 744414ae-d71e-48ae-bb9d-0e578c0459b4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 342903af-c89d-49a7-bc25-5de96ac97281)(content(Whitespace\" \ + e668a5ad-b385-40ec-b5b3-d04df38d66be)(content(Whitespace\" \ \"))))(Secondary((id \ - 2836626f-426e-4d0f-abb8-e947f32132f5)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3d735aba-e54e-400b-8573-7e839a3b9594)(label(let = \ + 18cc6604-fc46-4227-b871-d8c7df7b8bc1)(content(Comment\"#2x \ + err#\"))))(Secondary((id \ + ef4a4191-136e-4ace-976d-39d8e03247b0)(content(Whitespace\"\\n\"))))(Tile((id \ + 9d99af65-a5af-4d6e-af4d-6b454b9bc95a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 1855f1ad-a3ba-4224-99f2-d575807cf9f4)(content(Whitespace\" \ - \"))))(Tile((id 9e393b21-55dc-4ce9-ad66-de202a408331)(label([ \ + 1552bacb-6c53-4dfa-aa28-ce61edcc10f2)(content(Whitespace\" \ + \"))))(Tile((id da3f7767-bd3d-404f-b0df-1a0dcd052f31)(label([ \ ]))(mold((out Pat)(in_(Pat))(nibs(((shape Convex)(sort \ Pat))((shape Convex)(sort Pat))))))(shards(0 \ 1))(children(((Tile((id \ - ea98ca45-1496-4863-93f8-3c2332b1b479)(label(_))(mold((out \ + f157a3c6-62bf-4d01-9763-a3a6153af589)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - f2df6024-92a9-49a5-88aa-39ffdfe6dd94)(content(Whitespace\" \ + 113a5483-c7a2-4695-b09b-b299cd18b4ac)(content(Whitespace\" \ \")))))((Secondary((id \ - 62c5a63b-cd57-4076-9551-1ae18d2b5025)(content(Whitespace\" \ + c9129d4e-3c02-408f-8935-4e72d7010c1f)(content(Whitespace\" \ \"))))(Tile((id \ - e6e249a9-c461-4c0f-acce-c5fb18660415)(label(\"(\"\")\"))(mold((out \ + c8e00484-a21c-43e0-8aa5-2b78135f4fa9)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 28e5f8e2-b712-4c28-98f0-be264ed0d9d9)(label(if then \ + 217d5fd6-b91e-4473-98bb-42451ad1065c)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e243b1c2-c613-4578-be3c-c3a352c1b602)(content(Whitespace\" \ + 01dff95a-d8a2-4b55-bece-4002bd9c2761)(content(Whitespace\" \ \"))))(Tile((id \ - e155439a-5123-4b48-891e-d66bd6c15636)(label(true))(mold((out \ + b41c3a2c-0ba3-4514-8dd6-8e24b395e3e3)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2fbc7089-202c-447c-ae1f-0befd34a6f25)(content(Whitespace\" \ + aad648c6-0b64-42b4-aaa0-7be5f9a8d682)(content(Whitespace\" \ \")))))((Secondary((id \ - 457ce868-2756-43d6-85fd-3dbd77b0bf43)(content(Whitespace\" \ + f564477d-3cfa-407d-bc31-1e49f12bc3e8)(content(Whitespace\" \ \"))))(Tile((id \ - aa2b1a04-2234-4c8d-bf1f-dde6283f8c6e)(label(1))(mold((out \ + 2b524b9c-6e74-4719-ab54-061b56ec717b)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4cb364cd-2ae7-44b0-9e42-20c673269007)(content(Whitespace\" \ + 98f6ac6e-62bd-4748-b512-14bf23df07ea)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 84e6798d-a1d4-4688-83bc-941ceb1f1eca)(content(Whitespace\" \ + fa485591-489a-43f2-bfaf-6640f7a71d32)(content(Whitespace\" \ \"))))(Tile((id \ - 9e910694-b45d-4b2e-9f3b-6f3e92f40280)(label(1.))(mold((out \ + ea5bf365-68b9-4850-a07a-4bc0adce1225)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 6e1b78c6-08fb-4eea-ad24-8a25bb546292)(content(Whitespace\" \ + 415357bc-ea8e-48b8-91cc-fa0aa13f1633)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 60c6c426-b0f5-4c23-b7ad-2d2599c327bf)(content(Whitespace\" \ + 8bb6cc99-e72c-47a4-9ff8-6e2286b37a48)(content(Whitespace\" \ \"))))(Secondary((id \ - e0a7fd21-7379-4620-be7d-9fc89c0748c5)(content(Comment\"#2x \ + 80840a69-ffa9-4e74-9d19-09edec73c165)(content(Comment\"#3x \ err#\"))))(Secondary((id \ - f50e71ce-8170-4aba-ad79-d299d2f91a57)(content(Whitespace\" \ + 44c39228-da1a-433b-944a-a0c58b70039c)(content(Whitespace\" \ \"))))(Secondary((id \ - 4dd92573-6d7c-4296-9208-937e7a2aa82a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d77b580d-b094-478f-9565-14ce2c48c3cd)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f042fe33-b554-4f20-b618-2fa3c8e72461)(label(\"(\"\")\"))(mold((out \ + 2c374313-7ea3-4e1f-872b-c4c2af86cdc9)(content(Whitespace\"\\n\"))))(Secondary((id \ + 17ab14c0-8f4b-44cd-a532-9a761a833be0)(content(Whitespace\"\\n\"))))(Tile((id \ + 6a4e05e9-217c-4e45-8de1-c9e392ccb042)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Grout((id \ - da5f7a94-d56f-419d-81a4-e90f5e4ad103)(shape \ - Convex))))))))(Tile((id \ - c005aa0c-43a6-4084-8b73-db752bd727db)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 597ecf17-421a-4853-9600-eb6e87ad1fc1)(label(if then \ + 062c107b-c14c-4c45-aa0c-c9ffa4d5dbb1)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + 869737d1-c23a-476c-ab5e-8aa7861d964b)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + 4eace465-2bc1-485e-8071-10d3df39a94b)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c6d281a5-7366-4fc6-b93f-a5b506a71e24)(content(Whitespace\" \ + 31e06065-f79b-462c-abaa-97f39a7acb2d)(content(Whitespace\" \ \"))))(Tile((id \ - 565daa13-0e6f-484d-9db2-c2c4412a54a7)(label(true))(mold((out \ + e7b073be-fd7f-4671-a3f2-2b6d25f21d58)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0606bb3b-03a8-4d74-beb9-0d8fc732f979)(content(Whitespace\" \ + ab43243b-e396-418f-b733-4bd210aaae93)(content(Whitespace\" \ \")))))((Secondary((id \ - cf5c6a9f-abe1-4fb9-b6dc-a9dbd6d7dba8)(content(Whitespace\" \ + fddf6e72-eedf-43d2-bc92-49aa0a7e9da1)(content(Whitespace\" \ \"))))(Tile((id \ - 1998792d-d014-4ac8-9359-2a97c35a8f4d)(label(1))(mold((out \ + d69b9e82-73ed-4431-bd24-53dc723864a7)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d55d2bae-a087-4fd1-8d06-bc046516f54f)(content(Whitespace\" \ + 0c760bc0-d087-420d-909e-0b87ab92629a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bce25bdc-97f5-4167-b0a5-28a7838bebdf)(content(Whitespace\" \ + cd6329dd-1917-4e68-83b6-407560872ef5)(content(Whitespace\" \ \"))))(Tile((id \ - a37487be-086a-4d06-9e37-f4a6e0c74f15)(label(1.))(mold((out \ + 8c4024e7-bf7c-4da4-a8ed-043381e009b9)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 0dd1749c-08c8-463b-8c08-d7540b7fd5f1)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + cdf6f11c-509f-4bc7-b86e-a0d84b87b124)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 570a141b-ab07-4691-840a-ea9e46b4aa3d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 387cc421-9cee-4b2e-b8c9-64420e4e3e0c)(label(1))(mold((out \ + 8d5c4873-344e-4b6f-9252-8d16ecea9c89)(content(Whitespace\"\\n\"))))(Tile((id \ + a7151210-7df0-43fa-b6e8-1522bd2a8d39)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 8000090f-6960-4cc4-8972-4b3b4934bbdf)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 1e2df0fd-2270-4a1f-8fdc-e0a48ecd283a)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 21e644ea-f7ec-4444-be5f-6a628e76b1a5)(label(if then \ + 4ebe65f5-1866-4b9c-be3f-66ba8b0550f5)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9dd67d89-f568-45ca-a855-b39658cf456c)(content(Whitespace\" \ + 3772625c-8d92-4280-b22c-2178e797e62c)(content(Whitespace\" \ \"))))(Tile((id \ - 87fdc732-9c35-45c0-b05d-841c3f76fcb7)(label(true))(mold((out \ + bcc79751-6308-493e-887d-561862ee221b)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e426f078-9c62-4ab7-b8e5-f3846f02e372)(content(Whitespace\" \ + a51955ae-6487-446c-9257-0716097a9f33)(content(Whitespace\" \ \")))))((Secondary((id \ - 9eaced5b-63a5-43e5-9f9b-65877c1e2646)(content(Whitespace\" \ + b375eef3-cec3-485b-a38e-1c67e897319b)(content(Whitespace\" \ \"))))(Tile((id \ - 93aea0bc-7454-4307-bddc-19b83469ac2f)(label(1))(mold((out \ + a834af07-de84-456c-bd73-62c020367235)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 00645620-caec-4675-8b29-deddb545f394)(content(Whitespace\" \ + 0d719393-3ee1-4354-b2ef-4237e6792a49)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f38ed27d-79ac-4416-893c-56aa5b086d7d)(content(Whitespace\" \ + 08b3171d-c456-4c9d-90a2-15f7be5c40f1)(content(Whitespace\" \ \"))))(Tile((id \ - 56d55ff8-a6c7-499a-9c41-e7249a9f2789)(label(1.))(mold((out \ + d7f6388d-b809-466e-83de-585d71ffee7c)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 92403899-717e-4808-ac3e-3767e0eac20d)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 9feb45b2-455a-4c65-867c-b52c870a7bfc)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 0f4bf478-ad4e-4543-867d-48080fbacb3c)(content(Whitespace\" \ + f45233ef-9aa6-4b3b-a823-c6e50d713899)(content(Whitespace\" \ \"))))(Secondary((id \ - 634ebd5a-061f-426d-8278-caf13efe2fcf)(content(Comment \ + 17715bae-682d-4f0a-a823-afeba96c4317)(content(Comment \ #err#))))(Secondary((id \ - 6341373a-1b18-4f9e-a516-25b97197b5b6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 91b8fd2b-50d5-46f3-9e2a-f4114ad5d08e)(label(\"(\"\")\"))(mold((out \ + 713db1b1-9bd3-47ff-8f5f-e0430b1e5c69)(content(Whitespace\"\\n\"))))(Tile((id \ + e81b155e-d3be-44a5-a6ea-77de93eb55cf)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 35bef15d-fb86-4914-aea9-f26da914d8b5)(label(1))(mold((out \ + 056c50d0-5bbe-4d9c-aa02-82ef438b87c4)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 55037480-08df-43b7-885d-c02860217f6d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 043b9ece-ebc9-451a-b290-7172b63c9d07)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 66791c1d-5fd9-4219-96fb-4bd8ba9165e6)(label(if then \ + 69ab3033-df77-4236-8146-8a44543dd271)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 4534c71d-fbf2-49b3-8733-70c5c53f9fb6)(content(Whitespace\" \ + 80013202-921e-4217-839a-f8529889afaa)(content(Whitespace\" \ \"))))(Tile((id \ - 5936b2bb-c495-41ac-915b-84720407aa82)(label(true))(mold((out \ + ad93347c-62c0-4b3f-89f3-b21c87f13fee)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - dd27ba1f-0e47-47dc-8a19-b1ab49ddc6ae)(content(Whitespace\" \ + 37683a2a-fd0e-45ac-a70c-ac005275759d)(content(Whitespace\" \ \")))))((Secondary((id \ - a8d6513a-d522-478e-a64e-ed20e95ced90)(content(Whitespace\" \ + 81c5a39d-cb24-4e1a-ab64-3ceadf99c677)(content(Whitespace\" \ \"))))(Tile((id \ - 6b75f592-c667-4990-b872-45254ae84f58)(label(1))(mold((out \ + 0d7fd7b9-51e1-4d71-8726-cc48db06fb4e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7d563839-85f2-4636-99f5-0e0eab764be6)(content(Whitespace\" \ + 92ffa4ac-0a8d-4a90-9fd8-52eaae6ec3ab)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bb0e52cd-b00d-42d8-9697-52cda117a7be)(content(Whitespace\" \ + 98c632bc-bd76-4579-afea-b16084f6d9ee)(content(Whitespace\" \ \"))))(Tile((id \ - 11b0bba6-2add-46c0-80ea-eaae5fe2a612)(label(1.))(mold((out \ + 5a649e1e-8a58-403b-8ae6-f223d71f2969)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - d4989258-1177-43cc-85c8-0dece96af223)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + a41ef3b0-6648-4e1f-b11a-d1389eaeb977)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bde6f2f6-7dee-41fb-8ec8-7ce0a8d5de20)(content(Whitespace\" \ + 6330fc76-d937-4dec-95de-19a3b41a37f9)(content(Whitespace\" \ \"))))(Secondary((id \ - 1da33e8c-40ca-40fe-8e25-c58069bda77c)(content(Comment \ + 784084cc-19ef-4bf4-ae69-a058ee88bea2)(content(Comment \ #err#))))(Secondary((id \ - f7d18d01-968b-40cf-a368-ecc331878420)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c84b88f4-3ab1-449c-bac0-1788f3910edd)(label(\"(\"\")\"))(mold((out \ + 6dd9573c-3237-429d-9f67-fa0d3a527ed3)(content(Whitespace\"\\n\"))))(Tile((id \ + e519a01d-cd0c-4303-8786-16c74b0e28e2)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - fd353163-012c-4c4d-a5c5-e394ecd16ae2)(label(fun \ + b7d43d16-9dd4-4778-95c9-bd6072924dfb)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 048898ab-996f-4b90-b66c-bff87aa60b61)(content(Whitespace\" \ - \"))))(Grout((id 859388a0-5d8a-48a1-b60d-d1a89e219d08)(shape \ - Convex)))(Secondary((id \ - 10d220ad-0935-4d34-a650-a3cd9d04f606)(content(Whitespace\" \ + d529608c-40dc-4a8c-b119-bee30c8b71f8)(content(Whitespace\" \ + \"))))(Tile((id \ + 11558ad7-43da-468c-8b47-5f9cb488f89e)(label(?))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + f5c16f08-3051-4023-aabf-3e1bb1df78e1)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9e5262aa-2218-4b3c-a2ae-81123cf669d7)(content(Whitespace\" \ - \"))))(Grout((id 64517fe7-e255-4bc2-8834-b72704af952f)(shape \ - Convex))))))))(Tile((id \ - 783434d2-9a4d-4a4f-879d-214deb152945)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c6b8f9e4-6282-4559-9e72-9d225d03b1d3)(content(Whitespace\" \ + \"))))(Tile((id \ + f7c8f41a-07fb-4e4a-b5ea-629ae0f2ccd4)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + e5bd26eb-70de-4d49-9c56-409b67357cc7)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 33189c28-075e-45a0-b322-bf95b999fe4a)(label(if then \ + 74ef60a5-13d3-4e2f-a547-f3989ce94472)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a56657fc-4b1f-46f8-882c-ddfa6b681f37)(content(Whitespace\" \ + 92eac166-584e-479b-b29b-9f99d8b249b1)(content(Whitespace\" \ \"))))(Tile((id \ - 7c2df4aa-19e5-4677-bacd-5b7a724798a5)(label(true))(mold((out \ + 371202af-d5bb-4cdf-bd65-27c8b52f92e4)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a336b9e2-f9a1-416a-982f-96e525d7a097)(content(Whitespace\" \ + cb068475-531a-4927-b6a1-22e4e9979b50)(content(Whitespace\" \ \")))))((Secondary((id \ - fa4494a5-f20c-4f3c-bdac-93367e9f675d)(content(Whitespace\" \ + ee59bc84-5e63-4ae8-a3c6-737e08a12db8)(content(Whitespace\" \ \"))))(Tile((id \ - becfa6ad-81a4-4043-b34f-f9cd6968bdd4)(label(1))(mold((out \ + 725e1f9c-e3d8-4e53-9a89-ae1a18604e66)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e636ba9d-f4f0-4b6a-a857-f72272703edd)(content(Whitespace\" \ + 635f53a8-1cbd-4708-8e50-9d63dca1547c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c4907dc5-0d6b-4f19-876e-2a7d837d2526)(content(Whitespace\" \ + 22dc26ab-904f-40c4-8dee-00f3305b3ae1)(content(Whitespace\" \ \"))))(Tile((id \ - afea6b91-26f2-4c46-b1ea-15e893de8d44)(label(1.))(mold((out \ + 887151b3-cf70-431c-8d2b-3a27fc023f83)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - a4226d0f-0630-440b-b925-355c4323e26d)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 1e9cfcc6-d0cb-4b57-82a8-e7ea35bc3205)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 01ff0dc7-27f6-4bb5-a4fa-018d7296f307)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 953c3984-84f7-4724-b92a-a9a829788351)(label(\"(\"\")\"))(mold((out \ + 09735344-80ff-4b00-a349-0a6b15010e36)(content(Whitespace\"\\n\"))))(Tile((id \ + 5115c75e-67dc-46f3-a332-c00552804ebb)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 38407f72-07a5-493b-af4a-23ddcba9b306)(label(fun \ + 931e6408-0169-484d-971e-771107a34253)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 808ba58b-c96b-4222-996e-d20bc439b39d)(content(Whitespace\" \ + f045fc24-9608-4059-a6ba-21e53ed08f31)(content(Whitespace\" \ \"))))(Tile((id \ - 71431cc7-a1ba-42a6-9e18-048bf7ed09ca)(label(_))(mold((out \ + 6eb2dfc0-ff7d-414d-83a4-9f931d62c219)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 2b68db99-6d3c-4256-bc00-252ced2dd688)(content(Whitespace\" \ + bb26f97d-b97b-4bb7-8bdb-fddecaa2694e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a0235b54-2e45-4d56-b677-baf460eeb39d)(content(Whitespace\" \ - \"))))(Grout((id 30ecd689-7fdd-4a7e-b180-65fd090457c9)(shape \ - Convex))))))))(Tile((id \ - c57eb10b-f7b5-47af-8678-f6ea4067c6f7)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 9136d4b6-ce1e-4392-9601-3d0c035a14ca)(content(Whitespace\" \ + \"))))(Tile((id \ + cfa13869-9098-440c-9570-f22d5a3f7add)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + 936129f1-6df6-49ee-b559-3bdbc23aae6f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 3ddcb139-95a9-4888-ba0f-5442df48f9a7)(label(if then \ + 1509b818-82f0-459a-92a2-20e0da30ad57)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e695ba82-cf68-46ce-925e-31249261cd8c)(content(Whitespace\" \ + 8dcb0e86-df5c-4570-a764-84e0884e146d)(content(Whitespace\" \ \"))))(Tile((id \ - 0486935e-9996-4670-9f7d-c454f07554a0)(label(true))(mold((out \ + 6602d0f7-cd0a-47f8-b6ad-bcea5de32084)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 528c71f4-4aa9-4397-b56a-b3fa05d26e80)(content(Whitespace\" \ + 8a7041a4-636f-45e2-9cd6-f662e6fd6e8d)(content(Whitespace\" \ \")))))((Secondary((id \ - fd2ee037-5c94-450e-9bb0-00783b2adda9)(content(Whitespace\" \ + 4110f679-2c69-4fc3-abec-a40becaacd07)(content(Whitespace\" \ \"))))(Tile((id \ - fc17fe9b-be91-40f4-b6d8-334ae02cf696)(label(1))(mold((out \ + 3bdebb97-27d7-46a0-9d87-91c04c4dffae)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 28ac697b-72c1-4380-a4ac-77a6d620ce07)(content(Whitespace\" \ + f3e7fd6d-42f7-4d19-8e3f-2b2db52cb74e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5d6063b7-7b37-4a0a-b94e-2d416668609e)(content(Whitespace\" \ + f6db3b30-d35e-4b07-aa59-45cf8062b207)(content(Whitespace\" \ \"))))(Tile((id \ - 62e9e671-3419-4b81-ab5d-370a5a394aa9)(label(1.))(mold((out \ + 28941dd4-506f-4e80-a8f4-fc2bb43031a8)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 055bba99-c1db-48af-9aa6-4ba45f916bd5)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 76a1e448-41f0-400c-b7ea-a399a8f5eff7)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 12c3e8d4-f091-46c0-9755-5635c4f2b5b6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a331d7b3-e0e5-4503-8eda-98fb4017d7b8)(label(\"(\"\")\"))(mold((out \ + c6b13e8b-ef44-42eb-a13a-b117143507c3)(content(Whitespace\"\\n\"))))(Tile((id \ + b835c649-13a0-4402-9809-71a72688b29c)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 93dd678e-5279-495a-aa88-2fa862389909)(label(fun \ + c9b83db9-29c1-4eff-b5cd-d46a43a263fc)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 4597f735-731c-4066-9851-cd52d6542cee)(content(Whitespace\" \ + 9ed6e16a-06d8-47fb-a78d-edf20205444a)(content(Whitespace\" \ \"))))(Tile((id \ - 87294766-b061-4b33-84e7-b820bc4fb3cf)(label(_))(mold((out \ + ae369f54-62ef-4e0b-b0ed-972da618fa40)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 394ec58a-fb30-407f-b376-432f454bc179)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 586adcad-0933-4a26-8699-916831c7baca)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 41c4021b-e111-4501-8940-762c147bfc82)(content(Whitespace\" \ - \"))))(Grout((id c347ce4a-b918-4de4-8400-cf7174b04eec)(shape \ - Convex)))(Secondary((id \ - 092d4568-73e7-4dab-aeb2-a96ba06aad7c)(content(Whitespace\" \ + 58f64c30-9c76-4f77-a0c0-9ffc572ad5c5)(content(Whitespace\" \ + \"))))(Tile((id \ + 1bc83856-75a5-47dc-b03f-aeaf9e5fd6e3)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 9ec96788-240f-4611-bb39-c439232ca9b4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 89f8d64f-4dca-452f-a5e5-405b0dd06197)(content(Whitespace\" \ - \"))))(Grout((id 3fcdc9aa-d3ea-48dc-aa4e-50d47fe5def0)(shape \ - Convex))))))))(Tile((id \ - 0affb0e4-3f8f-4a78-b155-9cf118ca8eb7)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 9e8fe634-54dd-443d-ab4a-521abd8964c2)(content(Whitespace\" \ + \"))))(Tile((id \ + 3e7fc2eb-06bd-4be2-abaf-584b32e12d45)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + ba595eed-171d-420a-b857-5de42ad13c8d)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - bffb5f4a-a206-4568-b182-a633e4b7d67e)(label(if then \ + b65bd133-da62-44f4-9704-ca8bc1e0ad62)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7da6ae55-bd62-4139-8b5c-b3467b28d15e)(content(Whitespace\" \ + 6e1dc7f8-c2b3-40a6-b611-1b7f180439d8)(content(Whitespace\" \ \"))))(Tile((id \ - a38e5299-1158-4600-a4db-05d26b529068)(label(true))(mold((out \ + c1e9a35d-4c3b-4fae-964e-9410da8277c6)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 56db0b7d-70ce-482f-8bdd-f261e4bb033a)(content(Whitespace\" \ + 75e4bbe2-89a0-4793-81ab-a7834cec12dc)(content(Whitespace\" \ \")))))((Secondary((id \ - 366cc558-76f6-4454-ac7d-a42dd3da2584)(content(Whitespace\" \ + f76786ab-d167-41ff-8e29-62be967bd46d)(content(Whitespace\" \ \"))))(Tile((id \ - 9d875eaf-40a4-4826-95ea-ba72c0cd2c81)(label(1))(mold((out \ + d75262a6-3d43-4a3c-bc32-2bd23385a892)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5d888c4a-19d5-4e34-9401-04e577bc1c48)(content(Whitespace\" \ + 623f7820-12b8-47a4-8822-e05fa8adda06)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 85c80d5f-538f-40d0-b5d6-e235a7f5141f)(content(Whitespace\" \ + e62d00c1-aff2-4b59-8b21-b1bc3862a939)(content(Whitespace\" \ \"))))(Tile((id \ - 74612f3f-3d30-472f-86a4-fbc1857c058a)(label(1.))(mold((out \ + 324bcc52-4e3a-4618-bfde-19b16def2eb0)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 470469dc-d8c3-469b-9c18-3d8e008b193b)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 0ffbf675-d30a-44a6-a433-d5a0468a4a23)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d1dc00cb-ccae-41d1-bddb-107de0e308be)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6c61507f-9013-45f0-aa48-1a3d015573cd)(label(\"(\"\")\"))(mold((out \ + 160ffa92-f86d-4ad3-9acb-d07fee5e3cc1)(content(Whitespace\"\\n\"))))(Tile((id \ + 46b256a9-ab08-4cb7-ab0e-5041143d5a2a)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 84bef4da-1203-478f-85ca-9ee88c6f3beb)(label(fun \ + eeae076c-8bbe-4278-84fb-bc2ba52e1f65)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 6a9d6562-d5e6-4b2b-a031-11739b0c2c3e)(content(Whitespace\" \ + 8fa87a25-e4ed-41fe-955e-46434c5eac42)(content(Whitespace\" \ \"))))(Tile((id \ - 33442197-55d4-4dbd-9138-5e50ff98d573)(label(_))(mold((out \ + b786ec13-021e-4dd3-a6d1-4a91b20ff7a3)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8cb1eae4-c597-4b00-a2eb-5b57a125a194)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 78bf8675-87f4-4243-abd1-ce3715b2113a)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6465c91e-5f51-4910-918f-9d204e1bcbd3)(content(Whitespace\" \ + 57bb5cca-14a0-47ec-9503-cf45558ffe98)(content(Whitespace\" \ \"))))(Tile((id \ - 55757bfd-ff22-42bb-9cd6-5608f5f015ff)(label(Int))(mold((out \ + f3a6ccc8-137d-4842-a5af-393bb13039ee)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f99eed79-6ba7-4182-ac8a-299afd43bbe9)(content(Whitespace\" \ + 4eae28bb-5202-482e-a426-8ea5de90686e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 420ac88a-4caa-46b4-9d0a-0bb5b1b14db6)(content(Whitespace\" \ - \"))))(Grout((id bc42c4d1-dd82-433f-b065-ac7de6dde15b)(shape \ - Convex))))))))(Tile((id \ - d9dfdd76-ecde-417a-ba68-8cfb016ab80f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 8ca9da11-11a3-4737-8491-33d1cdc88f14)(content(Whitespace\" \ + \"))))(Tile((id \ + ac57a649-a903-4e08-8fda-7c24db523cf4)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + 6b8568ad-1c91-4af8-b040-d60b863dfabc)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ea8ee01c-941d-4c66-a647-7918eefbb221)(label(if then \ + 44e841ae-1a43-422e-b403-5ddac077aa63)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - eb92a4a6-8137-46ff-8763-0f1c1cce4e0f)(content(Whitespace\" \ + 643d2bde-bf48-49dd-ada0-17db9156819b)(content(Whitespace\" \ \"))))(Tile((id \ - 3d6f8955-5d58-4093-9901-4cb799e4da68)(label(true))(mold((out \ + a73bd640-e074-4b47-93f1-7427b61a41f8)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5c39d9d8-1353-4c82-95aa-cfd3c710d2ef)(content(Whitespace\" \ + 015da2cc-d1ef-4475-be3a-cdd796acf727)(content(Whitespace\" \ \")))))((Secondary((id \ - dbd5746c-73d2-4bfd-b1d4-9bb4ddee1844)(content(Whitespace\" \ + 9acb2c30-cf6a-4c24-87df-62bacf1bcfd2)(content(Whitespace\" \ \"))))(Tile((id \ - c3b3c0c4-46c1-4190-9173-0ba09eb387a3)(label(1))(mold((out \ + be1dca30-6ba9-4c5b-b436-2e3a6eb7487d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e8ee62da-8d62-4ef9-97b9-159f1b4a212a)(content(Whitespace\" \ + 5379412a-df8b-41d6-9f7c-6c8094166b3f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 50dac4a7-2903-4ad4-a0ba-647854776727)(content(Whitespace\" \ + 5cfc16ae-ad03-47fe-91b1-4ad2d5d44dd2)(content(Whitespace\" \ \"))))(Tile((id \ - 6c624d4a-3555-428a-954b-a312f3029cab)(label(1.))(mold((out \ + 8d2eea1a-bade-4543-8363-3081f99bd97c)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - a73dcc1e-7ade-4348-a466-c52a96e93884)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + 033e58ff-4a73-4b04-8762-634a32b11c52)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9f00a5ef-4f7a-40d8-befd-c7c0d3c8a9ea)(content(Whitespace\" \ + 7e626298-c9e0-40b4-ab5b-40ebeab4d0bb)(content(Whitespace\" \ \"))))(Secondary((id \ - e8ad89fd-898f-4e2b-a3eb-f1220739d5ee)(content(Comment \ + 406feb6e-d83b-415b-a521-d415c5fbe936)(content(Comment \ #err#))))(Secondary((id \ - 0d081213-9d46-42ee-b251-c3833afa9268)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d38dbc1a-10d5-43bf-9b21-c0fb792ff103)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 35f80ac8-05d2-47c0-96b0-fe39ffa828ba)(label(let = \ + 96e2f8b6-8d35-45b2-b13e-75766b304fea)(content(Whitespace\"\\n\"))))(Secondary((id \ + f7cc02ea-9b90-4eee-aae8-3c74a49e26c8)(content(Whitespace\"\\n\"))))(Tile((id \ + b422ffc8-ca0c-4d6c-bfaa-8571225406a5)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 3ff96410-6cde-468e-b92e-60c5dbcdbb1a)(content(Whitespace\" \ + da974ecf-0447-4ce1-82a7-74d6055a2ba0)(content(Whitespace\" \ \"))))(Tile((id \ - cd0d9dc1-2890-40ad-bb56-9bff2cd214d9)(label(_))(mold((out \ + 45d6fa4e-07bd-44bf-8a40-7c2265465b4f)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 09519fa6-8a8d-49a7-b97b-9446691ac068)(content(Whitespace\" \ + 37cde378-ebb2-4488-8317-37496fe3d043)(content(Whitespace\" \ \")))))((Secondary((id \ - 7d48115d-4ed4-49d3-9026-f7ad7b3258dc)(content(Whitespace\" \ + 82e0f7e1-1031-4fab-9e21-20e32a175135)(content(Whitespace\" \ \"))))(Tile((id \ - 8438b733-c653-40e7-bbff-5d4b99a40808)(label(fun \ + 76114edd-a5ab-4b9e-8603-1e9407eadd56)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 103b9289-b28a-4c91-b38b-16ddba0518b5)(content(Whitespace\" \ + 714ff5e2-8029-414a-afaa-abfdbd0695f7)(content(Whitespace\" \ \"))))(Tile((id \ - 673dd059-8cdc-4b7e-a624-2f4006e16b66)(label(x))(mold((out \ + 587277fd-943e-4244-82ce-68a0e05cbacd)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 4d32ab0e-aa4c-4440-a471-858d48f0649e)(content(Whitespace\" \ + f118590e-ab4f-4ae2-9a6e-552a0f9ab0e5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 76eb013f-ee4d-4f01-958d-945f5cdc1b0a)(content(Whitespace\" \ + 5e62d229-6ea4-4ff5-9fa5-bcbf1c2f7e13)(content(Whitespace\" \ \"))))(Tile((id \ - f2867227-a84e-48c0-aefd-0a6d27dffd3f)(label(if then \ + fd45d53e-f75e-4dc3-baae-4ccbeb673351)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 536f6d84-2485-4700-856a-629a00f30c51)(content(Whitespace\" \ + 7837008b-e3bb-42f8-8867-a9127126e4fa)(content(Whitespace\" \ \"))))(Tile((id \ - fb05cdc7-856b-413c-9130-26a7b33fb7a6)(label(true))(mold((out \ + 49522309-0a28-4550-bd68-6f4af81b20f0)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d3cb1bb1-3557-4483-b9ef-8df266b162c2)(content(Whitespace\" \ + deb3985a-b3eb-4209-81cb-51edfd8e9b11)(content(Whitespace\" \ \")))))((Secondary((id \ - 277e68f0-754d-4e80-8a7b-d56b9b9aa9f4)(content(Whitespace\" \ + cfb4ee9d-b12f-41d3-b7b4-41b57bb76396)(content(Whitespace\" \ \"))))(Tile((id \ - a9256755-3fd2-4341-8307-7806781ac7ac)(label(1))(mold((out \ + 759039b7-c39e-4917-ad26-7768c2441a1e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - dce7ceae-84ee-4d61-8c22-b695f164af14)(content(Whitespace\" \ + 96676838-abac-4fb0-b053-f3c5a31d4c00)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fb80563f-83de-49db-8e2a-a9211d8c0b0a)(content(Whitespace\" \ + e426c696-2fda-4120-8fef-c8ff8da2e6dc)(content(Whitespace\" \ \"))))(Tile((id \ - ce8523a7-3bf0-46ed-9e10-c06b9cbb72a7)(label(1.))(mold((out \ + e1cc2fdb-246d-4f22-8af0-bccbdb56f732)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ff99f97c-f2ff-400a-bfc8-0c9a6bcff924)(content(Whitespace\" \ + cc99b5f0-a62b-46df-b757-e5a8675aaa6e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 695a14e2-4ca6-46fd-99eb-862ef7629ffe)(content(Whitespace\" \ + 4ac6d11a-9dd9-4e16-9a51-21e1e8b031ec)(content(Whitespace\" \ \"))))(Secondary((id \ - 592c2ffd-79a2-45c3-bc3d-283cb6aa7a76)(content(Comment \ + fdcc919b-9f31-4ef2-abc4-5dea77326375)(content(Comment \ #err#))))(Secondary((id \ - bcb2d205-cf7c-43ef-acc3-978957fecbe9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 25ed166a-87e0-4172-818b-2b62a8bda24c)(label(let = \ + c4f89285-e554-459e-9bec-d31e32440b0b)(content(Whitespace\"\\n\"))))(Tile((id \ + 329514a6-42d8-4d4e-bcb2-bfb8d7a8cb25)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9868c377-1e5e-4a84-a575-cc38ab948866)(content(Whitespace\" \ + 50c4e531-b9e0-4f96-a84d-0c99b30659e0)(content(Whitespace\" \ \"))))(Tile((id \ - 4918c91e-8e50-4735-883b-a356720ea9d2)(label(_))(mold((out \ + 7f89c831-f210-451f-b524-fa4aa79d0f18)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a52427c4-8fad-4952-9ce2-071dbbab89d9)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 9ced8341-5264-41ef-b296-25bf935fa376)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8fe334cd-5fa8-4d94-84d3-34385126ca98)(content(Whitespace\" \ - \"))))(Grout((id 653091cf-f907-4593-90a5-0f8c07a68006)(shape \ - Convex)))(Secondary((id \ - 991a094b-7379-4445-a8ee-87b39301f44b)(content(Whitespace\" \ + 8dac34f3-bed8-4320-aeee-0c44f64ce226)(content(Whitespace\" \ + \"))))(Tile((id \ + f9d98bae-249a-4c23-831c-623bcfc26fd6)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 5c4eb7df-2a0f-4d79-989d-4b0517785895)(content(Whitespace\" \ \")))))((Secondary((id \ - c7ba46b9-2795-4e23-9257-c980fa33f40a)(content(Whitespace\" \ + 89593eff-af8d-4a21-9229-004daae8c739)(content(Whitespace\" \ \"))))(Tile((id \ - 4839dfee-a097-40eb-b968-4762751a00cf)(label(fun \ + eb933724-46a8-4882-9f06-364158da5956)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - fb185c7a-882a-4d4d-a696-b835827a067e)(content(Whitespace\" \ + 807a029f-2ebb-4f26-88cb-30137df3bc63)(content(Whitespace\" \ \"))))(Tile((id \ - 3386719d-5ae9-466e-bcbb-76c10b1a7cd9)(label(x))(mold((out \ + cad8bfd8-9f38-42ff-845e-29709821f378)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - cf81b859-0f34-44cb-84c4-ee0a294618b3)(content(Whitespace\" \ + 9ee80e5c-817e-48dd-8512-1e344c939a8e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f0a26556-e334-473c-8cf8-c57092e4f36a)(content(Whitespace\" \ + cad256b6-05a8-4712-aa63-8507bd913e6f)(content(Whitespace\" \ \"))))(Tile((id \ - d5d5e598-a807-4bf5-bfec-fe007c7b3a22)(label(if then \ + ccfb67ea-c47d-4339-a212-5c08a3ccb2fb)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - c8e619cc-2d91-4991-85d5-546da420b09d)(content(Whitespace\" \ + cae5d396-d39f-491c-b923-f0010827f252)(content(Whitespace\" \ \"))))(Tile((id \ - 3a199739-00ab-427d-868a-d401e27d83fe)(label(true))(mold((out \ + e23b54ae-2077-47ac-bc29-2832e0f2ef68)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ac76f6fa-c89a-483b-bf41-4593f9f1b21f)(content(Whitespace\" \ + cb855eeb-2e65-41c5-b458-953806b60c33)(content(Whitespace\" \ \")))))((Secondary((id \ - be7ef864-67a0-4fe0-9bf6-4f882754dc82)(content(Whitespace\" \ + 71b12abe-3a00-4cf5-a7e1-f7c0523c4581)(content(Whitespace\" \ \"))))(Tile((id \ - dfa24cb1-5893-41e9-a062-bd4ec11e605e)(label(1))(mold((out \ + 4f36fea3-e604-4f77-a0dc-26e4563d3a04)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 50514c7a-0b13-4c44-80d5-a3357fcc0012)(content(Whitespace\" \ + b2ac5c70-f396-480d-95a6-e40ecd776ecd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 490e8e38-b288-4122-bc9f-ec6882b9ff61)(content(Whitespace\" \ + e52c206b-91f1-4d12-9c38-39dfa2ce4fba)(content(Whitespace\" \ \"))))(Tile((id \ - af9ae9a8-74b0-4d58-8107-7dba40c5e153)(label(1.))(mold((out \ + 479a7dff-73f8-4f19-a00e-975f0647dc77)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d8cbf47c-8aa1-4f01-b414-892b1512aa51)(content(Whitespace\" \ + 46812a90-5acc-4c22-a5ce-92233646948b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0083e628-0325-46bf-a55f-b2d9673a1778)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6c7603d2-1f45-46e9-9fc4-477dc7140cca)(label(let = \ + 5ca0db43-c425-4617-ad97-a87fe9306f8a)(content(Whitespace\"\\n\"))))(Tile((id \ + 4d7fe960-a87f-4ce5-ad32-aa8581035007)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 37df505f-e3b7-483b-85e1-99d1a420a9b6)(content(Whitespace\" \ + 73b23123-29c3-4fb7-9b8a-05693f256733)(content(Whitespace\" \ \"))))(Tile((id \ - 35390017-9451-4508-a83b-7524bad86fc4)(label(_))(mold((out \ + 13a3d926-b70d-41ff-8566-3c4c9b2bf99c)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - a3206d48-65ee-4b0e-b65c-addfe0e9c62e)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 423e0344-be2f-41a9-a456-ce1049a8b0b1)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b7ecddd6-8846-4963-a461-1f0b9bd84979)(content(Whitespace\" \ - \"))))(Grout((id 4da9fa71-62ee-4931-bcd1-1a33bb41840d)(shape \ - Convex)))(Secondary((id \ - b3f4fb40-e05d-466c-ab85-39d6e23e0767)(content(Whitespace\" \ + 5d7a831b-b8fd-4762-960d-0fba8f5fde2f)(content(Whitespace\" \ \"))))(Tile((id \ - def384f8-b29b-4dfb-a36d-85a809641dbc)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 28842be8-0534-4ab1-bf86-12781a28769b)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 36039aad-4cd9-48c2-a1bf-abfb4dc37cb3)(content(Whitespace\" \ + \"))))(Tile((id \ + 0b7ad8bb-266d-46bf-8134-d1bc1ddc8e2d)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 3bf09644-328a-4419-8c85-f02f99efb9d2)(content(Whitespace\" \ - \"))))(Grout((id a95b9978-19ec-48f9-ba13-6d458ca30443)(shape \ - Convex)))(Secondary((id \ - ec61c941-3afd-4226-8ffc-fc1b54122412)(content(Whitespace\" \ + 08aba5c3-d8c5-4297-b74a-a4d302a166d9)(content(Whitespace\" \ + \"))))(Tile((id \ + 62589bdb-8179-451e-8780-c8e4bf33b206)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 6abab41e-89c9-43cd-b7f1-457d5df8684f)(content(Whitespace\" \ + \"))))(Secondary((id \ + 60ba755b-6f24-4592-8b65-45adcfae5b02)(content(Whitespace\" \ \")))))((Secondary((id \ - b5fd0857-94d1-45a2-8ac0-41c72af48c00)(content(Whitespace\" \ + cdcbdfd1-d436-4c98-8e0c-327157bb3451)(content(Whitespace\" \ \"))))(Tile((id \ - a3677a6f-6aa9-44e8-a44e-f4643498eec4)(label(fun \ + a705045f-412e-4dad-a2be-d56a1d362101)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 17fcc7ed-aa0e-493b-97a8-aa78cf51b2fe)(content(Whitespace\" \ + f65af529-4319-4fe6-a9c8-1b716012603d)(content(Whitespace\" \ \"))))(Tile((id \ - a25707f6-8e51-420a-aa12-05df1b5b9152)(label(x))(mold((out \ + 7cea72cc-149b-4e79-a93b-1b192f0668b8)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d22d1ad5-68bc-4ff3-ab87-1eadd3a003ec)(content(Whitespace\" \ + 154047bc-4f40-4d89-90e7-fe3a0d15b2ae)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 90fdd949-668d-4977-a390-869262719fab)(content(Whitespace\" \ + 70ab61a2-1bf1-470e-9950-a01f76d181d3)(content(Whitespace\" \ \"))))(Tile((id \ - 0557157c-33b3-43b4-a046-c7b881d19216)(label(if then \ + 4c2b76d8-f6cf-4832-946b-505151bfe46a)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 755a7811-722a-41f6-9b56-80cdfda1b034)(content(Whitespace\" \ + c36fdf84-9ff3-4eab-8ef7-973b0ba6a57f)(content(Whitespace\" \ \"))))(Tile((id \ - 7b63343b-a942-4302-9ce3-56ef30b62d39)(label(true))(mold((out \ + 8d5079eb-a0e3-40ef-abc3-b075fc44edee)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ffbc6847-3a7e-4b9e-9514-92e5d8b3e277)(content(Whitespace\" \ + 02f37a6c-8ff6-4798-ab58-7b69b6c17f52)(content(Whitespace\" \ \")))))((Secondary((id \ - bc4fee4b-bfc4-4d8d-a21c-32ddd20d4115)(content(Whitespace\" \ + 0dbdda0c-6ef3-43bd-af0e-da537f0d2318)(content(Whitespace\" \ \"))))(Tile((id \ - 61ef3fd6-dc5e-4173-a46c-21a4e9e903b7)(label(1))(mold((out \ + 48fbe76e-cf73-4bf3-9b0a-8e0c199f3303)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1a42a366-5df3-4b08-b9b8-ddc50e9fa073)(content(Whitespace\" \ + 92b2cd79-7544-4351-9f37-c05ef9093507)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d36add28-c6d6-4d4a-ae6b-3b53f65a813c)(content(Whitespace\" \ + 20d3283e-389a-4641-ad6b-5e1484f4d9b5)(content(Whitespace\" \ \"))))(Tile((id \ - e6fb11d1-572b-4992-bb6f-c3ce42c31a5b)(label(1.))(mold((out \ + 6f4418d6-ae55-4493-98ed-0497267a72de)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a1564a6d-ddcd-4382-b57e-1852880686af)(content(Whitespace\" \ + 78d8f6db-ed2e-4899-8433-68b9625994a6)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4c9de5ed-d3f5-40ab-957a-ab2b7ebacf82)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e9a91bdd-1b8a-4628-805f-0a21e5b22197)(label(let = \ + 7c24fdf1-2e36-41bf-bae7-c09f116607b7)(content(Whitespace\"\\n\"))))(Tile((id \ + e2cd3fad-540f-415d-8043-63fc31f3b221)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 2d6fed2a-48c6-4b44-b0c2-ab7d7f51af72)(content(Whitespace\" \ + 89b58c46-a94f-453a-965e-a6ba9be57212)(content(Whitespace\" \ \"))))(Tile((id \ - b2cdc1f9-3351-483c-9638-f771257810d1)(label(_))(mold((out \ + c76e67a6-df03-44f2-8536-e7936f3fed5d)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 8e161d9b-fe98-4adb-846d-3183117c15fc)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + ff253a88-bd76-45b4-a989-9d9d343aa32d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d7e9e9af-16d9-4be7-b772-47fe800aa248)(content(Whitespace\" \ - \"))))(Grout((id cf9694be-3b9f-4fd3-ad55-858faa4e5f02)(shape \ - Convex)))(Secondary((id \ - de591d6c-a4d8-4591-9c3d-016e28ab0985)(content(Whitespace\" \ + 616d4a4d-a668-4e7a-9da3-340b7ce802f1)(content(Whitespace\" \ \"))))(Tile((id \ - 57226fd7-6fe7-4284-a58e-3e828da4c10b)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 0458726d-4ccf-483c-be1d-547c65ad6b0a)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 0006a920-97ec-4970-8b1f-cf1a597d3db5)(content(Whitespace\" \ + \"))))(Tile((id \ + 6f5f976f-30ca-4e69-8579-f7ae2a108465)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0d276a95-1daa-457d-ab45-dd7874086238)(content(Whitespace\" \ + fd18ef4f-b609-4bfe-94e0-d296847bc935)(content(Whitespace\" \ \"))))(Tile((id \ - 2c187a0a-a6d7-4dbd-bf2f-1254faf967c8)(label(Int))(mold((out \ + 24797b99-a831-4b3c-9560-52080fa62216)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c5305727-7034-47c4-9b13-76e2ac8b158f)(content(Whitespace\" \ + 0f23f05b-a326-45bb-822d-1b8e51cb2306)(content(Whitespace\" \ \")))))((Secondary((id \ - 66945bb7-c5c7-4a6a-bb95-9ab4a4096aca)(content(Whitespace\" \ + 98d58acd-37ec-406b-8465-291fed880866)(content(Whitespace\" \ \"))))(Tile((id \ - dcf922aa-beb1-4e2b-8b31-79696c1ba35e)(label(fun \ + bd301626-525b-43fe-9cda-be70912b2f7d)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - b86c3ae2-f820-4b20-8f4d-c8cd2d034d4c)(content(Whitespace\" \ + 3d82ed17-21a6-4257-abe3-805513615e48)(content(Whitespace\" \ \"))))(Tile((id \ - 78164bbb-a765-4907-a883-0b43f38c8f40)(label(x))(mold((out \ + 7931c017-d228-47da-a700-c35ee6b0eeb7)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7c476086-ecce-47b4-b7e0-6eda1e7f99ce)(content(Whitespace\" \ + 4959e868-d1af-4cd0-a0fd-5dd704b3858a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - bc736e1b-63f4-4e30-b612-8cce38bb2f4f)(content(Whitespace\" \ + 68aea425-3c57-4a6f-a7d2-2c6cc0a87600)(content(Whitespace\" \ \"))))(Tile((id \ - 774faf15-02ca-49db-aa2c-ed9951c7e422)(label(if then \ + 1de74948-95d6-4086-9e54-46ddefc6bdb0)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - dec59fd4-6edc-4055-a1e8-db02398bd11e)(content(Whitespace\" \ + 77837ee0-6d6f-4bd9-8ba8-3156b0b4db67)(content(Whitespace\" \ \"))))(Tile((id \ - 66dc2eb8-49b8-4770-a380-03ecb1c39654)(label(true))(mold((out \ + 80e6a753-5adb-4f2b-984a-50a51e9fed27)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a6da3ecb-cbbf-4467-b699-f33c2e198794)(content(Whitespace\" \ + 3183cb38-3f1f-460e-a208-2a0f22b10f22)(content(Whitespace\" \ \")))))((Secondary((id \ - 97c06b6c-f2fc-4f85-8233-e1e24f55f183)(content(Whitespace\" \ + 7bdded42-9f8d-4680-9293-122093727b04)(content(Whitespace\" \ \"))))(Tile((id \ - 49f69120-67f3-4f12-8473-25854331d0a7)(label(1))(mold((out \ + e123ec12-e7cc-4aa7-9154-79c244bd5228)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e7adea10-9083-4988-afcf-d748d5c83dc0)(content(Whitespace\" \ + 158e823c-6574-41b9-9424-b9126a6205d9)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c4bf9155-bdf3-4583-810d-7fbc5963d1a4)(content(Whitespace\" \ + 87c83d9d-6bc3-4197-bcbe-c8e906b497c2)(content(Whitespace\" \ \"))))(Tile((id \ - 736d66cf-946f-4560-89b4-3fc126888dc1)(label(1.))(mold((out \ + 8961a915-6957-406a-ab70-0da17acdafc8)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4492e518-d63e-4b85-91c2-26cb60446eb3)(content(Whitespace\" \ + e78aabd6-b2ad-4342-87ac-6740ea32c8ed)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1e2692c3-306c-409d-b336-cef082edcd8c)(content(Whitespace\" \ + 7d87fae4-a792-4377-92c6-14316ea90783)(content(Whitespace\" \ \"))))(Secondary((id \ - ae09d83c-ae42-4b0e-8765-8aee441f0616)(content(Comment \ + b7bd0e63-0e4d-470e-83e8-e721992d87eb)(content(Comment \ #err#))))(Secondary((id \ - 03b03c43-459d-491b-ad03-a72757614270)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 092b9051-f708-4479-9166-d6161e6b254f)(label(let = \ + 177e50f2-8b1b-420b-b35f-fd34fee54ea6)(content(Whitespace\"\\n\"))))(Tile((id \ + 20b66c80-1b9f-40ee-8eed-868afc146b88)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - bd68afd2-4abd-43b7-b370-539fc05fc7f5)(content(Whitespace\" \ + 28692c79-024d-45a8-8b4a-5654d5df86d7)(content(Whitespace\" \ \"))))(Tile((id \ - b4ed8e27-adb1-4436-b2d2-fe1faf8d36f1)(label(_))(mold((out \ + 179613fb-c76a-4a04-bb32-b3cbfc6f9c3e)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c21f3089-a8fa-414a-b6f4-d07fc101fccc)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + b23d5491-2fc4-4941-baa1-52a2e48b2ebe)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 583749a3-eba6-4e91-9cfe-36ff52355aca)(content(Whitespace\" \ - \"))))(Grout((id 4e5cdbcf-6fc5-48e0-abf0-2fc5054d3574)(shape \ - Convex)))(Secondary((id \ - 5a84df8d-23ef-4dac-8388-201f94248eb4)(content(Whitespace\" \ + 85989bf6-e65b-4e0d-966f-c79e1a6e2ccd)(content(Whitespace\" \ \"))))(Tile((id \ - edb29728-1267-4abc-9081-195f6663856f)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + d4fbd548-6f00-4b4c-8ce6-f914b2f927ec)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + fce4ca15-e39e-4de1-9f25-c9a05a197444)(content(Whitespace\" \ + \"))))(Tile((id \ + 57be36ff-3c4d-4d97-a859-7cf78407f249)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8a308706-b82c-4215-a4bd-c8cf8fbd1a8d)(content(Whitespace\" \ - \"))))(Tile((id 6bfd0ba4-08a4-4f77-8b64-126378c1907e)(label([ \ + c0aec7b6-dce2-4e31-8a95-afe85d6ad196)(content(Whitespace\" \ + \"))))(Tile((id aeaa175c-40d2-4078-a79d-45a97002ae1e)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ - 1))(children(((Grout((id \ - e89b84de-7ab4-46de-a7d5-94abf6588ec0)(shape \ - Convex))))))))(Secondary((id \ - f7dde1a7-74ac-4b68-bf6a-812a666fd963)(content(Whitespace\" \ + 1))(children(((Tile((id \ + da4b5c25-5b93-47b9-a4e5-792658f4d1d7)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 1e6a7d87-0b88-4478-ad9d-8076310a0c65)(content(Whitespace\" \ \")))))((Secondary((id \ - 4ee83851-34f6-4867-a055-ca51562dfb48)(content(Whitespace\" \ + cc0cb60b-75fc-4450-ac42-3cafdb5cfeba)(content(Whitespace\" \ \"))))(Tile((id \ - bba577e3-68f9-4353-ae2d-e24914773aa9)(label(fun \ + ae53d282-5098-461b-ab95-5f058bc2e7a5)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 342ca27b-4acf-4a91-aef6-2426ae0200a6)(content(Whitespace\" \ + 1bd72cb0-1037-4909-b674-45985ac7c1d5)(content(Whitespace\" \ \"))))(Tile((id \ - 6271d837-e1af-407a-8f42-902f46019fdb)(label(x))(mold((out \ + 0d421c83-c42c-4774-9249-79434643b47d)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3857a916-2ca2-4b91-9ce3-08bdcea49694)(content(Whitespace\" \ + adc3d9fe-730b-4f28-b367-5decaeaed27d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 830c1a4e-d2eb-4d27-b5af-9edfe71db503)(content(Whitespace\" \ + 71b89864-aedf-4a6f-b7d8-a16daa20d32c)(content(Whitespace\" \ \"))))(Tile((id \ - 5c18044e-489b-458e-ab15-649911a03030)(label(if then \ + bd635118-71f8-492d-9f8d-faa475c8d7e8)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 389ce73f-f26f-4be2-a221-dc4713f67f29)(content(Whitespace\" \ + 21dd2afd-0e64-41be-aef1-b8b1b331715a)(content(Whitespace\" \ \"))))(Tile((id \ - 1c4d1edf-c38e-4a8b-a654-eda7ac54fbfc)(label(true))(mold((out \ + 595c431d-1852-49fd-92b7-2aec39c6f666)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5e8c1968-ee4f-426a-a161-a578efb13975)(content(Whitespace\" \ + 255e2326-12f6-411c-a6ac-ee4531c8ca08)(content(Whitespace\" \ \")))))((Secondary((id \ - 802b0b26-b087-4fc5-b422-fd7727778899)(content(Whitespace\" \ + a0b9b432-9747-4c8e-a7ae-e7419db9c4de)(content(Whitespace\" \ \"))))(Tile((id \ - db1691b5-be53-42ea-a42b-48615ce08542)(label(1))(mold((out \ + a8973628-7c1f-4ed5-8827-3d539d535199)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3815c49c-0867-467f-9881-1ebb7e272bbc)(content(Whitespace\" \ + 79a281fd-0316-4d3a-a0e1-c3f1f814246e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 90d59c52-5f6a-4dd5-a008-08a674362dd2)(content(Whitespace\" \ + bbfb1efc-a7eb-4696-8cf7-e8f9f3c6ad72)(content(Whitespace\" \ \"))))(Tile((id \ - 77a1c18c-e388-464c-8a96-99d509f09a60)(label(1.))(mold((out \ + 00309486-c9af-4d2d-90c8-bc66a511c06a)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c4b13785-8b02-4432-98b3-734f7f00dee5)(content(Whitespace\" \ + 2379e9e8-6f16-4225-9a6e-f95440f8c62b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - c4f76c84-7f32-4d47-b5f1-81bf03e05f9d)(content(Whitespace\" \ + a2eef8d8-db3a-4635-a4b5-404c4c0921f2)(content(Whitespace\" \ \"))))(Secondary((id \ - f791a637-6547-4952-b2af-2df75636a400)(content(Comment\"#2x \ + 9612e37e-8400-48ce-948e-d2cafd3095aa)(content(Comment\"#2x \ err#\"))))(Secondary((id \ - b280e9ea-b425-4fed-a57a-3299273288d4)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 12f499da-76c3-4ae2-93d0-5ca9e69753b2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 232006c7-a8ef-48b8-9a78-3cf60d23ceaf)(label(\"(\"\")\"))(mold((out \ + 832c68fe-94db-4f81-aaf6-94d9c7c77863)(content(Whitespace\"\\n\"))))(Secondary((id \ + a5a3b845-0842-4d91-8194-0b98b729c1d5)(content(Whitespace\"\\n\"))))(Tile((id \ + 16a37cbe-dc5b-4227-b7bc-7f391876ab5f)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Grout((id \ - c4738729-fba4-45b6-8020-a79d3a26c31f)(shape \ - Convex))))))))(Tile((id \ - cffc0f76-df2f-4dae-a3ce-3d509789faf9)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ + e22a7750-a4f2-4ebd-93c0-175b6c723266)(label(?))(mold((out \ + Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ + Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ + 91727912-05e6-454e-9782-5e618fe6e70a)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - f6e93383-434a-48e3-a0b9-9186037e3047)(label([ ]))(mold((out \ + 8a13034f-7c7e-49fc-af4a-44261c19e927)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - a9cda473-0dbe-410f-b9ad-521eb61cf321)(label(\"(\"\")\"))(mold((out \ + d9ddffb5-5c0f-41ac-8d9f-7631ca1d2ada)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - cb5da907-a7ee-4650-9c61-27b4e3d65121)(label(if then \ + f10d6e13-da55-479f-abf2-12475f349978)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b6fc370c-918a-434d-b3b6-cdd8eabff95e)(content(Whitespace\" \ + fbfc5089-c87a-492b-9743-1636d471050e)(content(Whitespace\" \ \"))))(Tile((id \ - ed44da3d-79ac-4881-98a4-e782ba366300)(label(true))(mold((out \ + 9fd0c3db-965c-4c6f-a53f-1ea2a56b6b2c)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fba985da-7e06-4f50-a970-38d7c6ae21a7)(content(Whitespace\" \ + 34fb2388-8f32-4f6b-8848-4c0315ccc6e8)(content(Whitespace\" \ \")))))((Secondary((id \ - 651eb65f-6715-43ac-812c-f1f48bd31f4f)(content(Whitespace\" \ + 6a36d538-f325-4018-9415-eaf91fce7bca)(content(Whitespace\" \ \"))))(Tile((id \ - 5866ac7e-9854-4845-86a3-02fb42bb4d6e)(label(1))(mold((out \ + cf3818bc-d193-4ad1-916b-f59ce6f9734e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 955402bf-b94d-4e9a-b95f-440e8a942c04)(content(Whitespace\" \ + af8e1c2b-974d-40dd-85e3-17be1e2eb285)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d4fe1496-194e-4abb-b7ab-7f0aab65d877)(content(Whitespace\" \ + b2fde3fe-6850-4aa1-9479-e300e01f0935)(content(Whitespace\" \ \"))))(Tile((id \ - a3157ede-51e6-4eb4-a998-15ec007ca8fe)(label(1.))(mold((out \ + f730e703-9baa-4434-88c3-4d954f0bddca)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - d5ae6ad5-5f2a-4934-9fa7-ffb96b15e9ce)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + e78aaab0-80e3-4256-ada1-49c56d6a86ce)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2e1b0250-b0cb-438a-addf-8604f846c3af)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a3a9866e-fb72-4fc0-aa55-e54dc312fd45)(label(1))(mold((out \ + 4452164f-3c96-43fd-b93b-fea5fd8118d1)(content(Whitespace\"\\n\"))))(Tile((id \ + b4e13b72-e4fd-4f1e-8453-c0dcbb78a057)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 6367200c-4fd9-412c-be16-02b8bebead75)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + 3030b792-98fc-486e-b2a4-98094744700e)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - a56c9c39-7aea-4e94-ad02-25c9017c06ee)(label([ ]))(mold((out \ + 92d82649-57d6-4704-8d92-0cf013e1ebd6)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - aaa9b7f2-0032-48e3-8658-07f826c0a19c)(label(\"(\"\")\"))(mold((out \ + 778d103f-be70-48ab-87e6-200b7accbed0)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - accb22c4-cf7b-4bc2-a1f1-4d0c80a4635d)(label(if then \ + a0fdeb11-83f6-4283-a2bd-02a8680c87a5)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - e1b1486e-f426-4623-869f-be7d4b147b6c)(content(Whitespace\" \ + bb78e77d-600d-487e-80f0-9fb38fd7a115)(content(Whitespace\" \ \"))))(Tile((id \ - 9a4bed25-55cc-4951-9efa-027aa0216064)(label(true))(mold((out \ + 053aded7-442e-46c2-9f5a-7039c194a87e)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 63eebaad-cc2d-4899-bc2b-22fbf548c4dc)(content(Whitespace\" \ + 8f55ad96-a029-4f0c-bdab-e870748666d4)(content(Whitespace\" \ \")))))((Secondary((id \ - 4f914036-bad1-4d1b-b8cd-01000178c611)(content(Whitespace\" \ + 1b67207d-7319-426b-90de-7732f2a13e87)(content(Whitespace\" \ \"))))(Tile((id \ - a07cee91-fc9a-4f3c-aae3-5e82cca71f06)(label(1))(mold((out \ + 744bec07-0822-4c77-b708-c0927855d960)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 33c9f869-287f-4ebe-8bdf-f8e1e03558a2)(content(Whitespace\" \ + 12016f4c-9951-450c-b498-eee8dc7ae769)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e5ef7784-cd98-410c-b653-22ab8af2b11a)(content(Whitespace\" \ + 3c3d18a0-0022-4ab9-9e40-02e6eaa6ee34)(content(Whitespace\" \ \"))))(Tile((id \ - 3ab4da6a-7aed-487d-b0fb-3113913c693a)(label(1.))(mold((out \ + 297dbdb6-6b1d-431d-9a23-3eb22e184cc1)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - 09efe17e-bc3a-44ac-99a7-a868e3452897)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + bcf15c13-6bd4-455d-815c-b295ff1739af)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - af722baf-632d-4d28-92d3-c2f914bd31cc)(content(Whitespace\" \ + 36542426-c71a-437e-858b-bd3cc5922797)(content(Whitespace\" \ \"))))(Secondary((id \ - f2e03598-6017-43f2-be61-b8442de25fce)(content(Comment \ + ff23ec41-8dd7-4d7c-91a2-339224f8fb09)(content(Comment \ #err#))))(Secondary((id \ - 88af9827-b2be-471c-add1-70a096838b49)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e01b6ac4-8715-4662-9fc1-87aeb2060bf9)(label(\"(\"\")\"))(mold((out \ + 8cae60cd-016a-4424-9157-716529f04a4d)(content(Whitespace\"\\n\"))))(Tile((id \ + 32e2f80b-d83a-4fe6-8ee8-ec4713973ee9)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6ada54c0-de79-4600-bdd5-f42f2f4744f8)(label(1))(mold((out \ + ff11824e-80e8-4f41-9f47-52c3f22de996)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 54ec4955-7647-4737-87d4-8e21a18943b9)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 82717f81-0aa9-46ab-af23-5f4f5bab270b)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5c6fe323-e200-4fe9-8e5e-3a890b129f68)(content(Whitespace\" \ + 62191de8-30df-4984-aef7-e5813cafa6ed)(content(Whitespace\" \ \"))))(Tile((id \ - 3157b120-93b8-4d06-bc3e-cfde87fe9690)(label(1))(mold((out \ + 9440e8cf-5a51-47d9-a888-6ed38bcd6309)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - d4a9bddb-e237-4100-b2ed-305e25afd150)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + 94e4713b-16a1-463e-ae3a-15f3e4ca475d)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 065b6501-e20b-48af-94f3-9265d968d3c3)(label([ ]))(mold((out \ + 6b5bca5d-99b3-426d-9151-191bb81b4016)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 5e4eb96a-5665-41e1-8b9c-b4cc34bf0c0c)(label(\"(\"\")\"))(mold((out \ + 1917600e-8146-4ae0-921d-a38961fde2c7)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - a56978d8-b5e0-491b-8a2b-7648e836e8fd)(label(if then \ + 5b77bc26-647d-49d6-b857-66949d31fad5)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - f9c291e7-47a6-4d4a-8554-85853d267d7a)(content(Whitespace\" \ + 2d644fdf-b4d6-4f76-90de-b093805bffe2)(content(Whitespace\" \ \"))))(Tile((id \ - 230c9d16-397a-415e-863d-3da8904b8bdf)(label(true))(mold((out \ + c35f9fdc-6716-401a-aeb2-1ca1fdb8e2b7)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 23eee358-279b-4887-acd9-be029dc2a7d2)(content(Whitespace\" \ + 2e6140a9-617b-4c61-86c2-d5a6efbef23f)(content(Whitespace\" \ \")))))((Secondary((id \ - 388b2fee-7809-4967-9e99-ad49f557a9f4)(content(Whitespace\" \ + 11450632-e5fe-4edb-93b3-0c033bd175f8)(content(Whitespace\" \ \"))))(Tile((id \ - ec0c9439-18fa-47c6-89f4-68e8bfd33cb3)(label(1))(mold((out \ + 9d630777-ffe3-4662-aebe-227954581acc)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d15453c9-318b-447a-a077-6c85578cde91)(content(Whitespace\" \ + 8f9ac4d3-711f-44e2-bb70-41cf3a5d7ced)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b3fd18c7-e008-4eea-8532-ac140f0fe666)(content(Whitespace\" \ + e0b40035-4d13-47ab-a4f3-c5f97c8e2923)(content(Whitespace\" \ \"))))(Tile((id \ - b89d7d7f-95fe-42a5-8136-dbcfdaffe43b)(label(1.))(mold((out \ + 3010a196-1dba-4c06-8d15-b416e805b961)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - adff873a-7d51-4403-aa11-d637d7c536b5)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort \ - Exp))((shape(Concave 10))(sort \ + ee6da9f8-bc92-4b2d-8a86-46007a1bb18a)(label(\";\"))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 16))(sort \ + Exp))((shape(Concave 16))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 692d2d7a-9aab-4a1e-8ea0-024c787bd0f2)(content(Whitespace\" \ + 1c2b19b1-999e-4f1d-907a-324df3549257)(content(Whitespace\" \ \"))))(Secondary((id \ - b2bb1ffd-3dbe-4c43-83ee-d0e2f9cbbdab)(content(Comment\"#2x \ + f9ae0f2b-9d16-4ab2-94eb-a1df830bba5c)(content(Comment\"#2x \ err#\"))))(Secondary((id \ - 47be2cd3-b03b-45a8-b26f-f92060bc3004)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5d198806-3a30-42ac-95c0-1df2acdffadb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 82dc0544-9ae9-488a-a338-819aed1a7c66)(label(let = \ + 715595f7-c907-4139-b8eb-e9d61e3dd88e)(content(Whitespace\"\\n\"))))(Secondary((id \ + bf573312-7a77-4788-b725-962b09bb83d7)(content(Whitespace\"\\n\"))))(Tile((id \ + eaed346f-f9a1-4571-a6b0-2408f3b5aa35)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a1005730-3689-4276-af36-eed9216be5cb)(content(Whitespace\" \ - \"))))(Grout((id 700bdac9-76cf-4be6-98b1-c032587de447)(shape \ - Convex)))(Secondary((id \ - c5844890-0517-4035-9bf9-160b2dd905c6)(content(Whitespace\" \ + 24ba7e71-c265-47d8-b043-fb9571296c81)(content(Whitespace\" \ + \"))))(Tile((id \ + a721ed93-334e-4a5e-b279-54818064df5d)(label(?))(mold((out \ + Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ + Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ + 9dd3b184-e240-418f-8237-48eeb811a098)(content(Whitespace\" \ \")))))((Secondary((id \ - 4d4ba1e9-1383-4ca6-b828-421d145b1214)(content(Whitespace\" \ - \"))))(Tile((id bf7c57c8-0bc0-447a-86fd-455f1f8de839)(label([ \ + 34d97d72-dbee-4cda-92ca-02e3b0813434)(content(Whitespace\" \ + \"))))(Tile((id fe7ce7dc-ccf0-41cf-b61e-58713886b996)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - e47fffd1-3404-4eec-8a0c-bb44253a8a3f)(label(1))(mold((out \ + b10593ba-bb07-4ff5-9bd1-f22ed0783aa9)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 9dd9e624-583a-441c-8649-338da0a92678)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + e85e28c3-991c-46e9-9598-42b2477c865e)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a2b0087b-2c53-4d62-b2b3-e1222c73f72c)(content(Whitespace\" \ + 7dc5f42b-8d36-4373-9d0f-8843fea91a1b)(content(Whitespace\" \ \"))))(Tile((id \ - db8f24f1-e424-4ecf-819a-384144315f5d)(label(1.))(mold((out \ + 7ddf8712-61ea-4905-b497-add09996d1c4)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 94ff5cbb-c5ba-4d24-8db0-06a3ac347599)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + eaf9b2dd-0d47-4af1-a5c8-061891ac8f7d)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c0f8eeaf-068f-4d16-bb5d-b7453ed807a9)(content(Whitespace\" \ + 08002c61-30fe-4b28-977a-6e168f820884)(content(Whitespace\" \ \"))))(Tile((id \ - 1ce9a10c-7085-4b41-9ce1-c17cf835b689)(label(true))(mold((out \ + 9f837009-fd6a-42e2-9e5e-3b311d3134cf)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 3f19f742-2f54-4c88-9157-76e4fde5317e)(content(Whitespace\" \ + 91bbf839-f2fc-4312-af44-e8fe70a58b0e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a9ca07b3-0f93-4e17-aae0-418f77d6cf01)(content(Whitespace\" \ + 34cb07ec-c128-4bae-b22b-603778514237)(content(Whitespace\" \ \"))))(Secondary((id \ - 029b56d4-87bc-422d-9b26-05af5d126a65)(content(Comment\"#err: \ + edf1f302-ba8d-4a9f-b713-fc18c8beb475)(content(Comment\"#err: \ inconsistent#\"))))(Secondary((id \ - 09dd70d6-502d-48b2-846e-c5f8efd647fd)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 52f2c094-8b57-407b-80cb-925fe808963a)(label(let = \ + 1d21fb06-5b8c-403d-9347-ccf6b2fb7427)(content(Whitespace\"\\n\"))))(Tile((id \ + 8dffbed9-b88c-47d9-a1c0-5b831c9a1e72)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - f57dce69-2cf4-4a2d-ad9d-7d40490ba01d)(content(Whitespace\" \ + 821485af-473b-4a90-bd5b-7589ed9dab33)(content(Whitespace\" \ \"))))(Tile((id \ - 73fab713-03ee-4900-93aa-2c247ab1693b)(label(_))(mold((out \ + eef784bc-4e2e-4903-9016-cf8fc863ca19)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - f0653d97-c095-44b2-8384-aa7ce7488e3f)(content(Whitespace\" \ + 10b05fdd-ddae-4124-b9b1-21decc4828d0)(content(Whitespace\" \ \")))))((Secondary((id \ - 47df5f2e-3a90-4ccf-b553-316fddb81a57)(content(Whitespace\" \ - \"))))(Tile((id fc2dc4d9-a9e5-45bd-a9d1-6507d203d663)(label([ \ + aaf6379a-c330-4db6-af7b-4dddf9f0b575)(content(Whitespace\" \ + \"))))(Tile((id d8e9da41-110d-4de9-a7de-b44ff0038f24)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - 0b59e204-0333-401e-8afc-d6b4c63394c5)(label(1))(mold((out \ + 8b2911fa-2a94-48f5-a573-d17e83dec5b3)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 034534be-8504-4e02-918d-d368e0fddce7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + c1b21d5f-f1cf-4268-8f26-83b92873027a)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2b1f1e0e-b99e-4c62-a294-ff9dcf4b5520)(content(Whitespace\" \ + 26a10e17-9393-4593-8a58-59124dc53d1d)(content(Whitespace\" \ \"))))(Tile((id \ - 1ea91616-8aec-412d-82f9-4e9351bbd291)(label(1.))(mold((out \ + 66740b97-c103-4946-a427-e7b398cbb185)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - fbe8cbf8-4245-4ba8-a68a-b03eb53c3399)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + a791cfe5-5851-430a-ac3d-e0d46e883523)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 007fb3dc-eaa2-4910-b467-287968ed26d3)(content(Whitespace\" \ + aa9f3248-2856-412e-82a8-dd48d95a1c4c)(content(Whitespace\" \ \"))))(Tile((id \ - e77e5eff-3894-43f6-96e4-13961e664183)(label(true))(mold((out \ + 7073b5c4-0f33-40ed-9055-9767f0a66124)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - d4ed2f71-1740-4928-81d2-b0c0151b5a7d)(content(Whitespace\" \ + 7bfde104-a9c0-4f94-9d06-22beeee37d51)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1943c974-3ce2-4578-940a-728197ec1ec3)(content(Whitespace\" \ + 45117c72-352b-4c5f-af83-8e36735e7e1a)(content(Whitespace\" \ \"))))(Secondary((id \ - 48c7f1ad-35cc-4f97-95e7-c68ffe8023f7)(content(Comment\"#err: \ + f2b7d7e5-72d4-4d1f-b625-e9c3898e5468)(content(Comment\"#err: \ inconsistent#\"))))(Secondary((id \ - 0f0be7c3-2c77-4e05-aba3-ae8405f61d16)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 03a920d7-95a2-4754-8416-1123bd6f2f11)(label(let = \ + ab630234-78a5-4b9a-8529-f99de22909a2)(content(Whitespace\"\\n\"))))(Tile((id \ + 65f68252-d38e-4ca1-a53b-f5e5695ec473)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 826ad200-168b-4a5f-af94-df033e42e4b7)(content(Whitespace\" \ + a6da039f-4d44-4717-b047-1d45349c39ed)(content(Whitespace\" \ \"))))(Tile((id \ - ca9ddb7f-5f91-4956-ba30-44aa1648f245)(label(_))(mold((out \ + ddb68bc9-8439-4ce5-8fd0-832fa669dcd4)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 6dc24ff9-bf61-4a92-8f2f-b7c3f67217c2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 52625e6f-568c-4303-adbc-109bccc6e8f3)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 1499fbd3-ca66-47ba-8411-7500ca3fe394)(content(Whitespace\" \ - \"))))(Grout((id e6ddec97-cd3c-422a-b214-ca8fd61c2331)(shape \ - Convex)))(Secondary((id \ - 8d2a046f-1546-4749-858d-626905d77eff)(content(Whitespace\" \ + e99eb9ec-1890-4588-bc89-81b5d2c7cc89)(content(Whitespace\" \ + \"))))(Tile((id \ + feb58019-e9b3-4ab8-aac6-50469697595e)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ + f3af026d-83c5-47e3-9808-4da209e81c33)(content(Whitespace\" \ \")))))((Secondary((id \ - ae4808bb-0f13-4a47-8d93-7dc155ad32bb)(content(Whitespace\" \ - \"))))(Tile((id 32ae3fb5-4544-4cd4-a792-f9256875488c)(label([ \ + 9d41ec99-7d66-4e27-8410-edea51fb1893)(content(Whitespace\" \ + \"))))(Tile((id c8cf18cd-3cce-4141-93e0-262c397f7378)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - ff441609-be5e-4d1b-b544-9799d7a3011b)(label(1))(mold((out \ + 7e5af338-1e12-4b77-9ef0-b9435cecbe8e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b6463e8d-e7b5-4545-9fc7-4924aa2693a6)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + ce3cb6e9-ae9b-426e-8ea1-7d34de49cefe)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cd358f94-2daf-4f24-8548-3d5bce3213c0)(content(Whitespace\" \ + eaf9f29f-6f60-4bf4-af45-656bb4cc205c)(content(Whitespace\" \ \"))))(Tile((id \ - c5e0a263-a161-49ed-91c8-598982eab8ce)(label(1.))(mold((out \ + 750c9a5d-7491-492b-833c-7ed0f5fac511)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 1f911b96-1c72-4e92-92a6-7f2d5a352c90)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 31ffd780-7310-4df1-8a92-a89e7cff64b5)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5b6d3a14-25dc-405b-8f4a-c0577ded0d7c)(content(Whitespace\" \ + d07f6877-43fd-42d8-86b5-d08dba26aa21)(content(Whitespace\" \ \"))))(Tile((id \ - 433e239a-9d57-4e8d-88d4-3d051553fc95)(label(true))(mold((out \ + dfa5256a-64f0-410e-b802-6ba2406cdde5)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - b8f71dee-301b-4173-8fd6-f5daf5c8c00d)(content(Whitespace\" \ + 54dad9f1-53be-4a73-bd83-b415d7cd8290)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 534a6cef-6e24-4f16-a7ba-2edbd118aab9)(content(Whitespace\" \ + 91d07bd1-6bd3-4208-b25f-6eb9a8d4b664)(content(Whitespace\" \ \"))))(Secondary((id \ - 0051a088-619a-4934-8f53-0219031c1bb2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3df4acfd-98e9-4fce-9853-95fb92574871)(label(let = \ + 345852c2-45de-4087-8256-52e284d261d1)(content(Whitespace\"\\n\"))))(Tile((id \ + 0a12dd2c-678e-4455-bd6d-5bc663e5dc56)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 1cfe8911-f9b5-4422-95bb-443dae0d0105)(content(Whitespace\" \ + 940e0344-3330-4333-831a-4aea460376bc)(content(Whitespace\" \ \"))))(Tile((id \ - 25d47a4e-06ae-48dc-99d6-32a41983492b)(label(_))(mold((out \ + 339ffff7-2b83-463e-a854-3c3437ab5d28)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 3959b315-bd21-4c0d-8385-3dc34326cdb5)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + f9197e5c-570e-4ed8-9a4f-29cc5f82adcb)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 41cd46f9-c78b-483e-bc9d-5ba5248ce0c8)(content(Whitespace\" \ - \"))))(Tile((id 33511225-301f-493f-9ac5-0c48a3b2301e)(label([ \ + e48bb0db-e22f-4d30-8935-f1995d203638)(content(Whitespace\" \ + \"))))(Tile((id e17ae24a-882d-4d6a-9868-25a53e79b1f4)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ - 1))(children(((Grout((id \ - a7219f30-6814-4af1-9fb1-560e9131e0d9)(shape \ - Convex))))))))(Secondary((id \ - 09487b14-597f-48f5-bf3a-5f01ce9e2bed)(content(Whitespace\" \ + 1))(children(((Tile((id \ + af0fc4b3-ab89-401c-ae3c-0b81a39ec383)(label(?))(mold((out \ + Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ + Convex)(sort \ + Typ))))))(shards(0))(children()))))))))(Secondary((id \ + 0e9b0fa8-2a42-40ee-9b1f-3df9310411ce)(content(Whitespace\" \ \")))))((Secondary((id \ - 5370e5d1-290d-4e66-9ba7-4c03e6723ff9)(content(Whitespace\" \ - \"))))(Tile((id 6b62996f-8ade-4ed9-817a-6b538a6918eb)(label([ \ + 05e3daf7-8ef4-472f-a181-3f8844bbd44d)(content(Whitespace\" \ + \"))))(Tile((id 381b65da-24d4-4d0a-a530-74f29497b0da)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - 9a080685-90e3-41d1-8f92-e7d253dc7245)(label(1))(mold((out \ + ab7bdb41-74f4-422c-8a53-61c996a9fe5e)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 369a1435-3a95-444a-9322-4055172d6863)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 86ea2bc8-08b6-4689-a027-a44ba1212a79)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - d6a5c2d1-aed3-4c53-a454-2d3922735b2f)(content(Whitespace\" \ + 2dff3c19-e5d1-4326-8692-b36e0db3a409)(content(Whitespace\" \ \"))))(Tile((id \ - d58190ee-5471-4175-8fef-aceb5596ec09)(label(1.))(mold((out \ + a0bc5a40-469c-46f1-8955-5319a19422fd)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d8eac610-d479-4c9e-9577-cb9989ee9e8c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + e75a574c-d344-44d5-8d7e-20ae67e3e853)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 03e22831-29ab-4096-8d75-455d5c164e84)(content(Whitespace\" \ + feee9ac1-d1ab-4645-b57c-7a03164d1678)(content(Whitespace\" \ \"))))(Tile((id \ - 782f78ca-f815-4a62-a570-fcaf036f954d)(label(true))(mold((out \ + a35b9d67-d86d-4b06-9dd0-4d8be5399211)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 2797e94b-90e6-4c45-8cb7-e069a6e5c16b)(content(Whitespace\" \ + 6497b3cb-a95d-4442-bcc3-d8090e2e5a22)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 72fe75f0-3e31-4113-8f25-fce1dfafcf1e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fc4a0da5-2b7f-467b-9d51-c79d28bbd2ce)(label(let = \ + f8e9353a-b5b5-4fbd-8032-b39888fb9411)(content(Whitespace\"\\n\"))))(Tile((id \ + 7fd18fd5-b4a4-43eb-8749-0e5931a2c580)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 663ff7ee-c38f-43fe-9615-7c4489dfa541)(content(Whitespace\" \ + 4782f42e-6a21-48eb-bca8-a256a683ff8d)(content(Whitespace\" \ \"))))(Tile((id \ - 66a49fc3-2189-451d-8f5b-87a4e7a4a1fd)(label(_))(mold((out \ + 4f66a6ba-5b88-484a-9a2f-263ac3c401d6)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 4ede6a03-d0d7-4332-8382-c88b3e0c2d11)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + df6fc56f-db6e-4c65-a21e-d6449d973b24)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2bf08639-ade9-4636-bb33-b789e670937e)(content(Whitespace\" \ - \"))))(Tile((id 971f3ba1-d70d-47d7-a9a1-dc52bc83fd36)(label([ \ + f57a9db2-4b27-4d4e-9011-a65d52f06c8d)(content(Whitespace\" \ + \"))))(Tile((id a5fc12b1-b444-47b3-be8f-64b0cf7c3db4)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 5632be0d-1afc-4c45-9fba-7b815246c884)(label(Int))(mold((out \ + 89de9b90-f6f6-4cdb-887e-9ac4425f51df)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - e016ef9f-b73f-4ca5-87c0-6e1b9d52fb73)(content(Whitespace\" \ + 10368c5e-2795-4710-9718-7eecfcc31f46)(content(Whitespace\" \ \")))))((Secondary((id \ - 40558f24-ca8d-4dda-a0b3-13a39b1927f3)(content(Whitespace\" \ - \"))))(Tile((id a949b592-988a-46d0-ac9f-176609db6dde)(label([ \ + 374708fd-3c1a-4e62-a8c5-211cee8a2c24)(content(Whitespace\" \ + \"))))(Tile((id 0bc48421-27a1-4721-be67-208b92fd3629)(label([ \ ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Tile((id \ - 06fa3969-d9ca-442b-825e-dc407e6f6723)(label(1))(mold((out \ + 3ec40dab-a842-48f6-a98f-58c6c4ffc14d)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2bb73b05-ca08-4c0a-a04c-dadb433de26a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + f52a6f4b-48e7-4790-b129-f7dfe605db12)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 0f424bab-a2f3-4fe0-8a09-8f2cd90c3a07)(content(Whitespace\" \ + 018e1211-5282-465d-aa1e-c01c5a5dd204)(content(Whitespace\" \ \"))))(Tile((id \ - 5a87620b-a433-4fb9-9d1a-09c9b3beab6a)(label(1.))(mold((out \ + 90aa3873-9c7d-42ae-9212-56d5ddb7be25)(label(1.))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 512129f6-6a3c-49fa-bf77-83e9e10f4705)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 2de8f116-03fa-4345-b8fb-409a2713a817)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 3ce93584-77cc-4b97-a406-c4462d511dcf)(content(Whitespace\" \ + a606263a-dd65-4228-9392-7320e56a049d)(content(Whitespace\" \ \"))))(Tile((id \ - 37022cb4-317b-4348-a086-5283db30d7b9)(label(true))(mold((out \ + 5de1c5ad-a26e-4abb-84e2-9d8885d9c503)(label(true))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 67645fa7-6a97-4584-8064-fa31c7466741)(content(Whitespace\" \ + e11206dc-f3ba-4c8d-b9d7-3729a189997a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a8ae0eb5-666a-43ff-a24c-b8f82ebd4e9c)(content(Whitespace\" \ + 59804776-fbab-4e7f-b4c9-5170c38856cc)(content(Whitespace\" \ \"))))(Secondary((id \ - c1852265-6f47-40cd-83ef-8fe57cae7e70)(content(Comment\"#2x \ + 49a27604-e1ec-4dd3-9ae0-508c79589a59)(content(Comment\"#2x \ err#\"))))(Secondary((id \ - ce5d18a4-9cc3-4438-a7f3-431f8d3a2461)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - dac99d0f-a7ce-4629-9f71-f49bd6a718c6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 440becc1-96de-4739-b860-ca47255d3d93)(label(let = \ + bd8644c6-63d6-4e85-b190-e9e79a73221a)(content(Whitespace\"\\n\"))))(Secondary((id \ + 508de859-8307-4c8c-adec-531192ad39aa)(content(Whitespace\"\\n\"))))(Tile((id \ + 09facb73-3cc6-4f2f-a2cb-849b8dfb8905)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - d4ab6143-0bfc-4c9e-9bfb-b9ee50bd5289)(content(Whitespace\" \ + 075b678a-2685-4cb7-b20a-30ec25a8b215)(content(Whitespace\" \ \"))))(Tile((id \ - 620340ff-4a97-4b5f-b39b-76f560bf58db)(label(_))(mold((out \ + f1fd4bc0-60a6-449a-9520-06e22dd15aae)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e7ff297f-b0a7-4c0d-9772-47acfe9a6d9c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3ca23a48-76b9-4bb1-b28e-63c4ba2ad8fe)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6f00d686-a3ff-4431-b4c2-b70d3b4eca14)(content(Whitespace\" \ - \"))))(Tile((id 00df244e-2507-40cf-a767-3a29432ad8fe)(label([ \ + f2b2ea56-5eca-4416-8fbf-3d5af26920e9)(content(Whitespace\" \ + \"))))(Tile((id 96f67279-339b-424f-a479-60000f7ed062)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 130f2a32-39da-49cf-a550-754622dc404a)(label(Int))(mold((out \ + f3359e4c-cec1-4f38-8557-14bcf32567ad)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 1eab60a0-5c07-4a92-82db-5971b1db666a)(content(Whitespace\" \ + 9daeb52d-95b6-48dc-a7aa-86925d532ead)(content(Whitespace\" \ \")))))((Secondary((id \ - f10579e0-e416-410d-8ae3-12925c91671a)(content(Whitespace\" \ + 4b957fd9-eb4b-4937-8d0d-af987a62a66e)(content(Whitespace\" \ \"))))(Tile((id \ - 16944a0f-57f1-4e24-a573-1d9231d16e57)(label(1))(mold((out \ + f09855d7-cd50-4a1f-9ed7-85bc7a93832f)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 317f017d-a9c9-467d-8cb9-e56c0495a060)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + 1fe29849-3433-4740-997d-668eef8d71bc)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 6aa18463-de32-445c-8338-c11780d4d4d0)(label([ ]))(mold((out \ + fddd3561-51a2-491a-97e0-6893154e3b03)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4a870256-b389-4bbb-95bd-47834fae994b)(label(2))(mold((out \ + 7a30df1d-81b1-46fd-8c4a-bfdfaf7539fc)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 369ea7b7-0d09-42c6-8b54-6cb084d8270f)(content(Whitespace\" \ + d9a4e603-08c1-48ed-b113-0009ac910bfd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5c3c92c6-a066-49fb-ba63-589c5b309625)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6dbcf6a1-4176-46e9-802a-b16c71d040ab)(label(let = \ + a4f64779-84df-4eff-ad25-7229fc9add4e)(content(Whitespace\"\\n\"))))(Tile((id \ + 2eaa6225-8b50-4fac-af7c-cdf6ac0f02a6)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 9ef098ad-fe36-44f2-9487-6d9ff6656d48)(content(Whitespace\" \ + 5f0766be-60e9-482f-8a6e-6a64ce842de5)(content(Whitespace\" \ \"))))(Tile((id \ - 1d8fcf7b-fa79-4de7-a9f4-55fff3ada3bc)(label(_))(mold((out \ + 6c0df814-7020-470c-97cc-0f341aca78f3)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - cca7629b-c4d5-4045-a00e-197b16dffc60)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + fad6a5cb-f485-4b9f-82a3-b8320e4fa334)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 7eaffe3b-5b20-4937-a693-400f5a3d7987)(content(Whitespace\" \ - \"))))(Tile((id d1ce8a09-d6e6-443e-8fb6-77904043ba41)(label([ \ + 492524db-e03a-4c8d-9a86-b26f60766009)(content(Whitespace\" \ + \"))))(Tile((id 115fad2d-7365-4eb3-a443-de1405399eb7)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - f2827f6e-aef6-40eb-9e99-959cbeb8f626)(label(Int))(mold((out \ + 6f8c6706-b54f-4238-a10a-ff9cf1665bef)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a5a96d03-071f-4595-bb82-1f287d604bb3)(content(Whitespace\" \ + a3a40f71-1c95-4f85-96a2-fe2a8f17114f)(content(Whitespace\" \ \")))))((Secondary((id \ - aa9f6dd4-afc8-432f-9060-c140c31c2b5b)(content(Whitespace\" \ + b3ee84c6-5986-4301-8114-32bf685a1d09)(content(Whitespace\" \ \"))))(Tile((id \ - 9c1620d9-ae11-41e1-ad5e-663b10aa1c56)(label(1.0))(mold((out \ + 474aa01d-ec29-4809-9449-d6bdcf751a01)(label(1.0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4c545fe6-4860-489f-aaed-de76ee3722c2)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + bf89fc82-3456-464c-8b15-538542e3e74d)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 90f05b86-6ed6-4da8-a1da-5bc842610088)(label([ ]))(mold((out \ + 9af9f47e-fb39-487c-b81b-d7595b7ed4ec)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 357ac56b-6008-46c3-823c-f71e965f9072)(label(2))(mold((out \ + d174f6ac-82a8-4e02-a620-0c5f4d69469f)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - ef444fb8-d541-400d-9576-a500ff7bea51)(content(Whitespace\" \ + d077972b-d5d8-4f44-9782-2eadffb6362f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 125ff66a-6b89-4566-98fd-2a802fd970b5)(content(Whitespace\" \ + 8b3b7181-bdce-48f7-a421-444869d6724f)(content(Whitespace\" \ \"))))(Secondary((id \ - 5939a641-eb88-4f4f-a322-69b1571271b5)(content(Comment \ + 7fe3f81a-c96a-4136-930e-308dbe1b388a)(content(Comment \ #err#))))(Secondary((id \ - 7baecabf-72e3-4455-9cfb-16777b0057ac)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bd06e95c-6b0f-4708-b642-e09aec6b32ef)(label(let = \ + 843fd20e-f889-44d5-9b72-a22c3ff45ac3)(content(Whitespace\"\\n\"))))(Tile((id \ + c332994a-4006-41ad-9b56-aa50ab90e60d)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - bff70791-8893-4e8b-9f92-e0ac69a6e939)(content(Whitespace\" \ + be403d06-669b-481c-9837-90f26e2f9277)(content(Whitespace\" \ \"))))(Tile((id \ - 34216c66-e05e-4f03-91a9-61f892a850f8)(label(_))(mold((out \ + 58666b1c-385c-4fcf-bace-08d280664e93)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f7733b0c-dd77-44b7-b56e-d0c1a6636b6c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 0b67de8b-c914-41d4-aded-0de955e9e96f)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8f04892c-18d2-404b-9894-3e9aecc981e2)(content(Whitespace\" \ - \"))))(Tile((id b48afdf7-f131-4d9f-b829-0bb01434f348)(label([ \ + 383def64-d2d5-49e7-b908-233f1356abd0)(content(Whitespace\" \ + \"))))(Tile((id 959d1342-a60f-467c-9e6b-736a06e3b167)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 2546b193-bb89-4e2c-a1e1-c0c3aa775d8a)(label(Int))(mold((out \ + ed75b169-9e3e-4614-b0ab-bd533e3cb14e)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 925587ff-8973-457c-853a-0f6c71cd9c4a)(content(Whitespace\" \ + c081f642-8c3e-44c5-ac73-7096709f2140)(content(Whitespace\" \ \")))))((Secondary((id \ - 5ca988e2-330d-4e80-91b9-e9031eba4cef)(content(Whitespace\" \ + 7a586f57-38eb-45d4-b816-acb66c51c1b4)(content(Whitespace\" \ \"))))(Tile((id \ - ed424387-c3f5-4d4e-a276-ae526e114f39)(label(1))(mold((out \ + 9763aeaf-c06f-4b68-a254-a74077d5e931)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 41bdc089-5d46-461e-91f0-3c4d5c8c975c)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + c6fb1be3-3c11-4f07-9fde-7dee7f515a86)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 75eaeaea-6d82-4f4f-8ff2-c3d0163c6017)(label([ ]))(mold((out \ + 4560f41b-0387-4d28-925d-c84471ac0707)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4516c234-075e-4464-965c-666a0de1e8cd)(label(2.0))(mold((out \ + 686f2d71-762a-4ab2-aa74-49b68f2c06bf)(label(2.0))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - cb0e4361-9db0-45cf-9b66-9f1812a87332)(content(Whitespace\" \ + 0be59aeb-1745-4b49-bbb6-8fde7dc8189e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1be9f5d9-ceb5-4b89-811d-6975be2757f4)(content(Whitespace\" \ + 863e7f16-0102-446b-b2bf-8b0a77ba6cde)(content(Whitespace\" \ \"))))(Secondary((id \ - 8cd1685f-b46f-4d3e-81e3-632df69a6af7)(content(Comment \ + ae46b032-fb59-479e-84bb-18846b40ac4a)(content(Comment \ #err#))))(Secondary((id \ - 0193a545-1ce2-4a17-94b8-be94999b8a06)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b5361ea7-4e12-48c1-8444-5e38cbb19a59)(label(\"\\\"BYE\\\"\"))(mold((out \ + a8f1d162-0617-4555-b6cb-a3921504c7fc)(content(Whitespace\"\\n\"))))(Tile((id \ + c50d9505-c1c8-4d29-84d6-fa5b82723196)(label(\"\\\"BYE\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))(ancestors())))(caret \ @@ -14049,36 +15183,36 @@ let startup : PersistentData.t = # Each line should show errors or not as indicated #\n\n\ let _ = unbound in #err#\n\ let Undefined = Undefined in # 2x err# \n\ - let true = 2 in #err# \n\n\ - let = if true then 1 else 1. in #err# \n\ + let true = 2 in #2x err# \n\n\ + let ? = if true then 1 else 1. in #err# \n\ let _ = if true then 1 else 1. in #err#\n\ - let _: = if true then 1 else 1. in\n\ + let _: ? = if true then 1 else 1. in\n\ let _: Int = if true then 1 else 1. in #err#\n\ let _: Fake = if true then 1 else true in #err#\n\ let _, _ = if true then 1 else 1. in #2x err#\n\ let _, _ = (if true then 1 else 1.), in #err#\n\ - let _: , _ = (if true then 1 else 1.), in \n\ - let [_] = [(if true then 1 else 1.)] in \n\ - let [_] = (if true then 1 else 1.) in #2x err# \n\n\ - ( )(if true then 1 else 1.);\n\ + let _: ?, _ = (if true then 1 else 1.), in \n\ + let [_] = [(if true then 1 else 1.)] in #2x err#\n\ + let [_] = (if true then 1 else 1.) in #3x err# \n\n\ + (?)(if true then 1 else 1.);\n\ 1(if true then 1 else 1.); #err#\n\ (1)(if true then 1 else 1.); #err#\n\ - (fun -> )(if true then 1 else 1.);\n\ - (fun _ -> )(if true then 1 else 1.);\n\ - (fun _: -> )(if true then 1 else 1.);\n\ - (fun _: Int -> )(if true then 1 else 1.); #err#\n\n\ + (fun ? -> ?)(if true then 1 else 1.);\n\ + (fun _ -> ?)(if true then 1 else 1.);\n\ + (fun _: ? -> ?)(if true then 1 else 1.);\n\ + (fun _: Int -> ?)(if true then 1 else 1.); #err#\n\n\ let _ = fun x -> if true then 1 else 1. in #err#\n\ - let _: = fun x -> if true then 1 else 1. in\n\ - let _: -> = fun x -> if true then 1 else 1. in\n\ - let _: -> Int = fun x -> if true then 1 else 1. in #err#\n\ - let _: -> [ ] = fun x -> if true then 1 else 1. in #2x err#\n\n\ - ( )::[(if true then 1 else 1.)];\n\ + let _: ? = fun x -> if true then 1 else 1. in\n\ + let _: ? -> ? = fun x -> if true then 1 else 1. in\n\ + let _: ? -> Int = fun x -> if true then 1 else 1. in #err#\n\ + let _: ? -> [?] = fun x -> if true then 1 else 1. in #2x err#\n\n\ + (?)::[(if true then 1 else 1.)];\n\ 1::[(if true then 1 else 1.)]; #err#\n\ (1, 1)::[(if true then 1 else 1.)]; #2x err#\n\n\ - let = [1, 1., true] in #err: inconsistent#\n\ + let ? = [1, 1., true] in #err: inconsistent#\n\ let _ = [1, 1., true] in #err: inconsistent#\n\ - let _: = [1, 1., true] in \n\ - let _: [ ] = [1, 1., true] in\n\ + let _: ? = [1, 1., true] in \n\ + let _: [?] = [1, 1., true] in\n\ let _: [Int] = [1, 1., true] in #2x err#\n\n\ let _: [Int] = 1::[2] in\n\ let _: [Int] = 1.0::[2] in #err#\n\ @@ -14090,1728 +15224,1727 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Secondary((id \ - 1f7bcab0-da00-4299-b43a-3ca1ef8ca2f5)(content(Comment\"# \ + 579a2658-f19d-496b-83bb-3840422b8218)(content(Comment\"# \ Lambda Calculus via evaluation by substitution \ #\"))))(Secondary((id \ - a927feba-9938-45cc-88da-4ca88fbace46)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 59554d6d-5be9-43cb-a4d6-1edf55e3c098)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 41573bf5-78b0-4f95-b6e2-3c4ce9dbd6d5)(content(Comment\"# An \ + 58d3c269-21cb-4b04-839c-d1e745cd6c9a)(content(Whitespace\"\\n\"))))(Secondary((id \ + b3539b17-f970-4b91-a865-6f442db15e21)(content(Whitespace\"\\n\"))))(Secondary((id \ + 53f9307e-6888-4508-86de-8c15c2a0b734)(content(Comment\"# An \ Expression is a variable, function, or application \ #\"))))(Secondary((id \ - 5e7af976-9c1e-4841-847a-70c966af0583)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a76c3b61-221f-4e94-b8fd-5b45183df229)(label(type = \ + c9014d63-730a-4661-b521-6b44ae002db9)(content(Whitespace\"\\n\"))))(Tile((id \ + 3b6f8f45-d98f-453f-815a-57eaf3789cbd)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 40bbb356-6987-428c-a8ed-2a6b99066f39)(content(Whitespace\" \ + 904b8eb7-4c19-4abf-8637-740ad6c6186a)(content(Whitespace\" \ \"))))(Tile((id \ - 5b4a5ae1-4e37-4f29-abcf-0ce0108de2c0)(label(Exp))(mold((out \ + 66b489b4-bfd2-406f-810e-f47537d21ae6)(label(Exp))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 1cc38bcf-e0a0-416f-8cc3-1655722f05a4)(content(Whitespace\" \ + 6d84ad07-906b-4b91-9aa3-18e606c93cf1)(content(Whitespace\" \ \")))))((Secondary((id \ - 09d316ec-a283-4c84-a902-cdb1b0d8fcc7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5c00fca1-9f11-4ed9-bb7b-507bdcb1fae8)(label(+))(mold((out \ + e23cac29-dd75-4613-93c9-77f014f56f31)(content(Whitespace\"\\n\"))))(Tile((id \ + 81ac84c9-29d1-463c-941e-57b267719ff3)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f097f93b-c8d3-423f-8301-953e7fa560a6)(content(Whitespace\" \ + 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ + b4a22f35-2ed9-430f-919e-b2ee80cee5bd)(content(Whitespace\" \ \"))))(Tile((id \ - f02ccc58-351d-499c-87ed-687857f5aafa)(label(Var))(mold((out \ + 8b41055c-70d6-45c2-940f-5c2d826e61db)(label(Var))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 8096ab83-dd0c-47c0-bb76-b0e811b0c1bf)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + bb5c65e6-bd07-41b2-a344-a687b0f42718)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - a375c863-da66-4010-a25f-778944a6db48)(label(String))(mold((out \ + 6eac0ae4-7b36-443a-88c7-509db5d45436)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 8ee1d2e1-06c2-441c-8fc4-138532d469d2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bc72ff0d-8a9d-4ee4-ae45-b2c94f67eca9)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 354cfa7b-69f9-4d5a-83d6-0a2c199a74c3)(content(Whitespace\"\\n\"))))(Tile((id \ + 35331ee6-8a63-44da-9424-40ac844466c4)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c7ed4279-1d9d-44bf-af67-23ca84632b04)(content(Whitespace\" \ + 65a261a6-148a-4d37-9ab6-93756a5bc85a)(content(Whitespace\" \ \"))))(Tile((id \ - e2c11b78-0c54-448e-9cca-e4c8bfc8bbb2)(label(Lam))(mold((out \ + e25ed46e-a960-4707-bc68-c0b815371fc1)(label(Lam))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 4d2df657-924d-4f14-9eec-0ecd7f5c21c9)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 36db6124-df59-471f-94fc-3a309d41252c)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - a64e19fe-5bc6-4139-8b40-96e3583fa4fc)(label(String))(mold((out \ + 93389af3-f3ed-495b-85cf-3982c385fa1e)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - f3daa7e8-f243-4222-8ee4-ddc0f9155c46)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + f32f8b6d-872c-441c-b5f3-77d23dc887e8)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 447e6442-bdde-46f7-8882-6bb1f68d67d7)(content(Whitespace\" \ + 3f06cf74-6b7d-47c6-b07f-05c09466cc24)(content(Whitespace\" \ \"))))(Tile((id \ - 15875387-e3ed-4473-9c6a-453a68e8b117)(label(Exp))(mold((out \ + 82369742-b375-4963-99a3-f73ce9d30508)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 0f46618b-71ec-4bf5-88ca-75d3bf0a549e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cd1bd397-be90-494c-9ea6-17847e56b805)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 5be3a31d-1b8e-401e-bde0-14ded0a7ff4c)(content(Whitespace\"\\n\"))))(Tile((id \ + 9246efbe-34a1-41f7-92bf-41568937b53a)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 04185bae-3d12-4049-affc-da427e740d6b)(content(Whitespace\" \ + 68ef1881-fac3-41c7-99ef-a9243d67551f)(content(Whitespace\" \ \"))))(Tile((id \ - 559ea70c-729f-4295-a48a-c27dd9fad885)(label(Ap))(mold((out \ + e8e6e9f3-3788-4813-a8ec-850f7cbe3241)(label(Ap))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 2e0537e7-5ee1-499d-9edf-c2eae0b53264)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 2680b9e1-85d9-4910-bfb2-176f29dfa383)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 2bbfcd7d-a9a0-41f5-9f2b-65e6f4f0fc50)(label(Exp))(mold((out \ + 73ed87ff-dd1a-4f71-aa3a-5dd42e15b926)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 40bda1cf-399a-4368-9a93-1b34120aafac)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 442dcc5c-8386-4ec1-bc9f-2685b18ab7d0)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4f27a6c1-9f31-4f48-9f67-81fb4bdb8815)(content(Whitespace\" \ + acf2010e-395f-40c6-a340-59ef389a3e49)(content(Whitespace\" \ \"))))(Tile((id \ - f9b126eb-6ecb-42a4-9b11-255fcea67577)(label(Exp))(mold((out \ + 7e9227bd-8441-4fa9-9c16-024a91a9e513)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 297a96d2-948f-4fdd-9884-8e547ed933a8)(content(Whitespace\" \ + 39e00c73-a5a2-4249-a0ae-df55a1f0f6b4)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 60f3914c-75d8-45b9-91c8-408f8d99eded)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0a6f99c3-1727-45b2-a08f-1194554cea5f)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - dfed049c-1560-40ad-adef-7de21ec01615)(content(Comment\"# \ + c2faba41-d1f2-4720-8245-64f06fc2ce13)(content(Whitespace\"\\n\"))))(Secondary((id \ + 4baf2caa-6b6d-4546-b6a2-0cfa47a86289)(content(Whitespace\"\\n\"))))(Secondary((id \ + 18808867-1152-40f9-ad32-2c142d01d247)(content(Comment\"# \ Syntatic Equality of Expressions #\"))))(Secondary((id \ - 02c2cda8-cd30-4c87-8633-79f6279f2923)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d1c59a7b-15de-49ae-aaf5-056c65738d18)(label(let = \ + 7b04a7ea-2e9a-45bc-bd28-01ca94ab1ce5)(content(Whitespace\"\\n\"))))(Tile((id \ + 9af020ec-3e6a-42b5-ae4a-4416f5b8141a)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 321c3b7f-71b6-433f-8ba5-3a176f503ee2)(content(Whitespace\" \ + 891fac75-70a7-47a2-ae6c-f264a06875c1)(content(Whitespace\" \ \"))))(Tile((id \ - 20a41284-a854-463e-8f08-880a85b83d3c)(label(exp_equal))(mold((out \ + e4ca9d4f-8942-4826-9fd7-757ca711a3e2)(label(exp_equal))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 78495729-2b1d-4e8e-8f1d-c9d28f6a7a60)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3505d0bf-0ff7-4e6e-8e69-bb2a191cf4d4)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - dbee2db7-3f10-4979-9024-bc34f7453770)(content(Whitespace\" \ + a497eb20-cf3f-4ef7-b165-45a9e855923a)(content(Whitespace\" \ \"))))(Tile((id \ - 72d5e73e-ff5a-4bbc-9d1d-7e6e1581e413)(label(\"(\"\")\"))(mold((out \ + afe12787-4b57-49c8-baed-316afa71c5fc)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - cf35fc7b-7318-4d81-8163-b650fd7de4f0)(label(Exp))(mold((out \ + 192cce66-f0d9-4434-b6d1-7aa733083586)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 3907ffc4-af80-403a-839d-82b1232395f2)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 8063def0-fde4-4cab-a9c7-fc7b3f962da9)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d7aca28b-65fd-473a-9fb6-65ea96ef78d6)(content(Whitespace\" \ + 7db42639-afc1-4b83-9b03-639d9edb28b3)(content(Whitespace\" \ \"))))(Tile((id \ - 22f01e9c-afbb-4e08-8acc-d315f402817b)(label(Exp))(mold((out \ + b2dc55fa-30a5-4cc6-84f7-4c46ad679c4e)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 4ab91533-0de3-4d84-b8b2-7fbe33be34a4)(content(Whitespace\" \ + d0a96d6b-dff9-48dd-b423-a5968f7e4aed)(content(Whitespace\" \ \"))))(Tile((id \ - c59e6b78-fc5b-47bb-b830-9d4fe67c0b13)(label(->))(mold((out \ + c1175695-ebd5-427d-92d3-fb22474cc58c)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 7b30dd6b-c498-4637-ae4a-f6afea955a90)(content(Whitespace\" \ + 770f873e-d093-4861-bee2-11d454695ca5)(content(Whitespace\" \ \"))))(Tile((id \ - d000d521-0821-47e0-b655-52db20eb828a)(label(Bool))(mold((out \ + ad33920a-601a-4246-9426-7eb90bd7571f)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - af54a209-ee0b-4c7b-961a-d2565352172e)(content(Whitespace\" \ + 05298787-a73a-43ab-8ffc-1046f3fc8b05)(content(Whitespace\" \ \")))))((Secondary((id \ - 5668d661-45f0-4cfc-bfb1-264fca05b8d8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2b529252-636b-410b-8ff5-c917ee8e8b64)(label(fun \ + 184629c3-7fad-4f2b-9c53-a74ca7a3d63d)(content(Whitespace\"\\n\"))))(Tile((id \ + 98082679-8cc9-4d38-abe5-4ac6e4cea1cd)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 64120593-aefa-4317-bd9d-7901b0b718dc)(content(Whitespace\" \ + 9ec23bc0-f548-42a0-b241-aa75d9fa6527)(content(Whitespace\" \ \"))))(Tile((id \ - 24182c8a-50a3-4da8-be1b-25521534c38f)(label(es))(mold((out \ + 689fed0b-30e9-4ca4-8fe6-fda72c60e103)(label(es))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - db377abb-9d27-4f80-aaee-29019fe3fbee)(content(Whitespace\" \ + 793d6fcd-45b8-4d78-a38e-d3fd69ca38a7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b6e75de0-9f67-4707-b9c0-c1728ae46b3b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 42e957de-23fb-4f1d-b783-5e0467dae1bb)(label(case \ + 3ac5410d-2711-4db4-9ed1-d65e01c6903b)(content(Whitespace\"\\n\"))))(Tile((id \ + 180d0645-b358-424c-b871-1289619589bc)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 41b2af43-6a43-4d11-a81e-d9d17f4bbfd9)(content(Whitespace\" \ + 75d98680-2cfe-4d2c-8005-6f770a2c4a58)(content(Whitespace\" \ \"))))(Tile((id \ - f8796638-2f86-4f8a-b536-31faba9bb8ac)(label(es))(mold((out \ + 4d98706e-25e6-4404-bd81-b4c19b19db2d)(label(es))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 31770179-3d0d-4744-81af-ca2b9883eab1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2c2de1f3-9f64-4731-b40b-2ae4c85c9487)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + cb5d85d8-6c5f-4d35-acf9-2716f96c11fa)(content(Whitespace\"\\n\"))))(Tile((id \ + f018da47-6f03-4d21-9a18-320122d8ce0d)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - e616366b-7709-4c52-9c3e-b4b841ec4de0)(content(Whitespace\" \ + 6c565fa4-0199-4227-aad8-50f82c08dad5)(content(Whitespace\" \ \"))))(Tile((id \ - 26d3098a-59f8-4a5c-8b5c-e0fa8621fcbd)(label(Var))(mold((out \ + d6605b32-8436-481e-a4ab-66074fd68305)(label(Var))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ef5324c2-ee25-4eeb-a37b-cfc90fcd42e0)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + dee86624-d32e-4e70-8edd-d4e7d58d37f7)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 15ec3550-c2c7-4ea0-97c4-367815d9b5b7)(label(x))(mold((out \ + 13b4fe0e-bcaa-4283-8f3f-a0e13dcd40bb)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - cf5cc86d-6091-4092-99b1-2fe5cf19e552)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 493926e4-6cbb-44cc-b206-ead1cec82092)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 583b25e8-f45f-40d9-b4c5-cb84f2061a99)(content(Whitespace\" \ + 05377add-3eba-48f8-ada1-26eb74fbc3c0)(content(Whitespace\" \ \"))))(Tile((id \ - ec7b427c-4313-43f3-bf80-c847e66f65b6)(label(Var))(mold((out \ + 7945262f-0e83-4a65-a946-bdab7b39424f)(label(Var))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 257f3750-3762-4685-b1a6-6a6fa861007a)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 8de1adaa-fa8e-48ce-89ac-d903791c65a7)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 8006ee75-37d1-4341-8dcf-5a7bcb32460e)(label(y))(mold((out \ + 322e956e-a064-4731-8ba3-7b5ded46b0b0)(label(y))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - d57b3841-3010-4604-b2fc-c1f1d0aef0e8)(content(Whitespace\" \ + 9707713c-a669-437d-9447-58713fb6b8c5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 65d17c9e-a107-4192-9068-c0b205c0069a)(content(Whitespace\" \ + 482ff6f8-2d76-455d-9a94-a1c09b073eac)(content(Whitespace\" \ \"))))(Tile((id \ - 7be050aa-cbc5-42cb-8922-53e6e6b12824)(label(x))(mold((out \ + ab0ffd4a-8d3a-47d8-9149-2d2b96c45204)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 318d3c65-2497-491f-96f7-cfe6394a8b79)(content(Whitespace\" \ - \"))))(Tile((id \ - 853da4a6-5aed-44d8-ab43-75333dd82023)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 309d2d36-e859-448d-a80c-cea3bc9d3454)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cea85df5-b3bd-4017-a952-d64ad8459841)(content(Whitespace\" \ + 13d30f0b-ebdb-4498-b392-8aa47b849281)(content(Whitespace\" \ \"))))(Tile((id \ - e7c511c7-5050-44da-b175-da1e4ff92d52)(label(y))(mold((out \ + 32f78d11-4e5c-4bb8-b663-75936231f228)(label(y))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4f3a5193-c3ac-4370-9c9e-c8df5a37167d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - eb08f193-8966-4277-bc08-9e79add2cde8)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + a6b02ca9-65a3-423c-8a2d-98b69271daa7)(content(Whitespace\"\\n\"))))(Tile((id \ + 315a9b91-39f1-4001-9c52-3ee45f73989f)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 09f89651-2b39-4c39-b0ca-b69b08429670)(content(Whitespace\" \ + a6917a08-5b7c-4519-a67d-4ea8a31932a6)(content(Whitespace\" \ \"))))(Tile((id \ - 81672889-56c2-48d7-b53e-bad5b4d1df31)(label(Lam))(mold((out \ + 58e1ac3f-e659-4372-9510-386d7ebe50f7)(label(Lam))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - e4c0cf87-1985-4aa9-b4be-8abb8278e176)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 073c5366-7d94-470f-adb5-f383a9eaa4bb)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - ce2d28c7-d1d1-4ad5-909e-6421f2f39739)(label(x1))(mold((out \ + 9b281aa5-8d06-4714-9cd2-ffab5b0c71ea)(label(x1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b279ac2d-53a0-4899-a3e7-29e45637f1d3)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + c618ba26-4a6e-4726-bad5-90f9983e6fe5)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 54c7c5cc-5009-4243-baec-df198852f9e8)(content(Whitespace\" \ + 29339c3b-fb4e-41f4-8cd4-cad7426fa6c1)(content(Whitespace\" \ \"))))(Tile((id \ - 64075130-f088-457a-82f6-ebe5d0be8451)(label(e1))(mold((out \ + fc86dc77-9c0b-4a37-987a-6b9f83dfcd7f)(label(e1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - e094bdef-fc38-445e-92b7-a730961c8fdf)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + be7a697f-0d3f-498c-b036-bed60ec00fdd)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - e88a31af-6149-4000-b8e2-94f31e45d5fe)(content(Whitespace\" \ + c4083882-1dae-4651-ab52-c9b1c4e7ced1)(content(Whitespace\" \ \"))))(Tile((id \ - f1ce5a32-e138-43d5-8775-e6f75efe37d1)(label(Lam))(mold((out \ + 42b509d9-0759-480f-857c-3d82df96e158)(label(Lam))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - c6bf010d-869d-4271-b2b7-828dd4f1b553)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 02429a5b-fff7-4b42-a5be-9acd44a729fb)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - bb0a3fd6-4dff-422b-bdf1-8460c7d43829)(label(x2))(mold((out \ + c76367a5-6ef8-41f5-9599-faf285ff1878)(label(x2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ea64a246-122f-41e6-8284-a7b00542c4de)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + b7b861e4-22d0-437f-bd2c-95d57d7370fc)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 6a6b2ec6-56a9-4ad4-8497-ae680f9b1118)(content(Whitespace\" \ + b7609391-f2ce-4d1e-bbe6-3a25fa099458)(content(Whitespace\" \ \"))))(Tile((id \ - e17d1a0c-3041-4aae-8312-2164ad00b76a)(label(e2))(mold((out \ + f3d69f1d-8f6b-4095-a97e-d6e61d97b4b7)(label(e2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - d3650922-ea7a-4f27-89d3-b919d15786be)(content(Whitespace\" \ + 0e5305cd-0907-4947-87e9-37da9fcc349d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - cd0e2d13-9e19-4cf8-b896-32cf152976ce)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c948dec9-9f62-48db-a69b-7c4734cb8e9a)(content(Whitespace\" \ + 143d94d0-7ea4-4f2d-b70e-e23baf9cd31a)(content(Whitespace\"\\n\"))))(Secondary((id \ + d264c081-8f4b-4254-b6a9-de34f5286a6c)(content(Whitespace\" \ \"))))(Secondary((id \ - 8820244d-86e7-467b-b6ee-412309891bf5)(content(Whitespace\" \ + c9d7e936-7bc6-4e4e-b0c2-ce0e25fa93e7)(content(Whitespace\" \ \"))))(Tile((id \ - 6ad0085e-1640-4bcc-966c-63535c4dcb4e)(label(x1))(mold((out \ + 34583060-75ce-4137-802e-b2a55ff9645e)(label(x1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6a3c75e8-867f-43b4-af30-e3c33700b8ca)(content(Whitespace\" \ - \"))))(Tile((id \ - 98252b63-4ae7-4104-81db-be1b271d1b20)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 8f95d04f-b61b-4abb-8b77-3d8e0d535d88)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - e85acee5-ac98-4fdb-9b7e-3da31e9a1cdb)(content(Whitespace\" \ + 0938c068-c702-468e-b785-cf7004de3ca2)(content(Whitespace\" \ \"))))(Tile((id \ - 517d59c6-6e8a-48e6-9810-deff80d4837b)(label(x2))(mold((out \ + f7399b45-070e-47bc-949f-88f0ea9efc49)(label(x2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 64892ab9-5f46-41ec-83ec-830a3771bda2)(content(Whitespace\" \ + 62f423d3-1612-47e6-923e-bbae907e2a35)(content(Whitespace\" \ \"))))(Tile((id \ - 654196e6-5c40-464b-882e-f000185256ae)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 63b9d6fd-d888-47b4-8364-49366bc74d65)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 358e8514-a640-4e35-adc2-89e552b48f63)(content(Whitespace\" \ + cc2ac2c0-43d5-4ce5-a451-18c097e284c4)(content(Whitespace\" \ \"))))(Tile((id \ - e7e712ff-e6a4-4736-a2a9-1051368e4621)(label(exp_equal))(mold((out \ + 787f8c3c-346c-4f69-a3d8-14f0ea05d731)(label(exp_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - be1cd4d0-77ec-4b24-806a-d44ab9406dff)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 70ed7427-b523-4292-9805-08aaca91925a)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2b9171e1-b36a-4b4d-ba94-b1b383e3d876)(label(e1))(mold((out \ + fb775b01-d8c1-429f-9bcf-f6072243ecfa)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ee427415-9cbb-40bb-be41-483d6b055dde)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 71bfde98-6188-4e39-8718-53ab06960fd7)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c2233df3-e617-438d-a3f3-9764587db421)(content(Whitespace\" \ + 107a49d0-6226-4c20-b01d-2d186724b94a)(content(Whitespace\" \ \"))))(Tile((id \ - c9f2177c-7b5b-458f-a2c8-f1e5e4b6e938)(label(e2))(mold((out \ + 83a585a9-cc40-4183-9910-b70254b15874)(label(e2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 9350c7fe-fcd8-4395-b2a5-51f3b4bc28d0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4565265b-2b39-4e9d-b8e5-4eac2118eaf5)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + d387e36c-ec5c-4782-9d1f-2739c7a7634b)(content(Whitespace\"\\n\"))))(Tile((id \ + af626056-2da3-4259-a568-1f8298527f08)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 7982873e-6820-415f-a686-58b3b38f3af7)(content(Whitespace\" \ + f58409e9-8883-4d5b-a2fb-238bdcd2f1a9)(content(Whitespace\" \ \"))))(Tile((id \ - fc624d2e-62e9-42ea-a935-f0e009fffbc6)(label(Ap))(mold((out \ + 19d627fa-ff3f-4bfd-9b0d-e081a5f093cd)(label(Ap))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 39ebe962-9adf-45d0-8874-8bc30d5d4c9f)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + ecc7492a-35a5-48dd-b314-052701cebe01)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - c3628f0d-0cb8-4954-a16a-e791d0f9a30f)(label(e1))(mold((out \ + 5634f8f7-a1cc-4d2f-a2d9-ee6dd302559e)(label(e1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 4cabbfa5-38b7-45e5-962d-6310e522dc2c)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 319722e0-1df1-4ff5-85de-637f59e5c6fb)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 9c108b07-27cd-4d7e-b2e4-6ae975db2eb9)(content(Whitespace\" \ + 46f51f43-b3f1-4894-9c36-054921466663)(content(Whitespace\" \ \"))))(Tile((id \ - 7e8c0903-e399-43b6-ba2c-f014879fc966)(label(e2))(mold((out \ + c732f687-3289-4066-b86a-a2d013189e03)(label(e2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - ad3766ab-7abe-4e5a-b44f-9a9cb6badf3b)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 366fdfb4-ed4b-44ac-9b49-f90cc6f46d8c)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 3170e2a0-ebdc-4b38-b2b7-a09434ec3f1c)(content(Whitespace\" \ + 836b7c9b-ed4b-4a8f-be0f-3ff6c4230d84)(content(Whitespace\" \ \"))))(Tile((id \ - 545a9cc8-240b-4267-adc8-0b2bbfe70a91)(label(Ap))(mold((out \ + a876e608-fe27-4de6-9e60-ce7e6d046f36)(label(Ap))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dbc20a7c-0050-4672-bd5b-b298221a315d)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + da2c7661-ffe8-4fdc-a9f0-0aecec3be262)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 1a06a7c6-f321-428e-b28c-a4f24b3ab556)(label(e3))(mold((out \ + 9ed91e1a-c75b-48a4-b5aa-c96dd5ad2e82)(label(e3))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ec1e7e19-8acc-4a77-8ef5-0b9907518462)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + d18abadc-274b-4d01-a47f-745585122bd5)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - bba30512-7bbc-4930-b198-d12e690a5b93)(content(Whitespace\" \ + b0a80da2-1d57-4710-8cab-e7df5dc3c53e)(content(Whitespace\" \ \"))))(Tile((id \ - 0d36e488-3e41-46f9-a972-23750bcece8f)(label(e4))(mold((out \ + 013f27da-4aa0-4581-b824-3e4f008684ed)(label(e4))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 4b4d9e3e-ac05-4a5f-b08f-d5563460b5c7)(content(Whitespace\" \ + 3e11240a-71fc-4de0-ba1c-b5d07365de39)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f282b2b5-5c36-472a-8375-d1a36a8649ae)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f3bd6390-5a54-48a1-9640-ccfa45160df0)(content(Whitespace\" \ + 2f614776-e35e-462f-b803-96f9be39c6cb)(content(Whitespace\"\\n\"))))(Secondary((id \ + 9a6e76ae-34e3-453c-b347-801f24f509dd)(content(Whitespace\" \ \"))))(Secondary((id \ - 7df542d2-05f3-4e21-8c5f-64955731be10)(content(Whitespace\" \ + 9488f1ca-eb41-49a0-a0f1-90e9f1864458)(content(Whitespace\" \ \"))))(Tile((id \ - f60edbaa-954f-42fe-b431-b9bcc014a9c6)(label(exp_equal))(mold((out \ + 7750c1a4-f4cf-4976-a9d3-86c65c012652)(label(exp_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b1f04c3d-547f-44e7-8e7a-8a39c04667eb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ba7b5f88-404a-42b1-a8c4-b654f3dc59e5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 194d5a82-cc1f-4a18-8b5c-c61c904af17e)(label(e1))(mold((out \ + 50c34596-30b6-4b5a-87db-27f96170b6a3)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 75f2818f-2f9c-4049-878f-c81085700db4)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + c95da88e-6a74-48d8-9cf6-c605d5c3a701)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 7b3280d2-d974-4cf6-9bb0-516576217085)(content(Whitespace\" \ + 00c73886-9a6c-479a-9a0d-be062ea3910f)(content(Whitespace\" \ \"))))(Tile((id \ - 4b4990b5-c883-44de-baa5-6298bdcd9c6c)(label(e3))(mold((out \ + 26d9bb64-0a0c-4be4-9464-4569661ccf02)(label(e3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - e67b82f1-96e5-4d33-b100-3bfe9707c8c6)(content(Whitespace\" \ + d1c5b415-ed05-498d-bce0-9de00a700394)(content(Whitespace\" \ \"))))(Tile((id \ - bc816646-333d-45c6-87de-126307d9157f)(label(&&))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 9))(sort \ - Exp))((shape(Concave 9))(sort \ + 08303392-a90c-4d31-814a-2a051d9667b0)(label(&&))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 10))(sort \ + Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cda90ee2-15a7-475b-a7b7-b58f95ac0541)(content(Whitespace\" \ + e7677fe6-48be-4899-9e0f-e1b29280e44a)(content(Whitespace\" \ \"))))(Tile((id \ - c6cca4d7-4919-46de-8ffb-52071913367e)(label(exp_equal))(mold((out \ + 516eabb3-4a51-4c59-9940-c492b45f3efe)(label(exp_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 46608290-3577-4831-b399-c80d5d767d86)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e68b5ecb-929f-4854-af5a-024f13d8be93)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - cea40954-b0f5-4ea0-abdb-8f3a0a210bcd)(label(e2))(mold((out \ + 83fa3d15-4b89-45be-965a-227e4fb29bc8)(label(e2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5d251e7a-9910-4012-9c61-96c776587f87)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 3d8e63e4-3075-4185-806e-303e0c85fbf7)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ad817f3f-75bc-46fa-ab0a-86718ad8e04e)(content(Whitespace\" \ + 2337432a-0774-4754-b172-a957d6a5c46a)(content(Whitespace\" \ \"))))(Tile((id \ - 2c9c3dcc-3d6c-463e-bcd7-fba48da6ecac)(label(e4))(mold((out \ + 5d704e11-c851-4bee-bd41-fc97c530e003)(label(e4))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - a58fe0b7-4a35-4a50-97be-441d4274c616)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e7572e91-07c2-4d65-abca-dd76ec42dbbf)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 7c28d9c0-a994-4ec0-a985-641ee916988f)(content(Whitespace\"\\n\"))))(Tile((id \ + 81be554c-d1ad-4215-874d-1f4b370c7ce5)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c7d795b0-3d34-4bde-aebd-a6712a065da1)(content(Whitespace\" \ + 3f839aa4-9308-4b6b-a336-ddf2f5a35100)(content(Whitespace\" \ \"))))(Tile((id \ - 68ab1574-8fff-4c61-b8dd-81e4b42bfad5)(label(_))(mold((out \ + ef9d6fc5-5b9e-4877-bdc5-bcb5edd5e202)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 6ee1936d-6b0e-4790-b4fa-a3ec667659a9)(content(Whitespace\" \ + 4734e14d-af00-46ba-8a2c-29a40730d6bd)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 109c64f2-39ac-480c-b33e-96b08c515ffc)(content(Whitespace\" \ + d7c88fc6-e58f-42f5-9e34-6d7994d3726f)(content(Whitespace\" \ \"))))(Tile((id \ - 215955f2-8a04-40c6-9f1f-14652d8f2637)(label(false))(mold((out \ + 710f92ac-46d8-4cbd-8289-d63621b6a898)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 16e0c010-73cd-4dac-ac53-2536fa7068ca)(content(Whitespace\" \ + d0c796b9-cf69-4f65-ba17-045f3f632ee3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4f239c3f-102e-4227-9388-89983d93b887)(content(Whitespace\" \ + d2a47d78-3131-42d9-af47-7a0d98bebc8a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 8172db9a-32d5-4ceb-a908-3837509edd80)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d3329425-9616-473c-9f10-82c062d01611)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5ed2278f-50d0-4255-94cb-f201169e5a88)(content(Comment\"# \ + b54c98e0-13ad-4880-9974-791df224ef2a)(content(Whitespace\"\\n\"))))(Secondary((id \ + 3da9af7c-a6d2-495f-80d8-adf3cadde53b)(content(Whitespace\"\\n\"))))(Secondary((id \ + 774b07c3-7264-4e6a-a5c9-d702263f7167)(content(Comment\"# \ Substitute Exp v for variable name in Exp e \ #\"))))(Secondary((id \ - fdf34800-63c7-4baa-a41e-ec2517696344)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 980a0de3-6dc8-466c-9fc5-57c0161c32ed)(label(let = \ + 426539c8-aaf5-4b69-869e-f7bafc266eea)(content(Whitespace\"\\n\"))))(Tile((id \ + 74de8fc5-e81b-4634-b34f-da0dbc8b0957)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 968f19d7-ca3c-4318-a56c-ddaded903c52)(content(Whitespace\" \ + 352d8989-84fd-4829-b6cb-5bde729ace4e)(content(Whitespace\" \ \"))))(Tile((id \ - a5a4093b-3f2f-4543-a9e6-d915edb78d16)(label(subst))(mold((out \ + 6001c0ea-e744-4a22-aafb-7c59f5aecadf)(label(subst))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - bf012f47-7904-4b04-b435-261c6898a74f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 02602783-0b3d-4b2f-844b-b12be8ed0722)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 292ae481-93fe-4e75-b4d1-85a12c13d583)(content(Whitespace\" \ + a5ed6ba7-8356-475a-a785-d85c450a8bd9)(content(Whitespace\" \ \"))))(Tile((id \ - 365f62b2-81b6-4a77-aa1a-c14fafc129f1)(label(\"(\"\")\"))(mold((out \ + c039813e-48cb-4681-98d9-aa8217d8abf5)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 54243b79-d02b-4ca1-a5ea-b6136ac1bba8)(label(Exp))(mold((out \ + 60f7f455-0187-401b-9f2b-ff349d842ebb)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 15ef7894-18f2-4632-8549-55d65bd68d5e)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + f3e7b107-0331-4f65-b4df-85c8a3c7fa6b)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 04d28679-49cd-4169-90ac-3ba15295a145)(content(Whitespace\" \ + 5a467fb2-10e0-444e-8898-530358640fc5)(content(Whitespace\" \ \"))))(Tile((id \ - 61e87e55-f097-4946-a07e-9608191e9e8d)(label(String))(mold((out \ + de6c8d61-c9ac-4bd2-b234-cc4d7540bf25)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - fbbe13a3-aa6d-4dd8-b425-66d31fa6ab5c)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + b07a020f-10c5-450f-9678-3a85e99f8624)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 76d1a094-2cfc-4b1b-8491-faa073126a50)(content(Whitespace\" \ + 8f362010-03af-4c45-8517-208f052ccb4a)(content(Whitespace\" \ \"))))(Tile((id \ - 11012759-a911-472b-92c4-13c296f014dd)(label(Exp))(mold((out \ + 7ac6150e-560d-4d4e-9d2d-47a7e0542779)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 36c53e8b-58b4-4b29-90c7-bcd8283d021a)(content(Whitespace\" \ + 4ce3976c-3a90-4642-8cb4-4bb534111764)(content(Whitespace\" \ \"))))(Tile((id \ - 337cc1de-7007-44a8-b7c0-e2d62dfe038d)(label(->))(mold((out \ + 8c17a6ec-792c-4afb-9b98-3e3981290e9b)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 2cbdefda-74b9-4e12-bb77-968981f48d24)(content(Whitespace\" \ + 2901741f-ce3a-4628-9de4-84bdf8dc8813)(content(Whitespace\" \ \"))))(Tile((id \ - 6669c981-844e-4bdb-80e8-49f63a37c170)(label(Exp))(mold((out \ + 297eefa1-4efd-450b-8aa2-f78566d739a2)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))((Secondary((id \ - c9570d59-780b-491a-84f6-f38720034df1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cd3956e2-872a-48d0-b61b-49c9627f7da0)(label(fun \ + ab4e863d-fe5e-4773-aee7-47ea69e9a81f)(content(Whitespace\"\\n\"))))(Tile((id \ + 219a6daf-2bc5-4d0b-acf0-9dfc2d57fff8)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d889bd03-eae8-466d-8ab2-6a37b228101b)(content(Whitespace\" \ + a196a02c-46be-4da2-9762-5c375d09afe7)(content(Whitespace\" \ \"))))(Tile((id \ - 6f2f5c27-b0c6-4d64-bec4-f59a3d62907e)(label(v))(mold((out \ + 71fc3e6a-b851-4014-8194-81012a9e6602)(label(v))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b1a377a9-9f1f-46ea-b9c8-4a735177c681)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 4318d3e7-c631-4b2e-9a7a-0e5bc7898466)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 4e8b2929-daa4-4997-a50c-41215cd5dc97)(content(Whitespace\" \ + 1abe26ac-ac76-4d60-b72d-4c84b71df926)(content(Whitespace\" \ \"))))(Tile((id \ - c6e2f602-5f94-4779-9f7d-6150753e387d)(label(name))(mold((out \ + dc4f1bd4-abc3-4d55-b0ef-3d06e7d3d2f6)(label(name))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - aa15bace-4f95-4777-ae5a-86efcb21d80b)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + a1ec902c-e5b7-42e9-b76a-e0f1c1ce1dd4)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 13bc3e73-cc08-426f-b842-8f326d5e06fd)(content(Whitespace\" \ + f39b26a7-18fa-4d6d-bc10-5a86815b580f)(content(Whitespace\" \ \"))))(Tile((id \ - 70cea4ed-3f34-4564-b948-5b37698e0059)(label(e))(mold((out \ + d0e16c86-d3ec-4e39-98e6-51ab274d8cd1)(label(e))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 6fd33e5b-3792-4bb2-9d66-e7c7cfd82c09)(content(Whitespace\" \ + e8c29ad7-e1eb-488f-9aab-cb88d6a08484)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 90f64cae-e6b1-4c17-a7e8-f843bc7533d8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 419ebed6-b5b2-4540-a431-3096df690104)(label(case \ + 3de61dc3-139e-4ce5-b9c4-92c7d6a7a218)(content(Whitespace\"\\n\"))))(Tile((id \ + 9b89f0ba-7886-4803-aa11-c1a693afc3a4)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 7f57f5da-29d7-4afe-af81-9ba4cdb84290)(content(Whitespace\" \ + 7becd8a7-6c1c-4f2f-9c6a-2637e7284820)(content(Whitespace\" \ \"))))(Tile((id \ - 84bee910-aedb-4d4c-baff-a4571eabd806)(label(e))(mold((out \ + 58e8f274-fa5c-4a08-a050-7840beca26df)(label(e))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 75df8104-bdda-4020-aa34-461d8ef9a61c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f680450c-a013-4374-a0d9-3b7395b2d291)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + c917b2fc-b1f6-4494-bae7-fdc5d8314ac0)(content(Whitespace\"\\n\"))))(Tile((id \ + ffee5d55-f2d7-4b66-91ca-e199c1eedd44)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 5ba10a8b-3767-4f49-ad59-b4d685b3e8d1)(content(Whitespace\" \ + fa4628a7-b6e2-40a9-912d-9ab2003e66ab)(content(Whitespace\" \ \"))))(Tile((id \ - c85b62c4-519c-4ff6-b53d-084bfc4b3a4a)(label(Var))(mold((out \ + 4f300848-04c1-4d28-a9ac-34cb3d72005c)(label(Var))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - cbe676ad-d210-4614-a6f4-f1288961392a)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 5d3a134c-3f74-4fdc-818c-037d3ee533b0)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - b3d931dd-62c9-49d1-9c23-57e51491e2fd)(label(n))(mold((out \ + ff0ccc42-3ffd-4432-a1d6-a070e2b6f346)(label(n))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 39dcfa1c-d518-4072-925b-5a857363d84a)(content(Whitespace\" \ + 1561ab66-303f-4871-9b48-1bcc763a671e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 28da4de0-f438-42e7-8193-7123c709da52)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - de7081b2-0362-4667-be82-f6b027b192fd)(content(Whitespace\" \ + 8b9692ba-3782-4f79-a2e9-2ab485357d4d)(content(Whitespace\"\\n\"))))(Secondary((id \ + 96b3ae46-b8c8-432e-8dce-07b229df5a88)(content(Whitespace\" \ \"))))(Secondary((id \ - 185f0a9a-db51-48ac-9671-7308af2566a6)(content(Whitespace\" \ + 2f4a7d91-7dc4-4da6-8371-318822592b07)(content(Whitespace\" \ \"))))(Tile((id \ - 94fb704e-4ce9-42e6-ae34-d1b88af3c424)(label(\"(\"\")\"))(mold((out \ + 1aedd057-2c2b-455a-a1a2-b5f1e41909e0)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 9298a278-bffd-4a4c-baf9-1aed6d1562dd)(label(if then \ + 7738b2b4-d591-4ade-b3b6-f05b1907e6d8)(label(if then \ else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 13))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 1b07d13e-1cc4-4476-b7aa-1d947539db97)(content(Whitespace\" \ + b3306766-434f-425e-bf19-10aeaeec9b99)(content(Whitespace\" \ \"))))(Tile((id \ - 18e2d5d1-c566-4eb6-85a9-8185ac89e46b)(label(n))(mold((out \ + e7d7a06c-4c8d-4852-b69c-2c5a2836c7fb)(label(n))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3487f0ad-8f80-41de-905f-5c7681cab87f)(content(Whitespace\" \ - \"))))(Tile((id \ - 53fc5638-04b6-4552-82f6-17a089316a9c)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + 712dad6c-a685-4294-88a3-b79fc2e7950f)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 955e949d-0d06-4724-bd32-3869a60d1509)(content(Whitespace\" \ + 87e9ee65-9c06-42ec-acd2-b93b3f777c2f)(content(Whitespace\" \ \"))))(Tile((id \ - 714480e4-4cc9-4f0a-bb16-fa5eddae8ba7)(label(name))(mold((out \ + f9e3a6fb-5b11-49c7-b219-741d1ccbd526)(label(name))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - cff5290a-3b75-4adc-a07f-57162f45e70a)(content(Whitespace\" \ + 2dc75d3c-7a4f-4b64-9e43-01ac29e2717b)(content(Whitespace\" \ \")))))((Secondary((id \ - fd1933b0-7135-44ad-9295-1cdff91a4700)(content(Whitespace\" \ + 4683c684-877a-4546-a637-a5a8a03a6822)(content(Whitespace\" \ \"))))(Tile((id \ - f54eda3c-4175-4cdd-a22a-bd44d64754db)(label(v))(mold((out \ + 189fae6c-2558-4681-a09a-1e13f70bb17e)(label(v))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 80942fdd-f28f-467c-be15-f40257293d0f)(content(Whitespace\" \ + 67ff8509-6b9f-4707-b3a0-63f33fde3378)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 59fe67c4-9e46-41da-80c5-94a08d421127)(content(Whitespace\" \ + 3d008a86-4add-45b4-ae61-6d0c47eb43ad)(content(Whitespace\" \ \"))))(Tile((id \ - 053268f5-aa5f-47d4-bc35-7dd044c4d016)(label(e))(mold((out \ + 1fd0007d-1e2e-4149-bf0b-e91bb130fef1)(label(e))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 48783eb9-b6b0-4995-98f9-9dea00a51ea6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 446ff674-42cd-4716-9ec5-caedd30229e1)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + ad4f733a-2033-4e4a-992b-25cd79c81ec2)(content(Whitespace\"\\n\"))))(Tile((id \ + 50e8ef28-d17c-4c54-b0a8-20182938f045)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 026fbda4-70e7-4982-966e-131e89f8b063)(content(Whitespace\" \ + 512cb880-2a52-4828-aa7f-c3a497144c27)(content(Whitespace\" \ \"))))(Tile((id \ - 970904cf-54f0-4476-949e-6bff04296230)(label(Lam))(mold((out \ + fe07cd73-0165-4a4e-963d-10c0851148d6)(label(Lam))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 1c58d46b-701f-4fdd-8122-3a8b6b717fd1)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 583cd22d-feb9-4699-9d2d-a299de446af4)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 8ee0764c-6ae1-4a7f-a43a-da8e9e2ef1ff)(label(x))(mold((out \ + 0a213226-4739-4717-b595-5a767c2ac08b)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 139f7e26-a096-45dc-b86c-b1759995e640)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + d986e7be-4ba6-4517-ba63-4353fc7a6590)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 584fe536-95b9-467b-9d45-8ff79f932322)(content(Whitespace\" \ + 39255e0e-1274-4798-a161-93c16f0c4f6c)(content(Whitespace\" \ \"))))(Tile((id \ - 44b651bc-58e2-4d0f-8fe7-f9f4ef2df975)(label(body))(mold((out \ + 9898ec8e-d5bd-4c3f-b3d5-0f068e906326)(label(body))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - d8b7e4b6-2830-4ae4-8765-ad8787599005)(content(Whitespace\" \ + 6a4ad6e7-d48b-4866-9ace-cbde29edc492)(content(Whitespace\" \ \")))))))))(Secondary((id \ - df1a1724-1680-4c13-86c4-cf1739d1f2f5)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b12dc4f1-3584-4d70-9df4-56748637b5d9)(content(Whitespace\" \ + 1b1fd754-1200-4a0a-8df2-27b97617942e)(content(Whitespace\"\\n\"))))(Secondary((id \ + 37fcc3ae-97a7-42f8-b795-90b5305cc46f)(content(Whitespace\" \ \"))))(Secondary((id \ - 789ee2e2-b17f-46d2-a729-97747b3d3b3c)(content(Whitespace\" \ + 898a6aea-5011-41cb-bda5-c4844285deec)(content(Whitespace\" \ \"))))(Tile((id \ - eb31c313-cfaf-4a04-97be-5d02a39afa8e)(label(Lam))(mold((out \ + 4321f0b3-5146-4f8c-9015-3bffaac6537f)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ebcd5284-9b96-4e09-9e05-1c856050c226)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c6f6c21b-6ea5-4ef7-bd60-97755a20b4df)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 33d26cbb-f822-4b7d-a3a9-a76ae159a0c1)(label(x))(mold((out \ + 413bd5cb-afce-4a31-bfec-c4c80e708bcb)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - f688d2b2-b8c9-4203-ac30-acb9b78b218b)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 50cb1442-335b-4cd1-b2e4-867579fdaba6)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 47729e37-9963-4286-9683-323f9b87bceb)(content(Whitespace\" \ + 2fe3d96e-0c7c-4011-a604-630ca52de2e6)(content(Whitespace\" \ \"))))(Tile((id \ - e5b9286e-a2d4-475c-bbc6-6a0ec96cfa1e)(label(subst))(mold((out \ + 825ea4de-9981-4dfb-969f-5901d16c14f1)(label(subst))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - cec07007-77a6-4c7c-9ba7-4d851d46afab)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 06e5576f-8c2a-494c-84f0-e6c44b6fc289)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - cc33ccf8-2ba7-420b-b2c6-21aea451a89e)(label(v))(mold((out \ + 8e94f35f-fc12-4ef8-9b04-07a56fc5fd9b)(label(v))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7d8a5934-f197-4252-a244-ab397fd8f6a5)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 06a8b8a2-261c-4696-b967-3bc77eafc8b3)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - cc112f0c-4bf7-4662-917e-846de267fe34)(label(name))(mold((out \ + 905c338c-14ca-4660-bf57-ad2505d50f57)(label(name))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b02b84ec-218c-452a-bf1e-9617cef8490d)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 8fe769e6-8b88-4faf-ba0f-2fb447414e97)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ed7443d9-4404-44fd-a4e0-3f6559f33e82)(content(Whitespace\" \ + b72b3481-34de-48f9-a5e5-e68d829a24c4)(content(Whitespace\" \ \"))))(Tile((id \ - ddac8323-ba4e-4d64-b5cc-7e69c920435a)(label(body))(mold((out \ + 35e4c324-e7ac-498f-837a-7a9d8d36a734)(label(body))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - a26fdd56-19a1-4583-96b1-b2e6f4dce75b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4a409d0b-c2f8-4b1c-b160-ff917085bf6e)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + d98eb89a-235e-4376-8349-0fd15b6fae02)(content(Whitespace\"\\n\"))))(Tile((id \ + 198d47d6-6294-43bc-b006-0d85eb8a2669)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - da613248-93ad-4ad8-8958-3b005c4c4629)(content(Whitespace\" \ + bcc48b90-9af3-4c00-9e0c-ce72bb2b732f)(content(Whitespace\" \ \"))))(Tile((id \ - de5333b3-77bf-44f1-a7b6-64378045d95c)(label(Ap))(mold((out \ + 6a1718f8-8022-40b3-ab93-d4211208c29c)(label(Ap))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b29c0da4-d842-4d39-93ea-68ad05af9261)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + b922c7f6-c67c-48f3-8cfb-68c841aa0414)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 1e386e4c-0118-4aaa-a61b-7c459652561e)(label(e1))(mold((out \ + 07da188a-2410-44f9-b027-fa69828a2b60)(label(e1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - ff5111c7-24e2-441c-ba22-b00b9570b868)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 8ef9466b-7fcc-4137-bfb4-692ccf70dbd4)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Tile((id \ - a5e422b7-f453-4fb9-bf2e-d8fbb0f1fc19)(label(e2))(mold((out \ + f00bb251-cbab-46be-8173-1f6675ee4c12)(label(e2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 2bb31630-3fbf-41d5-a19f-37006e884723)(content(Whitespace\" \ + e64b3ba2-1bb9-46f8-af06-493d15f723a6)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 334192b2-d1f8-4e50-84a9-f63119f5ea66)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5cdcd943-3223-4e31-a4c9-230ddd7cadbc)(content(Whitespace\" \ + 4e59e4ca-6f08-4448-9c58-9483c07efd66)(content(Whitespace\"\\n\"))))(Secondary((id \ + 8ee684cd-2c5a-4253-b301-7cba81099e24)(content(Whitespace\" \ \"))))(Secondary((id \ - 04ea99ba-c0d4-4f96-8514-512d2679d38b)(content(Whitespace\" \ + 49bc3c61-c4d8-4dea-aca2-e338d6badf43)(content(Whitespace\" \ \"))))(Tile((id \ - 6698f873-dfec-429f-aa2e-5b753a0e0b13)(label(Ap))(mold((out \ + a52cd9fc-0c23-475b-9415-25f6fa9e6efb)(label(Ap))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - fd041cbd-11e7-483f-9894-149d647575df)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 691eae01-24d8-4eef-8f2d-fd96f5655ce1)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 9b6f0264-1a4e-436d-a922-f0325bc2e4db)(label(subst))(mold((out \ + 2b9d4d26-68e0-4bcd-8180-4f5604325e72)(label(subst))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7a495fb0-7163-4e39-9013-81f4b1b49d70)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 61a618b7-9ee6-4e7f-a857-70e856565de6)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 54fc8758-e83a-451d-bb69-409eb19c6735)(label(v))(mold((out \ + 33aed735-bcb4-4f72-90e7-0905627c1328)(label(v))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c3e19a5a-f9b6-4f24-8f7b-64f099967f9f)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + a962694c-b142-42d8-b708-ece24fe1abd5)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 71fca11a-3419-4757-b711-fdd18405d97c)(content(Whitespace\" \ + 42355414-1a94-465d-b514-efafd3dde3ce)(content(Whitespace\" \ \"))))(Tile((id \ - a763abee-d9b7-45b1-8424-3ef1a0a271e5)(label(name))(mold((out \ + 25868761-b6df-412e-ab62-429c9dd56013)(label(name))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4faf4138-d473-4173-95a6-eea2542573f7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 0c61b948-4a9b-4749-94f4-937e40189067)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9e46b718-8343-46e5-8691-99218fd48457)(content(Whitespace\" \ + 6f94e0f0-3a32-42d5-a969-04770fb2f6e9)(content(Whitespace\" \ \"))))(Tile((id \ - 2a42a695-0600-4732-b130-fdb906e39384)(label(e1))(mold((out \ + 05ce26ab-13fe-4ca3-b44b-97e1fabbd9aa)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 9346f2a0-c777-409b-91ae-ac99409e69dd)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + e232b397-8a48-4905-9901-a6614c29b148)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 175d0889-9c8a-40ce-a0d3-9e16bd3e343a)(content(Whitespace\" \ + 7cad6a0a-f538-4103-8ea9-a25188ed9c5d)(content(Whitespace\" \ \"))))(Tile((id \ - 0c57d2e8-6a01-4794-9165-25cbc0175a5e)(label(subst))(mold((out \ + c7974f67-be67-4b25-b4e2-792f6271485c)(label(subst))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 05ee19ae-081d-4fb0-affb-ecad3fc03096)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 33a5c704-20a9-4923-83ee-bc25c55193de)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7c14b792-807c-4156-af95-90f4cce11fba)(label(v))(mold((out \ + 13c5b7a5-2e40-4eb5-a453-69244de39c0f)(label(v))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3341286f-c3ba-4879-a6f4-24cc00343cee)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 421e99c0-8c79-4eaf-b157-a55567fc08f2)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 80da2600-590e-496c-9670-31ea4bc2e302)(content(Whitespace\" \ + f7a6368c-22ce-4e48-a850-f2b518249ba2)(content(Whitespace\" \ \"))))(Tile((id \ - 5a0ea697-f4c2-4fca-879b-a4b7ac213c8e)(label(name))(mold((out \ + b5d916c8-ff45-42d4-87e2-b368456a1b0a)(label(name))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2d9420c7-44dc-4781-8c4f-fabd96d95ad4)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 594de8b9-d5e3-4a8a-b6b4-a88747f4976c)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 7bf8c927-0575-470b-b3c5-a29a553b6830)(content(Whitespace\" \ + 4b4d1d9a-6ec5-482a-a2e8-294b620f10b2)(content(Whitespace\" \ \"))))(Tile((id \ - 5739b8d1-04a1-4835-8688-50bb5a0929dc)(label(e2))(mold((out \ + 8255fbeb-57bc-4623-a976-6a77d4f4bd33)(label(e2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - cf9ea30f-5bce-4d8f-bcf1-f47ab170f0a6)(content(Whitespace\" \ + 46c0e133-7139-4de4-b049-ea74f738219d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 140b4e40-9a69-4603-a8ff-f54f43833aea)(content(Whitespace\" \ + 1429043f-125e-47a0-a8fa-ea29e06ec217)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 83a2646d-03af-4380-950e-4ffbec2efecc)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 60a803a0-45dd-4d26-9e50-9d41b42e060b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 55f117b1-90ee-4043-97a5-eaad60fbf8d8)(content(Comment\"# \ + 8d62629f-f58f-48a2-b11e-ab9a5b0d075a)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5a13baae-0472-42c0-b42a-b18bdc028226)(content(Whitespace\"\\n\"))))(Secondary((id \ + df60bd6e-a698-4e36-b3df-c41a52d2f078)(content(Comment\"# \ Evaluation can result in either an Exp or an Error \ #\"))))(Secondary((id \ - 75edeef0-b93a-4e52-8eb7-956406120f02)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d9758f2e-b154-4d74-9d8d-ddb629f96371)(label(type = \ + 58373ddf-8053-4524-bca9-0bc2b4fe0c03)(content(Whitespace\"\\n\"))))(Tile((id \ + 02740f27-9216-4848-9d7a-bd63546a65b4)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 4e0f5968-053b-43c6-8ee7-f9e839b0d176)(content(Whitespace\" \ + 79574626-e7d5-4469-ac1a-4bf7e1778c90)(content(Whitespace\" \ \"))))(Tile((id \ - 0ee7d546-e23e-4b2c-808e-01af4f749706)(label(Result))(mold((out \ + 3f3b3e16-d51e-4a5a-9a54-86976313e0b8)(label(Result))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - bd8a61cf-b940-40b0-9fbd-c698a60e9df6)(content(Whitespace\" \ + 9f5f6df9-a373-4dae-bbd5-57b831001900)(content(Whitespace\" \ \")))))((Secondary((id \ - 8a5beda5-5224-4e5c-8dc0-79e6db7f1fd3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 91cccf23-4d44-46e7-a81e-a046a2566144)(label(+))(mold((out \ + 9bb46eba-97cd-417b-a3ca-b29ed881cef1)(content(Whitespace\"\\n\"))))(Tile((id \ + c9642ca4-854a-4892-b89e-a75bf53fa1ae)(label(+))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 24bf5ab5-af15-4566-9884-a2061fb39d79)(content(Whitespace\" \ + 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ + 8b487485-d296-4025-96e7-946b7004739a)(content(Whitespace\" \ \"))))(Tile((id \ - 4d58cbe8-1f96-4129-a6bc-5fa73566b2cf)(label(Error))(mold((out \ + 8b5d8559-4260-4d99-81bb-af6daf14f123)(label(Error))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - a9b509d2-8f56-48d1-8e5f-3fdafc9415e5)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 7be3a6fd-5e82-4fd9-837e-89fb8c0e366d)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 9f7a0898-680d-4868-a84c-5bb556f1612c)(label(String))(mold((out \ + f4205193-6640-4427-84f4-40ef4f1cedbe)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 689974ef-89e4-498f-bd4e-34a6720427d3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 52b2d13f-c806-4877-84fe-6d32ab1182b6)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 80cdff65-eef1-43f1-97f9-d30e17e39dee)(content(Whitespace\"\\n\"))))(Tile((id \ + 21ae352a-ef43-4cb3-847e-34e1b1b7a641)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ecf58e9e-0efb-4e01-ae05-1fe9b21d03b3)(content(Whitespace\" \ + c198aad8-d51b-47fd-bef9-4ffea862a94f)(content(Whitespace\" \ \"))))(Tile((id \ - afce6860-9293-4f8e-9ef7-dd0c60ca95ab)(label(Ok))(mold((out \ + c5ab73a9-2d90-41ea-a258-a15b8378dc66)(label(Ok))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - aea698dd-d63d-4fe2-9fcf-7f224c41a59c)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 1948f709-c832-4bda-b595-d4ba3eec30f3)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 40472e30-a169-465e-af55-751ecf617aa0)(label(Exp))(mold((out \ + 02eefc25-152c-4a15-9a3d-0e7b2446aead)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 2cf73080-004a-4f90-b789-9221717f6081)(content(Whitespace\" \ + 8a1b9f10-3336-46cb-8d1c-6261b18ec98d)(content(Whitespace\" \ + \"))))(Secondary((id \ + 2fd0b394-0027-409f-b76c-cc62a5341489)(content(Whitespace\" \ \"))))(Secondary((id \ - b27f5376-58b7-4974-beaf-4de3558d93bf)(content(Whitespace\" \ + 9a1a0fe3-425e-4faf-84ca-958bf64df153)(content(Whitespace\" \ \"))))(Secondary((id \ - f43fd6da-318e-4965-a2a5-42ed801cc41f)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 82677a8a-59a2-49cb-845a-3c3876b5b300)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 4f966c26-0371-4ef8-a075-127d1f0321f7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 621fd573-caa6-4583-87f9-b5825e167918)(label(let = \ + c026c092-01d1-4a54-876d-a09e2d0b1144)(content(Whitespace\" \ + \"))))(Secondary((id \ + 88699c23-fc24-4f2f-8eb6-373b8d0976a4)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 04a478f9-dd72-4579-8d63-81d2e206e115)(content(Whitespace\"\\n\"))))(Secondary((id \ + 28b33fc5-73ac-4067-80c4-4a32271ae16a)(content(Whitespace\"\\n\"))))(Tile((id \ + beb81d1a-a198-40d6-9110-1fa2ccc5e769)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - cfd16b5f-c56a-49a9-a7f2-44b0be14f475)(content(Whitespace\" \ + 1a7d9457-56ca-4dda-9e39-c00f4b23cbbd)(content(Whitespace\" \ \"))))(Tile((id \ - 8581c765-76a3-422c-9479-8eb2cf7c104a)(label(result_equal))(mold((out \ + 2183b6d4-e2cf-4fb2-a1c8-951daffc734b)(label(result_equal))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 125cc189-7080-41e8-a196-b7ab8ad54f77)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + e5471c3b-9e87-476c-a358-caf951aa9ec9)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - db9bdbd0-7b2e-478c-bd6e-8f8b5c508ecc)(content(Whitespace\" \ + aeb8b92f-9e0b-43c7-83f5-c27d6e09b287)(content(Whitespace\" \ \"))))(Tile((id \ - 1041388d-9c06-4d8a-a535-05b540bff54d)(label(\"(\"\")\"))(mold((out \ + 40d0b893-77a0-4aea-86d4-72ea7904a352)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 2ed6f843-67da-461a-80ca-5d01c34c12c5)(label(Result))(mold((out \ + 1744eba8-f3d0-4e9f-8a60-d120da7f2d99)(label(Result))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - a73ace3b-2a20-43c9-8697-861ce8173c07)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 3253b4e3-78bc-45fe-b6d0-9faa079e52a9)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 320fb96f-b4ff-4d76-a951-a09df19091e0)(content(Whitespace\" \ + f96e2cb6-9d53-4085-9b4f-b88ddfafdaa4)(content(Whitespace\" \ \"))))(Tile((id \ - cd4f3152-7c7f-4a71-be23-f9d7c0388c9d)(label(Result))(mold((out \ + 68ca4d55-b5f6-466f-9baa-36a381ce0116)(label(Result))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a92c9445-e047-476f-a541-5edeeeb864ee)(content(Whitespace\" \ + 53c5e2b3-347a-4e30-bd84-0ea4b5a481dd)(content(Whitespace\" \ \"))))(Tile((id \ - ca0ae608-6978-4d91-a8cf-9103dc0e87c6)(label(->))(mold((out \ + 51039060-7dff-4512-8ad0-b98abe6e6b8c)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6b67160f-a805-4eab-a904-5786bc35aa7d)(content(Whitespace\" \ + 247d57e8-d7b7-45ca-a53f-f2e0276c7112)(content(Whitespace\" \ \"))))(Tile((id \ - cbd87072-37ba-47ef-b34d-4d2da770afe3)(label(Bool))(mold((out \ + 99201842-52cb-425b-b1d8-8032398f75c9)(label(Bool))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7c817c8f-ce88-4e4b-b96a-e26c7da1c387)(content(Whitespace\" \ + 04507290-1261-42ac-8b6d-69cd54918e86)(content(Whitespace\" \ \")))))((Secondary((id \ - 64f3bd36-89a3-46b3-bc72-98972d735233)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5f64f54c-d03a-4e99-b8e8-cf42d0043c9e)(label(fun \ + 85ec6920-78d5-4b9a-9cc9-ed718890c8ce)(content(Whitespace\"\\n\"))))(Tile((id \ + ce3ac16e-7ab8-452e-ab4e-dbd87f27856a)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 0286c456-4807-4a6f-91d4-10e73c6aa351)(content(Whitespace\" \ + 88348ff5-afea-4857-8468-ec01391c2297)(content(Whitespace\" \ \"))))(Tile((id \ - 075698c5-49d1-4818-a2a0-925e47ebb73c)(label(rs))(mold((out \ + d1c99579-617d-4b09-8684-1ce1055ed1af)(label(rs))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 79fb8f75-8463-4067-bc1f-8a01459d9cd4)(content(Whitespace\" \ + c0a36a89-6fd6-4b22-a699-b8c021ff931d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 055d2b42-baca-4a18-94a8-2dd4163c3cf9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4666bb19-2d4f-4d4e-acd4-3b375a5d357c)(label(case \ + f8f8b6b7-4db6-4aac-9488-d33fecb329c9)(content(Whitespace\"\\n\"))))(Tile((id \ + 34b48ac0-ccfe-4b44-8559-fd3203569be3)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 53c9f8b8-bc8b-4251-ba44-04c921e86785)(content(Whitespace\" \ + 630d743c-9089-4656-9997-66ebf1043f49)(content(Whitespace\" \ \"))))(Tile((id \ - a21b674d-34f5-4d6d-9f85-144377e105c3)(label(rs))(mold((out \ + 228fc476-f58d-4823-b65b-e0f3b929553a)(label(rs))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 36300ef2-f0a3-4e40-99de-9e3d54bfcfe0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7d884095-55c3-4b3c-add1-d24317fc7080)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + de1b5880-6ad1-4bfe-bee1-dbf8b8ff5774)(content(Whitespace\"\\n\"))))(Tile((id \ + 602fc195-6627-4402-b215-5ac67d06e852)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 9a9b1e20-4bc2-496c-8619-b0a889a7aef8)(content(Whitespace\" \ + c404cd81-10d7-4dce-9052-76296fd5ddd9)(content(Whitespace\" \ \"))))(Tile((id \ - 262fd22c-29f4-48cc-9b52-e7176e683b94)(label(Ok))(mold((out \ + 8bb36d61-04ad-436f-a131-f6177885e537)(label(Ok))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f8074977-f93a-463b-98e4-d69bfc55307b)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 5b3a9162-cac2-4316-ade9-f44a1409ef9b)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 9bb655c2-b54d-4741-a1ab-0addfd13c98f)(label(e1))(mold((out \ + 9b7c1b11-29e9-4598-9d83-b9e157342f1a)(label(e1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - f9451c6a-d4bd-4b58-b077-397aaa290272)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 554759e7-cf6a-43b7-8faf-610d1c87786d)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 6f3b3236-cdce-41a4-9232-0006322b7b57)(content(Whitespace\" \ + 9a108194-f7a2-4410-bc5e-d95db49fa65c)(content(Whitespace\" \ \"))))(Tile((id \ - e2d471ef-1c46-4a9c-a54a-fe1ef3cbb19b)(label(Ok))(mold((out \ + 2beebdc6-f1da-407f-8ec9-41726ce6e6ef)(label(Ok))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 60028cb7-d928-4ee8-aa7b-9dc38e3a7e18)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 6e37ed75-a301-47c5-9439-3c27a91a68a6)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 3a1ad870-b7bc-43d0-b716-12cb9c23597d)(label(e2))(mold((out \ + c5a5d70b-5ccc-44df-b9c9-9e1c85f16172)(label(e2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - c50a22f8-4eb0-49cd-8144-2300c10e107a)(content(Whitespace\" \ + 8cad935c-fc62-4ada-9ad0-dc00135ebb51)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fbb838b6-e6e9-4dff-a09c-523e350c630d)(content(Whitespace\" \ + f6ad97cd-c18f-45d2-a8e1-b2b804831906)(content(Whitespace\" \ \"))))(Tile((id \ - 00557cb6-1130-4a7d-8368-3412f00d393d)(label(exp_equal))(mold((out \ + e9a8afa3-d10c-4658-881c-a604a93ca8c5)(label(exp_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ba4eb367-ef3f-4525-93f9-bfa92d9d7c97)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 12fb3aba-0317-4ec4-acb7-a6803d8233b6)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2502b290-8870-4d81-8f5d-76609e24860d)(label(e1))(mold((out \ + dcbacc26-3050-4757-9cb1-b617738358d1)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - f484106b-41ee-4800-9a7a-a6a885e60b45)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + f1d55cab-92db-44e2-91f7-9a85f1dfafba)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 96e06e4d-be79-4633-a71a-a32b52a6153b)(content(Whitespace\" \ + 4dbdd1ba-8270-4bab-9ad3-583b32aa4aaf)(content(Whitespace\" \ \"))))(Tile((id \ - e4b1e526-e611-443f-b5aa-6be2f7aa6253)(label(e2))(mold((out \ + e12e4e79-111f-498f-9d80-ad77f5d565c6)(label(e2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 73ddc6f1-7d14-4b25-9602-96415acda0e6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5f5c67e0-4040-410e-92f6-62a141252bd0)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 2bb90059-0ee9-423c-8684-472175118a48)(content(Whitespace\"\\n\"))))(Tile((id \ + df9db36d-e7b7-4872-b63f-8dc09760c860)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ab885d68-e990-49bb-a610-a53b37d77456)(content(Whitespace\" \ + 4247b0da-3b47-42f5-998c-f68db67c843b)(content(Whitespace\" \ \"))))(Tile((id \ - cfa1b087-0510-4b36-ac15-5a61f8aafa38)(label(Error))(mold((out \ + 9a19a183-fb5e-443f-af84-f23d720d099a)(label(Error))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 74c5a935-852f-4da5-878c-887bc26c98e9)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 41cab548-8d9e-4a99-9406-3ee89d2fc4ee)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 3ff6542d-a8bb-4716-99da-9367ecbd49a9)(label(e1))(mold((out \ + a39c2d6a-6de1-46bc-9240-eeeeeec02eb3)(label(e1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children()))))))))(Tile((id \ - 58f2f26d-e37e-41cd-b13f-8d7e74228172)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 3cca4788-c110-4d27-a8e7-1777c1d9d30f)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 1e2b816e-7642-4f4e-b95f-adf12abbc8ae)(content(Whitespace\" \ + 8287b063-d40b-472d-ae6b-8c392467fbdf)(content(Whitespace\" \ \"))))(Tile((id \ - 8416cd9f-2529-4db1-9035-20229b62df28)(label(Error))(mold((out \ + 148c57ae-dabb-4487-9fe4-c33c974217f7)(label(Error))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - dff4702f-08b6-447d-98c5-0f1fd993e456)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 49335ce1-42aa-412c-9bca-e52a1ee521d6)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - ace2fdc0-80dc-4300-97ea-843487707e22)(label(e2))(mold((out \ + da2279e4-e383-4954-ae32-3d6f2b9bc4ed)(label(e2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 21a5a76f-b56e-4eab-bc27-4365a8a5c5fe)(content(Whitespace\" \ + a62811b8-2ebe-4ccb-89b4-d96760aa3c3f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 987928b6-2cd7-4cd8-92c5-dca894fee268)(content(Whitespace\" \ + 5741626a-a252-4420-a0b9-e1772e1c0ac5)(content(Whitespace\" \ \"))))(Tile((id \ - 39426536-b6ae-4d23-b940-c09166c487f3)(label(e1))(mold((out \ + 58cf6b30-b7af-4a5f-ad08-dd02d3fa5f22)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ddc21c27-b545-4704-9b83-73a54e7f97c5)(content(Whitespace\" \ - \"))))(Tile((id \ - b46541b7-7399-43b2-acee-ef0325e8909d)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort \ - Exp))((shape(Concave 8))(sort \ + Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ + c80a8e71-238d-43d0-a8cd-76d4da6c2532)(label($==))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 9))(sort \ + Exp))((shape(Concave 9))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - c9a08e3b-dc53-4576-b101-94199ea10081)(content(Whitespace\" \ + bbd48c2e-cd7b-4f99-b274-e36e6c3ecf5e)(content(Whitespace\" \ \"))))(Tile((id \ - 4aae0476-095c-4045-843a-f7dd32925cdd)(label(e2))(mold((out \ + 2c75c7b3-db8d-4f1b-ac2a-4b5ff7fa1e64)(label(e2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0606e959-ddcf-4d32-b61d-68b1bf791355)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 70cb209e-2fbd-4019-8a9c-f55ae2b12881)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + cff7ec82-7993-489f-8385-75b26bf79234)(content(Whitespace\"\\n\"))))(Tile((id \ + 4111f31d-f74a-41ca-bc02-d29e2a0db0b2)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ea405901-ebf8-4432-9bc9-2ff5ee8500f1)(content(Whitespace\" \ + b2fda54e-371f-4699-a0c5-fd77c89a7a20)(content(Whitespace\" \ \"))))(Tile((id \ - bbc620b9-6f94-49ea-8ed2-4c7b6bb323ea)(label(_))(mold((out \ + d5d7f4ab-3067-482a-aefd-9c6a8c4b6fa2)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 460c3b9c-9811-4fe0-a6a3-453ffaf1290e)(content(Whitespace\" \ + f92d3f91-2fb1-4412-8a9c-be22c0700ce3)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e36568cc-f82c-438a-9b67-2098c7bfb269)(content(Whitespace\" \ + 04d95ab6-df9a-4cd3-9bed-4ce41cc1647c)(content(Whitespace\" \ \"))))(Tile((id \ - 1c3d6b48-108a-431c-817f-138af3f8a50d)(label(false))(mold((out \ + 2a98cb80-5b3a-4435-8101-da95240b9f4c)(label(false))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a61bcd07-c82b-4dd6-838f-f4d9762a0a2e)(content(Whitespace\" \ + 3176efbf-484a-435a-a07a-675b72c7840a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0e699793-d7c9-477d-834f-c62eb4458558)(content(Whitespace\" \ + 5ad8e2d5-c444-4b65-86f3-6a63013c83eb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e06c3270-8e19-4c45-8888-e9301f3629cf)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 88cd77a5-2e10-4d67-86dc-c0acddaf3a7f)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 1f1fecf6-bddb-4813-9c11-306183d4da10)(content(Comment\"# \ + a3519b0c-9c62-4ec9-a92d-9076f579ffca)(content(Whitespace\"\\n\"))))(Secondary((id \ + cc8c81e6-bcb9-4122-bceb-05a10ebba3cc)(content(Whitespace\"\\n\"))))(Secondary((id \ + be744456-0e46-48a8-8f6d-de6f041effad)(content(Comment\"# \ + Evaluation by substitution #\"))))(Secondary((id \ + 53f494d2-f96b-4730-817f-a7bee7de9a3c)(content(Whitespace\"\\n\"))))(Secondary((id \ + 149c737e-c073-4296-bee6-8355ac15e21b)(content(Comment\"# \ Evaluation by substitution #\"))))(Secondary((id \ - 5ea9e27d-1731-4316-8506-fc45c5e70003)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5fb6f0e7-3581-4553-95f8-a84bd4161861)(label(let = \ + 0a55cbc6-d5b2-4491-9ecf-749d8d7d15d7)(content(Whitespace\"\\n\"))))(Tile((id \ + 1a88620d-7573-48e8-8fe2-667fc6861380)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 1af286e3-978a-4ff8-a94f-5f2891068195)(content(Whitespace\" \ + e8657e19-27a0-4614-8e8c-1f68924c7cdf)(content(Whitespace\" \ \"))))(Tile((id \ - e1e44354-cb44-4d2b-8560-e8ad5adb5dd3)(label(eval))(mold((out \ + 510ff9dd-fc7a-4c50-a4ba-ff2284732f2a)(label(go))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 25a60777-31c2-4b6b-b06d-cf6d67d61e3f)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 2894560c-55f0-4e24-99aa-a120d0db2deb)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b3f75514-9770-47c1-9545-9e19f15df048)(content(Whitespace\" \ + 595c66cb-8234-4cb9-a195-5611c63d6fe9)(content(Whitespace\" \ \"))))(Tile((id \ - 62603e3e-6bba-44d5-bc4a-206542a22f33)(label(Exp))(mold((out \ + 92e454fb-632a-4240-8fae-4684ae730a61)(label(Exp))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4f14df0f-7731-4364-9efe-7a353e852f82)(content(Whitespace\" \ + 56244e52-c07b-49cb-bf9c-b4d9091881cf)(content(Whitespace\" \ \"))))(Tile((id \ - 202553fc-31fa-4c18-afc4-2ebca2469d9b)(label(->))(mold((out \ + df0286bc-8fff-47d7-85f2-fb19a6fafb12)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 846d17c4-4bc7-44c0-8167-cb7b5f7338a9)(content(Whitespace\" \ + 88832015-a7e6-4ee6-8a16-1a2aa399774f)(content(Whitespace\" \ \"))))(Tile((id \ - fc4991bd-f326-428d-a8cc-44bd3c40b891)(label(Result))(mold((out \ + 237ba37a-5943-47ff-a613-91955a03b50c)(label(Result))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 90e6f91f-19c9-4e74-9ece-c08e8cfdb26c)(content(Whitespace\" \ + d6e70935-96cc-4264-8702-1cbb390499fd)(content(Whitespace\" \ \")))))((Secondary((id \ - 2916646c-3df4-49f6-86de-25e96dfaa42f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 070d68c0-e8a6-4ccc-80df-51fd8782e5e9)(label(fun \ + b8dfaa39-225a-47fb-ae01-eda3fa2f52aa)(content(Whitespace\"\\n\"))))(Tile((id \ + dd454f86-229f-4717-8b8a-aa52bd1c3b31)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 10982210-ebae-46dd-8fa5-34a0e418a12a)(content(Whitespace\" \ + b4be931c-8a8f-4fec-933e-7a3ed2244406)(content(Whitespace\" \ \"))))(Tile((id \ - 083a4aba-2a8a-4bd0-a272-ac89effa0f9c)(label(e))(mold((out \ + 9d1f5677-7646-4214-ab92-3767945aa471)(label(e))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - e2da86a1-b62f-4be6-ad50-bf10dfe5e93c)(content(Whitespace\" \ + d997484f-4c74-4581-ae0f-9a0b2126a8b0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f4abddd0-6c1e-4227-beba-dc836f87d938)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dc129b5a-7dc2-4b69-8c7f-28ba0e70a587)(label(case \ + f76711b8-c30a-48b1-a991-115ef11ab388)(content(Whitespace\"\\n\"))))(Tile((id \ + 809ef267-e552-4c23-99d0-b39d7935211a)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 6c3d599d-67f7-4278-ace2-e76739314f6d)(content(Whitespace\" \ + 96ef5d3c-d896-4e8c-a68d-3991351f088a)(content(Whitespace\" \ \"))))(Tile((id \ - fbdd7d29-dde8-4fe5-944f-cb29f3309bf4)(label(e))(mold((out \ + d496c898-71a0-4f3d-91c7-d7fd166818da)(label(e))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e4b8056b-10eb-4155-a896-24716bd904a9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ac689c9a-3569-4419-8081-5276776f7435)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 6ddac7aa-028f-4e3f-9ed1-56b8e5232bbd)(content(Whitespace\"\\n\"))))(Tile((id \ + 679021bb-0c1b-4cf5-91d7-908a6f9647f4)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 4244d236-5133-45aa-8b62-20cca6dc5a77)(content(Whitespace\" \ + aef95ec1-6d5d-4e29-a785-2ea83e1e026a)(content(Whitespace\" \ \"))))(Tile((id \ - cef34e10-3604-4ce6-910b-2fa21cd6d2f2)(label(Var))(mold((out \ + 398f1340-2d99-4230-8c20-c51150658002)(label(Var))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 3cb54504-edb9-4812-be0f-bea0fdc875e0)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 621155bc-7ac6-4d9e-8fd3-4d71ba659185)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 3e8b501d-9a2e-4a7d-833d-89a526a5fb8c)(label(n))(mold((out \ + 77f731f7-f0d3-4c1b-9ec3-df7178574c85)(label(n))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 191e6fef-b0be-4e08-a147-64ae2537fdf7)(content(Whitespace\" \ + 586d55ac-d88b-4eca-880f-0852604e45bb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 1de92859-2011-4c76-866f-c882d0c1cc38)(content(Whitespace\" \ + bff112db-9788-4cc9-939d-3e731fd51833)(content(Whitespace\" \ \"))))(Tile((id \ - d00194a9-72cc-45ca-9c73-5d46869f610a)(label(Error))(mold((out \ + b15c5cc6-a04f-4345-9a39-bc4112a76752)(label(Error))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c0a0ce90-81d8-4b09-ba8a-98934dd238bb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 24d9b2ca-a41f-4e3b-9950-9073fc4e7ebe)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 17469555-3ef2-4223-81a3-3e09a59f7c61)(label(\"\\\"Free \ + fbc61e43-64e8-471e-9297-f8cefa5ece19)(label(\"\\\"Free \ Variable\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ Convex)(sort Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - f5ae48cd-7b58-4b89-99d0-ae90a87cfba8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 28d4ec8f-4748-49f2-8af0-aed3a76b2701)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + ab5b91a4-43f5-4a63-8b87-9f816a0cd01a)(content(Whitespace\"\\n\"))))(Tile((id \ + 6000c5f4-8ba1-461b-85fc-3381115d5350)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 52fc7222-801f-4ff1-9367-4021e1a8cc1f)(content(Whitespace\" \ + 1d231ace-434a-4894-9e67-e1cf43decb46)(content(Whitespace\" \ \"))))(Tile((id \ - 82301ff9-b986-49ee-a14d-eed128b05b7b)(label(Lam))(mold((out \ + 9a7125df-c40e-4def-9f53-b40dc32731bd)(label(Lam))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 13384c5c-89b2-4e49-9c29-ff28cdb24c5f)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 2e8b9b90-d82a-4666-9743-ccf496c5d98d)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 2e67fc4b-20fb-48fd-aec5-5c5e6a3c9cf2)(label(x))(mold((out \ + e64de081-8618-4784-80c7-52d56d51b182)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 117717d0-9155-4b0f-8082-a371cc2d3555)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 1dad0ef7-3126-499f-91f3-95ef1ee36ea1)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 9ab8747c-aee4-46b5-855f-07d5c1188b32)(content(Whitespace\" \ + 47533453-d21e-4f68-986b-9a8707f9acab)(content(Whitespace\" \ \"))))(Tile((id \ - ce6325f6-7892-4116-acbf-aa92206a96b0)(label(body))(mold((out \ + 4e872a2d-2d3d-46af-8f0d-3588d8af77af)(label(body))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 89c70863-8308-4aee-9a98-28d74dd74526)(content(Whitespace\" \ + c1b66e3e-c627-4034-807b-ed0e0aa616e0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d38b5a87-d86d-4461-8ee3-e4b504aea6ac)(content(Whitespace\" \ + 8f7f6d34-e271-4055-b7b2-0cd964b2d4e6)(content(Whitespace\" \ \"))))(Tile((id \ - c0309d83-842f-4163-ba0c-00274c4c765a)(label(Ok))(mold((out \ + f0325f29-e1c9-4b56-b9bf-80db92f5f575)(label(Ok))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a168e86f-de75-4996-b05a-b76c84dc9c83)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 922e9ce3-6082-4583-9515-fb888bedc37e)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 37b7507b-be1a-4d12-a966-9ad509579bca)(label(Lam))(mold((out \ + 5f7769f9-00df-47fd-9555-dda0625d8fad)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ae281f5e-25e5-4970-86f2-1ddbca9b48d9)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e36c23dc-9fc0-41f3-8379-7e6177ca0c1b)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f83349a9-1cb1-445b-9d8b-0cb26cf0b432)(label(x))(mold((out \ + 009acb40-b1cc-40af-93d7-0fc7d2c1e035)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5315a959-83e9-4805-9bc4-dc227d30c63f)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + ee16fc3d-7b81-47b4-b020-13ebe276dbf0)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 7a01c28d-bc24-4523-af0f-a19527a9d15e)(content(Whitespace\" \ + 3068a498-a275-4dab-9567-06987ed9c378)(content(Whitespace\" \ \"))))(Tile((id \ - c658b71e-92ce-427a-99dd-d14e07d4b579)(label(body))(mold((out \ + e54a8b40-e6cd-4cef-8fcd-77ab29483140)(label(body))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 2ce50808-b44c-435e-87f2-a277c5be92aa)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1380b225-c096-4d8e-a111-39f805c15707)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 2e9ecdd1-7a70-45c5-84e9-ba636e5cc23b)(content(Whitespace\"\\n\"))))(Tile((id \ + ff2d5608-d410-415b-807a-eda98e6da72d)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - f0c7a241-6ee1-4097-bdd8-d39550de3ad8)(content(Whitespace\" \ + 362944fd-aa91-4d59-8aff-d0dec93c2b08)(content(Whitespace\" \ \"))))(Tile((id \ - d41bc9fb-4280-4c3a-86fe-724f87ca056c)(label(Ap))(mold((out \ + a760ce03-9df0-4d61-89e8-88f092c8d0cf)(label(Ap))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b63a9734-7644-4072-a5bb-d8b2397a7dd8)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 0e07e490-0333-4907-aab8-2da6cd300e7d)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 2aa0a5e0-c746-4ee7-af22-61de73933464)(label(e1))(mold((out \ + 0316ae72-05b7-4de1-8bd6-bfc2f5bc5f75)(label(e1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - b1308751-e597-4f83-8bdd-f11a6cd7c646)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 5e357626-f992-4f51-9818-0d4409ef920d)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Tile((id \ - df669107-279b-4daa-a84f-0749a93573c7)(label(e2))(mold((out \ + d4cb1b5e-971d-4b62-be08-a6b9c5c93764)(label(e2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 26880146-1ff6-4797-8c69-313cd096525b)(content(Whitespace\" \ + d8e83bb5-0ceb-4027-b529-92c0a1fec26b)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 2fcf5303-c991-46fe-92b1-8dc91a89f05e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8067ba50-823f-4583-b983-fe007004442b)(label(case \ + 838b52f1-3737-456c-8a98-5849ec89ad58)(content(Whitespace\"\\n\"))))(Tile((id \ + 69a21eca-495a-4e72-9503-a52cff7dce27)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c2900d76-5805-4b52-b24f-2f09d3078093)(content(Whitespace\" \ + 2e681929-b28a-468f-a959-bfa03d8a3f1a)(content(Whitespace\" \ \"))))(Tile((id \ - 3b19a74d-4f02-4bb0-a68b-0f2b9459060a)(label(eval))(mold((out \ + e30771f9-69e7-4841-bee0-e93c23a5303d)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 0443a8d6-3210-49a2-bd1a-43350c73bc6f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 453d4571-f7b6-4c0d-b921-5c8700b1ac3d)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 966493b6-5a35-434e-ae30-f28eaf26ac7a)(label(e1))(mold((out \ + 7711c924-5ddd-42be-92dd-4b89b11d2c8a)(label(e1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 18904f6e-8219-42b7-bc23-a52869c83453)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fb1b10f7-a7aa-4b2a-b1e1-868c9cf6700d)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 2f435c23-83b7-48cd-8f8e-38093dce4fe1)(content(Whitespace\"\\n\"))))(Tile((id \ + f1abca8d-0d37-4661-8b3a-dcae0bd68385)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - aef8a32d-571e-4aef-92fe-a133e61561df)(content(Whitespace\" \ + bae7e074-dc4e-467f-b341-94fe0040c29d)(content(Whitespace\" \ \"))))(Tile((id \ - 1622c6b0-1aa1-4a9f-9ad1-0ee2f44e440c)(label(Ok))(mold((out \ + d9236252-5783-4102-8e4d-e7fb3884dc43)(label(Ok))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 53c740db-a127-4286-bbaa-fc1f6bfd897e)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 8ae539db-b703-4a7a-b8c9-032b815e1557)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 86981a7b-1855-493a-bb5b-bd50acbb393b)(label(Lam))(mold((out \ + 6a87bcd4-56aa-4c46-8265-e5adfcad8b52)(label(Lam))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5e484724-9f82-4027-82b8-3b9c2201e4bf)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + ed7009cd-f8f1-47d4-9c56-5b17b16f0158)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 8b69eb6e-d632-45a7-84b8-c2f552f1cb2e)(label(x))(mold((out \ + 6545f504-ff30-47c3-8e4e-8a1e4694211a)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 516a2ade-2d02-46f6-b79e-6f262e8774c8)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + c6954c83-df30-4540-9a20-59139e9e26e1)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 94ecff3b-c7f6-47a8-88d5-26fbb6602902)(content(Whitespace\" \ + 4d9f6d5f-edeb-482d-a605-156a985bcf20)(content(Whitespace\" \ \"))))(Tile((id \ - 88490ba8-3f86-411b-a6e9-817f4f662690)(label(body))(mold((out \ + 08368e29-416f-4a72-b04c-4a5998f5a269)(label(body))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))))))))))))(Secondary((id \ - 6ef6102d-78b5-418d-84e5-9349d627fbfa)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e35cd324-d16a-4d68-a97a-b6ca15cfe3f3)(label(case \ + 41d43f00-bb5f-46ae-a974-d479a8b20b36)(content(Whitespace\"\\n\"))))(Tile((id \ + e8b7e1bb-9de7-44a5-8f5d-912733872cdd)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 446fdd16-d54b-4be9-9b0c-0d8eeafc0543)(content(Whitespace\" \ + fe56b2ed-f7ee-49b0-9c46-2975ee482181)(content(Whitespace\" \ \"))))(Tile((id \ - 2cd4a45a-528f-4945-998a-3c0b9cf9c2c6)(label(eval))(mold((out \ + 80202d99-f4d1-4213-b548-48c8d8234e71)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3c39677a-03f1-428f-b295-7a33f2fe9466)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 8af022d3-b7c6-4e32-9935-a097ffac8761)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1aec83cb-0253-4eab-8bfc-73f5c6ddc33b)(label(e2))(mold((out \ + d85c4d54-db76-4d8c-b4e0-258f6375c624)(label(e2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - b0b29140-8d63-441e-a576-1a3ab3f24521)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c15d05bf-8519-455a-b0be-d1b096b074df)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 76db976c-8e31-4f03-a994-d0b352a100d9)(content(Whitespace\"\\n\"))))(Tile((id \ + 47968f50-8bdf-4a54-960a-76b3d0dafef0)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 4d0f5b8e-1a10-409e-b434-2bdff88856df)(content(Whitespace\" \ + f646b10f-c12d-428c-8812-94d97ede1b65)(content(Whitespace\" \ \"))))(Tile((id \ - 136333af-71db-4b8f-bf85-bf623512b58b)(label(Error))(mold((out \ + f3dcf27e-10b6-454f-b1b0-cf9f3f813de2)(label(Error))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - f0793b56-f2cb-4a53-823a-49dd57145a53)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 2fe04f9c-7570-4ae0-9715-c18a7eec7dda)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 9456aff2-b841-41a0-b360-ba6adf6af864)(label(err))(mold((out \ + b1696163-aab1-451e-967f-90b6cca68795)(label(err))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - cb066a61-a29e-4636-9e26-a15ca426b0b5)(content(Whitespace\" \ + 5828bb46-4afb-48e6-9c95-df5cce1b22c9)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4ee95925-905e-459a-8bb5-b39ec5767d45)(content(Whitespace\" \ + 34a5ac81-cac8-4708-aced-1d689ad2820a)(content(Whitespace\" \ \"))))(Tile((id \ - 3c2afa8d-cc20-4d23-a6fc-64fc225fe1c1)(label(Error))(mold((out \ + 64564ff8-b2c6-4bd0-a4ca-6f466ec96931)(label(Error))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 9e259835-32b3-4d25-b557-fd1b9308b451)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 1f20a945-1d22-401f-936b-a5e0100d66a2)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e6c214e7-1c90-4ac4-9d87-82c9c3f5f71e)(label(err))(mold((out \ + bb35d07d-2253-4623-9d4e-bd7c0e6324ea)(label(err))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - e2d4aebb-8638-43d4-a0a9-b7dfaf103905)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c79c0790-1bae-4fb9-8d15-28b090a7bc01)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + ca8ba32c-a847-439a-9ae1-7f1aba355a63)(content(Whitespace\"\\n\"))))(Tile((id \ + bc812682-b5ba-465e-9e42-10463bc6c9f0)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 9c30c747-f0e7-4cc7-a456-7dfe67178cf9)(content(Whitespace\" \ + e24708f2-9045-4f99-a395-16bc8e654a0c)(content(Whitespace\" \ \"))))(Tile((id \ - 1ec5195e-9152-40f7-8116-ccc26b2c8209)(label(Ok))(mold((out \ + 4f1a95ab-a787-4f13-a7ec-b69880b9a373)(label(Ok))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 3ababe4d-2781-429f-98a9-f502d9dded33)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + 8f520a4a-0d27-429b-afc2-61aa8bfe52cd)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - 49228f0b-a42b-4651-a72b-1517623527be)(label(arg))(mold((out \ + 8465ef7d-029a-4849-9713-a2d69c850ee4)(label(arg))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - a42e030d-5e30-45ca-8417-58a64f6ff13c)(content(Whitespace\" \ + 322f644d-533a-46d6-8a86-690b749e839f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7b39247b-9eb3-4eae-b44f-90edd3df62f1)(content(Whitespace\" \ + fd8f8462-8496-432d-be8e-a69a9e87ae2d)(content(Whitespace\" \ \"))))(Tile((id \ - 0595a373-e5e2-4e31-a669-95d86097e70b)(label(eval))(mold((out \ + efa253d6-e217-48dd-943f-cfbf118c8946)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 82a478f5-4725-472b-a5dd-6cfe2e76f11c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 87eeb534-d395-4c51-b443-be3e4e860a4f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - b6be841c-aaf7-4070-a3e5-a726db8865d9)(label(subst))(mold((out \ + 908f03b6-631f-48eb-922c-97352dac8886)(label(subst))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 144a7fbf-4378-46bb-89ac-79cb25a98c3f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 50131aba-0fb6-4708-a5ea-0861056a2063)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e30e8889-ff79-4ebd-8fbb-9402f15aa19b)(label(arg))(mold((out \ + b063ede1-590d-413e-914e-bcef1a6c1301)(label(arg))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7d914adc-3684-411e-af89-b4e8071ec029)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + b353f46e-47bc-4009-89c2-aa8946ab4212)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 1a41d8cd-22a5-40e7-844a-ab4a97c3bcfe)(content(Whitespace\" \ + 18015c36-5bc6-46c1-9c70-c8e6e2343e72)(content(Whitespace\" \ \"))))(Tile((id \ - a5480aef-5c47-4ace-b998-5be13ee9629b)(label(x))(mold((out \ + e41a307b-f439-478e-bd2a-d1d0173f2285)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a78fb2be-cb85-4ead-af7f-55cce846673f)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 17c186af-c531-46f7-8356-85d00a57763d)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6bcb096a-7abc-451c-a5a9-ab38b4af844c)(content(Whitespace\" \ + e9547011-e87e-4c34-bf9b-655966e58b0a)(content(Whitespace\" \ \"))))(Tile((id \ - 079f72b2-aba6-494b-9058-3e20faa9d8e2)(label(body))(mold((out \ + bcb35b72-95d4-4f8a-8e9a-3e302315d1e8)(label(body))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 13b45363-8f7a-4f40-8523-60c70ae7c46c)(content(Whitespace\" \ + 7460ce28-26be-40f0-aaa0-9373606f3a17)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 83893eed-46bd-447e-b7bd-83d79a38dbb4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2d63cd2a-1308-4775-a9bf-061a4d2fea11)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 966f0a3b-608b-4080-b391-3d98b6b50492)(content(Whitespace\"\\n\"))))(Tile((id \ + 2a7b400e-409f-4975-98da-545e7964f7bd)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 401c3082-3f59-414b-be4e-a13645eb647d)(content(Whitespace\" \ + d64e9337-93a0-4469-9af0-4ee9d6453881)(content(Whitespace\" \ \"))))(Tile((id \ - cb0c360a-dec4-4a40-a1aa-24869a58fc13)(label(_))(mold((out \ + dea35fe3-e6cc-43d1-ada2-3d2418e383ba)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 898f50b1-2368-4f52-a9c6-cd969565f49a)(content(Whitespace\" \ + 32471666-95d8-4e06-8cd5-95e05c66fdbb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 9798505e-5af9-4e57-93c7-6f71648ff0c0)(content(Whitespace\" \ + a2c25044-816d-40d8-ba13-71eeadd1f966)(content(Whitespace\" \ \"))))(Tile((id \ - ef2d1259-52ef-4da0-94ec-570086258675)(label(Error))(mold((out \ + bfb15106-063b-49d1-ac5a-b14164b78f1f)(label(Error))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5aada76e-7e1f-4ca7-b2c6-8dd086becf92)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 11e31114-5874-4f4a-92e7-a1781c293ac3)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 01634b4c-d027-4844-9f86-dadd64218852)(label(\"\\\"Not a \ + 5e356d25-77a5-4339-8a85-5a0a39fc7109)(label(\"\\\"Not a \ Function\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ Convex)(sort Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c9b5cbea-1cf6-464c-8cf4-0ed77a1e18f5)(content(Whitespace\" \ + 9b853aaf-1e80-4349-9149-8019538df97d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3d67d23c-c9c3-4c4a-b56f-a16e505ce1a6)(content(Whitespace\" \ + 74ee3ae0-a7fa-4906-b919-7756de9ec844)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ff921f44-34e5-46e7-993c-6f7dff22bf38)(content(Whitespace\" \ + eaed0d7b-c28e-4a9e-9af2-4df2bf7b4610)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3fc86b20-6a2b-43b4-8034-94d052a0df3d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 673e832f-5fc1-4af6-bc50-4cd857d08c52)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f3613090-1dfd-4946-bbfd-3d652d389e93)(label(test \ + 2742b497-9df3-4103-8300-0ede47600ec9)(content(Whitespace\"\\n\"))))(Secondary((id \ + 6c00d79f-55b7-4af5-86ec-39129c6fab6b)(content(Whitespace\"\\n\"))))(Tile((id \ + bbcb96a7-a381-4560-a5c0-2b9177973a61)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 3447e25a-ee47-4222-8bb1-828d0830b231)(content(Whitespace\" \ + c7150dee-d911-4aff-b2b7-1f1a37ebff6c)(content(Whitespace\" \ \"))))(Tile((id \ - a0e96ed0-2f67-4271-904c-07744c73b7c6)(label(result_equal))(mold((out \ + dc1674b9-b1ce-42ee-b61d-0857d13c138c)(label(result_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 95ba3fae-6bf1-479a-b63a-6035111e0ebe)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 0e5338e2-c213-444e-b75c-e4116320d833)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - d846ac6d-a212-4661-a1ed-2bf31f39fd8f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 798271d1-e065-4eb1-8e4d-908ab5f140fe)(label(eval))(mold((out \ + cf5cad9e-e6ec-49c7-bdee-8d4441e325f9)(content(Whitespace\"\\n\"))))(Tile((id \ + 1da27fb9-f992-4af6-8756-1df9c8b59b85)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - adb0fce9-0053-4a86-8b79-6784f476c68b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 524da4d2-1c16-4bf5-90a6-6bef130c603f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ca7069de-be87-454c-9b0c-3d643c480ed4)(label(Var))(mold((out \ + fb8d9b13-44d5-4719-9861-0babba4dacff)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ff999918-31f2-4bfa-b172-5a905e962eba)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + cda6402f-9481-4615-aebe-eb224d76a5d1)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 607cbd1d-522a-40d0-bb3d-b8b45de732df)(label(\"\\\"yo\\\"\"))(mold((out \ + b44d5596-748a-4cfa-939b-af4d0ca02c5c)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - 6e383875-6c3a-4f2c-a401-91ec7bc58276)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 4f792941-af4f-40b6-a394-30895e0f00f9)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - aa7b31b1-3aef-45b3-ad22-0e5d7059a49e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f7b206f6-d2a5-480a-abc0-b9cacabb4689)(label(Error))(mold((out \ + 70332ab5-d800-44ad-86b5-d655a88a2c30)(content(Whitespace\"\\n\"))))(Tile((id \ + 413e5e96-795c-4e29-bc37-22acb6c4da0c)(label(Error))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 8945a9d0-81eb-4b24-966f-a818217214ef)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c3979f6e-937c-4d4c-b9a2-4125ad789bf5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8794ac1c-4080-48ff-8840-6e796567dd87)(label(\"\\\"Free \ + 551d806c-e0aa-4981-b9df-02321c88a553)(label(\"\\\"Free \ Variable\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ Convex)(sort Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 70900efe-dc3a-48d5-9f91-c70edcedaa33)(content(Whitespace\" \ + d6d63453-84ab-4a41-9176-6e7dbb4e1943)(content(Whitespace\" \ \")))))))))(Tile((id \ - e3c9daf5-57f5-47ef-9b24-a7e6d6936805)(label(\";\"))(mold((out \ + feb5bacd-551d-4d07-a1ea-29c39a1fdb79)(label(\";\"))(mold((out \ Exp)(in_())(nibs(((shape(Concave 10))(sort \ Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bad9600b-50a3-4377-8ac7-da71b362083c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - a6e44360-03aa-490d-9e69-7783234649f9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 64a486fe-c95c-4d78-862e-b0d2cc480928)(label(test \ + bb64080d-1bc6-4fe7-8d05-c5723be59661)(content(Whitespace\"\\n\"))))(Secondary((id \ + 29176a34-106f-4a75-b5ab-66db54327180)(content(Whitespace\"\\n\"))))(Tile((id \ + 46713147-d60e-4dd7-95ec-16dad85d7b9a)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 931264d4-b6f4-4c62-92e1-0196ed942eb2)(content(Whitespace\" \ + 7f6d14ef-090b-45ce-aebb-ad1fdb0902ef)(content(Whitespace\" \ \"))))(Tile((id \ - 1c9eda3f-b714-4c05-9c74-506bd14f6fb5)(label(result_equal))(mold((out \ + 3ff5d80c-e8d0-4a5e-9027-520af94cfc7e)(label(result_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4cd76acd-9533-406c-ab10-13cd09fbfe12)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 32c0c246-b8ce-48c6-812d-bd37a7759924)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - afdaeff5-0984-4feb-9862-b326d63da2c0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 93745552-a939-4d1a-94a8-0b642e9da80b)(label(eval))(mold((out \ + fb19a67b-b7d3-48f0-b9d1-c98e99c3eae1)(content(Whitespace\"\\n\"))))(Tile((id \ + c30ddb2a-c446-4b39-9d3d-cc12f222cee8)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e0aa7d92-c7cf-416d-98c2-737ed6338a36)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e9a2d8bc-9bd2-4f6a-88e6-b3e13488756b)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ab486f19-c1ed-4a4b-9604-4be2afe0b0d4)(label(Ap))(mold((out \ + 8814f01d-fc0a-432a-95f9-894aae5eeb4a)(label(Ap))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b233e5b7-65d7-4be3-af87-c80e69046876)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 772255c2-1dc7-4659-b2fe-e2c6a381c4af)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f414241f-8fdc-40a3-a775-3d8b903ac358)(label(Var))(mold((out \ + ac43ecad-faa9-44fc-a66d-119773496659)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 395ceecd-3b18-4153-9800-e329c7a5598e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c47fd37d-7375-4d29-a778-19c186b85152)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - b9ea6977-82ae-4e10-8f43-f3ebe314826e)(label(\"\\\"no\\\"\"))(mold((out \ + fc04ba8b-e863-4d47-84bc-e76f86aedb8b)(label(\"\\\"no\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - ec9c2830-8c19-4483-8b29-90f246a6067a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 56b7e667-52be-4129-a50f-ca4d7b9e860a)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 83f58d35-a260-4168-a7c9-ac3f29f9d5af)(content(Whitespace\" \ + b701987e-c54f-44fd-b5ac-071e240664fe)(content(Whitespace\" \ \"))))(Tile((id \ - 7e9ce79a-243d-41bb-a607-18a5b570fc7a)(label(Lam))(mold((out \ + 348d7a8d-a9cc-4fe8-86a2-3b5400dd4bc2)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c121d549-80c7-4b6b-aed9-f6652df7d1a9)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 33024117-5eee-49a5-ae56-e27b46432d92)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7b74c555-9efd-4351-8d0e-d6bd96f522c5)(label(\"\\\"bro\\\"\"))(mold((out \ + 8a43d100-7c3b-4f17-86d3-edf03d2e3240)(label(\"\\\"bro\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - ed288520-0baa-4871-b514-49e06f702b9f)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 9de32611-ca41-4e26-a243-6c249cf1909c)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - aa546db0-cfa4-4049-8ade-00c91c2d9a55)(content(Whitespace\" \ + f8a33080-5694-475e-8e8f-2828c20280dc)(content(Whitespace\" \ \"))))(Tile((id \ - cd5050cd-9f89-440b-a764-46510d8a918d)(label(Var))(mold((out \ + ef8b3a10-2f0a-4544-9a87-49fc1ed89daa)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - dd639cdd-c2ab-48d9-b7c1-bf7d1e5359e6)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 7cafc442-36fe-42a2-bac6-77d6464b2525)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 78ea24ff-db16-4799-941c-563b8f536566)(label(\"\\\"bro\\\"\"))(mold((out \ + 85f8f49b-9ac0-462f-8ba2-1cfe68a32f2f)(label(\"\\\"bro\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))))))))))))(Tile((id \ - 65acf282-5b10-4c18-9d05-ccc5b7a17286)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 79d44841-8089-4483-8a30-9bd77d80e013)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - bbba711a-f484-4101-9aaf-286054cc8f2e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9fcc45ca-c64f-45d4-9ff7-13acf6aaaf73)(label(Error))(mold((out \ + f1eaab24-ac64-446c-b110-5081e76460e3)(content(Whitespace\"\\n\"))))(Tile((id \ + 6c62d31e-0cd3-4a93-b3a3-e0bfc2b6ee1d)(label(Error))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - a361013a-f8c8-4887-9a10-26b954165ab2)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + b32d4e0f-bac1-4b15-93eb-b31188f3091c)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2a3a4f6b-dc4f-47a2-abcd-10af0387e047)(label(\"\\\"Not a \ + 3f91fda2-74c6-40df-8438-21d9c20b27d6)(label(\"\\\"Not a \ Function\\\"\"))(mold((out Exp)(in_())(nibs(((shape \ Convex)(sort Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 8cb6eac9-4e2a-44ea-aa95-e39f67531832)(content(Whitespace\" \ + 6ae76fb0-056b-4992-a831-90d2e231da24)(content(Whitespace\" \ \")))))))))(Tile((id \ - 9bd804ee-2b9a-432d-a097-988afb9b59c2)(label(\";\"))(mold((out \ + 1bc273a7-62f1-458d-a09d-4bc459b51ff9)(label(\";\"))(mold((out \ Exp)(in_())(nibs(((shape(Concave 10))(sort \ Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 18dcc81d-619c-4b42-af2e-4056040039d4)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - bce6c1d2-113d-40e3-a191-b64c2935564d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6e8df04b-e852-4d0e-8f1d-fbc121575946)(label(test \ + 4db865b2-a2b5-46a2-9b64-eb5c03bba5fc)(content(Whitespace\"\\n\"))))(Secondary((id \ + 5a65f3a4-cccf-47f5-a42c-45f8b6a4c611)(content(Whitespace\"\\n\"))))(Tile((id \ + a0f14269-3b6e-4705-ae46-0659522f7eb7)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - edcaf4e5-eb6e-4180-8a6d-0cc69001dbc3)(content(Whitespace\" \ + 60a82b59-576c-466e-b777-162b734366a8)(content(Whitespace\" \ \"))))(Tile((id \ - 27acf41b-ea89-4ff0-899c-8c3d9be0b3ba)(label(result_equal))(mold((out \ + bd26bb81-052b-4000-a91d-b18b5f18304a)(label(result_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - d6debeb0-6fb3-4ab0-86cb-d4bb187c8c63)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e398512c-3c96-421f-a455-0770f2140901)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 4030662c-5407-4ffc-9c27-e4b3e8d5ccfa)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0ab33bc9-c61e-474c-bd64-1a4650e90b3d)(label(eval))(mold((out \ + c14e1080-d592-4d1a-8d7c-f6a769ac9817)(content(Whitespace\"\\n\"))))(Tile((id \ + 01eb8e74-dad2-433e-84a3-6db864b278da)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - be5d6f5f-2e9e-4c55-82e7-0f2950749625)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + c08d17a3-86f0-44ae-abd8-130ae24f3dc7)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6ec85bf2-374e-4ad4-82c9-9394b268f779)(label(Lam))(mold((out \ + a3609f3e-e1aa-4710-ab9c-b0a9e1e41cb0)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b618b7e5-b03e-4014-b091-604e08e9eda0)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 2e9a1702-d984-4664-8871-2ff384af950f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f856cd2d-583e-4b89-80e4-77bfe5bafa3b)(label(\"\\\"yo\\\"\"))(mold((out \ + 7a98a8c9-f5c5-4595-b74c-bd7c57200801)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 62e293ef-5518-40f7-8782-404f25940817)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 3092c611-314f-4958-a773-b4972a71e0b1)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 04647702-4dbf-4851-a845-ef76cea684a8)(content(Whitespace\" \ + 635ca0e5-1a66-4e20-b9ba-a5d4856a438d)(content(Whitespace\" \ \"))))(Tile((id \ - b75e01ef-ee6c-421c-8599-991fe24e1e13)(label(Var))(mold((out \ + 529e16d0-74d0-4670-b329-a329c1f4cea1)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 002b0979-7e4e-4e55-964d-634f97797462)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e246b571-1849-4dc7-b821-1a8acea9f001)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7566c730-a883-4559-aafd-36ea07e85266)(label(\"\\\"yo\\\"\"))(mold((out \ + e65e7f5a-000d-4d97-87af-4e948296bd0b)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))))))))))))(Tile((id \ - 87489b74-6fea-4bb7-b188-cc0f293f1501)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + ca97cbc0-b06d-4ae1-a04b-7eb4879c45dd)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 5f9cb66a-3c69-44fc-98f9-8d33c2242e62)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 305c178a-7da5-485c-9212-97518172660b)(label(Ok))(mold((out \ + f9f62ab3-94e1-4460-9e1a-282be3745ad7)(content(Whitespace\"\\n\"))))(Tile((id \ + 48a468f5-bc00-4aa3-811a-50dd0b2e066a)(label(Ok))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b9c49a17-ddb8-4412-ab2d-e84a31674c1e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 2b2abf13-4865-4d7f-8c3f-abf22f0fe647)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6d928f5a-76ba-432f-84c9-8985bdfbae21)(label(Lam))(mold((out \ + 60f99f2e-0391-4ab7-bc47-9959fc05c337)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - dd04ac7f-c000-46e2-9346-68de5ccb2c37)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 545c2d2a-aa3a-431b-b9ca-dd716ca6ee59)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 09183f09-b197-4dab-9712-2ad6ec8053c1)(label(\"\\\"yo\\\"\"))(mold((out \ + 8ec6f6db-756f-4b23-b33f-224024733650)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2bac98eb-578c-4187-8d5d-0e428872fabe)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + b268b8e2-24f3-41c7-9ceb-614175cbdcfd)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2f510267-53e4-441f-8c4e-164a43cb1d76)(content(Whitespace\" \ + 75e15384-186f-409f-8edb-ed5483ef5fe3)(content(Whitespace\" \ \"))))(Tile((id \ - 9f53f3e1-50c4-41f6-9e69-d60a4bac4562)(label(Var))(mold((out \ + 3a4e0acc-7c31-4bea-ae4d-1fe250479d35)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 37e690bc-a872-42fb-a204-ac507f930218)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 2cc0bd9e-7ab2-4053-a6bf-fa47a4fb584d)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - bfa62c97-6b4f-485c-91a5-f28b7d3429dc)(label(\"\\\"yo\\\"\"))(mold((out \ + d4f2ee78-1d23-4cba-bd04-cc2a7ceeea0e)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))))))))))))(Secondary((id \ - 4c3b2e45-d2b9-42a4-9096-00e583a9d66d)(content(Whitespace\" \ + c53a30a8-81ef-4c7d-a11a-0e8ead9b8adf)(content(Whitespace\" \ \")))))))))(Tile((id \ - 2fe2dd64-bbdc-483d-a33c-8607a5a74f99)(label(\";\"))(mold((out \ + 48683a3c-af45-4567-a931-2c397fb9c5df)(label(\";\"))(mold((out \ Exp)(in_())(nibs(((shape(Concave 10))(sort \ Exp))((shape(Concave 10))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ad91ebe7-fd4d-4455-bd38-c279a70de5d3)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 461d55f6-6f2e-457a-b986-ba720f4d3dd4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ab21e019-9c01-4fa7-a20b-de67b02612f4)(label(test \ + 82e74442-d468-4d67-ab9a-f7283e528d1f)(content(Whitespace\"\\n\"))))(Secondary((id \ + 91ee522a-16d2-4a23-82db-b89e15672bc3)(content(Whitespace\"\\n\"))))(Tile((id \ + 0d7e8380-fd82-42c1-bd68-6794c7add033)(label(test \ end))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - fed3fa2c-11a4-4564-8eff-e7704b696268)(content(Whitespace\" \ + d5bcc48c-02f0-4ec9-9049-dfed5d9d5fd2)(content(Whitespace\" \ \"))))(Tile((id \ - 1fc38e53-5324-4b3b-8a05-04211a30616e)(label(result_equal))(mold((out \ + ccde96f9-1245-4968-a65e-090d805d2858)(label(result_equal))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e63a04ff-39de-4da8-af96-438a294a9c92)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 1bccc9ce-f2bd-4975-a1ad-e7b966d4fe9b)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 22edf468-f96f-4297-bae1-f1db449a5712)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dd1f6a2a-39be-4937-9dca-ea18760871ce)(label(eval))(mold((out \ + a1b785b5-2829-4837-b045-4d3eab2ccf6c)(content(Whitespace\"\\n\"))))(Tile((id \ + 5db82cd6-7826-40fe-8f3b-06294c9f70b5)(label(go))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3ce8a7ac-fd0d-48ae-b434-59ee497324c1)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 6459ae52-fba1-4422-afed-2af890e89881)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 567af97e-40c4-4b66-b5c0-c7dde61131a2)(label(Ap))(mold((out \ + ba3b4488-1a4c-48b7-9b06-dca7cac506d5)(label(Ap))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 3a8e1695-9c19-4860-be5a-b2bf92046582)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 53b88c98-5573-4b87-8f94-f230648bc9e3)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 5c422f00-d26f-46d5-92b4-849556a6cffd)(label(Lam))(mold((out \ + a84b125a-eb33-46fb-b8ec-b5d17012da7a)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2eeb6db0-38aa-4479-bcfe-197543180463)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 1f73579e-4516-4cb5-bee1-5c07600b7a46)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 84ff238e-dcf0-4449-b9b7-8d1ecd08d65c)(label(\"\\\"yo\\\"\"))(mold((out \ + eba58ed1-7aad-4613-84f7-63dcd5233c29)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5eef209e-e9e3-46fd-a7d2-ee1d841fdfd1)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 7e9403ac-bcb9-4fdf-afff-ac51847b82e1)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 627c15eb-037b-461e-a999-b5c720c0c27b)(content(Whitespace\" \ + c56293a7-632e-4074-9039-b929e76fcd6b)(content(Whitespace\" \ \"))))(Tile((id \ - e329ba5b-ff65-4a54-bd79-11119d2456b3)(label(Var))(mold((out \ + 425c8f21-dda7-4a2b-89a7-4592f5f127c5)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e07b3d06-1fec-4d51-9424-4863f3d93d4d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + cf9fe5c2-0358-4bff-93cc-700ee3bd954e)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f029b961-fcc9-4f8b-899a-0e7fa1cf11d1)(label(\"\\\"yo\\\"\"))(mold((out \ + 1adadbe9-b0d2-4eae-beaf-50e53ff674f9)(label(\"\\\"yo\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - 729a33c6-6475-485d-a8ae-d48ac1c2bf6c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + c654e02f-6794-4576-8675-0d687e98d297)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 87f21d69-952d-449f-84d7-1ee2ab05d40b)(content(Whitespace\" \ + 208a5dc5-30ed-4ab5-8a2a-86013c261c73)(content(Whitespace\" \ \"))))(Tile((id \ - 075b586b-fb78-4d80-8704-b63a67e7cd3b)(label(Lam))(mold((out \ + fbd1675f-de3e-4dbc-bb53-63984df85e96)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 94246c4e-444f-4b3e-bf20-fd2a13fc27ef)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + b5787e6b-5923-4b1e-9d57-80d0a946ff56)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 208a8991-100f-4cef-b433-eca8159ac882)(label(\"\\\"bro\\\"\"))(mold((out \ + ca7d0070-f638-4eca-b9dc-1e61585a2da9)(label(\"\\\"bro\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 53653980-ea4f-40b8-9d29-d359d33fa7bf)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 871b3610-0b08-4b3a-9fd4-b0e507c5352a)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - ae6269c2-ff33-4f78-83c0-cdf02b2cdc28)(content(Whitespace\" \ + 79a5579c-74c7-4376-ab05-b15f16e99472)(content(Whitespace\" \ \"))))(Tile((id \ - 5d26a17d-feb7-4d81-b23c-d80ae50d9dd6)(label(Var))(mold((out \ + 58a1aff2-0efc-4809-8bcd-a6807ad6b9da)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 71b62601-4be1-4205-8377-9ea8c5bd26c5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 9f7f577b-6809-486e-a519-9ed71836b2dd)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ed958ead-78f6-4f5a-bd6c-94d57f8393f7)(label(\"\\\"bro\\\"\"))(mold((out \ + 60f30909-1f83-4a51-9d98-d259495586ee)(label(\"\\\"bro\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))))))))))))(Tile((id \ - 15383e63-cf89-4209-a0bf-6c3d86d862d6)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 5482b64b-93fe-4ddc-b4de-1f4e575d284a)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - fd335c92-161b-4e37-988d-acfd90066a8e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0a5045cb-aada-489d-ab45-dbacd4fe44ed)(label(Ok))(mold((out \ + 408c92e3-f951-4f31-8752-862356b88882)(content(Whitespace\"\\n\"))))(Tile((id \ + a64bc919-82b6-498f-a66c-ab5ff390ad76)(label(Ok))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - aa0170f4-3445-4a3c-bfd6-9dd4bc5349ff)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f49998ee-e91e-4645-9b8b-0ba86a84543d)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - d68e6fef-70ce-4b20-b210-e41015a4027a)(label(Lam))(mold((out \ + 6703e9c9-1ab4-414c-9603-8cd0ddb3c949)(label(Lam))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - cda0a2c8-1d02-4e25-ba06-7fb9900cab81)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + dc85022b-d88e-4d56-9adf-8db59a35a6a7)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 36f04861-35cc-4eb9-83d0-01085dcf7656)(label(\"\\\"bro\\\"\"))(mold((out \ + 84005dd9-b58e-4ca3-9074-0456d2f430c3)(label(\"\\\"bro\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e502a97c-aa0c-4e34-a1c9-9d86454fe1c5)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 76aa3723-c0f2-41a8-a8aa-ec010969619b)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 62eb476d-c91c-4c67-bd46-be123833cbdf)(content(Whitespace\" \ + 478ac908-46d2-4e78-8cae-1a803f6de024)(content(Whitespace\" \ \"))))(Tile((id \ - 1ff88e88-1e7c-4117-8cfa-6431b1c60b5e)(label(Var))(mold((out \ + c808791b-791c-4340-94b4-23bcf027103a)(label(Var))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4e3e4ddd-946c-4afa-ad49-4dc4096d8f9d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 66ba6264-558c-45bc-9dde-a6f0e0820b6d)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e9180871-be73-4a92-a949-010ae5b1a3f8)(label(\"\\\"bro\\\"\"))(mold((out \ + 7df83f37-87bf-4ca7-be5b-76684bd9b70a)(label(\"\\\"bro\\\"\"))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))))))))))))(Secondary((id \ - 88a4c943-608e-454a-94ad-7dcc08046493)(content(Whitespace\" \ + ec814595-1e64-49d1-afcf-91e3ff70e2c2)(content(Whitespace\" \ \"))))))))))))(ancestors())))(caret Outer))"; backup_text = "# Lambda Calculus via evaluation by substitution #\n\n\ @@ -15824,9 +16957,9 @@ let startup : PersistentData.t = let exp_equal: (Exp, Exp) -> Bool =\n\ fun es ->\n\ case es\n\ - | Var(x), Var(y) => x $== y\n\ + | Var(x), Var(y) => x$== y\n\ | Lam(x1, e1), Lam(x2, e2) =>\n\ - \ x1 $== x2 && exp_equal(e1, e2)\n\ + \ x1$== x2 && exp_equal(e1, e2)\n\ | Ap(e1, e2), Ap(e3, e4) =>\n\ \ exp_equal(e1, e3) && exp_equal(e2, e4)\n\ | _ => false end in\n\n\ @@ -15835,7 +16968,7 @@ let startup : PersistentData.t = fun v, name, e ->\n\ case e\n\ | Var(n) =>\n\ - \ (if n $== name then v else e)\n\ + \ (if n$== name then v else e)\n\ | Lam(x, body) =>\n\ \ Lam(x, subst(v,name, body))\n\ | Ap(e1,e2) =>\n\ @@ -15843,1620 +16976,1629 @@ let startup : PersistentData.t = # Evaluation can result in either an Exp or an Error #\n\ type Result =\n\ + Error(String)\n\ - + Ok(Exp) \n\ + + Ok(Exp) \n\ in\n\n\ let result_equal: (Result, Result) -> Bool =\n\ fun rs ->\n\ case rs\n\ | Ok(e1), Ok(e2) => exp_equal(e1, e2)\n\ - | Error(e1), Error(e2) => e1 $== e2\n\ + | Error(e1), Error(e2) => e1$== e2\n\ | _ => false end in\n\n\ # Evaluation by substitution #\n\ - let eval: Exp -> Result =\n\ + # Evaluation by substitution #\n\ + let go: Exp -> Result =\n\ fun e ->\n\ case e\n\ | Var(n) => Error(\"Free Variable\")\n\ | Lam(x, body) => Ok(Lam(x, body))\n\ | Ap(e1,e2) =>\n\ - case eval(e1)\n\ + case go(e1)\n\ | Ok(Lam(x, body))=>\n\ - case eval(e2)\n\ + case go(e2)\n\ | Error(err) => Error(err)\n\ - | Ok(arg) => eval(subst(arg, x, body)) end\n\ + | Ok(arg) => go(subst(arg, x, body)) end\n\ | _ => Error(\"Not a Function\") end end in\n\n\ test result_equal(\n\ - eval(Var(\"yo\")),\n\ + go(Var(\"yo\")),\n\ Error(\"Free Variable\")) end;\n\n\ test result_equal(\n\ - eval(Ap(Var(\"no\"), Lam(\"bro\", Var(\"bro\")))),\n\ + go(Ap(Var(\"no\"), Lam(\"bro\", Var(\"bro\")))),\n\ Error(\"Not a Function\")) end;\n\n\ test result_equal(\n\ - eval(Lam(\"yo\", Var(\"yo\"))),\n\ + go(Lam(\"yo\", Var(\"yo\"))),\n\ Ok(Lam(\"yo\", Var(\"yo\")))) end;\n\n\ test result_equal(\n\ - eval(Ap(Lam(\"yo\", Var(\"yo\")), Lam(\"bro\", Var(\"bro\")))),\n\ + go(Ap(Lam(\"yo\", Var(\"yo\")), Lam(\"bro\", Var(\"bro\")))),\n\ Ok(Lam(\"bro\", Var(\"bro\")))) end"; } ); ( "Polymorphism", { zipper = "((selection((focus Left)(content())(mode \ - Normal)))(backpack())(relatives((siblings(((Secondary((id \ - ce06e01f-9b12-4ea1-8549-c5615ca7e52a)(content(Comment\"# \ + Normal)))(backpack())(relatives((siblings(()((Secondary((id \ + f531d966-9656-4cd1-82eb-4a80ce2a0e92)(content(Comment\"# \ Polymorphism #\"))))(Secondary((id \ - 3b3f93ba-ca3c-4c1b-8346-2d68f5504958)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - abf1a875-4891-4386-8c1c-a77ad171a596)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - e8268e68-25db-4119-aaf2-c1e01ab024a0)(content(Comment\"# We \ + 5d4daeae-ecdc-47bb-9992-ce5024c2275a)(content(Whitespace\"\\n\"))))(Secondary((id \ + f0d8f788-9aab-4b69-a3f9-3cd9a1a70a34)(content(Whitespace\"\\n\"))))(Secondary((id \ + cc230dc8-58b5-4cb5-8aa5-0bfbe1177102)(content(Comment\"# We \ can take types as parameters to type functions, \ #\"))))(Secondary((id \ - 70f57795-15c2-4826-b2d4-b1c2414b09fc)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 28bfb176-1ada-450a-9a2e-9ee4f68b9271)(content(Comment\"# and \ + e3ed5d2e-ab27-412f-943e-879e38ac559b)(content(Whitespace\"\\n\"))))(Secondary((id \ + 4c6236c2-fcd4-436a-8b7c-3d43650efc34)(content(Comment\"# and \ use them in annoatations in the body: #\"))))(Secondary((id \ - 6c16f965-ddc2-4208-8161-9d17a4f71e84)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dbc1d50f-0873-4a56-becd-184560be6a16)(label(let = \ + a619a88d-7e97-42da-86e7-01cf8dae47f1)(content(Whitespace\"\\n\"))))(Tile((id \ + 8fe814f0-7895-4bcf-8682-048682dafad6)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 3265ecf6-f14c-4851-87bd-29b1c48ad60d)(content(Whitespace\" \ + 7a2fbf23-0e73-48d9-8acb-c44e9de98ab0)(content(Whitespace\" \ \"))))(Tile((id \ - 2f057ddc-b7b4-4a90-8772-0f54a9e6a0f1)(label(id))(mold((out \ + 09c2d8c4-44bd-46ac-88e1-4b59ac422cd0)(label(id))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 9e9a0675-cf88-464e-a5b2-22ec197d871a)(content(Whitespace\" \ + 3e02eb03-cc7e-4bf5-aa55-ad0711844d4f)(content(Whitespace\" \ \")))))((Secondary((id \ - 7c246b01-e879-4704-ab40-1ad600b6a05d)(content(Whitespace\" \ + 74d633aa-7732-4047-942f-27acd258c1f2)(content(Whitespace\" \ \"))))(Tile((id \ - 357bc39e-7763-4d16-856a-30f2fdb89cd2)(label(typfun \ + b26bcb03-3d9a-4c2d-be3f-114342660b72)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - f9f6be49-c063-4799-a630-a15c13dc2416)(content(Whitespace\" \ + fed3d945-d2ba-4c7d-882d-fea46a9cfc64)(content(Whitespace\" \ \"))))(Tile((id \ - d45a8f80-0658-42a7-bff7-6bfbf36e910d)(label(A))(mold((out \ + 97a3afb8-5ba2-41ca-ba64-e1a9927ae4d5)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 9f37693a-1d0d-4720-a547-0bde3a0cf043)(content(Whitespace\" \ + fce66ca9-fac6-4fd4-a549-98523b937dac)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0f5c9f28-98cf-4704-be01-3789b89325ad)(content(Whitespace\" \ + 7229523f-57df-4078-ae8f-537742066b36)(content(Whitespace\" \ \"))))(Tile((id \ - c41ee313-ae0d-46e3-8763-3c0003823bf6)(label(fun \ + f343ddc7-57cf-4625-b9b8-d42e4265375a)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 5a50ead3-2382-4702-8edc-82df727a9f98)(content(Whitespace\" \ + e3bf119b-c817-467f-800c-6169bff4819b)(content(Whitespace\" \ \"))))(Tile((id \ - 95012d29-d892-46f6-9d41-9d5b6a1991ea)(label(x))(mold((out \ + 2a54e776-4210-4996-893c-280d9d0544dd)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 8134e2f9-624a-43ff-9e7e-f4f2fb3c44db)(content(Whitespace\" \ + 1e085266-26a8-4803-bdd9-737e13c30194)(content(Whitespace\" \ \"))))(Tile((id \ - e9602009-d959-44c3-bae1-2fcca11436e0)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + c936896e-5dff-49bf-aa98-11b4ce862761)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - d8b777e0-ebea-423b-99cd-6777245529d4)(content(Whitespace\" \ + f6b1032e-1e9e-433e-86ab-456f90af4222)(content(Whitespace\" \ \"))))(Tile((id \ - 1e025399-f3a3-40e9-b623-4269d2b4ee01)(label(A))(mold((out \ + d5a47c6d-d24d-4ef1-a060-606484b965d5)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 89d852f5-e16c-4b7c-af4b-064b73a7d0b0)(content(Whitespace\" \ + bdcc8870-b74b-4553-977b-757a485b10e5)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 56b281c4-857e-4223-b818-b33e503e6340)(content(Whitespace\" \ + 2072eb8a-d2ee-49a6-b6ec-7cafbbde3033)(content(Whitespace\" \ \"))))(Tile((id \ - fc41c74e-bd60-4cf6-8400-aa6cd0b485d2)(label(x))(mold((out \ + 5dca5191-0403-436d-a497-f652cbad5254)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b4b1ea56-6958-44fc-89bd-b6f22e6bade3)(content(Whitespace\" \ + b4cb6907-0c38-4b67-ad96-45b705bfae1a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5c77f088-a1f3-4ba8-b7ef-efe73f27f855)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d7c28f98-90c1-46ca-9827-7fb78625c981)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - a979ad79-2705-4ca1-9cf2-cccfec5e0086)(content(Comment\"# Such \ + 6aff849b-59d0-46a0-b781-8678637e1073)(content(Whitespace\"\\n\"))))(Secondary((id \ + dd8ae2d5-654a-4b51-9417-480b68a56dc1)(content(Whitespace\"\\n\"))))(Secondary((id \ + 8d899bc1-ee49-450e-a084-5ac90ffefc82)(content(Comment\"# Such \ functions are applied like so: #\"))))(Secondary((id \ - 5c84aefa-4652-4c4c-89ff-f05f4da85b58)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2e888173-4ece-4010-a674-13a32957493e)(label(let = \ + a5a251b0-eeff-4256-9c72-996faea5a498)(content(Whitespace\"\\n\"))))(Tile((id \ + 2a93c2ca-b6ab-4a7a-87b0-839aa512a691)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 32c1835b-c27f-4ccf-be61-a270b6e9c5ba)(content(Whitespace\" \ + 9c13bf6a-f462-4648-a65f-2ad55c680536)(content(Whitespace\" \ \"))))(Tile((id \ - 1c2ef7e4-4439-4110-976e-41a1e8ff3d6b)(label(ex1))(mold((out \ + 97c53ee2-470d-4e7d-b812-4d4a69455557)(label(ex1))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 859ef193-f93b-4ae5-b070-4731bf77bc97)(content(Whitespace\" \ + 91b09e76-1e5b-4933-80c5-0b9f239a109f)(content(Whitespace\" \ \")))))((Secondary((id \ - ddb1f2b6-3fe6-4079-a75d-dcaebe48bc6f)(content(Whitespace\" \ + cb270ebd-2836-4130-8fad-aeaa67b7f980)(content(Whitespace\" \ \"))))(Tile((id \ - 8439b029-0b7c-47cb-9867-c4c16ed4e733)(label(id))(mold((out \ + 7877499d-8e57-4741-a58f-ff125003f013)(label(id))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - c5fe892a-4d64-4346-95bd-056a11c3f7ad)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + bd57d181-948f-4fb2-8bde-9561b1683c7d)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7079f97d-6950-4fd4-b76e-f6924cd0ed7e)(label(Int))(mold((out \ + b605dff8-7b5d-41d7-b163-ed66ada5dad6)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 35b79c01-e4db-4671-a26a-ec0a7933c24f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 23a880e4-666f-41fa-acb7-edc3faafe278)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 83c93244-e705-4189-a816-70dd13a963ec)(label(1))(mold((out \ + abd95a67-518c-43cd-b0b0-09139ea11f68)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 7e153b1d-8ee5-4f89-a01a-1242f0565511)(content(Whitespace\" \ + 6e67188c-d54f-4182-b6e4-e20be7409fe7)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5d0ec35e-42f0-41e6-810c-b4163164e51e)(content(Whitespace\" \ + c856a4ab-7681-4169-85cc-4003aa80bc52)(content(Whitespace\" \ \"))))(Secondary((id \ - fdb7e231-ff3c-4d22-a8d2-308db57999e4)(content(Comment\"# 1 \ + d01b7960-22ce-4418-92ef-1be2bb1c0fbc)(content(Comment\"# 1 \ #\"))))(Secondary((id \ - a4b7e97a-83dd-492f-ae20-a84b2a979e30)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8c74bef9-7177-4774-89aa-805787cf673f)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7309f6e2-2d49-45af-b7c6-0ec75a57fc2b)(content(Comment\"# We \ + 777d62f8-331f-4d1e-8a5a-1a09a9f89ec3)(content(Whitespace\"\\n\"))))(Secondary((id \ + 90e879b8-483e-4c4c-b233-2b31b7c2dfb7)(content(Whitespace\"\\n\"))))(Secondary((id \ + 491a90e6-ead6-42a9-8284-279180c8c580)(content(Comment\"# We \ can annotate the type of a type function with a forall. \ #\"))))(Secondary((id \ - 4fda5632-5de3-4c5d-b424-bf16d704f35a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d1ace50b-2196-477e-aeda-e84f61901017)(label(let = \ + c624f13c-9188-4c91-ace5-e7224e6a6dbc)(content(Whitespace\"\\n\"))))(Tile((id \ + 1af4a4d0-b52a-4ec9-979a-9ae451f1f848)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - b1df318d-3e75-4630-8f19-d3cbc69bb8ee)(content(Whitespace\" \ + a719a29e-7014-4e0c-b5e9-cfdfe8d414f5)(content(Whitespace\" \ \"))))(Tile((id \ - 7a283681-40a7-483c-ab85-ab4916479faa)(label(const))(mold((out \ + c2aabeb4-a488-452f-88a5-0e19c623103c)(label(const))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 69a7673c-e766-4409-852e-03c46fbbbf56)(content(Whitespace\" \ + 81273931-7fe2-47cb-a084-f4b062107fab)(content(Whitespace\" \ \"))))(Tile((id \ - f5115707-8100-478a-bf56-748777fdd0c3)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 03fb0ac4-7aa9-445f-a553-93f4f07d6e8d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8bc19b04-eb77-4c2a-9668-4350e26a309d)(content(Whitespace\" \ + 7b7acab2-079f-41d6-a0e4-baaa4d119467)(content(Whitespace\" \ \"))))(Tile((id \ - a7889e83-9fe8-49ad-9bef-44e8ce448a64)(label(forall \ + 0980446a-d625-4b8f-990a-e68e1654e767)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - f70ea1f6-288e-407f-8594-1736b20cce67)(content(Whitespace\" \ + a3659d37-0062-4269-ab07-8d0d7b8495d4)(content(Whitespace\" \ \"))))(Tile((id \ - 57bed8d9-e4fb-47da-b21b-fe51fb8ee9e6)(label(A))(mold((out \ + 880b2494-aae9-4110-8880-1f3ef78c91e4)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 48e84944-6794-4ec4-9809-f8c9689fd797)(content(Whitespace\" \ + 9afdb2cc-c50c-438d-b204-af497695d4c6)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 0d8e46dc-456d-471e-9387-04fe16526ad6)(content(Whitespace\" \ + 86b64f50-4921-4a9b-8724-dbf6044084fc)(content(Whitespace\" \ \"))))(Tile((id \ - 913ff727-11a1-4e0d-83fc-99e4de6e34f3)(label(forall \ + f22c1d66-073c-41f8-8af0-aa16e606fa9f)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - fea1b479-fbd8-4564-8a3a-93e7e3d5374b)(content(Whitespace\" \ + 41e37e8e-f6b4-4dfa-adb5-c0ee132c4dc2)(content(Whitespace\" \ \"))))(Tile((id \ - d97d38b4-0e17-4bb8-b342-50937dff5896)(label(B))(mold((out \ + d61481c8-74a7-4f04-a2f6-427060e232b2)(label(B))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - e43565a7-cbb9-45aa-ab46-5cda424a47c5)(content(Whitespace\" \ + 4efbad43-f2cf-408e-afbf-d5bffbaf1a6c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f9ead65c-4436-4958-898c-a7ed360b5b46)(content(Whitespace\" \ + 51b65168-3574-45e5-8451-55997f736b2d)(content(Whitespace\" \ \"))))(Tile((id \ - d6a5887c-ef92-4773-9429-919995401912)(label(A))(mold((out \ + ac21fbdf-6530-4b72-b1fb-74abf3975f88)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c5801121-b4f8-4751-bca0-6b48d487a7e6)(content(Whitespace\" \ + aaf75b4a-c5ec-4f37-b2c6-6b4f15dcae18)(content(Whitespace\" \ \"))))(Tile((id \ - a3f602fe-03e9-4b18-8c75-2699369b969e)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + ffe8fd86-e515-4f69-a4d6-38e4e7ae4d74)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b59e20fa-3d31-411e-b242-a371c0e04d03)(content(Whitespace\" \ + 7b01f898-6c54-4555-ae46-1e2c9af28bbc)(content(Whitespace\" \ \"))))(Tile((id \ - 20b8244e-580b-450c-9cd2-db7cc09f9171)(label(B))(mold((out \ + 9d309ec8-ddc9-4ffc-80ca-bdec1e3ccffb)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4e1ba90f-c253-4ea0-af95-d1fe89e671f6)(content(Whitespace\" \ + 1eca4b4a-ffa5-46f1-9767-78d4952e1a46)(content(Whitespace\" \ \"))))(Tile((id \ - 3263d74a-307a-4e5d-afc3-74a9344f4b0d)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + e1004d45-7d54-4c88-96f1-a90babcf6f9d)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b3466ca7-a0f4-4aa2-a5a3-f9d1646f5033)(content(Whitespace\" \ + 5d787dd9-3512-4925-be9b-916d5789e28c)(content(Whitespace\" \ \"))))(Tile((id \ - 0c0fa783-0e0e-4c53-9dc6-ae591f4c9649)(label(A))(mold((out \ + 0c06f6e7-7dd3-48c9-b0a8-117db18aaaab)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b5d049f6-643b-4a28-b9d0-8ebacdca3665)(content(Whitespace\" \ + 4af87200-4db4-4611-8a0d-8a0f083f4a7c)(content(Whitespace\" \ \")))))((Secondary((id \ - 4cf96db7-3321-47be-bbc0-7c6df9c84aac)(content(Whitespace\" \ + d0ee9bca-78ae-47ce-8795-e87c4239c739)(content(Whitespace\" \ \"))))(Secondary((id \ - 26600e0d-d6eb-40b6-9357-12b948bb85f8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1992686c-e8b9-4473-a1ae-d2c08a08bd83)(label(typfun \ + 6a9df067-0f29-4d2b-aba0-a7ab5afc7e21)(content(Whitespace\"\\n\"))))(Tile((id \ + e761af48-6948-4c83-883c-0e9fa89f9a1d)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a13a91a2-4077-4cc3-9f3d-574983bc9b3a)(content(Whitespace\" \ + f072f4c2-dcb9-4182-adcd-433a36a42b8d)(content(Whitespace\" \ \"))))(Tile((id \ - 4a3d43e1-6d91-48f8-941f-fc2caa196468)(label(A))(mold((out \ + 17a08b3c-da24-4e44-8953-921e0c73680e)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - c26137e3-a766-4717-a269-2ba155800b8a)(content(Whitespace\" \ + 891ca871-9727-4705-b878-5e82d3625ede)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 96004d3c-f493-4c07-bd6f-e717bd487554)(content(Whitespace\" \ + 3ff764fb-ef53-4705-8ed6-171207b256fb)(content(Whitespace\" \ \"))))(Tile((id \ - ece966f5-4bfa-4f08-99ce-0a1f41c64f48)(label(typfun \ + 2f418fb0-c8ef-4fd9-8b50-ec9575b5a458)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d9a1daf2-50e7-413b-9254-395a44586281)(content(Whitespace\" \ + ae807fa3-1fed-4da9-90a6-fc58d4ec301d)(content(Whitespace\" \ \"))))(Tile((id \ - f5d75275-fa16-42f3-ad3c-6c422427c84e)(label(B))(mold((out \ + c847d8bd-9673-4b12-acb0-02dfba49b563)(label(B))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - da14e1ca-0903-4b7a-9f3d-e4d64ca651ed)(content(Whitespace\" \ + 9da551bf-6d99-41f2-9ee7-9ecf8f3cc89e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3154b641-f630-4c85-a591-78d0ea4c6aa4)(content(Whitespace\" \ + b68ff96e-5b2c-43f3-97de-2210bc6f45b2)(content(Whitespace\" \ \"))))(Tile((id \ - 4b5a8664-1772-4700-bad2-4b186a35dc5a)(label(fun \ + a82fc1f7-d380-4f4b-a60c-a73fd5d5c4d6)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 5f4ee7eb-858b-4375-8bae-ecb4688adca7)(content(Whitespace\" \ + 477e839a-f2a5-4369-8b77-c19ce17f5322)(content(Whitespace\" \ \"))))(Tile((id \ - 4cb9bfb4-56f0-47a1-b6be-9f0a16c98e9d)(label(x))(mold((out \ + fef58639-ec8c-4f32-b5cd-c7153ca05b92)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 586ac15a-3af8-4b3f-99b0-0446efd5bd1c)(content(Whitespace\" \ + 3ad7ee34-1220-4bec-a3ef-650c974f359c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5b0b25b1-b94b-45f8-9a89-3e9fe8cd1222)(content(Whitespace\" \ + 1dafda4f-127b-42eb-8b08-55ac80a054aa)(content(Whitespace\" \ \"))))(Tile((id \ - b1f6c96a-f3a7-43ea-b304-acf5a99b5d95)(label(fun \ + e544daee-4385-42a1-9cc2-4708b057889f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 3cf3fd73-b0f4-4e68-8324-41f2c1a34db5)(content(Whitespace\" \ + 0d8d1d8f-8713-421c-baaf-da411dcc7b74)(content(Whitespace\" \ \"))))(Tile((id \ - 0d9b9fbe-2609-4aeb-894a-e4d883971862)(label(y))(mold((out \ + 0dc1646e-31a6-436e-bf65-106fff46a092)(label(y))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - f9eacdec-ff0f-487f-b4e7-016b5eee0516)(content(Whitespace\" \ + d99c1964-c99f-40b6-9c0a-4d747ec9f86d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6dc0f10f-31b0-47f2-876c-973a06e137a6)(content(Whitespace\" \ + 0a88281f-b566-455a-b43f-74771b0755dc)(content(Whitespace\" \ \"))))(Tile((id \ - 84678463-bd3d-495b-8787-5e15e9f2fb76)(label(x))(mold((out \ + 7674afa5-ffc8-4495-841c-a4b824600f71)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 6b03a744-056f-4464-a52c-a0152aaa7165)(content(Whitespace\" \ + 25b8b32f-748f-46c7-adf9-8ac6e31f5bfc)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 378239c7-2535-4a78-8fb0-8d19433db26b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f686ce31-58f6-4e46-9c6c-7ee24a13619b)(label(let = \ + 0f10c6ea-fd53-44a7-bb5e-b7544d5afd53)(content(Whitespace\"\\n\"))))(Tile((id \ + ff8bf9e3-827d-4498-b5e3-dc15f2906c9e)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 89f204f3-4bc8-4dc3-a31c-9e5d99cb1242)(content(Whitespace\" \ + 569eea44-b925-44d3-b672-71aecd314eac)(content(Whitespace\" \ \"))))(Tile((id \ - c0fd6ffc-1cb2-4d82-a6b4-798bc6251af7)(label(ex2))(mold((out \ + 5f78e422-c81d-4645-8f8b-75e5889f43de)(label(ex2))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 85333d35-a563-44eb-8102-a64226fc9c37)(content(Whitespace\" \ + 5e458e17-0203-478b-8666-a1e29450d3fb)(content(Whitespace\" \ \")))))((Secondary((id \ - 20d23ebb-f489-4103-a55f-0c6024c82896)(content(Whitespace\" \ + 190f76c7-6e6b-4c35-8f86-51cef18a3df7)(content(Whitespace\" \ \"))))(Tile((id \ - 2e160900-ad22-4eb4-93f9-499a2179dc8d)(label(const))(mold((out \ + 9536d2f4-8316-4978-8371-6d0a86a9b677)(label(const))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - b64dd6ef-3a63-40ca-a9b3-85453bf6649f)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5d051810-8d64-40ff-b214-2372624e9bea)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - c45a9241-5e40-42bb-9738-16984f9cced5)(label(Int))(mold((out \ + 2ae66b1d-78a3-4839-9aef-266d2349c19e)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 6bb9e3d9-9127-4b3e-b129-63e461202adb)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + ed677876-82d0-4581-914d-359724e7fd53)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 2fa8b7dd-6963-4688-a0d3-c4ea84e886dd)(label(String))(mold((out \ + 8fa49cf3-08de-4247-97b1-7c323ff7ec6a)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 137358f3-a48c-4169-a855-495f7fb95ba4)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 73a0b92a-d758-4398-afbe-c83bc7b23959)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 36d3b274-ad9b-4057-aa23-b0481d7c6a59)(label(2))(mold((out \ + 9f946b7c-2d19-4a7a-a82d-48b1fb4760ca)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 42a0f2f0-96bd-4896-960f-2c5e623c5af1)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 708f700a-7a19-4f4a-b6ba-a1241725a0d5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f282d501-c0bd-434e-873e-30b7e520cf20)(label(\"\\\"Hello \ + 39e303a9-3721-41a8-b09c-172523651fce)(label(\"\\\"Hello \ World\\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 084144f9-6c79-422a-96d8-1ab0db271dde)(content(Whitespace\" \ + 6e81a335-af2e-437f-8aa2-0b009a287a69)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b7c097ca-897c-4549-85b1-a3aa34bd3e48)(content(Whitespace\" \ + b06989a9-a343-4ed5-aa57-f9b6d96cd364)(content(Whitespace\" \ \"))))(Secondary((id \ - 17b2ff69-f022-4365-9611-19e153ab3510)(content(Comment\"# 2 \ + 2c773f43-68f4-4a52-8743-4a890df42a1d)(content(Comment\"# 2 \ #\"))))(Secondary((id \ - 8e6a1044-6ea7-481f-b35c-f5dc277406e7)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d9204a7d-8903-426c-a2a3-e298948f6645)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 93e3db1d-a91f-4b86-9085-4907952180d9)(content(Comment\"# We \ + 0cf2b674-45a3-4693-a653-6691294b21b7)(content(Whitespace\"\\n\"))))(Secondary((id \ + dfa95686-38ba-4934-9d02-649085112f75)(content(Whitespace\"\\n\"))))(Secondary((id \ + e8b4cb22-1948-4261-b2f1-a50eaa6f691a)(content(Comment\"# We \ can go beyond rank 1 polymorphism: #\"))))(Secondary((id \ - b3a81efa-f007-4976-8864-f0a563e7efd7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5a144dcf-d9f2-402d-9556-b6e8ee0647e5)(label(let = \ + 864d8804-e86e-4c0b-8572-427b16ba6aa0)(content(Whitespace\"\\n\"))))(Tile((id \ + a72b10be-c84d-4753-a24c-26b8adb8bfcf)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - a3f3a127-a472-431b-a04d-20dfb03fee37)(content(Whitespace\" \ + 74ae57ec-bd10-4ea7-b1b2-108823a70df1)(content(Whitespace\" \ \"))))(Tile((id \ - 7560359f-5145-4674-9e5d-0427f75cc171)(label(apply_both))(mold((out \ + 713e8f6b-2bdd-47c4-9c06-4c660db94082)(label(apply_both))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 2b179ba5-1578-439f-8899-d72c14f7780d)(content(Whitespace\" \ + a773ab3c-890d-4557-a2db-b51c6b7fafdf)(content(Whitespace\" \ \"))))(Tile((id \ - 453fb383-28b8-466a-ba99-063b848e02c2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 2834a349-3ab1-41cb-9443-12ae9bae030b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 462a9b5f-e582-4d33-bbfa-791e557df360)(content(Whitespace\" \ + b523b63a-21ad-4097-86fa-01e02f6f2a25)(content(Whitespace\" \ \"))))(Tile((id \ - 6c464286-72b3-49ad-b83f-571c66c1ade6)(label(forall \ + a848e5a4-4c65-402a-8343-90394464cae6)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 4885ff9c-656c-4cac-94d3-9946c87758d1)(content(Whitespace\" \ + 5cfd60b2-4a15-4d9e-a3d5-55de09eedd85)(content(Whitespace\" \ \"))))(Tile((id \ - b1ef3819-7e49-4952-9b4d-4553df2c1b22)(label(A))(mold((out \ + 7c4d5bc3-ef2b-4c09-a1f8-f3828bfdb18c)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 699dc9bb-69ee-4f0d-8eb8-4d08ca395ac0)(content(Whitespace\" \ + 03198080-2201-464f-bc0c-000e1792807c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - fb4c51ac-dd80-4b42-b18a-3460c39ba250)(content(Whitespace\" \ + 45919e57-7c8b-400f-8dca-e663677cc170)(content(Whitespace\" \ \"))))(Tile((id \ - a3a5af75-2734-473b-a402-3339b5a5aed3)(label(forall \ + 588b01fa-731b-4f1a-860e-0acd7e743c69)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 14b786ee-56d3-4868-9048-38d18607b3ed)(content(Whitespace\" \ + 9326ba1d-011f-4769-a001-b4430521e63f)(content(Whitespace\" \ \"))))(Tile((id \ - e3ad6862-da04-4d40-b14d-773a130d2a4f)(label(B))(mold((out \ + a2668af7-cfe6-4215-9601-89a5d5b1bfc5)(label(B))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - c3613e98-7473-49d7-9dcb-9e35f7d7b10d)(content(Whitespace\" \ + a9e24fb9-2bf3-467d-a4a1-8acacab7b473)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e4f9136f-ecd7-497c-989d-dd9ba87a3d11)(content(Whitespace\" \ + bc66f626-a852-4726-93bd-f2980f5aaec8)(content(Whitespace\" \ \"))))(Tile((id \ - 9f0b4530-be66-4001-ad6d-5008ade448f5)(label(\"(\"\")\"))(mold((out \ + 0c3e5b3e-fe7d-400d-b362-a86a1e3930f2)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - ebeb7669-44b8-433a-9944-dc027f8f7003)(label(forall \ + b8bfdb8d-395b-4dda-b95f-f59d5713d282)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 37725f50-74ae-4651-a13a-489eddb08955)(content(Whitespace\" \ + 9fff6852-4fc9-45f3-b152-b92118560cac)(content(Whitespace\" \ \"))))(Tile((id \ - 20a12d27-d6b5-4514-ad6f-1e951c2d0391)(label(D))(mold((out \ + d5d76155-964c-4c24-97cb-6e57afe3505b)(label(D))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - c70dd6ff-391d-4c7c-a73d-62b8af7a5c10)(content(Whitespace\" \ + b2b87c72-a6d8-4b92-88de-dc3958f0c10a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 084c5f67-3772-473b-8121-b5593490d98d)(content(Whitespace\" \ + fb3b11fb-b48b-4686-9c48-1f980298431a)(content(Whitespace\" \ \"))))(Tile((id \ - 374c499d-fbaf-4a2c-8e95-a8c4aab55992)(label(D))(mold((out \ + 5e2daa4e-b957-45c9-ae31-ce9572e54e1c)(label(D))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 636bf99a-c682-4a09-9bc3-02abf03a2a95)(content(Whitespace\" \ + 5e2702de-94ef-4d9d-9f6e-0ff3a700a4d6)(content(Whitespace\" \ \"))))(Tile((id \ - 8f3851f6-33da-415b-82bc-8d7734089747)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 5d0bd610-edb7-46d4-9a35-7197172614ad)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - df4c4c83-a640-4b98-9992-cc466142b237)(content(Whitespace\" \ + 6687d2fc-ae58-413a-8946-5d969cab3758)(content(Whitespace\" \ \"))))(Tile((id \ - bc020cbc-2bee-4d21-aada-486e4657ca1a)(label(D))(mold((out \ + f92d33cc-0f33-481c-ba59-a89e4b7e41d5)(label(D))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 80178c33-42d1-40a8-9f89-6cd7257cec81)(content(Whitespace\" \ + c7c293db-f64f-4e35-9b7b-652c40a75a45)(content(Whitespace\" \ \"))))(Tile((id \ - c028b69c-8544-40ce-bd46-b370f61b6050)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 7cb8df24-1ad6-428b-a416-719555cfe5bf)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c7feb1ec-8ee4-4a45-852c-61dab26295d1)(content(Whitespace\" \ + 789b186e-63d8-447e-83a1-05e97111be8f)(content(Whitespace\" \ \"))))(Tile((id \ - 69097f40-c4b8-40fc-8c3f-83320bb1c7f7)(label(\"(\"\")\"))(mold((out \ + 1bc3a100-c80b-4ca2-8233-86c17fdc0b4f)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 9dfe9156-9cc5-4484-ad1b-6c2e1ba76e00)(label(A))(mold((out \ + ea90a5ab-dbc4-4473-b6d8-8363af6157e3)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 68821505-6886-4514-9cb7-ca680ef6f9fe)(content(Whitespace\" \ + 49c20c01-3a04-4ade-9c8c-0ecaddc3d912)(content(Whitespace\" \ \"))))(Tile((id \ - f0a182a8-44ea-4c80-b37e-26545127421e)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 961de683-be3c-4ca8-94d4-fcee6c22f4e6)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ee9e3c98-29c3-4191-96f7-d759ba9831d0)(content(Whitespace\" \ + 4f1b7cf7-e1ca-4e0e-a6fe-a1b7e2664b41)(content(Whitespace\" \ \"))))(Tile((id \ - 03c0b912-b205-4ee3-83f4-20654cef76a4)(label(B))(mold((out \ + 99a7b5b3-227b-4a7a-ab49-9b471b1fc858)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 704883ad-e1f1-4931-8c20-75137f6125bb)(content(Whitespace\" \ + 7755d5ee-c4cb-442c-8aa5-5a4cd77e6227)(content(Whitespace\" \ \"))))(Tile((id \ - e57b4dfc-0ec1-4c60-9114-4db7ed161100)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort \ - Typ))((shape(Concave 6))(sort \ + 9f11b960-7216-4e89-8b4c-28de72037f0a)(label(->))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 5))(sort \ + Typ))((shape(Concave 5))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 12d67f9f-300d-47d2-9456-b46834577095)(content(Whitespace\" \ + f0d0d1bf-38ea-4e45-9c41-3954ce5b1654)(content(Whitespace\" \ \"))))(Tile((id \ - 8f554256-0ab9-4c84-a1c2-63596877e225)(label(\"(\"\")\"))(mold((out \ + 3f10dba0-23b1-4ac4-a39c-79b0953c0b76)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - b9860364-7fb8-4a87-9813-2bd5178200fd)(label(A))(mold((out \ + 37b9f9c9-3e3d-405a-96f0-50f9dee7bb36)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6e303e7d-fe77-4b6d-80eb-674991ecebb2)(content(Whitespace\" \ + 624c3292-c45c-4e2a-bd5f-71aad635f912)(content(Whitespace\" \ \"))))(Tile((id \ - f6db9b79-e371-44cd-acf3-18fd4f06770b)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + f1e7c535-177b-4eb3-b9ef-d108bdf2d80f)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 8bdca6d8-d33a-4c35-9f51-021fc98c298e)(content(Whitespace\" \ + f0bd4515-5061-4f4f-8135-84b64516baab)(content(Whitespace\" \ \"))))(Tile((id \ - 4fb9e567-2954-4690-b71e-8cc92ca17d13)(label(B))(mold((out \ + 05f45730-5f3d-493b-be64-15246a06812d)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 19eece83-ea6a-4e60-a5d6-4207048bc574)(content(Whitespace\" \ + aba4127b-a850-46c0-b26a-b98dc86e57f6)(content(Whitespace\" \ \")))))((Secondary((id \ - 4b9fc364-d0a1-435e-a0d6-3a490349b143)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b8c143a9-c3ee-41ad-81d4-53d28c0c861c)(label(typfun \ + 0b56511b-f2da-40ca-b25c-6aa12d3d991b)(content(Whitespace\"\\n\"))))(Tile((id \ + 650e5460-7ac1-458d-bdad-b45f47272b9b)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 2029fa53-3073-4967-87a8-b0869112189f)(content(Whitespace\" \ + e1bbc884-ca8c-4bac-8867-782a899719b5)(content(Whitespace\" \ \"))))(Tile((id \ - 454ea17c-4c69-456f-bf12-55d3e1142ab1)(label(A))(mold((out \ + 83491d6b-5752-476f-9801-71d67ff763ba)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 23c91397-4f7f-4121-8e3b-bbdb2cf73612)(content(Whitespace\" \ + 401e28d4-cedd-4309-aeeb-97e3cfefa369)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 60524143-0ca7-4857-8f40-cf6deea6407d)(content(Whitespace\" \ + b4526770-054a-4f3d-8b82-f7b10924f832)(content(Whitespace\" \ \"))))(Tile((id \ - 24999367-7d4d-4a2f-888a-01caf8064af4)(label(typfun \ + 29519b18-fa3e-40f0-b935-42f2e9649315)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 697b85eb-ebaa-4da2-b3ff-f8784abce982)(content(Whitespace\" \ + fec62505-1774-4ac5-bd9e-437fd59a7495)(content(Whitespace\" \ \"))))(Tile((id \ - 9268bf3d-d2ad-45b8-a656-4c5fc7da9a8e)(label(B))(mold((out \ + 6fcdd577-54a1-4fc2-902b-b4f7aba72836)(label(B))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - f7a80654-16be-46ef-84dc-cbbfe538eec1)(content(Whitespace\" \ + 00215cff-c2c2-4a20-a461-c004af470500)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4fac1b77-6181-4276-8df7-69ec0b498670)(content(Whitespace\" \ + e86bc17a-2c2d-489d-8bcc-db8ab6738c53)(content(Whitespace\" \ \"))))(Tile((id \ - 14f05a85-9351-421d-8012-e644bee593b8)(label(fun \ + e2e58581-8998-4472-9247-075785e8292d)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ec293b56-ef71-4d52-80e8-1dbf69fedf52)(content(Whitespace\" \ + 80d1dd00-4243-4383-88d0-0a0d1b71be43)(content(Whitespace\" \ \"))))(Tile((id \ - b3b4e67e-ec31-48d0-99c8-1fd0b776e3f3)(label(f))(mold((out \ + 3ae90889-b335-4186-9a1a-718431ecc580)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 8e65f50b-e702-4a38-b590-d3a8aa14e619)(content(Whitespace\" \ + abaddb89-7296-4a54-a8e1-454898bfde1a)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e2228bb4-f45a-4e38-aff2-f1a03def3d5e)(content(Whitespace\" \ + 372b86a6-7255-4f30-a517-8e213edb3460)(content(Whitespace\" \ \"))))(Tile((id \ - 7359ea14-3040-402e-89dc-74daf4cb2482)(label(fun \ + 0ed01a72-b787-4568-b0ca-188fdd902f77)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 6023ad37-b805-415b-954e-30ac1380b014)(content(Whitespace\" \ + 99f48b1f-b2e6-42ab-8f8f-5ba269beeb79)(content(Whitespace\" \ \"))))(Tile((id \ - 1528bbe3-9456-4d4e-92d7-43b29196f1a7)(label(\"(\"\")\"))(mold((out \ + b246de16-13f4-487f-8a4f-5549a31246e2)(label(\"(\"\")\"))(mold((out \ Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - c2919cb1-233a-4283-8b66-cf44fc4afef9)(label(x))(mold((out \ + e33d4fd0-7719-4c4a-b71d-2f19a3e4d71b)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 409eb345-2d10-4fa9-aa11-126678ce05bc)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + 300cc080-a9db-40fc-adc3-dfa730eb2242)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 8a2cb8b6-9d5a-4754-8dda-8d8fe0e94e09)(content(Whitespace\" \ + 2823bd71-c744-4f9e-9c87-381ef96d340f)(content(Whitespace\" \ \"))))(Tile((id \ - d0bd6124-c271-46ed-9371-5ff172659e12)(label(y))(mold((out \ + c5c8f8a2-4d59-4079-acad-b2bcf019f9e3)(label(y))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 1ede3347-889a-421e-ab9f-9a76bb89b547)(content(Whitespace\" \ + 792f602b-22af-45bb-82be-9c7a00639832)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 025702d6-85bb-4492-b77a-fcd80ce5b1d9)(content(Whitespace\" \ + aa749037-40ac-4197-8ec8-8fb9e8a2f221)(content(Whitespace\" \ \"))))(Tile((id \ - 44d77c85-e077-410e-850c-ccc2c10fc818)(label(\"(\"\")\"))(mold((out \ + ed250982-f47f-4d71-a1b4-0a2598ef4c9d)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 22214cfb-eb83-4531-b73e-7aed1cbee876)(label(f))(mold((out \ + b7ff20f6-7bd1-4981-9578-d35194a1e3ff)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 38c3df7e-a52e-488b-8153-cc0a0e400c81)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 5835feb9-874e-4f39-be1a-e2d70ddc7b5b)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 82ad7a3a-04a9-451b-aa97-19bc0c7ecb39)(label(A))(mold((out \ + 206f376a-1102-489d-afaa-ca5b871a1d76)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - d315a9cd-9383-456f-a0d1-9b96b08aed99)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + abae9529-6df2-4f38-85f2-cdd005bd7858)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ffdcd079-0c86-4fb9-9a32-a6f10114522f)(label(x))(mold((out \ + 11dcccae-8205-4517-bad3-1d695be3f4ac)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - c343faf6-4aec-4789-a364-1c38747c0ede)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 95ed452a-cac8-4bd7-b366-7c4af6ca74cc)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 972f8813-9085-4dcf-8f65-91f4ccfff5f6)(content(Whitespace\" \ + 5ffa3423-f41a-4c16-82b7-43927c0b87a3)(content(Whitespace\" \ \"))))(Tile((id \ - ad7b36cb-7b61-4988-af73-1751a7f90e5a)(label(f))(mold((out \ + 01499c1b-793b-4576-b965-625d42c6cac3)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 35f5379e-f09a-4416-8881-b3e555caa977)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + a21a36c3-c69a-44ef-98fa-bb925f93eaab)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8c539c0f-b853-4aa4-98bf-874aa0d5487d)(label(B))(mold((out \ + 8bae21c0-1ec9-4805-a777-bfb960868dba)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 0d94b84a-aba2-4fdd-bbeb-c6e96990f257)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 9e93c075-3a9b-4402-8ebd-1746c0a2c533)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6346a4a7-211a-4b7b-af7a-8d3980f344b6)(label(y))(mold((out \ + 52cb9652-519a-4216-a37e-0a3b99a60f20)(label(y))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 1374a8af-7da6-432f-8448-bf31d19fa4a1)(content(Whitespace\" \ + a482e6bf-3a73-47c8-ad77-e8da7d060699)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4bad67e9-e3ec-4331-9db9-85eb4d51c10d)(content(Whitespace\" \ + 1992530b-83bd-4fc1-b64b-b762337b441a)(content(Whitespace\" \ \"))))(Secondary((id \ - 8ff64639-9a3a-4439-8dd4-a3e15280dd33)(content(Whitespace\" \ + 4505e7f8-c371-4d63-9226-2cb1db7a776a)(content(Whitespace\" \ \"))))(Secondary((id \ - 694712fd-f999-48ff-93c7-fc33b9b77094)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fef28f13-33fe-449b-8cdb-6ebfd5762e15)(label(let = \ + 5b2f834a-900e-4712-93d5-8084e2ee105a)(content(Whitespace\"\\n\"))))(Tile((id \ + aa131b2f-8fd1-49c0-b1f8-a7a817328684)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - ac4c6231-9f82-4ade-b8c9-d91728bf8ad4)(content(Whitespace\" \ + 44ac7379-5064-49fa-a47c-5d1f4d7a033a)(content(Whitespace\" \ \"))))(Tile((id \ - 5de84be0-f611-4281-a794-7a0b0ff1118c)(label(ex3))(mold((out \ + fdf7b9e1-2248-43b7-9d62-bb6c1dfba927)(label(ex3))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3cb05235-9882-4486-b265-1cc2556c796f)(content(Whitespace\" \ + 39c1b2cc-b821-40eb-9262-f60d248087c2)(content(Whitespace\" \ \")))))((Secondary((id \ - 5d92ec2c-1d17-4c65-bca3-9f32260e8b3e)(content(Whitespace\" \ + 8c379c65-4133-4c60-b528-cdd8917a16d5)(content(Whitespace\" \ \"))))(Tile((id \ - cf076596-5f1d-4628-8197-5a5fec90a125)(label(apply_both))(mold((out \ + 918b43e8-2c6e-4a6d-a23c-b8750fc6fe07)(label(apply_both))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e1f8fd16-f236-4fc9-bc9a-b9289a4112f5)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f59c4fdd-ee19-4416-9b6f-fb530f9313e2)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 09beab66-f457-4dad-8f46-8e195d6e5e65)(label(Int))(mold((out \ + 2e12a616-ad04-4bd7-8bf6-c0d1ff9d3cac)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 98181850-6a50-4513-827b-4a9c90873912)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + a873ce8d-436c-4895-bdde-82312941e0b8)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - cbf816ab-0f3a-47e0-8a6c-5d2394e0a427)(label(String))(mold((out \ + 6a3a1811-626a-477f-8703-50c88edc2f7a)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - f703fbc5-53b3-49db-8748-d10d150098c0)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 7b6d0235-738c-4da8-babe-b43f2c7c2407)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 797110e6-521d-4cbb-9941-19fccd65f36a)(label(id))(mold((out \ + 44fdf322-e56b-49ed-a990-8c2539103d66)(label(id))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 51783bd8-663f-4e46-b00a-a0296c8cd7ac)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + b2dd10ff-7614-45e0-8e4c-d98cdf93d2a5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8fc7176c-fa6c-4cd7-9245-83b8702a4428)(label(3))(mold((out \ + 72013761-1107-4eb5-b717-138b1dadebab)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 8116ef96-1cab-42f4-81de-213ecf812970)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 6dd2fcc5-d54a-484e-b2c1-e15ac383adfb)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 2f20f0f7-1675-4468-b2b6-cd7405f5aee4)(content(Whitespace\" \ + 6c1129be-37d5-41c4-b1d8-34a5a778e27f)(content(Whitespace\" \ \"))))(Tile((id \ - 9f229a7b-bbad-4a9a-9e62-d9904862374c)(label(\"\\\"Hello \ + 722e5e59-175f-4825-9f53-4fee84e47110)(label(\"\\\"Hello \ World\\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 1906060c-28fe-4257-8be4-2fd05219ef29)(content(Whitespace\" \ + 620cd7f3-f19a-4a16-8f16-1e5daabdc518)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 63719044-8f1c-4920-ba4f-e4b2170077c4)(content(Whitespace\" \ + 36358b92-807c-419e-9c5e-171bac510ab6)(content(Whitespace\" \ \"))))(Secondary((id \ - 06d1fe4e-1834-48c0-ba2d-71886eefb57a)(content(Comment\"# (3, \ + 0b305e22-e1eb-4c1a-8952-b9da2e034727)(content(Comment\"# (3, \ \\\"Hello World\\\") #\"))))(Secondary((id \ - 9a45a5ec-c346-4ba0-b534-37ee71f5fdd1)(content(Whitespace\" \ + 26d407b0-00c4-4ac0-9ebd-3b2b89d05779)(content(Whitespace\" \ \"))))(Secondary((id \ - edef7a1c-2899-4e18-8228-c750ceff7ec8)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b700ee2a-c5eb-4ee1-bbab-c4539ed9d797)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - df508fd5-afc8-4de6-8261-7425fd25105b)(content(Comment\"# \ + 805af9ea-db80-4d26-a3c0-b61e88745606)(content(Whitespace\"\\n\"))))(Secondary((id \ + 04efc942-ed8e-4ef3-bbd5-76016d5d60aa)(content(Whitespace\"\\n\"))))(Secondary((id \ + b247ac7f-b577-4dc3-abc8-7975b08a83f7)(content(Comment\"# \ Finally, here is a more in-depth, yet applicable example: \ polymorphic map #\"))))(Secondary((id \ - e354e9fe-f5ad-4c87-be05-96335dffbe31)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 202cef82-1c4d-4655-b6b6-41f9e9f7a73b)(label(let = \ + 89f53214-166d-4338-b236-b772778394cb)(content(Whitespace\"\\n\"))))(Tile((id \ + e8b1419e-be47-4665-871c-c6a87c975f3b)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 78570e13-c5ca-49d9-b93b-fd18ffc9a429)(content(Whitespace\" \ + e8ee7a26-9f5a-445c-b42c-062f082286c0)(content(Whitespace\" \ \"))))(Tile((id \ - e91519e6-a65e-491f-b9a4-18b547b30d3a)(label(emptylist))(mold((out \ + 18a0485c-7e0b-4edc-9526-15dbc922f0d0)(label(emptylist))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7a1b5f10-90ae-48e0-b0f9-36ca4d2d3107)(content(Whitespace\" \ + 6c173016-999c-4827-acca-0465520e5849)(content(Whitespace\" \ \"))))(Tile((id \ - a72887db-4aaf-49cc-8e67-0f7541880f76)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 718ac4d5-9144-43ce-8790-4bbf79ef7d4d)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ebfa5ee4-9fd0-4f8d-bc75-47444311729d)(content(Whitespace\" \ + fa0fe8d5-10cc-434f-abf5-0b17fd54c6a9)(content(Whitespace\" \ \"))))(Tile((id \ - 592e5425-2459-41ff-9228-07f766f8ccf7)(label(forall \ + 80182513-dc22-4780-bc8b-e20aac6b8720)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 803a7b56-e0b3-4d80-ba8c-b65ff8517d93)(content(Whitespace\" \ + e5d3eacd-9ebd-4e11-af72-0b0f3d443a93)(content(Whitespace\" \ \"))))(Tile((id \ - 87240474-a39f-4923-85a5-2f102c7d0e32)(label(A))(mold((out \ + 2d09af7d-31c0-481e-ad0a-220902a961be)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 6e4a8b34-2119-4f41-a61a-463ef0198a04)(content(Whitespace\" \ + 0e6b2f9d-53a1-4a23-9553-c2ada6a9d200)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b1ab0026-aae9-4be9-b36d-eb3dd781adb1)(content(Whitespace\" \ - \"))))(Tile((id 8085a4f3-a54a-4666-9242-6184af5353c0)(label([ \ + b871237f-ac5e-477d-a034-4fff429fd57e)(content(Whitespace\" \ + \"))))(Tile((id 7d3e5e8b-18a1-4d82-9029-27fd05e6a012)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 7559f86c-1c2c-4542-b97d-35f9fc803fe4)(label(A))(mold((out \ + 9c6fe512-4adc-425f-87d3-9627364feafa)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a7d1783a-03d9-4a83-a20c-224d0591481f)(content(Whitespace\" \ + 32ec6834-4a0a-4e8c-a425-57b1a58543ea)(content(Whitespace\" \ \")))))((Secondary((id \ - 8a9f101c-6584-44e7-99a3-e372048b7445)(content(Whitespace\" \ + e5cf60ff-e708-4f65-93a1-a02ab339984e)(content(Whitespace\" \ \"))))(Tile((id \ - 68c3ed3d-f500-4bd3-bcaf-ea9bdf9451ae)(label(typfun \ + 1058a77d-cbcf-4256-af65-dd3c9fec0c1c)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - faa1695b-2e55-4667-8ec7-1558b3d85850)(content(Whitespace\" \ + 0ea49e33-0a5f-496b-940d-d5eff5635fe0)(content(Whitespace\" \ \"))))(Tile((id \ - 38b03267-319e-4664-8372-efcdd79e85f4)(label(A))(mold((out \ + a8b79247-8cd1-4b01-8b91-b174f12ad5f7)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 228c224a-afad-44f4-a22a-eddf73b8d974)(content(Whitespace\" \ + ea9e0ce8-5fa1-463e-a06c-c0a866e52557)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 5ca59d99-25f7-486d-ac51-f549cb0a91b3)(content(Whitespace\" \ + b1a7ed0e-f851-4666-94f0-277786e920b5)(content(Whitespace\" \ \"))))(Tile((id \ - 0981b8f1-b372-41ba-bf9d-9e13d779a5a3)(label([]))(mold((out \ + 261b4411-16a5-4c4d-88c3-1fc9612302db)(label([]))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 9c58a1b5-6df1-4868-a078-9ee9a15baa7c)(content(Whitespace\" \ + 791a7096-cf86-41e0-8bce-690c3e251122)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e188133e-4924-4f2e-be27-fcf311628729)(content(Whitespace\" \ + b5dea30c-f191-4a05-9362-74f8de09ffd7)(content(Whitespace\" \ \"))))(Secondary((id \ - ee875eb7-54d4-4f95-886b-c49fe80ef2be)(content(Comment\"# \ + 45c14057-f7a1-480c-a4fd-ae67e37350af)(content(Comment\"# \ polymorphic constant #\"))))(Secondary((id \ - dd6f9538-a844-49fd-a02a-ac3a01e89512)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - eccaa669-c774-4a4d-bfdf-fc6f85153e3c)(label(let = \ + 0491cda9-5ff4-4b07-9c2f-7a056c5f9e75)(content(Whitespace\"\\n\"))))(Tile((id \ + a1735f6a-91a6-45be-a84b-c778661af5e0)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - aa9c739b-6bf6-49fd-bd3b-40f2f9017ae4)(content(Whitespace\" \ + 7b451ae0-0a8c-4d45-ab61-f5269d27ad8a)(content(Whitespace\" \ \"))))(Tile((id \ - 0f2b46f6-0a6f-4c5c-8682-3f59ad4b751f)(label(map))(mold((out \ + 4b4f1fc4-9ced-4da9-affb-120d01001bf1)(label(map))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 37696633-3cee-49a1-b614-1f87c67e2b70)(content(Whitespace\" \ + f55de4bd-d0ac-4de0-89d2-4cb12b3a1f15)(content(Whitespace\" \ \"))))(Tile((id \ - 0dfd3441-ca14-4837-8b6e-152899e6d301)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + e5aa9153-05c2-4371-972c-0ab0469580d3)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 4215c01a-0f39-4671-8210-aff41079081d)(content(Whitespace\" \ + 51b7bf81-8c96-4951-b9c7-3b1a5f78c227)(content(Whitespace\" \ \"))))(Tile((id \ - 88c46e29-1562-41bb-8c58-3a70ca2b7337)(label(forall \ + ef122e48-5039-4710-ab57-637a803eaf65)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - c0d24d93-992b-40a9-8d3a-b16aa88a939c)(content(Whitespace\" \ + afbf62bf-8d85-4750-83ce-142f7857e7ab)(content(Whitespace\" \ \"))))(Tile((id \ - 15ea1b72-ecb0-451c-91e5-e55c0283ff01)(label(A))(mold((out \ + 716b8698-13f2-4423-93f1-3d41d9077ad1)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - ecfd54e9-8baa-4a1c-8f98-5f8657ba550d)(content(Whitespace\" \ + 00dcf751-b0bd-4d11-8f85-44704156970d)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6fe8a5a8-f3af-4a76-b03a-7843dca9f959)(content(Whitespace\" \ + d8afdcbf-1ff8-462e-9207-cde50bbf928c)(content(Whitespace\" \ \"))))(Tile((id \ - 155d7295-5673-4c5a-87b8-68d3053df95a)(label(forall \ + 6268905f-a4eb-4089-891e-9715976d05f1)(label(forall \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - d64b0ee3-fcce-40bb-976d-149ce33e0b05)(content(Whitespace\" \ + 734d0e70-1b40-400e-97f8-a8927a0b01ee)(content(Whitespace\" \ \"))))(Tile((id \ - 722893eb-79bf-4a75-9491-d5e696d80fe9)(label(B))(mold((out \ + f30c744b-d461-495e-871a-ef8a00d4925b)(label(B))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 1fb2d0cc-1057-4c09-b0dc-eda66ca91edf)(content(Whitespace\" \ + 43eb5cd4-8dff-445e-ada1-9fb3f2fd01eb)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b491ae64-7e22-48fe-85f9-5c4c9fb6a864)(content(Whitespace\" \ + 99d2a63a-c75e-4aac-945b-9b51ef8d3641)(content(Whitespace\" \ \"))))(Tile((id \ - 43465c96-ccf8-4251-aeb5-06f86e7a9ec0)(label(\"(\"\")\"))(mold((out \ + d69df440-6bb3-4f1a-9010-8566a674b2f8)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 8918e371-6bc8-4291-b8fc-92f0ac4afa4a)(label(A))(mold((out \ + 94017fe0-b9c4-4338-a94e-42968a62582a)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6164fe07-2c6f-4daf-9c3e-5ec6468e0c02)(content(Whitespace\" \ + 9d04cf49-aa7d-413c-b7fa-3dcd61dc16df)(content(Whitespace\" \ \"))))(Tile((id \ - 8bc001b1-7710-4877-b8fd-6fb9eba7c39d)(label(->))(mold((out \ + b0073f69-09ff-4b66-a0e2-8918bfd8e943)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 07510d7e-5ccc-46e7-9d96-456f01270a3e)(content(Whitespace\" \ + 763e3955-1401-4bf4-9594-9d49ec111517)(content(Whitespace\" \ \"))))(Tile((id \ - a753c673-92ed-44c4-923b-8a95152174b2)(label(B))(mold((out \ + ecf07fae-923f-4680-8326-11b86ee80172)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 523f8d85-4fe6-494d-8699-a5438e0b960e)(content(Whitespace\" \ + df13dc42-b21f-4be8-a9ac-b097806b84fe)(content(Whitespace\" \ \"))))(Tile((id \ - 66564dc5-1126-45b1-96b5-6e591777773b)(label(->))(mold((out \ + 0fa9d012-65e9-4d27-8e75-7fc41ea51729)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - a43abf64-f5d9-4b52-85ff-d962bc2408bf)(content(Whitespace\" \ + 3825f0c0-87ce-4775-b2c7-46f44e23e0df)(content(Whitespace\" \ \"))))(Tile((id \ - a0be16ac-54d0-4529-b9e6-6347996157a3)(label(\"(\"\")\"))(mold((out \ + eff4e6d0-751e-4042-8bba-7c83f68313e0)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 28a5752a-c74f-432c-99b5-aa7539198b49)(label([ ]))(mold((out \ + efdc7224-f91e-4b3c-b79a-bb62563d3746)(label([ ]))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f393e48d-68a3-446d-befb-87f27012a0e3)(label(A))(mold((out \ + 04f8fb9c-0aa9-460b-b5ae-b03addabf4d3)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 2e71f6dd-e285-47cf-b2a6-e1a4b9f45db3)(content(Whitespace\" \ + 8de1b3a4-ef1b-48a9-a559-4e2492b54b6c)(content(Whitespace\" \ \"))))(Tile((id \ - e4f1cd33-3003-49be-98a4-ee4ad279b2b6)(label(->))(mold((out \ + 7a0e1ccc-cec6-45d7-8afe-b2d79bcb5f1b)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 0950551e-141b-4a64-8297-21259177b3bb)(content(Whitespace\" \ - \"))))(Tile((id 3e01b2d4-90ac-441e-aa07-eee0abf36091)(label([ \ + dd513952-8f39-402f-8e97-e0770a847369)(content(Whitespace\" \ + \"))))(Tile((id b1e18385-d748-47ce-abe8-990287bd44a8)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - c72fce8d-fade-423e-965c-fec2b626373f)(label(B))(mold((out \ + 1c114f9c-2ca6-455d-b507-ad54cfd3dbc2)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - e8f716f5-1b3f-4ee6-962e-4e078ce0bd37)(content(Whitespace\" \ + 2e0a9417-b7a1-418d-9d3f-d118c41418d7)(content(Whitespace\" \ \")))))((Secondary((id \ - d067ebe8-0d92-451f-8093-5520bf5fb45d)(content(Whitespace\" \ + 86d559d4-f157-4a10-a1e1-2902c38d915c)(content(Whitespace\" \ \"))))(Secondary((id \ - 419f3418-e474-41c3-ad4c-3b22a8dd9a61)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0b4c829b-646e-4473-8d56-826d11fded2c)(label(typfun \ + fa6eea12-346b-42b9-bc7f-1ef395cdd8aa)(content(Whitespace\"\\n\"))))(Tile((id \ + b5d37432-d50b-4a85-8c01-e97f1d51ea7c)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - faaa1f96-c99c-4430-a432-32be33368118)(content(Whitespace\" \ + 43b8fd95-6a47-4eb1-a07e-42f02ea31048)(content(Whitespace\" \ \"))))(Tile((id \ - 3167378f-47ff-4023-8c32-62977c64c1bc)(label(A))(mold((out \ + b462674a-ade0-46de-a2bb-df8d40cc4cd2)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 9b40799d-499e-4cf0-b5e1-c77c9db980e2)(content(Whitespace\" \ + 213d30e7-92d9-4db7-9b44-c9c03fd3c1e2)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 17cd6904-a1de-419b-bc8b-551ae07e88df)(content(Whitespace\" \ + 1cde8fe3-c1f3-4dc5-8f00-2c14323ad872)(content(Whitespace\" \ \"))))(Tile((id \ - a74f4763-dd86-4124-840a-ac14797d15fa)(label(typfun \ + e2f7b035-67dd-4408-9a84-554e7dabfe32)(label(typfun \ ->))(mold((out Exp)(in_(TPat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 30a14f5e-ca39-4f7d-bfb0-03e3f6281c58)(content(Whitespace\" \ + 3905d27b-3694-41ca-b39d-345f634ab322)(content(Whitespace\" \ \"))))(Tile((id \ - 58c4bb9f-8a30-480e-a52b-38df655f9164)(label(B))(mold((out \ + 5934c422-2352-46eb-9821-4dbfa3d3743c)(label(B))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - dfad2a33-2a2d-4df9-be18-2fe06e3548bb)(content(Whitespace\" \ + ae0e0124-e777-4952-a9b2-d3db1c2ad67e)(content(Whitespace\" \ \")))))))))(Secondary((id \ - f9b87bc9-1128-4dec-bf0c-014baff77334)(content(Whitespace\" \ + 36082b3c-e70d-44ca-9f49-9eff16b44092)(content(Whitespace\" \ \"))))(Tile((id \ - 1fde687f-dfdb-4b5a-a8cc-9e81d9e6b522)(label(fun \ + c9170552-5cd9-406e-aabd-1a68acef88d8)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - dd314134-b69e-4426-b1a6-999a28f427fd)(content(Whitespace\" \ + 461cfc94-9b02-4990-ba72-860a7f31e177)(content(Whitespace\" \ \"))))(Tile((id \ - ae115273-4b54-46ce-a192-10047fe9e951)(label(f))(mold((out \ + 91c378c2-c8d0-467e-b8e6-55da3859c11d)(label(f))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 11aa5133-b04f-4100-a2e3-9695c08e4e09)(content(Whitespace\" \ + 2d435273-37ac-42e2-9ae9-5c76164d345a)(content(Whitespace\" \ \"))))(Tile((id \ - 1cb85726-ab00-4149-8246-c9440cde31c3)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 3c505ec4-22ee-445e-b548-47704f5adf96)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - de0c889c-43ea-4f05-bf55-abf04c9d0d59)(content(Whitespace\" \ + c8048b99-ea66-4d6f-bd44-afabc4eefda1)(content(Whitespace\" \ \"))))(Tile((id \ - 4a5c3924-a66d-4067-8f6b-89ec8d7234ec)(label(\"(\"\")\"))(mold((out \ + 2f725824-dd41-41fc-b46b-97b3474b4299)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - f2a159b3-e8b9-40ff-9f79-5ca041c21a77)(label(A))(mold((out \ + 366d80ae-0cb8-44bc-9426-5681aa164bdb)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2c18b0d4-9eb0-430d-b72d-6d8c6e21be1e)(content(Whitespace\" \ + c2d5a5d6-d4a0-482f-ac09-77cab97b7ff4)(content(Whitespace\" \ \"))))(Tile((id \ - 00a6aaf9-db5a-4aa1-9c65-b0d933a7553f)(label(->))(mold((out \ + 8922d842-b30f-49ab-ae7b-f3239cf33dee)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - ce1cc890-5fe0-4bbc-a55e-ec4d56cc7ef7)(content(Whitespace\" \ + a9ae4c3d-3add-4cf6-8325-83afca10417a)(content(Whitespace\" \ \"))))(Tile((id \ - 2fa7a2b3-bb79-497b-b83f-e203a3d0abe3)(label(B))(mold((out \ + 5b480e67-1570-4124-a87a-093e86b7e842)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - ccad4dbb-bd06-4483-9828-276555d352de)(content(Whitespace\" \ + b6c29744-e6b6-4185-87c0-1e7d4aa69827)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 336ec250-d844-403f-b23f-fa7753dc5068)(content(Whitespace\" \ + 9ab8707c-63cb-4ae5-9b2d-782489b9a3a4)(content(Whitespace\" \ \"))))(Tile((id \ - 05929dbf-0f8d-4a96-83d1-3d993326c4e0)(label(fun \ + 8ab07af7-f6a7-4af5-baae-a52af342e1af)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 8f63a82f-5f21-4948-8824-0346d46d1d46)(content(Whitespace\" \ + 7739dcf7-6b50-42a3-a10b-51d76f23ade8)(content(Whitespace\" \ \"))))(Tile((id \ - 36ec28dd-5dfb-4745-9297-c026b99a54ed)(label(l))(mold((out \ + a440417f-fb02-4baf-b3bb-be193427f3a4)(label(l))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - ebeb2e6e-f6f2-4e00-b98a-640b41f05e5c)(content(Whitespace\" \ + 023dc101-5cf4-450d-ba7c-de438a849914)(content(Whitespace\" \ \"))))(Tile((id \ - f4ad62e1-8361-4bcd-aaf7-b68fea88eac6)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + d87315f5-bc92-413d-8772-7c4c16800f1c)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 776f0b9d-1e87-45a8-b2a8-c51a6d7551f4)(content(Whitespace\" \ - \"))))(Tile((id 0f555e5d-4c58-49a6-a83f-a02000e3a9b9)(label([ \ + b1a43246-b48f-4e40-aec8-589065f0cf79)(content(Whitespace\" \ + \"))))(Tile((id 9e172882-19c8-4234-aa32-97ac31bb7638)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 0506c0fd-a136-45a0-9b58-8818281c6192)(label(A))(mold((out \ + c4e7ec8d-b9a1-45e3-a7c1-0b5cba65b733)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - fe663aa2-62a0-481c-8076-902ec6e80465)(content(Whitespace\" \ + ecad1cc2-2bb7-4030-9c29-4e3394eaea9c)(content(Whitespace\" \ \")))))))))(Secondary((id \ - ac80020e-0679-444c-908a-664fd265d287)(content(Whitespace\" \ + f273752c-7c93-41f5-a950-efb299c434a5)(content(Whitespace\" \ \"))))(Secondary((id \ - 0532ce74-b1fd-47cd-afd8-536a76b56eac)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5cb54d04-1620-4898-b5ee-171a13a55cb2)(label(case \ + 0ffe5898-902f-486c-9ef9-1716c2e56371)(content(Whitespace\"\\n\"))))(Tile((id \ + acf5a599-1e6e-464b-b31b-88f2be84712e)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 826841f4-cbf3-4158-a661-b7915909567d)(content(Whitespace\" \ + 231c3ecc-3f5e-4bcc-9a39-cb831c1a82ef)(content(Whitespace\" \ \"))))(Tile((id \ - f2738d6c-44d1-4477-9320-98664a2abebf)(label(l))(mold((out \ + c8b91530-32ad-4c07-9b11-e5bc10e7a0be)(label(l))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0f7ec861-3dd7-48c7-bb98-1068d6018711)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 666f3305-9623-472a-a8e5-4a4821bdac0c)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + d1d46cbc-4b79-4173-a688-494d5586f8a8)(content(Whitespace\"\\n\"))))(Tile((id \ + 482446aa-235e-4c19-a168-b68a2b8e88e7)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - d5a09c88-8fb8-4ea9-be8a-852be89e4f6c)(content(Whitespace\" \ + 0d73225d-f546-4112-af8c-65c0a344e23c)(content(Whitespace\" \ \"))))(Tile((id \ - 1417ddf8-e63c-463e-b541-e36920b01149)(label(h))(mold((out \ + a4b17590-c7be-4dcb-b06f-1bc91489f7a3)(label(h))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - d2e0fe19-dd90-445e-bd58-cf97d46d9b9a)(content(Whitespace\" \ + 03a9b07f-f7e9-4a71-8067-f98f2c939a6e)(content(Whitespace\" \ \"))))(Tile((id \ - ff3d12e2-c357-42a7-8f3e-a21c9fb9d451)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort \ - Pat))((shape(Concave 6))(sort \ + 9c2381ba-f9bb-4d4a-920c-59e60b2258e7)(label(::))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 7))(sort \ + Pat))((shape(Concave 7))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - 2a6b7167-756b-4d3d-9f07-98e53f430cca)(content(Whitespace\" \ + d67ae940-b511-4eac-8693-1d1a5ed8015b)(content(Whitespace\" \ \"))))(Tile((id \ - ea24b8b4-1664-4b46-b9ad-c74d7bb8b2c4)(label(t))(mold((out \ + e8e2dd04-ebdc-44d4-9229-2f8b2ec3927d)(label(t))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - dbf53a0c-d1df-4fcf-b833-2ca674b3118a)(content(Whitespace\" \ + 89fdee6d-69af-4a14-9fc6-0a38dd72b854)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e5b78a12-bf5c-41b7-a607-81db98a7709c)(content(Whitespace\" \ + 42385fbd-9a79-48f6-bc6a-647f4b671cfb)(content(Whitespace\" \ \"))))(Tile((id \ - bcb2ac89-9866-44b7-ac86-bfa367efb43e)(label(f))(mold((out \ + d7ca47cc-9857-419a-a246-499e7faf6f6b)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 274061ca-2c5f-4cff-ab7f-e034d6165d6a)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + b5282cc7-7bf8-462c-801c-e295a6c6f541)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e1822bcd-8a53-428d-9568-08ce796791ba)(label(h))(mold((out \ + a04da67e-f10f-4641-9e20-413e821900f0)(label(h))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 8261c12e-167c-4b97-b895-076b16cb8956)(content(Whitespace\" \ + 72aed549-fe1e-434b-b92b-7f08597c991c)(content(Whitespace\" \ \"))))(Tile((id \ - 134da227-54ae-4138-bfd3-0ffd5bbb35bf)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + 9f4a3be0-248c-4c47-8995-9a274fa44087)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - cde794e2-1514-4ee5-8722-b4d27751fc43)(content(Whitespace\" \ + 184f51ce-215d-40f3-b804-5f8fdb27a7ca)(content(Whitespace\" \ \"))))(Tile((id \ - 48901d44-b0e6-4948-90d0-99d20334c456)(label(map))(mold((out \ + ad3c008f-7301-4c0f-a6f0-fd1c4dcf5be2)(label(map))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 5f38a51a-94ff-4f13-ba3b-312e507ab73a)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 3fe4dede-7c77-4b75-a5aa-8e87e2c3657d)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7539694b-4e31-49a6-a32d-dbdf0a55ef35)(label(A))(mold((out \ + 10ea9efa-8723-47c2-ab46-cbf31133819d)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 7f4d954d-2861-4c11-bec6-fb759b5a0ffe)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 29768b2c-2c2e-48e3-97f0-930e20b8d3e5)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - d67b39fa-c196-4262-9888-426de588572e)(label(B))(mold((out \ + f2a7ccb0-e9cf-46b2-957e-0ae5066d6a28)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - c51f52dc-b5ca-4bf4-a2ab-ed899b19cd24)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 157670dc-2108-4052-b2d6-a1b8b00fcfdf)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - af6d37cf-fc46-4007-90f3-60bce7e9157d)(label(f))(mold((out \ + 7f71b4d1-1220-4eda-a79b-1cdb506714b7)(label(f))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 3c421466-068a-48d3-8367-5e9ecffdb962)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + be25767c-b347-4c12-b126-d24b53066beb)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 33bdc742-e6a9-4f94-86c9-406c3aae5f29)(label(t))(mold((out \ + 5d6f6685-7205-44ff-874b-0164963452c6)(label(t))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - aa7f11a8-0790-4b02-8466-3a3a9aa0c628)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 977253f6-0679-49a0-a5ae-bf8804d4d272)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 2f6fe856-ff3f-463c-8fbb-b59ab43afe32)(content(Whitespace\"\\n\"))))(Tile((id \ + 8ea66631-5419-43bd-b3ac-76f4f3638cd5)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - c4956a98-232b-45c1-8ba7-5730e460512e)(content(Whitespace\" \ + 492343ae-def9-4122-9f4d-3f567141f17f)(content(Whitespace\" \ \"))))(Tile((id \ - 4460a1f9-8f3e-4c6e-8ef9-50d18ff587eb)(label(_))(mold((out \ + bff3bb91-04f5-4bf4-a5b2-cb086adf7aff)(label(_))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 762cb02f-c9a4-4913-91f6-c3e63c1cdf08)(content(Whitespace\" \ + d61a5e2e-7426-48e3-8c83-de59c2acfbe0)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 44404719-7532-4ef8-a4e0-ef40b69eb8ac)(content(Whitespace\" \ + 60b24f2d-1c2b-45ab-953a-61279f1caab7)(content(Whitespace\" \ \"))))(Tile((id \ - bbe24e20-53c7-49a7-83e9-65f8ba722e51)(label(emptylist))(mold((out \ + 7aa4bbeb-88cb-477b-96be-aaf33e5e68dd)(label(emptylist))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 321a3266-20dc-4471-a74f-a95a466e7e31)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 7d3d6781-833b-4b44-a899-a1cf408b4a85)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6c978a1d-d8a2-4ca6-8a8f-1d35c5fd21d5)(label(B))(mold((out \ + f85a6825-07e5-4279-b9c0-291b8b46ae96)(label(B))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - d9bbddf3-7123-496d-ac83-8e7ceef5b6de)(content(Whitespace\" \ + 6ccf14f3-cb77-4918-990e-fb4649d8b6ad)(content(Whitespace\" \ + \"))))(Secondary((id \ + 38056c0c-89be-479c-9bef-9a96d35f3ba9)(content(Whitespace\" \ \"))))(Secondary((id \ - 01684518-f444-4731-852b-69ef9a5d9b43)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 3edb8b70-1ae0-496b-ad02-eb3693fc8f56)(content(Whitespace\" \ + 89e44c95-f8f9-4cfa-ba91-772c34297f6e)(content(Whitespace\" \ + \"))))(Secondary((id \ + de3c8839-e2ce-4994-94af-08a3eea5c8d1)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + 49506921-cf28-44b7-85fd-5e91a3efe24f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 36c28bc5-a5cf-4acc-985c-2c955c7d820e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 97de8089-37ac-4509-acc9-39012a0fdf3e)(label(let = \ + 232ebce2-9079-48f1-9b5f-5fe8362728cd)(content(Whitespace\"\\n\"))))(Tile((id \ + 4e48867c-8db2-4567-9fe0-f49d1f02f342)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 80d05981-1920-44d8-b42e-f18175935f70)(content(Whitespace\" \ + c8705ea3-ce1b-4bf6-863c-b001f5b1aa3d)(content(Whitespace\" \ \"))))(Tile((id \ - 72ae731d-de2f-4ad8-a2d6-356bceae5577)(label(ex4))(mold((out \ + 6e9c34c5-69eb-47a4-bfb9-926fcd58db9d)(label(ex4))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 7028d808-2b29-4ca9-a4d3-1a5dacd93fa0)(content(Whitespace\" \ + 4648bbe6-ef61-474a-a912-54436cb9c6d1)(content(Whitespace\" \ \")))))((Secondary((id \ - 77fd1b46-bf93-4844-8f57-b111ba33d8d3)(content(Whitespace\" \ + 93e5e35f-1cf2-4cce-bc67-651b31e63fe1)(content(Whitespace\" \ \"))))(Tile((id \ - d18a0774-cfc4-4907-b460-b469053a3c0c)(label(map))(mold((out \ + 6b6e8972-dfaf-418a-9c17-b1b929935d70)(label(map))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 504e60fc-928d-4308-96ca-fd31df0da48a)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + fa2afdb2-d2ca-44af-a3f8-1a9af285341c)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4f0f6316-3dd0-4479-bbd4-762b82b7c37e)(label(Int))(mold((out \ + 30ceb9f6-3dda-4be6-8866-e1f1a0bd14f0)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - 14993ad8-445e-45b3-b828-e4c0b43c834b)(label(@< >))(mold((out \ - Exp)(in_(Typ))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 36c03a4b-6c7d-4636-a94f-9363a3352b35)(label(@< >))(mold((out \ + Exp)(in_(Typ))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e91f5e5f-40db-4039-86de-833746dfac39)(label(String))(mold((out \ + fb55dd08-3fda-4b09-bc3a-bdbadefbcef5)(label(String))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children()))))))))(Tile((id \ - ddbda949-29b7-4b34-8f11-05ed3fcd6f01)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + e4a882cc-37cd-408b-93fb-d99f413a7e1f)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6d6bee77-2fa1-478e-997c-3540a5e97174)(label(string_of_int))(mold((out \ + 85d5ea6d-2039-469e-b784-54ce01255241)(label(string_of_int))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children()))))))))(Tile((id \ - 42c0e873-c3f1-4106-80a6-a2ed60f806f5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 0a69f22e-0f8c-4a62-9377-a5eed1dae0d5)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 9cdabbd2-8198-4864-8f41-e855415362ea)(label([ ]))(mold((out \ + 5105173d-d3f0-47ab-887c-cf2dca5961a6)(label([ ]))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 6484bcbc-b4cf-4c4c-b20f-7f554010051c)(label(1))(mold((out \ + 6b9d93ad-ed2c-4c75-82fa-3d3ec82ac44a)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 85ce0fb1-0fd5-4ec6-bd55-a32bf8920ff2)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 420cbfd9-2da6-442b-af95-00f732dd7595)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - fc87be7f-7ae8-495d-9beb-8a214a49f71c)(label(2))(mold((out \ + 85771edb-344c-410c-82b8-15b3fb67846b)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 2dc60eb3-a968-4efd-9f71-36058601c0c7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + cbbbf31b-cf31-49c6-868b-d4e0d287afe0)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Tile((id \ - 8c971b0e-ea6d-41df-b8c2-b5c3c2a4f908)(label(3))(mold((out \ + 19b42047-3917-4d09-a639-9e9127314ca2)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 935f2c82-7dc7-4899-b2aa-d473ad9e1cdc)(content(Whitespace\" \ + eb82736e-0c2c-41f2-a65f-a6ceca289c98)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 7d0cb752-8863-4cf3-8b39-a859475c9eb5)(content(Whitespace\" \ + 447d4a28-2169-48fa-b1ba-a169b2bf0edb)(content(Whitespace\" \ \"))))(Secondary((id \ - 1e8050d0-bbc2-467e-a83e-29856cace3c4)(content(Comment\"# \ + 2bdbbe84-65ea-4fe6-8934-0b2eba00f5f8)(content(Comment\"# \ [\\\"1\\\", \\\"2\\\", \\\"3\\\"] #\"))))(Secondary((id \ - 8abda13b-ad37-4604-8f9a-d187bfd0c494)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - bf822fc1-bfad-46a5-970d-79a0d86ba99d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 698e99c5-fbfc-467c-ac98-60fe4bb2ac9e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 6de45367-5e16-4d4b-861c-e668d080fd94)(content(Comment\"# \ + a318ec9a-6779-4687-8370-bfd52d9d9ded)(content(Whitespace\"\\n\"))))(Secondary((id \ + 7cc4142f-caeb-44c2-a96a-ee8a36ad04e4)(content(Whitespace\"\\n\"))))(Secondary((id \ + 3dc35bbf-ce65-4d90-8de7-1563f1358fb7)(content(Whitespace\"\\n\"))))(Secondary((id \ + 10fa6385-866d-48e2-858d-30872b6b8c63)(content(Comment\"# \ Recursive types #\"))))(Secondary((id \ - 528d4204-ce5a-4d4d-8a65-499c165a93a6)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 22c11a80-9716-4d85-8478-84acbb2bb3e2)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7c21acf4-f87c-4f87-96ed-9f3ce7854bee)(content(Comment\"# We \ + 9e1352d8-4281-4f4d-9234-44fa1cd202b4)(content(Whitespace\"\\n\"))))(Secondary((id \ + b81bd44f-73d1-4522-b085-46b3b4bd73c3)(content(Whitespace\"\\n\"))))(Secondary((id \ + c345417f-9c42-4dbb-9d02-79a50271ace3)(content(Comment\"# We \ can express types that are the least fixed point of \ #\"))))(Secondary((id \ - eb66d375-5bc4-4510-9213-406754f1b3ab)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5bd07da0-2cdc-4bed-b10e-8afdf2d40ed4)(content(Comment\"# some \ + 2aed461a-73d2-4b64-8d5d-cce45598d222)(content(Whitespace\"\\n\"))))(Secondary((id \ + 2965cdfd-570f-40db-bff2-bfb94653c6d6)(content(Comment\"# some \ type function with the rec keyword. #\"))))(Secondary((id \ - d563fa59-b243-4ee7-87ef-3393d1850a36)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0a9260b0-6cb1-4f99-bfa5-07bc929cdbc2)(label(type = \ + 11563965-8f26-4678-8861-923801a76f11)(content(Whitespace\"\\n\"))))(Tile((id \ + a4e85005-1fd2-4a9b-9563-61fc5bf5a3f4)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 7ad3ae39-3be4-4998-86a7-9c94d619ba34)(content(Whitespace\" \ + 1313decc-3fff-415b-9784-9ed1777b6ee1)(content(Whitespace\" \ \"))))(Tile((id \ - 49357b25-92c9-4cd3-b04c-fea7d3c2ee30)(label(MyList))(mold((out \ + f03503f8-ae34-46ab-88c4-ba836dd5e036)(label(MyList))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - b193ab38-767a-485a-9bda-27fe181a70fb)(content(Whitespace\" \ + d58f98a5-4438-478a-84fa-5b5326249101)(content(Whitespace\" \ \")))))((Secondary((id \ - cdadc496-6611-4ffc-b135-643b2b6e58fb)(content(Whitespace\" \ + 9d676f45-e3b7-423a-a893-4b9f5fae84ca)(content(Whitespace\" \ \"))))(Tile((id \ - d8af8722-cf91-4f15-9c32-2eecdbb5d1dd)(label(rec \ + cc757750-769e-4b66-b934-64bd045e67a1)(label(rec \ ->))(mold((out Typ)(in_(TPat))(nibs(((shape Convex)(sort \ - Typ))((shape(Concave 13))(sort Typ))))))(shards(0 \ + Typ))((shape(Concave 14))(sort Typ))))))(shards(0 \ 1))(children(((Secondary((id \ - 16ba3fd3-2845-490b-a056-b8379608f7c8)(content(Whitespace\" \ + 6c01b9a2-369c-41ee-a50a-4ff936cf6429)(content(Whitespace\" \ \"))))(Tile((id \ - 35911a26-36a2-4755-a0d5-40663bd5e3e3)(label(A))(mold((out \ + 15dda9dc-54c8-4d69-bc43-152bf92e7739)(label(A))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 32b2fb6f-0a3d-41bf-b4d7-90c0411c4a4f)(content(Whitespace\" \ + 5897403d-b63d-4cc9-b9c2-4507b56a530f)(content(Whitespace\" \ \")))))))))(Secondary((id \ - a5c9177a-1a19-4bf5-968b-79dcd8a5f1ae)(content(Whitespace\" \ + f1d2d2bc-6d1c-47cf-9285-6c7be2bbea63)(content(Whitespace\" \ \"))))(Tile((id \ - 21645f30-7293-4698-a5ef-c03a43418311)(label(\"(\"\")\"))(mold((out \ + 87c4686c-9c90-45d4-8ca3-76d1a11b0fda)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 2236339d-9e54-45ca-b4f0-a2adcf62fdd4)(label(Nil))(mold((out \ + 6d33f00c-fc5f-40f4-be57-abbb5b34d0d9)(label(Nil))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2eda9a70-f5e3-4430-8ac3-94060fd5b62a)(content(Whitespace\" \ + 38d2b064-d7cf-47ce-9617-9de757dffa26)(content(Whitespace\" \ \"))))(Tile((id \ - 724193cc-c749-44c9-86c9-24c6d5f02b21)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 6ce4a0e1-1340-41cc-8dbf-28850989cbd1)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 494ef4ee-7336-4d8a-991b-843e8e09e6a4)(content(Whitespace\" \ + 0beab19f-adb8-4eba-8e76-25744860892a)(content(Whitespace\" \ \"))))(Tile((id \ - 36cbd19c-bd46-418c-ac05-7ca72e3efc03)(label(Cons))(mold((out \ + 411e14ae-3702-4e6a-8afc-5c06086d227c)(label(Cons))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 4681bbb3-42ce-46c8-8a22-3259057a14a6)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + fc18b9e2-16dd-47ea-afef-6614b47baadc)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 8213139c-073b-46ca-a434-e32ffd0d2388)(label(Int))(mold((out \ + d8141f6d-983b-4e7e-a3e4-ae8d9161dfa7)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - fffa4b09-8032-4007-a8e9-c1b4c9b3e4cf)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 28f2b782-dbfc-4077-bd76-1fbf1645c838)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 61db4da2-294b-4285-96e3-718cb15577c8)(content(Whitespace\" \ + dc4423b7-c82e-4185-943d-e1f5648ea120)(content(Whitespace\" \ \"))))(Tile((id \ - 9692e5ad-a529-43ef-a693-413e0ab21a31)(label(A))(mold((out \ + e5d2acce-68db-448d-8cc0-bf4984154edc)(label(A))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - 990cc418-00f2-4c98-9395-ad95bca66884)(content(Whitespace\" \ + 96cf1a82-f8a8-4d80-8913-085df0c08c13)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3701484f-c796-4d38-bce7-4f25b4c3637d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 193cfb02-bcdb-47e2-80c5-4775c7f11a82)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8c0f2c04-fc2c-4fdf-8f0c-83644d1be509)(content(Comment\"# \ + ce5f884f-b166-4229-82dc-8f63f57adea9)(content(Whitespace\"\\n\"))))(Secondary((id \ + caf3425f-2a3b-41a2-a7c1-54b114516486)(content(Whitespace\"\\n\"))))(Secondary((id \ + c6048be2-bd6c-4125-81ce-882a9995f8b8)(content(Comment\"# \ Hazel does not (yet) support higher-kinded or existential \ types, #\"))))(Secondary((id \ - 4810f7f2-213a-465d-9b61-81cf18482fa8)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0eaf40c5-5a8b-4cbb-aa19-18ba099847eb)(content(Comment\"# So \ + f599444a-c756-430c-b95e-dfb37ebc5ba3)(content(Whitespace\"\\n\"))))(Secondary((id \ + a4cb6fa4-95c4-4a1e-83e0-aee6faf28274)(content(Comment\"# So \ we cannot implement our own polymorphic lists. \ #\"))))(Secondary((id \ - 579ceeeb-258a-4089-a115-5627e2eaea58)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7bfbd599-e516-45a7-a725-cb39be5c8729)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 887616c9-6707-4e70-ab3d-62996ce73e70)(content(Comment\"# Now \ + 459721ed-2da6-4305-84fb-05174d296fb3)(content(Whitespace\"\\n\"))))(Secondary((id \ + 8a4f841b-1d46-456e-83fd-6cc8e0def87f)(content(Whitespace\"\\n\"))))(Secondary((id \ + de5094a7-d1b1-43b7-80a2-baa03c9ac327)(content(Comment\"# Now \ anything that returns an element of the least fixed point \ matches MyList. #\"))))(Secondary((id \ - 6f06209e-4913-4da3-ae91-5bd283668594)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 33ed3a5b-0867-43d7-8cc2-2c8ca4c758e7)(label(let = \ + 0fc57d97-2f81-496e-a0ed-5a29f98f041c)(content(Whitespace\"\\n\"))))(Tile((id \ + aa27eca1-91a4-4b37-af52-4696c18b7134)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 0370f42e-bd6c-490a-bb7d-920d2f8a8aae)(content(Whitespace\" \ + e0c4d089-4099-4a1a-83ff-3bd6c3cae9e9)(content(Whitespace\" \ \"))))(Tile((id \ - 5bae080b-2019-4ffd-a2a9-2a972fcda28d)(label(x))(mold((out \ + aac7f4f6-67c9-45b6-bf86-fd0a783fa2d6)(label(x))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 4079c066-6ef0-4310-83c6-56fe7fd7670e)(content(Whitespace\" \ + a15942a7-b0d3-486e-9ad6-21c51ff59e86)(content(Whitespace\" \ \"))))(Tile((id \ - a0c477e1-9ef3-4b38-a67c-d5d22e96471d)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 1143ad5c-81f3-4cee-a0bb-c86feff32bda)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 93cd7df1-2b4d-4582-acf7-2cb0d46f6313)(content(Whitespace\" \ + 07ed8ab7-19f9-4ab5-88e8-23238dc52fbe)(content(Whitespace\" \ \"))))(Tile((id \ - e62970f7-e979-49fb-bde6-c008d8d79a70)(label(MyList))(mold((out \ + a6e8c11f-c7ac-49e0-8f04-dfbc17d94680)(label(MyList))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 1b69d275-5bd5-489b-a340-7aafdfd14d12)(content(Whitespace\" \ + 75005215-aa4e-4590-b0e8-7618b5c239b1)(content(Whitespace\" \ \")))))((Secondary((id \ - 5c867417-e06d-4873-b84d-041e25dcb2d0)(content(Whitespace\" \ + 06154ff2-caa2-46c8-b2af-3d2aaafe9b01)(content(Whitespace\" \ \"))))(Tile((id \ - 2cf5af86-df22-4aba-a044-17d75a3ae989)(label(Cons))(mold((out \ + 84156c26-cb86-4c86-aec5-9eb23512914e)(label(Cons))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7e122a6b-5f64-4a7e-90ae-0878e0d82f03)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 9140b606-ad9e-4efe-887b-dd85869dd8fc)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1d783d64-398f-4ad6-9eae-b3490775e34c)(label(1))(mold((out \ + 230d17fc-4ed9-424f-8234-0e104187d4a5)(label(1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - df60de96-d925-4ca9-beca-a392fa9d3a33)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + d9cbd3c6-b30c-42c9-a5af-e7db45d3c674)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a798be71-5b99-4f2e-a8e2-e923f9609370)(content(Whitespace\" \ + 9b41f61a-4f33-4471-a151-502a75aa797f)(content(Whitespace\" \ \"))))(Tile((id \ - 8565ea1f-2353-458d-9439-7f379d71cebd)(label(Cons))(mold((out \ + cca56564-49cb-4d2c-a41b-90138f5ed45b)(label(Cons))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 7ece0aa1-030f-42ec-98ef-b2628aac965c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 0723f810-c901-4d35-b8c3-879dc47f0011)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e755b115-0361-453e-b274-9f9cb8a0c262)(label(2))(mold((out \ + 308c52b4-8761-4bba-92f9-6d7e551c8e7b)(label(2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4459b0c1-70f4-4101-a896-21725d8c2a4e)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 84174d3d-d8cb-402b-847c-a1ca74a01edd)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 9bc6d0d7-59d4-4cff-819a-6fa718e28414)(content(Whitespace\" \ + 826ba090-6484-407d-8f9d-4fc82aa5e262)(content(Whitespace\" \ \"))))(Tile((id \ - 9bcc25fd-a616-49f1-9f53-f12a36e09354)(label(Cons))(mold((out \ + 6526cc0e-21e6-4999-8165-317606413606)(label(Cons))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e5ad642e-1071-4a7b-ae6f-d6c8b4b34403)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + f5509196-25c5-4078-9f93-79a844ac6a01)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - fcd291b3-e052-402b-be90-a4a138f94cce)(label(3))(mold((out \ + cd772d9a-9849-4bdd-b1ce-c112929a6037)(label(3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - bab8fe07-56b3-4a03-8a70-cad1d19c41ce)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + b18eca82-fdaa-47f9-a692-dcae6d2d7b9f)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 952bc037-e9e7-42a4-9dd8-24f64cbaedd9)(content(Whitespace\" \ + bdb4f1fe-b646-4038-a5c6-02fd5180eae6)(content(Whitespace\" \ \"))))(Tile((id \ - 63e70629-8a00-4987-adcc-d9b7edb62ecc)(label(Nil))(mold((out \ + 5b3dc9a2-776a-4f30-a5e4-9ea629c4fc8f)(label(Nil))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))))))))))))(Secondary((id \ - 3c1a3bf1-ed31-4739-885e-ad254fc292f2)(content(Whitespace\" \ + cd14adaf-2eaf-4683-b212-c3f1ae40c258)(content(Whitespace\" \ \")))))))))(Secondary((id \ - b75b8ab1-8759-45b5-ad5b-ed90197258da)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 935b835c-261d-47fc-bee8-068e25da32a8)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - fb36a038-d3c2-48ec-9310-1ccb658b327a)(content(Comment\"# Note \ + d3c31f12-2f54-4ffe-ac8e-8af9952b4e44)(content(Whitespace\"\\n\"))))(Secondary((id \ + 45e15030-54bf-4bf6-bb2e-71d3f1393882)(content(Whitespace\"\\n\"))))(Secondary((id \ + 149652ce-dc20-4064-9798-ae70ad885b09)(content(Comment\"# Note \ that if the sum is the top level operator, \ #\"))))(Secondary((id \ - 3c729241-60ac-46a3-86db-92a070ffa4d5)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f7670b91-4175-4a41-b92a-232fd61e8eec)(content(Comment\"# type \ + c432fee2-53b2-46f9-b952-28c6e199c3d3)(content(Whitespace\"\\n\"))))(Secondary((id \ + 86024019-cc4a-4063-931b-96e183d13bcc)(content(Comment\"# type \ aliases are implicitly least fixed points on their own name: \ #\"))))(Secondary((id \ - ff8533bf-ba1e-4237-8c1c-e3130b234e64)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e940b831-775d-4d20-8c4e-cf380df7c704)(label(type = \ + 02a76b43-546d-4831-9e4f-8224ccbd3f4f)(content(Whitespace\"\\n\"))))(Tile((id \ + 6d7a7d09-7c09-42ca-af90-ca118d62e09a)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - fa4039e4-3ac6-4d02-9df8-449e895958cd)(content(Whitespace\" \ + f1ae62e5-5035-4370-b152-33d926dfcb7d)(content(Whitespace\" \ \"))))(Tile((id \ - 05f24c94-0119-4bd5-b234-a1dbdaeab975)(label(MyList2))(mold((out \ + 156beede-4adc-4099-8bfb-e2392bbb984b)(label(MyList2))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - a5939fcf-4a82-49d3-a9dc-8d899ad579f6)(content(Whitespace\" \ + 64b19283-c87f-4578-a9eb-cf6c88a7140d)(content(Whitespace\" \ \")))))((Secondary((id \ - 4e843e4a-0c21-4bd3-9163-bad05c819bc8)(content(Whitespace\" \ + c56603ae-3f6f-49ac-b092-9636774b47db)(content(Whitespace\" \ \"))))(Tile((id \ - 8f4764bd-552d-47b3-a75f-8177eacbfad3)(label(Nil))(mold((out \ + c608445a-7dc1-4b4d-b59b-476eae965de8)(label(Nil))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2b1728e8-6ba7-4cbb-9064-aec652c83d87)(content(Whitespace\" \ + 318b2a8a-adf4-44d0-921e-20f264679c64)(content(Whitespace\" \ \"))))(Tile((id \ - 6585a36d-b5e9-4a63-8d45-bca7e5c38cf0)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 5cd528ef-218c-42a7-a034-6c726453671c)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 77c58ade-ef24-46bd-8fad-1fe0dacbc953)(content(Whitespace\" \ + effc4dbd-344f-45b7-8f6a-a933b0ab1b15)(content(Whitespace\" \ \"))))(Tile((id \ - a97829e0-ec9c-4941-affb-26a072f73fc5)(label(Cons))(mold((out \ + 534989eb-ef91-4e5b-9e06-1a6ce71bd4b1)(label(Cons))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 12e14808-3cec-40de-88dc-d9d030c3e0a8)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 38dcfa59-8b96-4eef-8f2f-db936f62adde)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - b501c4ea-e896-49a6-a03e-e15a8d8e9a51)(label(Int))(mold((out \ + 3acee723-61df-4844-99c8-33376981b6b8)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - e853b31d-1d90-47b0-a37c-9fbec3a18544)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 80608a67-8896-48ce-b205-419504ae0bec)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6fa80101-ad62-45fb-b1a3-ebb1a1cfb16d)(content(Whitespace\" \ + 7042c45e-38e0-4652-94e3-ee244ccb0f7e)(content(Whitespace\" \ \"))))(Tile((id \ - 22588755-b59d-4f05-9905-b901a1db3f30)(label(MyList2))(mold((out \ + 430531d8-b78d-493b-a2d3-0f1d7f06003d)(label(MyList2))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - c8115f34-99e0-441c-9313-b15a577eb3eb)(content(Whitespace\" \ + edd1fdea-8937-4145-a28c-923838c88dc9)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 56e8a3e4-e828-44df-a3c8-e7b1f883e6fc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ecf2538d-f121-418b-b6ec-ffb5c0a67f70)(label(type = \ + a21e5bff-afdf-41ee-b14e-7d14671af520)(content(Whitespace\"\\n\"))))(Tile((id \ + 647c53f1-a325-49af-847f-7f0367f263e2)(label(type = \ in))(mold((out Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - de814c18-7e95-4f76-9ee7-d20266a3d78e)(content(Whitespace\" \ + b08631c3-e866-4c41-9dbd-b6730e2ffa34)(content(Whitespace\" \ \"))))(Tile((id \ - cd5bc989-4ae9-48fa-82fb-a5ab4e320674)(label(Broken))(mold((out \ + 2dd7c5d1-446b-4a76-90af-cfc9aadebf71)(label(Broken))(mold((out \ TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape \ Convex)(sort \ TPat))))))(shards(0))(children())))(Secondary((id \ - 8a26bf51-7c01-4f19-b61d-3f6cf0d623e7)(content(Whitespace\" \ + 99d8e0e2-641f-4b2e-81f2-e0230a5f1992)(content(Whitespace\" \ \")))))((Secondary((id \ - c8f6eebf-2e02-444f-b76a-e447af05ce9b)(content(Whitespace\" \ + 435116c5-cace-4bd5-b0bd-2f7d08a1ec67)(content(Whitespace\" \ \"))))(Tile((id \ - 0d01d510-b89e-44f8-b5fa-51b2ae3019d9)(label(Int))(mold((out \ + 71444689-330b-4a1d-84f0-2079af4a5f8b)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b7bf4f3b-2c80-48b8-9216-3ced31d7e2e7)(content(Whitespace\" \ + 024c5fc1-02fd-45cb-99d7-4d3fc6daa657)(content(Whitespace\" \ \"))))(Tile((id \ - 8e13455f-e289-48c1-9c66-c1d26e2092c7)(label(->))(mold((out \ + 3188cc81-c93d-4674-98c4-217dac34d119)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - c0577a87-5d87-4f80-861a-c1ef1406b627)(content(Whitespace\" \ + 20bd1412-4c8b-4c92-b601-fa2ffc86b1f5)(content(Whitespace\" \ \"))))(Tile((id \ - af30d9ee-ba31-4634-aee7-8671323584d8)(label(\"(\"\")\"))(mold((out \ + fb0afc69-44de-4c2a-b662-b002dc0b641e)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 8026c0f4-2334-4d9e-beec-c84c887da32c)(label(HasInt))(mold((out \ + fa9408d4-ff19-4104-9a28-f15af2ac0cb2)(label(HasInt))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - e6c62de9-7dbe-4551-b683-eafeb333cbf1)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 071e5ed6-10d0-4a9e-94c4-abd8515f63a4)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 7cfa00aa-8ac0-428c-a4d8-3e1522f514d3)(label(Int))(mold((out \ + 98baba7d-e8dd-4c5c-a849-665c99f0b805)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 1843b6d8-6591-45a8-b6d1-735229c0966a)(content(Whitespace\" \ + 6d6328cb-b0a2-4e6e-8023-93a9b73b2cdf)(content(Whitespace\" \ \"))))(Tile((id \ - ac02cd59-e2b2-4ddb-b3ed-34f055d805c6)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort \ - Typ))((shape(Concave 10))(sort \ + 7a71eb31-9849-4573-99f5-e6a277ad0c4d)(label(+))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 11))(sort \ + Typ))((shape(Concave 11))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - cac41e52-5cc4-46f3-bb90-a3abaaeee9ca)(content(Whitespace\" \ + dea94b6a-85ac-4f1a-bdb7-b8eb0652ae0d)(content(Whitespace\" \ \"))))(Tile((id \ - 389c16e0-7203-4142-9eca-b4246ce61c4c)(label(HasMore))(mold((out \ + e4a7913a-31f6-48d8-91d2-5e0a12b7714c)(label(HasMore))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 6624e15f-6510-40e3-b646-de90440393f8)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape \ + 557c9b57-e2a0-4278-bb76-a62b919dd2b8)(label(\"(\"\")\"))(mold((out \ + Typ)(in_(Typ))(nibs(((shape(Concave 2))(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - e1076ac2-2a95-4a69-a62c-261ab97d6dde)(label(Int))(mold((out \ + 4421eb2e-f93d-484a-9792-2cd840406c8f)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Tile((id \ - 1ba0a1ea-2382-4a3c-95d2-bca9f7ba6d79)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort \ - Typ))((shape(Concave 14))(sort \ + 4173a4e6-11fa-4063-ab15-dd5a61add46c)(label(,))(mold((out \ + Typ)(in_())(nibs(((shape(Concave 15))(sort \ + Typ))((shape(Concave 15))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 57b01c61-7ac0-4dfc-9ed4-6f5a6d38e57d)(content(Whitespace\" \ + 4cfdbfe3-6130-4d32-ae6b-62d74abedca2)(content(Whitespace\" \ \"))))(Tile((id \ - 45ddb6b3-449e-49f9-9ac7-0a65fe083166)(label(Broken))(mold((out \ + be40b96d-c951-4309-a15f-5973e0c11660)(label(Broken))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - 7849f81d-3ffc-45fb-8c6f-deca793f4340)(content(Whitespace\" \ + 47f144e6-a9a5-4a7d-a860-266826834565)(content(Whitespace\" \ \")))))))))(Secondary((id \ - e520d9d4-efc0-4050-9d28-9408015601f0)(content(Whitespace\" \ + 5ce94e31-60f7-4774-9ff7-7ca91720ca89)(content(Whitespace\" \ \"))))(Secondary((id \ - 9d15c792-44f0-4b64-96b4-c01553f092ac)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b5ac9def-818d-4cc9-a69e-b6c48bb3cf4a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 16e84b97-6c21-457e-a9db-be37201ee08c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dcec6c2e-de60-4b66-a700-5ebe7a65b3cc)(label(let = \ + fc799434-6fb9-4755-8743-6a34da9348dc)(content(Whitespace\"\\n\"))))(Secondary((id \ + 19a903fa-b5cc-44a9-ac71-c1ae0553bbf6)(content(Whitespace\"\\n\"))))(Secondary((id \ + 6a50a4e5-30db-4018-bc21-5443216343eb)(content(Whitespace\"\\n\"))))(Tile((id \ + 83d6e4b0-c6fe-4fd0-bdb6-8266174e1ccb)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 805fb44d-81bc-4f8e-b6d6-7fecccd366d6)(content(Whitespace\" \ + 79b8633d-b993-4c75-adbd-a191454fb8ed)(content(Whitespace\" \ \"))))(Tile((id \ - 1b33ea74-291d-4177-a4cc-32150cc262c6)(label(list_of_mylist))(mold((out \ + 1bbe8db1-4775-4b08-bdd2-72d2adcb5fd7)(label(list_of_mylist))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - fa5b0bfb-d0db-47f1-9248-36b4ca53105a)(content(Whitespace\" \ + a74ae3db-66e8-4716-9a46-25d33152c1c8)(content(Whitespace\" \ \"))))(Tile((id \ - 0329d949-b67e-4f75-84c5-dac81ce19f53)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 393e1773-3bd4-441a-938b-e28907ba3946)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - 6fafb86c-61e0-4497-9b66-088252c58d00)(content(Whitespace\" \ + 77da75ad-e1cf-45f8-8772-fb684f09ffc5)(content(Whitespace\" \ \"))))(Tile((id \ - eaf6d9b9-9e6f-4399-b3e5-208475e22a8a)(label(\"(\"\")\"))(mold((out \ + ed987cc5-4219-448f-945a-c55d5c0eac52)(label(\"(\"\")\"))(mold((out \ Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 0cc9f249-f565-4923-936a-423a5c420bba)(label(MyList))(mold((out \ + 7f173ed8-2d37-46c7-bed6-0a4afce9fcd7)(label(MyList))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 909fa81c-98c3-4b79-8995-efb831fb05a8)(content(Whitespace\" \ + 43c3df10-d037-4153-b248-e6c3de4ff279)(content(Whitespace\" \ \"))))(Tile((id \ - 9e28a68b-7554-4af2-a9be-942c1110024e)(label(->))(mold((out \ + ac646643-33c2-4b5e-9085-5f99acc62762)(label(->))(mold((out \ Typ)(in_())(nibs(((shape(Concave 6))(sort \ Typ))((shape(Concave 6))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - fb0b7814-07ee-4953-95d4-f30c5d1a28df)(content(Whitespace\" \ - \"))))(Tile((id 1d502020-0204-4ae8-8192-d1967f0631c0)(label([ \ + 08f93e65-6c66-40cf-825d-132b7c67eeda)(content(Whitespace\" \ + \"))))(Tile((id 3677baf2-d481-4777-bddb-b61cd811e184)(label([ \ ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort \ Typ))((shape Convex)(sort Typ))))))(shards(0 \ 1))(children(((Tile((id \ - 11378050-b326-435e-8af8-6f42f2e49778)(label(Int))(mold((out \ + 11e1e3f4-56cf-48ab-a52c-2bb2f23c66cc)(label(Int))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort \ Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - 1bf827f8-b572-4b9c-b34a-e1f5b0f0da30)(content(Whitespace\" \ + 202cf2f6-62b2-4c08-a113-534301c3879d)(content(Whitespace\" \ \")))))((Secondary((id \ - 66da49bf-a4d2-4e29-b778-b452a83e05e9)(content(Whitespace\" \ + 30e71f4c-4ad9-4692-a970-f874ab571cb5)(content(Whitespace\" \ \"))))(Tile((id \ - dce1d474-d747-4379-8ac6-f763c0983a91)(label(fun \ + ae51048d-9641-4fd8-a5a0-88740b93275f)(label(fun \ ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ + Exp))((shape(Concave 14))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 197cb6d3-e061-47d2-a835-ddb8f7a2d20e)(content(Whitespace\" \ + 9fc792fb-850f-4fad-a5ca-f69c32d4d9ca)(content(Whitespace\" \ \"))))(Tile((id \ - acca15d8-ce9c-4705-9b01-752506a181a1)(label(myl))(mold((out \ + d4fc4896-fe4a-497c-b6de-b6f57b1e5ce7)(label(myl))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - c284858d-33ee-41e8-bb6b-e7a3785347d5)(content(Whitespace\" \ + 36e3e23a-a76d-4053-a67b-2504f81aa539)(content(Whitespace\" \ \"))))(Tile((id \ - b6b34912-9e5d-46db-8e71-da92a30d8530)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort \ - Pat))((shape(Concave 11))(sort \ + 2196e702-dfcc-400b-a60f-c7c70a2d436b)(label(:))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 12))(sort \ + Pat))((shape(Concave 12))(sort \ Typ))))))(shards(0))(children())))(Secondary((id \ - b6c140b8-77c7-4678-8600-86bf855f47dc)(content(Whitespace\" \ + 3fca45c6-7f3c-4747-b148-6a0a7a81a508)(content(Whitespace\" \ \"))))(Tile((id \ - 335ac528-48d9-4e90-8d14-daf02bc2e744)(label(MyList))(mold((out \ + cbb9a721-ff64-4b99-8c0b-6efb6af68901)(label(MyList))(mold((out \ Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape \ Convex)(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 9b635b29-dd86-41a5-afe5-98e20f056263)(content(Whitespace\" \ + 07de10c3-5227-44c8-91c5-b418ef6d7d66)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 3da32ede-874a-49f7-992d-94a620f990e3)(content(Whitespace\" \ + 4524d42f-a7df-45d7-8b6f-2d601a9391fa)(content(Whitespace\" \ \"))))(Secondary((id \ - 3ceacb87-72e8-4cef-8154-190452625783)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 56e4366c-41dc-4518-bfad-e088baae8ae1)(label(case \ + 887db3b7-3a63-4cb4-b436-13af4cdd550e)(content(Whitespace\"\\n\"))))(Tile((id \ + 7a60578e-cf14-4c3a-838e-6e8c665e0902)(label(case \ end))(mold((out Exp)(in_(Rul))(nibs(((shape Convex)(sort \ Exp))((shape Convex)(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - a35555f6-5351-4d16-a0bd-d1e18d7801ce)(content(Whitespace\" \ + 8b2c0d0c-487f-4d7d-b1ac-798cdba2b45f)(content(Whitespace\" \ \"))))(Tile((id \ - b17c5c27-7cbe-454e-b611-0d90f795189b)(label(myl))(mold((out \ + 477624b4-1c5c-4551-9b6a-7b7b2ebab334)(label(myl))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - afdb8805-7c66-4af2-873e-24813d6529ce)(content(Whitespace\" \ + 7dfe5c52-7562-47d1-816e-5af852d7ba49)(content(Whitespace\" \ \"))))(Secondary((id \ - 28d13098-67c5-4ed6-9526-099cd842b85c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 07d15b6d-f0f4-4670-820a-0fbd56a208c7)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 62b0e919-8dd0-48d0-beb2-9d14c902d6bc)(content(Whitespace\"\\n\"))))(Tile((id \ + 5085a225-6112-41cc-baeb-e897da68b922)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - 94141f1d-753d-4ab9-a519-f781bdda56dd)(content(Whitespace\" \ + f345fd55-3574-4d1d-baa2-5a291243e8aa)(content(Whitespace\" \ \"))))(Tile((id \ - e4a58087-c41a-4a12-a8da-c45bd917c0a1)(label(Nil))(mold((out \ + f84cd3b0-ea8b-4968-8ede-afe6a0b47838)(label(Nil))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 00902ec1-0666-4bb6-858b-db5295b6271e)(content(Whitespace\" \ + 5ec88331-d28a-4c0c-85f5-111642556151)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 4ab05820-b00e-422a-a998-5f14b49a46a9)(content(Whitespace\" \ + 1fecafa6-926e-4939-9d4e-2f60c57ccd20)(content(Whitespace\" \ \"))))(Tile((id \ - b88b20fc-86fb-48e2-badf-06f6c0ad4a87)(label([]))(mold((out \ + 252c76b2-4b7c-4150-a3ee-661f3b31719e)(label([]))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b55be10d-dbce-43f5-a69b-64450d2f0eae)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ca06d3d8-49e0-45ae-9fa3-c369c7d63deb)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort \ - Exp))((shape(Concave 19))(sort Exp))))))(shards(0 \ + 4215632d-7a07-493d-92e7-2b7eb8d80ec4)(content(Whitespace\"\\n\"))))(Tile((id \ + 2e023d3f-d3c1-4523-989d-b3be6bd3bf07)(label(| =>))(mold((out \ + Rul)(in_(Pat))(nibs(((shape(Concave 21))(sort \ + Exp))((shape(Concave 21))(sort Exp))))))(shards(0 \ 1))(children(((Secondary((id \ - ebc90337-9c9a-48f3-982e-78dd373c2af4)(content(Whitespace\" \ + 59e13a8b-9c07-44d3-90df-6d97b7e4682f)(content(Whitespace\" \ \"))))(Tile((id \ - c94a1c23-2922-4b09-8c90-ab1859a2f652)(label(Cons))(mold((out \ + a01b2174-32af-49c7-ae2f-27d5367651a8)(label(Cons))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 280a5024-fe68-4508-919b-bc6072aa320c)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape \ + ffe18856-82c6-4b9a-aec7-acbe352b2481)(label(\"(\"\")\"))(mold((out \ + Pat)(in_(Pat))(nibs(((shape(Concave 2))(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - e1241ab0-e63e-46c0-bcb1-d5cf501c7d68)(label(h))(mold((out \ + 1f132481-79c3-4311-a73f-78431282f222)(label(h))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Tile((id \ - 7076e557-cff2-4587-99d8-7323b637eaa5)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort \ - Pat))((shape(Concave 14))(sort \ + c1ba4810-ce3f-4c29-92ac-51de5fd6647e)(label(,))(mold((out \ + Pat)(in_())(nibs(((shape(Concave 15))(sort \ + Pat))((shape(Concave 15))(sort \ Pat))))))(shards(0))(children())))(Secondary((id \ - b15f353d-22a1-4f82-962b-21eeb1709a3b)(content(Whitespace\" \ + 3cc5248e-5c9f-4213-980a-4a9954f0d0e5)(content(Whitespace\" \ \"))))(Tile((id \ - 29908b41-4852-4fed-a2be-a8201b46b324)(label(t))(mold((out \ + e9b7d57a-223a-4f05-a593-7c6dedaf041c)(label(t))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort \ Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 282a4121-76db-46b2-92f2-c0b3bea39dab)(content(Whitespace\" \ + 8a6d6443-ad77-4538-a473-fc7984a46623)(content(Whitespace\" \ \")))))))))(Secondary((id \ - d2bace67-f8aa-4fb7-b767-ff056b2db439)(content(Whitespace\" \ + 0d200042-cf30-41bb-bc17-e7ec2102adbb)(content(Whitespace\" \ \"))))(Tile((id \ - 52d40c83-e37a-4e99-a9f9-cce2a9bee532)(label(h))(mold((out \ + 8c8d8699-5d50-4559-a777-258dc39138af)(label(h))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 726272aa-84f1-4832-bce7-abf746dd38ac)(content(Whitespace\" \ + 7b07f85a-77c6-4892-9b37-ed58ef37de5b)(content(Whitespace\" \ \"))))(Tile((id \ - cdc66ee5-157b-46bd-bd7b-1f5adf1eaf00)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort \ - Exp))((shape(Concave 6))(sort \ + 5d697673-224c-4286-b050-2d7b22d45f68)(label(::))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 7))(sort \ + Exp))((shape(Concave 7))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6a2d26fd-953a-4bd7-96af-01a5e67c5164)(content(Whitespace\" \ + abc17ad0-806c-4460-b56f-2d409e1e148c)(content(Whitespace\" \ \"))))(Tile((id \ - 3d383ccc-98af-43c0-811c-71cf543f3560)(label(list_of_mylist))(mold((out \ + aaf1bfc4-35db-48dd-bda7-b1998e888b62)(label(list_of_mylist))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 34f0131a-6046-42b7-acc3-0e9b115598e9)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 4dcc8cc7-da9c-4075-9941-84b547b75443)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 7644fb73-3d7b-4647-89a1-17ac8db02acf)(label(t))(mold((out \ + 74b76516-fa73-4e40-88ea-373f0bd66560)(label(t))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 4c34a3ca-0ad2-4452-8353-edc564632dd3)(content(Whitespace\" \ + 954678b7-044c-44ae-8009-7ffeaadeb8a2)(content(Whitespace\" \ \"))))(Secondary((id \ - b46b62aa-f261-440b-a185-d0d676172b7e)(content(Whitespace\" \ + 9b358a1d-5b2a-4b15-a585-4b48232dd712)(content(Whitespace\" \ \"))))(Secondary((id \ - a48cde36-a585-4160-9422-90e3f070e845)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - cd5ed745-ec98-409e-ac1f-234b381dce78)(content(Whitespace\" \ + ba59b233-f10e-4c73-915b-a8b8661a612b)(content(Whitespace\" \ + \"))))(Secondary((id \ + e69a6392-8b62-4f85-8f81-38ed98e7372f)(content(Whitespace\" \ + \"))))(Secondary((id \ + 7a3e1339-6277-42a6-a5a9-6eddf0fdfe2a)(content(Whitespace\"\\n\")))))))))(Secondary((id \ + f537135f-30be-4360-a5b6-90269136e275)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 6dece3b9-a529-490e-91f2-12e76091b87f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 287d9620-78ca-4128-9b32-8f9cb6b58760)(label(let = \ + 2dd2bf49-93f0-487e-abfc-eb01031c27b2)(content(Whitespace\"\\n\"))))(Tile((id \ + adb827e5-6130-4050-bd5e-2c7d4389a53d)(label(let = \ in))(mold((out Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 16))(sort Exp))))))(shards(0 1 \ + Exp))((shape(Concave 17))(sort Exp))))))(shards(0 1 \ 2))(children(((Secondary((id \ - 80255e8c-d69c-49e8-a4da-becb2c97c9a6)(content(Whitespace\" \ + fa0bf5f6-5a3b-44e8-8bbe-ec3ada77bb93)(content(Whitespace\" \ \"))))(Tile((id \ - 5e33ed39-557f-4503-a948-ffc0a793cd4d)(label(ex5))(mold((out \ + c016161b-23fd-4267-a75a-43218f4b0317)(label(ex5))(mold((out \ Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape \ Convex)(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 9fbd2e14-8f09-4035-8020-e8f44fba8526)(content(Whitespace\" \ + 20a4148b-853f-484d-8423-bae1dc00286b)(content(Whitespace\" \ \")))))((Secondary((id \ - f767e5a7-54ab-44d3-a224-fffdadf9da4a)(content(Whitespace\" \ + 9e848c9f-27b0-4b08-ab1b-24b05c16cd00)(content(Whitespace\" \ \"))))(Tile((id \ - ad84dbab-bb06-43c8-8920-1b9e5e8c9cd8)(label(list_of_mylist))(mold((out \ + 5b494e56-3450-4893-a1ff-780b3264f923)(label(list_of_mylist))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - cefbaa1c-b1dc-4728-a64d-1663b18eec41)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape \ + 43da4f1c-8e84-42c8-9cc9-97d6ebeee657)(label(\"(\"\")\"))(mold((out \ + Exp)(in_(Exp))(nibs(((shape(Concave 2))(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8dd0ee06-28a5-424b-93b3-2c269447b2fa)(label(x))(mold((out \ + f559334b-0f30-4e33-be02-af706c8f4d96)(label(x))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c24e59ed-e80f-4816-afcc-d222b126c80a)(content(Whitespace\" \ + 42b7ffd5-8f17-4ded-aba5-2eadb5821520)(content(Whitespace\" \ \")))))))))(Secondary((id \ - 140a3fe3-246f-4a21-bf2d-aac3c7ea1eab)(content(Whitespace\" \ + fb69fc73-8a28-48a3-aeee-3a75e1cdedb8)(content(Whitespace\" \ \"))))(Secondary((id \ - d006bb40-713e-4973-9d8b-34ff0316612c)(content(Comment\"# [1, \ + 7a2e9eaa-4405-457f-9e63-36eac807087e)(content(Comment\"# [1, \ 2, 3] #\"))))(Secondary((id \ - 2fff78bc-2182-4db7-bfa8-33fe02a69a5b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 1096a58b-888f-47e9-9318-313d0f728a9c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 26bec031-02af-4b4d-967f-a3b8fa91866b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - ec44021a-5905-4176-8a43-e4b18ecee191)(content(Comment\"# All \ + b687ad12-d0bb-4f0d-bde1-0bcb776e4443)(content(Whitespace\"\\n\"))))(Secondary((id \ + cda2e5c7-45a8-4879-88dc-9b1b651cdca4)(content(Whitespace\"\\n\"))))(Secondary((id \ + d8cc89a9-5bf4-4b78-81a0-b1c5d9451ad4)(content(Whitespace\"\\n\"))))(Secondary((id \ + a8c91397-927d-46e0-b6ae-8b74ac2a8ad2)(content(Comment\"# All \ output from examples: #\"))))(Secondary((id \ - a54fbe78-5b70-4bff-a1b0-f75d699e2d17)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7f3190eb-b200-4e27-b89e-64483682f7cb)(label(\"(\"\")\"))(mold((out \ + 3b97ec16-3f61-4f68-b248-aaca867a2a49)(content(Whitespace\"\\n\"))))(Tile((id \ + 179da491-661b-4ba4-a24e-7d00e4062471)(label(\"(\"\")\"))(mold((out \ Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8a74a004-7d34-4e27-8fa7-bc1464a894d7)(label(ex1))(mold((out \ + eb8715c6-7afe-4f23-84cf-31c9c391506d)(label(ex1))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4ecc4b06-6a0d-449d-a7a9-507babe76cf8)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 7a46cceb-444c-4343-8d87-a55cd2c1eedc)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - a14aabb1-2f9e-405f-a6b1-49e947e6f8f0)(content(Whitespace\" \ + eed590f1-fb2f-4a68-ac6b-c4e93fb9f7e8)(content(Whitespace\" \ \"))))(Tile((id \ - bb8c31bc-af07-43ea-aa54-cebe3b7fe4c7)(label(ex2))(mold((out \ + 07c52a26-01b7-4d87-8cdf-b657273e67e8)(label(ex2))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - e365c1ab-868b-419e-96e8-c11185577df8)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + e2c29b4c-3e9b-443f-888b-f5df11670119)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - adc45428-7b5c-4e79-9f5d-a70170063fc5)(content(Whitespace\" \ + 443e38d3-fa67-4415-8b28-5ee13f05f3f6)(content(Whitespace\" \ \"))))(Tile((id \ - f25fdd38-87ca-44b2-bd55-3b1c13e31c51)(label(ex3))(mold((out \ + 5cffb2ac-001a-42a6-8ff6-22fd5cb26efc)(label(ex3))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 848d336b-5c6a-4c2f-848d-474fdb03b8d7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 1522405c-6b51-47bb-aa60-89671a27d71a)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - 6dfa74ec-c592-42a4-a583-96e241120cef)(content(Whitespace\" \ + e5154891-4ad3-4d95-8601-a311f10de5d0)(content(Whitespace\" \ \"))))(Tile((id \ - 521e9214-e5ca-4c1d-995c-1d0b12a4aa20)(label(ex4))(mold((out \ + 97f8fd65-6b1c-430f-b73c-50db1333c457)(label(ex4))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort Exp))))))(shards(0))(children())))(Tile((id \ - 4a995d1a-3021-45dd-a4d7-13cff4af4385)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort \ - Exp))((shape(Concave 14))(sort \ + 6bd8095b-89b6-419f-9de1-19c5e746c4a9)(label(,))(mold((out \ + Exp)(in_())(nibs(((shape(Concave 15))(sort \ + Exp))((shape(Concave 15))(sort \ Exp))))))(shards(0))(children())))(Secondary((id \ - f335f93b-9ff4-47f8-8043-301b1f88d1f7)(content(Whitespace\" \ + 44c1f515-be13-4026-80b2-48556eee832b)(content(Whitespace\" \ \"))))(Tile((id \ - 6d11e3ff-91bd-4a63-8233-0f2ff4c37428)(label(ex5))(mold((out \ + 268a3ed0-8342-423d-a603-7e3b19243afa)(label(ex5))(mold((out \ Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape \ Convex)(sort \ - Exp))))))(shards(0))(children())))))))))()))(ancestors())))(caret \ + Exp))))))(shards(0))(children())))))))))))(ancestors())))(caret \ Outer))"; backup_text = "# Polymorphism #\n\n\ @@ -17484,7 +18626,7 @@ let startup : PersistentData.t = typfun A -> typfun B -> fun f : (A -> B) -> fun l : [A] -> \n\ case l\n\ | h :: t => f(h) :: map@@(f)(t)\n\ - | _ => emptylist@ \n\ + | _ => emptylist@ \n\ end in\n\ let ex4 = map@@(string_of_int)([1,2,3]) in # \ [\"1\", \"2\", \"3\"] #\n\n\n\ @@ -17507,27 +18649,27 @@ let startup : PersistentData.t = let list_of_mylist : (MyList -> [Int]) = fun myl : MyList -> \n\ case myl \n\ | Nil => []\n\ - | Cons(h, t) => h :: list_of_mylist(t) \n\ + | Cons(h, t) => h :: list_of_mylist(t) \n\ end in\n\ let ex5 = list_of_mylist(x) in # [1, 2, 3] #\n\n\n\ # All output from examples: #\n\ (ex1, ex2, ex3, ex4, ex5)"; } ); - ( "Programming Expressively", + ( "Expressive Programming", { zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - 73cb2f1d-94b4-42eb-9d77-a832748556b0)(shape \ + 527b01da-5acd-4de7-99a0-02510f2fbe0f)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); - ( "Composing Arithmetic Expressions", + ( "Composing Expressions", { zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - 41444a61-1cf6-408b-82c6-464f3ca6750e)(shape \ + 3767c92f-8a0e-4b82-8407-7e33c55a07be)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17536,7 +18678,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - c7e3b9bd-efaa-41f2-800d-9986a6e814d6)(shape \ + 293ef06a-03d2-4770-8282-f6bbc4aeea08)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17545,7 +18687,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - 92e68905-30cc-415b-b920-6323180c56d1)(shape \ + 878e0a53-88e7-489c-8f30-b60405bb8eb7)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17554,7 +18696,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - 661cbe22-ffdc-4fa3-b227-f7b56a1c8ed6)(shape \ + 67f58c5b-14f7-4b5d-9478-1e66a9bb97ba)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17563,7 +18705,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - f213697c-e203-41c4-8888-fc12e3ac46bf)(shape \ + a48ecbfe-f027-4482-b40c-d59c7a79b52e)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17572,7 +18714,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - 3d8e1707-1e20-4160-946e-73cdb9e98ee1)(shape \ + fa020b7e-8025-47eb-b6ce-5b5797358e67)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17581,7 +18723,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - f49430b2-1265-4e87-a6d6-795eb57c37f8)(shape \ + c19d2704-759a-401a-af23-b6c5263f7c7b)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17590,7 +18732,7 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - e2b7d6b9-5b95-4fad-9278-60097f30375f)(shape \ + 5eb4e750-954c-46e7-a785-d8af9e1b8e40)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); @@ -17599,13 +18741,28 @@ let startup : PersistentData.t = zipper = "((selection((focus Left)(content())(mode \ Normal)))(backpack())(relatives((siblings(()((Grout((id \ - b60e7d0e-e290-4b23-b03c-7fe121fb5dcd)(shape \ + a1407558-57b7-45ea-b4d6-83771ae62b46)(shape \ Convex))))))(ancestors())))(caret Outer))"; backup_text = " "; } ); ], [ + ("scratch_ADT Dynamics", Evaluation); + ("scratch_ADT Statics", Evaluation); ("scratch_Basic Reference", Evaluation); + ("scratch_Booleans and Types", Evaluation); + ("scratch_Casting", Evaluation); + ("scratch_Composing Arithmetic Expressions", Evaluation); + ("scratch_Compositionality", Evaluation); + ("scratch_Computing Equationally", Evaluation); + ("scratch_Conditional Expressions", Evaluation); + ("scratch_Functions", Evaluation); + ("scratch_Polymorphism", Evaluation); ("scratch_Programming Expressively", Evaluation); + ("scratch_Projectors", Evaluation); + ("scratch_Scope", Evaluation); + ("scratch_Shadowing", Evaluation); + ("scratch_Types & static errors", Evaluation); + ("scratch_Variables", Evaluation); ] ); } diff --git a/src/haz3lweb/Keyboard.re b/src/haz3lweb/Keyboard.re index bad937c531..7e4e655f26 100644 --- a/src/haz3lweb/Keyboard.re +++ b/src/haz3lweb/Keyboard.re @@ -1,9 +1,233 @@ open Haz3lcore; +open Util; -let is_digit = s => Re.Str.(string_match(regexp("^[0-9]$"), s, 0)); -let is_f_key = s => Re.Str.(string_match(regexp("^F[0-9][0-9]*$"), s, 0)); +let is_digit = s => StringUtil.(match(regexp("^[0-9]$"), s)); +let is_f_key = s => StringUtil.(match(regexp("^F[0-9][0-9]*$"), s)); -let handle_key_event = (k: Key.t): option(Update.t) => { +type shortcut = { + update_action: option(UpdateAction.t), + hotkey: option(string), + label: string, + mdIcon: option(string), + section: option(string), +}; + +let meta = (sys: Key.sys): string => { + switch (sys) { + | Mac => "cmd" + | PC => "ctrl" + }; +}; + +let mk_shortcut = + (~hotkey=?, ~mdIcon=?, ~section=?, label, update_action): shortcut => { + {update_action: Some(update_action), hotkey, label, mdIcon, section}; +}; + +let instructor_shortcuts: list(shortcut) = [ + mk_shortcut( + ~mdIcon="download", + ~section="Export", + "Export All Persistent Data", + Export(ExportPersistentData), + ), + mk_shortcut( + ~mdIcon="download", + ~section="Export", + "Export Exercise Module", + Export(ExerciseModule) // TODO Would we rather skip contextual stuff for now or include it and have it fail + ), + mk_shortcut( + ~mdIcon="download", + ~section="Export", + "Export Transitionary Exercise Module", + Export(TransitionaryExerciseModule) // TODO Would we rather skip contextual stuff for now or include it and have it fail + ), + mk_shortcut( + ~mdIcon="download", + ~section="Export", + "Export Grading Exercise Module", + Export(GradingExerciseModule) // TODO Would we rather skip contextual stuff for now or include it and have it fail + ), +]; + +// List of shortcuts configured to show up in the command palette and have hotkey support +let shortcuts = (sys: Key.sys): list(shortcut) => + [ + mk_shortcut(~mdIcon="undo", ~hotkey=meta(sys) ++ "+z", "Undo", Undo), + mk_shortcut( + ~hotkey=meta(sys) ++ "+shift+z", + ~mdIcon="redo", + "Redo", + Redo, + ), + mk_shortcut( + ~hotkey="F12", + ~mdIcon="arrow_forward", + ~section="Navigation", + "Go to Definition", + PerformAction(Jump(BindingSiteOfIndicatedVar)), + ), + mk_shortcut( + ~hotkey="shift+tab", + ~mdIcon="swipe_left_alt", + ~section="Navigation", + "Go to Previous Hole", + PerformAction(Move(Goal(Piece(Grout, Left)))), + ), + mk_shortcut( + ~mdIcon="swipe_right_alt", + ~section="Navigation", + "Go To Next Hole", + PerformAction(Move(Goal(Piece(Grout, Right)))), + // Tab is overloaded so not setting it here + ), + mk_shortcut( + ~hotkey=meta(sys) ++ "+d", + ~mdIcon="select_all", + ~section="Selection", + "Select current term", + PerformAction(Select(Term(Current))), + ), + mk_shortcut( + ~hotkey=meta(sys) ++ "+p", + ~mdIcon="backpack", + "Pick up selected term", + PerformAction(Pick_up), + ), + mk_shortcut( + ~mdIcon="select_all", + ~hotkey=meta(sys) ++ "+a", + ~section="Selection", + "Select All", + PerformAction(Select(All)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Statics", + UpdateAction.Set(Statics), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Completion", + UpdateAction.Set(Assist), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Whitespace", + UpdateAction.Set(SecondaryIcons), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Print Benchmarks", + UpdateAction.Set(Benchmark), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Toggle Dynamics", + UpdateAction.Set(Dynamics), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Elaboration", + UpdateAction.Set(Elaborate), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Function Bodies", + UpdateAction.Set(Evaluation(ShowFnBodies)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Case Clauses", + UpdateAction.Set(Evaluation(ShowCaseClauses)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show fixpoints", + UpdateAction.Set(Evaluation(ShowFixpoints)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Casts", + UpdateAction.Set(Evaluation(ShowCasts)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Lookup Steps", + UpdateAction.Set(Evaluation(ShowLookups)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Stepper Filters", + UpdateAction.Set(Evaluation(ShowFilters)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Hidden Steps", + UpdateAction.Set(Evaluation(ShowHiddenSteps)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Docs Sidebar", + UpdateAction.Set(ExplainThis(ToggleShow)), + ), + mk_shortcut( + ~section="Settings", + ~mdIcon="tune", + "Toggle Show Docs Feedback", + UpdateAction.Set(ExplainThis(ToggleShowFeedback)), + ), + mk_shortcut( + ~hotkey=meta(sys) ++ "+/", + ~mdIcon="assistant", + "TyDi Assistant", + PerformAction(Buffer(Set(TyDi))) // I haven't figured out how to trigger this in the editor + ), + mk_shortcut( + ~mdIcon="download", + ~section="Export", + "Export Scratch Slide", + Export(ExportScratchSlide), + ), + mk_shortcut( + ~mdIcon="download", + ~section="Export", + "Export Submission", + Export(Submission) // TODO Would we rather skip contextual stuff for now or include it and have it fail + ), + mk_shortcut( + // ctrl+k conflicts with the command palette + ~section="Diagnostics", + ~mdIcon="refresh", + "Reparse Current Editor", + PerformAction(Reparse), + ), + mk_shortcut( + ~mdIcon="timer", + ~section="Diagnostics", + ~hotkey="F7", + "Run Benchmark", + Benchmark(Start), + ), + ] + @ (if (ExerciseSettings.show_instructor) {instructor_shortcuts} else {[]}); + +let handle_key_event = (k: Key.t): option(UpdateAction.t) => { let now = (a: Action.t): option(UpdateAction.t) => Some(PerformAction(a)); switch (k) { @@ -19,7 +243,6 @@ let handle_key_event = (k: Key.t): option(Update.t) => { | {key: D(key), sys: _, shift: Down, meta: Up, ctrl: Up, alt: Up} when is_f_key(key) => switch (key) { - | "F7" => Some(Benchmark(Start)) | _ => Some(DebugConsole(key)) } | {key: D(key), sys: _, shift, meta: Up, ctrl: Up, alt: Up} => @@ -35,7 +258,7 @@ let handle_key_event = (k: Key.t): option(Update.t) => { | (Up, "Escape") => now(Unselect(None)) | (Up, "Tab") => Some(TAB) | (Up, "F12") => now(Jump(BindingSiteOfIndicatedVar)) - | (Down, "Tab") => Some(MoveToNextHole(Left)) + | (Down, "Tab") => now(Move(Goal(Piece(Grout, Left)))) | (Down, "ArrowLeft") => now(Select(Resize(Local(Left(ByToken))))) | (Down, "ArrowRight") => now(Select(Resize(Local(Right(ByToken))))) | (Down, "ArrowUp") => now(Select(Resize(Local(Up)))) @@ -51,8 +274,6 @@ let handle_key_event = (k: Key.t): option(Update.t) => { } | {key: D(key), sys: Mac, shift: Down, meta: Down, ctrl: Up, alt: Up} => switch (key) { - | "Z" - | "z" => Some(Redo) | "ArrowLeft" => now(Select(Resize(Extreme(Left(ByToken))))) | "ArrowRight" => now(Select(Resize(Extreme(Right(ByToken))))) | "ArrowUp" => now(Select(Resize(Extreme(Up)))) @@ -61,8 +282,6 @@ let handle_key_event = (k: Key.t): option(Update.t) => { } | {key: D(key), sys: PC, shift: Down, meta: Up, ctrl: Down, alt: Up} => switch (key) { - | "Z" - | "z" => Some(Redo) | "ArrowLeft" => now(Select(Resize(Local(Left(ByToken))))) | "ArrowRight" => now(Select(Resize(Local(Right(ByToken))))) | "ArrowUp" => now(Select(Resize(Local(Up)))) @@ -77,9 +296,7 @@ let handle_key_event = (k: Key.t): option(Update.t) => { | "d" => now(Select(Term(Current))) | "p" => Some(PerformAction(Pick_up)) | "a" => now(Select(All)) - | "k" => Some(ReparseCurrentEditor) - | "/" => Some(Assistant(Prompt(TyDi))) - | _ when is_digit(key) => Some(SwitchScratchSlide(int_of_string(key))) + | "/" => Some(PerformAction(Buffer(Set(TyDi)))) | "ArrowLeft" => now(Move(Extreme(Left(ByToken)))) | "ArrowRight" => now(Move(Extreme(Right(ByToken)))) | "ArrowUp" => now(Move(Extreme(Up))) @@ -92,9 +309,7 @@ let handle_key_event = (k: Key.t): option(Update.t) => { | "d" => now(Select(Term(Current))) | "p" => Some(PerformAction(Pick_up)) | "a" => now(Select(All)) - | "k" => Some(ReparseCurrentEditor) - | "/" => Some(Assistant(Prompt(TyDi))) - | _ when is_digit(key) => Some(SwitchScratchSlide(int_of_string(key))) + | "/" => Some(PerformAction(Buffer(Set(TyDi)))) | "ArrowLeft" => now(Move(Local(Left(ByToken)))) | "ArrowRight" => now(Move(Local(Right(ByToken)))) | "Home" => now(Move(Extreme(Up))) @@ -107,13 +322,18 @@ let handle_key_event = (k: Key.t): option(Update.t) => { | "e" => now(Move(Extreme(Right(ByToken)))) | _ => None } - | {key: D(key), sys, shift: Up, meta: Up, ctrl: Up, alt: Down} => - switch (sys, key) { - | (_, "ArrowLeft") => now(MoveToBackpackTarget(Left(ByToken))) - | (_, "ArrowRight") => now(MoveToBackpackTarget(Right(ByToken))) - | (_, "Alt") => Some(SetMeta(ShowBackpackTargets(true))) - | (_, "ArrowUp") => now(MoveToBackpackTarget(Up)) - | (_, "ArrowDown") => now(MoveToBackpackTarget(Down)) + | {key: D("f"), sys: PC, shift: Up, meta: Up, ctrl: Up, alt: Down} => + Some(PerformAction(Project(ToggleIndicated(Fold)))) + | {key: D("ƒ"), sys: Mac, shift: Up, meta: Up, ctrl: Up, alt: Down} => + /* Curly ƒ is what holding option turns f into on Mac */ + Some(PerformAction(Project(ToggleIndicated(Fold)))) + | {key: D(key), sys: _, shift: Up, meta: Up, ctrl: Up, alt: Down} => + switch (key) { + | "ArrowLeft" => now(MoveToBackpackTarget(Left(ByToken))) + | "ArrowRight" => now(MoveToBackpackTarget(Right(ByToken))) + | "Alt" => Some(SetMeta(ShowBackpackTargets(true))) + | "ArrowUp" => now(MoveToBackpackTarget(Up)) + | "ArrowDown" => now(MoveToBackpackTarget(Down)) | _ => None } | _ => None diff --git a/src/haz3lweb/Log.re b/src/haz3lweb/Log.re index 83876619ef..7c87a640f6 100644 --- a/src/haz3lweb/Log.re +++ b/src/haz3lweb/Log.re @@ -1,6 +1,6 @@ /* Logging system for actions. Persists log via IndexedDB */ -open Sexplib.Std; +open Util; let is_action_logged: UpdateAction.t => bool = fun @@ -8,27 +8,22 @@ let is_action_logged: UpdateAction.t => bool = | Save | InitImportAll(_) | InitImportScratchpad(_) - | ExportPersistentData + | Export(_) | FinishImportAll(_) | FinishImportScratchpad(_) | Benchmark(_) - | DebugConsole(_) => false + | DebugConsole(_) + | Startup => false | Reset | TAB - | Assistant(_) | Set(_) | SwitchScratchSlide(_) | SwitchDocumentationSlide(_) | SwitchEditor(_) | ResetCurrentEditor - | ReparseCurrentEditor | PerformAction(_) - | Cut - | Copy - | Paste(_) | Undo | Redo - | MoveToNextHole(_) | UpdateResult(_) | ToggleStepper(_) | StepperAction(_, StepForward(_) | StepBackward) diff --git a/src/haz3lweb/LogEntry.re b/src/haz3lweb/LogEntry.re index 948c88779e..bf7d9dfd59 100644 --- a/src/haz3lweb/LogEntry.re +++ b/src/haz3lweb/LogEntry.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), yojson, sexp)] type t = (float, UpdateAction.t); diff --git a/src/haz3lweb/Main.re b/src/haz3lweb/Main.re index e1268431af..af8058b770 100644 --- a/src/haz3lweb/Main.re +++ b/src/haz3lweb/Main.re @@ -1,28 +1,12 @@ +open Util; open Js_of_ocaml; -open Incr_dom; open Haz3lweb; +open Bonsai.Let_syntax; let scroll_to_caret = ref(true); let edit_action_applied = ref(true); let last_edit_action = ref(JsUtil.timestamp()); -let observe_font_specimen = (id, update) => - ResizeObserver.observe( - ~node=JsUtil.get_elem_by_id(id), - ~f= - (entries, _) => { - let specimen = Js.to_array(entries)[0]; - let rect = specimen##.contentRect; - update( - Haz3lweb.FontMetrics.{ - row_height: rect##.bottom -. rect##.top, - col_width: rect##.right -. rect##.left, - }, - ); - }, - (), - ); - let restart_caret_animation = () => // necessary to trigger reflow // @@ -35,7 +19,7 @@ let restart_caret_animation = () => | _ => () }; -let apply = (model, action, state, ~schedule_action): Model.t => { +let apply = (model, action, ~schedule_action): Model.t => { restart_caret_animation(); if (UpdateAction.is_edit(action)) { last_edit_action := JsUtil.timestamp(); @@ -47,7 +31,7 @@ let apply = (model, action, state, ~schedule_action): Model.t => { last_edit_action := JsUtil.timestamp(); switch ( try({ - let new_model = Update.apply(model, action, state, ~schedule_action); + let new_model = Update.apply(model, action, ~schedule_action); Log.update(action); new_model; }) { @@ -61,9 +45,7 @@ let apply = (model, action, state, ~schedule_action): Model.t => { ) { | Ok(model) => model | Error(FailedToPerform(err)) => - // TODO(andrew): reinstate this history functionality print_endline(Update.Failure.show(FailedToPerform(err))); - //{...model, history: ActionHistory.failure(err, model.history)}; model; | Error(err) => print_endline(Update.Failure.show(err)); @@ -71,73 +53,63 @@ let apply = (model, action, state, ~schedule_action): Model.t => { }; }; -module App = { - module Model = Model; - module Action = Update; - module State = State; - - let on_startup = (~schedule_action, m: Model.t) => { - let _ = - observe_font_specimen("font-specimen", fm => - schedule_action(Haz3lweb.Update.SetMeta(FontMetrics(fm))) - ); - - JsUtil.focus_clipboard_shim(); - - /* initialize state. */ - let state = State.init(); - - /* Initial evaluation on a worker */ - Update.schedule_evaluation(~schedule_action, m); +let app = + Bonsai.state_machine0( + (module Model), + (module Update), + ~apply_action= + (~inject, ~schedule_event) => + apply(~schedule_action=x => schedule_event(inject(x))), + ~default_model=Model.load(Model.blank), + ); - Os.is_mac := - Dom_html.window##.navigator##.platform##toUpperCase##indexOf( - Js.string("MAC"), - ) - >= 0; - Async_kernel.Deferred.return(state); +/* This subcomponent is used to run an effect once when the app starts up, + After the first draw */ +let on_startup = effect => { + let%sub startup_completed = Bonsai.toggle'(~default_model=false); + let%sub after_display = { + switch%sub (startup_completed) { + | {state: false, set_state, _} => + let%arr effect = effect + and set_state = set_state; + Bonsai.Effect.Many([set_state(true), effect]); + | {state: true, _} => Bonsai.Computation.return(Ui_effect.Ignore) + }; }; + Bonsai.Edge.after_display(after_display); +}; - let create = - ( - model: Incr.t(Haz3lweb.Model.t), - ~old_model as _: Incr.t(Haz3lweb.Model.t), - ~inject, - ) => { - open Incr.Let_syntax; - let%map model = model; - /* Note: mapping over the old_model here may - trigger an additional redraw */ - Component.create( - ~apply_action=apply(model), - model, - Haz3lweb.Page.view(~inject, model), - ~on_display=(_, ~schedule_action) => { - if (edit_action_applied^ - && JsUtil.timestamp() - -. last_edit_action^ > 1000.0) { - /* If an edit action has been applied, but no other edit action - has been applied for 1 second, save the model. */ - edit_action_applied := false; - print_endline("Saving..."); - schedule_action(Update.Save); - }; - if (scroll_to_caret.contents) { - scroll_to_caret := false; - JsUtil.scroll_cursor_into_view_if_needed(); - }; - }, +let view = { + let%sub app = app; + let%sub () = { + on_startup( + Bonsai.Value.map(~f=((_model, inject)) => inject(Startup), app), ); }; + let%sub after_display = { + let%arr (_model, inject) = app; + if (scroll_to_caret.contents) { + scroll_to_caret := false; + JsUtil.scroll_cursor_into_view_if_needed(); + }; + if (edit_action_applied^ + && JsUtil.timestamp() + -. last_edit_action^ > 1000.0) { + /* If an edit action has been applied, but no other edit action + has been applied for 1 second, save the model. */ + edit_action_applied := false; + print_endline("Saving..."); + inject(Update.Save); + } else { + Ui_effect.Ignore; + }; + }; + let%sub () = Bonsai.Edge.after_display(after_display); + let%arr (model, inject) = app; + Haz3lweb.Page.view(~inject, model); }; switch (JsUtil.Fragment.get_current()) { | Some("debug") => DebugMode.go() -| _ => - Incr_dom.Start_app.start( - (module App), - ~debug=false, - ~bind_to_element_with_id="container", - ~initial_model=Model.load(Model.blank), - ) +| _ => Bonsai_web.Start.start(view, ~bind_to_element_with_id="container") }; diff --git a/src/haz3lweb/Model.re b/src/haz3lweb/Model.re index 65c5d519c0..e4939b3af0 100644 --- a/src/haz3lweb/Model.re +++ b/src/haz3lweb/Model.re @@ -1,4 +1,5 @@ -open Sexplib.Std; +open Util; + open Haz3lcore; /* MODEL: @@ -32,28 +33,26 @@ let ui_state_init = { mousedown: false, }; +[@deriving sexp] type t = { editors: Editors.t, settings: Settings.t, results: ModelResults.t, - statics: CachedStatics.t, explainThisModel: ExplainThisModel.t, ui_state, }; -let cutoff = (===); +let equal = (===); -let mk = (editors, results, statics) => { +let mk = (editors, results) => { editors, settings: Init.startup.settings, results, - statics, explainThisModel: ExplainThisModel.init, ui_state: ui_state_init, }; -let blank = - mk(Editors.Scratch(0, []), ModelResults.empty, CachedStatics.empty); +let blank = mk(Editors.Scratch(0, []), ModelResults.empty); let load_editors = (~settings, ~mode: Settings.mode, ~instructor_mode: bool) @@ -68,6 +67,7 @@ let load_editors = | Exercises => let (n, specs, exercise) = Store.Exercise.load( + ~settings, ~specs=ExerciseSettings.exercises, ~instructor_mode, ); @@ -90,13 +90,12 @@ let load = (init_model: t): t => { let explainThisModel = Store.ExplainThisModel.load(); let (editors, results) = load_editors( - ~settings=settings.core.evaluation, + ~settings=settings.core, ~mode=settings.mode, ~instructor_mode=settings.instructor_mode, ); let ui_state = init_model.ui_state; - let statics = Editors.mk_statics(~settings, editors); - {editors, settings, results, statics, explainThisModel, ui_state}; + {editors, settings, results, explainThisModel, ui_state}; }; let save = ({editors, settings, explainThisModel, results, _}: t) => { @@ -109,16 +108,16 @@ let save_and_return = (model: t) => { save(model); Ok(model); }; + let reset = (model: t): t => { /* Reset model to default, including in localstorage, but don't otherwise erase localstorage, allowing e.g. api keys to persist */ - let settings = Store.Settings.init(); - ignore(settings); + let settings = Store.Settings.init().core; ignore(Store.ExplainThisModel.init()); - ignore(Store.Scratch.init(~settings=settings.core.evaluation)); - ignore(Store.Documentation.init(~settings=settings.core.evaluation)); - ignore(Store.Exercise.init(~instructor_mode=true)); + ignore(Store.Scratch.init(~settings)); + ignore(Store.Documentation.init(~settings)); + ignore(Store.Exercise.init(~settings, ~instructor_mode=true)); let new_model = load(blank); { ...new_model, diff --git a/src/haz3lweb/NinjaKeys.re b/src/haz3lweb/NinjaKeys.re new file mode 100644 index 0000000000..acce5c4ff4 --- /dev/null +++ b/src/haz3lweb/NinjaKeys.re @@ -0,0 +1,57 @@ +open Js_of_ocaml; +open Util; + +/* + Configuration of the command palette using the https://github.com/ssleptsov/ninja-keys web component. + */ + +let from_shortcut = + (schedule_action: UpdateAction.t => unit, shortcut: Keyboard.shortcut) + : { + . + "handler": Js.readonly_prop(unit => unit), + "id": Js.readonly_prop(string), + "mdIcon": Js.readonly_prop(Js.optdef(string)), + "hotkey": Js.readonly_prop(Js.optdef(string)), + "title": Js.readonly_prop(string), + "section": Js.readonly_prop(Js.optdef(string)), + } => { + [%js + { + val id = shortcut.label; + val title = shortcut.label; + val mdIcon = Js.Optdef.option(shortcut.mdIcon); + val hotkey = Js.Optdef.option(shortcut.hotkey); + val section = Js.Optdef.option(shortcut.section); + val handler = + () => { + let foo = shortcut.update_action; + switch (foo) { + | Some(update) => schedule_action(update) + | None => + print_endline("Could not find action for " ++ shortcut.label) + }; + } + }]; +}; + +let options = (schedule_action: UpdateAction.t => unit) => { + Array.of_list( + List.map( + from_shortcut(schedule_action), + Keyboard.shortcuts(Os.is_mac^ ? Mac : PC), + ), + ); +}; + +let elem = () => JsUtil.get_elem_by_id("ninja-keys"); + +let initialize = opts => Js.Unsafe.set(elem(), "data", Js.array(opts)); + +let open_command_palette = (): unit => { + Js.Unsafe.meth_call( + elem(), + "open", + [||] // Can't use ##.open because open is a reserved keyword + ); +}; diff --git a/src/haz3lweb/PersistentData.re b/src/haz3lweb/PersistentData.re index 6e7b1a4419..8b606f4d17 100644 --- a/src/haz3lweb/PersistentData.re +++ b/src/haz3lweb/PersistentData.re @@ -1,4 +1,5 @@ -open Sexplib.Std; +open Util; + open Haz3lcore; [@deriving (show({with_path: false}), sexp, yojson)] diff --git a/src/haz3lweb/ScratchSlide.re b/src/haz3lweb/ScratchSlide.re index 09860711ed..554beab53d 100644 --- a/src/haz3lweb/ScratchSlide.re +++ b/src/haz3lweb/ScratchSlide.re @@ -8,49 +8,45 @@ type persistent_state = PersistentZipper.t; let scratch_key = n => "scratch_" ++ n; -let persist = (editor: Editor.t) => { +let persist = (editor: Editor.t): persistent_state => { PersistentZipper.persist(editor.state.zipper); }; -let unpersist = (zipper: persistent_state) => { +let unpersist = (zipper: persistent_state, ~settings: CoreSettings.t): state => { let zipper = PersistentZipper.unpersist(zipper); - Editor.init(zipper, ~read_only=false); + Editor.init(zipper, ~read_only=false, ~settings); }; -let serialize = (state: state) => { +let serialize = (state: state): string => { persist(state) |> sexp_of_persistent_state |> Sexplib.Sexp.to_string; }; -let deserialize = (data: string) => { - Sexplib.Sexp.of_string(data) |> persistent_state_of_sexp |> unpersist; +let deserialize = (data: string, ~settings: CoreSettings.t): state => { + Sexplib.Sexp.of_string(data) + |> persistent_state_of_sexp + |> unpersist(~settings); }; -let deserialize_opt = (data: string) => { +let deserialize_opt = + (data: string, ~settings: CoreSettings.t): option(state) => { let sexp = try(Some(Sexplib.Sexp.of_string(data) |> persistent_state_of_sexp)) { | _ => None }; - sexp |> Option.map(sexp => sexp |> unpersist); + sexp |> Option.map(sexp => sexp |> unpersist(~settings)); }; -let export = (state: state) => { +let export = (state: state): Yojson.Safe.t => { state |> persist |> yojson_of_persistent_state; }; -let import = (data: string) => { - data |> Yojson.Safe.from_string |> persistent_state_of_yojson |> unpersist; +let import = (data: string, ~settings: CoreSettings.t): state => { + data + |> Yojson.Safe.from_string + |> persistent_state_of_yojson + |> unpersist(~settings); }; -let export_init = (state: state) => { +let export_init = (state: state): string => { state |> persist |> show_persistent_state; }; - -let mk_statics = - (~settings: Settings.t, editor: Editor.t, ctx_init: Ctx.t) - : CachedStatics.statics => { - let term = MakeTerm.from_zip_for_sem(editor.state.zipper) |> fst; - let info_map = Interface.Statics.mk_map_ctx(settings.core, ctx_init, term); - let error_ids = - Statics.Map.error_ids(editor.state.meta.term_ranges, info_map); - {term, info_map, error_ids}; -}; diff --git a/src/haz3lweb/SerializedExamples.ml b/src/haz3lweb/SerializedExamples.ml deleted file mode 100644 index a9a06cdc0e..0000000000 --- a/src/haz3lweb/SerializedExamples.ml +++ /dev/null @@ -1,6602 +0,0 @@ -let intro : ScratchSlide.persistent_state = - { - zipper = - "((selection((focus \ - Left)(content())))(backpack())(relatives((siblings(((Secondary((id \ - b9251f54-0572-4fe1-8cac-62fb931a53b2)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - ccf2ec6f-12f5-4ef7-929a-7c012d318017)(content(Comment\"# Fill the hole \ - below to see how the result changes #\"))))(Secondary((id \ - 6276ade7-a655-4502-a46e-e72c4177bfc6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1f723cf6-4652-4cb9-89b5-661813257eae)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 55148166-9c62-4ea8-8cf5-043aabe0e0b8)(content(Whitespace\" \ - \"))))(Tile((id \ - 96bcf1dd-82d6-43ce-ba9c-664c4c068615)(label(parameter))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - a07c8043-d0c0-4069-879c-c33dee22847d)(content(Whitespace\" \ - \")))))))))(Grout((id 45147365-5339-4904-aabe-8290175e5e39)(shape \ - Convex)))(Secondary((id \ - 00473032-3cde-499f-ae11-4708be84b390)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5eb554ba-4942-488f-9826-abade5f042df)(content(Whitespace\" \ - \"))))(Secondary((id \ - 6d1a22f3-90d2-4146-9620-43a7b7d9ccf5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 158bc283-207e-48dc-8698-0127fa160027)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8276ac3c-a531-4514-a115-2920b4b042ab)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0fb51e6f-b503-4644-948e-2c732b0d7449)(content(Whitespace\"\\226\\143\\142\")))))))(ancestors((((id \ - f775bd7f-924f-4f6e-971b-faf4bfa5e7bf)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards((0 1)(2)))(children((((Secondary((id \ - d8980118-1d06-488a-8d30-70fcaef3b222)(content(Whitespace\" \ - \"))))(Tile((id \ - 0fba90cc-14a6-4875-8202-2ad99c8bd32d)(label(your_function))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - cdc8c1f4-8083-471e-8eda-8930ec220ec5)(content(Whitespace\" \ - \"))))))())))(((Secondary((id \ - fae0774c-bdf8-4c16-ac1b-c50a5055ca24)(content(Comment\"# Welcome to \ - Hazel! #\"))))(Secondary((id \ - 123e0d9d-ccc1-43ee-a103-198ddcfae6da)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 025eef96-0b83-4c26-a631-c21bc7072426)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 1f5ba227-90b2-4e6b-91de-6e51a762cbb3)(content(Comment\"# This is a \ - program cell, which consists of a structured editor \ - #\"))))(Secondary((id \ - a22c4492-9a92-4edb-bb41-c5682786b8b1)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c5273d3b-06b3-44f1-8354-00e22148aebe)(content(Comment\"# at the top and \ - its evaluated result at the bottom. Right now, #\"))))(Secondary((id \ - 7ce45bad-c2c5-43fe-8961-94fc4946ced0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - ceffe652-5515-4c66-81e9-5938fac19452)(content(Comment\"# that result \ - has a question mark, as the program is incomplete! \ - #\"))))(Secondary((id \ - 0984263c-d942-4067-8f4a-90e6ca915037)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 72e18dcf-bc6a-4d6a-9efa-e78bec8fded8)(content(Whitespace\"\\226\\143\\142\")))))((Secondary((id \ - 5c6b47d0-7e57-453c-ae6f-8b0ae564772e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b4e68023-dfe1-4c0f-837e-a6bfaf6f2072)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 357a9315-e11e-45bd-a53f-f6b6f0feb682)(content(Comment\"# Here in \ - Scratch Mode, you can use the upper left arrows to \ - #\"))))(Secondary((id \ - 921b3b05-452d-46e5-b8d5-8685d269cbdc)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c9cf2328-c2fc-4848-810c-d9185f0a8f37)(content(Comment\"# switch between \ - blank cells where you can store programs. #\"))))(Secondary((id \ - aa945ef1-522b-4660-aedb-c128b76d2982)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c79a6006-21b0-4106-b78d-cb8ba4495536)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c9d02ee3-46a3-493a-8698-88bcea88c1a9)(content(Comment\"# Select \ - Documentation Mode from the upper left dialog to pick from \ - #\"))))(Secondary((id \ - 92c2e652-d433-49c9-8e8d-32a9a84f5698)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 27b9d738-b928-4f10-a684-07f76110935c)(content(Comment\"# a list of \ - references for Hazel language and editor features. \ - #\"))))(Secondary((id \ - cd239f32-f9c9-4365-9e78-4d053c43b23e)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b64056cb-5c7c-4445-88cb-b46323c3c6fb)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f1b08303-7966-443a-b963-5e24d80f523b)(content(Comment\"# Select \ - Exercise for a small functional programming tutorial. \ - #\"))))(Secondary((id \ - ab8fcf3e-d7ec-487c-8bf3-36ab715f4323)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 50a218b1-3d72-4f84-9fd9-482994d25118)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 08025fa9-be2c-48e3-a05b-2f678af6685f)(label(your_function))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 334de073-5f71-44e9-87ed-009942123797)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 15b1c8c9-af39-4613-a436-417ce09ef2c5)(label(\"\\\"argument\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - d558bece-07ea-4d53-b9f2-8ba388a1a283)(content(Whitespace\" \ - \"))))(Tile((id \ - d93d43ee-e791-409a-886d-bc1cd6329b87)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0cff6d10-120f-43f2-bdce-3e33fb6f9cd7)(content(Whitespace\" \ - \"))))(Tile((id \ - a560ecfa-e4aa-4775-a478-b9ee8e347c6c)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 5d2e9e0b-1fa0-4ce8-9f23-d78f444a4884)(content(Whitespace\"\\226\\143\\142\")))))))))))(caret \ - Outer))"; - backup_text = - "# Welcome to Hazel! #\n\n\ - # This is a program cell, which consists of a structured editor #\n\ - # at the top and its evaluated result at the bottom. Right now, #\n\ - # that result has a question mark, as the program is incomplete! #\n\n\ - let your_function =\n\ - # Fill the hole below to see how the result changes #\n\ - fun parameter -> \n\ - in\n\n\ - # Here in Scratch Mode, you can use the upper left arrows to #\n\ - # switch between blank cells where you can store programs. #\n\n\ - # Select Documentation Mode from the upper left dialog to pick from #\n\ - # a list of references for Hazel language and editor features. #\n\n\ - # Select Exercise for a small functional programming tutorial. #\n\n\ - your_function(\"argument\") + 1\n"; - } - -let lang_ref : ScratchSlide.persistent_state = - { - zipper = - "((selection((focus \ - Left)(content())))(backpack())(relatives((siblings(((Secondary((id \ - 730349ac-e60d-4709-880c-dd589d7c101a)(content(Comment\"# Hazel Language \ - Quick Reference #\"))))(Secondary((id \ - 49dc2ef0-9035-4241-9454-c61f36819a8d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 041559ff-afa2-4048-a74d-a17fada7722a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0afac91c-68c7-493c-b662-9e8857497774)(content(Comment\"# Empty holes \ - stand for missing expressions, patterns, or types #\"))))(Secondary((id \ - 2fc656e6-3eee-4881-a3de-adb9cbd9658f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 89590b3e-217a-4b40-a95e-fe7f9f4a782e)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ffb9c1b1-a047-408c-a38e-c0d413dab783)(content(Whitespace\" \ - \"))))(Tile((id \ - 8bbeb975-5b79-4116-b879-4fda936742c4)(label(empty_hole))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 3c417b09-25af-42cd-8145-ac78bf0953a5)(content(Whitespace\" \ - \")))))((Grout((id d1f97dd0-a8f9-4920-b802-eae9fb75ed70)(shape \ - Convex)))(Secondary((id \ - adcf5a35-edef-43d1-94eb-5da5e89416f5)(content(Whitespace\" \ - \"))))(Secondary((id \ - c796602b-34f2-43cd-8da7-3c72e50ab1da)(content(Whitespace\" \ - \"))))(Secondary((id \ - 19e522ea-b089-4889-b551-010504de631e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 198a76fd-8df5-4bb0-9b63-53a983d0db4b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 59c740ca-a615-4122-b5f8-22e1cbac5898)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 6df41542-18c0-4fdc-bda7-c904b83c0609)(content(Comment\"# Integers \ - #\"))))(Secondary((id \ - 41b32d62-837d-4b13-8776-364198e07ea8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d80b1d9f-cbe2-46ae-84a4-80fc374737ea)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5946b974-f91c-4f5d-b341-c482680ce716)(content(Whitespace\" \ - \"))))(Tile((id \ - 46fea074-f37b-4986-b0f1-d0b3b6f91f4b)(label(int_lits))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 611f6504-ff1a-4a3d-8d80-90b100334744)(content(Whitespace\" \ - \"))))(Tile((id \ - 9ce47d22-54cb-4297-8bd5-a568eb1cc0f0)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4cc0d2d3-d055-4c66-a1e7-f719778a15d3)(content(Whitespace\" \ - \"))))(Tile((id \ - ccf4a8f9-20b7-4288-9752-3550b1ba4000)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 18602542-b079-472e-aa9d-c36f12ccd2fb)(content(Whitespace\" \ - \")))))((Secondary((id \ - b5e05450-0b26-4117-a5bf-1d4e2a1433a8)(content(Whitespace\" \ - \"))))(Tile((id \ - eac9f3b2-903d-40ec-a22d-88fcb915f572)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a054b1bc-bc8a-4ebd-9bb6-bf4c4c7f15e7)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 83b39678-45a1-4734-a395-13cd51c98fa7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - babb54a1-0f72-4523-97b8-463c4fe84107)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 29a28da9-1be2-48f3-8e8e-69898cfb354f)(content(Whitespace\" \ - \"))))(Tile((id \ - 66439099-9690-4957-93ed-bea104dffb6f)(label(negation))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - df90f7c7-e936-4197-a475-2e815bc34507)(content(Whitespace\" \ - \")))))((Secondary((id \ - ab0250b5-eaf7-4a82-a94b-49029d060db5)(content(Whitespace\" \ - \"))))(Tile((id \ - 143aefd1-15d5-48a1-a98a-bbd01ef572d7)(label(-))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape(Concave 2))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 083dcc77-d37e-4671-ba14-3e7e9686bdc7)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0f543d14-f1ff-498f-8fd0-fb239592eaa5)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - aa31fe00-7df3-487d-8b15-222aa43adb1a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 30bbd09e-f382-4a72-acea-a85cf5f7fef5)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 133796c3-d6df-49af-bacb-9f70b7bc7384)(content(Whitespace\" \ - \"))))(Tile((id \ - 68b715a2-a0e6-44aa-a430-3b27a70799f7)(label(arithmetic))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 4886d833-0f8f-4b37-990f-d3c37fddcba7)(content(Whitespace\" \ - \")))))((Secondary((id \ - f50acb7d-b186-49aa-9a8c-57a0a24a44b8)(content(Whitespace\" \ - \"))))(Tile((id \ - 2b249c3b-ce53-4495-a161-6bd5c3892b9f)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 348e2fe7-189a-41cc-95d1-14f0b7996bfb)(label(*))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 844c7db4-ba8f-4f17-87ad-878d4bd17e30)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - feba3b62-3607-42c9-95e6-db2939b96fa3)(content(Whitespace\" \ - \"))))(Tile((id \ - 9006a5e7-b926-445d-b563-a45557932cff)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a7f455d7-1de4-4f08-a466-8add97175cf9)(content(Whitespace\" \ - \"))))(Tile((id \ - 8fddaf22-32d1-4344-9d3c-5654345ff194)(label(8))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 0d68cccc-d91e-44e1-a1cd-9acab10ea3e0)(label(/))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 8d492e53-ef52-4238-b3cc-10b4bb97556c)(label(4))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 441d7337-e47f-4a63-9936-e6ee33034aea)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0e4fa29b-1e29-458b-a671-d2811b4df4c0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 79bd35ee-1732-49be-8ce1-f36b7e3e9601)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f8ff59ad-af7c-42fa-a67b-049f4791bb37)(content(Whitespace\" \ - \"))))(Tile((id \ - 8015a67b-ae16-4c2d-bac8-55ab6a8430dc)(label(int_comparison))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 5afbcc3b-05ba-43cb-bc2f-b2ed2ba6ec29)(content(Whitespace\" \ - \")))))((Secondary((id \ - bd574c05-72b3-459e-95a1-58c702fc58e5)(content(Whitespace\" \ - \"))))(Tile((id \ - 4d38ba35-7e37-4c85-a85a-c66b2418495a)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - b5a1a749-55da-4952-8e10-ee33731e9074)(label(10))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c8e02190-dfec-4a55-8e97-4f35465d587a)(content(Whitespace\" \ - \"))))(Tile((id \ - 1b1b3886-95c9-4aa1-8d40-90f1ab3516a5)(label(==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4bf68a7d-fd24-470d-9cda-4cfcd2f99f35)(content(Whitespace\" \ - \"))))(Tile((id \ - dbb1b3e5-0703-472f-8d7d-e251c3778fcd)(label(10))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - e7b197bf-a5bf-4aaa-82ff-0f5a8624f88c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7685fbc1-fe62-48c5-bc79-ee6a76863b95)(content(Whitespace\" \ - \"))))(Tile((id \ - 3ba2a4a8-c2e6-4f61-b1f0-84c8376592be)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7747f308-12e6-426b-b2a4-eaec57cad576)(content(Whitespace\" \ - \"))))(Tile((id \ - fb42376a-ccdf-4ee0-9d51-de39ccbe8968)(label(<))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - d6acbd6b-30ed-46b8-a626-9981ea89b81a)(content(Whitespace\" \ - \"))))(Tile((id \ - 60916e7f-2653-4be5-afcd-0b17cc34b86d)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 60693ea7-c90f-4d92-afcd-614568b6d61e)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1c1f208b-6584-4421-92c8-5113d3fb08a7)(content(Whitespace\" \ - \"))))(Tile((id \ - 2d56947f-a059-4976-ac83-7fcb5fe55c90)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9f285e92-7d9c-4d2b-a8e8-31246986733c)(content(Whitespace\" \ - \"))))(Tile((id \ - 9f5342c9-e193-49f7-8a28-6c545dc84ac3)(label(<=))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 550d8061-6e7c-44ad-a43a-389a7dd6e7fd)(content(Whitespace\" \ - \"))))(Tile((id \ - 5c08e9ab-e16b-45ab-89b6-4345f93f148d)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 9c2d481d-e7d1-478f-92fb-adde283a269c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - a6580b5d-bde9-4504-be66-25c376729afb)(content(Whitespace\" \ - \"))))(Tile((id \ - e6f87240-e36b-40f0-9efe-998e63616742)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - bec8cc48-b74f-4621-a020-770fc61b2e6c)(content(Whitespace\" \ - \"))))(Tile((id \ - 292badbc-2c93-47f4-9d5e-4ef5ec7797a4)(label(>))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0d2b3f81-edc9-4221-8bfa-a96115821fb9)(content(Whitespace\" \ - \"))))(Tile((id \ - d5944d3a-3266-411e-a6c8-73e42c37e1cd)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 74d9b9bb-aa6b-4f50-abee-afa07aed9816)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e94333bf-b157-4577-b1bb-00e190c449f8)(content(Whitespace\" \ - \"))))(Tile((id \ - afe10f0c-e3ec-4e35-b1bb-236e389cda16)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 449c58a1-38ec-45e1-8839-a8e33c1a3722)(content(Whitespace\" \ - \"))))(Tile((id \ - a3a56cdc-f940-4810-8078-50079c60ef1e)(label(>=))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9c7d23c0-eee7-48fb-b107-20eb8f5016fb)(content(Whitespace\" \ - \"))))(Tile((id \ - 83a1fedf-c9a1-42f7-bba3-9c97564cb8d9)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 45ae2c2e-6ac0-4577-927d-dedf0bf59bc0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 5084466f-d33c-428b-ab06-8257dc784ab1)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - dcf1ba7e-b1a6-4e08-bd0e-8853b5ff3932)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - aa0e244f-7646-4cee-97da-76973a79a952)(content(Comment\"# Floating Point \ - Numbers #\"))))(Secondary((id \ - 49023621-f2f6-4744-ba86-ce750c0fce0f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2f06912b-805c-43b0-aab5-aec1faabcf15)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 0caf5fbf-1042-4799-a053-2a5582a576b5)(content(Whitespace\" \ - \"))))(Tile((id \ - c36ca7ae-6030-46fc-a5a2-141fb3f6c007)(label(float_lits))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 642d6924-81e9-4106-9fed-77706b77a479)(content(Whitespace\" \ - \"))))(Tile((id \ - c863d69b-7910-44c8-93e8-2473412a5323)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 836b0956-ecc3-4bf0-9975-7dec8095d187)(content(Whitespace\" \ - \"))))(Tile((id \ - b8e756b4-d99b-4aa9-855b-e26daf92f805)(label(Float))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - aa90549d-8c9d-4a3f-803c-da54712062c0)(content(Whitespace\" \ - \")))))((Secondary((id \ - eafb9b6c-8be0-46ac-ba9b-48a0ee2c3ab3)(content(Whitespace\" \ - \"))))(Tile((id \ - 9a292149-1740-4cef-9ff6-087c0fdbee51)(label(1.5))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 533873a2-b52d-4524-9af9-49972e72a4e6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 519c4ef1-a25a-4af9-8e5d-9bc5cc605446)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9d551b5a-b646-4e92-ab3e-5ef3931b48fe)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 2924dad5-46f8-4b5e-9f2c-2e14131275d9)(content(Whitespace\" \ - \"))))(Tile((id \ - d80cc709-b6db-48b7-a35b-8c8e57d6de82)(label(float_artih))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 37ee8d04-40f2-4279-905b-31c92ccfc7b9)(content(Whitespace\" \ - \")))))((Secondary((id \ - 342f8534-3a14-49f7-8c8b-c956304a952d)(content(Whitespace\" \ - \"))))(Tile((id \ - a6ad51cf-98a7-4d05-a3eb-753e87807de3)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - dc0c4a9d-bc64-47eb-a80a-a277d8775b62)(content(Whitespace\" \ - \"))))(Tile((id \ - 7609ac12-f305-440f-84ec-5c2672f9d033)(label(*.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 1e01d4b1-4e19-49b5-a000-5e83cb1bb9f3)(content(Whitespace\" \ - \"))))(Tile((id \ - 13bb3d20-297e-4811-8cd2-382cb11992a8)(label(2.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cbf304a0-82df-435b-bb04-18767dbe4a5d)(content(Whitespace\" \ - \"))))(Tile((id \ - aae0b49c-0fca-4a94-a460-1d7e06e834a2)(label(+.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cc061041-7b1b-4b14-9279-00d6b3613748)(content(Whitespace\" \ - \"))))(Tile((id \ - 037cdb56-8b72-47d5-9746-bee72de6c711)(label(8.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 56c8e211-1386-4645-a6cb-b94e5c982370)(content(Whitespace\" \ - \"))))(Tile((id \ - 7566bc6b-38a6-44b0-8440-2cd39e72f254)(label(/.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2d8538d1-74a6-4b00-b0fd-4898b3359f43)(content(Whitespace\" \ - \"))))(Tile((id \ - 011756db-3120-445d-a6da-f6efdf7d752f)(label(4.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 36da5ba1-002e-491e-805e-32d83027079f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 87c5c055-1cf7-4387-a212-c68b93b6f4ac)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b6ee18bf-82a9-4c2c-a835-567eb71da8ec)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ef34c9a0-0c64-4e07-afc2-411b32bfe2f4)(content(Whitespace\" \ - \"))))(Tile((id \ - 86a8d2e3-ba95-49d4-baac-10d13b988b3e)(label(float_comparison))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - fc4874fc-0927-4927-8c1f-48b2fe067e16)(content(Whitespace\" \ - \")))))((Secondary((id \ - 20114680-f144-43cf-8ae6-b86cbe484fe6)(content(Whitespace\" \ - \"))))(Tile((id \ - 660aadab-ab25-47d0-91b4-2fbd38761c64)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 8d319ec8-9b94-466a-a60d-f18503ff2c05)(label(10.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0367e9ea-fe5a-4ac4-891c-8f2669cbbe06)(content(Whitespace\" \ - \"))))(Tile((id \ - 27daf7a0-eb0c-4ef4-9b34-731d9cb9e2d8)(label(==.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 8c679e9a-685d-458e-b3c2-1e08ce7faf19)(content(Whitespace\" \ - \"))))(Tile((id \ - 9090ea18-3b73-435d-8511-b7c9fa3a7802)(label(10.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 4118f6a9-3221-428d-9e19-d3789568cf99)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 38cc9d8e-2470-4a2b-9576-fa815c4da996)(content(Whitespace\" \ - \"))))(Tile((id \ - aaeb2c78-4fa0-4bf6-aea7-a906b7bbe1b9)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 03e59ba6-3c00-40f7-9166-74418acdb6a6)(content(Whitespace\" \ - \"))))(Tile((id \ - 5362aaf0-ff70-4837-85f9-b648b9a14470)(label(<.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0ccf9e6e-8e9d-4517-8831-f839b2ea2c72)(content(Whitespace\" \ - \"))))(Tile((id \ - 6716b704-26a5-4031-8c30-c2c1c57be9e0)(label(2.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 9e4efeec-1d40-4d48-aa5f-b784e50f0f65)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 991c3a92-387c-4a0e-b1d4-b17eef992fe9)(content(Whitespace\" \ - \"))))(Tile((id \ - b40ba075-31cd-437a-b178-e63223871af9)(label(2.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - e47ece2b-297d-41da-bf14-4974d522e92a)(content(Whitespace\" \ - \"))))(Tile((id \ - 6e5b0ff0-d17a-400a-a36b-1d9e779c1cf0)(label(<=.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 1b0d6b69-cdad-4475-b165-a1b03fd19bd9)(content(Whitespace\" \ - \"))))(Tile((id \ - 577c1e77-97b4-4ada-bfb5-87c06ea0ff69)(label(3.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 3b568fa5-efb5-4fc0-8741-43212f466dd2)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c2c34a8c-29d1-47ae-941a-b1eda17f64aa)(content(Whitespace\" \ - \"))))(Tile((id \ - 84d0791a-c56a-43cc-927d-ba4136af97a4)(label(3.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 533ab725-1904-4eab-bd6d-eae9c8b0bc74)(content(Whitespace\" \ - \"))))(Tile((id \ - adfe08f7-3221-449a-a58c-54c237f7c158)(label(>.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 22a3cd58-9fc0-49ac-9d61-6a3926163a47)(content(Whitespace\" \ - \"))))(Tile((id \ - b82457d4-6894-4ab8-9720-f5dc1c095262)(label(2.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 04277f47-b893-4aaa-8ccb-4d2ff2b7ba32)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 72c3d1ef-910d-49a4-87db-d6e7215530c5)(content(Whitespace\" \ - \"))))(Tile((id \ - 73880893-4872-424a-a0c8-e5805dae65cd)(label(2.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 29b7089f-d6a7-45e9-a934-684ccfe08209)(content(Whitespace\" \ - \"))))(Tile((id \ - efe20624-ba28-471e-94a1-57d9754b3ad6)(label(>=.))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 1e481d93-58d7-4d11-829e-8f474ed41f72)(content(Whitespace\" \ - \"))))(Tile((id \ - 60fc72c9-7d67-4d51-bc78-c63b8048d92d)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - eb82ec48-407c-4338-8438-e7e6693cdf7d)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 461f4626-826a-4ae0-93c0-162e30afece0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - a12a5c2d-f2d8-47b7-9d26-a7aa326c0ae5)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 973f2c02-d7f3-47b1-a8a2-0ce3356fbfb3)(content(Comment\"# Booleans \ - #\"))))(Secondary((id \ - 706fd245-bab8-42e5-a851-fffba18a965b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f268fee7-e46f-41c0-a987-688bea4690d3)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 29bd34d1-f714-4d1c-b0f4-d6dbae843f81)(content(Whitespace\" \ - \"))))(Tile((id \ - 26e5602c-1c24-4f4b-a747-55cda54cbe8b)(label(booleans))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - c31d3091-9640-4680-b60c-5e5cdf90b39d)(content(Whitespace\" \ - \"))))(Tile((id \ - 3a38e5f4-54ff-4743-b50d-77a5998403d9)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 76c72200-e610-4007-94b5-99d12464ba14)(content(Whitespace\" \ - \"))))(Tile((id \ - 7af29162-e791-456c-a21c-6da5fa0df4b7)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - d4ae0e57-8878-4f6f-859c-d83a658d67e4)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - d6c7e1f2-6387-45bb-b724-d49494b47d8f)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d675d95f-bdf0-4c4f-8c35-8c1215c0053c)(content(Whitespace\" \ - \"))))(Tile((id \ - 62d6430d-7b26-4b52-ae11-954aac927af6)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 0fd1f789-aa2a-41ec-996a-45040051aa06)(content(Whitespace\" \ - \")))))((Secondary((id \ - 7d4fd073-36fd-4c01-a042-7639080d81d6)(content(Whitespace\" \ - \"))))(Tile((id \ - 9869976c-c2b0-431b-8440-76394bea3015)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - fa66c0a7-c6f4-44dd-adc7-7af097c8c4d8)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 692632ce-0e04-46f7-82cb-d98100dbd01a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 23ebe8cf-9dc1-4692-831f-40db428daa1d)(content(Whitespace\" \ - \"))))(Tile((id \ - fddd424b-5fd9-47a2-9764-ab9279a0e18c)(label(false))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 7d3c1461-c85c-4390-958a-56800d7fb654)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - de85154f-97e0-42d2-87a8-4bc26a8cf84d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7438c202-e83f-4ab6-949c-17e7926e28cc)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 84b72cce-e363-468d-b8ee-3ca8c04e190f)(content(Whitespace\" \ - \"))))(Tile((id \ - 0da3563c-2ce9-4ffb-b0c0-865db610967d)(label(conditionals))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - f71042ea-60d2-4ea9-a8cc-8bbe5ef36896)(content(Whitespace\" \ - \")))))((Secondary((id \ - 23b8837c-d6e8-4657-8e1d-df066a321474)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b6bc6936-54b3-46de-893a-5d40c1bac0d5)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - fc97c4ed-dab0-46fc-ba29-00974c889eeb)(content(Whitespace\" \ - \"))))(Tile((id \ - 9f10361e-9005-49f6-92cf-fe9594dbe8c6)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - d8ffc254-c8cb-464c-bf45-3785789e73cc)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 4815264a-0102-4892-b5a9-8341e7cde6b4)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 42829e5d-f0b9-4402-beb0-b9a48ecf2b05)(content(Whitespace\" \ - \"))))(Tile((id \ - 7f98661d-5681-43e6-9a94-0d58310cbc94)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 19847922-2924-4736-9b4a-cc4c834a04d6)(content(Whitespace\" \ - \")))))((Secondary((id \ - aaaea035-cf47-442e-beeb-9ff2de70b653)(content(Whitespace\" \ - \"))))(Tile((id \ - f4eb17d9-702b-472f-abb5-046ede0ed456)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 6a8f5f98-827e-4ffe-a1a7-4559d6d55e7f)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - dac66c15-637e-4e93-a8ac-ce81dae71278)(content(Whitespace\" \ - \"))))(Tile((id \ - 61acdfcb-8b33-45e3-ba44-17bef8968c27)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - e7c9f1eb-e9af-48ae-91b9-c3c234e93c5e)(content(Whitespace\" \ - \"))))(Tile((id \ - adc1f75e-1782-40f1-9794-2af5e58e8136)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 85dfa1a7-0392-4979-adeb-9664b25fb5f0)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - bbb89838-fbec-4d3f-a3b8-5359e643154a)(content(Whitespace\" \ - \"))))(Tile((id \ - aa3d2263-59f7-4a41-8ac8-29647cd7ee7a)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - fd3c0563-0203-4a06-a079-c07f44c999de)(content(Whitespace\" \ - \"))))(Tile((id \ - 92905121-6a21-4888-ae57-be8119fe3a57)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - f5be6eb6-e892-496e-9077-0a0ec6a9ba2a)(content(Whitespace\" \ - \"))))(Tile((id \ - e4def8a0-0d96-489f-b14f-9c17754f17dc)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 70e9805a-e46d-4acf-9436-1e7bd1f86390)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 97984ceb-c2a0-4af3-8bb1-eb1c7cdaa9e4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 86028aff-789b-44cd-9baa-d4c1b9997e01)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 620e080a-2811-46fc-911b-73c31d3e5678)(content(Whitespace\" \ - \"))))(Tile((id \ - 930253d5-7474-4065-bc55-ccc4c3fcf895)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 84626a05-fd48-4d87-b07e-dd14dec909d5)(content(Whitespace\" \ - \"))))(Tile((id \ - 5da83db2-1c04-44b7-82f4-d01e58d64fcc)(label(>))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - e3654e1f-680d-440e-8fd7-7cc39908d500)(content(Whitespace\" \ - \"))))(Tile((id \ - a70157b0-96ed-4f23-b1f0-29ee27d2f371)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c54623bc-83d2-4a45-b183-dbdcb08d3b10)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0a21755f-9ec5-4824-8ec6-65c20e113822)(content(Whitespace\" \ - \"))))(Tile((id \ - 05789baf-1c59-4686-b2b4-db4923ccfb2e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0c0e9210-27d1-4748-bc24-42a173c26bc6)(content(Whitespace\" \ - \"))))(Secondary((id \ - e866d674-e9f9-4d95-998b-889d5e631bda)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4f21d2ce-3714-4b30-985a-d74ea70d09e5)(content(Whitespace\" \ - \"))))(Secondary((id \ - f1ad929a-9523-42b4-9773-7173e678873a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3b63a3ea-f858-4383-9996-ae39ba270bc4)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 410a94fe-fe05-4c89-bfb2-9089fdd72d96)(content(Whitespace\" \ - \"))))(Tile((id \ - fdbc83f0-32d7-4fda-b4cd-04dcf78cdfa9)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a50b65c2-1f5d-4b19-b6e0-465642ac8595)(content(Whitespace\" \ - \"))))(Secondary((id \ - a749fa3a-a75e-45f0-9d05-a92017284710)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4abb8438-3ffc-4be2-b43d-5858b0b2bbee)(content(Whitespace\" \ - \"))))(Secondary((id \ - c32ed86c-c514-40ca-83b2-f8a3ca610d26)(content(Whitespace\" \ - \"))))(Secondary((id \ - 6ab0d04c-74ea-4fc1-92fb-fced0ee2a22a)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 86f3f7c0-9761-4f89-8493-032ad1b780e8)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 631277b3-b995-4ba5-be84-6bd89021cc13)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f24f63a0-c75c-4dba-b871-f5b0b7607313)(content(Comment\"# Tuples \ - #\"))))(Secondary((id \ - 404db57a-6f04-4fe1-93a4-99f2129257ec)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fbb8a8e5-5032-4ad3-bcb7-a9dfa6dc3655)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 422fb1da-9c6c-4cc7-a54a-1dd5ce3a5df3)(content(Whitespace\" \ - \"))))(Tile((id \ - c5fe041b-51c8-41b8-9c99-f3fd592f1fa3)(label(tuples))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 73fb57b2-a251-4a06-abae-c952eb80ecb4)(content(Whitespace\" \ - \"))))(Tile((id \ - 62c1883d-ba57-40e4-bccc-71b99162e818)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - bd5f994f-5415-4001-b227-e00773daad04)(content(Whitespace\" \ - \"))))(Tile((id \ - e5ab39b1-ec7c-4db9-baf3-b2bdc6b4a496)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - cab5b908-cdf3-4601-a535-ee02560672c5)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 645ba462-2f21-4051-8e34-a0cbd6c44ab3)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2fe30c93-93b3-4d0f-ad58-7bb4cbbf0a27)(content(Whitespace\" \ - \"))))(Tile((id \ - 421c799c-9808-405b-96fd-7a48e0dc81bc)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 1662ee34-5080-4f93-931b-d556c9244c84)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 630af992-a5eb-48bc-9f17-d647e9624738)(content(Whitespace\" \ - \"))))(Tile((id \ - ad635ae7-f4e0-43ae-ba47-3cea51d9505b)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - b6b594ba-5054-473c-b83b-b808a7d9d422)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 5b0c3f18-7a6f-4bb7-afa3-4a15dd07f3a1)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d2e0e4bd-f0c9-4694-8622-84aac12f21bb)(content(Whitespace\" \ - \"))))(Tile((id \ - 5c7f061c-6804-49b6-bc55-44565f5540d3)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))))))))))))(Secondary((id \ - 93fd95b6-ac4c-44b2-a58a-bba500179822)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0f7226ae-6718-4d63-809e-71629521be65)(content(Whitespace\" \ - \"))))(Tile((id \ - aefba22b-dfd2-4760-870b-5fb2192c0773)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 59b9865d-becb-407e-91b0-304e9f9cc897)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - afb999a6-1cdb-454b-8b52-37240b18e02c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 66361e01-ef64-4375-a22c-b33d23610924)(content(Whitespace\" \ - \"))))(Tile((id \ - a940e08a-528f-4971-9a12-3e5bfc00d462)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 68d0b16e-3f28-4df9-87a5-91e7c2d49c5c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - c4e33485-d751-4878-9f1a-35139f853c12)(content(Whitespace\" \ - \"))))(Tile((id \ - e09ea720-e66a-49f0-8090-54bc677ea56d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - a059a5b0-2862-4276-b0dc-174e562438a7)(label(false))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - fa40d9a7-2d84-4f76-8f24-c2cc88e8b5d3)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 7ae68ec9-acd1-4104-8208-8b0cfc74d881)(content(Whitespace\" \ - \"))))(Tile((id \ - 5ca156d0-0d7c-46f1-b617-b1f174030fc4)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - d9fbc1c6-838f-42cd-8add-48b6511fd3ec)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 8839951b-5558-4b4b-9731-dc6678e2ded6)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - efc3f096-e5d8-487f-b227-c4ff3a2c675d)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - b5187d0d-71ee-48b8-ba39-48f1d25c5e80)(content(Whitespace\" \ - \"))))(Tile((id \ - 9be14287-78d2-41ac-88d8-18ff2f8492e7)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 57ac384f-bb13-4221-92f9-087addb311d6)(label(a))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 9e23e9bc-3c63-4033-a2fb-5365d48e6b15)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 0d2c695c-dde9-4820-b646-5aee79ccb637)(content(Whitespace\" \ - \"))))(Tile((id \ - f44539f8-2969-4eb6-96d4-5833d5dc2451)(label(b))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - b00f1c44-b0be-4bf1-86cb-f6fdb3eaf105)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 9af8457f-6c89-4bb1-bf2d-99b2b97375ee)(content(Whitespace\" \ - \"))))(Tile((id \ - 696da485-fa4e-45ee-a986-1f04a6ff18aa)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 17a626a0-d027-448d-be5d-3b51885757ad)(label(c))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 056c58fd-f18c-4f6a-96ac-1e4a05ab0c20)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 59b00798-edd6-45bc-af3b-ed4f912e9937)(content(Whitespace\" \ - \"))))(Tile((id \ - 5194ac3f-aa8a-4f42-b8c7-68f5864c7905)(label(d))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))))))))))))(Secondary((id \ - c3260ec6-29d4-4081-8205-6adcf84c51d8)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0cef1ea8-4cba-401c-8d92-89e098ad5651)(content(Whitespace\" \ - \"))))(Tile((id \ - 653b95bf-293f-44b7-873c-1f0269a01c0f)(label(tuples))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b6708177-56fb-41a4-9452-fb4fe5617d3c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 5858a6fb-f1ec-421b-b10e-5ad7f4f8ab42)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 36d9cdec-3ca0-413f-9790-946ae9aff88d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0b31f2c2-7ef9-41cb-ac78-fdf45b747f49)(content(Comment\"# Functions \ - #\"))))(Secondary((id \ - e39f3f24-9169-4708-bda2-556166aa524f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a6f538fb-c9b3-420a-bb11-0e07799945a2)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ab638c9e-e0d3-4a41-a86f-9b37eecaa380)(content(Whitespace\" \ - \"))))(Tile((id \ - f35ab7fd-a150-414a-a988-53619008034a)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 9e1b7f53-69b9-4add-a0d1-5b59b5fbb4ba)(content(Whitespace\" \ - \"))))(Tile((id \ - 3ba9074b-f49c-427f-b53b-3040b9dd02a7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - aa84672c-724a-450c-ab6d-c892c621e585)(content(Whitespace\" \ - \"))))(Tile((id \ - d82fb526-fdcf-45d5-9018-a81e8f39e1cc)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 0b9aa9f3-351d-47f7-bc39-e0c46e463670)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 08303729-cb87-4496-8ca5-e50bf56c22a7)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 21d83927-0d52-4c3c-884e-2717b1a5f3db)(content(Whitespace\" \ - \"))))(Tile((id \ - 2f1ef6dd-8bdb-48e4-a34d-b42354f304f3)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 710a67d4-114e-429c-94fd-9b04d515de44)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - bf3c3ddd-27f2-4709-94c3-c70b92165a24)(content(Whitespace\" \ - \"))))(Tile((id \ - edfb8414-dce4-4b05-bb1d-7d801ceb1fac)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 9d075b72-6107-4872-9de1-9a73f7c3dd0d)(content(Whitespace\" \ - \"))))(Tile((id \ - 44d38b70-87ee-45d1-8d05-f731ec7a545c)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - a22b3be9-e728-4cf3-a2d5-775c1eace8c0)(content(Whitespace\" \ - \"))))(Tile((id \ - 8afb6a1a-827d-49bc-8c71-31121cc599c3)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 2364fe78-70e7-4bd1-9356-b5d8cad51932)(content(Whitespace\" \ - \")))))((Secondary((id \ - 83029ba5-47f5-4957-b022-a111ccf063c1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 207aee56-a0d0-41fd-b393-132dea9e2c96)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 16d8df29-aff8-4f77-a964-a5f8399e6abf)(content(Whitespace\" \ - \"))))(Tile((id \ - 4d8ddc82-d81e-4a20-be75-925216858523)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 53845845-9b66-485f-81e7-4da7be360487)(label(m))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 1538162c-594d-4e2e-9b13-4123c8f6dac7)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 289e82cc-90ab-4fcb-b0ab-38ce0c5a1da0)(content(Whitespace\" \ - \"))))(Tile((id \ - ee62d71d-5a69-44b8-ac4b-6a20b3e4fe71)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 89a79c6e-a14e-49c7-8420-0f26cc8f9461)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 999d0772-ba36-4e30-9d89-de19fa34880b)(content(Whitespace\" \ - \"))))(Tile((id \ - 1d5b3e40-1bc7-4b3e-9558-db68b23c5114)(label(b))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 0c3b1f50-3c0f-49b6-8b81-9f877a174f9e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 4b319581-7203-4da1-9959-e10b52546084)(content(Whitespace\" \ - \"))))(Tile((id \ - c0f4016a-5331-47a4-a60b-be74f64c618d)(label(m))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 29e2faaf-ace2-49ef-a6ed-3d5bb67b2c25)(content(Whitespace\" \ - \"))))(Tile((id \ - 6ab5d6e0-31ef-4d0b-ad1c-e3dee8e19f46)(label(*))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 4))(sort Exp))((shape(Concave 4))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0354cbc2-314f-48b9-9849-1fc8697583ed)(content(Whitespace\" \ - \"))))(Tile((id \ - 9882ad60-403f-4ddd-a425-71ea8919b92d)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b185eff3-07db-4682-9b9d-4eaeb5d32424)(content(Whitespace\" \ - \"))))(Tile((id \ - 1b90fdc8-505b-4a87-a4da-953ab5dd80c8)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b08789ab-e91e-400c-bba3-d6a56b9d444f)(content(Whitespace\" \ - \"))))(Tile((id \ - c9ae7ec3-5511-4227-b055-afe392a76826)(label(b))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - fb417393-9594-4b7a-8293-2104861d47c6)(content(Whitespace\" \ - \"))))(Secondary((id \ - d7aad2be-b879-4d8f-a71d-0906a75a2717)(content(Whitespace\" \ - \"))))(Secondary((id \ - de931953-a8f0-4a79-ab17-dd8e15664aeb)(content(Whitespace\" \ - \"))))(Secondary((id \ - b7a2a0cd-fdbb-4e12-b821-276f6bb2634c)(content(Whitespace\" \ - \"))))(Secondary((id \ - fc9eb306-63ee-41e6-9f17-06d6cd023ba9)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - b6ebff43-2fcf-44be-a9f1-b360e8e0194f)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 23c886cc-be17-4094-84a9-95dc0590c76b)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 559527fd-b427-4bc1-b3ea-9bc96157130f)(content(Comment\"# Recursive \ - Functions (arrow type annotation required) #\"))))(Secondary((id \ - 0f184c55-1a94-4d58-b138-8bc2b2af94d9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 111e9377-f6f6-45ef-9cee-4c0feaaf8e44)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - bd5df753-ad25-4f1d-b980-8ec5cb9639b3)(content(Whitespace\" \ - \"))))(Tile((id \ - af3be817-686e-4a7d-9a60-5d074ceb8464)(label(double_recursively))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - b5972fe8-4402-47f2-b593-dc13770ab0f8)(content(Whitespace\" \ - \"))))(Tile((id \ - 05d3254f-cdc2-4269-9573-fbded0eab890)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 5f9e6bac-aaf0-4a68-96fc-13e076e55c46)(content(Whitespace\" \ - \"))))(Tile((id \ - 48c3ccca-803e-4744-8b90-d5e829a1d739)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - bbe14ab5-305e-46df-b101-f8a126ca80cc)(content(Whitespace\" \ - \"))))(Tile((id \ - be79159f-d6c2-4b11-b304-f12ea4cc6f47)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 84b98164-d59a-4a4d-a4d9-5f80e70baa9d)(content(Whitespace\" \ - \"))))(Tile((id \ - e1b3f265-0f22-4f46-b894-dc31417fb4e4)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 74395aae-8898-4620-a1bf-bfa411bffaa7)(content(Whitespace\" \ - \")))))((Secondary((id \ - a30f6a7a-b6a4-4667-afe1-e7211d24c82e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4e273d20-3c4b-47bc-9abc-889a68fd8b76)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 3ecc73ca-9132-4e3b-ac5f-202dd0649475)(content(Whitespace\" \ - \"))))(Tile((id \ - e5643078-2623-4676-9409-6c28dd229816)(label(n))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 8137a154-4f02-422e-9f38-35230442441c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 254f4a06-59a2-42f6-a14a-1476d24aa217)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 1ab789d0-ebcc-47c6-ab8e-fafd313e67ca)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 51f98b00-bacf-4932-a6e7-ade6610c3e38)(content(Whitespace\" \ - \"))))(Tile((id \ - 1c4a9fb8-3ffa-4df9-8b2f-a3d3c99a1986)(label(n))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 185530bf-2653-4352-986a-924105a3540e)(content(Whitespace\" \ - \"))))(Tile((id \ - 67aa2b4e-79b0-4bb3-b358-3b639eacc0cd)(label(==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c37c8174-32d1-43a1-aee7-043b2cadbfd3)(content(Whitespace\" \ - \"))))(Tile((id \ - 187359d8-d5d4-4202-bbdc-ec6a327e390d)(label(0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 5266d014-4b44-41fb-b1b5-0ce005fcfe1e)(content(Whitespace\" \ - \")))))((Secondary((id \ - 3353a9c1-5bca-4f60-88a1-3751d4f8df1e)(content(Whitespace\" \ - \"))))(Tile((id \ - 335dd0e7-0be5-4983-8b94-1e7f561623ab)(label(0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 713cd259-3828-47cb-8d51-b12440f4ce12)(content(Whitespace\" \ - \"))))(Secondary((id \ - a5ff42d0-cf53-495f-b1c4-f956dc25b554)(content(Whitespace\" \ - \"))))(Secondary((id \ - 611e3cee-6093-4ec0-8a45-06570dd66737)(content(Whitespace\" \ - \"))))(Secondary((id \ - b1ff7f2e-2786-4b8f-95f3-84b2bfe63657)(content(Whitespace\" \ - \"))))(Secondary((id \ - 261f0db4-a69c-47bf-a0d8-5e414f7b1fb7)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 59e2d2d7-ec8c-433d-8f05-e375fd9c363a)(content(Whitespace\" \ - \"))))(Tile((id \ - 488ecc3a-94d3-4f4b-b62b-99391b826d04)(label(double_recursively))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - cc94be8e-0c7f-4139-bc47-7d5afa7f4746)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 690545c7-4d36-42ae-99e9-bc2df39e58c9)(label(n))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - f715cfca-fc4e-4164-8a20-5f6e2f0ff8c0)(content(Whitespace\" \ - \"))))(Tile((id \ - f120ad31-a612-4006-bba0-f2096de4334d)(label(-))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3ab71a9b-7b67-4ea7-8709-6494b7ba0c37)(content(Whitespace\" \ - \"))))(Tile((id \ - 59c65b5f-633d-4ffe-8641-219fe1d5e034)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 6822c483-c2fd-46a1-8c4a-705241fe9b69)(content(Whitespace\" \ - \"))))(Tile((id \ - 31fbe65b-b870-4164-b41c-04d65d2a16fc)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a4ee2a54-a075-40df-a5ca-82f5e13acdf4)(content(Whitespace\" \ - \"))))(Tile((id \ - 0f38b9e2-ada9-4fba-a7ae-0c8e5b7cc6c7)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a3819165-69b1-4263-8353-d2bd3d9f479b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4b490902-9be5-4165-a00b-04dd56617bd5)(content(Whitespace\" \ - \"))))(Secondary((id \ - ddb0c415-5ad3-47a0-8a3f-315cb7ee9710)(content(Whitespace\" \ - \"))))(Secondary((id \ - 994c980d-8ae5-4f82-8e87-04b10074237e)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0a915082-bd1c-47e0-845f-035d27bea50c)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 35c24e3e-da32-416b-9432-aa538196b597)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 85440b37-05d2-438e-9044-870b76f11e1a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 5a8c38bb-1f10-4e94-b0ef-1f1da5ff0e2c)(content(Comment\"# Lists \ - #\"))))(Secondary((id \ - cdbbbac4-2f15-4d6c-87a4-9df49c527a86)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5a971ed7-3a0b-48c3-b410-769bc7369de1)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 62c3fced-7d7e-4208-a4df-80d4148e678c)(content(Whitespace\" \ - \"))))(Tile((id \ - 87d3341a-5eca-4a49-9c35-31235c3b59f2)(label(empty_list))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 04048d1e-37a6-45d8-a766-2ba036caf1b8)(content(Whitespace\" \ - \"))))(Tile((id \ - 62efcae0-6dff-45cd-a045-59aa8a2f6a6c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - de1f199a-39a9-440c-88c3-454797bce85e)(content(Whitespace\" \ - \"))))(Tile((id bd5e16b3-8025-4a2b-8e80-a271d5d85600)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 58966869-7757-4301-add2-23c32913f017)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 84330299-4bd8-4c95-9490-edf5b47c05de)(content(Whitespace\" \ - \")))))((Secondary((id \ - 1e3e0146-0199-47e7-87d8-e978cae2c0bc)(content(Whitespace\" \ - \"))))(Tile((id \ - 9212990b-61ed-4331-86cb-5e4f896b190c)(label([]))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 91ff7990-836e-4894-9065-81dd2b675573)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 29070f75-add8-4d47-980d-827998f1e687)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4f835d93-e29f-43c0-8ee6-e274e35e287c)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - fcfc017c-e224-405e-ad5e-867701dc6fc0)(content(Whitespace\" \ - \"))))(Tile((id \ - 1631576e-194c-4527-8389-14e8573d4088)(label(non_empty_list))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 0fffa309-33a7-4782-b7a8-f25579070d25)(content(Whitespace\" \ - \"))))(Tile((id \ - 5f04074e-eb54-4e58-9325-949d43952b64)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 990a25c0-74aa-4b56-a1f7-d9f2fb4ab098)(content(Whitespace\" \ - \"))))(Tile((id 36d868fa-299c-43d6-9a5f-8be2a12448a7)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - a2f29f07-03b2-4033-987d-93b1f901338e)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - a778d9c6-442a-455e-b8e3-09def51ed922)(content(Whitespace\" \ - \")))))((Secondary((id \ - 84f9a036-44eb-4d59-b69a-6e0a0134b57d)(content(Whitespace\" \ - \"))))(Tile((id \ - c17bcd81-011f-478c-bf30-cd681d0819af)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - a2d486ae-3bee-4046-be29-f31b6c913e7d)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 32a435ff-e62c-4c3d-92d4-0974e022969b)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 0a4c15a3-3d9c-43c7-b8c9-c59870f18a20)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 5ac995c5-5f09-4a9a-9099-275747b61afb)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 7463e406-7c09-43eb-b4e4-625b0f0f74fc)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6325ed8b-5f8d-4f97-a244-ca77ba38fbc5)(label([]))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 58d10ea9-6214-4a6e-b8f2-e53ed7dccdb2)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - bbb3b283-5f1d-4e51-8257-51909a76b420)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cb8fbb42-7020-419c-b8f0-a2b84f7524e2)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 6cdfd7c9-5605-4c88-8a88-728743be0f25)(content(Whitespace\" \ - \"))))(Tile((id \ - 62002b1b-70d9-4838-9e2e-f18b79c4d9b9)(label(list_literals))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 67bcc856-69ed-42f8-bba3-a00c04ce7593)(content(Whitespace\" \ - \"))))(Tile((id \ - b5518e25-32bf-4fcf-ba21-0c01a05ea8d1)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 38d2b6f1-662a-4a8c-9130-c584dc7355d1)(content(Whitespace\" \ - \"))))(Tile((id b542d0f0-8b6a-4b30-82c1-527f734e02c9)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 6bb1d935-f149-4e0d-bc86-52727858aab8)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - b344896d-fe77-4bf9-a47c-370d880f0e8e)(content(Whitespace\" \ - \")))))((Secondary((id \ - 452d693e-2da2-450f-a6ab-6dd26e7c643c)(content(Whitespace\" \ - \"))))(Tile((id 33ddd13d-c08c-40ee-9584-e313dbf5eb75)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 4ca821f8-7975-4998-9594-2cf90092f1bb)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 8b6db717-0bfe-4529-9cc7-c48461987eb8)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 73dcc98d-2a14-42a4-8923-bcf645bd72d9)(content(Whitespace\" \ - \"))))(Tile((id \ - 075389ef-1a92-4a8d-b229-5173f4e7133c)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 384adbbe-61c9-4034-8c71-7529b916a79e)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 756b958a-b44e-4232-92f0-aa72ac225b9b)(content(Whitespace\" \ - \"))))(Tile((id \ - 7cfd0c9c-ec54-4b0a-b94a-65b1ff0b958a)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 66203505-474b-461d-aaad-cb868254f1a1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 72108672-c0f7-44d2-baeb-2dbd92269189)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9be502ec-50df-4b17-83ce-3a15a4c7c485)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8d905d60-e1c3-431f-95b8-07dccabd2423)(content(Whitespace\" \ - \"))))(Tile((id \ - a0957e61-939a-42df-b6e2-b9e622c83901)(label(length))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - ed489b48-b5ee-428c-975e-56b42324d55d)(content(Whitespace\" \ - \"))))(Tile((id \ - 88a46b25-fd98-4458-b2e4-3cc35282b758)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4280cacd-e924-413f-b7bd-d3888b7cf46c)(content(Whitespace\" \ - \"))))(Tile((id ee7b0f80-5115-41f6-a721-f8a13e8c7628)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - a15fedec-53ae-4383-97bb-57df03735d90)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 68318cdc-67e7-4ab8-bc38-bc253ccbb295)(content(Whitespace\" \ - \"))))(Tile((id \ - 5ea85f35-7e35-42f4-97b0-0e4b2be99e86)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 16f31860-41f0-4e0e-9a81-375690eb5e9b)(content(Whitespace\" \ - \"))))(Tile((id \ - 99022163-5ad4-4b3b-98f6-bc7b266af91a)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - c3901198-9a91-4124-a6e5-974313fb5ac4)(content(Whitespace\" \ - \")))))((Secondary((id \ - a742497a-8a3b-4ad5-b33b-b4840ba959d9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b637551b-c22f-44f0-b4dc-8f5acf02b2f3)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 003529dc-8c7b-48b2-9267-a205d811aa95)(content(Whitespace\" \ - \"))))(Tile((id \ - 0977e084-f6f6-4898-879a-6811ca074373)(label(xs))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 306f4321-8664-4863-b3a4-e02ebe2acf22)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2f79cf2b-3790-47fb-9222-0856796d6c90)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 557c5fb2-3688-4424-95e7-176b60f04bde)(label(case end))(mold((out \ - Exp)(in_(Rul))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 3fb10b36-92f4-406e-9aca-ab7cbc3fa722)(content(Whitespace\" \ - \"))))(Tile((id \ - 7f36cf6f-3902-4ba6-b429-355c8232fb07)(label(xs))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b35ef9bc-2033-4783-8528-b1b9ff4fa41b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ff28a30c-5099-4d22-b0b3-c2c81ffb5fae)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 682ca81c-27d0-4d13-948b-d7349d0692ee)(content(Whitespace\" \ - \"))))(Tile((id \ - 94f7d43c-3e31-43a2-a073-aec4f210cbe5)(label([]))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 14326e22-fac7-45e4-95c6-5800020fbfd1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 43756582-31be-439f-bfcc-4ac23d6343b2)(content(Whitespace\" \ - \"))))(Tile((id \ - 0b08a08c-ef7a-4678-ab30-79ec1f34cd0c)(label(0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - f97146c7-9563-488f-b9c0-24303fb8dbc1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9dd89c86-6e2b-4b6e-b902-012fc42d6c28)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 9f365155-61e9-496c-926a-979886f68786)(content(Whitespace\" \ - \"))))(Tile((id \ - b815f7b3-af37-4968-8fe5-de29e5d7215b)(label(hd))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 0738fa45-342a-4f97-8f13-7ee34efda439)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort Pat))((shape(Concave 6))(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 29d6e765-3482-4ac1-8f0a-c56524da5eae)(label(tl))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - d461bd65-be0a-4dbe-b633-0f944283eaa1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 34809724-d5df-4d8f-b16b-be12f81b5b67)(content(Whitespace\" \ - \"))))(Tile((id \ - 1334ba93-433a-420b-8634-dcc8e09d939e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - f1a4c245-ff60-4692-a9c8-dd088ed3e63c)(content(Whitespace\" \ - \"))))(Tile((id \ - 140a2f56-956d-4c50-a45e-9ecef29dadc4)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2d0824ce-5795-4c23-9360-1ce1c6c3d8cc)(content(Whitespace\" \ - \"))))(Tile((id \ - 61a81b35-2ce4-48f6-8ef0-ae3bd677cf96)(label(length))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 21f7f250-9186-4eb7-87da-bbc6b8c89ea2)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 55cfa7a9-a8de-4ec0-81d9-0e5e1410fcd5)(label(tl))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 0a05d0ac-f76c-4897-8a92-ec2211298204)(content(Whitespace\" \ - \"))))(Secondary((id \ - b94c2e0a-6aee-4b29-80e8-a55faf261c2f)(content(Whitespace\" \ - \"))))(Secondary((id \ - cb4245ea-eddd-4b75-b82b-cc65f7060834)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9e85baf1-82ed-4347-89cd-90e41dfda100)(content(Whitespace\" \ - \"))))(Secondary((id \ - 7d731e2b-752a-4bff-9e6b-c02f22a33fe5)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 45c10606-b35b-402c-aa5a-b4dd905872f3)(content(Whitespace\" \ - \"))))(Secondary((id \ - bbd81d0c-0e6f-4d11-86d4-5217648ff783)(content(Whitespace\" \ - \"))))(Secondary((id \ - dc52658a-35b9-4de5-a943-f6cf2dec0336)(content(Whitespace\" \ - \"))))(Secondary((id \ - 818213a3-1925-4abf-af1b-d8b009cfa49f)(content(Whitespace\" \ - \"))))(Secondary((id \ - b0cebec5-73db-4b96-8396-ad5c9da36520)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - a0f855bd-b38a-46d2-b80d-a0da55b6c1a1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 486e9552-05e1-4a36-a6ec-433f0a85d445)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ae781185-b1d6-482c-a1c7-1c341b28848c)(content(Whitespace\" \ - \"))))(Tile((id \ - ef109276-f472-4a06-adb1-5004fd699430)(label(has_at_least_two_elements))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - f2b1fe65-4f1e-42e8-a43b-dd4a200875ba)(content(Whitespace\" \ - \"))))(Tile((id \ - 3ed16bba-84fd-4d6b-b717-bce7e0e2a29b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b5cd98c1-56d1-45a3-b294-53169bb1ee9f)(content(Whitespace\" \ - \"))))(Tile((id 1eef5b37-0d9c-4246-93d0-ca75407850f0)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 65a1c61f-4a1d-4eb3-8d38-a00bcbb002d0)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 766576cf-2bf8-4913-b8a6-e1da176770b2)(content(Whitespace\" \ - \"))))(Tile((id \ - d0ebf85d-e2dc-4a97-8d54-e7d7c37037ae)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 09ac90a1-475a-4061-9325-2dac1380d453)(content(Whitespace\" \ - \"))))(Tile((id \ - ce063d14-ea57-4bae-bfd8-1cebd9cd5341)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 5c6fc1db-7d9e-4528-8e7e-0c040c210efa)(content(Whitespace\" \ - \")))))((Secondary((id \ - 75b35461-1d5f-4c1a-9647-b0564b190090)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2a2ce83c-841b-428a-8bfc-7fa2b4c47203)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 518f2d6d-ccbf-46c8-898a-2dbcc280b967)(content(Whitespace\" \ - \"))))(Tile((id \ - 30ec5cb2-e7ae-4efa-a640-4cd70b10d275)(label(xs))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 73522637-50b7-4b54-9610-1a41867c8271)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 67b2dab8-27b2-4f11-be31-4b97f9d16efe)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 78fc2ccc-9bce-4e83-993b-4a56435444c3)(label(case end))(mold((out \ - Exp)(in_(Rul))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 85e48f96-39a9-47c9-9c8b-49d247dbfff2)(content(Whitespace\" \ - \"))))(Tile((id \ - 51ec6a9d-b07c-4075-8e45-468bd6dac889)(label(xs))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 6359cad9-bb93-477f-b093-e2e5a1a60180)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b2d48f3f-9405-4bab-a001-5d14b9fc6ecc)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 64f7313c-8d09-4422-ae27-d4cc7488991b)(content(Whitespace\" \ - \"))))(Tile((id \ - 9cf48573-5ae3-4c16-9c85-fc6e27f67c99)(label([]))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 11b2976a-2557-45a9-8fb2-67c04bea2997)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 805c20e8-6624-4261-a60b-ef1edfd3fb97)(content(Whitespace\" \ - \"))))(Tile((id \ - 2aa13f73-e8d5-4fc2-89ad-7c8df306f0a5)(label(false))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - eb577f84-b7ea-472f-8300-75fc272a1add)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a86b3f97-b16e-422f-a1c7-760d518cdf1d)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 6c77c45b-3918-4cdb-b2e6-1f620ad82275)(content(Whitespace\" \ - \"))))(Tile((id \ - 6f9e9936-0ce1-4f64-9fa3-56ad93b0996c)(label(hd))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 0ad24c1b-98b6-4c92-821e-7a9474311941)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort Pat))((shape(Concave 6))(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 8d0d14ec-b404-4c0e-8343-5f0ec9083dc2)(label([]))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - c2f75855-991a-4170-8a6a-0b6fafd953cb)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - ba6657a5-4d7d-4b4c-92f9-41998f2d6b93)(content(Whitespace\" \ - \"))))(Tile((id \ - 9c79b00c-35c5-4bd9-855c-89bbc2884ddd)(label(false))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b59ccbec-37dd-469c-9549-248c2b7a6629)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 638385ff-6f31-4dfc-ba43-01d98a34e289)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 75601fd3-99c3-4110-bc7a-b11abc46ee92)(content(Whitespace\" \ - \"))))(Tile((id \ - 6aad38df-4b8b-4c29-a520-679d55bab3a8)(label(a))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - c3170f9d-0014-47dc-a6f8-697cb99ba8bc)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort Pat))((shape(Concave 6))(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - b48774a3-52ab-4d80-89a1-d41ac23ab58a)(label(b))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 993adff7-ad25-4858-955d-a42e480196ba)(label(::))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 6))(sort Pat))((shape(Concave 6))(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 49cbaebb-ad3d-45fb-a41b-7bc5a1d482b0)(label([]))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 537df597-fc9d-4678-abfe-e5bd0b2176cf)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9f900e5f-3ae7-4cfb-810b-f03724d3f3fc)(content(Whitespace\" \ - \"))))(Tile((id \ - 6e8b9693-7ed3-4260-bbf9-914a05b3a2fa)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7e8662a4-789e-40d3-9ca8-3cf22300f56a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5868d0bf-8e85-45e7-bf65-0865c375fb34)(content(Whitespace\" \ - \"))))(Secondary((id \ - b17b2dfc-9757-45f2-b7f9-f724768fc871)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0cc19c70-cc96-4757-9106-2ffb0b67f705)(content(Whitespace\" \ - \"))))(Secondary((id \ - 91a26142-fec9-4202-8083-ce43ee859ef1)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 1b844c00-c103-4352-9ffd-545597fcbab9)(content(Whitespace\" \ - \"))))(Secondary((id \ - 152260e3-cadf-47bd-891e-630e295f2b11)(content(Whitespace\" \ - \"))))(Secondary((id \ - c39fdd63-77af-4314-ac6d-b2d2ca456223)(content(Whitespace\" \ - \"))))(Secondary((id \ - 14d295c3-8e01-45cc-ba09-05686c68717f)(content(Whitespace\" \ - \"))))(Secondary((id \ - b89b26d6-0e17-436c-a3f5-2bfda761556f)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 9f2c44f5-9592-4493-be4e-2fab4c1bc6d1)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - fdda5cd2-dfd8-42ef-a015-36fdf6ceff5c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 47be7d24-9c1b-4d99-a506-186d09caca38)(content(Comment\"# Strings \ - #\"))))(Secondary((id \ - e5920639-6f72-462f-9ace-472f697ec5c9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fc57de4a-8eb2-41e9-a00a-7e80557c1151)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8f7593e2-ff30-4009-945a-08a716bf5f1a)(content(Whitespace\" \ - \"))))(Tile((id \ - b26c77b7-5261-40ee-b526-e26c66b2d7c3)(label(string_lits))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - c369c317-d7d2-48e4-8403-19d416c805a0)(content(Whitespace\" \ - \")))))((Secondary((id \ - c50b5e2b-c89b-47af-8836-0c540187d78a)(content(Whitespace\" \ - \"))))(Tile((id \ - f9b84fd9-4c26-4f31-af76-895b014549f6)(label(\"\\\"Hello, \ - world!\\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ - Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7cec6276-a98f-4e9a-86a2-ebf88513eb19)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1d86c38b-397f-4aa4-8d5e-5cbf7d9cc8c4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 22b5b39a-8688-41d6-93bf-649214b09271)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 750f6a54-6a20-4199-af48-61167bfac6b0)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - da76aec1-c42c-4335-bade-aaa9cf6d64fb)(content(Whitespace\" \ - \"))))(Tile((id \ - 9a31cf84-5cc6-47b9-9216-e1f7a41a85d9)(label(string_equality))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - dcb9b766-a27e-4230-8bf5-412ecef84807)(content(Whitespace\" \ - \")))))((Secondary((id \ - 161f081f-7857-4822-b311-4ce3ceec5fec)(content(Whitespace\" \ - \"))))(Tile((id \ - acef69a6-c5ec-491a-aeee-40e2269f20bf)(label(string_lits))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9ca3be7e-d452-411f-b881-7c5cdd47bfd6)(content(Whitespace\" \ - \"))))(Tile((id \ - 139cbd33-8e7b-4662-97d4-52cd6972d008)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 8348b618-7d1f-4dd3-991e-6c9128d11978)(content(Whitespace\" \ - \"))))(Tile((id \ - 66067a6a-3752-45e2-a9ef-e9bf9cb32996)(label(\"\\\"Hello, \ - world!\\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ - Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - bc16c43d-dea7-47a8-a55a-5e1883fe2432)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f5f98c16-7249-417f-a106-c89f6acb2bc5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1fb78a26-5919-4ac0-b49a-97f97fce3aa6)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - c80b7efd-45ab-4de5-8937-8f2a8f8719b0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 4e243883-1a55-47de-bff7-ee60d825e7ac)(content(Comment\"# Non-empty \ - holes are the red dotted boxes around errors #\"))))(Secondary((id \ - f0947a34-2a07-4992-ad54-d5fae332f209)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 84b99924-ccd2-41ff-9ce9-4b4b665ac1f9)(content(Comment\"# (you can still \ - run programs with non-empty holes) #\"))))(Secondary((id \ - 7ddbefad-5673-491f-9701-8355a1921825)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f5209603-f090-4226-87cd-8d00c02ac94c)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 88cb0475-2152-486d-ac5d-413d1eb4b9c2)(content(Whitespace\" \ - \"))))(Tile((id \ - 2cf2e135-06e7-4ced-b965-42e6f33dfe08)(label(non_empty_hole))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - e24f67ab-c23c-434a-a5b9-7dc6b41c22c3)(content(Whitespace\" \ - \"))))(Tile((id \ - 079133be-35b9-49c7-bfb8-6bd61f6a6618)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 41719850-1c9a-450b-b9cb-b831000c7ad5)(content(Whitespace\" \ - \"))))(Tile((id \ - 66fa6d78-d1ba-47fa-a859-0d307344784b)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 129584a6-02f7-44e4-afad-e15e6c93914f)(content(Whitespace\" \ - \")))))((Secondary((id \ - a90054e6-70d5-4e71-a16c-9e1e5b029164)(content(Whitespace\" \ - \"))))(Tile((id \ - 59760a21-433b-4652-b4e7-356c092764d6)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - fa7fd5bb-899f-4777-b3f2-e0727a70d8df)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 92842ab4-35e8-4fa0-b405-1347fdab0d87)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8cfd5cf2-dc3b-49af-a85f-5273fea40f84)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 55309b27-b446-44f5-bfb6-d1681645a40f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ed111d1b-8d83-496c-b6f1-c662495f0280)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3856e751-c1ff-441e-bc58-bf6df6832fea)(content(Whitespace\" \ - \"))))(Tile((id \ - 5e441477-8d3b-40c9-9ef6-85cf64d4d495)(label(+))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 5))(sort Exp))((shape(Concave 5))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - bdb433dc-43b2-436d-aabd-cf4eb0b59abc)(content(Whitespace\" \ - \"))))(Tile((id \ - 82eb3ff2-38ef-470c-b4ce-3f0058df33fc)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b74bd612-434d-4e6b-9a63-d3404c195ed6)(content(Whitespace\"\\226\\143\\142\")))))()))(ancestors())))(caret \ - Outer))"; - backup_text = - "# Hazel Language Quick Reference #\n\n\ - # Empty holes stand for missing expressions, patterns, or types #\n\ - let empty_hole = in\n\n\ - # Integers #\n\ - let int_lits : Int = 1 in\n\ - let negation = -1 in\n\ - let arithmetic = 1*2 + 8/4 in\n\ - let int_comparison = (10 == 10, 1 < 2, 2 <= 3, 3 > 2, 2 >= 1) in\n\n\ - # Floating Point Numbers #\n\ - let float_lits : Float = 1.5 in\n\ - let float_artih = 1. *. 2. +. 8. /. 4. in\n\ - let float_comparison = (10. ==. 10., 1. <. 2., 2. <=. 3., 3. >. 2., 2. \ - >=. 1.) in\n\n\ - # Booleans #\n\ - let booleans : (Bool, Bool) = (true, false) in\n\ - let conditionals =\n\ - let (x, y) = (2 + 2, 3 + 3) in\n\ - if y > x then 1 \n\ - else 2 \n\ - in\n\n\ - # Tuples #\n\ - let tuples : (Int, Bool, (Bool, Int)) = (1, true, (false, 3)) in\n\ - let (a, b, (c, d)) = tuples in\n\n\ - # Functions #\n\ - let y : (Int, Int, Int) -> Int =\n\ - fun (m, x, b) -> m * x + b \n\ - in\n\n\ - # Recursive Functions (arrow type annotation required) #\n\ - let double_recursively : Int -> Int =\n\ - fun n ->\n\ - if n == 0 then 0 \n\ - else double_recursively(n - 1) + 2 \n\ - in\n\n\ - # Lists #\n\ - let empty_list : [Int] = [] in\n\ - let non_empty_list : [Int] = 1::2::3::[] in\n\ - let list_literals : [Int] = [1, 2, 3] in\n\ - let length : [Int] -> Int =\n\ - fun xs ->\n\ - case xs\n\ - | [] => 0\n\ - | hd::tl => 1 + length(tl) \n\ - end \n\ - in\n\ - let has_at_least_two_elements : [Int] -> Bool =\n\ - fun xs ->\n\ - case xs\n\ - | [] => false\n\ - | hd::[] => false\n\ - | a::b::[] => true \n\ - end \n\ - in\n\n\ - # Strings #\n\ - let string_lits = \"Hello, world!\" in \n\ - let string_equality = string_lits $== \"Hello, world!\" in \n\n\ - # Non-empty holes are the red dotted boxes around errors #\n\ - # (you can still run programs with non-empty holes) #\n\ - let non_empty_hole : Int = true in \n\n\ - 2 + 2\n"; - } - -let basic_type_egs : ScratchSlide.persistent_state = - { - zipper = - "((selection((focus \ - Left)(content())))(backpack())(relatives((siblings(((Secondary((id \ - c2043ff7-8503-42d5-926b-ee72d7a9cf07)(content(Comment\"#Types and type \ - error examples#\"))))(Secondary((id \ - 234ce64b-d629-4f52-ba66-116edbcf266c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 1f97626c-5e23-44cb-97dc-33909ae61f00)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f52f9d2e-07a9-46ee-9b0d-7f452d1ded35)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - a2acb93a-8751-49ef-a473-ebc30a8f2b80)(content(Whitespace\" \ - \"))))(Tile((id \ - 2b148577-f026-4b59-8cf6-ddeb689b37f5)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - a436171a-1674-4d9d-aadf-4f202e27d8dc)(content(Whitespace\" \ - \")))))((Secondary((id \ - 434db6b8-5a17-4ea2-b44c-80b945771c07)(content(Whitespace\" \ - \"))))(Tile((id \ - 12e72cde-88c9-47c4-9a69-5b533c62498c)(label(unbound))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9ab88627-8297-4ec4-9843-1ccc57ff1ed1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 7232ce1d-878b-4bfb-ba66-0ae36cceac75)(content(Whitespace\" \ - \"))))(Secondary((id \ - 28591e5e-0830-475e-b30d-adbbae27fd67)(content(Comment \ - #err#))))(Secondary((id \ - 3cf8c4b9-2843-4a94-91b8-33381f2576e7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - be9a3885-aa4d-49f2-9020-98ec0507b8c9)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f7908a7f-5b40-4333-a696-477bae785881)(content(Whitespace\" \ - \"))))(Tile((id \ - 2d05b473-7e04-43f9-8976-c02f4664d532)(label(Undefined))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - edc67136-8a7f-4515-a39f-07217b6759b1)(content(Whitespace\" \ - \")))))((Secondary((id \ - 10c1af6b-c987-4201-bd17-b1be0981dd22)(content(Whitespace\" \ - \"))))(Tile((id \ - a82aedef-fd17-4637-a180-ba3929bd78e0)(label(Undefined))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 69020ba5-e1b9-4119-9fed-ff32319486a7)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1da1d71a-0fbe-45ea-8956-d9ab9ccb43df)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0d0ac9d1-e9aa-46aa-9b8b-3fb3a163234d)(content(Comment\"# 2x \ - err#\"))))(Secondary((id \ - 4ed74594-a4b5-4e66-ab2b-e2793dd66163)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5196890e-0727-400f-b399-f66886052b36)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 05c853a2-7441-4def-97bb-f365dee86795)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - fd75cdf6-0ebc-4147-9200-a3fd3246d006)(content(Whitespace\" \ - \"))))(Tile((id \ - cd2400cd-71a2-4131-a559-1af9980efbcd)(label(true))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - c3bbc117-f5bb-4e9f-932a-6b831fc56316)(content(Whitespace\" \ - \")))))((Secondary((id \ - 5e9e07bc-cdb3-4ec7-bcfe-dfc30ae77247)(content(Whitespace\" \ - \"))))(Tile((id \ - 04349459-8992-4c2a-b732-ff9a57e7ee81)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c26276fc-07f7-4e68-8568-82a44cf9e788)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 561258e1-7e56-47ab-99a6-6948ca1ca060)(content(Whitespace\" \ - \"))))(Secondary((id \ - 05d9b650-ffd2-4999-a85a-4bf371b9fff9)(content(Comment \ - #err#))))(Secondary((id \ - 9716f9e1-195b-4cb4-bf3e-0f15de9b8dc6)(content(Whitespace\" \ - \"))))(Secondary((id \ - 87120080-ccc4-4e30-abcf-a373671ed9e9)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 74222fff-923d-4219-ab77-92d473faa51c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 76fe6c6f-a21a-4d9e-b308-e7bb1ba9d4d9)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Grout((id \ - 3ee97b06-b7e3-41b6-ad8d-03ce25681fec)(shape Convex)))(Secondary((id \ - ace18a48-edf6-4878-b1da-f5f4a3ed7e45)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5fb41e67-6173-4f99-9f63-b5f139f4290a)(content(Whitespace\" \ - \"))))(Secondary((id \ - f42b818b-f0a9-4230-85e7-65b2db5c93e8)(content(Whitespace\" \ - \")))))((Secondary((id \ - 014e24ec-d83a-4e2b-a0dc-a6aed99e1549)(content(Whitespace\" \ - \"))))(Tile((id 77ed3661-972b-4367-b16d-4748f1d4b59f)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 8c9c1c27-2f6e-485a-99fd-2595f5c4b65c)(content(Whitespace\" \ - \"))))(Tile((id \ - 557f069f-2b23-4f79-b515-4f6e7b72d6dc)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0164c9e6-ae26-4e59-bc45-5e81a4411057)(content(Whitespace\" \ - \")))))((Secondary((id \ - aafe6447-992c-487c-b50c-74e9eb7c09ec)(content(Whitespace\" \ - \"))))(Tile((id \ - 7ef3cce4-8430-42fc-8170-9e3868332c85)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 8c7c0c91-bc28-4ef0-9a08-c1536cbaf5f2)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 714a813b-b71c-4552-a224-3aaaf6cc5903)(content(Whitespace\" \ - \"))))(Tile((id \ - 41248e9b-7fa2-41fe-93a6-42c92a6c0289)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 19baeb03-5d35-4fce-a816-495aae23d592)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 99174dfc-2c98-4c65-90a0-2ef03d6412e1)(content(Whitespace\" \ - \"))))(Secondary((id \ - e0e9d365-224c-4b0b-8cd2-6bdf98f94d80)(content(Comment \ - #err#))))(Secondary((id \ - bcacbd38-53dd-4a0d-ac2c-0a4fa349a97e)(content(Whitespace\" \ - \"))))(Secondary((id \ - 27552b20-4168-4b03-a66e-cb3ca1ea89dc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5e4c8a0a-2a11-4f21-b29e-82aaf307acb2)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - bb497430-c054-4531-a718-765649613b72)(content(Whitespace\" \ - \"))))(Tile((id \ - ebf63f5e-12af-4a30-84cc-94767510bbca)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 3bab0618-9e30-45fa-84fa-b57b42356506)(content(Whitespace\" \ - \")))))((Secondary((id \ - 003dadf9-7cff-422d-bd4e-fe2f370927e8)(content(Whitespace\" \ - \"))))(Tile((id 31545e78-9221-44ad-aa91-1bae19ffff9f)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - b77b84cf-f973-4599-8818-e2e215d4405d)(content(Whitespace\" \ - \"))))(Tile((id \ - d77ef91d-c7c0-4cb5-8ff3-5b2878584066)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - d71d2daa-808e-455e-98b4-0a577e282895)(content(Whitespace\" \ - \")))))((Secondary((id \ - a1781cd8-56c9-46be-a4fd-0aabfd384db2)(content(Whitespace\" \ - \"))))(Tile((id \ - 50adfe42-edde-4da0-b373-34aef29efa72)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c8eada32-9409-4e4b-82e0-ea71c2f20445)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - dd910f74-393a-4c89-9b7a-f4f0a6dc3f0e)(content(Whitespace\" \ - \"))))(Tile((id \ - ecaff98d-77c8-4e23-9956-413abfc505eb)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 846f6d11-769d-4043-ae61-b2fa0d0d1a03)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 23291578-2e3a-493c-acc6-63a578e8473f)(content(Whitespace\" \ - \"))))(Secondary((id \ - c0f1fd0d-a8bb-4881-ba1c-73a815931706)(content(Comment \ - #err#))))(Secondary((id \ - dd1a9798-71a4-487d-8240-3acad9a5f73d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b1f6ca33-3349-4a27-b192-281af628e80b)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - c369e4b7-1752-4e34-b812-da972f754e40)(content(Whitespace\" \ - \"))))(Tile((id \ - 141a08e3-2d6a-4617-b7e7-459016576feb)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - b5d10705-1b69-49aa-8599-011ecb63edff)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Grout((id \ - 34d19c35-eafb-4fb0-bbc3-8af4d6f4b629)(shape Convex)))(Secondary((id \ - d4b4f9ab-4fcb-41f2-8a49-5667bee97482)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2ceee296-e99d-4c8b-8ac3-dfc4b283b94f)(content(Whitespace\" \ - \"))))(Secondary((id \ - bdbf2bb3-325d-4cdf-b650-0ac6e1475888)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0db40fe5-1d97-4ef5-ab33-01260487f04d)(content(Whitespace\" \ - \"))))(Tile((id 13a4ea8f-b1df-48fb-a5f2-69a44d396e8d)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - c43e7cdf-3dee-41c4-89a2-e301bdb2257b)(content(Whitespace\" \ - \"))))(Tile((id \ - d8d8b0b4-0d5b-4e90-be6a-18ad1e73536a)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 645a43f1-b590-4a38-a8d6-c2527a21753e)(content(Whitespace\" \ - \")))))((Secondary((id \ - f4e26113-5aad-4764-9564-2517a50266dd)(content(Whitespace\" \ - \"))))(Tile((id \ - fce3be10-6c41-45eb-9fb7-47007c74aa18)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2800d75c-00c3-4d51-88d8-d3cf031b5510)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 3e83e49f-f4fc-4398-ba47-dd738d12580a)(content(Whitespace\" \ - \"))))(Tile((id \ - 4a7b1e92-50fc-45df-9440-bd7c5ff6d52b)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 723b5109-ecda-47ca-a58e-081bc9594f4a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 4f27dfb4-a680-47b0-a77c-a6cc3eb12816)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 4d775fb7-88e5-423a-8c4f-72c64f2ef36d)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 1bb18d1b-ed00-480a-8ef7-5cd1e3a66d8f)(content(Whitespace\" \ - \"))))(Tile((id \ - 0bea067d-cc5e-4944-899c-3eb611a33ac7)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e111b076-9180-4700-897e-3e773ea05e67)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 016e8639-7464-41b4-a7ae-41349d55cdea)(content(Whitespace\" \ - \"))))(Tile((id \ - 1c94db24-6da3-4094-93e3-d189ca893d67)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 1d86f049-9353-4492-a083-aba85865073c)(content(Whitespace\" \ - \")))))((Secondary((id \ - f0eff4c8-6883-42a4-bda3-2c4c972c2f84)(content(Whitespace\" \ - \"))))(Tile((id 2f8f3185-d193-4002-ae4c-8f8d81cb7ae2)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 40919bb9-a700-4761-b33e-f43812caae1e)(content(Whitespace\" \ - \"))))(Tile((id \ - ed848692-8cd3-4fd3-826a-6fcaa500c933)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3de22126-ca44-4913-8773-2ee63cf5d111)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0dcb65b8-a77d-45f4-8edd-0d68a0fac2fa)(content(Whitespace\" \ - \"))))(Tile((id \ - 3b62f66a-ff32-4592-b705-94d0a907d329)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2da1a439-1f74-4a12-9579-f81e3cf8a558)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2584e8e7-9bbd-456a-80a0-6629fcbfb07e)(content(Whitespace\" \ - \"))))(Tile((id \ - 7f2aabc2-0f3a-46d0-9a1b-b0655bc2cd50)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a968f18b-2a14-4e88-b022-d99cb29cab31)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 8ede49a0-26d3-4a5e-b789-2a2ad36dfb14)(content(Whitespace\" \ - \"))))(Secondary((id \ - 61b1d482-0574-45dd-8632-14084eb1f535)(content(Comment \ - #err#))))(Secondary((id \ - 82e992ac-5634-4ca9-b10c-aafa1caaa8a1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7ebf4cdf-37ce-4c1d-a7dc-36df481eff11)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 421511c6-b495-4465-9d22-e3ca90a5718a)(content(Whitespace\" \ - \"))))(Tile((id \ - 56aa09fc-6a71-4f4b-a712-91ee987f3ca1)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - aacec8cd-4eda-46d5-a1e0-1f1390fb3bd2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d5fbd260-b0b3-40fa-bbad-a3de930fc955)(content(Whitespace\" \ - \"))))(Tile((id \ - 55dea0ca-b913-4911-b45a-473ce3e7164e)(label(Fake))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - a30ddd3c-f905-40d9-87e2-20d3b7674faa)(content(Whitespace\" \ - \")))))((Secondary((id \ - bb2f8032-4e43-4463-b6cd-40608b8a17f8)(content(Whitespace\" \ - \"))))(Tile((id 8b203a3f-362a-495d-932a-d8cbbb0349f9)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 5fa27cec-49b3-4891-a96f-a4072142a7c3)(content(Whitespace\" \ - \"))))(Tile((id \ - 22fce56e-dc57-4dc6-b50e-31d5dc3750f3)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 6cdf9f6e-1102-4f26-a82d-e971365e81f1)(content(Whitespace\" \ - \")))))((Secondary((id \ - a4e77e60-4b9f-42df-a847-868d094823dd)(content(Whitespace\" \ - \"))))(Tile((id \ - 87e5f1a8-63d2-4df7-b953-3478755f8272)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 48b49cde-86e1-4caf-8c50-3ba03ce58257)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 675b0761-f9db-4b1a-8b61-eafb4f65aaa9)(content(Whitespace\" \ - \"))))(Tile((id \ - 0ee73665-292a-429a-ab76-e81b7d46afa3)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 605bcf45-7498-4fae-8bb7-7e3e1aace0c0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 10c1daab-b438-41c6-84c6-810a6bd39fc6)(content(Whitespace\" \ - \"))))(Secondary((id \ - eff54400-0611-40c6-ae76-2bdd04ae0a8a)(content(Comment \ - #err#))))(Secondary((id \ - 2eeb03c5-3e87-4a07-a630-3fa61370778d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 702864ab-c6c3-4656-8286-989155d08da2)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 1766cde9-36ab-46cb-acf1-430539ff5f2a)(content(Whitespace\" \ - \"))))(Tile((id \ - 9b24f195-40b7-42e3-9360-e753a97dd212)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - ec62af96-ec6a-46cf-a3ae-9c3f1b1afd83)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - dfa86e11-aef5-490c-ae32-7590df6aa57b)(content(Whitespace\" \ - \"))))(Tile((id \ - 3eb73f98-ce5b-4c20-8837-68c569f050e1)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 5734bbfc-ad29-46c3-97c7-e3a74b2d0b46)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0b86b1c3-fa75-4689-b759-2edd9b372493)(content(Whitespace\" \ - \"))))(Tile((id 1273db7d-0ba2-49ce-86f6-cd52140cd9e8)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - ffe82a32-6c2c-4467-bdec-10fcd215fa60)(content(Whitespace\" \ - \"))))(Tile((id \ - 11111ab1-41eb-4e37-9d28-0f51daaa4178)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 5b196175-74eb-4ed2-b310-dc2831342db8)(content(Whitespace\" \ - \")))))((Secondary((id \ - d1c5ab94-7d56-48cf-a1fc-e28d350f0735)(content(Whitespace\" \ - \"))))(Tile((id \ - 0e74d943-14a4-49b7-a53d-a00e76ed6203)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - ac9daf73-7a24-4ae9-933b-b2fca845abe0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 539ded26-c4d7-4613-88b5-c7d9b2446915)(content(Whitespace\" \ - \"))))(Tile((id \ - cc157ab4-43fc-4e23-94da-5bd553d8a0ad)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a6cccf7a-a64b-4e37-bbff-1dd12c1d45e8)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 075d3dfa-6a4d-4925-b60c-30dc5798780d)(content(Whitespace\" \ - \"))))(Secondary((id \ - 688aabc8-abe3-4374-9938-6cac48f85a88)(content(Comment\"#2x \ - err#\"))))(Secondary((id \ - ea38d8c4-b51f-4bac-9d16-31834f6a22b4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f2a7afeb-3de6-4910-81c4-b5349564a68c)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - d9e0fa0e-0d70-4efb-8017-e229dc68daa8)(content(Whitespace\" \ - \"))))(Tile((id \ - b31cfd99-352a-445f-9ed3-2314ecbaeaa4)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 48635740-edaf-4891-b6ce-ec3396fc5f72)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - ed344d0d-964f-457d-a20c-25097689b2f8)(content(Whitespace\" \ - \"))))(Tile((id \ - f40216eb-5d13-4f04-b251-1960c0b106b6)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 0bbeebcb-d982-4173-88da-3c175e16996c)(content(Whitespace\" \ - \")))))((Secondary((id \ - 5b321ad8-a496-4793-b402-b7270d0d971d)(content(Whitespace\" \ - \"))))(Tile((id \ - 69090f22-4698-4e4d-b520-61e036105f6c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - dab8ae41-ef69-4722-bad3-8316ad9ad0ac)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ed008f04-db4d-476a-b369-40dee2452cb6)(content(Whitespace\" \ - \"))))(Tile((id \ - b68c784b-7ec9-40ad-87f1-fbafdce52885)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a4becfc6-f192-490f-9954-c5068f17e525)(content(Whitespace\" \ - \")))))((Secondary((id \ - acab6531-eb9c-4550-99ef-7d1dd7e1b8f2)(content(Whitespace\" \ - \"))))(Tile((id \ - ddf30688-6039-42a5-85c7-4985fcb5e377)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 93fc8a91-8fc4-4ee2-9261-78b33ed7fdd6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 39c5133c-a38a-44b9-9f72-0a585d3e4c55)(content(Whitespace\" \ - \"))))(Tile((id \ - 82d5f528-02ba-4266-928f-b24b7f20a0f1)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - db657714-bc5c-4607-b343-c3f7415931e7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Grout((id \ - 4099f90a-cfa3-4a34-acb8-55981d5271ee)(shape Convex)))(Secondary((id \ - 9467e4e1-b805-4b99-93f1-3dc096cbacaf)(content(Whitespace\" \ - \"))))(Secondary((id \ - 78917ab1-712a-4819-9b78-fedd4e2803ea)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3d400d56-e5ef-422d-8035-e849ca3e74f8)(content(Whitespace\" \ - \"))))(Secondary((id \ - 939ea569-c454-4c48-bf9d-2298968636fd)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 72a78281-ed37-4880-9e97-633a7085f776)(content(Whitespace\" \ - \"))))(Secondary((id \ - 796b89fb-d0e6-4318-8664-455b0816694d)(content(Comment \ - #err#))))(Secondary((id \ - 2fc4755e-cf80-4b91-95aa-a9e3e954a48a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 80c6d7db-88fa-4699-9bcf-65129c8a542f)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 7658b841-0ffa-4588-bc59-559e77774504)(content(Whitespace\" \ - \"))))(Tile((id \ - c06486d4-d65f-4d38-ad2d-1a74cace0c80)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - aa875735-751d-4615-9d96-429b23b23dab)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7719366f-fb75-4741-892c-81f0e8ef6ec5)(content(Whitespace\" \ - \"))))(Secondary((id \ - ef6d6fc3-8bb2-4e1e-8051-42024258e35c)(content(Whitespace\" \ - \"))))(Grout((id 954608fd-8643-4810-92cc-251e04d860a7)(shape \ - Convex)))(Tile((id \ - 18e23a14-61e9-4716-b0fd-a87d23a1f0bf)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - ab79689a-64ef-40dc-9419-2a32826d0a2a)(content(Whitespace\" \ - \"))))(Tile((id \ - 89a8887b-81cd-4508-9200-274bebb3cd66)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 0bf53e72-9c19-40e5-ba63-e2ab74e19bf8)(content(Whitespace\" \ - \")))))((Secondary((id \ - 223ac1cf-53b8-4554-9df7-433e97bfc47e)(content(Whitespace\" \ - \"))))(Tile((id \ - 8392f211-b020-45ba-ba3c-953e0c213d6b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 16b28e6f-5e63-4d56-90d5-616b2a540498)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 03f17b8a-a147-400a-adae-59d916d3d8d5)(content(Whitespace\" \ - \"))))(Tile((id \ - 48e3bf01-3935-4707-8ee3-a274392ea5e8)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 53c3dc16-eac1-4dae-b4f2-d7ce85c3dfdc)(content(Whitespace\" \ - \")))))((Secondary((id \ - da428333-1f37-480d-a2c8-300bcf2c9923)(content(Whitespace\" \ - \"))))(Tile((id \ - ba5c2968-ede9-4f46-bec3-adc136d0bfb1)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 819205e0-f061-4473-8bb0-0afc724d50af)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 5eef042d-efdd-48d3-90b9-e29b4a1b0d9e)(content(Whitespace\" \ - \"))))(Tile((id \ - 1134f3d5-9371-4957-a6fc-8d040a7057fb)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 19ba0314-8b4d-4507-b6db-ea7bc2674bcd)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Grout((id \ - 3f0a5896-c7e5-40c1-bc6a-87371dd4e0b3)(shape Convex)))(Secondary((id \ - 86eb3a77-46aa-4610-b5d9-af34f1f481b3)(content(Whitespace\" \ - \"))))(Secondary((id \ - d18b0ae2-1a87-41f0-9dba-2af45fbd016f)(content(Whitespace\" \ - \"))))(Secondary((id \ - c4dc10aa-70ee-49f9-ac41-191edbe71e54)(content(Whitespace\" \ - \"))))(Secondary((id \ - 45ccfbe9-7263-4ea9-900f-09e89ab3bf08)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d396dd26-89dd-4bf4-9ab2-54b6f5f91810)(content(Whitespace\" \ - \"))))(Secondary((id \ - 45c32906-845c-4cb8-b35e-78d8a752f735)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 243d03d4-1f94-48de-bb9b-360399e53e9a)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5b2623e3-e603-4d14-917b-a034b4c213f8)(content(Whitespace\" \ - \"))))(Tile((id fb71636c-de5a-4fb8-952c-bf0fccca9512)(label([ \ - ]))(mold((out Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - faf3007c-1848-40a1-a237-f012e249f590)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - d66820d4-d04d-4577-b6bc-c9830fe12894)(content(Whitespace\" \ - \")))))((Secondary((id \ - ef446ad4-b7fc-4bcb-90f4-d9ea02fa08d2)(content(Whitespace\" \ - \"))))(Tile((id 983e9e9c-2044-4c03-874e-c9c4e0331e53)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 62eba511-8d5a-432c-a822-43e164cfdd81)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 30128056-4c2a-435e-8f22-72b133bc9544)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 25a20668-10d1-4f06-83ad-7346ea4e4c73)(content(Whitespace\" \ - \"))))(Tile((id \ - 1337b6da-a40c-4bae-b400-5dd1ed2a31ef)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 37fe5649-bfd1-478c-a929-da45aae2c995)(content(Whitespace\" \ - \")))))((Secondary((id \ - e36eb361-0ce0-4de1-9a3f-520dca9d3de8)(content(Whitespace\" \ - \"))))(Tile((id \ - e10fd0f6-c23c-4288-beb6-728408cb9d6d)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3b97110f-4fbe-460c-8220-a8db9e7817e1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 3cf0935a-2d04-437b-a90f-c4f19a35ee0a)(content(Whitespace\" \ - \"))))(Tile((id \ - 575e555f-403a-48ee-b0a8-313c97db8605)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 209725be-c537-46d4-8b8f-ee0b6e958bbd)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 289af387-3ba0-4ab8-b9e5-96797b52d681)(content(Whitespace\" \ - \"))))(Secondary((id \ - aa09b6e3-5dc0-4eda-b893-436b8fa8e319)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9b718fb0-0327-45de-aeda-d3876e45855c)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - fe29fe53-8073-4e73-952b-1fd8b4b5db2d)(content(Whitespace\" \ - \"))))(Tile((id 9101ffe4-226d-48c5-a377-69b3c5029b89)(label([ \ - ]))(mold((out Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape \ - Convex)(sort Pat))))))(shards(0 1))(children(((Tile((id \ - dbc7e96a-df57-41a3-b163-151952ce68f7)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - d67475bf-5914-4123-b586-0385a28162f6)(content(Whitespace\" \ - \")))))((Secondary((id \ - fa51162a-a920-48ef-b059-53b1257761c9)(content(Whitespace\" \ - \"))))(Tile((id \ - e4628e8a-bc5c-4cdc-afbb-3f4d90e3beec)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 518cd6c1-489b-4ccb-850c-aa22c4e1fbeb)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 530e7a53-0844-4256-9dae-751dfcf7d164)(content(Whitespace\" \ - \"))))(Tile((id \ - fb004146-bed5-4e26-9f6b-49b078168db1)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 8ad43106-56db-47cb-8e3a-d2096f5b5321)(content(Whitespace\" \ - \")))))((Secondary((id \ - 8757b585-d811-469a-b75f-893c2757819e)(content(Whitespace\" \ - \"))))(Tile((id \ - c17c9614-c3a9-49f1-86a2-88e787cee621)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b4f1dba4-7bff-47f6-b150-7b5257716d36)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 6d415617-6c41-456e-82d6-1fb46f5bdd15)(content(Whitespace\" \ - \"))))(Tile((id \ - 3f1e26f5-fc17-4e0b-a35c-cee3b97f9ac7)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 50790fa3-32fb-44ce-bef2-111879c3093a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 3163d482-8a79-4c7c-b801-01f48e0cf50a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 74f4d651-54c7-4296-83d8-d6a848b7b5c2)(content(Comment\"#2x \ - err#\"))))(Secondary((id \ - 1c5ed66d-cc3f-4e0c-b6d6-e535c4c52577)(content(Whitespace\" \ - \"))))(Secondary((id \ - 61cd2925-401f-4b0a-88df-09b49da6cdb6)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0afd22f2-3f0e-48ca-b2a5-eb971441556d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ba566d09-c95f-4e05-b402-df5d4978e61d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Grout((id \ - 36d855d0-57d2-4ae2-bc99-1c54bc49fe14)(shape Convex)))(Secondary((id \ - bf025b26-11b8-4b8c-a548-0585d16dd31b)(content(Whitespace\" \ - \"))))(Secondary((id \ - b448f6fa-6d9c-44b4-a550-162b6cd02c02)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 205e21bd-c1cd-4199-a4a9-0fccfe47f2fc)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - f2f92de4-f13e-436b-b3af-a0f92e44119e)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 6f263eab-ea2c-4cbb-a55d-e39f539111b0)(content(Whitespace\" \ - \"))))(Tile((id \ - 69a8fd37-4ed1-4762-9338-23f432b9bc17)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 03032f4a-83b4-41bd-ba96-c1ba599cf127)(content(Whitespace\" \ - \")))))((Secondary((id \ - c9ad3cb2-2eb9-42ba-ac6b-46a792bf2324)(content(Whitespace\" \ - \"))))(Tile((id \ - 025cc2ce-73a2-4610-9794-f91f830e12bc)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 961d5f5d-9ce2-412c-aab3-c64d5af4c4fd)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d4727eb0-1992-47eb-a7ed-44d1d05173cc)(content(Whitespace\" \ - \"))))(Tile((id \ - e544425f-54ac-417c-86b5-eafd49ba345d)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 95baaa39-3efc-4e33-81e6-54e946d5a0cd)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 263fb9f8-db48-475c-a5e9-8ecd5c9dbcdf)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 38fae62d-53ef-4d82-aa73-040c8725824c)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - eabb55cd-f396-47c6-9797-51ab092e757d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - d8a9e9d1-f79e-41d1-81be-2a3f0aea6ba6)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 00cb7324-267a-4564-8f60-702a65aef2f3)(content(Whitespace\" \ - \"))))(Tile((id \ - 67e1e951-272b-4590-a52e-b49bd39036fc)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7b8a0b5d-f14a-4435-b431-5dc480a0ba1b)(content(Whitespace\" \ - \")))))((Secondary((id \ - 1debecfb-cfed-479e-a2cb-3ee0c60df71f)(content(Whitespace\" \ - \"))))(Tile((id \ - 8404a1a0-d2a3-472d-aafe-170078a2a657)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9f2faf27-7339-4d14-ba27-26362dc1a288)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - fb3af567-97aa-4191-81be-4057cb8bf55e)(content(Whitespace\" \ - \"))))(Tile((id \ - ec6f0657-0053-42fe-8764-5d58de4fb870)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - edad8a58-731e-4686-8047-d9b7346f4a32)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b1205b05-e72e-4540-9e33-1d8f58fa132b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 6a7ee498-2001-4860-9171-890115b55789)(content(Comment \ - #err#))))(Secondary((id \ - f8823956-68f7-4f2a-bab7-9b0cdfba1e32)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3af8b882-f09c-4fcd-a7f2-5f96e17b9faa)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - cde47361-d6d6-42db-833a-f8407028040f)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 6799714b-ee7f-4e35-b545-548a428cd90e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - a496e7aa-bd9e-4a79-82f2-6712be326c04)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 17660518-0d3d-4c1b-bd78-fdc61bc7cf3e)(content(Whitespace\" \ - \"))))(Tile((id \ - 53dd09ad-7758-4a9a-8662-f23bf105ffdd)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 5cf01743-80e1-4b10-96ca-75b0cd4c7fd3)(content(Whitespace\" \ - \")))))((Secondary((id \ - c6c0d985-ace6-4df7-b0e4-9e1fd628e798)(content(Whitespace\" \ - \"))))(Tile((id \ - 04bf792b-e82a-49fe-bd03-cfca000d8951)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - abda6a9c-1caa-49e2-acd8-5942d416929e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 81a6be08-5e7f-4efe-9370-b652935b895a)(content(Whitespace\" \ - \"))))(Tile((id \ - 115e6ec0-d2c1-4e8d-98f4-0be31b9c24f7)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 26c4042c-d968-4ce6-804f-c4c28370b66c)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3b4ff107-20e2-4ca0-8368-b1aaa7e2422c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9da0015c-879e-422e-9537-c8e51944fe5b)(content(Comment \ - #err#))))(Secondary((id \ - 8a0542ba-18b6-41db-a21b-46a86bb67400)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d0d3bbd7-6021-4593-9c52-0bb5bcf47b97)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 5189b00c-e3c3-4692-9639-9453ee79be70)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Grout((id \ - 78dec23b-dc08-4850-940e-792e37ec946e)(shape Convex)))(Secondary((id \ - 9edcff38-a8e6-4601-912c-7df8d7c2a411)(content(Whitespace\" \ - \"))))(Secondary((id \ - 7f95f88e-da5c-4a3d-907b-32ea4736942b)(content(Whitespace\" \ - \"))))(Secondary((id \ - d1e39d1e-fa7c-4a8d-8497-5e0f2467dd55)(content(Whitespace\" \ - \")))))))))(Grout((id 4bda47bd-c98f-45a7-9df9-6ffaf75852e9)(shape \ - Convex)))(Secondary((id \ - 8ed32e09-a57e-450a-a47b-3416331a5171)(content(Whitespace\" \ - \"))))(Secondary((id \ - 89b71700-af00-4a7d-b352-b846c98e6385)(content(Whitespace\" \ - \")))))))))(Tile((id \ - d164e1d3-00e0-4de3-96df-5900388b61b5)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 0a639e27-c706-4c6d-917d-3446839b8f3a)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - bff8f007-114e-4612-af0f-d05ab8da1250)(content(Whitespace\" \ - \"))))(Tile((id \ - 0226090b-8469-44ce-bb73-caf49d3bf92a)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 29a205dd-839c-47da-af25-b1a4797e0804)(content(Whitespace\" \ - \")))))((Secondary((id \ - a0ae5993-9272-4655-8319-b955b3580532)(content(Whitespace\" \ - \"))))(Tile((id \ - 9bb63592-46d2-4c6f-a4fb-814b3fd61c21)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - e73370bd-8c91-4b24-a8a4-b79b54961134)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 79ad6bb0-9001-4111-bb6a-1a2f6fcd6c4b)(content(Whitespace\" \ - \"))))(Tile((id \ - 0a255247-190a-410c-aac5-d65495762588)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 7f7513a7-7c34-4505-a24c-1fbd8a24c639)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 10d644e0-3f43-4ea9-959d-91ecc0d0f443)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a71392d2-058b-40b5-8b2f-31703803619c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 0aeb4740-c269-408a-aecd-1c874b78f84d)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 855bb07c-c69d-4485-8230-a56fb6017cef)(content(Whitespace\" \ - \"))))(Tile((id \ - 01a225e9-7dcf-4802-84a5-eae4d8a1e018)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 9fd71033-01e7-4b1a-914d-e3bd4f73adb2)(content(Whitespace\" \ - \")))))))))(Grout((id d7847c73-3526-4815-be88-85ed05fb6c17)(shape \ - Convex)))(Secondary((id \ - d65c89f1-9225-4979-a75c-5308e422a1b1)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0e120fea-034e-40dd-893a-c13b0e019b79)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 66dd4fa3-43b2-41c1-80f2-d32198a5329c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 598e365f-3182-4381-9a0e-2112c62769ab)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - bf9e24e2-714c-4179-8daf-6cd02ee39287)(content(Whitespace\" \ - \"))))(Tile((id \ - 2d90d82e-cd89-41b1-a8bc-27d488308052)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b25526a8-c2b8-4865-85fb-653af224bb8c)(content(Whitespace\" \ - \")))))((Secondary((id \ - 9ade79b2-33a8-42b0-a4a6-18fb639be2b0)(content(Whitespace\" \ - \"))))(Tile((id \ - 1d80e216-2645-4d6e-8926-1936289d3195)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - d7e4ac77-801b-4139-97ee-f9c63c06c267)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 479e870f-cfc8-4a16-abda-19ec06d80d67)(content(Whitespace\" \ - \"))))(Tile((id \ - cbe52c48-5d60-4c59-b825-8d7b4aecbe52)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - b9848d03-2a75-4632-8e74-5b1fd14d75ef)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f37f0f8a-ab73-44c4-a5b9-ebc672a1143c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6104d487-0fa8-461d-a01a-f95462b82a67)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 4f90c846-cde2-480c-8f80-40b60fa576a3)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 1d207026-02c1-4ce7-9ec8-b344a02bd5b5)(content(Whitespace\" \ - \"))))(Tile((id \ - 3590986d-9058-4539-b0ac-8d5ee3e6ae2c)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - bebd9441-55cc-4362-9c84-064d6e1ab44c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Grout((id \ - 0bd5a09c-a5e1-4e21-9dbe-789633c7bd85)(shape Convex)))(Secondary((id \ - 93785b8d-0779-4c05-be2b-a93c064d2c06)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4a2e0496-9a01-4436-a920-10bdd1f1cbaf)(content(Whitespace\" \ - \"))))(Secondary((id \ - eda5b362-e52c-433a-ba14-cf23e70e20f2)(content(Whitespace\" \ - \")))))))))(Grout((id cbed5581-8a56-4ac2-a506-be7a67148e65)(shape \ - Convex)))(Secondary((id \ - 73b10f7f-29e4-4c68-a1a4-35f3a13d4c01)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2516d980-51a4-4b73-b391-99492d285e04)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 8668433d-7394-4c6e-92b7-22ae1a52bddf)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - a76f2608-3446-4889-9fab-017836aac17c)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 0e884c13-a523-439f-93d3-8a633b9add0b)(content(Whitespace\" \ - \"))))(Tile((id \ - 1873b128-7dc1-48bf-bba5-8beba76e473b)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c171ab19-18b7-41ca-a369-de0c722f6651)(content(Whitespace\" \ - \")))))((Secondary((id \ - 63da21d8-b8cf-4f09-bf06-e6a421af47f4)(content(Whitespace\" \ - \"))))(Tile((id \ - 7cdaa7d9-89fa-43b2-8cd2-4482d75dfa1a)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 26668d7f-271d-4c50-9ecd-1a5fe290ad2e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2eaee420-acdc-4467-b282-ca790665017d)(content(Whitespace\" \ - \"))))(Tile((id \ - f2277c94-cf6f-4598-a9a8-5be3b3918794)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - c92df012-fa74-4b21-a479-3dec9b36a3dd)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 2266f3d9-62c2-461f-8174-85be7751f5be)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f315bba7-8b4e-4ac8-b51f-39b8df594228)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 6a703089-c4d9-4ed7-a8bb-e5a3ea7a74e2)(label(fun ->))(mold((out \ - Exp)(in_(Pat))(nibs(((shape Convex)(sort Exp))((shape(Concave 13))(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 731deb03-665a-4ccb-bef4-3e187318fc2a)(content(Whitespace\" \ - \"))))(Tile((id \ - c7003c65-17d2-47aa-b3f1-05c537df2eb9)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e119c3f5-4659-47cc-afca-78b206bb3036)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 1e38ac1e-5bc0-4e6e-a23b-756c49fb86d6)(content(Whitespace\" \ - \"))))(Tile((id \ - 613f45c7-c0ac-4b31-980c-07b06cd5206f)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - e515b62d-ba60-4e7b-842b-0b1926d9960a)(content(Whitespace\" \ - \")))))))))(Grout((id 3d04af28-f948-4937-a14b-90d27ff1607f)(shape \ - Convex)))(Secondary((id \ - c8f85e88-0134-44f9-a6b9-9aa48c0de29f)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3e093982-8de1-4bb3-84e3-e154f56f8b87)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 650e788c-9a40-4c92-b2d9-9ee77d0dffbb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 56aac71d-a297-4b9a-9e6d-6fce5ede2b05)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5f370771-00e0-4cf4-ad2e-1e2caebd961f)(content(Whitespace\" \ - \"))))(Tile((id \ - 1f7529c8-9ce1-454e-bfbe-43a94fd589de)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - d9e7d490-691a-4343-b31d-9d1bd3a3aa2a)(content(Whitespace\" \ - \")))))((Secondary((id \ - 05aa0df0-1650-45c1-a282-fb9188619f20)(content(Whitespace\" \ - \"))))(Tile((id \ - fad6c49c-6d78-46b7-a999-345c197687a7)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4f145794-2f8c-40e4-bcd1-7d9789b43414)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b6ed260f-8436-4e24-9a6d-1f6008badea9)(content(Whitespace\" \ - \"))))(Tile((id \ - 7fd7fe86-5320-447a-ad7a-9cc267bc0024)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - f6292d8a-4015-4152-a85c-9fad7579971d)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1aa0543e-652f-44a1-afdb-6d5296107a5a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 26410833-de84-4078-afff-2df3ac7edc60)(content(Comment \ - #err#))))(Secondary((id \ - cd4beacf-c222-449c-af2f-c04bb4377199)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 865323cc-e4da-47fa-a48e-1a83a35bed95)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 939900ae-a58e-4b96-af55-338e1ca8efdd)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5f3c4ce3-191d-4722-845a-36644254c8ed)(content(Whitespace\" \ - \"))))(Tile((id \ - a73b400e-427b-43d1-a2b4-22980f5b5533)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 5ac6038a-a2ef-42d2-ad46-8f11f42ebea5)(content(Whitespace\" \ - \")))))((Secondary((id \ - fad55665-31f8-4a3d-8188-8f975e3c3ddb)(content(Whitespace\" \ - \"))))(Tile((id fa18a027-0247-42bb-9255-46b8506af2be)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 141b7a5b-c439-491d-a4dc-6204f3b21655)(content(Whitespace\" \ - \"))))(Tile((id \ - a9f943bc-d7d9-43f6-bc4f-5fa6d6c8d941)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - d2d67f63-c19f-4bfa-bdce-7f2a06277adf)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f2688336-396c-40b4-813c-f50bf94462c6)(content(Whitespace\" \ - \"))))(Tile((id 82d5083b-f6e3-408d-8019-4a490de18bf1)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 1cd7afc3-18ce-477b-9a68-efef8f75e8fa)(content(Whitespace\" \ - \"))))(Tile((id \ - 0d4742e3-fd49-44d4-a784-80ab7bb3f77d)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cbbfe28d-26cc-4b78-861e-b080784c8429)(content(Whitespace\" \ - \")))))((Secondary((id \ - 217305b7-4796-4ff1-bb3f-7ea871581b2c)(content(Whitespace\" \ - \"))))(Tile((id \ - 6f511116-8244-4391-aa8e-7b9afc777a6d)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 432ebbd7-8fdd-4f89-8ae7-f0ff19cb542a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1ce1581e-8db7-4a5d-946f-b55ce94bdb5c)(content(Whitespace\" \ - \"))))(Tile((id \ - 55e992fe-99fc-429d-9152-9b0b3cb2ea9b)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - ae3d1156-5edf-4182-a4f9-dc206f9e20de)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 6ce02668-d606-4cb3-8c08-878348ea5fd3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 6c7e95b8-f99a-4fcd-bd22-5b2d186006bf)(content(Comment \ - #err#))))(Secondary((id \ - 5351e195-efaa-4618-9848-b96be5645981)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ded3ca14-023b-413e-80ca-d567e86e23da)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 88e42af5-70eb-49a5-bf01-2620a305434f)(content(Whitespace\" \ - \"))))(Tile((id \ - 59aa40a1-bc8c-499d-ac74-711d9647c884)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 0ff17f1a-a93c-4846-9ded-3da165af63a7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Grout((id \ - 106f1e50-05cd-443f-9a29-cfd0c34c3722)(shape Convex)))(Secondary((id \ - 94b614c9-e73e-4b55-a313-5a9485df1b04)(content(Whitespace\" \ - \"))))(Secondary((id \ - 768ddf95-ab95-4187-aea8-fe3bdca0edb7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 485464c7-2c78-49e7-acf8-5d0fe25a7112)(content(Whitespace\" \ - \")))))((Secondary((id \ - dff7208d-f1fc-4ae2-9c29-fb61a1381067)(content(Whitespace\" \ - \"))))(Tile((id c1bf6e3a-27f8-48bf-98de-7d9b47c01f3b)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - a43e4d26-c3a0-4cce-9604-045ca46aca7b)(content(Whitespace\" \ - \"))))(Tile((id \ - f923f687-3dc2-481d-b070-bd85432b21b2)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 47ab998c-b6c6-4203-a0bc-bec96dfae658)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - ae77abd6-643d-4661-94c3-169aa29273d9)(content(Whitespace\" \ - \"))))(Tile((id da78d768-bea7-4f92-8e94-193fd9b5bae3)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 9f03d319-08e4-4327-9b60-940f93ca6a11)(content(Whitespace\" \ - \"))))(Tile((id \ - 7d128d9a-f123-4bf4-ace0-459fddd2bf99)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - ff1a0e96-7d28-4c72-b0aa-7f3774ec33e7)(content(Whitespace\" \ - \")))))((Secondary((id \ - ae34b700-a863-4d84-84bb-a975b6d565d1)(content(Whitespace\" \ - \"))))(Tile((id \ - 001b408f-8707-4cf4-8dd5-9d2b725a7adf)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9277e960-8300-4371-a091-05f4b89c3e5c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b4f61a25-28f0-42f4-ae70-7daed3b9fb43)(content(Whitespace\" \ - \"))))(Tile((id \ - d484e794-ff4f-4318-a016-aec11c88672c)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cb208d26-6ffb-487d-b2f9-b65e1f101c88)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 3ef6fd4a-ebb5-41e5-abbf-0d0eed940e6f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 00eaf05c-736e-43ec-b2c3-30098d7d1b64)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 54aa2b07-4e64-4535-b104-a8e648e52c12)(content(Whitespace\" \ - \"))))(Tile((id \ - ee82ab48-0853-4a5f-8576-6fe879e6fd89)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 323ad173-f782-4332-92cd-ef13fb4fd05e)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a3106fe8-30fc-4948-b125-34c58e5ddfe7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 56100622-ffba-4c9b-9ed7-79b584122991)(content(Whitespace\" \ - \"))))(Secondary((id \ - 11eab9d1-6bbe-4b3f-a473-c0549743a472)(content(Whitespace\" \ - \"))))(Grout((id 6304b88a-55ae-4e7e-838e-c9ad65672204)(shape \ - Convex)))(Tile((id \ - 79d0f3be-35ad-4802-b2e8-4291a71141ae)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 11ac7385-a854-4ff1-9c8f-16d542a39e90)(shape Convex)))(Secondary((id \ - 5e840cc3-b357-4a3d-9ad3-7cedc1c540fc)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2b043031-eb81-4cf1-847e-b88128ac70b2)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3505790e-092a-4410-96ee-ea394378f508)(content(Whitespace\" \ - \")))))((Secondary((id \ - 4c94f5ad-a040-43af-8fa8-11519c97cd12)(content(Whitespace\" \ - \"))))(Tile((id 59859f38-7ec0-4978-aa14-ecfea75817b3)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - cb1e7f0e-26ef-4d41-b8ab-9ca4e52c91d9)(content(Whitespace\" \ - \"))))(Tile((id \ - 349447ee-91f2-426a-9e0f-c1fa65afc84e)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 56815c82-4e00-4532-bc8c-d3964cea41e8)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 386b7a83-1b5e-4e95-83fb-8f8c73383a83)(content(Whitespace\" \ - \"))))(Tile((id cbf7f64a-20d1-4ec2-bf27-812a726633c4)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 1dcc5394-4d28-440f-8f81-ca46545f1a21)(content(Whitespace\" \ - \"))))(Tile((id \ - 0ac3f425-bd74-428a-8c51-4dadb25b62b7)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 856a88a0-cb21-4a21-8e5c-9781dd54a982)(content(Whitespace\" \ - \")))))((Secondary((id \ - 1380f7ee-1bf6-4c77-84d2-494555b3e0ad)(content(Whitespace\" \ - \"))))(Tile((id \ - 98e939ee-d60a-46fa-8a50-8e78fcda72f5)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7107328d-62d8-41f2-8c56-8b1263f7ff6a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f4ddb056-7470-4d5a-a02a-6c2c646e50c1)(content(Whitespace\" \ - \"))))(Tile((id \ - 841c50a9-32ca-425d-9e08-d38ae4857e9a)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4379ebc2-ee82-41d0-b09b-e391f4e3c8b1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - ab60dd32-e988-47f9-9299-8a826e02f83b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 61c97f62-3fcf-454b-8a49-1b6c66c30c47)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - c42db271-5e8a-475e-952c-ed036e2435f5)(content(Whitespace\" \ - \"))))(Tile((id \ - 5092916f-0842-453a-a962-831f0317a6c5)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 6d0848b5-1f8a-46d8-858b-e3d8a663ae35)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 25c1689c-c2f1-40a8-8871-42d871defd83)(content(Whitespace\" \ - \"))))(Secondary((id \ - a246b387-9f47-496a-a944-6372a675474b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 85b394a0-7d49-47a5-83a7-3c7548c8f462)(content(Whitespace\" \ - \"))))(Grout((id 78b097d2-7db1-4a36-b461-fa82ec2de78e)(shape \ - Convex)))(Tile((id \ - 43bb91e9-18cb-469e-a10a-2c5d0db47b72)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - ea6878c1-2320-46bf-bb70-ad6eb61fe403)(content(Whitespace\" \ - \"))))(Tile((id \ - 681c8f40-e06b-4843-bc6a-94291faee4fb)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - abfd2e0a-bb66-4bc0-b79d-3216d09aea86)(content(Whitespace\" \ - \")))))((Secondary((id \ - 64af3aa7-6508-4a1c-ba0c-05283085be71)(content(Whitespace\" \ - \"))))(Tile((id 15aa7d4b-8291-4e0b-b226-86869bc82027)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - dd59c984-51f4-4261-86b6-b4d5214d6785)(content(Whitespace\" \ - \"))))(Tile((id \ - b9df96cc-15c4-4e0c-83f2-5c92f2f895af)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - f138ad93-f7e1-45dd-ab50-01cd7a261aad)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - ad31b7bc-f4c8-4fa3-ab86-a399ca1caf52)(content(Whitespace\" \ - \"))))(Tile((id 1c1367c3-0f5c-4540-a7d0-676c33c71d74)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - a0afea99-2c09-4d40-9d66-eede4cd3c353)(content(Whitespace\" \ - \"))))(Tile((id \ - cdda2792-cd2b-4f9d-9600-f85840caae0a)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 15bf5971-9541-4b11-85fb-05d9ea4d3feb)(content(Whitespace\" \ - \")))))((Secondary((id \ - 42f5470d-f6f1-4b26-b918-6b2c78bda566)(content(Whitespace\" \ - \"))))(Tile((id \ - 7232bdb0-f77c-4ec5-9a26-f229bb225853)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - d7a35a16-227a-4370-936f-5828a21e0a57)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 00f83c0d-b708-420a-b1e1-7b850758eacd)(content(Whitespace\" \ - \"))))(Tile((id \ - 1a3e178b-8202-4ba7-ac3c-3f1b7f92f6b7)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c7859326-b026-4539-aabf-b61ab5cb1c40)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - fa11ad7e-c167-4a59-876e-0b28dc1b960a)(content(Whitespace\" \ - \"))))(Secondary((id \ - a40ed71e-2dd1-4182-ae39-3ca8c165f276)(content(Comment \ - #err#))))(Secondary((id \ - 3fe62025-d8da-4860-b993-a59f4c17c007)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0830cf14-6e58-42d4-81c4-4a0c69aabe4e)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 640fb5bb-3256-4156-862a-0188841cbd38)(content(Whitespace\" \ - \"))))(Tile((id \ - ef98e21a-c872-4c1b-8278-3c7cf7cea52a)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - b758b430-a2b1-4f70-8834-ad4473ae55be)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 9d905760-313a-4028-8ebe-a52412a4b9c0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5a3d1407-a3a0-4b9d-a7a4-b78363657d41)(content(Whitespace\" \ - \"))))(Secondary((id \ - 987c71cc-90a0-4dfd-b6ff-f54fe09d7033)(content(Whitespace\" \ - \"))))(Grout((id 7a5506f7-2eb0-4f80-9bb2-636034dba32d)(shape \ - Convex)))(Tile((id \ - 9634a7d3-f9f1-40df-a28a-38e0c56f1ea0)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 852b696f-2833-41d7-9db8-18bec00281d2)(content(Whitespace\" \ - \"))))(Tile((id 6faf4896-1878-4caf-bf1a-7d8de11c2013)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - fce70c48-4adc-4644-ad3c-8342449965b9)(shape Convex)))(Secondary((id \ - 8867653e-7a67-4c21-9ff1-a8e8a9282ecd)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 097aa315-113c-45e8-b68e-8099d93da009)(content(Whitespace\" \ - \")))))((Secondary((id \ - b26a1368-05ab-46de-add9-6e4d58f14064)(content(Whitespace\" \ - \"))))(Tile((id b4ddfcd4-70a3-4707-80e8-955d40a4b4b0)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - b230aebe-5190-47b6-a075-382b61b6c3c0)(content(Whitespace\" \ - \"))))(Tile((id \ - e99a295b-9f51-4f14-8acd-d0f501c849de)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - b6a798ca-839a-4cd6-8eb1-35c36fbaeb15)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1747a532-fa29-4308-9c72-27f6c9db8ee7)(content(Whitespace\" \ - \"))))(Tile((id 7f119181-72a7-4a22-ae92-170048eeb995)(label(if then \ - else))(mold((out Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 12))(sort Exp))))))(shards(0 1 \ - 2))(children(((Secondary((id \ - 16050ed1-a2a5-4f65-adc6-caa3bd4ec2bc)(content(Whitespace\" \ - \"))))(Tile((id \ - 999dc059-5b50-4461-ae28-eda68164e249)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - af1bef66-60be-4493-a6e3-4ebba2564002)(content(Whitespace\" \ - \")))))((Secondary((id \ - 807a12bc-2221-41e6-9d49-bff15c1d637c)(content(Whitespace\" \ - \"))))(Tile((id \ - 97d27c9a-4768-4017-a0b7-70adf731d50e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - fed899ab-fe1b-49d4-8b8a-fd870c4f9e1c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 6297d923-b919-473c-aeaf-723b07bf4d1a)(content(Whitespace\" \ - \"))))(Tile((id \ - 5b31ad7a-3b41-4c31-82d6-eb28cb83baf1)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b19124bb-fecc-4d6a-84cb-194e12d97c01)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a9922b27-3223-477d-b3fa-47febdbfec96)(content(Whitespace\" \ - \"))))(Secondary((id \ - ff40f194-b091-4204-a95f-20a96edb04ce)(content(Comment\"#2x \ - err#\"))))(Secondary((id \ - 8b47c155-6c43-4daa-9bf9-724e5a03b914)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 7dee378d-063b-4503-82c9-af174aa873bf)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dbf55ae4-86d0-4051-b684-6f2b8e06224f)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Grout((id \ - 597aec59-2383-4dde-81a1-ef01fe2c26c2)(shape Convex)))(Secondary((id \ - b73649da-1b22-4b7a-afd0-68fb491087b6)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 289cf9df-f582-41af-b107-dfa0e741d043)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6bbfe07b-34f0-4eb9-98b4-7bf9856f2030)(label([ ]))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 69c63846-d56a-487c-93a6-0e5e65094a26)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 33f84387-d789-4ab1-884c-d13aa1c36079)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - df7eaa20-7c33-43e6-89c4-7d14668c7bbe)(content(Whitespace\" \ - \"))))(Tile((id \ - 0b60f05c-eb34-428a-9c2c-e1da8f2d18b5)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4624cff3-2139-4256-afbf-48b03155b9bd)(content(Whitespace\" \ - \")))))((Secondary((id \ - face036e-a0fb-4aa6-9b38-d6977fd58277)(content(Whitespace\" \ - \"))))(Tile((id \ - 40ff8bc5-620f-4be6-a375-10e38cd78d1c)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 50bc7712-d6c0-4064-b921-fe65c5bf6112)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - e82f9734-108e-4f3b-9956-2d2a50a8ed4d)(content(Whitespace\" \ - \"))))(Tile((id \ - 01eb4e68-3a4d-4ca8-979f-c47420a43344)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - 57205790-5041-4ba6-babe-76a2236104c1)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 57095ed5-dafb-42f6-ac57-007e41bcefaa)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ff1d4a6d-130b-45ef-b8fc-d3b61a9447ce)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 7aea467e-496d-44c9-aee6-fd4a4680ba3e)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - bf913a57-1417-406c-b7d5-b49dfc928e95)(label([ ]))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 434bfaab-8cac-4de3-86ae-5787863de61b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 4042c6e7-2b66-48da-b28e-1ec4a28d82ac)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 09ca2ef8-2686-40d9-b463-c6cd1174a855)(content(Whitespace\" \ - \"))))(Tile((id \ - 2ca21c34-4098-4589-b0c3-b8e5a525fb00)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3dd53cf9-5d51-477b-bb1e-a1ec29877a05)(content(Whitespace\" \ - \")))))((Secondary((id \ - 52b8e815-2e17-4d4c-b767-c262555b36a5)(content(Whitespace\" \ - \"))))(Tile((id \ - fe4752bb-0000-4a44-8b15-2e5651fe7f44)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - bc8634a0-a528-4d0f-ad9e-eb7c7a7bc5bd)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - bff305e0-eb9f-4ab2-b505-b57064d72fff)(content(Whitespace\" \ - \"))))(Tile((id \ - 7c16f9ca-3592-447a-9948-310b8d5a4502)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - d15991d9-89af-4cc6-a55f-db03327f8118)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1c5f21a9-e43e-4a5b-aba5-22ecc2c10f46)(content(Whitespace\" \ - \"))))(Secondary((id \ - 18e98d73-e80c-448d-9abd-03eca2d96e97)(content(Comment \ - #err#))))(Secondary((id \ - d1f1b25d-6623-46e7-8ede-8ac2f9864455)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6b474321-0bac-4494-91f6-328f8884bfd9)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - baa33170-512c-4235-80e6-bef5209f865b)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6d145dc1-a89a-422b-af38-e6bc46780269)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 1463c14b-a44e-49b1-aec3-db663b3bfb17)(content(Whitespace\" \ - \"))))(Tile((id \ - 8776a59d-23e9-4ff5-9c38-6a98604fd38f)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 77dde664-45e7-4571-94bd-ca77662e3827)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 981941e3-8964-4e8d-ac1a-ca0bc252cffd)(label([ ]))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 2f8493a6-1be9-4d01-bedc-cc486a7e07fa)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 388b08c9-6c49-4aca-af64-b9d92318ff58)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 09fe98c9-5465-4c4b-b3b0-7180c95bbdc7)(content(Whitespace\" \ - \"))))(Tile((id \ - 4f9b69ae-4f34-453c-93d6-f7e8cf161622)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 26551b5a-24e5-4554-a265-475a6519ed3b)(content(Whitespace\" \ - \")))))((Secondary((id \ - be2f4da8-924b-45f1-a19e-0cd93102ba1d)(content(Whitespace\" \ - \"))))(Tile((id \ - 54538b12-8d7a-41c6-94da-416439b221ca)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 254428c8-d210-4856-a712-1133eaf2d236)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 07950b9d-9cc7-4406-9c59-17d14846d4e5)(content(Whitespace\" \ - \"))))(Tile((id \ - d9c5494a-e44a-420a-bfc7-9a166bfcdde9)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - bd3dd572-33d3-4890-99a1-2227a04b672c)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f580e3b3-7618-476e-b429-ef0a0f5c82f7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 842a60e5-392b-438c-a54a-4895bc45dc9d)(content(Comment\"#2x \ - err#\"))))(Secondary((id \ - 2667c1a0-86b8-4867-9d12-5d03d79577c3)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0daa215a-603d-47c0-96b6-9c8d5258c801)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 08b06810-a744-4b84-85a9-6e36c164ea9a)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Grout((id \ - 039a7db6-a86f-4ef5-9822-6b3e4539b774)(shape Convex)))(Secondary((id \ - 5bcd9cc8-63b7-4d95-9cb8-e9e6b6ff4a0a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9d83eedd-cb89-4297-9ee0-30c64d8e7686)(content(Whitespace\" \ - \"))))(Secondary((id \ - d0a8043f-0bda-430d-956a-c6a216f6669c)(content(Whitespace\" \ - \"))))(Secondary((id \ - a29a5b3e-48a4-410f-acaa-1dab7c9b9243)(content(Whitespace\" \ - \")))))((Secondary((id \ - 8d071689-8a69-4025-9b7a-85fc4379d6b6)(content(Whitespace\" \ - \"))))(Tile((id 672e5749-1831-4348-a97a-96ee6a807705)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - ad2f9dfb-1eff-42c3-82e1-c85b2669103e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 5d23fabe-cebc-46e2-8664-5203372127ad)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - bdc10653-4226-41be-a1a1-2649eeb0f718)(content(Whitespace\" \ - \"))))(Tile((id \ - 1e931892-c596-44ce-aecf-4e9076690f64)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 62f10f45-7db9-4cd5-acbf-78a8cbf02868)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 162df163-43bd-426c-a3ad-04aa5455cf28)(content(Whitespace\" \ - \"))))(Tile((id \ - 09469c3f-e45a-4cd0-95d6-b9efcb96b6f1)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 851893eb-d6bb-4899-826a-2d4bd73e85b1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - c47f8f5a-bbdc-4c74-8f71-94d96648d5d0)(content(Whitespace\" \ - \"))))(Secondary((id \ - d3097ffe-de77-441b-a37d-3b256a83da84)(content(Comment\"#err: \ - inconsistent#\"))))(Secondary((id \ - f763a8e0-6750-4860-b7d4-192b38c05119)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3435a85e-63ec-4ae5-98eb-b74343390024)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 984591c0-dad5-4ffc-9793-11bdf114a2df)(content(Whitespace\" \ - \"))))(Tile((id \ - 3b539370-e3c9-4e9f-a86f-e527390817b7)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 26d5963a-dab0-423f-a2b0-a430bcd3f6f3)(content(Whitespace\" \ - \")))))((Secondary((id \ - 38ae330f-d7fa-4e41-bd68-b473166c9d6e)(content(Whitespace\" \ - \"))))(Tile((id 45eb311a-646d-4d69-8368-30ad47fb669d)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 63544e27-883c-4ddb-9aa7-62d7d22ed847)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 35944892-94cc-47e0-b861-56cbae152330)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b8de607d-7f31-482b-bf82-54c8df4ddad5)(content(Whitespace\" \ - \"))))(Tile((id \ - 5be34216-2ab2-4913-bfef-a6ac2c7094a6)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 37bebc9b-46af-4f72-86fa-f5ea95f8b872)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - e9b6941a-a3d0-4891-8557-0709d7174d88)(content(Whitespace\" \ - \"))))(Tile((id \ - fd9cdd25-7890-425f-aaa4-a0406dc0e631)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 34974a7d-e80e-4679-b3dd-a19ce9b658f1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 18c0654b-38a9-4e38-a274-5488a39c7ee4)(content(Whitespace\" \ - \"))))(Secondary((id \ - a13316f9-b6cd-4097-ae9d-21d01c945e29)(content(Comment\"#err: \ - inconsistent#\"))))(Secondary((id \ - b2458b06-d9ed-4126-830b-ef43f1daf107)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b69cf5ac-59c3-4207-a030-41007905087d)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 4e39d232-42be-4095-b8e5-a2003c28c235)(content(Whitespace\" \ - \"))))(Tile((id \ - 67f998ef-94c2-442c-ab0e-6293a0f1e4dd)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 116feec7-630f-41d8-97e7-ef4f4cdd6cb8)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Grout((id \ - 106a7170-cf10-4642-8b87-f8ddee989840)(shape Convex)))(Secondary((id \ - bc1a2f88-74e3-4eb7-a210-ccb8f0111fe1)(content(Whitespace\" \ - \"))))(Secondary((id \ - 176e4ea4-af5d-488d-a1f6-fd188b74fc5f)(content(Whitespace\" \ - \"))))(Secondary((id \ - d06c8133-d989-46d9-9e48-fbf5b146e636)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1f8865dc-5132-477f-a582-ca216426c249)(content(Whitespace\" \ - \")))))((Secondary((id \ - aac248da-638a-48d5-99b1-f024b23090cb)(content(Whitespace\" \ - \"))))(Tile((id 321df31f-4b0b-4252-8a40-702d1c1fcc08)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - f81d03e7-644b-41c1-84d1-bd9015a1136f)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 4c6a9468-55e1-466d-8f03-67c541d49c3a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 193dce8f-ff68-4a2a-a168-cbd256a61cca)(content(Whitespace\" \ - \"))))(Tile((id \ - 9c70cb9f-c8d7-4237-9e9f-ea2960ee3568)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - debe2531-8c74-4a32-aa83-c5dd59d3a435)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 985a915d-7f4b-4221-8d1f-9be7aed43948)(content(Whitespace\" \ - \"))))(Tile((id \ - 6182761a-7fff-4d77-bb71-a2e5fe136fc2)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 865e0372-d825-4874-a3c0-83a109943d2e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - fbaa2cdc-c892-4478-a408-870aee45f1f1)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9e256af8-3ef9-45f0-941b-39fbbe0badc3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 75ee677a-b08b-4b85-b898-9411c2111459)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - fa4cbea6-6594-4c4b-9dc1-3d9113e308d1)(content(Whitespace\" \ - \"))))(Tile((id \ - 6f98b718-59d7-472c-baf5-cf329e123d6c)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 94280b85-df20-4b87-949d-e9485eae822b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - fc3ed258-9e81-420c-b187-a788f047f987)(content(Whitespace\" \ - \"))))(Tile((id b3bce802-ec93-45ed-9d00-dcff02c3b8e7)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Grout((id \ - 72f3b425-9e13-452d-b15d-a6d8f0e7be3a)(shape Convex)))(Secondary((id \ - 2f6eab01-7286-4beb-85ed-7f86e4ddb1d6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 01fac71d-5dcb-498f-8a74-58c8a5829606)(content(Whitespace\" \ - \")))))((Secondary((id \ - 4d1a78f7-2f6a-4938-836f-a4ceb8b2c054)(content(Whitespace\" \ - \"))))(Tile((id 4c413d11-8407-42bd-ab02-86c18fd2328f)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - e1207221-0156-4b9d-8a72-ff144f38ff9e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 3c2c0d5d-01a5-459e-b7a4-64548ec7c370)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 91cbc86d-c9d8-4c83-821d-f87a982868e4)(content(Whitespace\" \ - \"))))(Tile((id \ - 77833c14-4adc-460e-98bf-2a3111356ce0)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 81fb2f7e-e5d1-40ab-883e-ececa75053a0)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - fbbe732a-bfb9-4ca4-b2a4-d7534d63ff60)(content(Whitespace\" \ - \"))))(Tile((id \ - 705c0a09-a3ee-4d99-8857-ed69620276ed)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - ef7f1680-efde-4226-a6ed-5ae7ad14a5a6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 851cf337-e6c8-4a62-ac84-7f37429f9c41)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d9b5dd36-10b7-4e5b-8c14-1620059f006d)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - eed7c40b-ffa6-400b-af7e-4fc600942c4d)(content(Whitespace\" \ - \"))))(Tile((id \ - 897c9170-7d1c-4e2b-9090-af0a65bc5ac6)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 222432c6-5c75-455d-9c5f-a92646db7110)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 36a2007f-0bf3-4387-8634-8cfd8a09582a)(content(Whitespace\" \ - \"))))(Tile((id f7f1bc05-8ff9-40bd-8cd5-f67953abe8af)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 9548c818-1827-4164-a57a-855e274a0e83)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 021cd1a8-ec7c-4edd-9fa2-b01fb0fd16e4)(content(Whitespace\" \ - \")))))((Secondary((id \ - a55d0321-1457-45f6-a974-b876a62fe0a5)(content(Whitespace\" \ - \"))))(Tile((id e4aead3d-c1b2-4c48-873f-e69c8368a6b9)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1cd5c375-e39f-4a37-80c8-8fcecf75a135)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 62ee8f32-323e-4f06-b623-a4c2b7273bab)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 97bef218-cbc4-4515-97e7-1f0e1b0b7416)(content(Whitespace\" \ - \"))))(Tile((id \ - ce8e6ecc-9909-4cfb-ae32-c648e2e66e8e)(label(1.))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - a6fdedff-4bd5-44a9-b631-777e243cae28)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 3398770b-d4ab-4560-9c1f-a0d62d8cb0ea)(content(Whitespace\" \ - \"))))(Tile((id \ - f6ee1b9c-f97d-4444-89ca-aed7800ab75d)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 6c029767-03a2-4fbe-9568-f6ac219bd8fa)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 54aabeb6-3209-4564-9730-fa5aedf5ba19)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5608daf0-3ebb-41ee-84e8-c5110e550cef)(content(Comment\"#2x \ - err#\"))))(Secondary((id \ - eb3ce4d0-d151-449a-8003-806dee714310)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - bb251144-441a-457b-bf7b-873e46e249b1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3f710580-ec75-4a0a-8e21-8a4081fad078)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 95985f3a-dcbc-40aa-87b6-6526ac8c5bc7)(content(Whitespace\" \ - \"))))(Tile((id \ - da47fa48-8d61-4634-a5e6-617880818e47)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - bfae1ebc-3f4e-415f-aad8-3ce1a9e42770)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4cf14d1c-b63d-418a-8ee3-55bbcfa4fe3c)(content(Whitespace\" \ - \"))))(Tile((id 9073fa32-77d9-4a24-8ced-6e2df6f4afcb)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 62a3bce4-ffbe-4943-8ba5-39e8550af0fc)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 02590aad-c43b-449c-904e-d62cd637776f)(content(Whitespace\" \ - \")))))((Secondary((id \ - 3ef092df-f14e-4a85-b989-1608894f423f)(content(Whitespace\" \ - \"))))(Tile((id \ - 590f216c-7740-406d-a859-975a797bc789)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 9ecf15b5-30fd-49ae-be0b-68e41cda735e)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 79351d1d-98bd-4b40-aa55-1ddd3ce76de1)(label([ ]))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 7ee676e8-a555-43ae-9992-7d4052580cf4)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c279430d-268b-45e3-b837-d34ea4f31699)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f2234b4c-bfe2-4a38-af94-b7323b44ebb7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 53509069-d4c2-406c-891a-220eb84bb46a)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f843e282-1bf7-44ac-b9a1-2e1137ff370d)(content(Whitespace\" \ - \"))))(Tile((id \ - c9b94d18-a96a-4f1a-b43e-9bef46c0009a)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 9e19793a-847c-431d-8201-7475926c68e0)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e21fc325-444a-4b39-ae75-448a62771fb1)(content(Whitespace\" \ - \"))))(Tile((id c52cd0e7-5ccf-4810-989a-b43ab48d221c)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 49d2d7b6-b06a-4be8-86a5-b2eca7ae20c4)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - d1395120-2ea6-4803-ae45-fa57d9188496)(content(Whitespace\" \ - \")))))((Secondary((id \ - 7dcbf185-4474-4eec-83ae-12b633c1f548)(content(Whitespace\" \ - \"))))(Tile((id \ - f8c57469-4817-42f2-b1b1-e4226b373eca)(label(1.0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - fb419a7b-7e9e-4aaa-8794-d78d4c1499fe)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 47844bc1-cdc6-4f6f-82ad-b5e5be9586f0)(label([ ]))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 79d60c86-e0d8-49b1-9eea-4a8d439cb3f5)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - efea4ad4-28eb-4f95-a65b-1ede14c8e6ab)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 06836045-08c4-42c6-ae8f-8d6043ae02c8)(content(Whitespace\" \ - \"))))(Secondary((id \ - d13b87c6-1d6f-4674-831d-045497577de2)(content(Comment \ - #err#))))(Secondary((id \ - 17ba44c0-58f1-451c-8ad1-7b2cbf83b714)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 133592b2-9353-4b62-9ecd-4c258da4818f)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 3c704e7a-6874-40a4-be4f-fe95a893f14f)(content(Whitespace\" \ - \"))))(Tile((id \ - 59c890ce-c941-4fed-a369-20ec64218441)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 4f680010-5ffc-4e1c-b9e3-a061fcb1554b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 014f3ba2-4d5b-4c4a-a39b-5d9c76c15b91)(content(Whitespace\" \ - \"))))(Tile((id 4d9249cb-d236-44c5-b3d3-c257647121fd)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 22327f4a-4bed-4d89-998f-291f2c7bdfb4)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 8aa51f35-d8f7-4d2a-a979-9213e994ed36)(content(Whitespace\" \ - \")))))((Secondary((id \ - b7316208-d52e-44cb-b03f-55917c4c17d8)(content(Whitespace\" \ - \"))))(Tile((id \ - f19e7f34-f64e-45bf-b807-54fd5a3803c1)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 3423b882-53c4-4e91-b1fb-c1799b247e52)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 18760f33-67f4-478a-8d46-b867fccb4fab)(label([ ]))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 69a8f2e4-f319-4d1d-a0c1-8ee4ae299727)(label(2.0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 7545443f-d605-44b8-a7fd-13f11cd4c91a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b9ecf255-e21b-4016-b078-d3dc00ccc392)(content(Whitespace\" \ - \"))))(Secondary((id \ - a87989b8-2f60-487c-a4b8-874a167f70c4)(content(Comment \ - #err#))))(Secondary((id \ - 218a3f7c-0fa0-4a28-9644-6e4ba7220cc0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 39cd7f40-a6e9-494a-8a06-90a1658ac498)(label(\"\\\"BYE\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))()))(ancestors())))(caret Outer))"; - backup_text = - "#Types and type error examples#\n\n\ - let _ = unbound in #err#\n\ - let Undefined = Undefined in # 2x err# \n\ - let true = 2 in #err# \n\n\ - let = if true then 1 else 1. in #err# \n\ - let _ = if true then 1 else 1. in #err#\n\ - let _: = if true then 1 else 1. in\n\ - let _: Int = if true then 1 else 1. in #err#\n\ - let _: Fake = if true then 1 else true in #err#\n\ - let _, _ = if true then 1 else 1. in #2x err#\n\ - let _, _ = (if true then 1 else 1.), in #err#\n\ - let _: , _ = (if true then 1 else 1.), in \n\ - let [_] = [(if true then 1 else 1.)] in \n\ - let [_] = (if true then 1 else 1.) in #2x err# \n\n\ - ( )(if true then 1 else 1.);\n\ - 1(if true then 1 else 1.); #err#\n\ - (1)(if true then 1 else 1.); #err#\n\ - (fun -> )(if true then 1 else 1.);\n\ - (fun _ -> )(if true then 1 else 1.);\n\ - (fun _: -> )(if true then 1 else 1.);\n\ - (fun _: Int -> )(if true then 1 else 1.); #err#\n\n\ - let _ = fun x -> if true then 1 else 1. in #err#\n\ - let _: = fun x -> if true then 1 else 1. in\n\ - let _: -> = fun x -> if true then 1 else 1. in\n\ - let _: -> Int = fun x -> if true then 1 else 1. in #err#\n\ - let _: -> [ ] = fun x -> if true then 1 else 1. in #2x err#\n\n\ - ( )::[(if true then 1 else 1.)];\n\ - 1::[(if true then 1 else 1.)]; #err#\n\ - (1, 1)::[(if true then 1 else 1.)]; #2x err#\n\n\ - let = [1, 1., true] in #err: inconsistent#\n\ - let _ = [1, 1., true] in #err: inconsistent#\n\ - let _: = [1, 1., true] in \n\ - let _: [ ] = [1, 1., true] in\n\ - let _: [Int] = [1, 1., true] in #2x err#\n\n\ - let _: [Int] = 1::[2] in\n\ - let _: [Int] = 1.0::[2] in #err#\n\ - let _: [Int] = 1::[2.0] in #err#\n\ - \"BYE\""; - } - -let adt_egs : ScratchSlide.persistent_state = - { - zipper = - "((selection((focus \ - Left)(content())))(backpack())(relatives((siblings(((Secondary((id \ - 57594779-691c-4a07-9a54-72c38d33ef16)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5247b04c-d7a2-447f-8ab1-dfee15537b5d)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 591d41b4-45d4-4856-ad6a-87c3ca8de936)(content(Whitespace\" \ - \"))))(Tile((id \ - 5abfe9ba-5e23-4bb3-ab6a-228e3bc4d3d9)(label(Um))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 6668638e-2edf-4c7e-b70d-4a1942f3d4b8)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 92ddab41-45a1-4dc3-8c5d-2a9417d26261)(label(Unbound))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 2b69b05c-d459-4aef-ac15-61422ab2622a)(content(Whitespace\" \ - \"))))(Secondary((id \ - dd0c8aaf-a83e-49f3-adfc-3e1de8eb88f7)(content(Comment\"#err: unbound \ - type var#\"))))(Secondary((id \ - 7a113996-8049-4557-9117-0f337dbff9ee)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f99d34f2-0861-4b49-aea0-e49e9014ec49)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 571c6f17-f01e-4941-a97d-b65382a0b6cd)(content(Whitespace\" \ - \"))))(Tile((id \ - 2cda9eb4-b565-4e92-9c21-c680a71c5cbe)(label(notvalid))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3dac48f9-5eb0-4624-90fd-d7625c38cdc4)(content(Whitespace\" \ - \"))))(Secondary((id \ - b7976c5b-8c8a-4cb4-9506-8bf9f5dd15b6)(content(Comment\"#err: \ - invalid#\")))))((Secondary((id \ - 59d60348-8f47-42d9-a4bb-0cb8a339a3e0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b0dc58f1-3e2f-4360-b23c-7a326b00584f)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 83c4b84c-5784-474c-bf9c-2f8b71f14d50)(content(Whitespace\" \ - \"))))(Tile((id \ - 43da0980-0cd0-46e1-b681-a6469f2b92e7)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 46b7bce6-e801-4001-ba47-2ec5ac2215b7)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4157bbda-ea92-4af4-b77a-6515480f30a7)(content(Comment\"#err: expected \ - cons found type#\"))))(Secondary((id \ - 5f6a8b70-95e4-4565-a5a9-dbe98e22e80b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 92af8b61-4e86-460c-b902-1d4c0300bf68)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 52215bc5-3e4e-4987-9429-992ad1556941)(content(Whitespace\" \ - \"))))(Tile((id \ - 5194f01c-231b-4d83-b742-a054e76a5396)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - d2a2bc6e-4ac7-4789-8acc-9245cf6e34af)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 71071328-b902-416e-8da7-14c00db67b47)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - b459dab3-6084-4c6b-a600-0622343e664f)(content(Whitespace\" \ - \"))))(Secondary((id \ - 59ffed06-1c62-4034-944a-d401986b2c95)(content(Comment\"#err: expected \ - cons found type#\"))))(Secondary((id \ - fb210b90-74c2-4754-a06b-27752c115ae9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 67e6f5c1-83be-465b-9327-67caf68fda86)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 6e788f12-6354-474a-820e-1bb9044cb1dd)(content(Whitespace\" \ - \"))))(Tile((id \ - dc31481b-a139-401e-8ec7-194d8fedda91)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Grout((id \ - fca62b0d-d80e-418c-9208-d58653d31339)(shape Convex)))(Secondary((id \ - 06aa11ed-bca0-4b01-945d-9a1298a0a41d)(content(Whitespace\" \ - \")))))))))(Tile((id \ - 1604af8e-a7a0-45f5-a150-6e061ffcb886)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - c190684d-a2cc-4793-91b0-0278f7927160)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 28291438-11a5-4ee5-bbc9-2e355552b60b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9369a807-f931-4ad3-98f4-31e557ecb06f)(content(Comment\"#err: expected \ - cons found type#\"))))(Secondary((id \ - e82946c5-a4c4-4137-835f-e48bf4c4a2bc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a53a1394-3057-4647-854f-889739aebe65)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2505bf55-dffe-4095-9ec5-6999b1988253)(content(Whitespace\" \ - \"))))(Tile((id \ - 2dac917c-d5f0-4434-9b2c-22e68b4a79cc)(label(A))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 3734c4c4-17fc-491f-bde8-2baf01f88fd8)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 0fdb69e9-df38-4286-871c-392321eec7c5)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Tile((id \ - 7f5c559a-bd03-40e5-b11b-bdbba9b49033)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 5fa61f67-3a2f-4a20-b386-a3bdf668009a)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 3e5058bf-980d-4e1b-825b-82e2264a73a3)(content(Whitespace\" \ - \")))))))(ancestors((((id \ - 4a9ce82c-ac1f-4f8f-a4fb-3b2d9a241c64)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards((0 1)(2)))(children((((Secondary((id \ - d84dbaf7-85c5-4012-a1ee-0ff1c8b428d4)(content(Whitespace\" \ - \"))))(Tile((id \ - 0c477f75-efcf-42b3-8334-4dd7f60d6404)(label(BadCons))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - e7737ac7-f11a-4f0a-bb30-8bae40c45ac0)(content(Whitespace\" \ - \"))))))())))(((Secondary((id \ - 61ae7149-aec8-467e-b741-d99ce30628dc)(content(Comment\"#Non-recursive \ - sum/alias tests#\"))))(Secondary((id \ - 849a83b1-4d19-48f1-af52-c0e4d73be420)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 780a32f5-e4a1-4af6-9a9c-2dbc09b9f669)(content(Comment\"#all lines with \ - trailing err comment should have 1 error#\"))))(Secondary((id \ - 45b71874-3478-434f-b2be-f7f1d1e1c0ce)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 496b0a93-599c-4bd2-b1f6-f2ef05ea8d8c)(content(Comment\"#no other lines \ - should have errors#\"))))(Secondary((id \ - b0de6367-1efa-4be9-a5a8-2be0d2b9b3f8)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 488820d0-fbbd-4b2c-9edb-e52d03402d7a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0beb6b37-d8d6-4a29-bccc-4617937604f6)(content(Comment\"#type \ - definitions: no errors#\"))))(Secondary((id \ - 5efc4bf5-c3cb-4d1e-bc0b-19b06c515590)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2fd0b30b-2842-48bf-943f-007ae5d400c2)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Grout((id \ - 95b2a65d-f369-4149-8976-442bf6f27016)(shape Convex)))(Secondary((id \ - 124e6d58-e404-49c7-be71-17d9a28abf15)(content(Whitespace\" \ - \"))))(Secondary((id \ - e3da63b5-81c8-4bc4-843b-30882150e867)(content(Whitespace\" \ - \"))))(Secondary((id \ - 0b431059-792d-4703-8de2-fc387b9ee73a)(content(Whitespace\" \ - \")))))((Grout((id 4a7092f9-7579-4de4-8fa8-dd2c6f021ab2)(shape \ - Convex)))(Secondary((id \ - 4ca00bc7-d579-41a9-8089-b9aca7f678ab)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2da6fe60-1f4c-4484-b5fe-8ed0fb284fa4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4e23c7af-ed90-4cc9-b78a-4d62a82936c3)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0cb8c32a-9fcc-4f69-902a-5f7fc88e8b65)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - ccb96218-8b82-4492-af59-ee80176c071a)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8839ace5-0def-4e92-aa08-2eb5ed6e0c15)(content(Whitespace\" \ - \"))))(Tile((id \ - 1a628b6e-da54-4964-992b-fbcc2cbea992)(label(SingleNull))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 0011a276-7249-4fc7-bb36-ffbb44d33500)(content(Whitespace\" \ - \")))))((Secondary((id \ - 329a2d57-af83-4d6d-9ec5-fb4ca5cf79c7)(content(Whitespace\" \ - \"))))(Tile((id \ - f6cf3343-84ea-4822-9645-c6139363efa9)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - f8bca614-05c5-4cad-b73f-7698ea838b9c)(label(One))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 188795c2-f79b-4961-b94d-9ff866fc1491)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 62af67bb-c6a4-46e6-80f3-072ee0413601)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2e22e634-e5f2-47a2-a6b4-f14fd72f67b7)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - af070699-38ca-4fc0-b8d8-1b6790697a43)(content(Whitespace\" \ - \"))))(Tile((id \ - f92f86ed-d551-40fb-8a2a-e48bac20644c)(label(Single))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 72863303-0025-4872-ad16-e9b8d46d177b)(content(Whitespace\" \ - \")))))((Secondary((id \ - 315f633a-bedf-4446-9336-44230d51cbed)(content(Whitespace\" \ - \"))))(Tile((id \ - 69e26679-d3a0-4119-9a5e-51878a612cfe)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 20e1fb79-82cb-49db-81c4-55e1be310d74)(label(F))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 53f17170-6cca-4da8-acfc-6979523f813c)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - af1695f2-3c45-46da-9fd2-f4b7815c4c8d)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - e8c36d47-83cd-4713-95ab-6f66c4ea2066)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 44aef4e5-11c9-480a-914e-8febc1e46376)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c24cf2ef-55c8-4415-8730-9268280fa72b)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 9bae7593-00ce-4a94-9e51-4bc5ee502707)(content(Whitespace\" \ - \"))))(Tile((id \ - 524db6cb-72e9-4cbe-83db-bea6f6c73c56)(label(GoodSum))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - b9a55a8a-164f-453c-86f7-25992bd802ef)(content(Whitespace\" \ - \")))))((Secondary((id \ - 5a3a1eb6-9c66-4c57-9662-81a831cb97ab)(content(Whitespace\" \ - \"))))(Tile((id \ - bdbbc510-a431-4dae-890e-9999c03fc290)(label(A))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 1553eeb4-a514-455a-814d-dbf528f6b80b)(content(Whitespace\" \ - \"))))(Tile((id \ - ec69dd85-1283-49e3-a74f-132754739b6d)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 4c6f9e0e-4694-4e24-9b79-b124cdb28cfa)(content(Whitespace\" \ - \"))))(Tile((id \ - 4142f05f-93f4-4076-89bb-600e7535d897)(label(B))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - ba79de44-6d4b-4648-bc5c-6be03979149c)(content(Whitespace\" \ - \"))))(Tile((id \ - 8448e186-db67-43a2-b1a2-debdd14fa412)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 08041135-feb4-45f3-adbf-8922aaa5329b)(content(Whitespace\" \ - \"))))(Tile((id \ - 376be108-5c73-4908-bf9c-cc6044ec4c97)(label(C))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 3079eb0b-a184-4867-a4a0-e0f91a675c04)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - de909d4e-62fd-42a3-aa89-e4be5920756c)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 600e37d1-6647-4279-b779-e69ccf4a600e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0e120ed3-9104-4fb1-b957-562d2d7640e2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9b86eb56-5cd6-4d49-bd03-2acb49fe4869)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f96df62f-ecc8-4b3f-9dec-2fa0a0aa9784)(content(Whitespace\" \ - \"))))(Tile((id \ - 7c4dc232-9b64-4c10-adb5-3b13d02a41a3)(label(Partial))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - b962c98a-cd02-456c-a704-ef13af5919ea)(content(Whitespace\" \ - \")))))((Secondary((id \ - e845fd89-a850-44ff-869e-a24749651990)(content(Whitespace\" \ - \"))))(Tile((id \ - 4ed7ba76-238b-47bc-ad5f-a6049b45d51a)(label(Ok))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 388d906c-50e4-4f5e-920b-69b109c6f1b1)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Grout((id \ - 9dc581cd-4432-474e-9a83-d28df35a4f76)(shape Convex)))(Secondary((id \ - 7023e70b-4db2-4af8-a75d-c9019a6c0bc6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - bbb709db-06e7-4eae-8d71-85e077c4413a)(content(Whitespace\" \ - \"))))(Tile((id \ - 104334e5-1dcb-4c58-82ca-14e7a2372ea5)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Grout((id \ - c9b6b7a4-7450-4a13-affd-1b03e5e26543)(shape Convex)))(Secondary((id \ - d8582723-bed6-4c54-af65-536f8c840c51)(content(Whitespace\" \ - \"))))(Secondary((id \ - c3d25d25-7438-40db-9022-4f73dc19505c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3719cb32-b6ae-44bd-89c6-03c0b42727e4)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 57da53b4-306d-4513-99fb-bb8b5ef85ee2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 54f4ffb4-c8be-43ec-b815-2ed8d02783ed)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - b5799461-16f4-4ca4-b17e-4bc22136aee3)(content(Whitespace\" \ - \"))))(Tile((id \ - 52b2983a-91bf-4020-ac6a-5822fbca9f93)(label(DoubleAlias))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - c6bc2eda-f3e3-4c1b-97bb-7320d13ac72d)(content(Whitespace\" \ - \")))))((Secondary((id \ - 4bc57ace-daec-4e3f-8b8e-0e4aeab9b777)(content(Whitespace\" \ - \"))))(Tile((id \ - 7f5d11e7-c492-4345-ac68-f5b6b4595d9c)(label(GoodSum))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 7ab0ad07-9b09-4c86-97e4-04ac78658540)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b8d7ce19-4e7e-4c63-ac0f-286821d69e54)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bd4c54db-7adc-4251-a0f5-baa413f5f630)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8930215b-d186-4768-b5d6-3089dbd42383)(content(Whitespace\" \ - \"))))(Tile((id \ - 49c8023a-f173-46c3-8910-3b498d3d22fd)(label(VerticalLeading))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 76b9ec43-1672-4e6b-bb14-451540aad466)(content(Whitespace\" \ - \")))))((Secondary((id \ - b245311f-1433-4a24-bdb3-c4b7263c3de0)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5a74716c-5c07-4a25-bfe1-462739fead60)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 3018eaeb-1450-4d68-919e-0e522ed747b5)(content(Whitespace\" \ - \"))))(Tile((id \ - d4a3b3f0-8834-4a19-ba58-27b96dba60d9)(label(A))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 3b5f24be-d70b-425f-9879-0f5978d707ab)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6c7a6f0a-c8ad-4aa3-ae2c-600bcc234741)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 69d990da-648c-4666-be29-9b505c1c2dcb)(content(Whitespace\" \ - \"))))(Tile((id \ - 7f9c628e-08f5-4517-863b-1e081e207abb)(label(B))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 3cd69162-d8cb-4239-97de-078fc5e96000)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - bff60537-6976-4f0a-aa18-d63aa02cf4aa)(label(GoodSum))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - d9447bdf-de51-49e7-a3f8-3b68a2e07390)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7e4af738-7d7f-419b-b77d-efe567235471)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 92031e5e-7a3a-4a87-b90e-b3a9806587b6)(content(Whitespace\" \ - \"))))(Tile((id \ - c1cd4469-a39f-4f5a-88c4-2fda9e731a28)(label(C))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 7e3ee13d-fa5a-44b2-8517-9d07766b7304)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - db6881ff-0233-46f0-937e-4c5aaa1d9c18)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 85b55d6b-1f9f-4ee2-9ce0-c230269c3670)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - e165800e-e0a9-4343-bff7-8f29f9c4dcec)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 8772f877-d223-4bee-bcf1-5a90e8ccd29c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 56fc6567-58cc-4702-a161-920229db2132)(content(Whitespace\" \ - \"))))(Secondary((id \ - eb9cf58d-6d81-43d3-ba18-7636bd6d3fee)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 6a0e0c53-cab2-428f-94a7-5e9809e1cada)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - b7be7ac8-2ef6-4af7-976e-6708ea6f79bd)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - ab3f5180-112b-42b4-b302-f9ef094e482d)(content(Comment\"#incorrect or \ - incomplete type definitions#\"))))(Secondary((id \ - 3b42962e-e812-458b-81e4-ccb9b47ae498)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a5b8111a-98be-4913-9547-757d8ac3bb49)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 45999b04-3947-4d6b-981a-4a922bec457a)(content(Whitespace\" \ - \"))))(Tile((id \ - 8b237d91-f6b6-403d-88ab-0340de2eb665)(label(badTypeName))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3e3d3000-b489-419f-be2f-756b9a90a750)(content(Whitespace\" \ - \")))))((Grout((id b44e338e-dc5c-4e51-b984-5fc0f07bea08)(shape \ - Convex)))(Secondary((id \ - 7f8d27b4-9bf9-42b5-a6c8-6fa551a69421)(content(Whitespace\" \ - \"))))(Secondary((id \ - 46d1b01c-3b1f-4ca5-b758-f230e6637963)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1f9a4731-d604-4f82-b213-32bf618ab455)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2a954be1-805f-4a8f-822e-18c82dbada9f)(content(Whitespace\" \ - \"))))(Secondary((id \ - b8dc099c-517d-45dd-908e-b15a5e8ca14e)(content(Comment\"#err: invalid \ - type name#\"))))(Secondary((id \ - 6530e47d-5d77-4191-99c4-443977e53491)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 840e7c4b-c3d4-4456-a3cc-aa6522f08093)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 35326212-8e5c-4d0a-8f3b-48362a7f044e)(content(Whitespace\" \ - \"))))(Tile((id \ - 8193e727-5a25-42ec-95e1-6706476fb572)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 236e44d6-5709-4e84-822d-7e22ee3e5a74)(content(Whitespace\" \ - \"))))(Grout((id dbcd7e36-678c-448c-b1ea-5126bdb1f9b2)(shape \ - Convex)))(Tile((id \ - dbeecc36-9f06-42dc-8065-a498fe139314)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Grout((id \ - 94f0274e-e408-488f-8ccf-1f411bba1d7d)(shape Convex)))(Secondary((id \ - 588ed230-2e5f-44cc-a2fc-c1537bf06147)(content(Whitespace\" \ - \"))))(Secondary((id \ - 71f78896-bea9-4ab9-ab5e-f7b1915c0909)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 5c55dbc6-edb7-4781-a822-0871621ec978)(content(Whitespace\" \ - \")))))((Grout((id 6ac73267-abef-4c16-b5cb-f68d38bb90b0)(shape \ - Convex)))(Secondary((id \ - c57ec347-a8ec-4b71-b6ed-aeda5c661dff)(content(Whitespace\" \ - \"))))(Secondary((id \ - 291cdcea-a880-4212-a779-c102106a40c4)(content(Whitespace\" \ - \"))))(Secondary((id \ - fe3284dd-3367-435c-8078-73d6a54e6fe5)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d7eb86a9-adb2-4db6-9456-e127d1dd0206)(content(Whitespace\" \ - \"))))(Secondary((id \ - 21ea3daa-44ee-4538-b2d5-92059e902e45)(content(Comment\"#err: invalid \ - type name#\"))))(Secondary((id \ - edc267d1-73fe-4fed-961b-ededb5eabc86)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 504e4d4b-6cad-4052-bde5-c7d60738b105)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Grout((id \ - 00652e06-0d0b-4d27-a6bf-e7d8e2a791bf)(shape Convex)))(Secondary((id \ - 247b6a79-5a8e-4cc0-b8be-14c75cbdd456)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1d1140b6-2947-4b19-a266-2a1ad46d7fcd)(content(Whitespace\" \ - \"))))(Secondary((id \ - 281f9cf3-978a-4feb-98bd-d74688104503)(content(Whitespace\" \ - \")))))((Secondary((id \ - 13f24ed5-e521-4634-bd01-ba8b5952d365)(content(Whitespace\" \ - \"))))(Tile((id \ - 82a2641f-02c1-48db-8560-4eb1ca1b7ae3)(label(badTypeToken))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 1686d96e-0282-4efc-8d82-1c15870c20a0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 50dcead3-c14d-4b97-a6f2-c8b64ded3c8b)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8edb292d-6dc4-467e-8cfb-abf69bec4c8a)(content(Comment\"#err: invalid \ - type token#\"))))(Secondary((id \ - 9f3b120d-8e49-4807-b138-f4f331e86bc8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 5ecd248a-4f4a-4e6b-8b31-8a7e26201405)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f25bdb31-8892-4ae7-a67e-9b63d308109d)(content(Whitespace\" \ - \"))))(Tile((id \ - bbeec78f-bc72-4bee-8278-ca262904139e)(label(NotASum))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - fc6d7e43-fb03-4cb1-a6e0-ce55385cdf7a)(content(Whitespace\" \ - \")))))((Secondary((id \ - 844e751f-2999-4bc5-b8c2-52fac52ceb8d)(content(Whitespace\" \ - \"))))(Tile((id \ - 7383501e-678e-4a4a-a247-bac5b862a012)(label(NotInSum))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - faee34d7-63cb-47be-99c7-1f8f3cbc945b)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - b580557d-67e2-4d8c-bbde-01dda5af516b)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 81b97f6b-6906-4754-b336-d31f42bdc64b)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1946f45d-3ecd-4fce-b057-73c282406626)(content(Whitespace\" \ - \"))))(Secondary((id \ - fe510f6b-8c83-4415-8e88-e56fbbff3f71)(content(Comment\"#err: cons not \ - in sum#\"))))(Secondary((id \ - 24a96680-ef61-46ef-aab5-90c69df02459)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 81d32e5d-d7b8-48a8-a4e2-82f749229d16)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 6d7589bf-5566-49e1-93c6-9b3f631db131)(content(Whitespace\" \ - \"))))(Tile((id \ - c25e8c0a-0f38-4683-96c0-86f6f8972c16)(label(Bool))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 78b28f3a-6e23-4e14-b9b4-2ecd978fc481)(content(Whitespace\" \ - \")))))((Grout((id 764364ee-1346-4f02-b185-ab55e91696ff)(shape \ - Convex)))(Secondary((id \ - 7670268d-d5f3-4fea-8981-239e0b84e7bd)(content(Whitespace\" \ - \"))))(Secondary((id \ - 71446794-3567-4e71-999e-9b8f8f30bd86)(content(Whitespace\" \ - \"))))(Secondary((id \ - e2a2e26c-a039-4877-b7d3-925f155200b3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 6eb01bf7-84f2-455e-afa5-5e7a77c21d11)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9e567f83-c510-47b4-8f28-2945a276da5e)(content(Whitespace\" \ - \"))))(Secondary((id \ - 70d02bef-d035-44fb-bdfd-28354c7f71f3)(content(Comment\"#err: shadows \ - base type#\"))))(Secondary((id \ - 728de868-83bc-400f-a9f7-c5521b874902)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - eb2d1a51-6413-447f-940c-79066dee0131)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 08a8df70-fb11-4b10-940e-d42cdd55e21a)(content(Whitespace\" \ - \"))))(Tile((id \ - 4db97840-d810-4291-b850-80f068a74764)(label(Dupes))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 4f7f406d-68a7-4f84-abf2-fe344672577e)(content(Whitespace\" \ - \")))))((Secondary((id \ - 4ba80849-51ff-41b7-900d-04b27c19e233)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b5b72e2e-b4c4-4f2e-8df1-2774300cb8af)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - fda57282-0ea0-4e24-b357-443867c5810e)(content(Whitespace\" \ - \"))))(Tile((id \ - 47b03f83-8e3a-43dc-bc45-ea3a1f533bc5)(label(Guy))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - fb3a3785-7d43-47d8-9d66-ff06bf3973be)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 4352df8d-0d49-4887-b657-6fb6f3629b2d)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 13943417-6a68-4297-9e98-5ed609d95f3f)(content(Whitespace\" \ - \"))))(Secondary((id \ - 3df5e0e5-2f89-463d-a0bc-86161bf35e5a)(content(Comment\"#no \ - err#\"))))(Secondary((id \ - 0724c637-1e37-4421-8a53-383189cbc135)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a16d4064-877f-48cb-a13d-4c70d6cc88ff)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 44ae11c6-5c35-414a-9246-31a45eeeaa10)(content(Whitespace\" \ - \"))))(Tile((id \ - 368d0cfa-2f60-4995-9dd1-67a233244ddd)(label(Guy))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 45b6dce2-460a-45aa-94b3-44f5cb1770db)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 7bca4b0f-69ac-4ecd-80d7-f5f7a3ca3c69)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 45ecc02e-6bfe-4fd0-821a-74f6a28e41b4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5d4564f4-c72f-408e-96db-fa9f535399b3)(content(Comment\"#err: already \ - used#\"))))(Secondary((id \ - 9e446547-cf3c-4582-9969-ae340d614ee7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 78b1c4e5-543b-455d-96ae-12281f366e24)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f834aa0e-07ad-4206-b7ef-aa0963a75cf0)(content(Whitespace\" \ - \"))))(Tile((id \ - a94a2efb-e3e3-434e-b110-6df2e6356c2a)(label(Guy))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - d20d3838-ec04-4deb-878f-4ed4aae7cc16)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 350de55b-f090-43fb-b6be-76ab7d0669f5)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9a56b806-f776-424d-aeb2-fff2e79ad3b2)(content(Comment\"#err: already \ - used#\"))))(Secondary((id \ - c20bdb6b-9027-4491-badc-793867765137)(content(Whitespace\"\\226\\143\\142\")))))((Secondary((id \ - 9eff8876-3748-4e07-8e3e-93e3974311ad)(content(Whitespace\" \ - \"))))(Secondary((id \ - a19cb87c-b880-4233-9fcb-986b80339437)(content(Comment\"#err: expected \ - cons found app#\"))))(Secondary((id \ - 722c5d63-7959-4590-8f2e-3a1333e1115a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d19836f0-91e0-4481-b0e4-da1a41426757)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 37936698-478c-45fe-810b-b8ff8b6140a4)(content(Comment\"#sums in \ - compound aliases dont add tags to scope#\"))))(Secondary((id \ - df194437-6025-4d81-b5f0-402404521089)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 578fa2c4-875a-4266-b191-eac0527f8d3e)(content(Comment\"#but compound \ - alias types should propagate analytically#\"))))(Secondary((id \ - c929f5c1-5dc5-4d22-a11a-bc3e9e03df03)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e067d056-fa3d-45c6-bb1d-d9cbbe3bd644)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - df764858-b2c7-4e3d-a756-277edaaac7ab)(content(Whitespace\" \ - \"))))(Tile((id \ - c0903ced-a716-466e-83e5-deec86113fd6)(label(CompoundAlias))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 09cd378a-f158-43c2-b6c5-8200b5c4f371)(content(Whitespace\" \ - \")))))((Secondary((id \ - 504889e8-b0c0-4ca4-b309-891ef5d71c2f)(content(Whitespace\" \ - \"))))(Tile((id \ - 1ea60ba7-5042-4ddc-89ca-98587b5f0c3a)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 8bdc9729-ef9d-4973-b361-bd1cd33cebb5)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - c98a9eb4-5776-4a27-a6cd-10a8df501634)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 23de6203-af4f-4676-ac60-b3fb26b1125d)(content(Whitespace\" \ - \"))))(Tile((id \ - 53ec87e1-ad3a-403c-adc2-65f416c0bbde)(label(Anonymous))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - c836e9cd-ccdf-4486-8f67-1b6bdf2635d9)(content(Whitespace\" \ - \"))))(Tile((id \ - c25c272d-34be-4edb-8fd5-00b19853c299)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2e456214-38a7-4d71-8a68-81a654a2231a)(content(Whitespace\" \ - \"))))(Tile((id \ - 64ce29c4-d885-444a-9608-9fc3233df7fe)(label(Sum))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 3b33565d-aedc-4334-90a6-50406c7d4f2f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2579a35d-9f8f-40b3-ab4d-90c208680b08)(content(Whitespace\" \ - \"))))(Secondary((id \ - 79b247ac-8bfe-4d2c-a256-215646df7684)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d0bf0e92-81fb-4382-9f8e-896c4524b876)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - a003c6fd-aa0b-4aac-bf98-a1fdd1f76e5e)(content(Whitespace\" \ - \"))))(Tile((id \ - c6fab570-5cfa-4b53-b58e-3d247ab86b41)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 0fee6ff4-4fd1-4547-a682-69a966a17df9)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0c527894-b6a0-430e-a543-22393e484c00)(content(Whitespace\" \ - \"))))(Tile((id \ - 89472f0f-9c8e-492f-84d1-edbf861a2dd9)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 694d140a-7cde-4c22-af7d-34c612e8cb7e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - a0cae2af-701c-40a3-9ad1-90344d49ab00)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - ba09bcde-a912-4705-aafe-31df30cd4e8e)(content(Whitespace\" \ - \"))))(Tile((id \ - 56fe6b2e-e414-4664-8d27-eba912f35c5d)(label(Sum))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 2106fb20-08ee-451f-a626-a2de30299de6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - e6435061-d2e4-4269-a1c2-0172cf649f8d)(content(Whitespace\" \ - \"))))(Secondary((id \ - db68c807-7f09-41d6-b9fb-d1793821dfbd)(content(Comment\"#err: not \ - defined#\"))))(Secondary((id \ - acf2625b-ee99-4ce2-88d7-02f487f5f16c)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - de749686-462c-4209-aa1d-2be455a60ed9)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ae4e351a-b363-4c1f-9c93-236d4162ef38)(content(Whitespace\" \ - \"))))(Tile((id \ - d5ee099e-4d56-4d39-9cc5-dfc953bc69bd)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 0302860a-b75b-4ee3-a369-3a96e405299c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0bb38021-e239-441f-9345-1b177e42c4ab)(content(Whitespace\" \ - \"))))(Tile((id \ - e3be8507-525e-4963-9ada-956620df1416)(label(CompoundAlias))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 28086867-ca9d-4497-a3da-1cc1f4af7f80)(content(Whitespace\" \ - \")))))((Secondary((id \ - 877ba0d2-c788-4e01-8730-b729f811584f)(content(Whitespace\" \ - \"))))(Tile((id \ - 646cc8f4-3f4f-4db8-88d2-f027aa52f001)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 6e9ab11b-93f8-43da-b165-84d6febcff33)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 953bea6f-ef12-40e2-aaa2-88521ad7a341)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4311be69-1fc5-44e4-92dc-e14a113e09ad)(content(Whitespace\" \ - \"))))(Tile((id \ - 92c7a984-7a6c-4681-81ed-12d0b6d2f85f)(label(Sum))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - bd9062d8-0839-4e01-b3ff-249ce2fa0fa0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2ed1ce8c-7098-4930-a902-09692fc59561)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8aa36f22-34ef-4a02-8c90-3373802bb56d)(content(Comment\"#no \ - error#\"))))(Secondary((id \ - 479a58a3-fc3f-4bc5-b2e4-9445c8fd6f3d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0872dc36-0809-408c-9325-5aac1cc006ee)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - b27c095e-4c91-42fd-80ae-24d125196589)(content(Whitespace\" \ - \"))))(Tile((id \ - 53d8e6fc-6db8-4bc9-8c9e-fa920af31853)(label(Yorp))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 16584caf-f5ca-4109-80bf-ac043786a3fc)(content(Whitespace\" \ - \")))))((Secondary((id \ - 874a65f9-530b-474f-a1d5-49ce5805971c)(content(Whitespace\" \ - \"))))(Tile((id \ - a7a60290-c5fc-4052-8200-72d1237ad349)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 58584121-5244-4043-b3e1-62f998c2f43d)(content(Whitespace\" \ - \"))))(Tile((id \ - 2466c509-22be-447e-9081-09a92acc5a09)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 23b232df-24d8-4be3-9dec-d71d8f61ba41)(content(Whitespace\" \ - \"))))(Tile((id \ - 710a5796-7719-40d4-94ad-26408c4eaa9b)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - df9c3daa-59c3-4528-b468-5c2026456be7)(label(Inside))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - ca17d252-1d13-4af7-b772-68214bb9f248)(content(Whitespace\" \ - \"))))(Tile((id \ - d6128be1-0d5b-49b8-b425-f836ab591025)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2495b3a2-ff99-41b2-b9e3-ebad491ad827)(content(Whitespace\" \ - \"))))(Tile((id \ - 0fcc185b-203f-4c89-9a4d-3be8f98440ba)(label(Ouside))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 798ed5fe-9ba9-4873-85f0-5eaddbe09742)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9e8e998e-824a-49d8-a45b-f668667e901b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bda799e0-5b9c-424b-a993-33970a339b30)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 1daa1348-cfd2-4e73-8e13-ec11e4b40f4a)(content(Whitespace\" \ - \"))))(Tile((id \ - 607b37dc-429f-4ab5-9051-b3c5452843b9)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 44c7b6f6-6076-469f-98a4-2e3e50da086f)(content(Whitespace\" \ - \")))))((Secondary((id \ - 7c00b732-aad0-41c7-84ae-0443a5320819)(content(Whitespace\" \ - \"))))(Tile((id 08f4d227-9515-443d-867f-afb506876f95)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - fbb5d5f7-bae0-4378-93a7-d9694c719ba5)(content(Whitespace\" \ - \"))))(Tile((id \ - 8f93b1e8-08c2-4bd0-865e-519f283d7f00)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - b1881fa3-4b0e-4278-b678-88d59027918a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 3d61d467-2df1-4828-aa47-cc730cfc0e07)(content(Whitespace\" \ - \"))))(Tile((id \ - d369515b-ab0c-46d1-9f34-b16330cff2f7)(label(Inside))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4ca22808-f820-49a9-abe0-a8f30048c266)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 23a4ebe5-7c29-4390-a3ca-f110868da1be)(content(Whitespace\" \ - \"))))(Secondary((id \ - ff890a2c-8712-4a01-8a66-25f31d33f280)(content(Comment\"#err: not \ - defined#\"))))(Secondary((id \ - fd9b5083-e0ff-4f51-bbaa-0bcd8d508e41)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 734b8436-3afc-48cd-98cf-175e67a65776)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 0d14a8c6-d977-4211-9a89-f961d4e72a70)(content(Whitespace\" \ - \"))))(Tile((id \ - bbb64e78-50f2-43de-9903-20403a82b81d)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 0c9fffb5-0580-4ebe-8756-734cc9d24aea)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a3bdc44c-183c-47ae-8893-f8149f401ba0)(content(Whitespace\" \ - \"))))(Tile((id \ - 8581a0d6-778f-477c-9842-5f0f80ebf02e)(label(Yorp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - ff3068ab-eb3b-4eba-b6a1-73508a6335be)(content(Whitespace\" \ - \")))))((Secondary((id \ - 930bbbda-6e71-41de-9cdc-b515854f87e4)(content(Whitespace\" \ - \"))))(Tile((id e2f41a86-3471-480a-8bbf-5567abfd35e0)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 191e0643-6d0e-44c0-9083-497ba618de80)(content(Whitespace\" \ - \"))))(Tile((id \ - 07dc73be-cb4b-42c7-88ec-04766ac50310)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 15ee0a63-ace8-4dda-8453-c76109debb1d)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 99ddf951-1426-4274-9383-3179fefd2884)(content(Whitespace\" \ - \"))))(Tile((id \ - 138e4543-63eb-4393-b5e3-37b2213071d0)(label(Inside))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9cd9af2b-1ed3-4f6b-b70f-d3875a0b8f24)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 699d1f5f-8987-432d-bf14-ad9cdcdca65a)(content(Whitespace\" \ - \"))))(Secondary((id \ - a46ab86f-cf91-4c65-90da-f35f8b32135e)(content(Comment\"#no \ - error#\"))))(Secondary((id \ - b8eb86e6-8451-47a5-92cd-04a6b31e80dc)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 68f1b929-307c-4d51-ad68-5ee84e959638)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - e78ab021-d2ea-4b36-b590-647836368b90)(content(Whitespace\" \ - \"))))(Tile((id \ - 03ec1a53-4d65-4d7d-8fbf-0042c69a819d)(label(Gargs))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 91e26f49-2b74-4b7a-9f2b-80db16fdc649)(content(Whitespace\" \ - \")))))((Secondary((id \ - fd8f80bd-2f17-4113-aa75-1e430681fa28)(content(Whitespace\" \ - \"))))(Tile((id f70b26ac-5d6f-4be6-bea1-de21173a864a)(label([ \ - ]))(mold((out Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape \ - Convex)(sort Typ))))))(shards(0 1))(children(((Tile((id \ - 4e54e8d3-500f-481c-9210-0589debe44bd)(label(BigGuy))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - d64ef88c-8d16-4ad8-bde3-22a3de457b08)(content(Whitespace\" \ - \"))))(Tile((id \ - 63683d4a-72ea-46a0-816c-59c6f76c28b7)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 26fcf904-b223-4062-9c93-8df57bb9c157)(content(Whitespace\" \ - \"))))(Tile((id \ - 22d8b3ca-daaf-477b-98be-d79bffcc39be)(label(Small))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 6bf38472-46c7-4f33-b16e-5ed1b36c4e27)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d1bba0cf-7ec0-4fe1-bf44-4446005dab73)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 88672341-e136-4166-a650-415f1e62934a)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8c916f7b-ce42-445a-8826-fb40716bbf4d)(content(Whitespace\" \ - \"))))(Tile((id \ - e981f0fc-52d4-4c78-90b7-052c32ea7cf7)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - b299cbf5-083b-41c7-a971-3ab63158560a)(content(Whitespace\" \ - \")))))((Secondary((id \ - 73637027-1e6b-4750-9d10-a52bef6c5315)(content(Whitespace\" \ - \"))))(Tile((id \ - 947d69f1-b8f1-42a2-8130-1b8099dab95f)(label(BigGuy))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a575684b-16ec-4eb4-8c2d-850ae65e040b)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - c19e5899-3261-4238-8e2d-de75df7560d9)(content(Whitespace\" \ - \"))))(Secondary((id \ - 865aed54-67dd-411c-9010-07f539df502f)(content(Comment\"#err: not \ - defined#\"))))(Secondary((id \ - b1c8dac7-0b06-4464-b3cf-bf93a83c70df)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - fd33174a-8745-4427-9144-2400704cad0a)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8316d5f3-c15b-49e9-9a5d-5cb666c602df)(content(Whitespace\" \ - \"))))(Tile((id \ - eb9e501d-1575-4d6c-a8f2-1cd047d2f45d)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 6eb89955-5dd5-4cbd-9e96-b65366670d8c)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2aefcd18-7de0-43a0-9faa-b426c6789be0)(content(Whitespace\" \ - \"))))(Tile((id \ - a21a77ba-7808-4326-90b9-37624c065125)(label(Gargs))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - ccaaf0b3-c585-4954-a9d4-8081b772ce4c)(content(Whitespace\" \ - \")))))((Secondary((id \ - 24a26475-ed58-4a55-8519-4a19a8d6eab5)(content(Whitespace\" \ - \"))))(Tile((id 56d15820-5728-40ba-be12-31e6d6d18070)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 1ac57a33-bec2-4853-920b-0b74046ac5c7)(label(BigGuy))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 4e330aed-31e1-48bb-b117-b2236aa8f462)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 78f070a0-34fe-4154-839b-faa281aa664c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4f0cb088-1433-4821-8ae2-c3473a074dfd)(content(Comment\"#no \ - error#\"))))(Secondary((id \ - 1211dfc5-275e-478d-ab2d-10815ab07f61)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a8e58a9e-a427-44b6-a6e8-72e73c56e00b)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - bb58039a-73b4-4c24-8650-4b8a6a8f9c69)(content(Whitespace\" \ - \"))))(Tile((id \ - b0fb6150-7fa1-499b-b31b-d8637b99df9d)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - cecddbab-9c33-4ca4-b2d7-62bfdcede66b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 06f7cf21-bd21-4b28-b715-ab47a16f87b6)(content(Whitespace\" \ - \"))))(Tile((id \ - c1cec561-4a91-4888-994e-2f5207fae7b1)(label(Gargs))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 37680abf-19f8-4405-a939-939bb8ae3257)(content(Whitespace\" \ - \")))))((Secondary((id \ - dce1b922-5c9d-4bbc-b305-6ea113df4908)(content(Whitespace\" \ - \"))))(Tile((id \ - 598c5083-fd4c-4960-95a8-dd081072c046)(label(BigGuy))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a2e234c7-0610-4e66-b5e6-44d7a80c1b4d)(content(Whitespace\" \ - \"))))(Tile((id \ - 5e6965bc-b2f3-413e-b496-da9074e48168)(label(::))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 6))(sort Exp))((shape(Concave 6))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7761f72f-01d8-4513-a770-101ae86e0b7a)(content(Whitespace\" \ - \"))))(Tile((id 9b0a19b3-4660-4b39-8646-2b8165cc6ba1)(label([ \ - ]))(mold((out Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape \ - Convex)(sort Exp))))))(shards(0 1))(children(((Tile((id \ - 8e5f55af-8415-4b0c-82e0-bce5aec78cea)(label(BigGuy))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 83e8f285-dd2a-4e02-9fe6-5c73ca911f8d)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 06dd0a03-1557-4c87-abec-a927a95f71f3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2f2796e8-c5f5-4f58-986a-feb3351af7cd)(content(Comment\"#no \ - error#\"))))(Secondary((id \ - fade9087-e8b7-4f9d-8239-26487eab3a10)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - cf9898f1-b38c-4491-aff0-88417c372571)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - a0ff7563-db95-413d-bb49-815861c53e9e)(content(Comment\"#unbound tyvars \ - treated as unknown-typehole#\"))))(Secondary((id \ - ca9c59ee-54f7-4442-b99c-e4f5f5aeb598)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - dd3f67fa-c4bd-4c16-959e-c18a1fac5729)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - e6f29536-f176-4b0a-a328-4bd53241213a)(content(Whitespace\" \ - \"))))(Tile((id \ - c67023b9-9c85-49c3-b32d-ddb26849b7d9)(label(a))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 73fc83c2-f6a0-4fba-97ea-2a190f80be41)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ - 3d81cc00-237f-4e39-b869-95a45cbfce83)(label(Bad))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 18b26fec-468a-449c-8ab9-d25e1571ee90)(content(Whitespace\" \ - \")))))((Secondary((id \ - 37f6757b-d0ff-412a-9bc6-a17c62a4ffc6)(content(Whitespace\" \ - \"))))(Tile((id \ - e4288775-7f3a-41b3-8623-324c3c97df23)(label(0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - c0e8016e-3d83-4170-ad4e-6887e8b10199)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - aaee2915-c885-4cf9-870b-82f3e0a3afff)(content(Whitespace\" \ - \"))))(Tile((id \ - c85b22ef-151c-45ab-a8f1-dda344eb1cc6)(label(a))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - f492fc62-c6a1-4060-bcff-7410147d666e)(content(Whitespace\" \ - \"))))(Tile((id \ - ebf40498-d1e2-472c-91ee-e48d79ab85a5)(label(==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - fcc5be3f-2c0f-4d38-8653-988df942be09)(content(Whitespace\" \ - \"))))(Tile((id \ - 5d684b4a-9368-4738-a021-1d252e08ac5a)(label(0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - af06fd20-5b02-45e2-a75d-e8c568e48098)(label(\";\"))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 10))(sort Exp))((shape(Concave \ - 10))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 4174a2e6-9c22-487a-8eda-a36ffba4fde3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 396ebf45-77e7-4d80-9cde-8b4da9503b8e)(content(Comment\"#err: not \ - bound#\"))))(Secondary((id \ - eaee1ef7-4cdf-4a1e-b542-8baee2ea0a60)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - ff3f4db2-fa7f-4df6-a0b0-efcebca86a8a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - eb41c397-d83b-44e8-9331-6c8fe202abb5)(content(Comment\"#non-sum-types \ - cant be recursive#\"))))(Secondary((id \ - b43141ac-b5c6-4fe7-8450-58ce618dcd23)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a49c231a-1204-40dc-a7d1-80e348dbc837)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5c199fb0-b7dd-4dec-be32-f1e06e4b2b54)(content(Whitespace\" \ - \"))))(Tile((id \ - 09b48959-e18f-4940-b5a4-bb5910887bf9)(label(Lol))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - 63e50c83-8b45-4876-ac96-b9a9de4b1f7f)(content(Whitespace\" \ - \")))))((Secondary((id \ - 1eacd45e-a7cb-46c0-8ed9-79bca958ffbf)(content(Whitespace\" \ - \"))))(Tile((id \ - d211e54a-7dd2-48a0-8d05-15650c7ce482)(label(Lol))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 21032eb4-e316-44c1-b326-20624fb7f23b)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 60507cbf-016f-4767-bad3-3174f671a6da)(content(Whitespace\" \ - \"))))(Secondary((id \ - 21bc20cf-eae9-422c-8cec-042c1d64e9bb)(content(Comment\"#err: not \ - bound#\"))))(Secondary((id \ - 741a675e-8159-4d48-8c8c-8a23b0f6255d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - e48d0c00-25ec-4653-8304-4ad172a3f6e0)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - a1ba49b0-a8fc-4eac-b803-3d3c2ec679a5)(content(Comment\"#no errors: \ - analytic shadowing#\"))))(Secondary((id \ - 1b958817-eaa0-479e-afbf-14d1e90cb8ef)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 7f99d457-f172-4a74-b7bb-5cc02c531b47)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 51a1d4f6-3090-48fe-9b62-b9201c98729c)(content(Whitespace\" \ - \"))))(Tile((id \ - d70666e8-1cc4-4875-bd49-af0e66ead468)(label(Tork1))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - c6ed6562-69f1-4013-ad3e-f735b2181be7)(content(Whitespace\" \ - \")))))((Secondary((id \ - bfadbe13-6e26-421d-bfc5-1313d1a6b279)(content(Whitespace\" \ - \"))))(Tile((id \ - 90649635-0db4-49f5-b42e-5c4bcaddd56e)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 80d68d71-d2c6-4e36-8ff8-8c4b0c4f8df5)(label(Blob))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 479aa700-9866-4263-a952-9ed4aeb3fa80)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 37ffc8a8-8df5-4d62-affa-9283cac2ae6d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 967b7520-14cd-4437-9492-f0bfbb00af9c)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 0312499a-1ea8-495f-8d9e-c8f5befa4b07)(content(Whitespace\" \ - \"))))(Tile((id \ - 198aaa68-b551-49fb-a469-67a319aeb990)(label(Tork2))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - bf43cc85-c85c-4ed2-9da0-f26d79a0723c)(content(Whitespace\" \ - \")))))((Secondary((id \ - 88f7aa9e-9527-46fd-97fa-5e86361f53e1)(content(Whitespace\" \ - \"))))(Tile((id \ - bef6e556-3f5f-46aa-a35f-3da91d2e3962)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 4bc5f21c-21c4-4822-9ba8-dd9ef6213a9a)(label(Blob))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - e15462b9-2086-4078-879b-bf7bd0c0b82e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 06dbcd92-68ac-459e-80dd-b14a8b34e589)(content(Whitespace\" \ - \"))))(Secondary((id \ - 04714b80-e0e5-472f-a518-0d4c1b227324)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cb6ba87a-243b-4603-9ae3-18467b6bb11d)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 9764a89e-7a40-475d-bfe6-cf1abf445e24)(content(Whitespace\" \ - \"))))(Tile((id \ - 942d3bfd-119d-4af1-b056-adc09876c1ce)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 2ffd89ea-37ce-4e35-9965-30983246e870)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Tile((id \ - e0271078-389f-4447-990f-54484758b5fb)(label(Tork1))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - c753afa8-1705-40d2-bdc6-53278a05251a)(content(Whitespace\" \ - \")))))((Secondary((id \ - ac69d63b-8d50-4927-b3bb-1b3981fc12e0)(content(Whitespace\" \ - \"))))(Tile((id \ - 57e99a52-e3aa-4a1c-ad23-e34f9f7a3848)(label(Blob))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - e727c791-3f3f-4451-846b-1d67b7b6f2e0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b5df6afa-4797-4f29-aea6-2debff5b5815)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - d640cba2-6ffa-4b4f-a95a-9589f0ae7860)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 3ecf29fc-1589-4842-b479-0aa3c91559b5)(content(Comment\"#exp tests: \ - happy#\"))))(Secondary((id \ - aad25d02-ce8d-4ddc-8319-25f414789e91)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0d18f8ed-ae09-44ab-86e2-2f31f586f718)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - cf9c9f04-8ba4-4e9e-b8b1-1595bca524bc)(content(Whitespace\" \ - \"))))(Tile((id \ - 6f8ca38e-1195-49e5-a403-12755979933b)(label(YoDawg))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - d896ba5d-211d-4710-ae25-21cae2e5f39f)(content(Whitespace\" \ - \")))))((Secondary((id \ - 54a5ae30-e45d-43bf-8e58-68528dd070a4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 76b4afb3-11f7-4281-a0fa-78bfe00af675)(content(Whitespace\" \ - \"))))(Tile((id \ - 0de97a42-efde-487a-9aa1-b8a8b204c005)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 3d546681-6218-4b15-88a1-36880f2fd618)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - cafe028d-741b-43b3-9075-dbd8c40775a7)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 55e4bbea-4586-47bd-974b-3ed0450cd03d)(content(Whitespace\" \ - \"))))(Tile((id \ - 096b2b9c-750d-4eb7-aad2-fd3ebaa474a4)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - da898f52-f890-446e-bbca-3c21a722539b)(content(Whitespace\" \ - \"))))(Tile((id \ - dc207019-2474-4510-a5de-8c249cfa805c)(label(Bo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 9d8f1fa0-b4ad-4b55-898b-4d8d148e3911)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - ca93d847-6ad0-4f4d-81cf-f01eb6221ded)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Tile((id \ - 09bde397-fd60-43b8-bef7-4c009c66c792)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - e553d2b0-9cd3-45c8-91ce-a235e29e5d42)(content(Whitespace\" \ - \"))))(Tile((id \ - 866472b5-017b-40f5-a7f1-e7ed4f0b1098)(label(Dawg))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - d7fbcbd9-6f5b-4206-9768-92fe2afa3390)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 2999e46f-cf25-4ce8-99a2-b9a7efbb44bd)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 9bb643d5-e8df-4743-9e2f-93cd91538deb)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0819ff39-baf9-4ea6-8791-a94314994519)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 382535a6-6a57-4e3b-a2e9-28274736752f)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f1a698cb-8dc0-4ac4-95e8-d9f4b8caad78)(content(Whitespace\" \ - \"))))(Tile((id \ - 35d8ba79-c2c7-4fb8-a28c-0058c2fb7b43)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 149e9147-fa6a-4178-b722-3ee472c954ff)(content(Whitespace\" \ - \")))))((Secondary((id \ - 63110c2d-2eae-4c52-8fc5-5528fb6791b6)(content(Whitespace\" \ - \"))))(Tile((id \ - 35a2be08-6c82-45dc-a2e9-cff7e26cd819)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - f7e406ba-b9b8-4bb2-ba68-eef563c5d606)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 07fb0449-3e01-41b3-b432-368d633e826e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 874729d1-ccb7-4254-9dbf-15f1e6106e4f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 47a1faf6-ee0c-47a2-8b5d-bbcb4010c220)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 56d6659e-e87b-4404-b79c-7304b32d4c31)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 80e853b0-df14-4e93-9b67-0a70768ee823)(content(Whitespace\" \ - \"))))(Tile((id \ - 82561c49-0822-4066-969d-0f3dceeed045)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 46843936-5709-4dcf-a3ac-2da4152ac784)(content(Whitespace\" \ - \"))))(Tile((id \ - 353f5a27-c6a3-4871-aeba-88d1bb20c062)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 478930cb-edb3-4e73-b628-5585e0edd301)(content(Whitespace\" \ - \"))))(Tile((id \ - 63d89718-4fb2-4cca-a4ba-619ed4161ea5)(label(YoDawg))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - ebed6f30-8049-4e6b-bc1f-0f43b119e6bc)(content(Whitespace\" \ - \")))))((Secondary((id \ - 813c7f21-7937-4623-a5a5-f6e6451590c0)(content(Whitespace\" \ - \"))))(Tile((id \ - f6e41244-ea3c-474c-bee7-bc88ee0b0d5a)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - a2d96037-36ba-469a-acf8-d452bc0bf6b4)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 44f27f41-7e18-416d-968f-2d529cb44aa2)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - ddaf3722-3aed-4beb-9adb-33ec3bbc41d8)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d3462f44-025d-464c-9276-4fc4816cab2a)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a0a8f3bb-29ae-4504-89e5-1bcaa40e62c2)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - c02a2814-5a92-4e1b-aa64-a7ea97d74692)(content(Whitespace\" \ - \"))))(Tile((id \ - a823ea01-f7d5-48de-af6b-18471ae0dedb)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 1d87b56f-5871-4827-8eda-b2da4f061e3f)(content(Whitespace\" \ - \"))))(Tile((id \ - 5069432b-bbf8-4b5a-8188-55c2185d0ea2)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - ee2f040b-0404-4d43-8c64-dfe61e43c96e)(content(Whitespace\" \ - \"))))(Tile((id \ - c1790031-5d71-49ec-a047-c22fe4113a0c)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 1bef79b5-b629-4ba9-be1a-639b87eda81c)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 763e30d9-a729-42b9-9d40-a441524d2e15)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - fab7f54f-758c-4d9e-a002-1cbe3c60b951)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - c2d100f8-7791-4a35-9da6-ce79ffdd9a36)(content(Whitespace\" \ - \")))))((Secondary((id \ - b99f17c2-4093-42a9-90f0-2b9894ab852f)(content(Whitespace\" \ - \"))))(Tile((id \ - 1fc6ffde-7a37-4ac8-8e01-acfa757b63ca)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 27079549-c7d1-45b6-99d5-55da669a8893)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - bdd4ed11-da2d-4b3d-8e93-305e5f3b2332)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 811f8a5b-f248-4ef5-89cd-5b499f68f119)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d547d979-f20e-4030-8da2-0f8074c0be8d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c00c073b-8018-4555-9e4f-42ea58a3f7b5)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5d11208f-4b9d-4206-9fc5-f6aee5b1f417)(content(Whitespace\" \ - \"))))(Tile((id \ - 5bc38505-2943-47d0-9c3f-fd0fd7d3c2ed)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 137e0f6e-e7c6-42ac-898a-10320ee23d08)(content(Whitespace\" \ - \"))))(Tile((id \ - de170095-4268-46a9-bd94-132fc03fc400)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - ab343e1f-4bb0-4d88-a058-feba35f199b1)(content(Whitespace\" \ - \"))))(Tile((id \ - 0378d93a-798f-46a7-9da0-d9b0cc6e88c6)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - dfe7e928-73a0-4358-aebb-910cca24c05b)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - d789c4bb-2d1b-4d0c-bc8a-010397b5dc96)(content(Whitespace\" \ - \"))))(Tile((id \ - 4300fa82-e021-4968-a6fb-115f2d454846)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - f65e687b-c246-4a5b-bafd-85dcce8719f5)(content(Whitespace\" \ - \"))))(Tile((id \ - 1e14aa87-71bd-4063-8228-7d4283de73aa)(label(Dawg))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - f5cc53a9-d85e-47bd-95f9-41bfe8c564e5)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c1c90c46-ce7d-4dc1-b685-9515df06cf2c)(content(Whitespace\" \ - \"))))(Tile((id \ - 86cf54b8-1eb8-4c71-834c-054713b17e3d)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - b829a698-338b-4e45-ad6b-681ac712c6d7)(content(Whitespace\" \ - \")))))((Secondary((id \ - dc67689b-7a26-4b33-8077-bcd9147f1533)(content(Whitespace\" \ - \"))))(Tile((id \ - 18e1d770-b69d-47b8-a766-ab5fdef1a662)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - d7cf43af-d180-413a-9d64-3b55b5bd7f52)(label(Dawg))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 9436fd45-50a7-4869-9337-ed1b9ce5a568)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - e040951c-8400-4ddd-be63-d1113196cc8a)(label(5))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 66d4c15a-0dec-49a8-853d-a0b5466b108f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a8126906-4879-43da-bc74-839a73d2d9f3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3ac72841-67be-4d94-9b88-cd8981fb0aa7)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 3c84ca5e-d527-4f72-a32f-9a8f58a0b49a)(content(Whitespace\" \ - \"))))(Tile((id \ - f161ba75-45a5-41f0-a2f9-ac79fc7e80a4)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 0ee7c5bd-357c-4b96-91c1-bdc7f915bbdb)(content(Whitespace\" \ - \"))))(Tile((id \ - 0eb9b8d6-af2e-4ec0-b718-07307b08a1e1)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c54da2f9-ac1f-43d6-a334-cd532b2aa12f)(content(Whitespace\" \ - \"))))(Tile((id \ - 8c39d38e-8870-472c-806b-165743c96934)(label(DoubleAlias))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 062280f5-0217-4f6c-9015-e29148f19aae)(content(Whitespace\" \ - \")))))((Secondary((id \ - 35601516-0b25-454e-bb94-c8a73fd45c0c)(content(Whitespace\" \ - \"))))(Tile((id \ - 2495e72a-f78f-499d-b46b-b1d4c6c3b777)(label(C))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 5bfc977d-077a-4c09-a930-a383bebc0eba)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 075f7c8c-2a82-4599-836d-f7686d407eab)(label(4))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 1dc3b7e3-7eb8-4410-a1e9-91e4590143b8)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0f3c85ee-554a-4c11-9836-826505b71023)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8357167d-e2a0-4fde-8658-856fd4bdd8a8)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 28543a91-3539-4934-a1d3-539e0e35a3a4)(content(Comment\"#exp tests: \ - errors#\"))))(Secondary((id \ - ac987fb2-82ff-4e88-a9e7-1f01a5f59521)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 6d32739c-725d-4d13-9c86-ace63f2cadca)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 0551af0e-1b4c-4ef8-8222-579db3eeff9f)(content(Whitespace\" \ - \"))))(Tile((id \ - 1cce7403-e747-4e57-94fc-070f920c7c3b)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - aecdf5e1-9426-4459-8d86-1a3bd5381506)(content(Whitespace\" \ - \")))))((Secondary((id \ - 099069d2-ffd3-47aa-8947-2150a4a1d44c)(content(Whitespace\" \ - \"))))(Tile((id \ - e75c96ca-f6e5-471a-84bd-c3729acf9cb1)(label(2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - d827bf17-f9b1-494d-a597-c98235dfcc0a)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 5c5eb3a7-ce64-429e-b220-bcd1f61ed554)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - d6021581-1b6c-43f9-9d3e-8cf53d2e7783)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 63a5dead-e47c-4ebe-a5ec-604da6952836)(content(Whitespace\" \ - \"))))(Secondary((id \ - ff7d55e4-057f-457f-9f48-f1095b38d058)(content(Comment\"#err: incons \ - with arrow#\"))))(Secondary((id \ - da840229-fa14-4267-8fc0-8db937c1300b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 35edc724-eb3a-4009-9b21-89afc855a29e)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 6885a66f-ee55-4e80-aed7-f78faa8f5a53)(content(Whitespace\" \ - \"))))(Tile((id \ - 48dd15b5-3fc8-4f67-a34b-2e46b3673ad5)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 7a54914c-beda-4241-a923-ce3f3eca1520)(content(Whitespace\" \ - \")))))((Secondary((id \ - 2600366e-b668-4b8b-b32c-f90490a8842c)(content(Whitespace\" \ - \"))))(Tile((id \ - 3d98bb71-68cd-4e5b-bb3d-6f4aecc2f844)(label(Undefined))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 94116321-b10f-458e-8414-a813d20ad766)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 470d71a6-6c21-4ced-a6b1-16cfbf1bfac1)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 9491a239-d3e2-4c95-a528-7f1dc101c340)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 064edcba-5946-403c-a049-aefe4505ef99)(content(Whitespace\" \ - \"))))(Secondary((id \ - b364f93c-e4b0-4a06-a10e-e35085cdb7ae)(content(Comment\"#err: cons \ - undefined#\"))))(Secondary((id \ - eb55f2dd-b976-404c-99ca-55de8dfb9b1d)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9a264f3e-fdea-4815-8711-bb094e47cbdb)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - cda2ad80-1fd3-4433-b598-fd2d71b8b38d)(content(Whitespace\" \ - \"))))(Tile((id \ - 98442c11-2369-4213-a5ae-ce965b7ecfb1)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 94e87576-39ca-46c3-afff-f53773c2fdea)(content(Whitespace\" \ - \")))))((Secondary((id \ - 965b2cd9-3b29-4256-8085-129b0eb38997)(content(Whitespace\" \ - \"))))(Tile((id \ - b08db65e-0c17-41fd-8de6-6a2823abe668)(label(B))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 187c89d3-451e-47da-9660-c7da08b73c7d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - e5ae7227-9866-47f2-801d-8ac39227139d)(label(\"\\\"lol\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 2e6490f8-f0c8-4644-9583-f3eaa84a41a9)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 09e55948-9d4a-44d4-abd6-d12f5b82fef9)(content(Whitespace\" \ - \"))))(Secondary((id \ - 64851bc1-9a02-473c-bd2c-3eef63f61250)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 8e496840-183b-4603-9f01-e770eab722d7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3a09fcdc-1165-49dd-9aa7-c52e91d56c5f)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 5ff48348-493b-4be5-8dad-40cd6f6b9df6)(content(Whitespace\" \ - \"))))(Tile((id \ - a009ae27-c714-4cff-b5c0-8f2ed7de1896)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - f2ad9025-8a4c-4043-8ac4-833363186380)(content(Whitespace\" \ - \"))))(Tile((id \ - 27611c50-5c58-4825-af73-6aa2fdaeed97)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 998de262-ad4d-4dd6-b62c-facc54e1f5fe)(content(Whitespace\" \ - \"))))(Tile((id \ - c05677e9-4c4a-4691-bf3b-05cf4542c27b)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - c056c182-b015-4284-8f37-18da6ce52752)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 6bf29ef3-66df-4eb7-9a7f-a89901f4f965)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 03d78cc3-ab67-4b95-8dca-4932feed8ef7)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - b4621679-f884-4bb7-8ad2-a370f1936ac7)(content(Whitespace\" \ - \")))))((Secondary((id \ - 6b5c397f-f698-4d0d-bdc3-0304ce1f3ba6)(content(Whitespace\" \ - \"))))(Tile((id \ - 08fcacf8-89a1-4739-a98a-da7ba609cacf)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3f053951-69e6-4184-ad32-e2be35a3d80b)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f6afbde1-cea6-4638-b50d-e4a509d3b014)(content(Whitespace\" \ - \"))))(Secondary((id \ - 71e8df53-7ecc-4097-ba6d-a900677c6bbf)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 69836912-527a-4479-955a-d9b105929eea)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 8e25f143-e44f-4061-8c92-c66cd2230eea)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 6e7033b6-41a2-4385-93e0-a19bdb8f4b39)(content(Whitespace\" \ - \"))))(Tile((id \ - fe07e145-1faa-44e0-90d6-04bd68bb0a28)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 556fff87-f842-4646-b883-43ec00876020)(content(Whitespace\" \ - \"))))(Tile((id \ - 8437255d-bb80-4481-940c-2880068b2c85)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 33f23ebc-6967-46ce-89cc-268574539681)(content(Whitespace\" \ - \"))))(Tile((id \ - 2b6d3af1-e962-4536-bdf8-3467c395b7e7)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - d4ad3bde-77cc-4ff8-a929-4474a87e9bb2)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - dc677e66-f748-431d-a600-1004c2816cf3)(content(Whitespace\" \ - \")))))((Secondary((id \ - dcfbb241-6c10-4ad7-9548-9181017de20c)(content(Whitespace\" \ - \"))))(Tile((id \ - 40810979-eed9-4d62-8f63-e56badd9787d)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 9f2750ff-d298-4763-b550-ff1c2088a1bf)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 82e9b406-6547-4adc-b418-1efa9487c311)(label(\"\\\"lol\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 7c89e39c-4049-43a7-8d31-45eb60d43a0a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9debd00e-14ea-421a-be2a-616ff8266ba3)(content(Whitespace\" \ - \"))))(Secondary((id \ - 94991337-3060-433f-beac-e744c4cd7bed)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 813134a2-b939-4412-8572-4c590505b9d8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 46656a64-a378-49b6-9738-49acb7824b75)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 518bc2fc-9a1c-4d59-bcab-e8df423717ab)(content(Whitespace\" \ - \"))))(Tile((id \ - f2b7d676-7730-4300-a52d-a7d7215c7c80)(label(_))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 1d5a6bb6-6d7b-40d0-a1c0-e9b22fbb0b0a)(content(Whitespace\" \ - \"))))(Tile((id \ - 2cbf79de-533f-4899-a940-fcf249096fce)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 7e9ec4df-e1e8-48a6-9335-11dfb0e2f9ed)(content(Whitespace\" \ - \"))))(Tile((id \ - 03586002-1685-4e91-8685-ee050d3e0341)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - df212650-6657-41be-b5f9-d43ba9124bcc)(label(One))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - e4e8ec23-94d8-40f6-affa-8642a52ab48d)(content(Whitespace\" \ - \")))))((Secondary((id \ - c22902e4-85d2-4386-951a-3cfee9b218bf)(content(Whitespace\" \ - \"))))(Tile((id \ - 6b131e8f-e685-4f02-9b33-16b04409517e)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 3ce9f345-9e0b-456d-a849-7ab3ffba94cc)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 87563151-e345-47c7-8e12-8d9830211d0e)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - cb4c0869-acc5-40b5-8ca6-41bc31cf2442)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 846cd9d3-1e80-40aa-b781-35a368e6eda4)(content(Whitespace\" \ - \"))))(Secondary((id \ - 918c184c-01cc-4dc7-a45c-8288198a4eb0)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 3dbe6ea7-f343-4476-8841-283dab5a42be)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 0c511d94-f88d-4a3e-b845-820d4d15296d)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - db13fb08-fc6f-466e-acd9-e8827ffa2d84)(content(Comment\"#pat tests: \ - happy (but refutable patterns so weird)#\"))))(Secondary((id \ - be77ca50-3aab-456f-b158-d71cca35a05f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0935dbde-4cb2-4d0a-aae3-a8d91fb0e9e8)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 7e28d19d-3135-4072-9aa5-256b19700493)(content(Whitespace\" \ - \"))))(Tile((id \ - a6e4e407-131d-4959-b05f-f23a1b3c4a32)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 8560486d-eb31-4fb4-ba76-8f065b29bbb4)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0e7110c1-3e87-422c-89f8-5355f403a8d8)(content(Whitespace\" \ - \"))))(Tile((id \ - 8c2b4b5e-e11f-404b-8f0f-4d76c02ac319)(label(Bo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 174ef325-4380-4b3e-9ff6-2e976ddaed77)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 181d38e8-b3e3-402a-8fed-81ae8f7d609c)(content(Whitespace\" \ - \"))))(Secondary((id \ - 302a65bc-d3f5-4d52-9820-e7dffab68f61)(content(Comment\"#kind of a weird \ - edge#\"))))(Secondary((id \ - 09e28cc3-f599-43ed-85e2-555e8410cbb1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 88fece1f-eed0-4cda-938f-6aa6bb554a73)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 6ec64794-394b-4dd3-8384-0373695ceac1)(content(Whitespace\" \ - \"))))(Tile((id \ - 0ca34050-9350-4c0e-b7cc-dcf39bf90b39)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 76f64b38-a3a8-4804-917e-704efa70e8aa)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 563b0093-02e2-4dc0-8498-035638d241bc)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - a9e45a4e-6e73-4269-866b-1632031327f1)(content(Whitespace\" \ - \")))))((Secondary((id \ - 5b58bfab-908a-4e28-90b1-1889cf58dc73)(content(Whitespace\" \ - \"))))(Tile((id \ - abdbcc29-377b-476a-849b-00bee7aebeb5)(label(Dawg))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - a4077504-4cb5-4c01-b437-a950bfa9dfd1)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 9f2f1e4f-5877-401e-981e-181a6d769065)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - cbadb321-12f2-4738-9657-d694b2917cf1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 04af6cdc-6bc8-4f55-a2a2-9a5cbfff82b7)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 2c5b76e7-9afe-47a3-a0ab-6246043e3a35)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 4e7f55d0-41cf-47ea-9a08-3e62e6bec489)(content(Whitespace\" \ - \"))))(Tile((id \ - 29cf2668-3f74-4802-8b63-0cc357c0e335)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 14ca4089-c186-4719-9c32-31c0535b7452)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - ad172b23-275e-42f6-be63-9c6633a8cd24)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Tile((id \ - 3d278514-7249-4d5c-b43f-c189b4fb50b4)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d1b558a3-f17f-4917-8fe3-eaa535667e45)(content(Whitespace\" \ - \"))))(Tile((id \ - 04d95137-1591-480d-953b-48c168f74f89)(label(YoDawg))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 5cfbafa3-327c-4beb-a3bc-9003badce69f)(content(Whitespace\" \ - \")))))((Secondary((id \ - 6866bbe7-3773-494c-9b0c-7395ad6352a2)(content(Whitespace\" \ - \"))))(Tile((id \ - c11f5d4e-d149-4941-92c3-c635a5397c73)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - faeed354-06c0-44cd-a139-acfdece5b9e1)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 6e031c75-479c-4c75-a650-0862299bcb59)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 8928477f-f384-425d-98b5-24c1ae9813ac)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 88270013-6cf2-4eae-af01-f6991c09040e)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 626eb207-41fb-48ef-92de-6cb60f8ce405)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - baf48ec2-db5c-499b-afa7-2762e66e8b02)(content(Whitespace\" \ - \"))))(Tile((id \ - a3243640-b683-4178-bead-6fd77197f6c5)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 58d8f078-a198-4532-bd4a-8679956e8006)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 546cf9ed-0d6e-47f7-bcaf-9ca22e84c673)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Tile((id \ - 6d38fc4a-e28a-4bf5-bf6c-d67c65583fc7)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c194d47b-fd36-4f7c-a153-39bcba3b1332)(content(Whitespace\" \ - \"))))(Tile((id \ - 4f74a256-9da4-41af-a834-9854300709b7)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 611dc126-7349-4f61-a06a-88f8590d74b3)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 721fbdac-4940-402b-8885-2c053c0230ac)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - af55d300-672d-4d7f-a301-90fdad020336)(label(Int))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - c847e5a0-1119-4deb-b8fc-2e95895727a9)(content(Whitespace\" \ - \")))))((Secondary((id \ - c66c02fe-38f5-4a41-85a4-c77055271799)(content(Whitespace\" \ - \"))))(Tile((id \ - d72e7d5b-f439-4551-b824-b2f983e70af2)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 7cdaf8fe-ec75-4d78-b24d-e7e7911d7331)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 0c09c64e-1115-4713-b2da-52c349bb0f4c)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 8f0d08f8-ea5d-4d77-9b99-e3583aeeb887)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 73ab2d27-cc1e-4e97-9a0f-4f6ef7b9e039)(content(Whitespace\" \ - \"))))(Secondary((id \ - bcc54251-9132-4dd2-b980-676c4f5c4de4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 9a9e3e8e-5c13-47f5-89d4-f0259f71b10c)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 525aed37-66ba-4c18-9108-56b0730c8ed0)(content(Whitespace\" \ - \"))))(Tile((id \ - fe2fa7e6-9142-4e25-8830-e82fa8b3acbb)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e64971b1-985a-4a09-a742-797554e1d311)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - bb01dbd3-d098-413a-a8f7-54a335dcf873)(content(Whitespace\" \ - \"))))(Tile((id \ - dc1eb2eb-c98b-4bf7-8491-09951168f4ec)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - bb8da7d9-63a5-41a6-a9af-22d8d922d88e)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - f350f1e4-5d3a-4341-9c5a-9b51300940ac)(content(Whitespace\" \ - \")))))((Secondary((id \ - 57c67511-7bb9-4bdd-b9d7-7f7b583983c5)(content(Whitespace\" \ - \"))))(Tile((id \ - 29e8d629-c0f1-497f-8ab8-2feb6f148c25)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 65761f72-d477-4d8f-8923-0fd9f8edff5f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 80ffc8dd-6ff2-41ca-9ed7-fc69a718288c)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 6c98a173-230c-4a50-b6da-51f60fde0731)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - f74c96ba-bb88-4332-b539-a4bca1a148d5)(content(Comment\"#pat tests: \ - errors#\"))))(Secondary((id \ - f7d9b2fe-28d1-43ed-b57a-000afad3f672)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 80f5b7a0-e99f-49ac-bc3b-0b69f9ecd7f6)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 358c79dd-fb3e-417b-8268-a18ce57337f3)(content(Whitespace\" \ - \"))))(Tile((id \ - ba46a4bb-5cee-460b-bf77-ad86888c2d5a)(label(2))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - a5711732-383a-466b-92cc-7d9288dadc84)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 7bf87a38-99f7-438e-a8d3-fceaf9c95c1b)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - d0f665a8-a661-40a4-a9b7-87ba9077a3dd)(content(Whitespace\" \ - \")))))((Secondary((id \ - e2c99af1-16eb-4cf7-bb89-373254503654)(content(Whitespace\" \ - \"))))(Tile((id \ - 981a2027-3d97-4b91-a10f-40f4f025d56c)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 28231c69-35b5-409a-adc0-55437f2807b0)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 05883680-483f-44a5-b100-2cef409cef66)(content(Whitespace\" \ - \"))))(Secondary((id \ - fb7ab974-3984-4b72-89fc-6b14ab6a457c)(content(Comment\"#err: incons \ - with arrow#\"))))(Secondary((id \ - a63000db-9c66-45e1-b4ad-dab712f468c3)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - d9f51b5a-0cd7-4e1e-8935-815acd68af99)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 132e5e7c-4e94-4d2f-a6d9-c5d08faed31d)(content(Whitespace\" \ - \"))))(Tile((id \ - 76917f30-d1f9-42a9-9dce-8e2c37ae61d6)(label(NotDefined))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 4f8c6e69-7e0f-4a12-9ee6-cf1aff5850bc)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 62e10950-b15e-4f2b-8d5e-6d3fd8b87835)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 757e4a79-8cb0-48a6-8727-ab17a38980f8)(content(Whitespace\" \ - \")))))((Secondary((id \ - 6b1e08b1-5670-4826-8fe2-329a7a1bb3e5)(content(Whitespace\" \ - \"))))(Tile((id \ - 57245415-50d4-4073-9039-7a1598eea032)(label(3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3701345a-e167-493b-b8ff-39cdee3d2852)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 090056fb-2fce-4ece-a79e-21cc08098964)(content(Whitespace\" \ - \"))))(Secondary((id \ - 9bb101f9-ba19-4239-ae57-1bbcf339c449)(content(Comment\"#err: cons \ - undefined#\"))))(Secondary((id \ - c51d9719-96db-4252-b0ac-6c16cfbf59cf)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 68e2ddd0-12d2-4df4-8037-5d96627de1f3)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 8574bda7-7a47-41a9-9515-cbfbdc554f31)(content(Whitespace\" \ - \"))))(Tile((id \ - 611b7d21-f006-4f42-a050-52dd926dbe68)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 99bdd3ec-20b4-4948-8b32-5efe18c307ee)(content(Whitespace\" \ - \")))))((Secondary((id \ - 5f863f8f-cbcc-4e2f-8889-790c2609b6b0)(content(Whitespace\" \ - \"))))(Tile((id \ - fc030acb-7a57-47ef-8872-b172045d3799)(label(Dawg))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 6a1f464f-7315-4fbb-8d3c-3e945416edf9)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 6f9d60c1-c3a1-4d7a-8989-d277c8c31ba0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 820996ee-3d6d-4240-9e82-74799c4f0511)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 4ae02e08-2cea-4177-90fc-3a28bcf71780)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - e9e5dd14-d3bd-4651-ac71-2bd5a91bb8c3)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - d33b22e6-733f-4844-a632-42d069438e6e)(content(Whitespace\" \ - \"))))(Tile((id \ - 4692fb6e-290c-4bf2-aa5d-48885ca812fa)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - cdbc7433-13a9-4f66-be97-ab8aeff70a88)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 91aaa028-c08e-4a11-8e50-f0a269ebc56a)(label(true))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - aa18c78d-9940-468b-a1b5-f20be6580d10)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0000295f-4f38-4b8b-b89a-a882eb1d5c2b)(content(Whitespace\" \ - \"))))(Tile((id \ - d8a3baeb-60f9-436b-8bb1-fff2a5392fc8)(label(Dawg))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - e6244170-7866-4bdb-aff7-88c1c855b33d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 05b5b567-ca20-49b3-babb-dcbf283e9d1b)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - f054e339-8ef7-429c-a5dd-5a8711bf7357)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - d214ed57-2032-402d-aec0-3195ce418b06)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5b0de71a-ae28-42cd-87fd-a8c8a6c3b268)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - d3cc1ec7-e4d8-4ce1-9480-c104efeb43c1)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 96a7d93c-a615-4481-932d-5a08982ae158)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 95fd2448-fd05-4a8d-9913-2b44d2cddc7d)(content(Whitespace\" \ - \"))))(Tile((id \ - 9c38bf90-3dc4-4fee-8aff-8b83c4d9c62b)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 73d8905f-79ef-4832-9c6b-b4488b01e630)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 8d44de05-53a6-45dd-95d7-d2e81cd8873e)(content(Whitespace\" \ - \"))))(Tile((id \ - 4ef32ea5-e781-421d-b0af-fb70bd975ff9)(label(YoDawg))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 90d4a81a-293d-42f7-b01e-2ab0b7df42b8)(content(Whitespace\" \ - \")))))((Secondary((id \ - 9308c496-c4c6-4b8d-8f72-e185f89d4c35)(content(Whitespace\" \ - \"))))(Tile((id \ - 2d603b06-7ab4-48fe-b411-15136dae6af2)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6d038b87-c285-449b-99f7-ae77f2347c7e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - e8e6dff3-389c-40e0-abb3-352198cd8811)(label(1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 5ecb488d-f6bf-4a5f-83a8-70eaa7882419)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 83c98688-c550-4a87-8255-20e880842b6e)(content(Whitespace\" \ - \"))))(Secondary((id \ - ec30fc03-b8ba-455f-a204-d157455b6f37)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 6fbe8d45-7fa8-4e1d-a037-d0dc2a67c22b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 99874432-bc9a-40f6-8a4f-191f02fb9925)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - d50cd026-1901-4b81-beb2-a6cbffd5f7ea)(content(Whitespace\" \ - \"))))(Tile((id \ - 05fe3e51-15b1-4528-9713-8c1dbaf5cd2f)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 5c7287c3-3a1b-4a10-8938-edb0c11e2b0c)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - f1122b0f-e69c-46e1-b01e-26349a7fc6fa)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Tile((id \ - 22cb1641-0224-452d-88b7-c949ad79e283)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 827c513f-2d6b-4d3c-a269-ed7b213c55ab)(content(Whitespace\" \ - \"))))(Tile((id \ - 86bb1ce3-45a4-44b2-9e13-6b4de4be752f)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - a2d6719d-3414-445e-a0c7-8f586dd164ef)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 9bf3f9ca-e31e-4d93-9ea1-49af1f8cd241)(content(Whitespace\" \ - \")))))((Secondary((id \ - 0ecd709b-ac02-44a9-8533-b09d37306f15)(content(Whitespace\" \ - \"))))(Tile((id \ - 7d724684-c239-4066-9cbf-d73b331d2371)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - ebcb8ed0-a096-4147-a426-c87e518ca997)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 7e1d3948-414e-472a-ad88-9c97432bf5d1)(content(Whitespace\" \ - \"))))(Secondary((id \ - ec6cfc5f-15c8-4afb-ad11-7092c39668a1)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - 94b55e63-d35f-463d-b6b4-63d45ec87d42)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - eb72050f-f6ac-4ad2-ab1a-484746bf9ebd)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 33a8be76-672a-47ca-9c02-2a41f37b90f3)(content(Whitespace\" \ - \"))))(Tile((id \ - 1411ed17-f5ae-459b-8542-5478938ea049)(label(Yo))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 5baa786e-dc11-4591-9c09-ac4146d5240c)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - aad3e236-1c78-44be-9714-615f8b113de3)(label(1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Tile((id \ - 629af03a-3e2a-4e17-8110-eae44e3ce3b0)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - c59c1641-a553-44a7-9d58-6c328b202f61)(content(Whitespace\" \ - \"))))(Tile((id \ - 9ddcf904-c16a-40d7-b795-70a7fa061f60)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape(Concave 10))(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - c561a896-0096-4e62-862b-50f19b8720eb)(label(Yo))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 6426aaf2-a2aa-470c-8aaf-c9c4d254799f)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 826f164f-49b6-4aba-80d0-98adffe7ae72)(label(Bool))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - d5354722-6e8e-4264-8b00-63b903ff76b7)(content(Whitespace\" \ - \")))))((Secondary((id \ - 96f3d1ce-18d0-4289-8f81-a5cd8c12aaeb)(content(Whitespace\" \ - \"))))(Tile((id \ - 58382afc-2139-4480-a606-74a698ed4267)(label(Yo))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6c7e87dd-f983-4797-ac18-b7397d37b32d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - fc674475-a41c-4f90-b0ff-7b759f67f387)(label(true))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - dda396a8-bec9-4a36-827f-7876140e086f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 74e1ce26-b7e2-46d9-8cdb-e7653dbc3799)(content(Whitespace\" \ - \"))))(Secondary((id \ - d5e1b4f6-ce6b-4c25-9335-a610f5298032)(content(Comment\"#err: type \ - incons#\"))))(Secondary((id \ - bc7ef947-ef07-467c-b93c-fc8544021b89)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 71d0e1d6-00f5-432f-abe2-3c0ce55eed99)(label(\"\\\"Thats all, \ - folks\\\"\"))(mold((out Exp)(in_())(nibs(((shape Convex)(sort \ - Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 90a5fb0d-b434-4eba-8e96-dd84481cde22)(content(Whitespace\"\\226\\143\\142\")))))))))))(caret \ - Outer))"; - backup_text = - "#Non-recursive sum/alias tests#\n\ - #all lines with trailing err comment should have 1 error#\n\ - #no other lines should have errors#\n\n\ - #type definitions: no errors#\n\ - type = in\n\ - type SingleNull = +One in\n\ - type Single = +F(Int) in\n\ - type GoodSum = A + B + C(Int) in\n\ - type Partial = Ok( ) + in\n\ - type DoubleAlias = GoodSum in\n\ - type VerticalLeading =\n\ - + A\n\ - + B(GoodSum)\n\ - + C(Bool->Bool) \n\ - in\n\n\ - #incorrect or incomplete type definitions#\n\ - type badTypeName = in #err: invalid type name#\n\ - type ( , ) = in #err: invalid type name#\n\ - type = badTypeToken in #err: invalid type token#\n\ - type NotASum = NotInSum(Bool) in #err: cons not in sum#\n\ - type Bool = in #err: shadows base type#\n\ - type Dupes =\n\ - + Guy(Bool) #no err#\n\ - + Guy(Int) #err: already used#\n\ - + Guy in #err: already used#\n\ - type BadCons =\n\ - + Um(Unbound) #err: unbound type var#\n\ - + notvalid #err: invalid#\n\ - + Bool #err: expected cons found type#\n\ - + Int(Int) #err: expected cons found type#\n\ - + ( )(Int) #err: expected cons found type#\n\ - + A(Bool)(Int) in #err: expected cons found app#\n\n\ - #sums in compound aliases dont add tags to scope#\n\ - #but compound alias types should propagate analytically#\n\ - type CompoundAlias = (Int, Anonymous + Sum) in \n\ - let _ = (1, Sum) in #err: not defined#\n\ - let _: CompoundAlias = (1, Sum) in #no error#\n\ - type Yorp = Int -> (Inside + Ouside) in\n\ - let _ = fun _ -> Inside in #err: not defined#\n\ - let _: Yorp = fun _ -> Inside in #no error#\n\ - type Gargs = [BigGuy + Small] in\n\ - let _ = BigGuy in #err: not defined#\n\ - let _: Gargs = [BigGuy] in #no error#\n\ - let _: Gargs = BigGuy :: [BigGuy] in #no error#\n\n\ - #unbound tyvars treated as unknown-typehole#\n\ - let a:Bad = 0 in a == 0; #err: not bound#\n\n\ - #non-sum-types cant be recursive#\n\ - type Lol = Lol in #err: not bound#\n\n\ - #no errors: analytic shadowing#\n\ - type Tork1 = +Blob in\n\ - type Tork2 = +Blob in \n\ - let x:Tork1 = Blob in\n\n\ - #exp tests: happy#\n\ - type YoDawg = Yo(Int) + Bo(Int)+ Dawg(Bool) in\n\ - let _ = Yo(1) in\n\ - let _ : YoDawg = Yo(2) in\n\ - let _ : +Yo(Bool) = Yo(true) in\n\ - let _ : (Yo + Dawg, Int) = (Dawg,5) in\n\ - let _ : DoubleAlias = C(4) in\n\n\ - #exp tests: errors#\n\ - let _ = 2(1) in #err: incons with arrow#\n\ - let _ = Undefined(1) in #err: cons undefined#\n\ - let _ = B(\"lol\") in #err: type incons#\n\ - let _ : +Yo(Bool) = Yo in #err: type incons#\n\ - let _ : +Yo = Yo(\"lol\") in #err: type incons#\n\ - let _ : +One = Yo(1) in #err: type incons#\n\n\ - #pat tests: happy (but refutable patterns so weird)#\n\ - let Yo = Bo in #kind of a weird edge#\n\ - let Yo(1) = Dawg(true) in\n\ - let Yo(1): YoDawg = Yo(1) in\n\ - let Yo(1): +Yo(Int) = Yo(1) in \n\ - let Yo: +Yo = Yo in\n\n\ - #pat tests: errors#\n\ - let 2(1) = 3 in #err: incons with arrow#\n\ - let NotDefined(1) = 3 in #err: cons undefined#\n\ - let Yo = Dawg in #err: type incons#\n\ - let Yo(true) = Dawg(true) in #err: type incons#\n\ - let Yo: YoDawg = Yo(1) in #err: type incons#\n\ - let Yo(1): +Yo = Yo in #err: type incons#\n\ - let Yo(1): +Yo(Bool) = Yo(true) in #err: type incons#\n\ - \"Thats all, folks\"\n"; - } - -let adt_dynamics_tests : ScratchSlide.persistent_state = - { - zipper = - "((selection((focus \ - Left)(content())))(backpack())(relatives((siblings(((Secondary((id \ - ede618fd-3a6a-4718-a6f2-fb07d7311e24)(content(Comment\"#recursive sum \ - type dynamics tests#\"))))(Secondary((id \ - f3ba4eee-2d48-4265-b068-22a14424c793)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 8c0d0280-8bd7-4ca1-8047-f9582dcb62b4)(content(Comment\"#all calls \ - should evaluate fully with no exns or cast fails#\"))))(Secondary((id \ - 33d03b71-1aba-4b78-ada1-9f738b650371)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bee7dbe2-4fa9-4a16-896c-773e20ddb2f9)(label(type = in))(mold((out \ - Exp)(in_(TPat Typ))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - ea601d45-7178-4db8-9361-285875473ad5)(content(Whitespace\" \ - \"))))(Tile((id \ - 5242a642-0cfd-4d7c-962c-1b36a8017da3)(label(Exp))(mold((out \ - TPat)(in_())(nibs(((shape Convex)(sort TPat))((shape Convex)(sort \ - TPat))))))(shards(0))(children())))(Secondary((id \ - c4012507-e62e-43d4-9fe0-906e9df05477)(content(Whitespace\" \ - \")))))((Secondary((id \ - 75df01b7-5134-48e3-986a-0f9c9d715034)(content(Whitespace\" \ - \"))))(Tile((id \ - 9b02045b-6df5-42e5-ab0b-f6ea542e76b0)(label(Var))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - d4f79bad-2137-4022-be7c-74809623ac5e)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 1ab9461d-0b2a-41f6-88a9-dc3dcffd6e25)(label(String))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - fd2c3d2c-39e7-48f0-b2e3-ee348d531cef)(content(Whitespace\" \ - \"))))(Tile((id \ - 711081e1-f726-49b2-9f39-2a955f719f52)(label(+))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 10))(sort Typ))((shape(Concave \ - 10))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 658bb5a2-75b0-454a-8bc3-f271b772c89f)(content(Whitespace\" \ - \"))))(Tile((id \ - 1f89d3d1-3e7a-4af2-8370-630e756aa8e6)(label(Lam))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - bd912f25-20c7-42e2-8c9f-bc982d5081d4)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape(Concave 1))(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - c18fcda8-c230-4f48-92ac-c6450643ea69)(label(String))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 33f8db12-01c1-46c4-92a3-f3c8b85afed7)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 794621d6-d2a1-464a-9c74-011405f84554)(content(Whitespace\" \ - \"))))(Tile((id \ - 2eed6e97-6ad6-4a2c-90b9-779a4ebbf8b2)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 5a42fbbe-caf2-43b0-a4d8-d8cb995518be)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1bf41d63-b308-45af-80d7-1f23b599ef84)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - 73fc99a0-9842-48a9-a55a-72bc2c905cd9)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 210e83b5-af41-4b5e-bd8f-d48ee1af84b4)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - f3f505ab-0d4a-4dbe-853b-f19cff1df32d)(content(Whitespace\" \ - \"))))(Tile((id \ - 5087513f-eb16-4a5f-b9f2-c6e92d59027f)(label(s0))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - 4eb319f1-5530-42a6-af2f-4c163521faab)(content(Whitespace\" \ - \"))))(Tile((id \ - 80359192-fa1d-4691-98d3-d313f271b126)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - a678b152-960c-4212-a526-7a2559e3d291)(content(Whitespace\" \ - \"))))(Tile((id \ - 9f6089e4-c2c3-4e4f-b329-be63922269e2)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Secondary((id \ - a0f74768-33fb-4968-93c7-025146480a27)(content(Whitespace\" \ - \"))))(Grout((id f6a14acc-3aa6-4075-a459-5e4222c9658f)(shape \ - Convex)))(Tile((id \ - 6f1912a9-5db1-4294-9c14-b8e5606729ed)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 5159ad11-a488-479a-9e34-25d196b32c37)(content(Whitespace\" \ - \"))))(Secondary((id \ - aa408a48-5160-4af0-8fd5-003525b0248d)(content(Whitespace\" \ - \"))))(Grout((id cc2cb277-a04c-48d1-8b66-3c66cf13e1aa)(shape \ - Convex)))(Tile((id \ - 95eef4dc-b6d4-4bdf-b16f-6834c6e33c69)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Grout((id \ - 21269554-2113-4054-8a91-d0fa6749aade)(shape Convex)))(Secondary((id \ - ce3104a5-74c7-4555-9a7b-2de7792b0b67)(content(Whitespace\" \ - \"))))(Secondary((id \ - 5e240451-1deb-442b-a6fc-4b7c677b7b42)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 11787dfd-ecc6-4ce1-bd7a-97e46864dabd)(content(Whitespace\" \ - \"))))(Tile((id \ - faad76f3-bfd1-4af6-bc79-10b3bd4d62d8)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Grout((id \ - 6c2f8683-31b4-4c3e-93c0-7ab68d1cc90d)(shape Convex)))(Secondary((id \ - 0dcd8afa-a32e-4a8d-9b77-54362b2af563)(content(Whitespace\" \ - \"))))(Secondary((id \ - a39727d9-8e50-4d57-b530-9247d7e17083)(content(Whitespace\" \ - \"))))(Secondary((id \ - b6091959-f98c-401b-94dc-dbba9dd6fc27)(content(Whitespace\" \ - \")))))((Secondary((id \ - 653a1a84-ee71-4df5-b7f6-54bbeab33a1d)(content(Whitespace\" \ - \"))))(Tile((id 24774735-2fa2-4fac-9659-cb9682611253)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 9ec57d94-6ebc-42bd-ba63-5073b99604c5)(content(Whitespace\" \ - \"))))(Tile((id \ - b1afa3de-885a-4bae-87c3-c5409dd9c11f)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - bfa4e4d9-d8aa-4b86-9a16-1ee8af7ca068)(label(e))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 44983251-62af-43f3-93ae-d9d5f9bd99c4)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - 59138dbe-7337-463e-95ed-0f2b8f0e31db)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 4345f177-4eb0-4344-806b-ebe92fcb93e5)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5fd3ce76-9a38-4d66-889d-2c7c5b0db2fc)(label(v))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 2f406b51-2a7b-445c-8d1a-a1dec82cb0b1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - cf5c15a0-8e76-44b3-bf9f-bb4705151712)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a4fd3033-320b-44a2-924f-7c3d7d5129de)(label(case end))(mold((out \ - Exp)(in_(Rul))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - 193b7b88-ed6d-4ae9-b85e-b51f3e407e6d)(content(Whitespace\" \ - \"))))(Tile((id \ - 6e3f4656-236a-4aef-b794-629ae79e75cb)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2bfac732-b2c3-4b58-940c-762dde43b6f8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a4f7575d-870e-450d-b0f2-9d78247b7fef)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 93a31b37-28e4-41d4-ad6c-d54663807056)(content(Whitespace\" \ - \"))))(Tile((id \ - 515c64cd-52d5-430f-8b03-0423b2f71830)(label(Var))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 07c4b7b6-54a5-4027-9601-7e25a22c0780)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 33276ae2-b0ba-4cde-8e84-f659f62dcc0b)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 932e1f75-8fa4-4bad-9678-a567e04346a2)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b4b8186e-e85e-4b46-b309-494696bf45b0)(content(Whitespace\" \ - \"))))(Tile((id \ - f42af146-aad0-41fa-bb2b-60e4e2a1ebbc)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 62ad8647-1070-41ab-930b-bbc1b728ced7)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 079ec11f-e2e3-45d0-9efa-3fa1381ae897)(content(Whitespace\" \ - \"))))(Tile((id \ - 95ad1216-9dd8-4115-98ef-a5b8d3af0907)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - a12338b3-af5b-4140-baa1-164cd50bcf59)(content(Whitespace\" \ - \"))))(Tile((id \ - a8159407-3db7-4833-b409-90c93cbe037f)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 6106155a-d0aa-4eb3-860f-178979d0b6d2)(content(Whitespace\" \ - \"))))(Tile((id \ - 35ca9b29-9774-4b41-b7e6-ed60a0f0fecd)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2178fb3a-d1c6-4623-b781-2ff3c10fe8a2)(content(Whitespace\" \ - \")))))((Secondary((id \ - e64e900a-9034-4e12-bf75-7f848e608015)(content(Whitespace\" \ - \"))))(Tile((id \ - 50671541-fcfa-4fc8-8cb8-df3d4abe9121)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4e2bccf5-70b2-49cc-ae20-23f39a573f2b)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1ad7ff43-b2a1-4b58-b10a-d0b096b40d94)(content(Whitespace\" \ - \"))))(Tile((id \ - 69fe683f-ec3a-490e-a6c1-d8e1726c221e)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - a4668749-24fc-45b1-aab2-aae436fcb923)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0fb3f192-fa97-477b-b3e0-cb1bc39705d3)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - e3b08605-93e6-4ac9-9918-5342782cf6d4)(content(Whitespace\" \ - \"))))(Tile((id \ - 9c123801-7cd6-478e-8512-7b35ed026c98)(label(Lam))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 903ae25b-e226-4030-b856-9ab65351fd9c)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 3887533c-3291-45e8-b40d-ced66372e790)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e495f800-d7c1-4466-9ccc-2b2347ed9030)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 3d4cca79-97e8-43c1-98c2-5d291e92c9f2)(content(Whitespace\" \ - \"))))(Tile((id \ - f69fc13a-32dd-4b49-bbd8-e88305d1dc4a)(label(e1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - a80326d1-428a-4cec-a764-5cc3982b4ed1)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a6babdff-9cf9-4a2c-8f48-a308f895e1f1)(content(Whitespace\" \ - \"))))(Tile((id \ - 73873ad6-f97c-4dd7-b73e-c7b454294a13)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - bcdf8510-9853-461a-81fc-2ec67ac8ee2c)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 9d9dfaa5-39c6-47ee-84d5-59f63c39e052)(content(Whitespace\" \ - \"))))(Tile((id \ - 8105aa37-ee21-404f-a6d4-554efa04eae8)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 79c28532-87bd-48d6-b018-17ec6872f767)(content(Whitespace\" \ - \"))))(Tile((id \ - 56da3c27-d527-4c65-ba4c-fd3807103b76)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 97dc4a0e-d989-4d28-9784-5d43a1ad6514)(content(Whitespace\" \ - \"))))(Tile((id \ - 0753f33e-eca6-40be-9c30-d2d36e0f4e52)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 92ed21a2-4896-429c-877a-937c4c215bec)(content(Whitespace\" \ - \")))))((Secondary((id \ - cc2af8a8-f35a-49a7-862d-bd5ab9a8f4f8)(content(Whitespace\" \ - \"))))(Tile((id \ - 56f84968-e8a6-4f13-8b55-005ab5861c7c)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 613f780d-51a6-41e4-a3cc-3ee830ad7806)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - e285f9e2-fb6d-429b-b60c-6351075f0c9f)(content(Whitespace\" \ - \"))))(Tile((id \ - abebff5e-7001-4396-b712-654b4f586ba2)(label(Lam))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 343781da-2ba8-4612-a94b-14e5e39b9170)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - ac911df8-10da-48fa-a93c-977c62017dc1)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 47538318-6e57-432f-aee8-a44d86fa22fc)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - d7665f33-f85b-43d8-91db-2cceb07884a9)(content(Whitespace\" \ - \"))))(Tile((id \ - 786e24d1-4ff1-40a4-a2f3-fc8c0671a820)(label(s0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 51bb8f9b-b318-49cb-a405-058c15805e6c)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - cc1499a6-3e19-495f-a980-f2920c409d2b)(label(e1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 60487c1b-47d9-44d8-aa5d-e40405f30f2a)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 66435dc1-2ab8-4929-a996-81ef6e21d2a2)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - cd0b4a62-ea53-4154-b129-374a1548d1b3)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 767655b4-4649-4a98-8cbd-46f9021383d8)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))))))))))))(Secondary((id \ - 252f489b-f4e5-4380-960b-bcdf42346c50)(content(Whitespace\" \ - \"))))(Secondary((id \ - abe3fb22-0013-49cc-9ec5-a4acdc057dbd)(content(Whitespace\" \ - \"))))(Secondary((id \ - 707b1275-d8a7-48e4-99de-9dd5a35348b4)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - aa98fac5-0077-41b7-b5ed-826c09375a8f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0f87905f-9aa0-483a-9052-f15fc60324e0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 70fc82e8-9cc5-4e34-9f1a-5bd28dbeb827)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - a7b6cc01-d442-44ac-94ae-ee76bfaf7e82)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 3dcf3a6e-bec2-43ab-af48-f5c8c6a6692f)(content(Whitespace\" \ - \"))))(Tile((id \ - ef62a2b9-feb4-4edb-b9f2-4f4497383153)(label(s1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - f7d95ef2-f3be-4ecc-ae66-a8ec56184935)(content(Whitespace\" \ - \"))))(Tile((id \ - 0fd032ba-df43-4f06-8246-d6caa2442e2b)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - b0a71487-4e89-4074-b808-fa46da909524)(content(Whitespace\" \ - \"))))(Tile((id \ - ca8f5335-d6e3-447a-9e28-2c6a51709482)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Secondary((id \ - c36459bd-cb48-49d9-adc4-de81980b1724)(content(Whitespace\" \ - \"))))(Grout((id 497e7901-eb07-44f9-b2d1-9e0ae4553e3b)(shape \ - Convex)))(Tile((id \ - f05b091a-e70b-4df3-a26e-99b9e30125fb)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 2020991c-a9ad-47cd-91db-0badfff5ffb0)(content(Whitespace\" \ - \"))))(Secondary((id \ - 8fbf8330-9804-4633-811c-35f5b2c612f1)(content(Whitespace\" \ - \"))))(Grout((id c4f476b5-338c-409d-8d06-bced6ee6ab4f)(shape \ - Convex)))(Tile((id \ - 9f60ac8a-c964-4c54-9a42-d7d86b472d7b)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Grout((id \ - 178c2ea1-a40b-475d-864d-2b78ae1ce6e6)(shape Convex)))(Secondary((id \ - 9549e2bd-5653-4572-b2f8-c1b1ae159956)(content(Whitespace\" \ - \"))))(Secondary((id \ - 33429e41-b034-41c0-845d-c5793519d306)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 85392aa5-d9e0-435b-bcdb-df0f6506c7d8)(content(Whitespace\" \ - \"))))(Tile((id \ - 91a183d9-6be3-4f34-b85a-66686ef6a1c8)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 4aa0c758-1644-44b2-a41c-f40706a6a284)(content(Whitespace\" \ - \"))))(Tile((id \ - 7a0b82b8-e705-481a-933c-3aced85cf23d)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - f01862eb-f153-49da-9245-2476bc988315)(content(Whitespace\" \ - \")))))((Secondary((id \ - 5f809c2d-43c2-4062-bf0d-9819248622d4)(content(Whitespace\" \ - \"))))(Tile((id acbe3847-780e-4f8b-b342-3dc1b7bf4748)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - f79421e3-99f0-4e2a-994d-a8f71c264977)(content(Whitespace\" \ - \"))))(Tile((id \ - 1cb53170-8488-4008-83f1-65faa715a8ea)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - be186694-0fa6-42a9-b0cf-2f887efb81d7)(label(e))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - d641f307-73e3-4d58-984c-af75fb8d7668)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - bff60d56-ca7a-4115-9028-d20d5d6de515)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - c7bee72c-c5fe-4a9a-aa73-40f65a73e401)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - b21e2657-4a11-40de-b6d9-0ab00f0a7b46)(label(v))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 64b3698f-b4fa-4e75-9d5b-dd545cd5f59a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 123928d1-5f8e-4592-82a5-31fcb1ed9f68)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 17ac5f54-e335-42cb-a4f4-023f43406643)(label(case end))(mold((out \ - Exp)(in_(Rul))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - a8732377-f497-4ab2-86c0-e2fb4b34c679)(content(Whitespace\" \ - \"))))(Tile((id \ - 3e2e54a2-b511-4e98-ad65-746dd84de2a0)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 0c5cfd95-90c7-46a0-a2e1-d2ba0062b22b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 3c518ac3-8dd6-42ff-a70f-6e025374943c)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 7b18fe5d-c1ee-43b7-bcb6-9b6c748c341d)(content(Whitespace\" \ - \"))))(Tile((id \ - 93b39573-e75c-4754-926b-08fa74d82246)(label(Var))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - fcfc9c90-4d26-46d4-8014-535dfe32145b)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 25ee23f5-86b9-4ee9-912d-8e2399b7de00)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 2917016b-f3e8-4f86-8bf4-cbe1699be9cb)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b10c736b-12c1-4b09-8908-b9e15cd31cfa)(content(Whitespace\" \ - \"))))(Tile((id \ - 50468077-6718-4b6d-824d-919a80c6212b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 1a5e2967-653b-4183-a1b7-3fdc2520f267)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 1fc78079-b333-4df6-8beb-8991f75ecd2a)(content(Whitespace\" \ - \"))))(Tile((id \ - bc9d6467-1514-4a10-8067-31c3df90aa05)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 29ad8c13-de01-4489-a3c0-94903664821e)(content(Whitespace\" \ - \"))))(Tile((id \ - 2b3661de-3fc8-4948-8d35-73949cd7c62b)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cb1294ab-4592-4346-9df3-60679e31fb49)(content(Whitespace\" \ - \"))))(Tile((id \ - 33d5d903-f20e-4899-bcba-6984fce2859e)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 16711c49-57d4-486d-a5e2-a0a82f742ae1)(content(Whitespace\" \ - \")))))((Secondary((id \ - fc2a8c4e-ef42-4b37-a386-82a9a58f3c51)(content(Whitespace\" \ - \"))))(Tile((id \ - ee88f1a2-671e-4bbc-ac7e-d765c02604f2)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b8e63b24-75e3-4650-9303-096ad0e1ff6e)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 1cbc8447-6aa1-4c86-8931-48231583d318)(content(Whitespace\" \ - \"))))(Tile((id \ - 05ffb76f-5f98-4e6f-8fef-3318dc932b61)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - e6354d70-b739-4c10-b25b-d5e4d9cd919b)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - bcbc8c66-3125-48e4-ad74-5ed3be087ba4)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 5e324c63-f7d6-4ec2-a93f-2e386b843f09)(content(Whitespace\" \ - \"))))(Tile((id \ - cfcc5381-e75a-413e-98a0-d56dabd4fc5a)(label(Lam))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e326ca3f-f16a-486f-aeb0-798f38be0690)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - e26a73e9-378d-4c4f-8e4b-69a584a036d2)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 3a99c1b4-9666-431b-8b19-d1bd55d185b5)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 94bc6c89-3ae4-491b-8c5b-5e3b297bcaec)(content(Whitespace\" \ - \"))))(Tile((id \ - 640b0d62-fc72-43eb-8fd8-1fbceecf8b38)(label(e1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - fb21beac-6c5f-46c7-abe5-ca8102f21569)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - e5a1e12a-4d8d-4cf3-8af4-4dfcfc0620c0)(content(Whitespace\" \ - \"))))(Tile((id \ - eedcde03-da63-470c-90f5-782af1385097)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 8652777a-246c-4a18-b335-8f5fcfd788d8)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - a5b95775-3076-40e9-b221-5d23a6c93c7a)(content(Whitespace\" \ - \"))))(Tile((id \ - 4c1b312a-2b43-4dbd-9fc2-e9cb9bfdab99)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 508c174a-ec5b-4180-afd4-f602a0344706)(content(Whitespace\" \ - \"))))(Tile((id \ - bdb4d192-3372-41c2-b681-15f71640693d)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 9d6a9269-5d79-4189-a04b-b7a03a008ac2)(content(Whitespace\" \ - \"))))(Tile((id \ - 0e346397-7c40-4cbe-8ba9-1f324c6d71cd)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3952287c-b3cb-48c9-8bd2-6fc11b3b88b0)(content(Whitespace\" \ - \")))))((Secondary((id \ - d6228da5-9370-4713-ba75-d4e0e8cf911d)(content(Whitespace\" \ - \"))))(Tile((id \ - 46a95103-afa6-4dce-943c-0227b57f39f8)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 7563ad6f-a29a-4165-9bf0-cbe80c157b57)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - f545e2a4-4a8f-47e2-ae13-8dc4e9ae4fe3)(content(Whitespace\" \ - \"))))(Tile((id \ - d15110a2-1714-4a92-8cb6-4069b7556d9d)(label(Lam))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6df81afe-a791-41ca-aa3a-ba32c74f16ad)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - a816ad17-1314-4731-bad7-e18e03b2b214)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - bce32465-9e88-4a21-a658-5064cfdee06f)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 0b9f2f9b-5bfc-4113-9e85-68bdbd0be746)(content(Whitespace\" \ - \"))))(Tile((id \ - d7f1e5a7-9f1f-46d4-81e6-736bf3f81144)(label(s1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 46e5d333-d16d-48e2-82ff-eef1134de864)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 15c59db7-64a3-4778-a402-8337bc08796f)(label(e1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - b14e488b-6585-4aa7-8338-4a74cfe35c22)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - edea7aa8-d752-455d-95b1-e7aca17f673e)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - e5c1d4ba-3fe2-4692-9ed4-c1d2a028e4d6)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 46fcf92b-6e4b-44e0-8a55-be218f02ba28)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))))))))))))(Secondary((id \ - 3de4f68a-1a7e-4031-b443-403522256e04)(content(Whitespace\" \ - \"))))(Secondary((id \ - 1e7f2088-45b8-4922-ae86-0561e7d6eeb4)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 884cfc13-c09d-4b59-b6eb-58ab435e4841)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9e1662ca-e82e-431f-90a1-c65d045fa96a)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2493f968-f90f-4f91-9886-6e8439dc2a90)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - cabbfdc8-4695-4e1c-82f3-43168cff05bb)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 85b9b00a-bb9f-4f9a-bfd1-84dd7a4c1381)(content(Whitespace\" \ - \"))))(Tile((id \ - 849543f8-1093-4426-9a7d-83cf017a06da)(label(s2))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - a2595d7b-9b90-46a0-9d27-23453dd630b3)(content(Whitespace\" \ - \"))))(Tile((id \ - cab03bcb-dcd7-4f5d-9e5e-88ea5bb44c03)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 00e854d8-cf4a-4b94-a288-7181ceed2693)(content(Whitespace\" \ - \"))))(Tile((id \ - e613cc32-8815-4fce-9bf2-8ac005d5110c)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 9fccad2f-2aaf-475a-8a35-71252afd764b)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 304fe479-9742-45ad-9af6-4ec5166a8b96)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 0839ffcc-a893-43f1-ba4a-57f46f46aac5)(content(Whitespace\" \ - \"))))(Secondary((id \ - b4bf4c33-e03d-4208-8083-ae43ae93cfe9)(content(Whitespace\" \ - \"))))(Grout((id 59f03ed4-5fd5-4143-8bc4-bdc49c6dbaa6)(shape \ - Convex)))(Tile((id \ - 3aca8808-76fe-4089-a8bd-19c0193b9270)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Grout((id \ - a483bf1b-dab9-45ce-baff-bc526d3d9472)(shape Convex)))(Secondary((id \ - 0cfd4195-459d-403e-8a02-3d83f45f32fc)(content(Whitespace\" \ - \"))))(Secondary((id \ - 350ddb04-2d28-4488-a0ce-f96a3742566c)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 16cb1a6f-b8c9-467e-8759-89cff8d3f3e0)(content(Whitespace\" \ - \"))))(Tile((id \ - a7bb45d2-d558-4777-9976-491bf1200bce)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - a27d2a3a-11f2-4d66-999b-d195ed98d736)(content(Whitespace\" \ - \"))))(Tile((id \ - 2deea192-7792-4f20-b81e-10637847ae68)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 4e2ccda9-86bd-45f6-822a-bf2f801eeae5)(content(Whitespace\" \ - \")))))((Secondary((id \ - f9f72bbe-6a99-4065-a6a2-2957ec567f04)(content(Whitespace\" \ - \"))))(Tile((id 8d753c6b-20e0-4420-bf9d-30f7225b5de1)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 7c6fd454-18d4-46a5-bdad-eb6beac1dff3)(content(Whitespace\" \ - \"))))(Tile((id \ - 3a9418bb-3001-4af6-9773-6a1f44b40450)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 8b8cb75b-3a72-475f-b2f6-083ed70cc7d2)(label(e))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 3d5c79ac-2ae0-4cfe-b0d0-116631a8a76b)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - 5cc28e18-3ca5-43b1-8d56-539803ba5295)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 49dca6cf-2bf2-4e79-98ea-e5f1b78ed0d3)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - e0e69af0-c439-4ddb-ab6c-c3008df1112e)(label(v))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 0576126d-dfa5-40e9-977f-22d863a2c77d)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 31d4723b-3591-4abf-b895-0e5a991be41f)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - b2540ba6-acb5-4294-8732-f9e2cda4ae9c)(label(case end))(mold((out \ - Exp)(in_(Rul))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - a0903ddf-3505-424e-960c-671270e1eb1c)(content(Whitespace\" \ - \"))))(Tile((id \ - ceb586d2-9627-44b7-bf99-fb587307c44e)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2434cde5-de02-4458-8f65-b60d7123b393)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 64194bfd-4062-40ef-b478-c3ccbea6b1f1)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - ad3db675-553a-43fe-a1fc-ef825f379ce5)(content(Whitespace\" \ - \"))))(Tile((id \ - f387189c-9b67-4a8c-a51c-604bc0f07f09)(label(Var))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 4598b85a-f210-4575-9203-300432a4313f)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 6254c8a5-77cd-417f-9ecf-42ed505978d8)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 1f5de717-8d3e-4f1f-baae-f37bc2eabcce)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 0cc0eb70-5724-46fc-8646-e52176a792e1)(content(Whitespace\" \ - \"))))(Tile((id \ - 773566a4-1456-48b7-9b69-2dc060cb49e7)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 27fb1a8a-4165-4c01-89e2-35b51cbd901b)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - cd384476-2966-479e-a851-d37b5ca42a48)(content(Whitespace\" \ - \"))))(Tile((id \ - ddf7ded9-37e4-47ab-b441-2b4312bc2f40)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 4281eaa2-8498-4c36-a828-dedc55681547)(content(Whitespace\" \ - \"))))(Tile((id \ - 0fd5b947-a0f2-4468-926a-718c431d1845)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - b22bf7d6-809d-4cea-841c-ee29076e3ada)(content(Whitespace\" \ - \"))))(Tile((id \ - 103909cb-8422-43fc-b949-fe4065e3fbd5)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - ed18cb03-6e46-4521-99cd-365ed4891cab)(content(Whitespace\" \ - \")))))((Secondary((id \ - 508a2abd-96cb-4c6b-92dd-d5a9a0bd371c)(content(Whitespace\" \ - \"))))(Tile((id \ - c7db9fbe-33e0-449e-be0c-284ddb60e0b9)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 5058d648-d000-4d39-bcdb-681202c10b9a)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 88d5301f-4f9f-45c6-8fce-c83fd62f2fa4)(content(Whitespace\" \ - \"))))(Tile((id \ - a5ebc3ce-3558-4114-9908-1f1cda0526e5)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - d4d7d1aa-819e-47c1-a5bc-7840c118cab4)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 11392bbf-8473-4433-bbd9-691e221f0ec4)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 3decf3f8-684f-486f-94ea-ca5408106173)(content(Whitespace\" \ - \"))))(Tile((id \ - 98020447-3d31-4f2b-bb61-1001662ee27b)(label(Lam))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 22afdc62-06ed-40c8-90b2-8df74b0632e6)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - f6106bdf-cf3e-47a2-866e-2ac855f8210a)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 61f13caf-510d-48d7-8e02-d8281ac923dd)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 2b7611a6-6f4c-47d5-a528-7065988a8f7a)(content(Whitespace\" \ - \"))))(Tile((id \ - 87a48234-4a63-46c6-b792-95d064a918cd)(label(e1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - ceb7ec98-fc50-4e62-918d-a4e762a311b6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - bffb01e3-9ff8-468d-bb87-8627d7ecd6fa)(content(Whitespace\" \ - \"))))(Tile((id \ - 470ab413-f5d2-42ac-b6b8-45761476b84e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 4929a641-a33a-4a73-b4c3-30b76a61eec1)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - b0b9e003-4b1d-48c2-8974-9d4942d7c9cb)(content(Whitespace\" \ - \"))))(Tile((id \ - 39621879-55eb-4c10-864c-7f7c9121600f)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 6612dd91-9f3b-4746-9a53-aaf615075142)(content(Whitespace\" \ - \"))))(Tile((id \ - 56674479-b7a8-466e-815c-c3519477e24e)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 119959ad-6e7e-495d-a46c-5070b4d4bd12)(content(Whitespace\" \ - \"))))(Tile((id \ - a9a3c6cd-f13a-40ee-bc85-848cee84139f)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - df52e2f7-dea5-4e25-9919-5c56ae3b8a86)(content(Whitespace\" \ - \")))))((Secondary((id \ - 7f24a0b0-2b4d-4059-aed3-080b3a6f3d95)(content(Whitespace\" \ - \"))))(Tile((id \ - 969bb130-c922-48db-b8bb-5ff2e51b1594)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 3b5b741b-2a7c-4629-85d0-da0c6daec8bf)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 2a73e707-f5a6-45ed-b8c0-be8efe01829d)(content(Whitespace\" \ - \"))))(Tile((id \ - 3218e1a4-2c36-4c76-ad57-312c25b10842)(label(Lam))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 1621e784-605e-4068-8a1e-545e5c3d1281)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - b0ddd940-3a25-424a-b445-9928ce131c7b)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 7eaa625e-44be-47fc-9798-520b37339b6d)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5572e4d0-33b7-445c-8e7a-1dad01e5faaf)(content(Whitespace\" \ - \"))))(Tile((id \ - 429b26eb-5901-4006-8dd2-0685fcd09aa6)(label(s2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 809da259-f5dd-421c-a56b-c376406d6cdd)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - e7fade67-91cd-4ec1-ac88-bc7a5d817b1f)(label(e1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - aa7951da-66f5-48df-90f5-63e348ca7a3e)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 849ef48e-ab4e-4fac-a2eb-d624d833595b)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - fd40f08a-3c86-419e-b8b7-9b7901e8b00c)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - af98ab53-c3ed-4006-9d7a-0dd258acb16d)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))))))))))))(Secondary((id \ - 6eb0b86a-1fc5-450d-ace1-18414e53020b)(content(Whitespace\" \ - \"))))(Secondary((id \ - a8c14594-76d4-4420-b347-2fadbf31c785)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - 9eee86b4-1585-4a65-ab57-c3c67f60c456)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - a668d182-34a7-4d51-9632-100bd4fb2d20)(content(Whitespace\" \ - \"))))(Secondary((id \ - 4c2f2cbc-9e84-4860-a313-fba762860b99)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 0c22f826-d3d2-475f-9ee5-b8b36cff4413)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 537a2126-812e-4115-b26a-124cb1e9090c)(content(Whitespace\" \ - \"))))(Tile((id \ - 2ef23d69-a107-4a93-bc79-b284a16fc79f)(label(s3))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - db07bf0b-2e53-492b-b9ac-13443730b71b)(content(Whitespace\" \ - \"))))(Tile((id \ - 1684ba82-a56c-494d-89f1-77657e1bd4f0)(label(:))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 11))(sort Pat))((shape(Concave \ - 11))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - d6a9bca6-91ae-45e0-a7d3-2a45a62c1e51)(content(Whitespace\" \ - \"))))(Tile((id \ - 34d43e38-afdc-4d81-854c-54479e2dac32)(label(\"(\"\")\"))(mold((out \ - Typ)(in_(Typ))(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0 1))(children(((Tile((id \ - 8b7eab6b-7349-49e3-9096-13699229f975)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Tile((id \ - 7fd287cb-1aa2-4f4e-b461-ee340a95fb58)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 17f9a2f5-0025-465f-82ea-361c41357a33)(content(Whitespace\" \ - \"))))(Secondary((id \ - 2448942c-eef2-4ad8-ba61-2a0df6815c83)(content(Whitespace\" \ - \"))))(Grout((id 91b77ad2-1dd9-47ea-a201-87a847c6d0e7)(shape \ - Convex)))(Tile((id \ - ba613fdc-b4f8-4a17-b192-bcee85dbe15e)(label(,))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 14))(sort Typ))((shape(Concave \ - 14))(sort Typ))))))(shards(0))(children())))(Secondary((id \ - 908baae0-60ca-4c3d-8ea8-3e9b742cad87)(content(Whitespace\" \ - \"))))(Tile((id \ - 718e9c8d-fb8a-4fec-81af-60f4c69ba663)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children()))))))))(Secondary((id \ - 7859f8d0-e936-46cd-bee5-77de0a98717f)(content(Whitespace\" \ - \"))))(Tile((id \ - 3dd8de8b-e851-4600-b155-038bbc81b182)(label(->))(mold((out \ - Typ)(in_())(nibs(((shape(Concave 6))(sort Typ))((shape(Concave 6))(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - fac8768d-60cd-4904-827a-68b698144384)(content(Whitespace\" \ - \"))))(Tile((id \ - 62ed7fe1-a119-4ca3-a7dc-7047e272b252)(label(Exp))(mold((out \ - Typ)(in_())(nibs(((shape Convex)(sort Typ))((shape Convex)(sort \ - Typ))))))(shards(0))(children())))(Secondary((id \ - 9376de82-d1d8-4bab-a683-149c0faa80b5)(content(Whitespace\" \ - \")))))((Secondary((id \ - f70e2364-2a32-4f49-9e33-4dbdbdaeb2f8)(content(Whitespace\" \ - \"))))(Tile((id ef7b69f1-a853-4ea5-a43b-a6178ffddddb)(label(fun \ - ->))(mold((out Exp)(in_(Pat))(nibs(((shape Convex)(sort \ - Exp))((shape(Concave 13))(sort Exp))))))(shards(0 \ - 1))(children(((Secondary((id \ - 1a8fcdef-d440-407a-a049-3f4b22e84927)(content(Whitespace\" \ - \"))))(Tile((id \ - ddcca72c-baae-4b20-92a3-19922e633ccc)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 4e298f54-5432-4ad6-b82a-dde0bc668048)(label(e))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 24c696a7-8724-4c79-8a06-bccca948628e)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - 680b6e7c-952f-4eed-9dc9-7fbe693b20d5)(label(x))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e2248abb-be9e-4266-b3f1-55960240e851)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Tile((id \ - 76924d6e-03c5-4a55-ae62-0ffc901025d1)(label(v))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 7de850e6-5ce8-41c6-a470-34bf72ab1735)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 4cb6d8e5-41f3-496d-8d1c-09cd1e81b6eb)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f563e72d-f3d6-4f22-9fb4-5f5cf1e78d7a)(label(case end))(mold((out \ - Exp)(in_(Rul))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Secondary((id \ - cf313000-8e28-41ce-86b7-a904f735de54)(content(Whitespace\" \ - \"))))(Tile((id \ - d7ba9839-1b3d-4bf6-9490-26f598bdb929)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 15948b8f-8d9d-48fd-ba8c-b87ae6c011c2)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 278b6040-2f28-49ed-b861-d43652f8518e)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - 194877b3-baff-4623-842c-c26afad650ec)(content(Whitespace\" \ - \"))))(Tile((id \ - 6f98dec9-a3a1-46a8-ac08-2779543e5398)(label(Var))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 212b18c3-5b5e-4b67-9e27-7f84e78acb57)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 22bab0a7-cc72-43a3-a014-4059c475cc52)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - a3dd4eb0-b75a-4f82-a24d-94fb36ce4653)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 862d36f5-706d-4808-b4ac-37ccaf3ad98b)(content(Whitespace\" \ - \"))))(Tile((id \ - bcafd070-ebdf-4e44-a353-61d50e41fe7d)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 1d6331f3-daaa-4ed5-985e-c0766f66652b)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 14dcad2a-ba87-482c-bc49-b681553fb72e)(content(Whitespace\" \ - \"))))(Tile((id \ - f4d00d94-5609-4fb4-88ee-3f3c3cba38c8)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cd3be6fd-f33f-4eac-b869-47d7568f3e0f)(content(Whitespace\" \ - \"))))(Tile((id \ - e6d222ed-05f5-4001-a1c8-89c4f56b5abd)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 5fe61377-3f24-4b96-a447-e369aa4d2c91)(content(Whitespace\" \ - \"))))(Tile((id \ - e0e2804a-e559-4ae1-9ed5-b0b70306c705)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 238d8eb6-5b9e-4d1b-bf51-bf983ace084e)(content(Whitespace\" \ - \")))))((Secondary((id \ - 619bff1d-243f-4f93-9397-48e7c5589641)(content(Whitespace\" \ - \"))))(Tile((id \ - 1e05f910-d768-44f9-bfd4-de317d643cd9)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 2be153c4-7499-4848-a296-d35913fa028f)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - bdd85cb3-7456-4184-bc48-b247262cc289)(content(Whitespace\" \ - \"))))(Tile((id \ - 77f6d269-be79-44c0-b645-92770515b911)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - 71088e87-7f33-4453-b1b3-58d6f88112c8)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - 79f70e59-a57b-47e8-a783-90b0d7c0ddf1)(label(| =>))(mold((out \ - Rul)(in_(Pat))(nibs(((shape(Concave 19))(sort Exp))((shape(Concave \ - 19))(sort Exp))))))(shards(0 1))(children(((Secondary((id \ - edc8c2f7-63fa-4231-8e3e-d48a043a3f05)(content(Whitespace\" \ - \"))))(Tile((id \ - e2f952a0-2298-4c1c-a99f-11b3e9d9a87a)(label(Lam))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - 6413a647-967d-4563-86be-b9d76cd28691)(label(\"(\"\")\"))(mold((out \ - Pat)(in_(Pat))(nibs(((shape(Concave 1))(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0 1))(children(((Tile((id \ - 20401c1a-c99a-4e72-bd61-34e70cf02164)(label(y))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Tile((id \ - e1ae027c-9260-4782-ba3d-72566b3db437)(label(,))(mold((out \ - Pat)(in_())(nibs(((shape(Concave 14))(sort Pat))((shape(Concave \ - 14))(sort Pat))))))(shards(0))(children())))(Secondary((id \ - 8caf78b6-6e86-44a5-8093-2ccc481d1405)(content(Whitespace\" \ - \"))))(Tile((id \ - 64be20b6-db15-4663-a69c-def448d4e18b)(label(e1))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children()))))))))(Secondary((id \ - 19ea824b-3c06-4c81-a2d9-fe6fa60bbb38)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - c127595d-ad3b-431d-bc0f-ab9ee6a394e7)(content(Whitespace\" \ - \"))))(Tile((id \ - 933a9ca3-9a88-428c-8266-5037bd511caf)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - b4d7b2b3-9cb5-4cd0-a535-4f4a66b48965)(label(if then else))(mold((out \ - Exp)(in_(Exp Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 12))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - b141a666-6444-4b7c-a3ac-4568eca4a6cc)(content(Whitespace\" \ - \"))))(Tile((id \ - 408b0642-0180-41c6-aa1d-368a99405ec9)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 709fea05-99e9-4a02-bf32-77f44f4232dc)(content(Whitespace\" \ - \"))))(Tile((id \ - c322428f-6f6f-4cc5-a85c-e2286d6bcc20)(label($==))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 8))(sort Exp))((shape(Concave 8))(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - af3faf2c-6bcb-4e26-9e4c-b4b0ab9f4eef)(content(Whitespace\" \ - \"))))(Tile((id \ - 5f80cff7-9053-4155-8e8a-4c45793c15bf)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - cccaece9-f8cd-468c-863b-505875dacaf9)(content(Whitespace\" \ - \")))))((Secondary((id \ - c72731ab-d061-40fc-beed-dc72012a27fc)(content(Whitespace\" \ - \"))))(Tile((id \ - 44a4df22-cc30-42be-82f6-55b679b9264d)(label(e))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Secondary((id \ - 1f5a11be-3038-4165-947d-c97467e17269)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - c1e57df9-04da-42a2-a45e-68568921c932)(content(Whitespace\" \ - \"))))(Tile((id \ - d6edc7e6-29d8-42c4-be3a-110aba97886f)(label(Lam))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 97b49f5c-4d52-4611-b2d0-84190b80fb8e)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 4a7ee758-f3ee-421f-b5af-65d5d6b5b374)(label(y))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - d28befcc-18d8-4498-992a-05a801841a47)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - b862eaf1-699b-4834-be02-6da0a65e2f26)(content(Whitespace\" \ - \"))))(Tile((id \ - 52e160f2-d91f-4ba8-baa9-05a619297a51)(label(s3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 898659d1-87df-48d7-a3d8-515c93f73575)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - d75b437a-c47b-4bd5-a807-b909a9a3151c)(label(e1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - cbca7cac-142f-4756-9d93-c923279694d7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - 0b29f4fd-c626-4983-b145-7fef929405f0)(label(x))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 1cce5efa-d95c-4545-affd-cc8047a4858d)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - a408cf49-3342-4f5b-8b3b-e544f0034951)(label(v))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))))))))))))(Secondary((id \ - fc317581-19ef-4dea-972d-38ad6069cd56)(content(Whitespace\" \ - \"))))(Secondary((id \ - e6a796ef-57bc-43b6-b140-68eb30df70ea)(content(Whitespace\"\\226\\143\\142\")))))))))(Secondary((id \ - b5dfe62e-427d-4f0b-9e20-e5a3dfbe09e6)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - b2c04b42-ff4a-4521-856c-174786fafb9a)(content(Whitespace\"\\226\\143\\142\"))))(Secondary((id \ - e18e423f-43b5-410e-8c0a-04cb92b76591)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - f6eacb1f-9849-47d4-8c2e-d7ae6069e06e)(label(let = in))(mold((out \ - Exp)(in_(Pat Exp))(nibs(((shape Convex)(sort Exp))((shape(Concave \ - 16))(sort Exp))))))(shards(0 1 2))(children(((Secondary((id \ - 443bad06-46ed-41e4-8be1-d1cb8dbbac07)(content(Whitespace\" \ - \"))))(Tile((id \ - b9823b85-3abd-4daa-aad9-b734d67c6009)(label(in))(mold((out \ - Pat)(in_())(nibs(((shape Convex)(sort Pat))((shape Convex)(sort \ - Pat))))))(shards(0))(children())))(Secondary((id \ - eb9bad57-a84a-4cdc-97ca-b985fc0ad34d)(content(Whitespace\" \ - \")))))((Secondary((id \ - ba233134-093e-4c7d-b7cb-ab16ff48c664)(content(Whitespace\" \ - \"))))(Tile((id \ - 14e6e5ea-e8e9-43e0-a876-d88a012f85ac)(label(Lam))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 1b3266be-edc1-43d4-bf0a-d993ddb60b06)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - ea84653b-1a43-418e-922a-24c2f1592089)(label(\"\\\"b\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 6e0b22e4-cdc7-4be3-b074-ac339e49e1e7)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 5d6c4a4c-0ec9-4e61-bbaa-6e1463ee577d)(content(Whitespace\" \ - \"))))(Tile((id \ - 2d3710c6-4bc9-43cc-a851-e2ffb348514e)(label(Var))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 95e4947b-3d6a-4567-b261-867a58622562)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - ceca4109-e28d-4d3f-9f71-62b78a0c7d05)(label(\"\\\"a\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Tile((id \ - 5c2fd4b8-76f6-49f4-bde9-596bb30f53ae)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - e0e4d3c9-9b11-4b82-985d-a2e30194d39b)(label(\"\\\"a\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 8b81c6cd-cc48-4093-a9a9-03dbac652e49)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Tile((id \ - b056648d-ae26-4d8b-bb9b-01f721ffb9fa)(label(Var))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 7de8df46-48ab-466c-9b3f-2b9b3c5bb05b)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - a1c3fa3f-091d-41e5-a0f4-fa968ecefe31)(label(\"\\\"x\\\"\"))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Secondary((id \ - c153e743-5cfe-4c9e-9cd5-a0dd0b64c104)(content(Whitespace\" \ - \")))))))))(Secondary((id \ - 9e992a4c-bf59-477e-819d-72e5737722da)(content(Whitespace\"\\226\\143\\142\"))))(Tile((id \ - c9eddf0f-6bac-4578-af06-8df535430ce0)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - f0064a19-caf3-4cf3-a0dd-7bc86a8a4f8c)(label(s0))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 25222dc5-e491-49cb-80bd-084fb6d630cb)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - b247e7fa-54f7-4545-a9dd-015d172a15fe)(label(in))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - d98ea2d2-e408-4e10-9f75-fdd17793201d)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 591d63b2-7920-4746-8629-4a5d4e4336df)(content(Whitespace\" \ - \"))))(Tile((id \ - 31a9734b-6303-42a8-8dd6-48647a9f96ee)(label(s1))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - a92713d2-555d-4693-bf3c-b86e6e24fc1a)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - e7d04dd4-913b-4f4d-b9ac-90b783bbc59a)(label(in))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - de40aab8-5d3a-4134-a1f2-ce91ea7b95dd)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - 47d644af-17c8-4983-8c34-40dfa4e09a74)(content(Whitespace\" \ - \"))))(Tile((id \ - 979584dd-c923-43a5-9040-9c1e2de710dc)(label(s2))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 233faa5c-4b9a-44fc-a305-059f04fe9a78)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 064776ac-2f02-4499-a836-3da9298d7dfe)(label(in))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children()))))))))(Tile((id \ - 210cab31-326d-4190-8889-89792d714456)(label(,))(mold((out \ - Exp)(in_())(nibs(((shape(Concave 14))(sort Exp))((shape(Concave \ - 14))(sort Exp))))))(shards(0))(children())))(Secondary((id \ - f52d4c5c-93dd-4731-95dc-3f3ef4719db2)(content(Whitespace\" \ - \"))))(Tile((id \ - f6ff7adc-97c5-44a8-8c70-3c8d51e45cd1)(label(s3))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))(Tile((id \ - 800c1bcd-800b-483d-8fca-e7134c5ecbd9)(label(\"(\"\")\"))(mold((out \ - Exp)(in_(Exp))(nibs(((shape(Concave 1))(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0 1))(children(((Tile((id \ - 7b1f159f-b425-4335-aa65-942dbba1b8e8)(label(in))(mold((out \ - Exp)(in_())(nibs(((shape Convex)(sort Exp))((shape Convex)(sort \ - Exp))))))(shards(0))(children())))))))))))))(Secondary((id \ - 55ed9628-d3ce-4899-8b80-8fd7ca04c644)(content(Whitespace\"\\226\\143\\142\")))))()))(ancestors())))(caret \ - Outer))"; - backup_text = - "#recursive sum type dynamics tests#\n\ - #all calls should evaluate fully with no exns or cast fails#\n\ - type Exp = Var(String) + Lam(String, Exp) in\n\n\ - let s0 : ( , , ) -> = fun (e,x,v) ->\n\ - case e\n\ - | Var(y) => (if y $== x then v else e)\n\ - | Lam(y, e1) => (if y $== x then e else Lam(y, s0(e1,x,v))) \n\ - end in \n\ - let s1 : ( , , ) -> Exp = fun (e,x,v) ->\n\ - case e\n\ - | Var(y) => (if y $== x then v else e)\n\ - | Lam(y, e1) => (if y $== x then e else Lam(y, s1(e1,x,v))) \n\ - end in \n\ - let s2 : (Exp, , ) -> Exp = fun (e,x,v) ->\n\ - case e\n\ - | Var(y) => (if y $== x then v else e)\n\ - | Lam(y, e1) => (if y $== x then e else Lam(y, s2(e1,x,v))) \n\ - end in \n\ - let s3 : (Exp, , Exp) -> Exp = fun (e,x,v) ->\n\ - case e\n\ - | Var(y) => (if y $== x then v else e)\n\ - | Lam(y, e1) => (if y $== x then e else Lam(y, s3(e1,x,v))) \n\ - end in\n\n\ - let in = Lam(\"b\", Var(\"a\")),\"a\",Var(\"x\") in\n\ - (s0(in), s1(in), s2(in), s3(in))\n"; - } diff --git a/src/haz3lweb/Settings.re b/src/haz3lweb/Settings.re index d64917b0ab..1481b54621 100644 --- a/src/haz3lweb/Settings.re +++ b/src/haz3lweb/Settings.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type mode = diff --git a/src/haz3lweb/SlideContent.re b/src/haz3lweb/SlideContent.re index 064b766744..639f55dd70 100644 --- a/src/haz3lweb/SlideContent.re +++ b/src/haz3lweb/SlideContent.re @@ -6,23 +6,27 @@ let img = create("img"); let slide = (header, content) => div( ~key="slide", - ~attr=Attr.class_("slide"), + ~attrs=[Attr.class_("slide")], [ - h1(~key="header", ~attr=Attr.class_("slide-header"), [text(header)]), - div(~key="content", ~attr=Attr.class_("slide-content"), content), + h1( + ~key="header", + ~attrs=[Attr.class_("slide-header")], + [text(header)], + ), + div(~key="content", ~attrs=[Attr.class_("slide-content")], content), ], ); -let code = content => span(~attr=Attr.class_("code"), [text(content)]); +let code = content => span(~attrs=[Attr.class_("code")], [text(content)]); -let em = content => span(~attr=Attr.class_("em"), [text(content)]); +let em = content => span(~attrs=[Attr.class_("em")], [text(content)]); let get_content = fun - | Documentation("Programming Expressively", _) => + | Documentation("Expressive Programming", _) => Some( slide( - "Programming Expressively", + "Expressive Programming", [ p([ text( @@ -47,10 +51,10 @@ let get_content = ], ), ) - | Documentation("Composing Arithmetic Expressions", _) => + | Documentation("Composing Expressions", _) => Some( slide( - "Composing Arithmetic Expressions", + "Composing Expressions", [ p([ text("Arithmetic expressions are constructed "), diff --git a/src/haz3lweb/Store.re b/src/haz3lweb/Store.re index 0c4ac3fe23..f30a18ab85 100644 --- a/src/haz3lweb/Store.re +++ b/src/haz3lweb/Store.re @@ -1,4 +1,5 @@ open Haz3lcore; +open Util; // A generic key-value store for saving/loading data to/from local storage module Generic = { @@ -113,6 +114,9 @@ module Scratch = { [@deriving (show({with_path: false}), sexp, yojson)] type persistent = PersistentData.scratch; + [@deriving (show({with_path: false}), sexp, yojson)] + type t = (int, list(Editor.t), ModelResults.M.t(ModelResult.t)); + let to_persistent = ((idx, slides, results)): persistent => ( idx, List.map(ScratchSlide.persist, slides), @@ -121,36 +125,42 @@ module Scratch = { |> ModelResults.bindings, ); - let of_persistent = (~settings, (idx, slides, results): persistent) => { + let of_persistent = + (~settings: CoreSettings.t, (idx, slides, results): persistent): t => { ( idx, - List.map(ScratchSlide.unpersist, slides), + List.map(ScratchSlide.unpersist(~settings), slides), results |> List.to_seq |> ModelResults.of_seq - |> ModelResults.map(ModelResult.of_persistent(~settings)), + |> ModelResults.map( + ModelResult.of_persistent(~settings=settings.evaluation), + ), ); }; - let serialize = scratch => { + let serialize = (scratch: t): string => { scratch |> to_persistent |> sexp_of_persistent |> Sexplib.Sexp.to_string; }; - let deserialize = data => { - data |> Sexplib.Sexp.of_string |> persistent_of_sexp |> of_persistent; + let deserialize = (data: string, ~settings: CoreSettings.t): t => { + data + |> Sexplib.Sexp.of_string + |> persistent_of_sexp + |> of_persistent(~settings); }; - let save = (scratch): unit => { + let save = (scratch: t): unit => { JsUtil.set_localstore(save_scratch_key, serialize(scratch)); }; - let init = (~settings) => { + let init = (~settings: CoreSettings.t): t => { let scratch = of_persistent(~settings, Init.startup.scratch); save(scratch); scratch; }; - let load = (~settings) => + let load = (~settings: CoreSettings.t): t => switch (JsUtil.get_localstore(save_scratch_key)) { | None => init(~settings) | Some(data) => @@ -159,8 +169,10 @@ module Scratch = { } }; - let export = (~settings) => serialize(load(~settings)); - let import = (~settings, data) => save(deserialize(~settings, data)); + let export = (~settings: CoreSettings.t): string => + serialize(load(~settings)); + let import = (~settings: CoreSettings.t, data: string): unit => + save(deserialize(~settings, data)); }; module Documentation = { @@ -169,13 +181,20 @@ module Documentation = { [@deriving (show({with_path: false}), sexp, yojson)] type persistent = PersistentData.documentation; + [@deriving (show({with_path: false}), sexp, yojson)] + type t = ( + string, + list((string, Editor.t)), + ModelResults.M.t(ModelResult.t), + ); + let persist = ((name, editor: Editor.t)) => { (name, PersistentZipper.persist(editor.state.zipper)); }; - let unpersist = ((name, zipper)) => { + let unpersist = ((name, zipper), ~settings: CoreSettings.t) => { let zipper = PersistentZipper.unpersist(zipper); - (name, Editor.init(zipper, ~read_only=false)); + (name, Editor.init(zipper, ~read_only=false, ~settings)); }; let to_persistent = ((string, slides, results)): persistent => ( @@ -186,36 +205,42 @@ module Documentation = { |> ModelResults.bindings, ); - let of_persistent = (~settings, (string, slides, results): persistent) => { + let of_persistent = + (~settings: CoreSettings.t, (string, slides, results): persistent): t => { ( string, - List.map(unpersist, slides), + List.map(unpersist(~settings), slides), results |> List.to_seq |> ModelResults.of_seq - |> ModelResults.map(ModelResult.of_persistent(~settings)), + |> ModelResults.map( + ModelResult.of_persistent(~settings=settings.evaluation), + ), ); }; - let serialize = slides => { + let serialize = (slides: t): string => { slides |> to_persistent |> sexp_of_persistent |> Sexplib.Sexp.to_string; }; - let deserialize = data => { - data |> Sexplib.Sexp.of_string |> persistent_of_sexp |> of_persistent; + let deserialize = (~settings: CoreSettings.t, data: string): t => { + data + |> Sexplib.Sexp.of_string + |> persistent_of_sexp + |> of_persistent(~settings); }; - let save = (slides): unit => { + let save = (slides: t): unit => { JsUtil.set_localstore(save_documentation_key, serialize(slides)); }; - let init = (~settings) => { + let init = (~settings: CoreSettings.t): t => { let documentation = of_persistent(~settings, Init.startup.documentation); save(documentation); documentation; }; - let load = (~settings) => + let load = (~settings: CoreSettings.t): t => switch (JsUtil.get_localstore(save_documentation_key)) { | None => init(~settings) | Some(data) => @@ -224,8 +249,10 @@ module Documentation = { } }; - let export = (~settings) => serialize(load(~settings)); - let import = (~settings, data) => save(deserialize(~settings, data)); + let export = (~settings: CoreSettings.t): string => + serialize(load(~settings)); + let import = (~settings: CoreSettings.t, data: string): unit => + save(deserialize(~settings, data)); }; module Exercise = { @@ -249,57 +276,70 @@ module Exercise = { JsUtil.set_localstore(cur_exercise_key, keystring_of_key(key)); }; - let save_exercise = (exercise, ~instructor_mode) => { + let save_exercise = (exercise, ~instructor_mode): unit => { let key = Exercise.key_of_state(exercise); let keystring = keystring_of_key(key); let value = Exercise.serialize_exercise(exercise, ~instructor_mode); JsUtil.set_localstore(keystring, value); }; - let init_exercise = (spec, ~instructor_mode) => { + let init_exercise = + (~settings: CoreSettings.t, spec, ~instructor_mode): state => { let key = Exercise.key_of(spec); let keystring = keystring_of_key(key); - let exercise = Exercise.state_of_spec(spec, ~instructor_mode); + let exercise = Exercise.state_of_spec(spec, ~instructor_mode, ~settings); save_exercise(exercise, ~instructor_mode); JsUtil.set_localstore(cur_exercise_key, keystring); exercise; }; - let load_exercise = (key, spec, ~instructor_mode): Exercise.state => { + let load_exercise = + (~settings: CoreSettings.t, key, spec, ~instructor_mode): Exercise.state => { let keystring = keystring_of_key(key); switch (JsUtil.get_localstore(keystring)) { | Some(data) => let exercise = - try(Exercise.deserialize_exercise(data, ~spec, ~instructor_mode)) { - | _ => init_exercise(spec, ~instructor_mode) + try( + Exercise.deserialize_exercise( + data, + ~spec, + ~instructor_mode, + ~settings, + ) + ) { + | _ => init_exercise(spec, ~instructor_mode, ~settings) }; JsUtil.set_localstore(cur_exercise_key, keystring); exercise; - | None => init_exercise(spec, ~instructor_mode) + | None => init_exercise(spec, ~instructor_mode, ~settings) }; }; - let save = ((n, specs, exercise), ~instructor_mode) => { + let save = ((n, specs, exercise), ~instructor_mode): unit => { let key = key_of(List.nth(specs, n)); let keystring = keystring_of_key(key); save_exercise(exercise, ~instructor_mode); JsUtil.set_localstore(cur_exercise_key, keystring); }; - let init = (~instructor_mode) => { + let init = + (~settings: CoreSettings.t, ~instructor_mode) + : (int, list(spec), state) => { let exercises = { ( 0, ExerciseSettings.exercises, List.nth(ExerciseSettings.exercises, 0) - |> Exercise.state_of_spec(~instructor_mode), + |> Exercise.state_of_spec(~instructor_mode, ~settings), ); }; save(exercises, ~instructor_mode); exercises; }; - let load = (~specs, ~instructor_mode) => { + let load = + (~settings: CoreSettings.t, ~specs, ~instructor_mode) + : (int, list(p(ZipperBase.t)), state) => { switch (JsUtil.get_localstore(cur_exercise_key)) { | Some(keystring) => let key = key_of_keystring(keystring); @@ -308,13 +348,16 @@ module Exercise = { switch (JsUtil.get_localstore(keystring)) { | Some(data) => let exercise = - try(deserialize_exercise(data, ~spec, ~instructor_mode)) { - | _ => init_exercise(spec, ~instructor_mode) + try( + deserialize_exercise(data, ~spec, ~instructor_mode, ~settings) + ) { + | _ => init_exercise(spec, ~instructor_mode, ~settings) }; (n, specs, exercise); | None => // initialize exercise from spec - let exercise = Exercise.state_of_spec(spec, ~instructor_mode); + let exercise = + Exercise.state_of_spec(spec, ~instructor_mode, ~settings); save_exercise(exercise, ~instructor_mode); (n, specs, exercise); } @@ -322,13 +365,19 @@ module Exercise = { // invalid current exercise key saved, load the first exercise let first_spec = List.nth(specs, 0); let first_key = Exercise.key_of(first_spec); - (0, specs, load_exercise(first_key, first_spec, ~instructor_mode)); + ( + 0, + specs, + load_exercise(first_key, first_spec, ~instructor_mode, ~settings), + ); }; - | None => init(~instructor_mode) + | None => init(~instructor_mode, ~settings) }; }; - let prep_exercise_export = (~specs, ~instructor_mode) => { + let prep_exercise_export = + (~specs, ~instructor_mode: bool, ~settings: CoreSettings.t) + : exercise_export => { { cur_exercise: key_of_keystring( @@ -339,15 +388,16 @@ module Exercise = { |> List.map(spec => { let key = Exercise.key_of(spec); let exercise = - load_exercise(key, spec, ~instructor_mode) + load_exercise(key, spec, ~instructor_mode, ~settings) |> Exercise.persistent_state_of_state(~instructor_mode); (key, exercise); }), }; }; - let serialize_exercise_export = (~specs, ~instructor_mode) => { - prep_exercise_export(~specs, ~instructor_mode) + let serialize_exercise_export = + (~specs, ~instructor_mode, ~settings: CoreSettings.t) => { + prep_exercise_export(~specs, ~instructor_mode, ~settings) |> sexp_of_exercise_export |> Sexplib.Sexp.to_string; }; @@ -356,7 +406,8 @@ module Exercise = { serialize_exercise_export(~specs, ~instructor_mode); }; - let import = (data, ~specs, ~instructor_mode) => { + let import = + (data, ~specs, ~instructor_mode: bool, ~settings: CoreSettings.t) => { let exercise_export = data |> deserialize_exercise_export; save_exercise_key(exercise_export.cur_exercise); exercise_export.exercise_data @@ -371,6 +422,7 @@ module Exercise = { persistent_state, ~spec, ~instructor_mode, + ~settings, ), ~instructor_mode, ) diff --git a/src/haz3lweb/Update.re b/src/haz3lweb/Update.re index e9d4f46068..1aacb159f3 100644 --- a/src/haz3lweb/Update.re +++ b/src/haz3lweb/Update.re @@ -1,7 +1,26 @@ +open Util; +open Js_of_ocaml; open Haz3lcore; include UpdateAction; // to prevent circularity +let observe_font_specimen = (id, update) => + ResizeObserver.observe( + ~node=JsUtil.get_elem_by_id(id), + ~f= + (entries, _) => { + let specimen = Js.to_array(entries)[0]; + let rect = specimen##.contentRect; + update( + FontMetrics.{ + row_height: rect##.bottom -. rect##.top, + col_width: rect##.right -. rect##.left, + }, + ); + }, + (), + ); + let update_settings = (a: settings_action, {settings, _} as model: Model.t): Model.t => switch (a) { @@ -186,11 +205,7 @@ let update_settings = let schedule_evaluation = (~schedule_action, model: Model.t): unit => if (model.settings.core.dynamics) { let elabs = - Editors.get_spliced_elabs( - ~settings=model.settings, - model.statics, - model.editors, - ); + Editors.get_spliced_elabs(~settings=model.settings.core, model.editors); let eval_rs = ModelResults.to_evaluate(model.results, elabs); if (!ModelResults.is_empty(eval_rs)) { schedule_action(UpdateResult(eval_rs)); @@ -216,13 +231,47 @@ let schedule_evaluation = (~schedule_action, model: Model.t): unit => }; }; +let on_startup = + (~schedule_action: UpdateAction.t => unit, m: Model.t): Model.t => { + let _ = + observe_font_specimen("font-specimen", fm => + schedule_action(UpdateAction.SetMeta(FontMetrics(fm))) + ); + NinjaKeys.initialize(NinjaKeys.options(schedule_action)); + JsUtil.focus_clipboard_shim(); + /* initialize state. */ + /* Initial evaluation on a worker */ + schedule_evaluation(~schedule_action, m); + Os.is_mac := + Dom_html.window##.navigator##.platform##toUpperCase##indexOf( + Js.string("MAC"), + ) + >= 0; + m; +}; + let update_cached_data = (~schedule_action, update, m: Model.t): Model.t => { - let update_statics = is_edit(update) || reevaluate_post_update(update); let update_dynamics = reevaluate_post_update(update); + /* If we switch editors, or change settings which require statics + * when statics was previously off, we may need updated statics */ + let non_edit_action_requiring_statics_refresh = + update_dynamics + && ( + switch (update) { + | PerformAction(_) => false + | _ => true + } + ); let m = - update_statics || update_dynamics && m.settings.core.statics - ? {...m, statics: Editors.mk_statics(~settings=m.settings, m.editors)} - : m; + if (non_edit_action_requiring_statics_refresh) { + { + ...m, + editors: + Editors.update_current_editor_statics(m.settings.core, m.editors), + }; + } else { + m; + }; if (update_dynamics && m.settings.core.dynamics) { schedule_evaluation(~schedule_action, m); m; @@ -231,22 +280,9 @@ let update_cached_data = (~schedule_action, update, m: Model.t): Model.t => { }; }; -let perform_action = (model: Model.t, a: Action.t): Result.t(Model.t) => - switch ( - model.editors - |> Editors.get_editor - |> Haz3lcore.Perform.go(~settings=model.settings.core, a) - ) { - | Error(err) => Error(FailedToPerform(err)) - | Ok(ed) => - let model = {...model, editors: Editors.put_editor(ed, model.editors)}; - /* Note: Not saving here as saving is costly to do each keystroke, - we wait a second after the last edit action (see Main.re) */ - Ok(model); - }; - let switch_scratch_slide = - (editors: Editors.t, ~instructor_mode, idx: int): option(Editors.t) => + (~settings, editors: Editors.t, ~instructor_mode, idx: int) + : option(Editors.t) => switch (editors) { | Documentation(_) => None | Scratch(n, _) when n == idx => None @@ -256,7 +292,8 @@ let switch_scratch_slide = | Exercises(_, specs, _) => let spec = List.nth(specs, idx); let key = Exercise.key_of(spec); - let exercise = Store.Exercise.load_exercise(key, spec, ~instructor_mode); + let exercise = + Store.Exercise.load_exercise(key, spec, ~instructor_mode, ~settings); Some(Exercises(idx, specs, exercise)); }; @@ -282,13 +319,14 @@ let switch_exercise_editor = this between users. The former is a TODO, currently difficult due to the more complex architecture of Exercises. */ let export_persistent_data = () => { + // TODO Is this parsing and reserializing? let settings = Store.Settings.load(); let data: PersistentData.t = { documentation: - Store.Documentation.load(~settings=settings.core.evaluation) + Store.Documentation.load(~settings=settings.core) |> Store.Documentation.to_persistent, scratch: - Store.Scratch.load(~settings=settings.core.evaluation) + Store.Scratch.load(~settings=settings.core) |> Store.Scratch.to_persistent, settings, }; @@ -301,6 +339,52 @@ let export_persistent_data = () => { ); print_endline("INFO: Persistent data exported to Init.ml"); }; +let export_scratch_slide = (editor: Editor.t): unit => { + let json_data = ScratchSlide.export(editor); + JsUtil.download_json("hazel-scratchpad", json_data); +}; + +let export_exercise_module = (exercise: Exercise.state): unit => { + let module_name = exercise.eds.module_name; + let filename = exercise.eds.module_name ++ ".ml"; + let content_type = "text/plain"; + let contents = Exercise.export_module(module_name, exercise); + JsUtil.download_string_file(~filename, ~content_type, ~contents); +}; + +let export_submission = (~instructor_mode) => + Log.get_and(log => { + let data = Export.export_all(~instructor_mode, ~log); + JsUtil.download_json(ExerciseSettings.filename, data); + }); + +let export_transitionary = (exercise: Exercise.state) => { + // .ml files because show uses OCaml syntax (dune handles seamlessly) + let module_name = exercise.eds.module_name; + let filename = exercise.eds.module_name ++ ".ml"; + let content_type = "text/plain"; + let contents = Exercise.export_transitionary_module(module_name, exercise); + JsUtil.download_string_file(~filename, ~content_type, ~contents); +}; + +let export_instructor_grading_report = (exercise: Exercise.state) => { + // .ml files because show uses OCaml syntax (dune handles seamlessly) + let module_name = exercise.eds.module_name; + let filename = exercise.eds.module_name ++ "_grading.ml"; + let content_type = "text/plain"; + let contents = Exercise.export_grading_module(module_name, exercise); + JsUtil.download_string_file(~filename, ~content_type, ~contents); +}; + +let instructor_exercise_update = + (model: Model.t, fn: Exercise.state => unit): Result.t(Model.t) => { + switch (model.editors) { + | Exercises(_, _, exercise) when model.settings.instructor_mode => + fn(exercise); + Ok(model); + | _ => Error(InstructorOnly) // TODO Make command palette contextual and figure out how to represent that here + }; +}; let ui_state_update = (ui_state: Model.ui_state, update: set_meta, ~schedule_action as _) @@ -313,11 +397,18 @@ let ui_state_update = }; }; -let rec apply = - (model: Model.t, update: t, state: State.t, ~schedule_action) - : Result.t(Model.t) => { +let apply = (model: Model.t, update: t, ~schedule_action): Result.t(Model.t) => { + let perform_action = (model: Model.t, a: Action.t): Result.t(Model.t) => { + switch ( + Editors.perform_action(~settings=model.settings.core, model.editors, a) + ) { + | Error(err) => Error(err) + | Ok(editors) => Ok({...model, editors}) + }; + }; let m: Result.t(Model.t) = switch (update) { + | Startup => Ok(on_startup(~schedule_action, model)) | Reset => Ok(Model.reset(model)) | Set(Evaluation(_) as s_action) => Ok(update_settings(s_action, model)) | Set(s_action) => @@ -356,18 +447,54 @@ let rec apply = ); Ok(model); | FinishImportScratchpad(data) => - let editors = Editors.import_current(model.editors, data); + let editors = + Editors.import_current( + ~settings=model.settings.core, + model.editors, + data, + ); Model.save_and_return({...model, editors}); - | ExportPersistentData => + | Export(ExportPersistentData) => + Model.save(model); export_persistent_data(); Ok(model); + | Export(ExportScratchSlide) => + Model.save(model); + let editor = Editors.get_editor(model.editors); + export_scratch_slide(editor); + Ok(model); + | Export(ExerciseModule) => + Model.save(model); + instructor_exercise_update(model, export_exercise_module); + | Export(Submission) => + Model.save(model); + export_submission(~instructor_mode=model.settings.instructor_mode); + Ok(model); + | Export(TransitionaryExerciseModule) => + Model.save(model); + instructor_exercise_update(model, export_transitionary); + | Export(GradingExerciseModule) => + Model.save(model); + instructor_exercise_update(model, export_instructor_grading_report); | ResetCurrentEditor => let instructor_mode = model.settings.instructor_mode; - let editors = Editors.reset_current(model.editors, ~instructor_mode); + let editors = + Editors.reset_current( + ~settings=model.settings.core, + model.editors, + ~instructor_mode, + ); Model.save_and_return({...model, editors}); | SwitchScratchSlide(n) => let instructor_mode = model.settings.instructor_mode; - switch (switch_scratch_slide(model.editors, ~instructor_mode, n)) { + switch ( + switch_scratch_slide( + ~settings=model.settings.core, + model.editors, + ~instructor_mode, + n, + ) + ) { | None => Error(FailedToSwitch) | Some(editors) => Model.save_and_return({...model, editors}) }; @@ -384,92 +511,31 @@ let rec apply = }; | TAB => /* Attempt to act intelligently when TAB is pressed. - * TODO(andrew): Consider more advanced TAB logic. Instead + * TODO: Consider more advanced TAB logic. Instead * of simply moving to next hole, if the backpack is non-empty * but can't immediately put down, move to next position of * interest, which is closet of: nearest position where can * put down, farthest position where can put down, next hole */ - let z = - model.editors - |> Editors.get_editor - |> ((ed: Editor.t) => ed.state.zipper); - let a = + let z = Editors.get_editor(model.editors).state.zipper; + let action: Action.t = Selection.is_buffer(z.selection) - ? Assistant(AcceptSuggestion) + ? Buffer(Accept) : Zipper.can_put_down(z) - ? PerformAction(Put_down) : MoveToNextHole(Right); - apply(model, a, state, ~schedule_action); - | PerformAction(a) - when model.settings.core.assist && model.settings.core.statics => - let model = UpdateAssistant.reset_buffer(model); - switch (perform_action(model, a)) { - | Ok(model) when Action.is_edit(a) => - UpdateAssistant.apply( - model, - Prompt(TyDi), - ~schedule_action, - ~state, - ~main=apply, - ) - | x => x - }; - | PerformAction(a) => perform_action(model, a) - | ReparseCurrentEditor => - /* This serializes the current editor to text, resets the current - editor, and then deserializes. It is intended as a (tactical) - nuclear option for weird backpack states */ - let ed = Editors.get_editor(model.editors); - let zipper_init = Zipper.init(); - let ed_str = Printer.to_string_editor(ed); - switch (Printer.zipper_of_string(~zipper_init, ed_str)) { - | None => Error(CantReset) - | Some(z) => - //TODO: add correct action to history (Pick_up is wrong) - let editor = Haz3lcore.Editor.new_state(Pick_up, z, ed); - let editors = Editors.put_editor(editor, model.editors); - Ok({...model, editors}); - }; - | Cut => - // system clipboard handling itself is done in Page.view handlers - perform_action(model, Destruct(Left)) - | Copy => - // system clipboard handling itself is done in Page.view handlers - // doesn't change the state but including as an action for logging purposes - Ok(model) - | Paste(clipboard) => - let ed = Editors.get_editor(model.editors); - switch (Printer.paste_into_zip(ed.state.zipper, clipboard)) { - | None => Error(CantPaste) - | Some(z) => - //HACK(andrew): below is not strictly a insert action... - let ed = Haz3lcore.Editor.new_state(Insert(clipboard), z, ed); - let editors = Editors.put_editor(ed, model.editors); - Ok({...model, editors}); - }; + ? Put_down : Move(Goal(Piece(Grout, Right))); + perform_action(model, action); + | PerformAction(a) => + let r = perform_action(model, a); + r; | Undo => - let ed = Editors.get_editor(model.editors); - switch (Haz3lcore.Editor.undo(ed)) { + switch (Editors.update_opt(model.editors, Editor.undo)) { | None => Error(CantUndo) - | Some(ed) => - Ok({...model, editors: Editors.put_editor(ed, model.editors)}) - }; + | Some(editors) => Ok({...model, editors}) + } | Redo => - let ed = Editors.get_editor(model.editors); - switch (Haz3lcore.Editor.redo(ed)) { + switch (Editors.update_opt(model.editors, Editor.redo)) { | None => Error(CantRedo) - | Some(ed) => - Ok({...model, editors: Editors.put_editor(ed, model.editors)}) - }; - | MoveToNextHole(d) => - perform_action(model, Move(Goal(Piece(Grout, d)))) - | Assistant(action) => - UpdateAssistant.apply( - model, - action, - ~schedule_action, - ~state, - ~main=apply, - ) + | Some(editors) => Ok({...model, editors}) + } | Benchmark(Start) => List.iter(schedule_action, Benchmark.actions_1); Benchmark.start(); diff --git a/src/haz3lweb/UpdateAction.re b/src/haz3lweb/UpdateAction.re index 17856fff80..cd2f145f3e 100644 --- a/src/haz3lweb/UpdateAction.re +++ b/src/haz3lweb/UpdateAction.re @@ -1,4 +1,3 @@ -open Sexplib.Std; open Util; open Haz3lcore; @@ -34,15 +33,6 @@ type stepper_action = | StepForward(int) | StepBackward; -[@deriving (show({with_path: false}), sexp, yojson)] -type agent = - | TyDi; - -[@deriving (show({with_path: false}), sexp, yojson)] -type agent_action = - | Prompt(agent) - | AcceptSuggestion; - [@deriving (show({with_path: false}), sexp, yojson)] type set_meta = | Mousedown @@ -55,14 +45,24 @@ type benchmark_action = | Start | Finish; +[@deriving (show({with_path: false}), sexp, yojson)] +type export_action = + | ExportScratchSlide + | ExportPersistentData + | ExerciseModule + | Submission + | TransitionaryExerciseModule + | GradingExerciseModule; + [@deriving (show({with_path: false}), sexp, yojson)] type t = /* meta */ + | Startup | Reset | Set(settings_action) | SetMeta(set_meta) | UpdateExplainThisModel(ExplainThisUpdate.update) - | ExportPersistentData + | Export(export_action) | DebugConsole(string) /* editors */ | ResetCurrentEditor @@ -78,15 +78,9 @@ type t = | TAB | Save | PerformAction(Action.t) - | ReparseCurrentEditor - | Cut - | Copy - | Paste(string) | Undo | Redo - | MoveToNextHole(Direction.t) | Benchmark(benchmark_action) - | Assistant(agent_action) | ToggleStepper(ModelResults.Key.t) | StepperAction(ModelResults.Key.t, stepper_action) | UpdateResult(ModelResults.t); @@ -96,12 +90,9 @@ module Failure = { type t = | CantUndo | CantRedo - | CantPaste - | CantReset - | CantSuggest - | FailedToLoad | FailedToSwitch | FailedToPerform(Action.Failure.t) + | InstructorOnly | Exception(string); }; @@ -135,43 +126,35 @@ let is_edit: t => bool = | ShowBackpackTargets(_) | FontMetrics(_) => false } - | Cut | Undo | Redo - | Paste(_) | SwitchScratchSlide(_) | SwitchDocumentationSlide(_) | ToggleStepper(_) | StepperAction(_) - | ReparseCurrentEditor | FinishImportAll(_) | FinishImportScratchpad(_) | ResetCurrentEditor - | Assistant(AcceptSuggestion) - | Reset => true + | Reset + | TAB => true | UpdateResult(_) | SwitchEditor(_) - | ExportPersistentData + | Export(_) | Save - | Copy | UpdateExplainThisModel(_) | DebugConsole(_) | InitImportAll(_) | InitImportScratchpad(_) - | MoveToNextHole(_) | Benchmark(_) - | TAB - | Assistant(Prompt(_)) => false; + | Startup => false; let reevaluate_post_update: t => bool = fun | PerformAction(a) => Action.is_edit(a) | Set(s_action) => switch (s_action) { - | Assist | Captions | SecondaryIcons - | Statics | ContextInspector | Benchmark | ExplainThis(_) @@ -184,6 +167,8 @@ let reevaluate_post_update: t => bool = ) => false | Elaborate + | Statics + | Assist | Dynamics | InstructorMode | Mode(_) => true @@ -195,33 +180,27 @@ let reevaluate_post_update: t => bool = | ShowBackpackTargets(_) | FontMetrics(_) => false } - | Assistant(AcceptSuggestion) => true - | Assistant(Prompt(_)) => false - | MoveToNextHole(_) | Save - | Copy | InitImportAll(_) | InitImportScratchpad(_) | UpdateExplainThisModel(_) - | ExportPersistentData + | Export(_) | UpdateResult(_) | SwitchEditor(_) | DebugConsole(_) - | TAB | Benchmark(_) => false + | TAB | StepperAction(_, StepForward(_) | StepBackward) | ToggleStepper(_) - | ReparseCurrentEditor | FinishImportAll(_) | FinishImportScratchpad(_) | ResetCurrentEditor | SwitchScratchSlide(_) | SwitchDocumentationSlide(_) | Reset - | Cut - | Paste(_) | Undo - | Redo => true; + | Redo + | Startup => true; let should_scroll_to_caret = fun @@ -247,38 +226,37 @@ let should_scroll_to_caret = | Mouseup | ShowBackpackTargets(_) => false } - | Assistant(Prompt(_)) | UpdateResult(_) | ToggleStepper(_) | StepperAction(_, StepBackward | StepForward(_)) => false - | Assistant(AcceptSuggestion) => true | FinishImportScratchpad(_) | FinishImportAll(_) | ResetCurrentEditor | SwitchEditor(_) | SwitchScratchSlide(_) | SwitchDocumentationSlide(_) - | ReparseCurrentEditor | Reset - | Copy - | Paste(_) - | Cut | Undo | Redo - | MoveToNextHole(_) - | TAB => true + | TAB + | Startup => true | PerformAction(a) => switch (a) { | Move(_) - | MoveToNextHole(_) | Jump(_) - | Select(Resize(_) | Term(_) | Smart | Tile(_)) + | Select(Resize(_) | Term(_) | Smart(_) | Tile(_)) | Destruct(_) | Insert(_) | Pick_up | Put_down | RotateBackpack - | MoveToBackpackTarget(_) => true + | MoveToBackpackTarget(_) + | Buffer(Set(_) | Accept | Clear) + | Paste(_) + | Copy + | Cut + | Reparse => true + | Project(_) | Unselect(_) | Select(All) => false } @@ -286,6 +264,6 @@ let should_scroll_to_caret = | InitImportAll(_) | InitImportScratchpad(_) | UpdateExplainThisModel(_) - | ExportPersistentData + | Export(_) | DebugConsole(_) | Benchmark(_) => false; diff --git a/src/haz3lweb/dune b/src/haz3lweb/dune index 6dcaeb3b1d..d3e42ec636 100644 --- a/src/haz3lweb/dune +++ b/src/haz3lweb/dune @@ -9,8 +9,8 @@ (name workerServer) (modules WorkerServer) (libraries - str - incr_dom + bonsai + bonsai.web virtual_dom.input_widgets util ppx_yojson_conv.expander @@ -18,9 +18,7 @@ haz3lschool pretty omd) - (js_of_ocaml - (flags - (:include js-of-ocaml-flags-%{profile}))) + (js_of_ocaml) (preprocess (pps ppx_yojson_conv @@ -41,7 +39,8 @@ ezjs_idb workerServer str - incr_dom + bonsai + bonsai.web virtual_dom.input_widgets util ppx_yojson_conv.expander @@ -49,32 +48,28 @@ haz3lschool pretty omd) - (js_of_ocaml - (flags - (:include js-of-ocaml-flags-%{profile}))) + (js_of_ocaml) (preprocess (pps - ppx_yojson_conv js_of_ocaml-ppx ppx_let ppx_sexp_conv - ppx_deriving.show))) + ppx_deriving.show + ppx_yojson_conv))) (executable (name main) (modules Main) (libraries ppx_yojson_conv.expander haz3lweb) (modes js) - (js_of_ocaml - (flags - (:include js-of-ocaml-flags-%{profile}))) (preprocess (pps ppx_yojson_conv js_of_ocaml-ppx ppx_let ppx_sexp_conv - ppx_deriving.show))) + ppx_deriving.show + bonsai.ppx_bonsai))) (executable (name worker) @@ -87,13 +82,7 @@ (env (dev (js_of_ocaml - (flags (:standard)))) + (flags :standard --debuginfo --noinline --dynlink --linkall --sourcemap))) (release (js_of_ocaml (flags (:standard))))) - -(rule - (write-file js-of-ocaml-flags-dev "(:standard)")) - -(rule - (write-file js-of-ocaml-flags-release "(:standard)")) diff --git a/src/haz3lweb/exercises/Ex_OddlyRecursive.ml b/src/haz3lweb/exercises/Ex_OddlyRecursive.ml index ab0a0b5ee7..3d4ae0ce35 100644 --- a/src/haz3lweb/exercises/Ex_OddlyRecursive.ml +++ b/src/haz3lweb/exercises/Ex_OddlyRecursive.ml @@ -18,8 +18,7 @@ let exercise : Exercise.spec = { siblings = ( [ - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -58,8 +57,7 @@ let exercise : Exercise.spec = ]; ]; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -136,8 +134,7 @@ let exercise : Exercise.spec = children = []; }; Secondary { id = Id.mk (); content = Whitespace " " }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; ], [] ); ancestors = @@ -264,8 +261,7 @@ let exercise : Exercise.spec = { siblings = ( [ - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -304,8 +300,7 @@ let exercise : Exercise.spec = ]; ]; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -376,10 +371,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; [ Secondary @@ -455,10 +447,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -554,10 +543,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -684,8 +670,7 @@ let exercise : Exercise.spec = ]; }; Secondary { id = Id.mk (); content = Whitespace " " }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; ], [] ); ancestors = @@ -899,8 +884,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -1041,8 +1025,7 @@ let exercise : Exercise.spec = children = []; }; Secondary { id = Id.mk (); content = Whitespace " " }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; ], [ Grout { id = Id.mk (); shape = Convex } ] ); ancestors = []; @@ -1164,10 +1147,7 @@ let exercise : Exercise.spec = ]; [ Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -1219,10 +1199,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -1350,10 +1327,7 @@ let exercise : Exercise.spec = ]; [ Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -1425,10 +1399,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -1556,10 +1527,7 @@ let exercise : Exercise.spec = ]; [ Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -1631,10 +1599,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -1762,10 +1727,7 @@ let exercise : Exercise.spec = ]; [ Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2026,8 +1988,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); - content = - Whitespace "\226\143\142"; + content = Whitespace "\n"; }; ]; ]; @@ -2170,8 +2131,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); - content = - Whitespace "\226\143\142"; + content = Whitespace "\n"; }; ]; ]; @@ -2314,8 +2274,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); - content = - Whitespace "\226\143\142"; + content = Whitespace "\n"; }; ]; ]; @@ -2434,8 +2393,7 @@ let exercise : Exercise.spec = ]; ]; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; ], [ Grout { id = Id.mk (); shape = Convex } ] ); ancestors = []; @@ -2594,8 +2552,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2689,8 +2646,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2830,8 +2786,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2925,8 +2880,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -3067,8 +3021,7 @@ let exercise : Exercise.spec = children = []; }; Secondary { id = Id.mk (); content = Whitespace " " }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); diff --git a/src/haz3lweb/exercises/Ex_RecursiveFibonacci.ml b/src/haz3lweb/exercises/Ex_RecursiveFibonacci.ml index 1e95c4719d..cdcf9cb651 100644 --- a/src/haz3lweb/exercises/Ex_RecursiveFibonacci.ml +++ b/src/haz3lweb/exercises/Ex_RecursiveFibonacci.ml @@ -30,8 +30,7 @@ let exercise : Exercise.spec = siblings = ( [ Secondary { id = Id.mk (); content = Whitespace " " }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -71,8 +70,7 @@ let exercise : Exercise.spec = ]; }; Secondary { id = Id.mk (); content = Whitespace " " }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -164,10 +162,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -357,10 +352,7 @@ let exercise : Exercise.spec = }; Secondary { id = Id.mk (); content = Whitespace " " }; ], - [ - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; - ] ); + [ Secondary { id = Id.mk (); content = Whitespace "\n" } ] ); ancestors = [ ( { @@ -607,10 +599,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -660,10 +649,7 @@ let exercise : Exercise.spec = { id = Id.mk (); content = Whitespace " " }; Grout { id = Id.mk (); shape = Convex }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -794,10 +780,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -852,10 +835,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -992,8 +972,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); - content = - Whitespace "\226\143\142"; + content = Whitespace "\n"; }; ]; ]; @@ -1136,8 +1115,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); - content = - Whitespace "\226\143\142"; + content = Whitespace "\n"; }; ]; ]; @@ -1383,10 +1361,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -1516,10 +1491,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -1574,10 +1546,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -1719,8 +1688,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); - content = - Whitespace "\226\143\142"; + content = Whitespace "\n"; }; ]; ]; @@ -1964,10 +1932,7 @@ let exercise : Exercise.spec = Secondary { id = Id.mk (); content = Whitespace " " }; Secondary - { - id = Id.mk (); - content = Whitespace "\226\143\142"; - }; + { id = Id.mk (); content = Whitespace "\n" }; ]; ]; }; @@ -2118,8 +2083,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2247,8 +2211,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2376,8 +2339,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2505,8 +2467,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2634,8 +2595,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2763,8 +2723,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -2892,8 +2851,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -3021,8 +2979,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; Tile { id = Id.mk (); @@ -3150,8 +3107,7 @@ let exercise : Exercise.spec = shards = [ 0 ]; children = []; }; - Secondary - { id = Id.mk (); content = Whitespace "\226\143\142" }; + Secondary { id = Id.mk (); content = Whitespace "\n" }; ], [ Grout { id = Id.mk (); shape = Convex } ] ); ancestors = []; diff --git a/src/haz3lweb/explainthis/Example.re b/src/haz3lweb/explainthis/Example.re index 5bd8a27c77..531f9c0914 100644 --- a/src/haz3lweb/explainthis/Example.re +++ b/src/haz3lweb/explainthis/Example.re @@ -3,16 +3,7 @@ open Haz3lcore; let mk_secondary: string => Piece.t = content => Secondary({id: Id.mk(), content: Whitespace(content)}); -let mk_tile: (Form.t, list(list(Piece.t))) => Piece.t = - //TODO: asserts - (form, children) => - Tile({ - id: Id.mk(), - label: form.label, - mold: form.mold, - shards: List.mapi((i, _) => i, form.label), - children, - }); +let mk_tile = Piece.mk_tile; let mk_ancestor: (Form.t, (list(Segment.t), list(Segment.t))) => Ancestor.t = //TODO: asserts @@ -120,6 +111,7 @@ let typeann = () => mk_monotile(Form.get("typeann")); let mk_typfun = mk_tile(Form.get("typfun")); let mk_fun = mk_tile(Form.get("fun_")); let mk_ap_exp_typ = mk_tile(Form.get("ap_exp_typ")); +let mk_fix = mk_tile(Form.get("fix")); let mk_ap_exp = mk_tile(Form.get("ap_exp")); let mk_ap_pat = mk_tile(Form.get("ap_pat")); let mk_let = mk_tile(Form.get("let_")); diff --git a/src/haz3lweb/explainthis/ExplainThisForm.re b/src/haz3lweb/explainthis/ExplainThisForm.re index fe10130b6b..1f3a54dcf8 100644 --- a/src/haz3lweb/explainthis/ExplainThisForm.re +++ b/src/haz3lweb/explainthis/ExplainThisForm.re @@ -1,4 +1,5 @@ -open Sexplib.Std; +open Util; + open Haz3lcore; // TODO Make unified way of using consistent metavariables for syntactic forms @@ -84,6 +85,8 @@ type example_id = | List(list_examples) | TypFun(typfun_examples) | Fun(fun_examples) + | Fix1 + | Fix2 | Tuple1 | Tuple2 | Let(let_examples) @@ -120,7 +123,9 @@ type example_id = | FilterEval | FilterHide | FilterDebug - | FilterSelector; + | FilterSelector + | Undefined1 + | Undefined2; [@deriving (show({with_path: false}), sexp, yojson)] type example = { @@ -155,6 +160,7 @@ type form_id = | EmptyHoleExp | MultiHoleExp | TrivExp + | UndefinedExp | DeferralExp | BoolExp | IntExp @@ -174,6 +180,7 @@ type form_id = | ModuleExp | DotExp | ModuleVarExp + | FixExp(pat_sub_form_id) | TypFunApExp | FunApExp | ConApExp @@ -181,8 +188,8 @@ type form_id = | IfExp | SeqExp | TestExp - | UnOpExp(Term.UExp.op_un) - | BinOpExp(Term.UExp.op_bin) + | UnOpExp(Operators.op_un) + | BinOpExp(Operators.op_bin) | CaseExp | TyAliasExp | EmptyHolePat @@ -252,6 +259,7 @@ type group_id = | EmptyHoleExp | MultiHoleExp | TrivExp + | UndefinedExp | DeferralExp | BoolExp | IntExp @@ -272,14 +280,15 @@ type group_id = | DotExp | ModuleVarExp | TypFunApExp + | FixExp(pat_sub_form_id) | FunApExp | ConApExp | DeferredApExp | IfExp | SeqExp | TestExp - | UnOpExp(Term.UExp.op_un) - | BinOpExp(Term.UExp.op_bin) + | UnOpExp(Operators.op_un) + | BinOpExp(Operators.op_bin) | CaseExp | TyAliasExp | PipelineExp diff --git a/src/haz3lweb/explainthis/ExplainThisModel.re b/src/haz3lweb/explainthis/ExplainThisModel.re index d48105713c..92ab95a342 100644 --- a/src/haz3lweb/explainthis/ExplainThisModel.re +++ b/src/haz3lweb/explainthis/ExplainThisModel.re @@ -1,4 +1,3 @@ -open Sexplib.Std; module Sexp = Sexplib.Sexp; open Haz3lcore; open ExplainThisForm; diff --git a/src/haz3lweb/explainthis/ExplainThisUpdate.re b/src/haz3lweb/explainthis/ExplainThisUpdate.re index bb3646cdea..8946a4818c 100644 --- a/src/haz3lweb/explainthis/ExplainThisUpdate.re +++ b/src/haz3lweb/explainthis/ExplainThisUpdate.re @@ -1,7 +1,6 @@ -open Sexplib.Std; +open Util; open ExplainThisForm; open ExplainThisModel; -open Util; [@deriving (show({with_path: false}), sexp, yojson)] type update = diff --git a/src/haz3lweb/explainthis/data/FixFExp.re b/src/haz3lweb/explainthis/data/FixFExp.re new file mode 100644 index 0000000000..b106b6be8e --- /dev/null +++ b/src/haz3lweb/explainthis/data/FixFExp.re @@ -0,0 +1,54 @@ +open Haz3lcore; +open ExplainThisForm; +open Example; + +let single = (~pat_id: Id.t, ~body_id: Id.t): Simple.t => { + /* (B) You'll need to add new cases to ExplainThisForm.re for the new form + * to represent a group_id and form_id. This Simple style is specialized + * to singleton groups. In general, the group_id needs to be unique, and + * form_ids need to be unique within a group. These ids are used to track + * ExplainThis persistent state. */ + group_id: FixExp(Base), + form_id: FixExp(Base), + /* (C) The abstract field defines an abstract example illustrating the + * new form. You'll need to provide pairs associating any representative + * subterms of the exemplar (e.g. "e_arg" and "e_fun" below) with the + * concrete subterms of the term the user has selected (here, arg_id + * and fn_id). You'll then need a function to construct a segment + * representing your abstract. This is done in this indirect way so + * as to associate representative and concrete subterms ids for + * syntax highlighting purposes. */ + abstract: + Simple.mk_2(("p", pat_id), ("e", body_id), (p, e) => + [mk_fix([[space(), p, space()]]), space(), e] + ), + /* (D) The explanation which will appear in the sidebar below the abstract */ + explanation: + Printf.sprintf( + "Recursively replaces all occurences of the [*pattern*](%s) inside the [*body*](%s) with the entire [*body*](%s) itself, effectively creating an infinite expression. Unless [*pattern*](%s) is a function, it is likely to evaluate forever.", + pat_id |> Id.to_string, + body_id |> Id.to_string, + body_id |> Id.to_string, + pat_id |> Id.to_string, + ), + /* (E) Additional more concrete examples and associated explanations */ + examples: [ + { + sub_id: Fix1, + term: mk_example("fix x -> x + 1"), + message: {| + Tries to create the infinite expression (((...) + 1) + 1) + 1 but times out + |}, + }, + { + sub_id: Fix2, + term: + mk_example( + "(fix f -> fun x -> \nif x == 0 then \n0 \nelse \nf(x-1) + 2\n) (5)", + ), + message: {| + A recursive function that doubles a given number. + |}, + }, + ], +}; diff --git a/src/haz3lweb/explainthis/data/UndefinedExp.re b/src/haz3lweb/explainthis/data/UndefinedExp.re new file mode 100644 index 0000000000..71ff320576 --- /dev/null +++ b/src/haz3lweb/explainthis/data/UndefinedExp.re @@ -0,0 +1,33 @@ +open ExplainThisForm; +open Example; + +let undefined_ex_1 = { + sub_id: Undefined2, + term: + mk_example( + "let sgn = \nfun num ->\nif num == 0 \nthen undefined \nelse\nif num > 0 \nthen \"+\"\nelse \"-\"\nin\n(sgn(-1), sgn(0), sgn(5))", + ), + message: "The undefined expression can be used in cases where a partial function is undefined.", +}; + +let undefined_ex_2 = { + sub_id: Undefined1, + term: + mk_example( + "let sum : [Int] -> Int =\nfun xs ->\ncase undefined\n| [] => 0\n| hd::tl => \nend\nin\nsum([1,2,3])", + ), + message: "The undefined expression behaves much like a hole during evaluation.", +}; + +let undefined_exp: form = { + let explanation = "Represents an expression that lacks definition."; + { + id: UndefinedExp, + syntactic_form: [exp("undefined")], + expandable_id: None, + explanation, + examples: [undefined_ex_1, undefined_ex_2], + }; +}; + +let undefined_exps: group = {id: UndefinedExp, forms: [undefined_exp]}; diff --git a/src/haz3lweb/util/AttrUtil.re b/src/haz3lweb/util/AttrUtil.re deleted file mode 100644 index ad241bf1fb..0000000000 --- a/src/haz3lweb/util/AttrUtil.re +++ /dev/null @@ -1,21 +0,0 @@ -open Virtual_dom.Vdom.Attr; - -let fstr = f => Printf.sprintf("%f", f); - -let cx = f => create("cx", fstr(f)); -let cy = f => create("cy", fstr(f)); -let rx = f => create("rx", fstr(f)); -let ry = f => create("ry", fstr(f)); - -let x = f => create("x", fstr(f)); -let y = f => create("y", fstr(f)); -let width = f => create("width", fstr(f)); -let height = f => create("height", fstr(f)); - -let stroke_width = f => create("stroke-width", fstr(f)); -let vector_effect = s => create("vector-effect", s); -let filter = s => create("filter", s); - -let offset = f => create("offset", Printf.sprintf("%f%%", 100. *. f)); -let stop_color = s => create("stop-color", s); -let stop_opacity = f => create("stop-opacity", Printf.sprintf("%f", f)); diff --git a/src/haz3lweb/util/Memo.re b/src/haz3lweb/util/Memo.re deleted file mode 100644 index deb3a35264..0000000000 --- a/src/haz3lweb/util/Memo.re +++ /dev/null @@ -1,11 +0,0 @@ -let memoize = (f: 'k => 'v): ('k => 'v) => { - let table: WeakMap.t('k, 'v) = WeakMap.mk(); - k => - switch (WeakMap.get(table, k)) { - | None => - let v = f(k); - let _ = WeakMap.set(table, k, v); - v; - | Some(v) => v - }; -}; diff --git a/src/haz3lweb/util/NodeUtil.re b/src/haz3lweb/util/NodeUtil.re deleted file mode 100644 index f56a2c5acb..0000000000 --- a/src/haz3lweb/util/NodeUtil.re +++ /dev/null @@ -1,6 +0,0 @@ -open Virtual_dom.Vdom; - -let svg = (attrs, children) => - Node.create_svg("svg", ~attr=Attr.many(attrs), children); - -let stop = attrs => Node.create_svg("stop", ~attr=Attr.many(attrs), []); diff --git a/src/haz3lweb/util/SvgUtil.re b/src/haz3lweb/util/SvgUtil.re index 458fdfe371..5809f70432 100644 --- a/src/haz3lweb/util/SvgUtil.re +++ b/src/haz3lweb/util/SvgUtil.re @@ -123,8 +123,7 @@ module Path = { }); Node.create_svg( "path", - ~attr= - Attr.many([Attr.create("d", Buffer.contents(buffer)), ...attrs]), + ~attrs=[Attr.create("d", Buffer.contents(buffer)), ...attrs], [], ); }; diff --git a/src/haz3lweb/util/WorkerServer.re b/src/haz3lweb/util/WorkerServer.re index db84af52ba..debb55a537 100644 --- a/src/haz3lweb/util/WorkerServer.re +++ b/src/haz3lweb/util/WorkerServer.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; [@deriving (sexp, yojson)] type key = string; diff --git a/src/haz3lweb/view/BackpackView.re b/src/haz3lweb/view/BackpackView.re index b2f9424986..3acdcb8c3f 100644 --- a/src/haz3lweb/view/BackpackView.re +++ b/src/haz3lweb/view/BackpackView.re @@ -1,6 +1,45 @@ open Virtual_dom.Vdom; open Node; open Haz3lcore; +open Util; + +/* Assume this doesn't contain projectors */ +let measured_of = seg => Measured.of_segment(seg, Id.Map.empty); + +let text_view = (seg: Segment.t): list(Node.t) => { + module Text = + Code.Text({ + let map = measured_of(seg); + let settings = Init.startup.settings; + let info_map = Id.Map.empty; /* Assume this doesn't contain projectors */ + }); + Text.of_segment([], true, Any, seg); +}; + +let segment_origin = (seg: Segment.t): option(Point.t) => + Option.map( + first => Measured.find_p(first, measured_of(seg)).origin, + ListUtil.hd_opt(seg), + ); + +let segment_last = (seg: Segment.t): option(Point.t) => + Option.map( + last => Measured.find_p(last, measured_of(seg)).last, + ListUtil.last_opt(seg), + ); + +let segment_height = (seg: Segment.t) => + switch (segment_last(seg), segment_origin(seg)) { + | (Some(last), Some(first)) => 1 + last.row - first.row + | _ => 0 + }; + +let segment_width = (seg: Segment.t): int => + IntMap.fold( + (_, {max_col, _}: Measured.Rows.shape, acc) => max(max_col, acc), + measured_of(seg).rows, + 0, + ); let backpack_sel_view = ( @@ -10,44 +49,38 @@ let backpack_sel_view = opacity: float, {focus: _, content, _}: Selection.t, ) => { - module Text = - Code.Text({ - let map = Measured.of_segment(content); - let settings = Init.startup.settings; - }); - // TODO(andrew): Maybe use init sort at caret to prime this + // Maybe use init sort at caret to prime this div( - ~attr= - Attr.many([ - Attr.classes(["code-text", "backpack-selection"]), - Attr.create( - "style", - Printf.sprintf( - "position: absolute; transform-origin: bottom left; transform: translate(%fpx, %fpx) scale(%f); opacity: %f%%;", - x_off, - y_off, - scale, - opacity, - ), + ~attrs=[ + Attr.classes(["code-text", "code", "backpack-selection"]), + Attr.create( + "style", + Printf.sprintf( + "position: absolute; transform-origin: bottom left; transform: translate(%fpx, %fpx) scale(%f); opacity: %f%%;", + x_off, + y_off, + scale, + opacity, ), - ]), + ), + ], // zwsp necessary for containing box to stretch to contain trailing newline - Text.of_segment([], true, Any, content) @ [text(Unicode.zwsp)], + text_view(content) @ [text(Unicode.zwsp)], ); }; let view = ( ~font_metrics: FontMetrics.t, - ~origin: Measured.Point.t, + ~origin: Point.t, {backpack, _} as z: Zipper.t, ) : Node.t => { - //TODO(andrew): clean up this dumpster fire of a function + // This function is a mess let height_head = switch (backpack) { | [] => 0 - | [hd, ..._] => Measured.segment_height(hd.content) + | [hd, ..._] => segment_height(hd.content) }; let can_put_down = switch (Zipper.pop_backpack(z)) { @@ -63,10 +96,10 @@ let view = | Some((_, side, _)) => side | _ => Right }; - DecUtil.caret_adjust(side, shape); + DecUtil.shape_adjust(side, shape); }; let caret_adj_px = - //TODO(andrew): figure out why we need this mystery pixel below + // Figure out why we need this mystery pixel below (-1.) +. caret_adj *. font_metrics.col_width; let max_disp = 3; /* Maximum vertical backpack displacement */ let vertical_disp = origin.row <= max_disp ? origin.row : max_disp; @@ -91,14 +124,14 @@ let view = let (_, _, _, selections) = List.fold_left( ((idx, y_offset, opacity, vs), s: Selection.t) => { - let base_height = Measured.segment_height(s.content); + let base_height = segment_height(s.content); let scale = scale_fn(idx); let x_offset = x_fn(idx); let new_y_offset = y_offset -. dy_fn(idx, base_height); let v = backpack_sel_view(x_offset, new_y_offset, scale, opacity, s); let new_idx = idx + 1; let new_opacity = opacity -. opacity_reduction; - //TODO(andrew): am i making this difficult by going backwards? + // Am i making this difficult by going backwards? (new_idx, new_y_offset, new_opacity, List.cons(v, vs)); }, (init_idx, init_y_offset, init_opacity, []), @@ -106,17 +139,16 @@ let view = ); let selections_view = div( - ~attr= - Attr.many([ - Attr.create("style", selections_style), - Attr.classes(["backpack"]), - ]), + ~attrs=[ + Attr.create("style", selections_style), + Attr.classes(["backpack"]), + ], selections, ); let length = switch (backpack) { | [] => 0 - | [hd, ..._] => Measured.segment_width(hd.content) + | [hd, ..._] => segment_width(hd.content) }; let joiner_style = @@ -130,20 +162,18 @@ let view = ); let joiner = div( - ~attr= - Attr.many([ - Attr.create("style", joiner_style), - Attr.classes(["backpack-joiner"]), - ]), + ~attrs=[ + Attr.create("style", joiner_style), + Attr.classes(["backpack-joiner"]), + ], [], ); - //TODO(andrew): break out backpack decoration into its own module let genie_view = DecUtil.code_svg( ~font_metrics, ~origin={row: 0, col: 0}, ~base_cls=["restructuring-genie"], - ~path_cls=["restructuring-genie-path"], + ~path_cls=["backpack-genie"], SvgUtil.Path.[ M({x: 0., y: 0.}), V({y: (-1.0)}), @@ -161,15 +191,12 @@ let view = +. 1., ); div( - ~attr= - Attr.many([ - Attr.classes( - ["backpack"] @ (can_put_down ? [] : ["cant-put-down"]), - ), - ]), + ~attrs=[ + Attr.classes(["backpack"] @ (can_put_down ? [] : ["cant-put-down"])), + ], [ selections_view, - div(~attr=Attr.create("style", genie_style), [genie_view]), + div(~attrs=[Attr.create("style", genie_style)], [genie_view]), ] @ (backpack != [] ? [joiner] : []), ); diff --git a/src/haz3lweb/view/Cell.re b/src/haz3lweb/view/Cell.re index 818e69837b..65c01e1a6f 100644 --- a/src/haz3lweb/view/Cell.re +++ b/src/haz3lweb/view/Cell.re @@ -1,3 +1,4 @@ +open Util; open Virtual_dom.Vdom; open Haz3lcore; open Node; @@ -6,7 +7,7 @@ let get_goal = (~font_metrics: FontMetrics.t, ~target_id, e) => { let rect = JsUtil.get_elem_by_id(target_id)##getBoundingClientRect; let goal_x = float_of_int(e##.clientX); let goal_y = float_of_int(e##.clientY); - Measured.Point.{ + Point.{ row: Float.to_int((goal_y -. rect##.top) /. font_metrics.row_height), col: Float.( @@ -17,19 +18,17 @@ let get_goal = (~font_metrics: FontMetrics.t, ~target_id, e) => { let mousedown_overlay = (~inject, ~font_metrics, ~target_id) => div( - ~attr= - Attr.many( - Attr.[ - id("mousedown-overlay"), - on_mouseup(_ => inject(Update.SetMeta(Mouseup))), - on_mousemove(e => { - let goal = get_goal(~font_metrics, ~target_id, e); - inject( - Update.PerformAction(Select(Resize(Goal(Point(goal))))), - ); - }), - ], - ), + ~attrs= + Attr.[ + id("mousedown-overlay"), + on_mouseup(_ => inject(Update.SetMeta(Mouseup))), + on_mousemove(e => { + let goal = get_goal(~font_metrics, ~target_id, e); + inject( + Update.PerformAction(Select(Resize(Goal(Point(goal))))), + ); + }), + ], [], ); @@ -44,7 +43,6 @@ let mousedown_handler = switch (JsUtil.ctrl_held(evt), JsUtil.num_clicks(evt)) { | (true, _) => let goal = get_goal(~font_metrics, ~target_id, evt); - let events = [ inject(PerformAction(Move(Goal(Point(goal))))), inject(PerformAction(Jump(BindingSiteOfIndicatedVar))), @@ -52,37 +50,38 @@ let mousedown_handler = Virtual_dom.Vdom.Effect.Many(events); | (false, 1) => let goal = get_goal(~font_metrics, ~target_id, evt); + /* Note that we only trigger drag mode (set mousedown) + * when the left mouse button (aka button 0) is pressed */ Virtual_dom.Vdom.Effect.Many( List.map( inject, Update.( - [SetMeta(Mousedown)] + (JsUtil.mouse_button(evt) == 0 ? [SetMeta(Mousedown)] : []) @ mousedown_updates @ [PerformAction(Move(Goal(Point(goal))))] ), ), ); - | (false, 2) => inject(PerformAction(Select(Tile(Current)))) - | (false, 3 | _) => inject(PerformAction(Select(Smart))) + | (false, n) => inject(PerformAction(Select(Smart(n)))) }; let narrative_cell = (content: Node.t) => div( - ~attr=Attr.class_("cell"), - [div(~attr=Attr.class_("cell-chapter"), [content])], + ~attrs=[Attr.class_("cell")], + [div(~attrs=[Attr.class_("cell-chapter")], [content])], ); let simple_cell_item = (content: list(Node.t)) => - div(~attr=Attr.classes(["cell-item"]), content); + div(~attrs=[Attr.classes(["cell-item"])], content); let caption = (~rest: option(string)=?, bolded: string) => div( - ~attr=Attr.many([Attr.classes(["cell-caption"])]), + ~attrs=[Attr.classes(["cell-caption"])], [strong([text(bolded)])] @ (rest |> Option.map(text) |> Option.to_list), ); let simple_cell_view = (items: list(t)) => - div(~attr=Attr.class_("cell"), items); + div(~attrs=[Attr.class_("cell")], items); let test_status_icon_view = (~font_metrics, insts, ms: Measured.Shards.t): option(t) => @@ -90,65 +89,62 @@ let test_status_icon_view = | [(_, {origin: _, last}), ..._] => let status = insts |> TestMap.joint_status |> TestStatus.to_string; let pos = DecUtil.abs_position(~font_metrics, last); - Some( - div( - ~attr=Attr.many([Attr.classes(["test-result", status]), pos]), - [], - ), - ); + Some(div(~attrs=[Attr.classes(["test-result", status]), pos], [])); | _ => None }; let test_result_layer = - (~font_metrics, ~measured: Measured.t, test_results: TestResults.t) - : list(t) => - List.filter_map( - ((id, insts)) => - switch (Id.Map.find_opt(id, measured.tiles)) { - | Some(ms) => test_status_icon_view(~font_metrics, insts, ms) - | None => None - }, - test_results.test_map, + (~font_metrics, ~measured: Measured.t, test_results: TestResults.t): t => + Web.div_c( + "test-decos", + List.filter_map( + ((id, insts)) => + switch (Id.Map.find_opt(id, measured.tiles)) { + | Some(ms) => test_status_icon_view(~font_metrics, insts, ms) + | None => None + }, + test_results.test_map, + ), ); let deco = ( - ~font_metrics, - ~show_backpack_targets, + ~inject, + ~ui_state, ~selected, - ~error_ids, ~test_results: option(TestResults.t), ~highlights: option(ColorSteps.colorMap), - { - state: { - zipper, - meta: {term_ranges, segment, measured, terms, tiles, _}, - _, - }, - _, - }: Editor.t, + z, + meta: Editor.Meta.t, ) => { module Deco = Deco.Deco({ - let map = measured; - let terms = terms; - let term_ranges = term_ranges; - let tiles = tiles; - let font_metrics = font_metrics; - let show_backpack_targets = show_backpack_targets; - let error_ids = error_ids; + let ui_state = ui_state; + let meta = meta; + let highlights = highlights; }); - let decos = selected ? Deco.all(zipper, segment) : Deco.err_holes(zipper); + let decos = selected ? Deco.all(z) : Deco.always(); let decos = - switch (test_results) { - | None => decos - | Some(test_results) => - decos @ test_result_layer(~font_metrics, ~measured, test_results) // TODO move into decos - }; - switch (highlights) { - | Some(colorMap) => - decos @ Deco.color_highlights(ColorSteps.to_list(colorMap)) - | _ => decos + decos + @ [ + ProjectorView.all( + z, + ~meta, + ~inject, + ~font_metrics=ui_state.font_metrics, + ), + ]; + switch (test_results) { + | None => decos + | Some(test_results) => + decos + @ [ + test_result_layer( + ~font_metrics=ui_state.font_metrics, + ~measured=meta.syntax.measured, + test_results, + ), + ] // TODO move into decos }; }; @@ -180,7 +176,7 @@ let live_eval = switch (result.evaluation, result.previous) { | (ResultOk(res), _) => ProgramResult.get_dhexp(res) | (ResultPending, ResultOk(res)) => ProgramResult.get_dhexp(res) - | _ => result.elab + | _ => result.elab.d }; let dhcode_view = DHCode.view( @@ -191,28 +187,32 @@ let live_eval = ~font_metrics, ~width=80, ~result_key, + ~infomap=Id.Map.empty, dhexp, ); let exn_view = switch (result.evaluation) { | ResultFail(err) => [ - div(~attr=Attr.classes(["error-msg"]), [text(error_msg(err))]), + div( + ~attrs=[Attr.classes(["error-msg"])], + [text(error_msg(err))], + ), ] | _ => [] }; div( - ~attr=Attr.classes(["cell-item", "cell-result"]), + ~attrs=[Attr.classes(["cell-item", "cell-result"])], exn_view @ [ div( - ~attr=Attr.classes(["status", status_of(result.evaluation)]), + ~attrs=[Attr.classes(["status", status_of(result.evaluation)])], [ - div(~attr=Attr.classes(["spinner"]), []), - div(~attr=Attr.classes(["eq"]), [text("≡")]), + div(~attrs=[Attr.classes(["spinner"])], []), + div(~attrs=[Attr.classes(["eq"])], [text("≡")]), ], ), div( - ~attr=Attr.classes(["result", status_of(result.evaluation)]), + ~attrs=[Attr.classes(["result", status_of(result.evaluation)])], [dhcode_view], ), Widgets.toggle(~tooltip="Show Stepper", "s", false, _ => @@ -243,15 +243,15 @@ let footer = ~settings=settings.core.evaluation, ~font_metrics, ~result_key, + ~read_only=false, s, ) }; let editor_view = ( - ~inject, - ~ui_state as - {font_metrics, show_backpack_targets, mousedown, _}: Model.ui_state, + ~inject: UpdateAction.t => Ui_effect.t(unit), + ~ui_state: Model.ui_state, ~settings: Settings.t, ~target_id: string, ~mousedown_updates: list(Update.t)=[], @@ -262,30 +262,41 @@ let editor_view = ~footer: option(list(Node.t))=?, ~highlights: option(ColorSteps.colorMap), ~overlayer: option(Node.t)=None, - ~error_ids: list(Id.t), ~sort=Sort.root, + ~override_statics: option(Editor.CachedStatics.t)=?, editor: Editor.t, ) => { - let code_text_view = Code.view(~sort, ~font_metrics, ~settings, editor); + let Model.{font_metrics, mousedown, _} = ui_state; + let meta = + /* For exercises modes */ + switch (override_statics) { + | None => editor.state.meta + | Some(statics) => {...editor.state.meta, statics} + }; + let mousedown_overlay = + selected && mousedown + ? [mousedown_overlay(~inject, ~font_metrics, ~target_id)] : []; + let code_text_view = + Code.view(~sort, ~font_metrics, ~settings, editor.state.zipper, meta); let deco_view = deco( - ~font_metrics, - ~show_backpack_targets, + ~inject, + ~ui_state, ~selected, - ~error_ids, ~test_results, ~highlights, - editor, + editor.state.zipper, + meta, ); + let code_view = div( - ~attr= - Attr.many([Attr.id(target_id), Attr.classes(["code-container"])]), - [code_text_view] @ deco_view @ Option.to_list(overlayer), + ~attrs=[Attr.id(target_id), Attr.classes(["code-container"])], + [code_text_view] + @ deco_view + @ Option.to_list(overlayer) + @ mousedown_overlay, ); - let mousedown_overlay = - selected && mousedown - ? [mousedown_overlay(~inject, ~font_metrics, ~target_id)] : []; let on_mousedown = locked ? _ => @@ -297,20 +308,20 @@ let editor_view = ~mousedown_updates, ); div( - ~attr= + ~attrs=[ Attr.classes([ "cell", selected ? "selected" : "deselected", locked ? "locked" : "unlocked", ]), + ], [ div( - ~attr= - Attr.many([ - Attr.classes(["cell-item"]), - Attr.on_mousedown(on_mousedown), - ]), - Option.to_list(caption) @ mousedown_overlay @ [code_view], + ~attrs=[ + Attr.classes(["cell-item"]), + Attr.on_mousedown(on_mousedown), + ], + Option.to_list(caption) @ [code_view], ), ] @ (footer |> Option.to_list |> List.concat), @@ -318,7 +329,7 @@ let editor_view = }; let report_footer_view = content => { - div(~attr=Attr.classes(["cell-item", "cell-report"]), content); + div(~attrs=[Attr.classes(["cell-item", "cell-report"])], content); }; let test_report_footer_view = (~inject, ~test_results: option(TestResults.t)) => { @@ -327,7 +338,9 @@ let test_report_footer_view = (~inject, ~test_results: option(TestResults.t)) => let panel = (~classes=[], content, ~footer: option(t)) => { simple_cell_view( - [div(~attr=Attr.classes(["cell-item", "panel"] @ classes), content)] + [ + div(~attrs=[Attr.classes(["cell-item", "panel"] @ classes)], content), + ] @ Option.to_list(footer), ); }; @@ -335,8 +348,8 @@ let panel = (~classes=[], content, ~footer: option(t)) => { let title_cell = title => { simple_cell_view([ div( - ~attr=Attr.class_("title-cell"), - [div(~attr=Attr.class_("title-text"), [text(title)])], + ~attrs=[Attr.class_("title-cell")], + [div(~attrs=[Attr.class_("title-text")], [text(title)])], ), ]); }; @@ -365,10 +378,11 @@ let locked_no_statics = ~target_id, ~footer=[], ~test_results=None, - ~error_ids=[], ~overlayer=Some(expander_deco), ~sort, - segment |> Zipper.unzip |> Editor.init(~read_only=true), + segment + |> Zipper.unzip + |> Editor.init(~settings=CoreSettings.off, ~read_only=true), ), ]; @@ -383,24 +397,25 @@ let locked = ~target_id, ~segment: Segment.t, ) => { - let editor = segment |> Zipper.unzip |> Editor.init(~read_only=true); - let statics = - settings.core.statics - ? ScratchSlide.mk_statics(~settings, editor, Builtins.ctx_init) - : CachedStatics.empty_statics; + let editor = + segment + |> Zipper.unzip + |> Editor.init(~settings=settings.core, ~read_only=true); + let statics = editor.state.meta.statics; let elab = settings.core.elaborate || settings.core.dynamics ? Interface.elaborate( ~settings=settings.core, statics.info_map, - editor.state.meta.view_term, + statics.term, ) - : DHExp.BoolLit(true); + : DHExp.Bool(true) |> DHExp.fresh; + let elab: Elaborator.Elaboration.t = {d: elab}; let result: ModelResult.t = settings.core.dynamics ? Evaluation({ elab, - evaluation: Interface.evaluate(~settings=settings.core, elab), + evaluation: Interface.evaluate(~settings=settings.core, elab.d), previous: ResultPending, }) : NoElab; @@ -425,7 +440,6 @@ let locked = ~target_id, ~footer, ~test_results=ModelResult.test_results(result), - ~error_ids=statics.error_ids, editor, ); }; diff --git a/src/haz3lweb/view/Code.re b/src/haz3lweb/view/Code.re index a68fbbe6a8..608c6fad09 100644 --- a/src/haz3lweb/view/Code.re +++ b/src/haz3lweb/view/Code.re @@ -7,7 +7,7 @@ open Util.Web; let of_delim' = Core.Memo.general( ~cache_size_bound=10000, - ((label, is_in_buffer, sort, is_consistent, is_complete, i)) => { + ((label, is_in_buffer, sort, is_consistent, is_complete, indent, i)) => { let cls = switch (label) { | _ when is_in_buffer => "in-buffer" @@ -15,45 +15,53 @@ let of_delim' = | _ when !is_complete => "incomplete" | [s] when s == Form.explicit_hole => "explicit-hole" | [s] when Form.is_string(s) => "string-lit" - | _ => "default" + | _ => Sort.to_string(sort) }; let plurality = List.length(label) == 1 ? "mono" : "poly"; - let label = is_in_buffer ? AssistantExpander.mark(label) : label; + //let label = is_in_buffer ? AssistantExpander.mark(label) : label; + let token = List.nth(label, i); + /* Add indent to multiline tokens: */ + let token = + StringUtil.num_linebreaks(token) == 0 + ? token : token ++ StringUtil.repeat(indent, Unicode.nbsp); [ span( - ~attr= - Attr.classes(["token", cls, Sort.to_string(sort), plurality]), - [Node.text(List.nth(label, i))], + ~attrs=[Attr.classes(["token", cls, plurality])], + [Node.text(token)], ), ]; }, ); let of_delim = - (is_in_buffer, is_consistent, t: Piece.tile, i: int): list(Node.t) => + (is_in_buffer, is_consistent, indent, t: Piece.tile, i: int) + : list(Node.t) => of_delim'(( t.label, is_in_buffer, t.mold.out, is_consistent, Tile.is_complete(t), + indent, i, )); -let of_grout = [Node.text(Unicode.nbsp)]; +let space = " "; //Unicode.nbsp; + +let of_grout = [Node.text(space)]; let of_secondary = Core.Memo.general( ~cache_size_bound=10000, ((content, secondary_icons, indent)) => if (String.equal(Secondary.get_string(content), Form.linebreak)) { - let str = secondary_icons ? Form.linebreak : ""; + let str = secondary_icons ? ">" : ""; [ span_c("linebreak", [text(str)]), - Node.br(), - Node.text(StringUtil.repeat(indent, Unicode.nbsp)), + Node.text("\n"), + Node.text(StringUtil.repeat(indent, space)), ]; } else if (String.equal(Secondary.get_string(content), Form.space)) { - let str = secondary_icons ? "·" : Unicode.nbsp; - [span_c("secondary", [text(str)])]; + let str = secondary_icons ? "·" : space; + [span_c("whitespace", [text(str)])]; } else if (Secondary.content_is_comment(content)) { [span_c("comment", [Node.text(Secondary.get_string(content))])]; } else { @@ -61,11 +69,26 @@ let of_secondary = } ); -module Text = (M: { - let map: Measured.t; - let settings: Settings.t; - }) => { - let m = p => Measured.find_p(p, M.map); +let of_projector = (p, expected_sort, indent, info_map) => + of_delim'(( + [Projector.placeholder(p, Id.Map.find_opt(p.id, info_map))], + false, + expected_sort, + true, + true, + indent, + 0, + )); + +module Text = + ( + M: { + let map: Measured.t; + let settings: Settings.t; + let info_map: Statics.Map.t; + }, + ) => { + let m = p => Measured.find_p(~msg="Text", p, M.map); let rec of_segment = (buffer_ids, no_sorts, sort, seg: Segment.t): list(Node.t) => { /* note: no_sorts flag is used for backpack view; @@ -92,20 +115,23 @@ module Text = (M: { | Grout(_) => of_grout | Secondary({content, _}) => of_secondary((content, M.settings.secondary_icons, m(p).last.col)) + | Projector(p) => + of_projector(p, expected_sort, m(Projector(p)).origin.col, M.info_map) }; } and of_tile = (buffer_ids, expected_sort: Sort.t, t: Tile.t): list(Node.t) => { let children_and_sorts = List.mapi( (i, (l, child, r)) => - //TODO(andrew): more subtle logic about sort acceptability (child, l + 1 == r ? List.nth(t.mold.in_, i) : Sort.Any), Aba.aba_triples(Aba.mk(t.shards, t.children)), ); let is_consistent = Sort.consistent(t.mold.out, expected_sort); let is_in_buffer = List.mem(t.id, buffer_ids); Aba.mk(t.shards, children_and_sorts) - |> Aba.join(of_delim(is_in_buffer, is_consistent, t), ((seg, sort)) => + |> Aba.join( + of_delim(is_in_buffer, is_consistent, m(Tile(t)).origin.col, t), + ((seg, sort)) => of_segment(buffer_ids, false, sort, seg) ) |> List.concat; @@ -118,30 +144,32 @@ let rec holes = |> List.concat_map( fun | Piece.Secondary(_) => [] + | Projector(_) => [] | Tile(t) => List.concat_map(holes(~map, ~font_metrics), t.children) | Grout(g) => [ EmptyHoleDec.view( ~font_metrics, // TODO(d) fix sort { - measurement: Measured.find_g(g, map), + measurement: Measured.find_g(~msg="Code.holes", g, map), mold: Mold.of_grout(g, Any), }, ), ], ); -let simple_view = - (~font_metrics, ~unselected, ~map, ~settings: Settings.t): Node.t => { +let simple_view = (~font_metrics, ~segment, ~settings: Settings.t): Node.t => { + let map = Measured.of_segment(segment, Id.Map.empty); module Text = Text({ let map = map; let settings = settings; + let info_map = Id.Map.empty; /* Assume this doesn't contain projectors */ }); - let holes = holes(~map, ~font_metrics, unselected); + let holes = holes(~map, ~font_metrics, segment); div( - ~attr=Attr.class_("code"), + ~attrs=[Attr.class_("code")], [ - span_c("code-text", Text.of_segment([], false, Sort.Any, unselected)), + span_c("code-text", Text.of_segment([], false, Sort.Any, segment)), ...holes, ], ); @@ -152,7 +180,7 @@ let of_hole = (~font_metrics, ~measured, g: Grout.t) => EmptyHoleDec.view( ~font_metrics, { - measurement: Measured.find_g(g, measured), + measurement: Measured.find_g(~msg="Code.of_hole", g, measured), mold: Mold.of_grout(g, Any), }, ); @@ -162,15 +190,21 @@ let view = ~sort: Sort.t, ~font_metrics, ~settings: Settings.t, - {state: {meta: {measured, buffer_ids, unselected, holes, _}, _}, _}: Editor.t, + z: Zipper.t, + {syntax: {measured, segment, holes, selection_ids, _}, statics, _}: Editor.Meta.t, ) : Node.t => { module Text = Text({ let map = measured; let settings = settings; + let info_map = statics.info_map; }); - let code = Text.of_segment(buffer_ids, false, sort, unselected); + let buffer_ids = Selection.is_buffer(z.selection) ? selection_ids : []; + let code = Text.of_segment(buffer_ids, false, sort, segment); let holes = List.map(of_hole(~measured, ~font_metrics), holes); - div(~attr=Attr.class_("code"), [span_c("code-text", code), ...holes]); + div( + ~attrs=[Attr.class_("code")], + [span_c("code-text", code), ...holes], + ); }; diff --git a/src/haz3lweb/view/CtxInspector.re b/src/haz3lweb/view/ContextInspector.re similarity index 60% rename from src/haz3lweb/view/CtxInspector.re rename to src/haz3lweb/view/ContextInspector.re index 82ceadc086..672988d049 100644 --- a/src/haz3lweb/view/CtxInspector.re +++ b/src/haz3lweb/view/ContextInspector.re @@ -6,31 +6,30 @@ let jump_to = entry => UpdateAction.PerformAction(Jump(TileId(Haz3lcore.Ctx.get_id(entry)))); let context_entry_view = (~inject, entry: Haz3lcore.Ctx.entry): Node.t => { - let div_name = - div( - ~attr= - Attr.many([ - clss(["name"]), - Attr.on_click(_ => inject(jump_to(entry))), - ]), - ); + let div_name = div(~attrs=[clss(["name"])]); switch (entry) { | VarEntry({name, typ, _}) | ConstructorEntry({name, typ, _}) => - div_c( - "context-entry", + div( + ~attrs=[ + Attr.on_click(_ => inject(jump_to(entry))), + clss(["context-entry", "code"]), + ], [ div_name([text(name)]), - div(~attr=clss(["seperator"]), [text(":")]), + div(~attrs=[clss(["seperator"])], [text(":")]), Type.view(typ), ], ) | TVarEntry({name, kind, _}) => - div_c( - "context-entry", + div( + ~attrs=[ + Attr.on_click(_ => inject(jump_to(entry))), + clss(["context-entry", "code"]), + ], [ div_name([Type.alias_view(name)]), - div(~attr=clss(["seperator"]), [text("::")]), + div(~attrs=[clss(["seperator"])], [text("::")]), Kind.view(kind), ], ) @@ -39,7 +38,7 @@ let context_entry_view = (~inject, entry: Haz3lcore.Ctx.entry): Node.t => { let ctx_view = (~inject, ctx: Haz3lcore.Ctx.t): Node.t => div( - ~attr=clss(["context-entries"]), + ~attrs=[clss(["context-inspector"])], List.map( context_entry_view(~inject), ctx |> Haz3lcore.Ctx.filter_duplicates |> List.rev, @@ -53,10 +52,15 @@ let ctx_sorts_view = (~inject, ci: Haz3lcore.Statics.Info.t) => |> List.map(context_entry_view(~inject)); let view = - (~inject, ~settings: Settings.t, ci: Haz3lcore.Statics.Info.t): Node.t => { + (~inject, ~settings: Settings.t, ci: option(Haz3lcore.Statics.Info.t)) + : Node.t => { let clss = clss( ["context-inspector"] @ (settings.context_inspector ? ["visible"] : []), ); - div(~attr=clss, ctx_sorts_view(~inject, ci)); + switch (ci) { + | Some(ci) when settings.context_inspector => + div(~attrs=[clss], ctx_sorts_view(~inject, ci)) + | _ => div([]) + }; }; diff --git a/src/haz3lweb/view/CursorInspector.re b/src/haz3lweb/view/CursorInspector.re index 71f046786c..90b1180c8e 100644 --- a/src/haz3lweb/view/CursorInspector.re +++ b/src/haz3lweb/view/CursorInspector.re @@ -6,11 +6,11 @@ open Haz3lcore; let errc = "error"; let okc = "ok"; -let div_err = div(~attr=clss([errc])); -let div_ok = div(~attr=clss([okc])); +let div_err = div(~attrs=[clss(["status", errc])]); +let div_ok = div(~attrs=[clss(["status", okc])]); let code_err = (code: string): Node.t => - div(~attr=clss(["code"]), [text(code)]); + div(~attrs=[clss(["code"])], [text(code)]); let explain_this_toggle = (~inject, ~show_explain_this: bool): Node.t => { let tooltip = "Toggle language documentation"; @@ -20,35 +20,35 @@ let explain_this_toggle = (~inject, ~show_explain_this: bool): Node.t => { Virtual_dom.Vdom.Effect.Stop_propagation, ]); div( - ~attr=clss(["explain-this-button"]), + ~attrs=[clss(["explain-this-button"])], [Widgets.toggle(~tooltip, "?", show_explain_this, toggle_explain_this)], ); }; let cls_view = (ci: Info.t): Node.t => div( - ~attr=clss(["syntax-class"]), - [text(ci |> Info.cls_of |> Term.Cls.show)], + ~attrs=[clss(["syntax-class"])], + [text(ci |> Info.cls_of |> Cls.show)], ); let ctx_toggle = (~inject, context_inspector: bool): Node.t => div( - ~attr= - Attr.many([ - Attr.on_click(_ => inject(Update.Set(ContextInspector))), - clss(["gamma"] @ (context_inspector ? ["visible"] : [])), - ]), + ~attrs=[ + Attr.on_click(_ => inject(Update.Set(ContextInspector))), + clss(["gamma"] @ (context_inspector ? ["visible"] : [])), + ], [text("Γ")], ); let term_view = (~inject, ~settings: Settings.t, ci) => { let sort = ci |> Info.sort_of |> Sort.show; div( - ~attr=clss(["ci-header", sort] @ (Info.is_error(ci) ? [errc] : [])), + ~attrs=[ + clss(["ci-header", sort] @ (Info.is_error(ci) ? [errc] : [okc])), + ], [ ctx_toggle(~inject, settings.context_inspector), - CtxInspector.view(~inject, ~settings, ci), - div(~attr=clss(["term-tag"]), [text(sort)]), + div(~attrs=[clss(["term-tag"])], [text(sort)]), explain_this_toggle( ~inject, ~show_explain_this=settings.explainThis.show, @@ -58,7 +58,7 @@ let term_view = (~inject, ~settings: Settings.t, ci) => { ); }; -let elements_noun: Term.Cls.t => string = +let elements_noun: Cls.t => string = fun | Exp(Match | If) => "Branches" | Exp(ListLit) @@ -66,7 +66,7 @@ let elements_noun: Term.Cls.t => string = | Exp(ListConcat) => "Operands" | _ => failwith("elements_noun: Cls doesn't have elements"); -let common_err_view = (cls: Term.Cls.t, err: Info.error_common) => +let common_err_view = (cls: Cls.t, err: Info.error_common) => switch (err) { | NoType(BadToken(token)) => switch (Form.bad_token_cls(token)) { @@ -77,7 +77,7 @@ let common_err_view = (cls: Term.Cls.t, err: Info.error_common) => text("Function argument type"), Type.view(ty), text("inconsistent with"), - Type.view(Prod([])), + Type.view(Prod([]) |> Typ.fresh), ] | NoType(FreeConstructor(name)) => [code_err(name), text("not found")] | Inconsistent(WithArrow(typ)) => [ @@ -97,7 +97,7 @@ let common_err_view = (cls: Term.Cls.t, err: Info.error_common) => ] }; -let common_ok_view = (cls: Term.Cls.t, ok: Info.ok_pat) => { +let common_ok_view = (cls: Cls.t, ok: Info.ok_pat) => { switch (cls, ok) { | (Exp(MultiHole) | Pat(MultiHole), _) => [ text("Expecting operator or delimiter"), @@ -141,12 +141,12 @@ let common_ok_view = (cls: Term.Cls.t, ok: Info.ok_pat) => { }; }; -let typ_ok_view = (cls: Term.Cls.t, ok: Info.ok_typ) => +let typ_ok_view = (cls: Cls.t, ok: Info.ok_typ) => switch (ok) { | Type(_) when cls == Typ(EmptyHole) => [text("Fillable by any type")] | Type(ty) => [Type.view(ty), text("is a type")] | TypeAlias(name, ty_lookup) => [ - Type.view(Var(name)), + Type.view(Var(name) |> Typ.fresh), text("is an alias for"), Type.view(ty_lookup), ] @@ -156,7 +156,7 @@ let typ_ok_view = (cls: Term.Cls.t, ok: Info.ok_typ) => Type.view(Module({inner_ctx, incomplete: false})), ] | Variant(name, sum_ty) => [ - Type.view(Var(name)), + Type.view(Var(name) |> Typ.fresh), text("is a sum type constuctor of type"), Type.view(sum_ty), ] @@ -168,7 +168,10 @@ let typ_ok_view = (cls: Term.Cls.t, ok: Info.ok_typ) => let typ_err_view = (ok: Info.error_typ) => switch (ok) { - | FreeTypeVariable(name) => [Type.view(Var(name)), text("not found")] + | FreeTypeVariable(name) => [ + Type.view(Var(name) |> Typ.fresh), + text("not found"), + ] | BadToken(token) => [ code_err(token), text("not a type or type operator"), @@ -178,7 +181,7 @@ let typ_err_view = (ok: Info.error_typ) => | WantTypeFoundAp => [text("Must be part of a sum type")] | WantModule => [text("Expect a valid module")] | DuplicateConstructor(name) => [ - Type.view(Var(name)), + Type.view(Var(name) |> Typ.fresh), text("already used in this sum"), ] | FreeTypeMember(name) => [ @@ -194,12 +197,12 @@ let typ_err_view = (ok: Info.error_typ) => ] }; -let rec exp_view = (cls: Term.Cls.t, status: Info.status_exp) => +let rec exp_view = (cls: Cls.t, status: Info.status_exp) => switch (status) { | InHole(FreeVariable(name)) => div_err([code_err(name), text("not found")]) | InHole(InexhaustiveMatch(additional_err)) => - let cls_str = Term.Cls.show(cls); + let cls_str = Cls.show(cls); switch (additional_err) { | None => div_err([text(cls_str ++ " is inexhaustive")]) | Some(err) => @@ -231,7 +234,7 @@ let rec exp_view = (cls: Term.Cls.t, status: Info.status_exp) => | NotInHole(Common(ok)) => div_ok(common_ok_view(cls, ok)) }; -let rec pat_view = (cls: Term.Cls.t, status: Info.status_pat) => +let rec pat_view = (cls: Cls.t, status: Info.status_pat) => switch (status) { | InHole(ExpectedModule(token)) => div_err([ @@ -253,13 +256,13 @@ let rec pat_view = (cls: Term.Cls.t, status: Info.status_pat) => | NotInHole(ok) => div_ok(common_ok_view(cls, ok)) }; -let typ_view = (cls: Term.Cls.t, status: Info.status_typ) => +let typ_view = (cls: Cls.t, status: Info.status_typ) => switch (status) { | NotInHole(ok) => div_ok(typ_ok_view(cls, ok)) | InHole(err) => div_err(typ_err_view(err)) }; -let tpat_view = (_: Term.Cls.t, status: Info.status_tpat) => +let tpat_view = (_: Cls.t, status: Info.status_tpat) => switch (status) { | NotInHole(Empty) => div_ok([text("Fillable with a new alias")]) | NotInHole(Var(name)) => div_ok([Type.alias_view(name)]) @@ -267,25 +270,29 @@ let tpat_view = (_: Term.Cls.t, status: Info.status_tpat) => div_err([text("Must begin with a capital letter")]) | InHole(NotAVar(_)) => div_err([text("Expected an alias")]) | InHole(ShadowsType(name, BaseTyp)) => - div_err([text("Can't shadow base type"), Type.view(Var(name))]) + div_err([ + text("Can't shadow base type"), + Type.view(Var(name) |> Typ.fresh), + ]) | InHole(ShadowsType(name, TyAlias)) => - div_err([text("Can't shadow existing alias"), Type.view(Var(name))]) + div_err([ + text("Can't shadow existing alias"), + Type.view(Var(name) |> Typ.fresh), + ]) | InHole(ShadowsType(name, TyVar)) => div_err([ text("Can't shadow existing type variable"), - Type.view(Var(name)), + Type.view(Var(name) |> Typ.fresh), ]) }; -let secondary_view = (cls: Term.Cls.t) => - div_ok([text(cls |> Term.Cls.show)]); +let secondary_view = (cls: Cls.t) => div_ok([text(cls |> Cls.show)]); -let view_of_info = (~inject, ~settings, ci): Node.t => { - let wrapper = status_view => - div( - ~attr=clss(["info"]), - [term_view(~inject, ~settings, ci), status_view], - ); +let view_of_info = (~inject, ~settings, ci): list(Node.t) => { + let wrapper = status_view => [ + term_view(~inject, ~settings, ci), + status_view, + ]; switch (ci) { | Secondary(_) => wrapper(div([])) | InfoExp({cls, status, _}) => wrapper(exp_view(cls, status)) @@ -297,17 +304,21 @@ let view_of_info = (~inject, ~settings, ci): Node.t => { let inspector_view = (~inject, ~settings, ci): Node.t => div( - ~attr=clss(["cursor-inspector"] @ [Info.is_error(ci) ? errc : okc]), - [view_of_info(~inject, ~settings, ci)], + ~attrs=[ + Attr.id("cursor-inspector"), + clss([Info.is_error(ci) ? errc : okc]), + ], + view_of_info(~inject, ~settings, ci), ); -let view = (~inject, ~settings: Settings.t, cursor_info: option(Info.t)) => { - let bar_view = div(~attr=Attr.id("bottom-bar")); +let view = + (~inject, ~settings: Settings.t, editor, cursor_info: option(Info.t)) => { + let bar_view = div(~attrs=[Attr.id("bottom-bar")]); let err_view = err => bar_view([ div( - ~attr=clss(["cursor-inspector", "no-info"]), - [div(~attr=clss(["icon"]), [Icons.magnify]), text(err)], + ~attrs=[Attr.id("cursor-inspector"), clss(["no-info"])], + [div(~attrs=[clss(["icon"])], [Icons.magnify]), text(err)], ), ]); switch (cursor_info) { @@ -316,9 +327,10 @@ let view = (~inject, ~settings: Settings.t, cursor_info: option(Info.t)) => { | Some(ci) => bar_view([ inspector_view(~inject, ~settings, ci), - div( - ~attr=clss(["id"]), - [text(String.sub(Id.to_string(Info.id_of(ci)), 0, 4))], + ProjectorView.Panel.view( + ~inject=a => inject(PerformAction(Project(a))), + editor, + ci, ), ]) }; diff --git a/src/haz3lweb/view/DebugMode.re b/src/haz3lweb/view/DebugMode.re index 67618ee6ee..39cba26eb8 100644 --- a/src/haz3lweb/view/DebugMode.re +++ b/src/haz3lweb/view/DebugMode.re @@ -1,4 +1,5 @@ open Virtual_dom.Vdom; +open Util; [@deriving (show({with_path: false}), sexp, yojson)] type action = @@ -27,13 +28,12 @@ let perform = (action: action): unit => { let btn = (caption, action) => { Node.( button( - ~attr= - Attr.many([ - Attr.on_click(_ => { - perform(action); - Ui_effect.Ignore; - }), - ]), + ~attrs=[ + Attr.on_click(_ => { + perform(action); + Ui_effect.Ignore; + }), + ], [text(caption)], ) ); @@ -48,35 +48,8 @@ let view = { ); }; -module App = { - module Model = { - type t = unit; - let cutoff = (_, _) => false; - }; - module Action = { - type t = unit; - let sexp_of_t = _ => Sexplib.Sexp.unit; - }; - module State = { - type t = unit; - }; - let on_startup = (~schedule_action as _, _) => - Async_kernel.Deferred.return(); - let create = (_, ~old_model as _, ~inject as _) => - Incr_dom.Incr.return() - |> Incr_dom.Incr.map(~f=_ => - Incr_dom.Component.create( - ~apply_action=(_, _, ~schedule_action as _) => (), - (), - view, - ) - ); -}; - let go = () => - Incr_dom.Start_app.start( - (module App), - ~debug=false, + Bonsai_web.Start.start( + Bonsai.Computation.return(view), ~bind_to_element_with_id="container", - ~initial_model=(), ); diff --git a/src/haz3lweb/view/Deco.re b/src/haz3lweb/view/Deco.re index 0f577762e5..a616fe9eb0 100644 --- a/src/haz3lweb/view/Deco.re +++ b/src/haz3lweb/view/Deco.re @@ -1,114 +1,266 @@ open Virtual_dom.Vdom; open Util; +open Util.Web; open Haz3lcore; -module Deco = +type shard_data = (Measured.measurement, Nibs.shapes); + +let sel_shard_svg = + ( + ~index=?, + ~start_shape: PieceDec.tip, + measurement: Measured.measurement, + p: Piece.t, + ) + : (Measured.measurement, (PieceDec.tip, PieceDec.tip)) => ( + measurement, + switch (p) { + | Tile(t) => Mold.nib_shapes(~index?, t.mold) |> PieceDec.tips_of_shapes + | Grout(g) => + Mold.nib_shapes(Mold.of_grout(g, Any)) |> PieceDec.tips_of_shapes + | Secondary(_) => ( + Option.map( + (s: Nib.Shape.t) => + switch (s) { + | Concave(_) => Nib.Shape.Convex + | Convex => Nib.Shape.Concave(0) + }, + start_shape, + ), + None, + ) + | Projector(p) => + ProjectorBase.mold_of(p, Any) + |> Mold.nib_shapes + |> PieceDec.tips_of_shapes + }, +); + +let multiline_shard = + ( + num_lb: int, + {origin, last}: Measured.measurement, + tips: (option(Nib.Shape.t), option(Nib.Shape.t)), + ) => + List.init(num_lb + 1, i => + [ + Some(( + Measured.{ + origin: { + row: origin.row + i, + col: origin.col, + }, + last: { + row: origin.row + i, + col: last.col, + }, + }, + (i == 0 ? fst(tips) : None, i == num_lb ? snd(tips) : None), + )), + None, + ] + ) + |> List.concat; +module HighlightSegment = ( M: { + let measured: Measured.t; + let info_map: Statics.Map.t; let font_metrics: FontMetrics.t; - let map: Measured.t; - let show_backpack_targets: bool; - let terms: TermMap.t; - let term_ranges: TermRanges.t; - let error_ids: list(Id.t); - let tiles: TileMap.t; }, ) => { - let font_metrics = M.font_metrics; - - let tile = id => Id.Map.find(id, M.tiles); - - let caret = (z: Zipper.t): list(Node.t) => { - let origin = Zipper.caret_point(M.map, z); - let shape = Zipper.caret_direction(z); - let side = - switch (Indicated.piece(z)) { - | Some((_, side, _)) => side - | _ => Right - }; - [CaretDec.view(~font_metrics, ~profile={side, origin, shape})]; - }; - - type shard_data = (Measured.measurement, Nibs.shapes); - - let sel_shard_svg = - (~index=?, ~start_shape, measurement: Measured.measurement, p) - : (Measured.measurement, Nibs.shapes) => ( - measurement, - Mold.nib_shapes(~index?, Piece.mold_of(~shape=start_shape, p)), - ); - - let rec sel_of_piece = - (start_shape: Nib.Shape.t, p: Piece.t) - : (Nib.Shape.t, list(option(shard_data))) => { + let find_g = Measured.find_g(~msg="Highlight.of_piece", _, M.measured); + let find_w = Measured.find_w(~msg="Highlight.of_piece", _, M.measured); + let rec of_piece = + (start_shape: PieceDec.tip, p: Piece.t) + : ( + PieceDec.tip, + list( + option( + (Measured.measurement, (PieceDec.tip, PieceDec.tip)), + ), + ), + ) => { let shard_data = switch (p) { - | Tile(t) => sel_of_tile(~start_shape, t) - | Grout(g) => [ - Some(sel_shard_svg(~start_shape, Measured.find_g(g, M.map), p)), - ] + | Tile(t) => of_tile(~start_shape, t) + | Projector(p) => of_projector(~start_shape, p) + | Grout(g) => [Some(sel_shard_svg(~start_shape, find_g(g), p))] | Secondary(w) when Secondary.is_linebreak(w) => [None] | Secondary(w) => [ - Some(sel_shard_svg(~start_shape, Measured.find_w(w, M.map), p)), + Some(( + find_w(w), + (start_shape |> Option.map(Nib.Shape.flip), start_shape), + )), ] }; let start_shape = switch (Piece.nibs(p)) { | None => start_shape - | Some((_, {shape, _})) => shape + | Some((_, {shape, _})) => Some(shape) }; (start_shape, shard_data); } - and sel_of_tile = (~start_shape, t: Tile.t): list(option(shard_data)) => { + and of_tile = (~start_shape, t: Tile.t): list(option(_)) => { let tile_shards = - Measured.find_shards(t, M.map) + Measured.find_shards(~msg="sel_of_tile", t, M.measured) |> List.filter(((i, _)) => List.mem(i, t.shards)) - |> List.map(((index, measurement)) => - [ - Some(sel_shard_svg(~start_shape, ~index, measurement, Tile(t))), - ] - ); - let shape_at = index => snd(Mold.nibs(~index, t.mold)).shape; + |> List.map(((index, m)) => { + let token = List.nth(t.label, index); + switch (StringUtil.num_linebreaks(token)) { + | 0 => [Some(sel_shard_svg(~start_shape, ~index, m, Tile(t)))] + | num_lb => + multiline_shard(num_lb, m, (Some(Convex), Some(Convex))) + }; + }); + let shape_at = index => Some(snd(Mold.nibs(~index, t.mold)).shape); let children_shards = - t.children |> List.mapi(index => sel_of_segment(shape_at(index))); + t.children |> List.mapi(index => of_segment(shape_at(index))); ListUtil.interleave(tile_shards, children_shards) |> List.flatten; } - and sel_of_segment = - (start_shape: Nib.Shape.t, seg: Segment.t): list(option(shard_data)) => { + and of_projector = (~start_shape, p: Base.projector): list(option(_)) => + switch (Measured.find_pr_opt(p, M.measured)) { + | None => failwith("Deco.of_projector: missing measurement") + | Some(_m) => + let ci = Id.Map.find_opt(p.id, M.info_map); + let token = Projector.placeholder(p, ci); + /* Handling this internal to ProjectorsView at the moment because the + * commented-out strategy doesn't work well, since the inserted str8- + * edged lines vertical edge placement doesn't account for whether + * the initial/final rows begin/end as concave/convex, and hence are + * of slightly different lengths than is desirable */ + // multiline_shard( + // StringUtil.num_linebreaks(token), + // m, + // (Some(Convex), Some(Convex)), + // ); + let num_lb = StringUtil.num_linebreaks(token); + if (num_lb == 0) { + [ + Some( + sel_shard_svg( + ~start_shape, + Measured.find_pr(p, M.measured), + Projector(p), + ), + ), + ]; + } else { + List.init(num_lb + 1, _ => None); + }; + } + and of_segment = + (start_shape: PieceDec.tip, seg: Segment.t): list(option(_)) => { seg - |> ListUtil.fold_left_map(sel_of_piece, start_shape) + |> ListUtil.fold_left_map(of_piece, start_shape) |> snd |> List.flatten; } - and selected_pieces = (z: Zipper.t): list(Node.t) => + and go = + (segment: Segment.t, shape_init: PieceDec.tip, classes): list(Node.t) => /* We draw a single deco per row by dividing partionining the shards * into linebreak-seperated segments, then combining the measurements * and shapes of the first and last shard of each segment. Ideally we * could just get this info from the row measurements, but we have no * current way of figuring out shapes for whitespace without traversing */ - sel_of_segment( - fst(Siblings.shapes(z.relatives.siblings)), - z.selection.content, - ) + of_segment(shape_init, segment) |> ListUtil.split_at_nones |> ListUtil.first_and_last - |> List.map((((m1, (l1, _)): shard_data, (m2, (_, r2)): shard_data)) => - (({origin: m1.origin, last: m2.last}, (l1, r2)): shard_data) + |> List.map((((m1, (l1, _)), (m2, (_, r2)))) => + (Measured.{origin: m1.origin, last: m2.last}, (l1, r2)) ) - |> List.map(((measurement, shapes)) => - PieceDec.simple_shard_selected( - ~buffer=Selection.is_buffer(z.selection), - ~font_metrics, - ~measurement, - ~shapes, + |> List.map(((measurement, tips)) => + PieceDec.simple_shard( + {font_metrics: M.font_metrics, measurement, tips}, + classes, ) ); +}; + +module Deco = + ( + M: { + let ui_state: Model.ui_state; + let meta: Editor.Meta.t; + let highlights: option(ColorSteps.colorMap); + }, + ) => { + module Highlight = + HighlightSegment({ + let measured = M.meta.syntax.measured; + let info_map = M.meta.statics.info_map; + let font_metrics = M.ui_state.font_metrics; + }); + let font_metrics = M.ui_state.font_metrics; + + let tile = id => Id.Map.find(id, M.meta.syntax.tiles); + + let caret = (z: Zipper.t): Node.t => { + let origin = Zipper.caret_point(M.meta.syntax.measured, z); + let shape = Zipper.caret_direction(z); + let side = + switch (Indicated.piece(z)) { + | _ + when + !Selection.is_empty(z.selection) + && !Selection.is_buffer(z.selection) => + z.selection.focus + | Some((_, side, _)) => Direction.toggle(side) + | _ => Right + }; + CaretDec.view(~font_metrics, ~profile={side, origin, shape}); + }; + + let segment_selected = (z: Zipper.t) => + Highlight.go( + z.selection.content, + Some(fst(Siblings.shapes(z.relatives.siblings))), + ["selected"] @ (Selection.is_buffer(z.selection) ? ["buffer"] : []), + ); + + let term_range = (p): option((Point.t, Point.t)) => { + let id = Any.rep_id(Id.Map.find(Piece.id(p), M.meta.syntax.terms)); + switch (TermRanges.find_opt(id, M.meta.syntax.term_ranges)) { + | None => None + | Some((p_l, p_r)) => + let l = + Measured.find_p(~msg="Dec.range", p_l, M.meta.syntax.measured).origin; + let r = + Measured.find_p(~msg="Dec.range", p_r, M.meta.syntax.measured).last; + Some((l, r)); + }; + }; + + let all_tiles = (p: Piece.t): list((Uuidm.t, Mold.t, Measured.Shards.t)) => + Id.Map.find(Piece.id(p), M.meta.syntax.terms) + |> Any.ids + |> List.map(id => { + let t = tile(id); + let shards = + Measured.find_shards(~msg="all_tiles", t, M.meta.syntax.measured); + (id, t.mold, shards); + }); let indicated_piece_deco = (z: Zipper.t): list(Node.t) => { switch (Indicated.piece(z)) { | _ when z.selection.content != [] => [] | None => [] | Some((Grout(_), _, _)) => [] + | Some((Projector(p), _, _)) => + switch (Measured.find_pr_opt(p, M.meta.syntax.measured)) { + | Some(measurement) => [ + PieceDec.simple_shard_indicated( + { + font_metrics, + measurement, + tips: p |> ProjectorBase.shapes |> PieceDec.tips_of_shapes, + }, + ~sort=ProjectorBase.mold_of(p, Exp).out, + ~at_caret=true, + ), + ] + | None => [] + } | Some((p, side, _)) => // root_profile calculation assumes p is tile // TODO encode in types @@ -117,17 +269,7 @@ module Deco = | None => Nib.Shape.Convex | Some(nib) => Nib.Shape.relative(nib, side) }; - let range: option((Measured.Point.t, Measured.Point.t)) = { - // if (Piece.has_ends(p)) { - let id = Id.Map.find(Piece.id(p), M.terms) |> Term.rep_id; - switch (TermRanges.find_opt(id, M.term_ranges)) { - | None => None - | Some((p_l, p_r)) => - let l = Measured.find_p(p_l, M.map).origin; - let r = Measured.find_p(p_r, M.map).last; - Some((l, r)); - }; - }; + let range = term_range(p); let index = switch (Indicated.shard_index(z)) { | None => (-1) @@ -136,20 +278,10 @@ module Deco = switch (range) { | None => [] | Some(range) => - let tiles = - Id.Map.find(Piece.id(p), M.terms) - |> Term.ids - /* NOTE(andrew): dark_ids were originally filtered here. - * Leaving this comment in place in case issues in the - * future are traced back to here. - * |> List.filter(id => id >= 0)*/ - |> List.map(id => { - let t = tile(id); - (id, t.mold, Measured.find_shards(t, M.map)); - }); + let tiles = all_tiles(p); PieceDec.indicated( ~font_metrics, - ~rows=M.map.rows, + ~rows=M.meta.syntax.measured.rows, ~caret=(Piece.id(p), index), ~tiles, range, @@ -178,14 +310,23 @@ module Deco = switch (Siblings.neighbors((l, r))) { | (None, None) => failwith("impossible") | (_, Some(p)) => - let m = Measured.find_p(p, M.map); + let m = + Measured.find_p( + ~msg="Deco.targets", + p, + M.meta.syntax.measured, + ); Measured.{origin: m.origin, last: m.origin}; | (Some(p), _) => - let m = Measured.find_p(p, M.map); + let m = + Measured.find_p( + ~msg="Deco.targets", + p, + M.meta.syntax.measured, + ); Measured.{origin: m.last, last: m.last}; }; - let profile = - CaretPosDec.Profile.{style: `Sibling, measurement, sort: Exp}; + let profile = CaretPosDec.Profile.{style: `Sibling, measurement}; [CaretPosDec.view(~font_metrics, profile)]; }; }); @@ -208,39 +349,38 @@ module Deco = }; }; - let backpack = (z: Zipper.t): list(Node.t) => [ + let backpack = (z: Zipper.t): Node.t => BackpackView.view( ~font_metrics, - ~origin=Zipper.caret_point(M.map, z), + ~origin=Zipper.caret_point(M.meta.syntax.measured, z), z, - ), - ]; + ); - let targets' = (backpack, seg) => { - M.show_backpack_targets && Backpack.restricted(backpack) - ? targets(backpack, seg) : []; - }; + let backpack_targets = (backpack, seg) => + div_c( + "backpack-targets", + M.ui_state.show_backpack_targets && Backpack.restricted(backpack) + ? targets(backpack, seg) : [], + ); let term_decoration = - ( - ~id: Id.t, - deco: - ((Measured.Point.t, Measured.Point.t, SvgUtil.Path.t)) => Node.t, - ) => { - let (p_l, p_r) = TermRanges.find(id, M.term_ranges); - let l = Measured.find_p(p_l, M.map).origin; - let r = Measured.find_p(p_r, M.map).last; + (~id: Id.t, deco: ((Point.t, Point.t, SvgUtil.Path.t)) => Node.t) => { + let (p_l, p_r) = TermRanges.find(id, M.meta.syntax.term_ranges); + let l = + Measured.find_p(~msg="Deco.term", p_l, M.meta.syntax.measured).origin; + let r = + Measured.find_p(~msg="Deco.term", p_r, M.meta.syntax.measured).last; open SvgUtil.Path; let r_edge = ListUtil.range(~lo=l.row, r.row + 1) |> List.concat_map(i => { - let row = Measured.Rows.find(i, M.map.rows); + let row = Measured.Rows.find(i, M.meta.syntax.measured.rows); [h(~x=i == r.row ? r.col : row.max_col), v_(~dy=1)]; }); let l_edge = ListUtil.range(~lo=l.row, r.row + 1) |> List.rev_map(i => { - let row = Measured.Rows.find(i, M.map.rows); + let row = Measured.Rows.find(i, M.meta.syntax.measured.rows); [h(~x=i == l.row ? l.col : row.indent), v_(~dy=-1)]; }) |> List.concat; @@ -252,42 +392,103 @@ module Deco = (l, r, path) |> deco; }; - let term_highlight = (~clss: list(string), id: Id.t) => { - term_decoration(~id, ((origin, last, path)) => - DecUtil.code_svg_sized( - ~font_metrics, - ~measurement={origin, last}, - ~base_cls=clss, - path, + let term_highlight = (~clss: list(string), id: Id.t) => + try( + term_decoration(~id, ((origin, last, path)) => + DecUtil.code_svg_sized( + ~font_metrics, + ~measurement={origin, last}, + ~base_cls=clss, + path, + ) ) - ); - }; + ) { + | Not_found => + /* This is caused by the statics overloading for exercise mode. The overriding + * Exercise mode statics maps are calculated based on splicing together multiple + * editors, but error_ids are extracted generically from the statics map, so + * there may be error holes that don't occur in the editor being rendered. + * Additionally, when showing color highlights when the backpack is non-empty, + * the prospective completion may have different ids than the displayed code. */ + Node.div([]) + }; - let color_highlights = (colorings: list((Id.t, string))) => { - List.filter_map( - ((id, color)) => - /* HACK(andrew): Catching exceptions since when showing - term highlights when the backpack is non-empty, the - prospective completion may have different term ids - than the displayed code. */ - try(Some(term_highlight(~clss=["highlight-code-" ++ color], id))) { - | Not_found => None + let color_highlights = () => + div_c( + "color-highlights", + List.map( + ((id, color)) => + term_highlight(~clss=["highlight-code-" ++ color], id), + switch (M.highlights) { + | Some(colorMap) => ColorSteps.to_list(colorMap) + | _ => [] }, - colorings, + ), ); - }; - // faster infomap traversal - let err_holes = (_z: Zipper.t) => - List.map(term_highlight(~clss=["err-hole"]), M.error_ids); + let error_view = (id: Id.t) => + try( + switch (Id.Map.find_opt(id, M.meta.syntax.projectors)) { + | Some(p) => + /* Special case for projectors as they are not in tile map */ + let shapes = ProjectorBase.shapes(p); + let measurement = Id.Map.find(id, M.meta.syntax.measured.projectors); + div_c( + "errors-piece", + [ + PieceDec.simple_shard_error({ + font_metrics, + tips: PieceDec.tips_of_shapes(shapes), + measurement, + }), + ], + ); + | None => + let p = Piece.Tile(tile(id)); + let tiles = all_tiles(p); + let shard_decos = + tiles + |> List.map(((_, mold, shards)) => + PieceDec.simple_shards_errors(~font_metrics, mold, shards) + ) + |> List.flatten; + switch (term_range(p)) { + | Some(range) => + let rows = M.meta.syntax.measured.rows; + let decos = + shard_decos + @ PieceDec.uni_lines(~font_metrics, ~rows, range, tiles) + @ PieceDec.bi_lines(~font_metrics, ~rows, tiles); + div_c("errors-piece", decos); + | None => div_c("errors-piece", shard_decos) + }; + } + ) { + | Not_found => + /* This is caused by the statics overloading for exercise mode. The overriding + * Exercise mode statics maps are calculated based on splicing together multiple + * editors, but error_ids are extracted generically from the statics map, so + * there may be error holes that don't occur in the editor being rendered */ + Node.div([]) + }; + + let errors = () => + div_c("errors", List.map(error_view, M.meta.statics.error_ids)); - let all = (zipper, sel_seg) => - List.concat([ - caret(zipper), - indicated_piece_deco(zipper), - selected_pieces(zipper), - backpack(zipper), - targets'(zipper.backpack, sel_seg), - err_holes(zipper), - ]); + let indication = (z: Zipper.t) => + div_c("indication", indicated_piece_deco(z)); + + let selection = (z: Zipper.t) => div_c("selects", segment_selected(z)); + + let always = () => [errors()]; + + let all = z => [ + caret(z), + indication(z), + selection(z), + backpack(z), + backpack_targets(z.backpack, M.meta.syntax.segment), + errors(), + color_highlights(), + ]; }; diff --git a/src/haz3lweb/view/EditorModeView.re b/src/haz3lweb/view/EditorModeView.re index bd1c9afddf..dea884266f 100644 --- a/src/haz3lweb/view/EditorModeView.re +++ b/src/haz3lweb/view/EditorModeView.re @@ -4,19 +4,20 @@ open Widgets; let option_view = (name, n) => option( - ~attr=n == name ? Attr.create("selected", "selected") : Attr.many([]), + ~attrs=n == name ? [Attr.create("selected", "selected")] : [], [text(n)], ); let mode_menu = (~inject: Update.t => 'a, ~mode: Settings.mode) => div( - ~attr=Attr.many([Attr.class_("mode-name"), Attr.title("Toggle Mode")]), + ~attrs=[Attr.class_("mode-name"), Attr.title("Toggle Mode")], [ select( - ~attr= + ~attrs=[ Attr.on_change((_, name) => inject(Set(Mode(Settings.mode_of_string(name)))) ), + ], List.map( option_view(Settings.show_mode(mode)), ["Scratch", "Documentation", "Exercises"], @@ -36,7 +37,7 @@ let slide_select = (~inject, ~cur_slide, ~num_slides) => { }; let scratch_view = (~inject, ~cur_slide, ~slides) => - [mode_menu(~inject, ~mode=Scratch)] + [text("/"), mode_menu(~inject, ~mode=Scratch), text("/")] @ slide_select(~inject, ~cur_slide, ~num_slides=List.length(slides)); let documentation_view = (~inject, ~name, ~editors) => { @@ -52,7 +53,7 @@ let documentation_view = (~inject, ~name, ~editors) => { | [x, y, z, ..._] when name == y => (Some(x), Some(z)) | [_, ...ys] => find_prev_next(ys); let (prev, next) = find_prev_next(editor_names); - let prev = + let _prev = prev |> Option.map(s => button(Icons.back, _ => inject(Update.SwitchDocumentationSlide(s))) @@ -65,7 +66,7 @@ let documentation_view = (~inject, ~name, ~editors) => { ~disabled=true, ), ); - let next = + let _next = next |> Option.map(s => button(Icons.forward, _ => @@ -81,16 +82,17 @@ let documentation_view = (~inject, ~name, ~editors) => { ), ); [ + text("/"), mode_menu(~inject, ~mode=Documentation), - prev, + text("/"), select( - ~attr= + ~attrs=[ Attr.on_change((_, name) => inject(Update.SwitchDocumentationSlide(name)) ), + ], List.map(option_view(name), editor_names), ), - next, ]; }; @@ -104,8 +106,9 @@ let instructor_toggle = (~inject, ~instructor_mode) => : []; let exercises_view = (~inject, ~cur_slide, ~specs, ~instructor_mode) => { - [mode_menu(~inject, ~mode=Exercises)] + [text("/"), mode_menu(~inject, ~mode=Exercises), text("/")] @ instructor_toggle(~inject, ~instructor_mode) + @ [text("/")] @ slide_select(~inject, ~cur_slide, ~num_slides=List.length(specs)); }; @@ -125,5 +128,5 @@ let view = | Exercises(cur_slide, specs, _) => exercises_view(~cur_slide, ~specs, ~inject, ~instructor_mode) }; - div(~attr=Attr.id("editor-mode"), contents); + div(~attrs=[Attr.id("editor-mode")], contents); }; diff --git a/src/haz3lweb/view/ExerciseMode.re b/src/haz3lweb/view/ExerciseMode.re index 52302e7493..2b291c99f4 100644 --- a/src/haz3lweb/view/ExerciseMode.re +++ b/src/haz3lweb/view/ExerciseMode.re @@ -1,3 +1,4 @@ +open Util; open Haz3lcore; open Virtual_dom.Vdom; open Node; @@ -23,16 +24,10 @@ let view = ~ui_state: Model.ui_state, ~settings: Settings.t, ~exercise, - ~results, + ~stitched_dynamics, ~highlights, ) => { let Exercise.{eds, pos} = exercise; - let stitched_dynamics = - Exercise.stitch_dynamic( - settings.core, - exercise, - settings.core.dynamics ? Some(results) : None, - ); let { test_validation, user_impl, @@ -43,11 +38,8 @@ let view = hidden_tests: _, }: Exercise.stitched(Exercise.DynamicsItem.t) = stitched_dynamics; - let grading_report = Grading.GradingReport.mk(eds, ~stitched_dynamics); - let score_view = Grading.GradingReport.view_overall_score(grading_report); - let editor_view = ( ~editor: Editor.t, @@ -59,8 +51,7 @@ let view = ) => { Cell.editor_view( ~selected=pos == this_pos, - ~error_ids= - Statics.Map.error_ids(editor.state.meta.term_ranges, di.info_map), + ~override_statics=di.statics, ~inject, ~ui_state, ~mousedown_updates=[SwitchEditor(this_pos)], @@ -73,14 +64,12 @@ let view = editor, ); }; - let title_view = Cell.title_cell(eds.title); let prompt_view = Cell.narrative_cell( - div(~attr=Attr.class_("cell-prompt"), [eds.prompt]), + div(~attrs=[Attr.class_("cell-prompt")], [eds.prompt]), ); - let prelude_view = Always( editor_view( @@ -102,7 +91,6 @@ let view = ~di=instructor, ), ); - // determine trailing hole // TODO: module let correct_impl_ctx_view = @@ -112,10 +100,13 @@ let view = let correct_impl_trailing_hole_ctx = Haz3lcore.Editor.trailing_hole_ctx( eds.correct_impl, - instructor.info_map, + instructor.statics.info_map, ); let prelude_trailing_hole_ctx = - Haz3lcore.Editor.trailing_hole_ctx(eds.prelude, prelude.info_map); + Haz3lcore.Editor.trailing_hole_ctx( + eds.prelude, + prelude.statics.info_map, + ); switch (correct_impl_trailing_hole_ctx, prelude_trailing_hole_ctx) { | (None, _) => Node.div([text("No context available (1)")]) | (_, None) => Node.div([text("No context available (2)")]) // TODO show exercise configuration error @@ -131,7 +122,7 @@ let view = switch (specific_ctx) { | None => Node.div([text("No context available")]) // TODO show exercise configuration error | Some(specific_ctx) => - CtxInspector.ctx_view(~inject, specific_ctx) + ContextInspector.ctx_view(~inject, specific_ctx) }; }; }; @@ -146,7 +137,6 @@ let view = ]); }, ); - let your_tests_view = Always( editor_view( @@ -164,7 +154,6 @@ let view = ], ), ); - let wrong_impl_views = List.mapi( (i, (Exercise.{impl, _}, di)) => { @@ -180,7 +169,6 @@ let view = }, List.combine(eds.hidden_bugs, hidden_bugs), ); - let mutation_testing_view = Always( Grading.MutationTestingReport.view( @@ -189,7 +177,6 @@ let view = grading_report.point_distribution.mutation_testing, ), ); - let your_impl_view = { Always( editor_view( @@ -209,7 +196,6 @@ let view = ), ); }; - let syntax_grading_view = Always(Grading.SyntaxReport.view(grading_report.syntax_report)); @@ -219,7 +205,7 @@ let view = YourTestsTesting, ~caption="Implementation Validation", ~subcaption= - ": Your Tests (code synchronized with Test Validation cell above) vs. Your Implementation", + ": Your Tests (synchronized with Test Validation above) vs. Your Implementation", ~editor=eds.your_tests.tests, ~di=user_tests, ~footer=[ @@ -251,7 +237,6 @@ let view = ~max_points=grading_report.point_distribution.impl_grading, ), ); - [score_view, title_view, prompt_view] @ render_cells( settings, @@ -290,72 +275,39 @@ let reset_button = inject => ~tooltip="Reset Exercise", ); -let instructor_export = (exercise: Exercise.state) => +let instructor_export = (inject: UpdateAction.t => Ui_effect.t(unit)) => Widgets.button_named( - Icons.star, - _ => { - // .ml files because show uses OCaml syntax (dune handles seamlessly) - let module_name = exercise.eds.module_name; - let filename = exercise.eds.module_name ++ ".ml"; - let content_type = "text/plain"; - let contents = Exercise.export_module(module_name, exercise); - JsUtil.download_string_file(~filename, ~content_type, ~contents); - Virtual_dom.Vdom.Effect.Ignore; - }, + Icons.export, + _ => inject(Export(ExerciseModule)), ~tooltip="Export Exercise Module", ); -let instructor_transitionary_export = (exercise: Exercise.state) => +let instructor_transitionary_export = + (inject: UpdateAction.t => Ui_effect.t(unit)) => Widgets.button_named( - Icons.star, - _ => { - // .ml files because show uses OCaml syntax (dune handles seamlessly) - let module_name = exercise.eds.module_name; - let filename = exercise.eds.module_name ++ ".ml"; - let content_type = "text/plain"; - let contents = - Exercise.export_transitionary_module(module_name, exercise); - JsUtil.download_string_file(~filename, ~content_type, ~contents); - Virtual_dom.Vdom.Effect.Ignore; - }, + Icons.export, + _ => {inject(Export(TransitionaryExerciseModule))}, ~tooltip="Export Transitionary Exercise Module", ); -let instructor_grading_export = (exercise: Exercise.state) => +let instructor_grading_export = (inject: UpdateAction.t => Ui_effect.t(unit)) => Widgets.button_named( - Icons.star, - _ => { - // .ml files because show uses OCaml syntax (dune handles seamlessly) - let module_name = exercise.eds.module_name; - let filename = exercise.eds.module_name ++ "_grading.ml"; - let content_type = "text/plain"; - let contents = Exercise.export_grading_module(module_name, exercise); - JsUtil.download_string_file(~filename, ~content_type, ~contents); - Virtual_dom.Vdom.Effect.Ignore; - }, + Icons.export, + _ => {inject(Export(GradingExerciseModule))}, ~tooltip="Export Grading Exercise Module", ); -let download_editor_state = (~instructor_mode) => - Log.get_and(log => { - let data = Export.export_all(~instructor_mode, ~log); - JsUtil.download_json(ExerciseSettings.filename, data); - }); - -let export_submission = (~settings: Settings.t) => +let export_submission = (inject: UpdateAction.t => Ui_effect.t(unit)) => Widgets.button_named( Icons.star, - _ => { - download_editor_state(~instructor_mode=settings.instructor_mode); - Virtual_dom.Vdom.Effect.Ignore; - }, + _ => inject(Export(Submission)), ~tooltip="Export Submission", ); let import_submission = (~inject) => Widgets.file_select_button_named( "import-submission", - Icons.star, + Icons.import, file => { switch (file) { | None => Virtual_dom.Vdom.Effect.Ignore diff --git a/src/haz3lweb/view/ExplainThis.re b/src/haz3lweb/view/ExplainThis.re index de4a592f6f..7487cc7037 100644 --- a/src/haz3lweb/view/ExplainThis.re +++ b/src/haz3lweb/view/ExplainThis.re @@ -8,23 +8,21 @@ open Haz3lcore; let feedback_view = (message, up_active, up_action, down_active, down_action) => { div( - ~attr=clss(["feedback"]), + ~attrs=[clss(["feedback"])], [ - div(~attr=clss(["message"]), [text(message)]), + div(~attrs=[clss(["message"])], [text(message)]), div( - ~attr= - Attr.many([ - clss(["option"] @ (up_active ? ["active"] : [])), - Attr.on_click(up_action), - ]), + ~attrs=[ + clss(["option"] @ (up_active ? ["active"] : [])), + Attr.on_click(up_action), + ], [text("👍")], ), div( - ~attr= - Attr.many([ - clss(["option"] @ (down_active ? ["active"] : [])), - Attr.on_click(down_action), - ]), + ~attrs=[ + clss(["option"] @ (down_active ? ["active"] : [])), + Attr.on_click(down_action), + ], [text("👎")], ), ], @@ -92,17 +90,17 @@ let example_feedback_view = (~inject, group_id, form_id, example_id, model) => { ); }; -let code_node = text => Node.span(~attr=clss(["code"]), [Node.text(text)]); +let code_node = text => + Node.span(~attrs=[clss(["code"])], [Node.text(text)]); let highlight = (~inject, msg: list(Node.t), id: Id.t, mapping: ColorSteps.t) : (Node.t, ColorSteps.t) => { let (c, mapping) = ColorSteps.get_color(id, mapping); let classes = clss(["highlight-" ++ c, "clickable"]); - let attr = + let attrs = switch (inject) { - | Some(inject) => - Attr.many([ + | Some(inject) => [ classes, Attr.on_mouseenter(_ => inject(UpdateAction.Set(ExplainThis(SetHighlight(Hover(id))))) @@ -113,10 +111,10 @@ let highlight = Attr.on_click(_ => inject(UpdateAction.PerformAction(Select(Term(Id(id, Left))))) ), - ]) - | None => classes + ] + | None => [classes] }; - (Node.span(~attr, msg), mapping); + (Node.span(~attrs, msg), mapping); }; /* @@ -130,58 +128,83 @@ let highlight = let mk_translation = (~inject, text: string): (list(Node.t), ColorSteps.t) => { let omd = Omd.of_string(text); //print_markdown(omd); - let rec translate = - (doc: Omd.t, mapping: ColorSteps.t): (list(Node.t), ColorSteps.t) => + + let rec translate_inline = + (inline: Omd.inline(_), msg, mapping: ColorSteps.t, ~inject) + : (list(Node.t), ColorSteps.t) => { + switch (inline) { + | Omd.Concat(_, items) => + let (nodes, mapping) = + List.fold_left( + ((msg, mapping), item) => { + let (translated_item, mapping) = + translate_inline(item, [], mapping, ~inject); + (List.concat([msg, translated_item]), mapping); + }, + ([], mapping), + items, + ); + (List.append(msg, nodes), mapping); + | Omd.Text(_, d) => (List.append(msg, [Node.text(d)]), mapping) + | Omd.Code(_, d) => (List.append(msg, [code_node(d)]), mapping) + | Omd.Link(_, {label, destination, _}) => + let (d, mapping) = translate_inline(label, [], mapping, ~inject); + let id = + switch (Id.of_string(destination)) { + | Some(id) => id + | None => Id.invalid + }; + let (inner_msg, mapping) = highlight(~inject, d, id, mapping); + (List.append(msg, [inner_msg]), mapping); + | Omd.Emph(_, d) => + let (d, mapping) = translate_inline(d, [], mapping, ~inject); + ( + List.append( + msg, + [ + Node.span( + ~attrs=[ + Attr.style( + Css_gen.create(~field="font-style", ~value="italic"), + ), + ], + d, + ), + ], + ), + mapping, + ); + | _ => (msg, mapping) + }; + }; + + let rec translate_block = + (doc: Omd.doc, mapping: ColorSteps.t) + : (list(Node.t), ColorSteps.t) => { List.fold_left( ((msg, mapping), elem) => { switch (elem) { - | Omd.Paragraph(d) => translate(d, mapping) - | Text(t) => (List.append(msg, [Node.text(t)]), mapping) - | Ul(items) => + | Omd.Paragraph(_, d) => translate_inline(d, msg, mapping, ~inject) + | Omd.List(_, _, _, items) => let (bullets, mapping) = List.fold_left( ((nodes, mapping), d) => { - let (n, mapping) = translate(d, mapping); + let (n, mapping) = translate_block(d, mapping); (List.append(nodes, [Node.li(n)]), mapping); }, ([], mapping), items, ); (List.append(msg, [Node.ul(bullets)]), mapping); /* TODO Hannah - Should this be an ordered list instead of an unordered list? */ - | Code(_name, t) => (List.append(msg, [code_node(t)]), mapping) - | Url(id, d, _title) => - let (d, mapping) = translate(d, mapping); - let id = - switch (Id.of_string(id)) { - | Some(id) => id - | None => Id.invalid - }; - let (inner_msg, mapping) = highlight(~inject, d, id, mapping); - (List.append(msg, [inner_msg]), mapping); - | Emph(d) => - let (d, mapping) = translate(d, mapping); - ( - List.append( - msg, - [ - Node.span( - ~attr= - Attr.style( - Css_gen.create(~field="font-style", ~value="italic"), - ), - d, - ), - ], - ), - mapping, - ); | _ => (msg, mapping) } }, ([], mapping), doc, ); - translate(omd, ColorSteps.empty); + }; + + translate_block(omd, ColorSteps.empty); }; let mk_explanation = @@ -199,7 +222,7 @@ let mk_explanation = settings.explainThis.show_feedback ? [explanation_feedback_view(~inject, group_id, form_id, model)] : []; ( - div([div(~attr=clss(["explanation-contents"]), msg)] @ feedback), + div([div(~attrs=[clss(["explanation-contents"])], msg)] @ feedback), color_map, ); }; @@ -209,21 +232,22 @@ let expander_deco = ~docs: ExplainThisModel.t, ~settings: Settings.t, ~inject, - ~ui_state as {font_metrics, _}: Model.ui_state, + ~ui_state: Model.ui_state, ~options: list((ExplainThisForm.form_id, Segment.t)), ~group: ExplainThisForm.group, ~doc: ExplainThisForm.form, ) => { module Deco = Deco.Deco({ - let font_metrics = font_metrics; - let map = Measured.of_segment(doc.syntactic_form); - let show_backpack_targets = false; - let (_term, terms) = MakeTerm.go(doc.syntactic_form); - let term_ranges = TermRanges.mk(doc.syntactic_form); - let tiles = TileMap.mk(doc.syntactic_form); - let error_ids = []; + let ui_state = ui_state; + let meta = + Editor.Meta.init( + ~settings=CoreSettings.off, + Zipper.unzip(doc.syntactic_form), + ); + let highlights: option(ColorSteps.colorMap) = None; }); + let Model.{font_metrics, _} = ui_state; switch (doc.expandable_id, List.length(options)) { | (None, _) | (_, 0 | 1) => div([]) @@ -254,21 +278,14 @@ let expander_deco = let specificity_menu = Node.div( - ~attr= - Attr.many([ - clss(["specificity-options-menu", "expandable"]), - specificity_style, - ]), + ~attrs=[ + clss(["specificity-options-menu", "expandable"]), + specificity_style, + ], List.map( ((id: ExplainThisForm.form_id, segment: Segment.t)): Node.t => { - let map = Measured.of_segment(segment); let code_view = - Code.simple_view( - ~font_metrics, - ~unselected=segment, - ~map, - ~settings, - ); + Code.simple_view(~font_metrics, ~segment, ~settings); let classes = id == doc.id ? ["selected"] @ get_clss(segment) : get_clss(segment); @@ -279,11 +296,10 @@ let expander_deco = ), ); Node.div( - ~attr= - Attr.many([ - clss(classes), - Attr.on_click(update_group_selection), - ]), + ~attrs=[ + clss(classes), + Attr.on_click(update_group_selection), + ], [code_view], ); }, @@ -293,10 +309,7 @@ let expander_deco = let expand_arrow_style = Attr.create("style", specificity_pos); let expand_arrow = - Node.div( - ~attr=Attr.many([clss(["arrow"]), expand_arrow_style]), - [], - ); + Node.div(~attrs=[clss(["arrow"]), expand_arrow_style], []); let expandable_deco = DecUtil.code_svg( @@ -308,18 +321,17 @@ let expander_deco = ); Node.div( - ~attr= - Attr.many([ - clss(["expandable-target"]), - DecUtil.abs_position(~font_metrics, origin), - Attr.on_click(_ => { - inject( - UpdateAction.UpdateExplainThisModel( - ExplainThisUpdate.SpecificityOpen(!docs.specificity_open), - ), - ) - }), - ]), + ~attrs=[ + clss(["expandable-target"]), + DecUtil.abs_position(~font_metrics, origin), + Attr.on_click(_ => { + inject( + UpdateAction.UpdateExplainThisModel( + ExplainThisUpdate.SpecificityOpen(!docs.specificity_open), + ), + ) + }), + ], [expandable_deco, specificity_menu] @ (docs.specificity_open ? [] : [expand_arrow]), ); @@ -342,7 +354,7 @@ let example_view = ? [] : [ div( - ~attr=Attr.id("examples"), + ~attrs=[Attr.id("examples")], List.mapi( (idx, {term, message, sub_id, _}: ExplainThisForm.example) => { let feedback = @@ -358,7 +370,7 @@ let example_view = ] : []; div( - ~attr=clss(["example"]), + ~attrs=[clss(["example"])], [ Cell.locked( ~segment=term, @@ -368,7 +380,7 @@ let example_view = ~inject, ), div( - ~attr=clss(["explanation"]), + ~attrs=[clss(["explanation"])], [text(message)] @ feedback, ), ], @@ -380,30 +392,29 @@ let example_view = ]; }; -let rec bypass_parens_and_annot_pat = (pat: TermBase.UPat.t) => { +let rec bypass_parens_and_annot_pat = (pat: Pat.t) => { switch (pat.term) { | Parens(p) - | TypeAnn(p, _) => bypass_parens_and_annot_pat(p) - | TyAlias(_) => {...pat, term: EmptyHole} + | Cast(p, _, _) => bypass_parens_and_annot_pat(p) | _ => pat }; }; -let rec bypass_parens_pat = (pat: TermBase.UPat.t) => { +let rec bypass_parens_pat = (pat: Pat.t) => { switch (pat.term) { | Parens(p) => bypass_parens_pat(p) | _ => pat }; }; -let rec bypass_parens_exp = (exp: TermBase.UExp.t) => { +let rec bypass_parens_exp = (exp: Exp.t) => { switch (exp.term) { | Parens(e) => bypass_parens_exp(e) | _ => exp }; }; -let rec bypass_parens_typ = (typ: TermBase.UTyp.t) => { +let rec bypass_parens_typ = (typ: Typ.t) => { switch (typ.term) { | Parens(t) => bypass_parens_typ(t) | _ => typ @@ -521,8 +532,13 @@ let get_doc = let rec get_message_exp = (term) : (list(Node.t), (list(Node.t), ColorSteps.t), list(Node.t)) => - switch (term) { - | TermBase.UExp.Invalid(_) => simple("Not a valid expression") + switch ((term: Exp.term)) { + | Exp.Invalid(_) => simple("Not a valid expression") + | DynamicErrorHole(_) + | FailedCast(_) + | Closure(_) + | Cast(_) + | BuiltinFun(_) => simple("Internal expression") | EmptyHole => get_message(HoleExp.empty_hole_exps) | MultiHole(_children) => get_message(HoleExp.multi_hole_exps) | TyAlias(ty_pat, ty_def, _body) => @@ -542,7 +558,7 @@ let get_doc = ), TyAliasExp.tyalias_exps, ); - | Triv => get_message(TerminalExp.triv_exps) + | Undefined => get_message(UndefinedExp.undefined_exps) | Deferral(_) => get_message(TerminalExp.deferral_exps) | Bool(b) => get_message(TerminalExp.bool_exps(b)) | Int(i) => get_message(TerminalExp.int_exps(i)) @@ -560,7 +576,7 @@ let get_doc = ), ListExp.listlits, ) - | TypFun(tpat, body) => + | TypFun(tpat, body, _) => let basic = group_id => { let tpat_id = List.nth(tpat.ids, 0); let body_id = List.nth(body.ids, 0); @@ -584,7 +600,7 @@ let get_doc = }; /* TODO: More could be done here probably for different patterns. */ basic(TypFunctionExp.type_functions_basic); - | Fun(pat, body) => + | Fun(pat, body, _, _) => let basic = group_id => { let pat_id = List.nth(pat.ids, 0); let body_id = List.nth(body.ids, 0); @@ -773,7 +789,7 @@ let get_doc = } else { basic(FunctionExp.functions_str); } - | Triv => + | Tuple([]) => if (FunctionExp.function_triv_exp.id == get_specificity_level(FunctionExp.functions_triv)) { get_message( @@ -1015,7 +1031,7 @@ let get_doc = } else { basic(FunctionExp.functions_ap); } - | Constructor(v) => + | Constructor(v, _) => if (FunctionExp.function_ctr_exp.id == get_specificity_level(FunctionExp.functions_ctr)) { let pat_id = List.nth(pat.ids, 0); @@ -1042,7 +1058,7 @@ let get_doc = | TyAlias(_) => default // Shouldn't get hit | Invalid(_) => default // Shouldn't get hit | Parens(_) => default // Shouldn't get hit? - | TypeAnn(_) => default // Shouldn't get hit? + | Cast(_) => default // Shouldn't get hit? }; | Tuple(terms) => let basic = group_id => @@ -1297,7 +1313,7 @@ let get_doc = LetExp.lets_str, ); } - | Triv => + | Tuple([]) => if (LetExp.let_triv_exp.id == get_specificity_level(LetExp.lets_triv)) { get_message( @@ -1524,7 +1540,7 @@ let get_doc = } else { basic(LetExp.lets_ap); } - | Constructor(v) => + | Constructor(v, _) => if (LetExp.let_ctr_exp.id == get_specificity_level(LetExp.lets_ctr)) { get_message( ~colorings= @@ -1549,7 +1565,7 @@ let get_doc = | TyAlias(_) => default // Shouldn't get hit | Invalid(_) => default // Shouldn't get hit | Parens(_) => default // Shouldn't get hit? - | TypeAnn(_) => default // Shouldn't get hit? + | Cast(_) => default // Shouldn't get hit? }; | Module(pat, def, body) => message_single( @@ -1566,11 +1582,18 @@ let get_doc = ~mem_id=Term.UExp.rep_id(e_mem), ), ) - | Pipeline(arg, fn) => + | FixF(pat, body, _) => + message_single( + FixFExp.single( + ~pat_id=UPat.rep_id(pat), + ~body_id=UExp.rep_id(body), + ), + ) + | Ap(Reverse, arg, fn) => message_single( PipelineExp.single( - ~arg_id=Term.UExp.rep_id(arg), - ~fn_id=Term.UExp.rep_id(fn), + ~arg_id=UExp.rep_id(arg), + ~fn_id=UExp.rep_id(fn), ), ) | TypAp(f, typ) => @@ -1594,7 +1617,7 @@ let get_doc = TypAppExp.typfunapp_exp_coloring_ids, ); - | Ap(x, arg) => + | Ap(Forward, x, arg) => let x_id = List.nth(x.ids, 0); let arg_id = List.nth(arg.ids, 0); let basic = (group, format, coloring_ids) => { @@ -1605,7 +1628,7 @@ let get_doc = ); }; switch (x.term) { - | Constructor(v) => + | Constructor(v, _) => basic( AppExp.conaps, msg => @@ -1633,7 +1656,7 @@ let get_doc = let x_id = List.nth(x.ids, 0); let supplied_id = Id.mk(); let deferred_id = { - let deferral = List.find(Term.UExp.is_deferral, args); + let deferral = List.find(Exp.is_deferral, args); List.nth(deferral.ids, 0); }; switch (mode) { @@ -1657,11 +1680,11 @@ let get_doc = let color_fn = List.nth(ColorSteps.child_colors, 0); let color_supplied = List.nth(ColorSteps.child_colors, 1); let color_deferred = List.nth(ColorSteps.child_colors, 2); - let add = (mapping, arg: Term.UExp.t) => { + let add = (mapping, arg: Exp.t) => { let arg_id = List.nth(arg.ids, 0); Haz3lcore.Id.Map.add( arg_id, - Term.UExp.is_deferral(arg) ? color_deferred : color_supplied, + Exp.is_deferral(arg) ? color_deferred : color_supplied, mapping, ); }; @@ -1704,34 +1727,35 @@ let get_doc = ), SeqExp.seqs, ); - | Filter((Step, One), pat, body) => + | Filter(Filter({act: (Step, One), pat}), body) => message_single( FilterExp.filter_pause( - ~p_id=Term.UExp.rep_id(pat), - ~body_id=Term.UExp.rep_id(body), + ~p_id=UExp.rep_id(pat), + ~body_id=UExp.rep_id(body), ), ) - | Filter((Step, All), pat, body) => + | Filter(Filter({act: (Step, All), pat}), body) => message_single( FilterExp.filter_debug( - ~p_id=Term.UExp.rep_id(pat), - ~body_id=Term.UExp.rep_id(body), + ~p_id=UExp.rep_id(pat), + ~body_id=UExp.rep_id(body), ), ) - | Filter((Eval, All), pat, body) => + | Filter(Filter({act: (Eval, All), pat}), body) => message_single( FilterExp.filter_eval( - ~p_id=Term.UExp.rep_id(pat), - ~body_id=Term.UExp.rep_id(body), + ~p_id=UExp.rep_id(pat), + ~body_id=UExp.rep_id(body), ), ) - | Filter((Eval, One), pat, body) => + | Filter(Filter({act: (Eval, One), pat}), body) => message_single( FilterExp.filter_hide( - ~p_id=Term.UExp.rep_id(pat), - ~body_id=Term.UExp.rep_id(body), + ~p_id=UExp.rep_id(pat), + ~body_id=UExp.rep_id(body), ), ) + | Filter(_) => simple("Internal expression") | Test(body) => let body_id = List.nth(body.ids, 0); get_message( @@ -1810,7 +1834,7 @@ let get_doc = OpExp.int_un_minus, ); | Meta(Unquote) => - message_single(FilterExp.unquote(~sel_id=Term.UExp.rep_id(exp))) + message_single(FilterExp.unquote(~sel_id=UExp.rep_id(exp))) } | BinOp(op, left, right) => open OpExp; @@ -1887,7 +1911,7 @@ let get_doc = ), CaseExp.case, ); - | Constructor(v) => + | Constructor(v, _) => switch (cls) { | Exp(ModuleVar) => get_message( @@ -1968,7 +1992,7 @@ let get_doc = ), TerminalPat.strlit(s), ) - | Triv => get_message(TerminalPat.triv) + | Tuple([]) => get_message(TerminalPat.triv) | ListLit(elements) => if (List.length(elements) == 0) { get_message(ListPat.listnil); @@ -2003,7 +2027,7 @@ let get_doc = doc, ); switch (tl.term) { - | TermBase.UPat.Cons(hd2, tl2) => + | Pat.Cons(hd2, tl2) => if (ListPat.cons2_pat.id == get_specificity_level(ListPat.cons2)) { let hd2_id = List.nth(hd2.ids, 0); let tl2_id = List.nth(tl2.ids, 0); @@ -2121,7 +2145,7 @@ let get_doc = ), AppPat.ap, ); - | Constructor(con) => + | Constructor(con, _) => get_message( ~format= Some( @@ -2129,7 +2153,7 @@ let get_doc = ), TerminalPat.ctr(con), ) - | TypeAnn(pat, typ) => + | Cast(pat, typ, _) => let pat_id = List.nth(pat.ids, 0); let typ_id = List.nth(typ.ids, 0); get_message( @@ -2150,10 +2174,12 @@ let get_doc = // Shouldn't be hit? default } - | Some(InfoTyp({term, cls, _})) => + | Some(InfoTyp({term, _} as typ_info)) => switch (bypass_parens_typ(term).term) { - | EmptyHole => get_message(HoleTyp.empty_hole) - | MultiHole(_) => get_message(HoleTyp.multi_hole) + | Unknown(SynSwitch) + | Unknown(Internal) + | Unknown(Hole(EmptyHole)) => get_message(HoleTyp.empty_hole) + | Unknown(Hole(MultiHole(_))) => get_message(HoleTyp.multi_hole) | Int => get_message(TerminalTyp.int) | Float => get_message(TerminalTyp.float) | Bool => get_message(TerminalTyp.bool) @@ -2222,7 +2248,7 @@ let get_doc = doc, ); switch (result.term) { - | TermBase.UTyp.Arrow(arg2, result2) => + | Typ.Arrow(arg2, result2) => if (ArrowTyp.arrow3_typ.id == get_specificity_level(ArrowTyp.arrow3)) { let arg2_id = List.nth(arg2.ids, 0); let result2_id = List.nth(result2.ids, 0); @@ -2250,7 +2276,7 @@ let get_doc = } | _ => basic(ArrowTyp.arrow) }; - | Tuple(elements) => + | Prod(elements) => let basic = group => get_message( ~format= @@ -2323,9 +2349,7 @@ let get_doc = } | _ => basic(TupleTyp.tuple) }; - | Constructor(c) => - get_message(SumTyp.sum_typ_nullary_constructor_defs(c)) - | Var(c) when cls == Typ(Constructor) => + | Var(c) when Info.typ_is_constructor_expected(typ_info) => get_message(SumTyp.sum_typ_nullary_constructor_defs(c)) | Var(v) => get_message( @@ -2336,7 +2360,7 @@ let get_doc = TerminalTyp.var(v), ) | Sum(_) => get_message(SumTyp.labelled_sum_typs) - | Ap({term: Constructor(c), _}, _) => + | Ap({term: Var(c), _}, _) => get_message(SumTyp.sum_typ_unary_constructor_defs(c)) | Module(_) => get_message(TerminalTyp.moduletyp) | Dot(t_mod, t_mem) => @@ -2346,7 +2370,7 @@ let get_doc = ~mem_id=Term.UTyp.rep_id(t_mem), ), ) - | Invalid(_) => simple("Not a type or type operator") + | Unknown(Hole(Invalid(_))) => simple("Not a type or type operator") | Ap(_) | Parens(_) => default // Shouldn't be hit? } @@ -2377,8 +2401,8 @@ let get_doc = let section = (~section_clss: string, ~title: string, contents: list(Node.t)) => div( - ~attr=clss(["section", section_clss]), - [div(~attr=clss(["section-title"]), [text(title)])] @ contents, + ~attrs=[clss(["section", section_clss])], + [div(~attrs=[clss(["section-title"])], [text(title)])] @ contents, ); let get_color_map = @@ -2410,13 +2434,13 @@ let view = MessageContent(inject, ui_state, settings), ); div( - ~attr=Attr.id("side-bar"), + ~attrs=[Attr.id("side-bar")], [ div( - ~attr=clss(["explain-this"]), + ~attrs=[Attr.id("explain-this")], [ div( - ~attr=clss(["top-bar"]), + ~attrs=[clss(["header"])], [ Widgets.toggle( ~tooltip="Toggle highlighting", @@ -2426,14 +2450,13 @@ let view = inject(UpdateAction.Set(ExplainThis(SetHighlight(Toggle)))) ), div( - ~attr= - Attr.many([ - clss(["close"]), - Attr.on_click(_ => - inject(UpdateAction.Set(ExplainThis(ToggleShow))) - ), - ]), - [text("x")], + ~attrs=[ + clss(["close"]), + Attr.on_click(_ => + inject(UpdateAction.Set(ExplainThis(ToggleShow))) + ), + ], + [Icons.thin_x], ), ], ), @@ -2444,7 +2467,7 @@ let view = ~title= switch (info) { | None => "Whitespace or Comment" - | Some(info) => Info.cls_of(info) |> Term.Cls.show + | Some(info) => Info.cls_of(info) |> Cls.show }, syn_form @ explanation, ), diff --git a/src/haz3lweb/view/FontSpecimen.re b/src/haz3lweb/view/FontSpecimen.re index 3ee6dc8879..f5a5e6ab38 100644 --- a/src/haz3lweb/view/FontSpecimen.re +++ b/src/haz3lweb/view/FontSpecimen.re @@ -1,3 +1,4 @@ open Virtual_dom.Vdom; -let view = id => Node.span(~attr=Attr.id(id), [Node.text("X")]); +let view = id => + Node.span(~attrs=[Attr.id(id), Attr.class_("code")], [Node.text("X")]); diff --git a/src/haz3lweb/view/Icons.re b/src/haz3lweb/view/Icons.re index 1067286891..52d4e130db 100644 --- a/src/haz3lweb/view/Icons.re +++ b/src/haz3lweb/view/Icons.re @@ -7,32 +7,35 @@ let simple_icon = (~transform="", ~view: string, ds: list(string)) => and an optional (string) transform to apply to each */ Node.create_svg( "svg", - ~attr= - Attr.many( - Attr.[ - create("viewBox", view), - create("width", Printf.sprintf("%fpx", icon_size)), - create("height", Printf.sprintf("%fpx", icon_size)), - create("preserveAspectRatio", "none"), - ], - ), + ~attrs= + Attr.[ + create("viewBox", view), + create("width", Printf.sprintf("%fpx", icon_size)), + create("height", Printf.sprintf("%fpx", icon_size)), + create("preserveAspectRatio", "none"), + ], List.map( d => Node.create_svg( "path", - ~attr= - Attr.many( - [Attr.create("d", d)] - @ ( - transform == "" ? [] : [Attr.create("transform", transform)] - ), - ), + ~attrs= + [Attr.create("d", d)] + @ (transform == "" ? [] : [Attr.create("transform", transform)]), [], ), ds, ), ); +let disk = + simple_icon( + ~view="0 0 1200 1200", + [ + "m994.5 80.25-132.75 0.066406v331.88h-531v-331.88l-265.5-0.066406v1062h1062v-929.25zm-50.586 977.13h-685.96v-477.36h685.96z", + "m693.08 134.91h102.3v210.84h-102.3z", + ], + ); + let gear = simple_icon( ~view="0 0 1200 1200", @@ -122,7 +125,7 @@ let github = let back = simple_icon( - ~view="0 0 330 330", + ~view="-30 0 330 330", [ "M250.606,154.389l-150-149.996c-5.857-5.858-15.355-5.858-21.213,0.001 c-5.857,5.858-5.857,15.355,0.001,21.213l139.393,139.39L79.393,304.394c-5.857,5.858-5.857,15.355,0.001,21.213 C82.322,328.536,86.161,330,90,330s7.678-1.464,10.607-4.394l149.999-150.004c2.814-2.813,4.394-6.628,4.394-10.606 C255,161.018,253.42,157.202,250.606,154.389z", ], @@ -131,7 +134,7 @@ let back = let forward = simple_icon( - ~view="0 0 330 330", + ~view="-40 0 330 330", [ "M250.606,154.389l-150-149.996c-5.857-5.858-15.355-5.858-21.213,0.001 c-5.857,5.858-5.857,15.355,0.001,21.213l139.393,139.39L79.393,304.394c-5.857,5.858-5.857,15.355,0.001,21.213 C82.322,328.536,86.161,330,90,330s7.678-1.464,10.607-4.394l149.999-150.004c2.814-2.813,4.394-6.628,4.394-10.606 C255,161.018,253.42,157.202,250.606,154.389z", ], @@ -197,6 +200,13 @@ let x = "M3382.84 784.3 3462.43 862.829 3540.96 783.238 3601.23 842.704 3522.7 922.295 3602.29 1000.82 3542.82 1061.09 3463.23 982.566 3384.7 1062.16 3324.43 1002.69 3402.96 923.1 3323.37 844.57Z", ], ); +let thin_x = + simple_icon( + ~view="0 0 1200 1200", + [ + "m875.84 422.41c13.59-13.562 20.391-29.938 20.406-49.121-0.015626-19.188-6.8164-35.562-20.406-49.125-13.562-13.586-29.934-20.387-49.121-20.402-19.184 0.015625-35.559 6.8164-49.121 20.402l-177.59 177.59-177.59-177.59c-13.562-13.586-29.938-20.387-49.121-20.402-19.188 0.015625-35.562 6.8164-49.125 20.402-13.586 13.562-20.387 29.938-20.402 49.125 0.015625 19.184 6.8164 35.559 20.402 49.121l177.59 177.59-177.59 177.59c-13.586 13.562-20.387 29.938-20.402 49.121 0.015625 19.188 6.8164 35.559 20.402 49.121 13.562 13.59 29.938 20.391 49.125 20.406 19.184-0.015626 35.559-6.8164 49.121-20.406l177.59-177.59 177.59 177.59c13.562 13.59 29.938 20.391 49.121 20.406 19.188-0.015626 35.559-6.8164 49.121-20.406 13.59-13.562 20.391-29.934 20.406-49.121-0.015626-19.184-6.8164-35.559-20.406-49.121l-177.59-177.59z", + ], + ); let backpack = simple_icon( @@ -211,3 +221,13 @@ let backpack = "m438.25 148.18 41.09-6.3125v-34.773l7.9062-28.441s-37.945 17.387-48.996 34.766c-11.062 17.387-15.816 26.867-15.816 34.766 0 7.9062 15.816-0.003907 15.816-0.003907z", ], ); + +let command_palette_sparkle = + simple_icon( + ~view="400 400 400 400", + [ + "m505.08 561.96c-10.16 36.805-29.699 70.34-56.707 97.328-27.008 26.984-60.559 46.5-97.371 56.633 36.82 10.152 70.375 29.688 97.383 56.695 27.008 27.008 46.543 60.562 56.695 97.383 10.145-36.824 29.676-70.387 56.684-97.395 27.012-27.012 60.57-46.543 97.398-56.684-36.816-10.121-70.375-29.633-97.383-56.621-27.012-26.988-46.547-60.531-56.699-97.34z", + "m849 507.24c-46.578-13.02-82.977-49.418-96-96-13.09 46.758-49.766 83.203-96.602 96 46.812 12.844 83.469 49.273 96.602 96 13.043-46.566 49.434-82.957 96-96z", + "m554.76 426.6c6.5195-23.285 24.715-41.48 48-48-23.297-6.5-41.5-24.707-48-48-6.5 23.293-24.707 41.5-48 48 23.281 6.5195 41.477 24.715 48 48z", + ], + ); diff --git a/src/haz3lweb/view/Kind.re b/src/haz3lweb/view/Kind.re index 148336e1c2..8feb3af0b0 100644 --- a/src/haz3lweb/view/Kind.re +++ b/src/haz3lweb/view/Kind.re @@ -2,7 +2,7 @@ open Virtual_dom.Vdom; open Node; open Util.Web; -let view = (kind: Haz3lcore.TypBase.Kind.t): Node.t => +let view = (kind: Haz3lcore.Ctx.kind): Node.t => switch (kind) { | Singleton(ty) => div_c("kind-view", [Type.view(ty)]) | Abstract => div_c("kind-view", [text("Type")]) diff --git a/src/haz3lweb/view/NutMenu.re b/src/haz3lweb/view/NutMenu.re index 7b771c40fb..b67f406504 100644 --- a/src/haz3lweb/view/NutMenu.re +++ b/src/haz3lweb/view/NutMenu.re @@ -1,18 +1,104 @@ +open Util; open Virtual_dom.Vdom; open Js_of_ocaml; open Node; open Util.Web; open Widgets; +open Haz3lcore; + +let settings_group = (~inject, name: string, ts) => { + let toggle = ((_icon, tooltip, bool, setting)) => + toggle_named("", ~tooltip, bool, _ => inject(UpdateAction.Set(setting))); + div_c( + "group", + [ + div_c("name", [text(name)]), + div_c("contents", List.map(toggle, ts)), + ], + ); +}; + +let semantics_group = (~inject, ~settings: Settings.t) => { + settings_group( + ~inject, + "Semantics", + [ + ("τ", "Types", settings.core.statics, Statics), + ("⇲", "Completion", settings.core.assist, Assist), + ("𝛿", "Evaluation", settings.core.dynamics, Dynamics), + ("?", "Docs", settings.explainThis.show, ExplainThis(ToggleShow)), + // ( + // "👍", + // "Feedback", + // settings.explainThis.show_feedback, + // ExplainThis(ToggleShowFeedback), + // ), + ], + ); +}; + +let values_group = (~inject, ~settings: Settings.t) => { + let s = settings.core.evaluation; + settings_group( + ~inject, + "Value Display", + [ + ("λ", "Functions", s.show_fn_bodies, Evaluation(ShowFnBodies)), + ("|", "Cases", s.show_case_clauses, Evaluation(ShowCaseClauses)), + ("f", "Fixpoints", s.show_fixpoints, Evaluation(ShowFixpoints)), + (Unicode.castArrowSym, "Casts", s.show_casts, Evaluation(ShowCasts)), + ], + ); +}; + +let stepper_group = (~inject, ~settings: Settings.t) => { + let s = settings.core.evaluation; + settings_group( + ~inject, + "Stepper", + [ + ("🔍", "Show lookups", s.show_lookup_steps, Evaluation(ShowLookups)), + ( + "🤫", + "Show hidden", + s.show_hidden_steps, + Evaluation(ShowHiddenSteps), + ), + ("⏯️", "Filters", s.show_stepper_filters, Evaluation(ShowFilters)), + ], + ); +}; + +let dev_group = (~inject, ~settings: Settings.t) => { + settings_group( + ~inject, + "Developer", + [ + ("✓", "Benchmarks", settings.benchmark, Benchmark), + ("𝑒", "Elaboration", settings.core.elaborate, Elaborate), + ("↵", "Whitespace", settings.secondary_icons, SecondaryIcons), + ], + ); +}; + +let settings_menu = (~inject, ~settings: Settings.t) => { + [ + semantics_group(~inject, ~settings), + values_group(~inject, ~settings), + stepper_group(~inject, ~settings), + dev_group(~inject, ~settings), + ]; +}; let export_persistent_data = (~inject: Update.t => 'a) => button_named( - Icons.sprout, - _ => inject(ExportPersistentData), + Icons.export, + _ => inject(Export(ExportPersistentData)), ~tooltip="Export All Persistent Data", ); let reset_hazel = - button( + button_named( Icons.bomb, _ => { let confirmed = @@ -25,144 +111,100 @@ let reset_hazel = }; Virtual_dom.Vdom.Effect.Ignore; }, - ~tooltip="Clear Local Storage and Reload (LOSE ALL DATA)", + ~tooltip="Reset Hazel (LOSE ALL DATA)", ); let reparse = (~inject: Update.t => 'a) => - button( + button_named( Icons.backpack, - _ => inject(ReparseCurrentEditor), - ~tooltip="Reparse Current Editor", + _ => inject(PerformAction(Reparse)), + ~tooltip="Reparse Editor", ); -let settings_menu = - ( - ~inject, - ~settings as - { - core: {evaluation, _} as core, - benchmark, - secondary_icons, - explainThis, - _, - }: Settings.t, - ) => { - let toggle = (icon, tooltip, bool, setting) => - toggle_named(icon, ~tooltip, bool, _ => - inject(UpdateAction.Set(setting)) - ); - [ - toggle("τ", "Toggle Statics", core.statics, Statics), - toggle("⇲", "Toggle Completion", core.assist, Assist), - toggle("↵", "Show Whitespace", secondary_icons, SecondaryIcons), - toggle("✓", "Print Benchmarks", benchmark, Benchmark), - toggle("𝛿", "Toggle Dynamics", core.dynamics, Dynamics), - toggle("𝑒", "Show Elaboration", core.elaborate, Elaborate), - toggle( - "λ", - "Show Function Bodies", - evaluation.show_fn_bodies, - Evaluation(ShowFnBodies), - ), - toggle( - "|", - "Show Case Clauses", - evaluation.show_case_clauses, - Evaluation(ShowCaseClauses), - ), - toggle( - "f", - "Show fixpoints", - evaluation.show_fixpoints, - Evaluation(ShowFixpoints), - ), - toggle( - Unicode.castArrowSym, - "Show casts", - evaluation.show_casts, - Evaluation(ShowCasts), - ), - toggle( - "🔍", - "Show Lookup Steps", - evaluation.show_lookup_steps, - Evaluation(ShowLookups), - ), - toggle( - "⏯️", - "Show Stepper Filters", - evaluation.show_stepper_filters, - Evaluation(ShowFilters), - ), - toggle( - "🤫", - "Show Hidden Steps", - evaluation.show_hidden_steps, - Evaluation(ShowHiddenSteps), - ), - toggle( - "?", - "Show Docs Sidebar", - explainThis.show, - ExplainThis(ToggleShow), - ), - toggle( - "👍", - "Show Docs Feedback", - explainThis.show_feedback, - ExplainThis(ToggleShowFeedback), - ), - ]; +let item_group = (~inject as _, name: string, ts) => { + div_c("group", [div_c("name", [text(name)]), div_c("contents", ts)]); }; -let export_menu = (~inject, ~settings: Settings.t, editors: Editors.t) => - switch (editors) { - | Scratch(slide_idx, slides) => - let state = List.nth(slides, slide_idx); - [ScratchMode.export_button(state)]; - | Documentation(name, slides) => - let state = List.assoc(name, slides); - [ScratchMode.export_button(state)]; - | Exercises(_, _, exercise) when settings.instructor_mode => [ +let file_group_scratch = (~inject) => + item_group( + ~inject, + "File", + [ScratchMode.export_button(inject), ScratchMode.import_button(inject)], + ); + +let reset_group_scratch = (~inject) => + item_group( + ~inject, + "Reset", + [ScratchMode.reset_button(inject), reparse(~inject), reset_hazel], + ); + +let file_group_exercises = (~inject) => + item_group( + ~inject, + "File", + [ + ExerciseMode.export_submission(inject), + ExerciseMode.import_submission(~inject), + ], + ); + +let reset_group_exercises = (~inject) => + item_group( + ~inject, + "Reset", + [ExerciseMode.reset_button(inject), reparse(~inject), reset_hazel], + ); + +let dev_group_exercises = (~inject) => + item_group( + ~inject, + "Developer Export", + [ export_persistent_data(~inject), - ExerciseMode.export_submission(~settings), - ExerciseMode.instructor_export(exercise), - ExerciseMode.instructor_transitionary_export(exercise), - ExerciseMode.instructor_grading_export(exercise), - ] - | Exercises(_) => [ExerciseMode.export_submission(~settings)] - }; + ExerciseMode.instructor_export(inject), + ExerciseMode.instructor_transitionary_export(inject), + ExerciseMode.instructor_grading_export(inject), + ], + ); -let import_menu = (~inject, editors: Editors.t) => +let file_menu = (~inject, ~settings: Settings.t, editors: Editors.t) => switch (editors) { - | Scratch(_) + | Scratch(_) => [ + file_group_scratch(~inject), + reset_group_scratch(~inject), + ] | Documentation(_) => [ - ScratchMode.import_button(inject), - ScratchMode.reset_button(inject), + file_group_scratch(~inject), + reset_group_scratch(~inject), + ] + | Exercises(_) when settings.instructor_mode => [ + file_group_exercises(~inject), + reset_group_exercises(~inject), + dev_group_exercises(~inject), ] | Exercises(_) => [ - ExerciseMode.import_submission(~inject), - ExerciseMode.reset_button(inject), + file_group_exercises(~inject), + reset_group_exercises(~inject), ] }; let submenu = (~tooltip, ~icon, menu) => div( - ~attr=clss(["top-menu-item"]), + ~attrs=[clss(["top-menu-item"])], [ div( - ~attr=Attr.many([clss(["submenu-icon"]), Attr.title(tooltip)]), - [div(~attr=clss(["icon"]), [icon])], + ~attrs=[clss(["submenu-icon"]), Attr.title(tooltip)], + [div(~attrs=[clss(["icon"])], [icon])], ), - div(~attr=clss(["submenu"]), menu), + div(~attrs=[clss(["submenu"])], menu), ], ); let view = - (~inject: Update.t => 'a, ~settings: Settings.t, ~editors: Editors.t) => [ - a(~attr=clss(["nut-icon"]), [Icons.hazelnut]), + (~inject: Update.t => 'a, ~settings: Settings.t, ~editors: Editors.t) => div( - ~attr=clss(["nut-menu"]), + ~attrs=[clss(["nut-menu"])], [ submenu( ~tooltip="Settings", @@ -170,17 +212,21 @@ let view = settings_menu(~inject, ~settings), ), submenu( - ~tooltip="Export", - ~icon=Icons.export, - export_menu(~inject, ~settings, editors), + ~tooltip="File", + ~icon=Icons.disk, + file_menu(~inject, ~settings, editors), ), - submenu( - ~tooltip="Import", - ~icon=Icons.import, - import_menu(~inject, editors), + button( + Icons.command_palette_sparkle, + _ => { + NinjaKeys.open_command_palette(); + Effect.Ignore; + }, + ~tooltip= + "Command Palette (" + ++ Keyboard.meta(Os.is_mac^ ? Mac : PC) + ++ " + k)", ), - reparse(~inject), - reset_hazel, link( Icons.github, "https://github.com/hazelgrove/hazel", @@ -188,5 +234,4 @@ let view = ), link(Icons.info, "https://hazel.org", ~tooltip="Hazel Homepage"), ], - ), -]; + ); diff --git a/src/haz3lweb/view/Page.re b/src/haz3lweb/view/Page.re index fe4e1f43ba..df98ba5ee9 100644 --- a/src/haz3lweb/view/Page.re +++ b/src/haz3lweb/view/Page.re @@ -1,25 +1,36 @@ +open Util; +open Web; open Js_of_ocaml; open Haz3lcore; open Virtual_dom.Vdom; open Node; -let handlers = (~inject: UpdateAction.t => Ui_effect.t(unit), model) => { - let get_selection = (model: Model.t): string => - model.editors |> Editors.get_editor |> Printer.to_string_selection; - let key_handler = - (~inject, ~dir: Key.dir, evt: Js.t(Dom_html.keyboardEvent)) - : Effect.t(unit) => - Effect.( - switch (Keyboard.handle_key_event(Key.mk(dir, evt))) { - | None => Ignore - | Some(action) => - Many([Prevent_default, Stop_propagation, inject(action)]) - } - ); +let key_handler = + ( + ~inject: UpdateAction.t => Ui_effect.t(unit), + ~dir: Key.dir, + editor: Editor.t, + evt: Js.t(Dom_html.keyboardEvent), + ) + : Effect.t(unit) => { + open Effect; + let key = Key.mk(dir, evt); + switch (ProjectorView.key_handoff(editor, key)) { + | Some(action) => + Many([Prevent_default, inject(PerformAction(Project(action)))]) + | None => + switch (Keyboard.handle_key_event(key)) { + | None => Ignore + | Some(action) => Many([Prevent_default, inject(action)]) + } + }; +}; + +let handlers = + (~inject: UpdateAction.t => Ui_effect.t(unit), editor: Editor.t) => { [ - Attr.on_keypress(_ => Effect.Prevent_default), - Attr.on_keyup(key_handler(~inject, ~dir=KeyUp)), - Attr.on_keydown(key_handler(~inject, ~dir=KeyDown)), + Attr.on_keyup(key_handler(~inject, editor, ~dir=KeyUp)), + Attr.on_keydown(key_handler(~inject, editor, ~dir=KeyDown)), /* safety handler in case mousedown overlay doesn't catch it */ Attr.on_mouseup(_ => inject(SetMeta(Mouseup))), Attr.on_blur(_ => { @@ -31,104 +42,141 @@ let handlers = (~inject: UpdateAction.t => Ui_effect.t(unit), model) => { Effect.Ignore; }), Attr.on_copy(_ => { - JsUtil.copy(get_selection(model)); + JsUtil.copy(Printer.to_string_selection(editor)); Effect.Ignore; }), Attr.on_cut(_ => { - JsUtil.copy(get_selection(model)); + JsUtil.copy(Printer.to_string_selection(editor)); inject(UpdateAction.PerformAction(Destruct(Left))); }), Attr.on_paste(evt => { let pasted_text = Js.to_string(evt##.clipboardData##getData(Js.string("text"))) - |> Str.global_replace(Str.regexp("\n[ ]*"), "\n"); + |> Util.StringUtil.trim_leading; Dom.preventDefault(evt); - inject(UpdateAction.Paste(pasted_text)); + inject(PerformAction(Paste(pasted_text))); }), ]; }; +let top_bar = + ( + ~inject: UpdateAction.t => Ui_effect.t(unit), + ~settings: Settings.t, + ~editors, + ) => + div( + ~attrs=[Attr.id("top-bar")], + [ + div( + ~attrs=[Attr.class_("wrap")], + [a(~attrs=[clss(["nut-icon"])], [Icons.hazelnut])], + ), + NutMenu.view(~inject, ~settings, ~editors), + div( + ~attrs=[Attr.class_("wrap")], + [div(~attrs=[Attr.id("title")], [text("hazel")])], + ), + div( + ~attrs=[Attr.class_("wrap")], + [EditorModeView.view(~inject, ~settings, ~editors)], + ), + ], + ); + let main_view = ( ~inject: UpdateAction.t => Ui_effect.t(unit), - {settings, editors, explainThisModel, results, statics, ui_state, _}: Model.t, + {settings, editors, explainThisModel, results, ui_state, _}: Model.t, ) => { let editor = Editors.get_editor(editors); - let statics = Editors.lookup_statics(~settings, ~statics, editors); - let cursor_info = Indicated.ci_of(editor.state.zipper, statics.info_map); - let top_bar = - div( - ~attr=Attr.id("top-bar"), - NutMenu.view(~inject, ~settings, ~editors) - @ [div(~attr=Attr.id("title"), [text("hazel")])] - @ [EditorModeView.view(~inject, ~settings, ~editors)], - ); - let bottom_bar = CursorInspector.view(~inject, ~settings, cursor_info); - let sidebar = - settings.explainThis.show && settings.core.statics - ? ExplainThis.view( - ~inject, - ~ui_state, - ~settings, - ~explainThisModel, - cursor_info, - ) - : div([]); + let cursor_info = + Indicated.ci_of(editor.state.zipper, editor.state.meta.statics.info_map); let highlights = ExplainThis.get_color_map(~settings, ~explainThisModel, cursor_info); - let editors_view = + let (editors_view, cursor_info) = switch (editors) { | Scratch(idx, _) => let result_key = ScratchSlide.scratch_key(string_of_int(idx)); - ScratchMode.view( - ~inject, - ~ui_state, - ~settings, - ~highlights, - ~results, - ~result_key, - ~statics, - editor, - ); + let view = + ScratchMode.view( + ~inject, + ~ui_state, + ~settings, + ~highlights, + ~results, + ~result_key, + editor, + ); + (view, cursor_info); | Documentation(name, _) => let result_key = ScratchSlide.scratch_key(name); - let info = - SlideContent.get_content(editors) - |> Option.map(i => div(~attr=Attr.id("slide"), [i])) - |> Option.to_list; - info - @ ScratchMode.view( + let view = + ScratchMode.view( ~inject, ~ui_state, ~settings, ~highlights, ~results, ~result_key, - ~statics, editor, ); + let info = + SlideContent.get_content(editors) + |> Option.map(i => div(~attrs=[Attr.id("slide")], [i])) + |> Option.to_list; + (info @ view, cursor_info); | Exercises(_, _, exercise) => - ExerciseMode.view( - ~inject, - ~ui_state, - ~settings, - ~highlights, - ~results, - ~exercise, - ) + /* Note the exercises mode uses a seperate path to calculate + * statics and dynamics via stitching together multiple editors */ + let stitched_dynamics = + Exercise.stitch_dynamic( + settings.core, + exercise, + settings.core.dynamics ? Some(results) : None, + ); + let statics = + Exercise.statics_of_stiched_dynamics(exercise, stitched_dynamics); + let cursor_info = + Indicated.ci_of(editor.state.zipper, statics.info_map); + let highlights = + ExplainThis.get_color_map(~settings, ~explainThisModel, cursor_info); + let view = + ExerciseMode.view( + ~inject, + ~ui_state, + ~settings, + ~highlights, + ~stitched_dynamics, + ~exercise, + ); + (view, cursor_info); }; + + let bottom_bar = + CursorInspector.view(~inject, ~settings, editor, cursor_info); + let sidebar = + settings.explainThis.show && settings.core.statics + ? ExplainThis.view( + ~inject, + ~ui_state, + ~settings, + ~explainThisModel, + cursor_info, + ) + : div([]); [ - top_bar, + top_bar(~inject, ~settings, ~editors), div( - ~attr= - Attr.many([ - Attr.id("main"), - Attr.classes([Settings.show_mode(settings.mode)]), - ]), + ~attrs=[ + Attr.id("main"), + Attr.classes([Settings.show_mode(settings.mode)]), + ], editors_view, ), sidebar, bottom_bar, + ContextInspector.view(~inject, ~settings, cursor_info), ]; }; @@ -137,7 +185,10 @@ let get_selection = (model: Model.t): string => let view = (~inject: UpdateAction.t => Ui_effect.t(unit), model: Model.t) => div( - ~attr=Attr.many(Attr.[id("page"), ...handlers(~inject, model)]), + ~attrs=[ + Attr.id("page"), + ...handlers(~inject, Editors.get_editor(model.editors)), + ], [ FontSpecimen.view("font-specimen"), DecUtil.filters, diff --git a/src/haz3lweb/view/ProjectorView.re b/src/haz3lweb/view/ProjectorView.re new file mode 100644 index 0000000000..1669ff136d --- /dev/null +++ b/src/haz3lweb/view/ProjectorView.re @@ -0,0 +1,313 @@ +open Haz3lcore; +open Virtual_dom.Vdom; +open Node; +open ProjectorBase; +open Projector; +open Util; +open Util.OptUtil.Syntax; +open Util.Web; + +type kind = Base.kind; + +/* A friendly name for each projector. This is used + * both for identifying a projector in the CSS and for + * selecting projectors in the projector panel menu */ +let name = (p: kind): string => + switch (p) { + | Fold => "fold" + | Info => "type" + | Checkbox => "check" + | Slider => "slider" + | SliderF => "sliderf" + | TextArea => "text" + }; + +/* This must be updated and kept 1-to-1 with the above + * name function in order to be able to select the + * projector in the projector panel menu */ +let of_name = (p: string): kind => + switch (p) { + | "fold" => Fold + | "type" => Info + | "check" => Checkbox + | "slider" => Slider + | "sliderf" => SliderF + | "text" => TextArea + | _ => failwith("Unknown projector kind") + }; + +/* Projectors get a default backing decoration similar + * to token decorations. This can be made transparent + * in the CSS if no backing is wanted */ +let backing_deco = + ( + ~font_metrics: FontMetrics.t, + ~measurement: Measured.measurement, + ~shape: shape, + ) => + switch (shape) { + | Inline(_) + | Block(_) => + PieceDec.relative_shard({ + font_metrics, + measurement, + tips: (Some(Convex), Some(Convex)), + }) + }; + +/* Adds attributes to a projector UI to support + * custom styling when selected or indicated */ +let status = (indicated: option(Direction.t), selected: bool, shape: shape) => + (selected ? ["selected"] : []) + @ ( + switch (shape) { + | Inline(_) => ["inline"] + | Block(_) => ["block"] + } + ) + @ ( + switch (indicated) { + | Some(d) => ["indicated", Direction.show(d)] + | None => [] + } + ); + +/* Wraps the view function for a projector, absolutely positioning + * relative to the syntax, adding a default backing decoration, and + * adding fallthrough handlers where appropriate*/ +let view_wrapper = + ( + ~inject: UpdateAction.t => Ui_effect.t(unit), + ~font_metrics: FontMetrics.t, + ~measurement: Measured.measurement, + ~info: info, + ~indication: option(Direction.t), + ~selected: bool, + p: Base.projector, + view: Node.t, + ) => { + let shape = Projector.shape(p, info); + let focus = (id, _) => + Effect.( + Many([ + Stop_propagation, + inject(PerformAction(Project(Focus(id, None)))), + ]) + ); + div( + ~attrs=[ + Attr.classes( + ["projector", name(p.kind)] @ status(indication, selected, shape), + ), + Attr.on_mousedown(focus(info.id)), + DecUtil.abs_style(measurement, ~font_metrics), + ], + [view, backing_deco(~font_metrics, ~measurement, ~shape)], + ); +}; + +/* Dispatches projector external actions to editor-level actions */ +let handle = (id, action: external_action): Action.project => + switch (action) { + | Remove => Remove(id) + | Escape(d) => Escape(id, d) + | SetSyntax(f) => SetSyntax(id, f) + }; + +/* Extracts projector-instance-specific metadata necessary to + * render the view, instantiates appropriate action handlers, + * renders the view, and then wraps it so as to position it + * correctly with respect to the underyling editor */ +let setup_view = + ( + id: Id.t, + ~meta: Editor.Meta.t, + ~inject: UpdateAction.t => Ui_effect.t(unit), + ~font_metrics, + ~indication: option(Direction.t), + ) + : option(Node.t) => { + let* p = Id.Map.find_opt(id, meta.syntax.projectors); + let* syntax = Some(p.syntax); + let ci = Id.Map.find_opt(id, meta.statics.info_map); + let info = {id, ci, syntax}; + let+ measurement = Measured.find_pr_opt(p, meta.syntax.measured); + let (module P) = to_module(p.kind); + let parent = a => inject(PerformAction(Project(handle(id, a)))); + let local = a => + inject(PerformAction(Project(SetModel(id, P.update(p.model, a))))); + view_wrapper( + ~inject, + ~font_metrics, + ~measurement, + ~indication, + ~info, + ~selected=List.mem(id, meta.syntax.selection_ids), + p, + P.view(p.model, ~info, ~local, ~parent), + ); +}; + +let indication = (z, id) => + switch (Indicated.piece(z)) { + | Some((p, d, _)) when Piece.id(p) == id => Some(Direction.toggle(d)) + | _ => None + }; + +/* Returns a div containing all projector UIs, intended to + * be absolutely positioned atop a rendered editor UI */ +let all = (z, ~meta: Editor.Meta.t, ~inject, ~font_metrics) => + div_c( + "projectors", + List.filter_map( + ((id, _)) => { + let indication = indication(z, id); + setup_view(id, ~meta, ~inject, ~font_metrics, ~indication); + }, + Id.Map.bindings(meta.syntax.projectors) |> List.rev, + ), + ); + +/* When the caret is directly adjacent to a projector, keyboard commands + * can be overidden here. Right now, trying to move into the projector, + * that is, pressing left when it's to the right or vice-versa, without + * holding down a modifier, will give the projector focus (if its can_focus) + * flag is set. Be conservative about these kind of overloads; you need + * to consider how they interact with all the editor keyboard commands. + * For example, without the modifiers check, this would break selection + * around a projector. */ +let key_handoff = (editor: Editor.t, key: Key.t): option(Action.project) => + switch (Editor.indicated_projector(editor)) { + | None => None + | Some((id, p)) => + let* (_, d, _) = Indicated.piece(editor.state.zipper); + let (module P) = to_module(p.kind); + switch (key) { + | {key, sys: _, shift: Up, meta: Up, ctrl: Up, alt: Up} when P.can_focus => + switch (key, d) { + | (D("ArrowRight"), Right) => Some(Action.Focus(id, Some(Left))) + | (D("ArrowLeft"), Left) => Some(Focus(id, Some(Right))) + | _ => None + } + | _ => None + }; + }; + +/* The projector selection panel on the right of the bottom bar */ +module Panel = { + let option_view = (name, n) => + option( + ~attrs=n == name ? [Attr.create("selected", "selected")] : [], + [text(n)], + ); + + /* Decide which projectors are applicable based on the cursor info. + * This is slightly inside-out as elsewhere it depends on the underlying + * syntax, which is not easily available here */ + let applicable_projectors = (ci: Info.t): list(Base.kind) => + ( + switch (Info.cls_of(ci)) { + | Exp(Bool) + | Pat(Bool) => [Base.Checkbox] + | Exp(Int) + | Pat(Int) => [Slider] + | Exp(Float) + | Pat(Float) => [SliderF] + | Exp(String) + | Pat(String) => [TextArea] + | _ => [] + } + ) + @ [Base.Fold] + @ ( + switch (ci) { + | InfoExp(_) + | InfoPat(_) => [(Info: Base.kind)] + | _ => [] + } + ); + + let toggle_projector = (active, id, ci): Action.project => + active || applicable_projectors(ci) == [] + ? Remove(id) : SetIndicated(List.hd(applicable_projectors(ci))); + + let toggle_view = (~inject, ci, id, active: bool, might_project) => + div( + ~attrs=[ + clss( + ["toggle-switch"] + @ (active ? ["active"] : []) + @ (might_project ? [] : ["inactive"]), + ), + Attr.on_mousedown(_ => + might_project + ? inject(toggle_projector(active, id, ci)) : Effect.Ignore + ), + ], + [ + div( + ~attrs=[clss(["toggle-knob"])], + [ + Node.create( + "img", + ~attrs=[Attr.src("img/noun-fold-1593402.svg")], + [], + ), + ], + ), + ], + ); + + let kind = (editor: Editor.t) => { + let+ (_, p) = Editor.indicated_projector(editor); + p.kind; + }; + + let id = (editor: Editor.t) => { + switch (Editor.indicated_projector(editor)) { + | Some((id, _)) => id + | None => Id.invalid + }; + }; + + let currently_selected = editor => + option_view( + switch (kind(editor)) { + | None => "Fold" + | Some(k) => name(k) + }, + ); + + let view = (~inject, editor: Editor.t, ci: Info.t) => { + let might_project = + switch (Indicated.piece''(editor.state.zipper)) { + | Some((p, _, _)) => minimum_projection_condition(p) + | None => false + }; + let applicable_projectors = applicable_projectors(ci); + let should_show = might_project && applicable_projectors != []; + let select_view = + Node.select( + ~attrs=[ + Attr.on_change((_, name) => + inject(Action.SetIndicated(of_name(name))) + ), + ], + (might_project ? applicable_projectors : []) + |> List.map(name) + |> List.map(currently_selected(editor)), + ); + let toggle_view = + toggle_view( + ~inject, + ci, + id(editor), + kind(editor) != None, + might_project, + ); + div( + ~attrs=[Attr.id("projectors")], + (should_show ? [select_view] : []) @ [toggle_view], + ); + }; +}; diff --git a/src/haz3lweb/view/ScratchMode.re b/src/haz3lweb/view/ScratchMode.re index 2a967300d2..7fdc8eb361 100644 --- a/src/haz3lweb/view/ScratchMode.re +++ b/src/haz3lweb/view/ScratchMode.re @@ -1,3 +1,4 @@ +open Util; open Haz3lcore; type state = (Id.t, Editor.t); @@ -10,7 +11,6 @@ let view = ~highlights, ~results: ModelResults.t, ~result_key, - ~statics as {error_ids, _}: CachedStatics.statics, editor: Editor.t, ) => { let result = ModelResults.lookup(results, result_key); @@ -36,7 +36,6 @@ let view = ~ui_state, ~settings, ~target_id, - ~error_ids, ~test_results, ~footer?, ~highlights, @@ -45,20 +44,16 @@ let view = ]; }; -let export_button = state => +let export_button = (inject: Update.t => Ui_effect.t(unit)) => Widgets.button_named( - Icons.star, - _ => { - let json_data = ScratchSlide.export(state); - JsUtil.download_json("hazel-scratchpad", json_data); - Virtual_dom.Vdom.Effect.Ignore; - }, + Icons.export, + _ => inject(Export(ExportScratchSlide)), ~tooltip="Export Scratchpad", ); let import_button = inject => Widgets.file_select_button_named( "import-scratchpad", - Icons.star, + Icons.import, file => { switch (file) { | None => Virtual_dom.Vdom.Effect.Ignore @@ -82,5 +77,5 @@ let reset_button = inject => Virtual_dom.Vdom.Effect.Ignore; }; }, - ~tooltip="Reset Scratchpad", + ~tooltip="Reset Editor", ); diff --git a/src/haz3lweb/view/StepperView.re b/src/haz3lweb/view/StepperView.re index 2a31bf9f0d..b3d3884c4d 100644 --- a/src/haz3lweb/view/StepperView.re +++ b/src/haz3lweb/view/StepperView.re @@ -3,10 +3,10 @@ open Node; open Haz3lcore; let settings_modal = (~inject, settings: CoreSettings.Evaluation.t) => { - let modal = div(~attr=Attr.many([Attr.class_("settings-modal")])); + let modal = div(~attrs=[Attr.class_("settings-modal")]); let setting = (icon, name, current, action: UpdateAction.settings_action) => div( - ~attr=Attr.many([Attr.class_("settings-toggle")]), + ~attrs=[Attr.class_("settings-toggle")], [ Widgets.toggle(~tooltip=name, icon, current, _ => inject(Update.Set(action)) @@ -17,9 +17,9 @@ let settings_modal = (~inject, settings: CoreSettings.Evaluation.t) => { [ modal([ div( - ~attr=Attr.many([Attr.class_("settings-modal-top")]), + ~attrs=[Attr.class_("settings-modal-top")], [ - Widgets.button(Icons.x, _ => + Widgets.button(Icons.thin_x, _ => inject(Update.Set(Evaluation(ShowSettings))) ), ], @@ -74,13 +74,12 @@ let settings_modal = (~inject, settings: CoreSettings.Evaluation.t) => { ), ]), div( - ~attr= - Attr.many([ - Attr.class_("modal-back"), - Attr.on_mousedown(_ => - inject(Update.Set(Evaluation(ShowSettings))) - ), - ]), + ~attrs=[ + Attr.class_("modal-back"), + Attr.on_mousedown(_ => + inject(Update.Set(Evaluation(ShowSettings))) + ), + ], [], ), ]; @@ -92,24 +91,16 @@ let stepper_view = ~settings: CoreSettings.Evaluation.t, ~font_metrics, ~result_key, + ~read_only: bool, stepper: Stepper.t, ) => { - let button_back = - Widgets.button_d( - Icons.undo, - inject(UpdateAction.StepperAction(result_key, StepBackward)), - ~disabled=Stepper.undo_point(~settings, stepper.previous) == None, - ~tooltip="Step Backwards", - ); - let (hidden, previous) = - if (settings.stepper_history) { - Stepper.get_history(~settings, stepper); - } else { - ([], []); - }; - let dh_code_previous = (step_with_previous: Stepper.step_with_previous) => + let step_dh_code = + ( + ~next_steps, + {previous_step, hidden_steps, chosen_step, d}: Stepper.step_info, + ) => div( - ~attr=Attr.classes(["result"]), + ~attrs=[Attr.classes(["result"])], [ DHCode.view( ~inject, @@ -117,119 +108,114 @@ let stepper_view = ~selected_hole_instance=None, ~font_metrics, ~width=80, - ~previous_step=step_with_previous.previous, - ~chosen_step=Some(step_with_previous.step), - ~hidden_steps=step_with_previous.hidden, + ~previous_step, + ~chosen_step, + ~hidden_steps, ~result_key, - step_with_previous.step.d, + ~next_steps, + ~infomap=Id.Map.empty, + d, ), ], ); - let hide_stepper = - Widgets.toggle(~tooltip="Show Stepper", "s", true, _ => - inject(UpdateAction.ToggleStepper(result_key)) - ); - let show_history = - Widgets.toggle(~tooltip="Show History", "h", settings.stepper_history, _ => - inject(Set(Evaluation(ShowRecord))) - ); - let eval_settings = - Widgets.button(Icons.gear, _ => inject(Set(Evaluation(ShowSettings)))); - - let rec previous_step = - (~hidden=false, step: Stepper.step_with_previous): list(Node.t) => { - [ + let history = Stepper.get_history(~settings, stepper); + switch (history) { + | [] => [] + | [hd, ...tl] => + let button_back = + Widgets.button_d( + Icons.undo, + inject(UpdateAction.StepperAction(result_key, StepBackward)), + ~disabled=!Stepper.can_undo(~settings, stepper), + ~tooltip="Step Backwards", + ); + let button_hide_stepper = + Widgets.toggle(~tooltip="Show Stepper", "s", true, _ => + inject(UpdateAction.ToggleStepper(result_key)) + ); + let toggle_show_history = + Widgets.toggle(~tooltip="Show History", "h", settings.stepper_history, _ => + inject(Set(Evaluation(ShowRecord))) + ); + let eval_settings = + Widgets.button(Icons.gear, _ => + inject(Set(Evaluation(ShowSettings))) + ); + let current = div( - ~attr= - Attr.classes( - ["cell-item", "cell-result"] @ (hidden ? ["hidden"] : []), - ), - [ - div(~attr=Attr.class_("equiv"), [Node.text("≡")]), - dh_code_previous(step), - div( - ~attr=Attr.classes(["stepper-justification"]), - [ - Node.text( - Stepper.get_justification(step.step.knd) - ++ (hidden ? " (hidden)" : ""), - ), - ], - ), - ], - ), - ] - @ ( - ( + ~attrs=[Attr.classes(["cell-item", "cell-result"])], + read_only + ? [ + div(~attrs=[Attr.class_("equiv")], [Node.text("≡")]), + step_dh_code(~next_steps=[], hd), + ] + : [ + div(~attrs=[Attr.class_("equiv")], [Node.text("≡")]), + step_dh_code( + ~next_steps= + List.mapi( + (i, x: EvaluatorStep.EvalObj.t) => + (i, x.d_loc |> DHExp.rep_id), + Stepper.get_next_steps(stepper), + ), + hd, + ), + button_back, + eval_settings, + toggle_show_history, + button_hide_stepper, + ], + ); + let dh_code_previous = step_dh_code; + let rec previous_step = + (~hidden: bool, step: Stepper.step_info): list(Node.t) => { + let hidden_steps = settings.show_hidden_steps - ? List.map( - step => - {step, previous: None, hidden: []} - |> previous_step(~hidden=true), - step.hidden, - ) - : [] - ) - |> List.flatten - ); - }; - let dh_code_current = d => - div( - ~attr=Attr.classes(["result"]), + ? Stepper.hidden_steps_of_info(step) + |> List.rev_map(previous_step(~hidden=true)) + |> List.flatten + : []; [ - DHCode.view( - ~inject, - ~settings, - ~selected_hole_instance=None, - ~font_metrics, - ~width=80, - ~previous_step= - previous - |> List.nth_opt(_, 0) - |> Option.map((x: Stepper.step_with_previous) => x.step), - ~next_steps=Stepper.get_next_steps(stepper) |> List.map(snd), - ~hidden_steps=hidden, - ~result_key, - d, + div( + ~attrs=[ + Attr.classes( + ["cell-item", "cell-result"] @ (hidden ? ["hidden"] : []), + ), + ], + [ + div(~attrs=[Attr.class_("equiv")], [Node.text("≡")]), + dh_code_previous(~next_steps=[], step), + div( + ~attrs=[Attr.classes(["stepper-justification"])], + step.chosen_step + |> Option.map((chosen_step: EvaluatorStep.step) => + chosen_step.knd |> Stepper.get_justification |> Node.text + ) + |> Option.to_list, + ), + ], ), - ], - ); - - let current = + ] + @ hidden_steps; + }; ( ( - settings.show_hidden_steps - ? List.map( - step => - {step, previous: None, hidden: []} - |> previous_step(~hidden=true), - hidden, - ) + settings.stepper_history + ? List.map(previous_step(~hidden=false), tl) + |> List.flatten + |> List.rev_append( + _, + settings.show_hidden_steps + ? hd + |> Stepper.hidden_steps_of_info + |> List.map(previous_step(~hidden=true)) + |> List.flatten + : [], + ) : [] ) - |> List.flatten - |> List.rev + @ [current] ) - @ [ - switch (stepper.current) { - | StepperOK(d, _) => - div( - ~attr=Attr.classes(["cell-item", "cell-result"]), - [ - div(~attr=Attr.class_("equiv"), [Node.text("≡")]), - dh_code_current(d), - button_back, - eval_settings, - show_history, - hide_stepper, - ], - ) - // TODO[Matt]: show errors and waiting - | StepTimeout - | StepPending(_, _, _) => div([]) - }, - ]; - let nodes_previous = List.map(previous_step, previous) |> List.flatten; - List.fold_left((x, y) => List.cons(y, x), current, nodes_previous) - @ (settings.show_settings ? settings_modal(~inject, settings) : []); + @ (settings.show_settings ? settings_modal(~inject, settings) : []); + }; }; diff --git a/src/haz3lweb/view/TestView.re b/src/haz3lweb/view/TestView.re index 81cc608411..1b01158c56 100644 --- a/src/haz3lweb/view/TestView.re +++ b/src/haz3lweb/view/TestView.re @@ -8,10 +8,15 @@ module TestResults = Haz3lcore.TestResults; module Interface = Haz3lcore.Interface; let test_instance_view = - (~settings, ~inject, ~font_metrics, (d, status): TestMap.instance_report) => + ( + ~settings, + ~inject, + ~font_metrics, + ~infomap, + (d, status): TestMap.instance_report, + ) => div( - ~attr= - Attr.many([clss(["test-instance", TestStatus.to_string(status)])]), + ~attrs=[clss(["test-instance", TestStatus.to_string(status)])], [ DHCode.view( ~inject, @@ -20,6 +25,7 @@ let test_instance_view = ~font_metrics, ~width=40, ~result_key="", + ~infomap, d, ), ], @@ -37,27 +43,27 @@ let test_report_view = ~inject, ~font_metrics, ~description: option(string)=None, + ~infomap, i: int, (id, instance_reports): TestMap.report, ) => { let status = instance_reports |> TestMap.joint_status |> TestStatus.to_string; div( - ~attr= - Attr.many([ - Attr.class_("test-report"), - Attr.on_click(jump_to_test(~inject, YourTestsTesting, id)), - ]), + ~attrs=[ + Attr.class_("test-report"), + Attr.on_click(jump_to_test(~inject, YourTestsTesting, id)), + ], [ div( - ~attr=clss(["test-id", "Test" ++ status]), + ~attrs=[clss(["test-id", "Test" ++ status])], // note: prints lexical index, not id [text(string_of_int(i + 1))], ), div( - ~attr=Attr.class_("test-instances"), + ~attrs=[Attr.class_("test-instances")], List.map( - test_instance_view(~settings, ~inject, ~font_metrics), + test_instance_view(~infomap, ~settings, ~inject, ~font_metrics), instance_reports, ), ), @@ -65,16 +71,22 @@ let test_report_view = @ ( switch (description) { | None => [] - | Some(d) => [div(~attr=clss(["test-description"]), [text(d)])] + | Some(d) => [div(~attrs=[clss(["test-description"])], [text(d)])] } ), ); }; let test_reports_view = - (~settings, ~inject, ~font_metrics, ~test_results: option(TestResults.t)) => + ( + ~settings, + ~inject, + ~font_metrics, + ~infomap, + ~test_results: option(TestResults.t), + ) => div( - ~attr=clss(["panel-body", "test-reports"]), + ~attrs=[clss(["panel-body", "test-reports"])], switch (test_results) { | None => [Node.text("No test report available.")] | Some(test_results) => @@ -84,6 +96,7 @@ let test_reports_view = ~settings, ~inject, ~font_metrics, + ~infomap, ~description=List.nth_opt(test_results.descriptions, i), i, r, @@ -96,18 +109,17 @@ let test_reports_view = let test_bar_segment = (~inject, pos, (id, reports)) => { let status = reports |> TestMap.joint_status |> TestStatus.to_string; div( - ~attr= - Attr.many([ - clss(["segment", status]), - Attr.on_click(jump_to_test(~inject, pos, id)), - ]), + ~attrs=[ + clss(["segment", status]), + Attr.on_click(jump_to_test(~inject, pos, id)), + ], [], ); }; let test_bar = (~inject, ~test_results: TestResults.t, pos) => div( - ~attr=Attr.class_("test-bar"), + ~attrs=[Attr.class_("test-bar")], List.map(test_bar_segment(~inject, pos), test_results.test_map), ); @@ -117,7 +129,7 @@ let percent_view = (n: int, p: int): Node.t => { let percentage = n == 0 ? 100. : 100. *. float_of_int(p) /. float_of_int(n); div( - ~attr=clss(["test-percent", n == p ? "all-pass" : "some-fail"]), + ~attrs=[clss(["test-percent", n == p ? "all-pass" : "some-fail"])], [text(Printf.sprintf("%.0f%%", percentage))], ); }; @@ -127,7 +139,7 @@ let test_percentage = (test_results: TestResults.t): Node.t => let test_text = (test_results: TestResults.t): Node.t => div( - ~attr=Attr.class_("test-text"), + ~attrs=[Attr.class_("test-text")], [ test_percentage(test_results), div([text(":")]), @@ -137,7 +149,7 @@ let test_text = (test_results: TestResults.t): Node.t => let test_summary = (~inject, ~test_results: option(TestResults.t)) => { div( - ~attr=clss(["test-summary"]), + ~attrs=[clss(["test-summary"])], { switch (test_results) { | None => [Node.text("No test results available.")] @@ -152,7 +164,7 @@ let test_summary = (~inject, ~test_results: option(TestResults.t)) => { let view_of_main_title_bar = (title_text: string) => div( - ~attr=Attr.many([clss(["title-bar", "panel-title-bar"])]), + ~attrs=[clss(["title-bar", "panel-title-bar"])], [Node.text(title_text)], ); @@ -162,6 +174,7 @@ let inspector_view = ~inject, ~font_metrics, ~test_map: TestMap.t, + ~infomap, id: Haz3lcore.Id.t, ) : option(t) => { @@ -169,12 +182,12 @@ let inspector_view = | Some(instances) when TestMap.joint_status(instances) != Indet => Some( div( - ~attr=Attr.class_("test-inspector"), + ~attrs=[Attr.class_("test-inspector")], [ div( - ~attr=Attr.class_("test-instances"), + ~attrs=[Attr.class_("test-instances")], List.map( - test_instance_view(~settings, ~inject, ~font_metrics), + test_instance_view(~settings, ~inject, ~font_metrics, ~infomap), instances, ), ), diff --git a/src/haz3lweb/view/Type.re b/src/haz3lweb/view/Type.re index bcc190ced5..2b399a033f 100644 --- a/src/haz3lweb/view/Type.re +++ b/src/haz3lweb/view/Type.re @@ -3,31 +3,29 @@ open Node; open Util.Web; open Haz3lcore; +let tpat_view = (tpat: Haz3lcore.TPat.t): string => + switch (tpat.term) { + | Var(x) => x + | _ => "?" + }; + let ty_view = (cls: string, s: string): Node.t => - div(~attr=clss(["typ-view", cls]), [text(s)]); + div(~attrs=[clss(["typ-view", cls])], [text(s)]); let alias_view = (s: string): Node.t => - div(~attr=clss(["typ-alias-view"]), [text(s)]); - -let prov_view: Typ.type_provenance => Node.t = - fun - | Internal => div([]) - | Free(name) => - div(~attr=clss(["typ-mod", "free-type-var"]), [text(name)]) - | TypeHole => div(~attr=clss(["typ-mod", "type-hole"]), [text("𝜏")]) - | SynSwitch => div(~attr=clss(["typ-mod", "syn-switch"]), [text("⇒")]); + div(~attrs=[clss(["typ-alias-view"])], [text(s)]); let rec view_ty = (~strip_outer_parens=false, ty: Haz3lcore.Typ.t): Node.t => - switch (ty) { + switch (Typ.term_of(ty)) { | Unknown(prov) => div( - ~attr= - Attr.many([ - clss(["typ-view", "atom", "unknown"]), - Attr.title(Typ.show_type_provenance(prov)), - ]), + ~attrs=[ + clss(["typ-view", "atom", "unknown"]), + Attr.title(Typ.show_type_provenance(prov)), + ], [text("?") /*, prov_view(prov)*/], ) + | Parens(ty) => view_ty(ty) | Int => ty_view("Int", "Int") | Float => ty_view("Float", "Float") | String => ty_view("String", "String") @@ -35,30 +33,30 @@ let rec view_ty = (~strip_outer_parens=false, ty: Haz3lcore.Typ.t): Node.t => | Var(name) => ty_view("Var", name) | Rec(name, t) => div( - ~attr=clss(["typ-view", "Rec"]), - [text("rec " ++ name ++ " -> "), view_ty(t)], + ~attrs=[clss(["typ-view", "Rec"])], + [text("Rec " ++ tpat_view(name) ++ ". "), view_ty(t)], ) | Forall(name, t) => div( - ~attr=clss(["typ-view", "Forall"]), - [text("forall " ++ name ++ " -> "), view_ty(t)], + ~attrs=[clss(["typ-view", "Forall"])], + [text("forall " ++ tpat_view(name) ++ " -> "), view_ty(t)], ) | List(t) => div( - ~attr=clss(["typ-view", "atom", "List"]), + ~attrs=[clss(["typ-view", "atom", "List"])], [text("["), view_ty(t), text("]")], ) | Arrow(t1, t2) => div( - ~attr=clss(["typ-view", "Arrow"]), + ~attrs=[clss(["typ-view", "Arrow"])], paren_view(t1) @ [text(" -> "), view_ty(t2)], ) - | Prod([]) => div(~attr=clss(["typ-view", "Prod"]), [text("()")]) + | Prod([]) => div(~attrs=[clss(["typ-view", "Prod"])], [text("()")]) | Prod([_]) => - div(~attr=clss(["typ-view", "Prod"]), [text("Singleton Product")]) + div(~attrs=[clss(["typ-view", "Prod"])], [text("Singleton Product")]) | Prod([t0, ...ts]) => div( - ~attr=clss(["typ-view", "atom", "Prod"]), + ~attrs=[clss(["typ-view", "atom", "Prod"])], ( if (!strip_outer_parens) { [text("(")]; @@ -68,7 +66,7 @@ let rec view_ty = (~strip_outer_parens=false, ty: Haz3lcore.Typ.t): Node.t => ) @ [ div( - ~attr=clss(["typ-view", "Prod"]), + ~attrs=[clss(["typ-view", "Prod"])], paren_view(t0) @ ( List.map(t => [text(", "), ...paren_view(t)], ts) @@ -130,7 +128,7 @@ let rec view_ty = (~strip_outer_parens=false, ty: Haz3lcore.Typ.t): Node.t => ); | Sum(ts) => div( - ~attr=clss(["typ-view", "Sum"]), + ~attrs=[clss(["typ-view", "Sum"])], switch (ts) { | [] => [text("Nullary Sum")] | [t0] => [text("+")] @ ctr_view(t0) @@ -141,16 +139,25 @@ let rec view_ty = (~strip_outer_parens=false, ty: Haz3lcore.Typ.t): Node.t => }, ) | Member(name, _) => ty_view("Member", name) + | Ap(_) => + div( + ~attrs=[ + clss(["typ-view", "atom", "unknown"]), + Attr.title(Typ.show_type_provenance(Internal)), + ], + [text("?") /*, prov_view(prov)*/], + ) } -and ctr_view = ((ctr, typ)) => - switch (typ) { - | None => [text(ctr)] - | Some(typ) => [ +and ctr_view = + fun + | Variant(ctr, _, None) => [text(ctr)] + | Variant(ctr, _, Some(typ)) => [ text(ctr ++ "("), - view_ty(~strip_outer_parens=true, typ), + view_ty(typ), text(")"), ] - } + | BadEntry(typ) => [view_ty(typ)] + and paren_view = typ => if (Typ.needs_parens(typ)) { [text("("), view_ty(~strip_outer_parens=true, typ), text(")")]; @@ -159,4 +166,4 @@ and paren_view = typ => }; let view = (ty: Haz3lcore.Typ.t): Node.t => - div_c("typ-wrapper", [view_ty(ty)]); + div(~attrs=[clss(["type", "code"])], [view_ty(ty)]); diff --git a/src/haz3lweb/view/Widgets.re b/src/haz3lweb/view/Widgets.re index 72522f6e82..f9e590f235 100644 --- a/src/haz3lweb/view/Widgets.re +++ b/src/haz3lweb/view/Widgets.re @@ -4,41 +4,36 @@ open Util.Web; let button = (~tooltip="", icon, action) => div( - ~attr= - Attr.many([ - clss(["icon"]), - Attr.on_mousedown(action), - Attr.title(tooltip), - ]), + ~attrs=[ + clss(["icon"]), + Attr.on_mousedown(action), + Attr.title(tooltip), + ], [icon], ); let button_named = (~tooltip="", icon, action) => div( - ~attr=Attr.many([clss(["named-menu-item"]), Attr.on_click(action)]), + ~attrs=[clss(["named-menu-item"]), Attr.on_click(action)], [button(icon, _ => Effect.Ignore), div([text(tooltip)])], ); let button_d = (~tooltip="", icon, action, ~disabled: bool) => div( - ~attr= - Attr.many([ - clss(["icon"] @ (disabled ? ["disabled"] : [])), - Attr.title(tooltip), - Attr.on_mousedown(_ => unless(disabled, action)), - ]), + ~attrs=[ + clss(["icon"] @ (disabled ? ["disabled"] : [])), + Attr.title(tooltip), + Attr.on_mousedown(_ => unless(disabled, action)), + ], [icon], ); let link = (~tooltip="", icon, url) => div( - ~attr=clss(["icon"]), + ~attrs=[clss(["icon"])], [ a( - ~attr= - Attr.many( - Attr.[href(url), title(tooltip), create("target", "_blank")], - ), + ~attrs=Attr.[href(url), title(tooltip), create("target", "_blank")], [icon], ), ], @@ -46,29 +41,27 @@ let link = (~tooltip="", icon, url) => let toggle = (~tooltip="", label, active, action) => div( - ~attr= - Attr.many([ - clss(["toggle-switch"] @ (active ? ["active"] : [])), - Attr.on_click(action), - Attr.title(tooltip), - ]), - [div(~attr=clss(["toggle-knob"]), [text(label)])], + ~attrs=[ + clss(["toggle-switch"] @ (active ? ["active"] : [])), + Attr.on_click(action), + Attr.title(tooltip), + ], + [div(~attrs=[clss(["toggle-knob"])], [text(label)])], ); let toggle_named = (~tooltip="", icon, active, action) => div( - ~attr= - Attr.many([ - clss(["named-menu-item"] @ (active ? ["active"] : [])), - Attr.on_click(action), - ]), + ~attrs=[ + clss(["named-menu-item"] @ (active ? ["active"] : [])), + Attr.on_click(action), + ], [toggle(icon, active, _ => Effect.Ignore), div([text(tooltip)])], ); let file_select_button = (~tooltip="", id, icon, on_input) => { /* https://stackoverflow.com/questions/572768/styling-an-input-type-file-button */ label( - ~attr=Attr.for_(id), + ~attrs=[Attr.for_(id)], [ Vdom_input_widgets.File_select.single( ~extra_attrs=[Attr.class_("file-select-button"), Attr.id(id)], @@ -76,13 +69,13 @@ let file_select_button = (~tooltip="", id, icon, on_input) => { ~on_input, (), ), - div(~attr=Attr.many([clss(["icon"]), Attr.title(tooltip)]), [icon]), + div(~attrs=[clss(["icon"]), Attr.title(tooltip)], [icon]), ], ); }; let file_select_button_named = (~tooltip="", id, icon, on_input) => div( - ~attr=Attr.many([clss(["named-menu-item"])]), + ~attrs=[clss(["named-menu-item"])], [file_select_button(id, icon, on_input), div([text(tooltip)])], ); diff --git a/src/haz3lweb/view/assistant/UpdateAssistant.re b/src/haz3lweb/view/assistant/UpdateAssistant.re deleted file mode 100644 index 3370ab03f6..0000000000 --- a/src/haz3lweb/view/assistant/UpdateAssistant.re +++ /dev/null @@ -1,97 +0,0 @@ -open Haz3lcore; -include UpdateAction; - -/* NOTE: this is duplicated from Update */ -let perform_action = (model: Model.t, a: Action.t): Result.t(Model.t) => { - let ed_init = Editors.get_editor(model.editors); - switch (Haz3lcore.Perform.go(~settings=model.settings.core, a, ed_init)) { - | Error(err) => Error(FailedToPerform(err)) - | Ok(ed) => Ok({...model, editors: Editors.put_editor(ed, model.editors)}) - }; -}; - -let reset_buffer = (model: Model.t) => { - let ed = model.editors |> Editors.get_editor; - let z = ed.state.zipper; - switch (z.selection.mode) { - | Buffer(_) => - switch (Perform.go_z(~settings=model.settings.core, Destruct(Left), z)) { - | Error(_) => model - | Ok(z) => - let ed = Editor.new_state(Destruct(Left), z, ed); - //TODO(andrew): fix double action - {...model, editors: Editors.put_editor(ed, model.editors)}; - } - | _ => model - }; -}; - -let apply = - ( - {settings, _} as model: Model.t, - update: agent_action, - ~schedule_action, - ~state, - ~main, - ) - : Result.t(Model.t) => { - let editor = model.editors |> Editors.get_editor; - let z = editor.state.zipper; - switch (update) { - | Prompt(TyDi) => - let ctx_init = Editors.get_ctx_init(~settings, model.editors); - switch (TyDi.set_buffer(~settings=settings.core, ~ctx=ctx_init, z)) { - | None => Ok(model) - | Some(z) => - let ed = Editor.new_state(Pick_up, z, editor); - //TODO: add correct action to history (Pick_up is wrong) - let editors = Editors.put_editor(ed, model.editors); - Ok({...model, editors}); - }; - | AcceptSuggestion => - print_endline("accepting suggestion"); - let trim = AssistantExpander.trim; - switch (z.selection.mode) { - | Normal => Ok(model) - | Buffer(Parsed) => perform_action(model, Unselect(Some(Right))) - | Buffer(Unparsed) => - switch (TyDi.get_buffer(z)) { - | None => Ok(model) - /* This case shouldn't happen if we assume that we prevalidate - * everything we put in the unparsed buffer*/ - | Some(completion) when String.contains(completion, ' ') => - /* Slightly hacky. We assume that if a completion string has - * spaces in it, that means it will have a hole in it. This - * is a non-essential invariant currently maintained in TyDi. - * In such a case, we insert the completion as normal by - * pasting, then return to the beginning and advance to the - * first hole. This should be revisited if completions are - * refactored to use a more structured buffer format */ - module M = (val Editor.Meta.module_of_t(editor.state.meta)); - let start = Zipper.caret_point(M.measured, z); - let rec do_actions = (model, actions: list(UpdateAction.t)) => - switch (actions) { - | [] => Ok(model) - | [hd, ...tl] => - switch (main(model, hd, state, ~schedule_action)) { - | Error(err) => Error(err) - | Ok(model) => do_actions(model, tl) - } - }; - /* TODO(andrew): use zipper-level actions here to avoid - * measured recomputation at editor-level */ - do_actions( - model, - [ - Paste(trim(completion)), - PerformAction(Move(Goal(Point(start)))), - PerformAction(MoveToNextHole(Right)), - PerformAction(Move(Local(Left(ByToken)))), - ], - ); - | Some(completion) => - main(model, Paste(trim(completion)), state, ~schedule_action) - } - }; - }; -}; diff --git a/src/haz3lweb/view/dec/CaretDec.re b/src/haz3lweb/view/dec/CaretDec.re index 04fd7b8002..2e7e1f5a1d 100644 --- a/src/haz3lweb/view/dec/CaretDec.re +++ b/src/haz3lweb/view/dec/CaretDec.re @@ -1,56 +1,26 @@ open Util; -open SvgUtil; - -let caret_width_straight = 0.1; -let caret_width_bent = 0.1; -let caret_bend = DecUtil.tip_width; module Profile = { type t = { side: Direction.t, - origin: Haz3lcore.Measured.Point.t, + origin: Point.t, shape: option(Direction.t), }; }; -let caret_path = (shape: option(Direction.t)) => { - let caret_bend_param = - switch (shape) { - | Some(Right) => -. caret_bend - | Some(Left) => caret_bend - | None => 0.0 - }; - let caret_width_param = - switch (shape) { - | Some(Right) => -. caret_width_bent - | Some(Left) => caret_width_bent - | None => caret_width_straight - }; - Path.[ - m(~x=0, ~y=0), - H({x: caret_width_param}), - L_({dx: -. caret_bend_param, dy: 0.5}), - L_({dx: +. caret_bend_param, dy: 0.5}), - H({x: -. caret_width_param}), - L_({dx: -. caret_bend_param, dy: (-0.5)}), - L_({dx: +. caret_bend_param, dy: (-0.5)}), - ]; -}; - let view = ( ~font_metrics: FontMetrics.t, ~profile as {shape, side, origin}: Profile.t, ) => { - let l_adj = DecUtil.caret_adjust(side, shape); DecUtil.code_svg( ~font_metrics, ~origin, ~id="caret", ~base_cls=["blink"], ~path_cls=["caret-path"], - ~height_fudge=DecUtil.shadow_adj *. font_metrics.row_height, - ~left_fudge=l_adj *. font_metrics.col_width, - caret_path(shape), + /* Make caret as tall as shard + shard's shadow */ + ~height_fudge=DecUtil.shadow_dy *. font_metrics.row_height, + DecUtil.caret_base_path(side, shape), ); }; diff --git a/src/haz3lweb/view/dec/CaretPosDec.re b/src/haz3lweb/view/dec/CaretPosDec.re index 60f0a6420c..d270f27f4c 100644 --- a/src/haz3lweb/view/dec/CaretPosDec.re +++ b/src/haz3lweb/view/dec/CaretPosDec.re @@ -1,11 +1,10 @@ open Virtual_dom.Vdom; module Profile = { - type style = [ | `Bare | `Sibling | `Anchor | `Caret]; + type style = [ | `Sibling]; type t = { style, measurement: Haz3lcore.Measured.measurement, - sort: Haz3lcore.Sort.t, }; }; @@ -13,46 +12,32 @@ let caret_position_radii = (~font_metrics: FontMetrics.t, ~style: Profile.style) => { let r = switch (style) { - | `Caret => 3.75 - | `Anchor | `Sibling => 2.75 - | `Bare => 2.0 }; (r /. font_metrics.col_width, r /. font_metrics.row_height); }; -let view = (~font_metrics, {style, sort, measurement}: Profile.t) => { +let view = (~font_metrics, {style, measurement}: Profile.t) => { let (r_x, r_y) = caret_position_radii(~font_metrics, ~style); - let c_cls = Haz3lcore.Sort.to_string(sort); - let cls = - switch (style) { - | `Bare => "outer-cousin" - | `Caret => "current-caret-pos" - | `Anchor => "anchor" - | `Sibling => "sibling" - }; Node.create_svg( "svg", - ~attr= - Attr.many([ - Attr.class_(cls), - DecUtil.abs_position(~font_metrics, measurement.origin), - Attr.create("viewBox", Printf.sprintf("0 0 1 1")), - Attr.create("preserveAspectRatio", "none"), - ]), + ~attrs=[ + Attr.class_("backpack-target"), + DecUtil.abs_position(~font_metrics, measurement.origin), + Attr.create("viewBox", Printf.sprintf("0 0 1 1")), + Attr.create("preserveAspectRatio", "none"), + ], [ Node.create_svg( "rect", - ~attr= - Attr.many( - Attr.[ - create("x", Printf.sprintf("%fpx", -. r_x)), - create("y", Printf.sprintf("%fpx", 0.1 -. r_y)), - create("width", Printf.sprintf("%fpx", 1. *. r_x)), - create("height", Printf.sprintf("%fpx", 1. *. r_y)), - Attr.classes(["caret-position-path", cls, c_cls]), - ], - ), + ~attrs= + Attr.[ + create("x", Printf.sprintf("%fpx", -. r_x)), + create("y", Printf.sprintf("%fpx", 0.1 -. r_y)), + create("width", Printf.sprintf("%fpx", 1. *. r_x)), + create("height", Printf.sprintf("%fpx", 1. *. r_y)), + Attr.classes(["caret-position-path"]), + ], [], ), ], diff --git a/src/haz3lweb/view/dec/DecUtil.re b/src/haz3lweb/view/dec/DecUtil.re index c34c727aef..d4d3492946 100644 --- a/src/haz3lweb/view/dec/DecUtil.re +++ b/src/haz3lweb/view/dec/DecUtil.re @@ -2,38 +2,87 @@ open Virtual_dom.Vdom; open Node; open Util; -let tip_width = 0.32; -let concave_adj = 0.25; -let convex_adj = (-0.13); -let shadow_adj = 0.015; - -let caret_adjust = (side: Direction.t, shape: option(Direction.t)) => - switch (side, shape) { - | (_, None) => 0. - | (Left, Some(Left)) => concave_adj - | (Right, Some(Right)) => -. concave_adj - | (Left, Some(Right)) => convex_adj - | (Right, Some(Left)) => -. convex_adj - }; +let caret_width = 0.2; -let child_border_thickness = 0.05; +let tip_width = 0.32; +let concave_offset = 0.8 *. 0.32; /* Tuned parameter */ +let convex_offset = 0.6 *. 0.32; /* Tuned parameter */ +let shadow_dy = 0.037; +let shadow_dx = 0.08; +let child_border_thickness = 0.; //0.05; +let shadow_adj = shadow_dy /. 2.; let t = child_border_thickness /. 0.5; +let short_tip_width = (1. -. t) *. tip_width; let short_tip_height = (1. -. t) *. 0.5; -let stretch_dx = 0.15; +let shape_adjust = (d1: Direction.t, d2: Direction.t): float => + switch (d1, d2) { + | (Left, Left) => -. convex_offset + | (Right, Right) => convex_offset + | (Left, Right) => concave_offset + | (Right, Left) => -. concave_offset + }; + +let shape_adjust = (side: Direction.t, shape: option(Direction.t)) => + switch (shape) { + | None => 0. + | Some(d2) => shape_adjust(side, d2) + }; + +let caret_run = (shape: option(Direction.t)) => + switch (shape) { + | None => 0. + | Some(Left) => +. tip_width + | Some(Right) => -. tip_width + }; -let raised_shadow_dx = "0.1"; -let raised_shadow_dy = "0.037"; -let shadow_dx = raised_shadow_dx; -let shadow_dy = raised_shadow_dy; +let chevronf = (run: float, rise: float): list(SvgUtil.Path.cmd) => + SvgUtil.Path.[L_({dx: -. run, dy: rise}), L_({dx: +. run, dy: rise})]; + +let chevron = (direction: option(Direction.t), drawing_from: Direction.t) => + chevronf(caret_run(direction), drawing_from == Left ? (-0.5) : 0.5); + +let chonky_shard_path_base = + ((l, r), x_offset, length: float, height: float): list(SvgUtil.Path.cmd) => { + List.flatten( + SvgUtil.Path.[ + [M({x: -. x_offset, y: 0.}), H_({dx: length}), V({y: height})], + chevron(r, Right), + [H_({dx: -. length}), v(~y=1)], + chevron(l, Left), + ], + ); +}; + +let caret_base_path = (side, shape): list(SvgUtil.Path.cmd) => + chonky_shard_path_base( + (shape, shape), + shape_adjust(side, shape) +. 0.5 *. caret_width, + caret_width, + float_of_int(0), + ); + +let shard_length = (length, d_l, d_r) => + float_of_int(length) + +. shape_adjust(Left, d_l) + -. shape_adjust(Right, d_r); + +let shard_offset = d_l => shape_adjust(Left, d_l); + +let shard_path = + ((d_l, d_r), length: int, height: int): list(SvgUtil.Path.cmd) => + chonky_shard_path_base( + (d_l, d_r), + shard_offset(d_l), + shard_length(length, d_l, d_r), + float_of_int(height), + ); let extra_tail = 0.; let jagged_edge_h = child_border_thickness /. 3.; let jagged_edge_w = child_border_thickness /. 1.; -let short_tip_width = (1. -. t) *. tip_width; - type dims = { width: int, height: int, @@ -59,30 +108,39 @@ let pos_str = (~d: dims, ~fudge: fdims=fzero, font_metrics: FontMetrics.t) => Float.of_int(d.height) *. (font_metrics.row_height +. fudge.height), ); +let abs_dims = ({origin, last}: Haz3lcore.Measured.measurement): dims => { + left: origin.col, + top: origin.row, + width: abs(last.col - origin.col), + height: abs(last.row - origin.row + 1), +}; + +let abs_style = (~font_metrics, ~fudge: fdims=fzero, measurement): Attr.t => + Attr.create( + "style", + pos_str(~d=abs_dims(measurement), ~fudge, font_metrics), + ); + let code_svg_sized = ( ~font_metrics: FontMetrics.t, - ~measurement as {origin, last}: Haz3lcore.Measured.measurement, + ~absolute=true, + ~measurement: Haz3lcore.Measured.measurement, ~base_cls=[], ~path_cls=[], ~fudge: fdims=fzero, paths: list(SvgUtil.Path.cmd), ) => { - let (left, top) = (origin.col, origin.row); - let (width, height) = ( - abs(last.col - origin.col), - abs(last.row - origin.row + 1), - ); - let style = pos_str(~d={left, top, width, height}, ~fudge, font_metrics); + let d = abs_dims(measurement); + let d = absolute ? d : {left: 0, top: 0, width: d.width, height: d.height}; create_svg( "svg", - ~attr= - Attr.many([ - Attr.classes(base_cls), - Attr.create("style", style), - Attr.create("viewBox", Printf.sprintf("0 0 %d %d", width, height)), - Attr.create("preserveAspectRatio", "none"), - ]), + ~attrs=[ + Attr.classes(base_cls), + Attr.create("style", pos_str(~d, ~fudge, font_metrics)), + Attr.create("viewBox", Printf.sprintf("0 0 %d %d", d.width, d.height)), + Attr.create("preserveAspectRatio", "none"), + ], [SvgUtil.Path.view(~attrs=[Attr.classes(path_cls)], paths)], ); }; @@ -96,7 +154,7 @@ let position = ~height_fudge=0.0, ~scale=1., ~font_metrics: FontMetrics.t, - origin: Haz3lcore.Measured.Point.t, + origin: Point.t, ) => Attr.create( "style", @@ -119,7 +177,7 @@ let abs_position = ~height_fudge=0.0, ~scale=1., ~font_metrics: FontMetrics.t, - origin: Haz3lcore.Measured.Point.t, + origin: Point.t, ) => { position( ~style="position: absolute", @@ -136,7 +194,7 @@ let abs_position = let code_svg = ( ~font_metrics: FontMetrics.t, - ~origin: Haz3lcore.Measured.Point.t, + ~origin: Point.t, ~base_cls=[], ~path_cls=[], ~left_fudge=0.0, @@ -152,87 +210,64 @@ let code_svg = // (https://bugs.chromium.org/p/chromium/issues/detail?id=424288) that // causes miaslignment between piece decorations and text. // Using a different viewBox size seems to fix this. - let scale = 2.; + let scale = 0.5; create_svg( "svg", - ~attr= - Attr.many( - (id == "" ? [] : [Attr.id(id)]) - @ [ - Attr.classes(base_cls), - abs_pos - ? abs_position( - ~font_metrics, - ~left_fudge, - ~top_fudge, - ~width_fudge, - ~height_fudge, - ~scale, - origin, - ) - : position( - ~font_metrics, - ~left_fudge, - ~top_fudge, - ~width_fudge, - ~height_fudge, - ~scale, - origin, - ), - Attr.create("viewBox", Printf.sprintf("0 0 %f %f", scale, scale)), - Attr.create("preserveAspectRatio", "none"), - ] - @ attrs, - ), + ~attrs= + (id == "" ? [] : [Attr.id(id)]) + @ [ + Attr.classes(base_cls), + abs_pos + ? abs_position( + ~font_metrics, + ~left_fudge, + ~top_fudge, + ~width_fudge, + ~height_fudge, + ~scale, + origin, + ) + : position( + ~font_metrics, + ~left_fudge, + ~top_fudge, + ~width_fudge, + ~height_fudge, + ~scale, + origin, + ), + Attr.create("viewBox", Printf.sprintf("0 0 %f %f", scale, scale)), + Attr.create("preserveAspectRatio", "none"), + ] + @ attrs, [SvgUtil.Path.view(~attrs=[Attr.classes(path_cls)], paths)], ); }; -let raised_shadow_filter = (sort: Haz3lcore.Sort.t) => { +let drop_shadow_filter = (sort: Haz3lcore.Sort.t) => { let s = Haz3lcore.Sort.to_string(sort); create_svg( "filter", - ~attr=Attr.id("raised-drop-shadow-" ++ s), + ~attrs=[Attr.id("drop-shadow-" ++ s)], [ create_svg( "feDropShadow", - ~attr= - Attr.many([ - Attr.classes(["tile-drop-shadow"]), - Attr.create("dx", raised_shadow_dx), - Attr.create("dy", raised_shadow_dy), - Attr.create("stdDeviation", "0"), - ]), + ~attrs=[ + Attr.classes(["tile-drop-shadow"]), + Attr.create("dx", Printf.sprintf("%.3f", shadow_dx)), + Attr.create("dy", Printf.sprintf("%.3f", shadow_dy)), + Attr.create("stdDeviation", "0"), + ], [], ), ], ); }; -let shadow_filter = (sort: Haz3lcore.Sort.t) => { - let s = Haz3lcore.Sort.to_string(sort); - create_svg( - "filter", - ~attr=Attr.id("drop-shadow-" ++ s), - [ - create_svg( - "feDropShadow", - ~attr= - Attr.many([ - Attr.classes(["tile-drop-shadow"]), - Attr.create("dx", shadow_dx), - Attr.create("dy", shadow_dy), - Attr.create("stdDeviation", "0"), - ]), - [], - ), - ], - ); -}; +let svg = (attrs, children) => Node.create_svg("svg", ~attrs, children); let filters = - NodeUtil.svg( + svg( Attr.[id("filters")], - List.map(raised_shadow_filter, Haz3lcore.Sort.all) - @ List.map(shadow_filter, Haz3lcore.Sort.all), + List.map(drop_shadow_filter, Haz3lcore.Sort.all), ); diff --git a/src/haz3lweb/view/dec/Diag.re b/src/haz3lweb/view/dec/Diag.re index 6c52ab23de..a145c9d0e9 100644 --- a/src/haz3lweb/view/dec/Diag.re +++ b/src/haz3lweb/view/dec/Diag.re @@ -1,6 +1,6 @@ open DecUtil; open SvgUtil.Path; -open Sexplib.Std; +open Util; //TODO(?): deprecate this module @@ -18,24 +18,22 @@ let tr_bl = (), ) => SvgUtil.Path.( - { - let (diag, junction) = - with_child_border - ? ( - L_({dx: Float.neg(short_tip_width), dy: short_tip_height}), - H_({dx: Float.neg(0.5 -. short_tip_width)}), - ) - : ( - L_({dx: Float.neg(tip_width), dy: 0.5 +. stretch_y}), - H_({dx: Float.neg(stretch_x)}), - ); - let path = - switch (hemi) { - | `North => [junction, diag] - | `South => [diag, junction] - }; - scale(s, path); - } + let (diag, junction) = + with_child_border + ? ( + L_({dx: Float.neg(short_tip_width), dy: short_tip_height}), + H_({dx: Float.neg(0.5 -. short_tip_width)}), + ) + : ( + L_({dx: Float.neg(tip_width), dy: 0.5 +. stretch_y}), + H_({dx: Float.neg(stretch_x)}), + ); + let path = + switch (hemi) { + | `North => [junction, diag] + | `South => [diag, junction] + }; + scale(s, path) ); // bottom left to top right let bl_tr = @@ -60,18 +58,16 @@ let tl_br = (), ) => SvgUtil.Path.( - { - let (diag, junction) = - with_child_border - ? ( - L_({dx: short_tip_width, dy: short_tip_height}), - H_({dx: 0.5 -. short_tip_width}), - ) - : (L_({dx: tip_width, dy: 0.5 +. stretch_y}), H_({dx: stretch_x})); - switch (hemi) { - | `North => [junction, diag] - | `South => [diag, junction] - }; + let (diag, junction) = + with_child_border + ? ( + L_({dx: short_tip_width, dy: short_tip_height}), + H_({dx: 0.5 -. short_tip_width}), + ) + : (L_({dx: tip_width, dy: 0.5 +. stretch_y}), H_({dx: stretch_x})); + switch (hemi) { + | `North => [junction, diag] + | `South => [diag, junction] } ); // bottom right to top left diff --git a/src/haz3lweb/view/dec/PieceDec.re b/src/haz3lweb/view/dec/PieceDec.re index 92d0ac54fc..4dc9465520 100644 --- a/src/haz3lweb/view/dec/PieceDec.re +++ b/src/haz3lweb/view/dec/PieceDec.re @@ -4,109 +4,99 @@ open Virtual_dom.Vdom; open Node; open SvgUtil; -let run: Nib.Shape.t => float = - fun - | Convex => +. DecUtil.short_tip_width - | Concave(_) => -. DecUtil.short_tip_width; +type tip = option(Nib.Shape.t); -let adj: Nib.Shape.t => float = - fun - | Convex => DecUtil.convex_adj - | Concave(_) => DecUtil.concave_adj; - -let l_hook = (l: Nib.Shape.t): list(Path.cmd) => [ - H_({dx: -. adj(l)}), - L_({dx: -. run(l), dy: (-0.5)}), - L_({dx: +. run(l), dy: (-0.5)}), - H_({dx: +. adj(l)}), -]; - -let r_hook = (r: Nib.Shape.t): list(Path.cmd) => [ - H_({dx: +. adj(r)}), - L_({dx: +. run(r), dy: 0.5}), - L_({dx: -. run(r), dy: 0.5}), - H_({dx: -. adj(r)}), -]; - -let simple_shard_path = ((l, r): Nibs.shapes, length: int): list(Path.cmd) => - List.flatten( - Path.[ - [m(~x=0, ~y=0), h(~x=length)], - r_hook(r), - [h(~x=0)], - l_hook(l), - ], - ); +type shard_dims = { + font_metrics: FontMetrics.t, + measurement: Measured.measurement, + tips: (option(Nib.Shape.t), option(Nib.Shape.t)), +}; let simple_shard = ( - ~font_metrics, - ~shapes, - ~path_cls, - ~base_cls, - ~fudge=DecUtil.fzero, - measurement: Measured.measurement, + {font_metrics, tips: (l, r), measurement}: shard_dims, + ~absolute=true, + classes, ) : t => DecUtil.code_svg_sized( ~font_metrics, ~measurement, - ~base_cls, - ~path_cls, - ~fudge, - simple_shard_path(shapes, measurement.last.col - measurement.origin.col), + ~base_cls=["shard"] @ classes, + ~path_cls=[], + ~absolute, + DecUtil.shard_path( + ( + Option.map(Nib.Shape.direction_of(Left), l), + Option.map(Nib.Shape.direction_of(Right), r), + ), + measurement.last.col - measurement.origin.col, + measurement.last.row - measurement.origin.row, + ), ); -let simple_shard_selected = - (~font_metrics, ~shapes, ~measurement: Measured.measurement, ~buffer): t => { - let path_cls = [ - "tile-path", - "raised", - buffer ? "selected-buffer" : "selected", - ]; - let base_cls = ["tile-selected"]; +let relative_shard = (shard_dims: shard_dims) => + simple_shard(~absolute=false, shard_dims, []); + +let tips_of_shapes = ((l, r): (Nib.Shape.t, Nib.Shape.t)): (tip, tip) => ( + Some(l), + Some(r), +); + +let simple_shard_indicated = (shard_dims, ~sort: Sort.t, ~at_caret: bool): t => simple_shard( - /* Increase height slightly to avoid leaving spaces between selected lines */ - ~fudge={height: 0.3, top: 0., width: 0., left: 0.}, - ~font_metrics, - ~shapes, - ~path_cls, - ~base_cls, - measurement, + shard_dims, + ["indicated", Sort.to_string(sort)] @ (at_caret ? ["caret"] : []), ); -}; - -let simple_shard_indicated = - ( - ~font_metrics, - ~has_caret, - ~shapes, - ~sort, - ~measurement: Measured.measurement, - ) - : t => { - let path_cls = - ["tile-path", "raised", Sort.to_string(sort)] - @ (has_caret ? ["indicated-caret"] : ["indicated"]); - let base_cls = ["tile-indicated"]; - simple_shard(~font_metrics, ~shapes, ~path_cls, ~base_cls, measurement); -}; let simple_shards_indicated = - (~font_metrics: FontMetrics.t, ~caret: (Id.t, int), (id, mold, shards)) + (~font_metrics: FontMetrics.t, (id, mold, shards), ~caret: (Id.t, int)) : list(t) => List.map( ((index, measurement)) => simple_shard_indicated( - ~font_metrics, - ~has_caret=caret == (id, index), - ~shapes=Mold.nib_shapes(~index, mold), + { + font_metrics, + measurement, + tips: tips_of_shapes(Mold.nib_shapes(~index, mold)), + }, ~sort=mold.out, - ~measurement, + ~at_caret=caret == (id, index), + ), + shards, + ); + +let simple_shard_selected = (shard_dims, buffer): t => + simple_shard(shard_dims, ["selected"] @ (buffer ? ["buffer"] : [])); + +let simple_shards_selected = + (~font_metrics: FontMetrics.t, mold, buffer, shards) => + List.map( + ((index, measurement)) => + simple_shard_selected( + { + font_metrics, + measurement, + tips: tips_of_shapes(Mold.nib_shapes(~index, mold)), + }, + buffer, ), shards, ); +let simple_shard_error = simple_shard(_, ["error"]); + +let simple_shards_errors = (~font_metrics: FontMetrics.t, mold, shards) => + List.map( + ((index, measurement)) => + simple_shard_error({ + font_metrics, + measurement, + tips: tips_of_shapes(Mold.nib_shapes(~index, mold)), + }), + shards, + ); + let shadowfudge = Path.cmdfudge(~y=DecUtil.shadow_adj); let shards_of_tiles = tiles => @@ -117,6 +107,17 @@ let shards_of_tiles = tiles => Measured.Point.compare(m1.origin, m2.origin) ); +let rep_tips = (tiles: list((Id.t, Mold.t, Measured.Shards.t))) => { + assert(tiles != []); + let (_, rep_mold, _) = List.hd(tiles); + let (l, r) = rep_mold.nibs; + let (l, r) = tips_of_shapes((l.shape, r.shape)); + ( + Option.map(Nib.Shape.direction_of(Left), l), + Option.map(Nib.Shape.direction_of(Right), r), + ); +}; + let bi_lines = ( ~font_metrics: FontMetrics.t, @@ -124,37 +125,48 @@ let bi_lines = tiles: list((Id.t, Mold.t, Measured.Shards.t)), ) : list(t) => { + let (dl, dr) = rep_tips(tiles); let shards = shards_of_tiles(tiles); let shard_rows = Measured.Shards.split_by_row(shards); let intra_lines = shard_rows |> List.map(ListUtil.neighbors) |> List.concat_map( - List.map( - (((_, l: Measured.measurement), (_, r: Measured.measurement))) => + List.mapi( + ( + i, + ((_, l: Measured.measurement), (_, r: Measured.measurement)), + ) => { + let offset = i == 0 ? -. DecUtil.shard_offset(dl) : 0.; + let length = + i == 0 + ? DecUtil.shard_length(r.origin.col - l.origin.col, dl, dr) + +. 0.2 + : float_of_int(r.origin.col - l.origin.col) +. 0.2; ( l.origin, SvgUtil.Path.[ - shadowfudge(m(~x=0, ~y=1)), - h(~x=r.last.col - l.origin.col), + shadowfudge(M({x: offset, y: 1.0})), + H({x: length}), ], - ) - ), + ); + }), ); let inter_lines = ListUtil.neighbors(shard_rows) - |> List.map( - ((row_shards: Measured.Shards.t, row_shards': Measured.Shards.t)) => { + |> List.mapi( + (i, (row_shards: Measured.Shards.t, row_shards': Measured.Shards.t)) => { assert(row_shards != []); assert(row_shards' != []); let origin = snd(List.hd(row_shards)).origin; let origin' = snd(List.hd(row_shards')).origin; let indent = Measured.Rows.find(origin.row, rows).indent; let v_delta = origin'.col == indent ? (-1) : 0; + let offset = i == 0 ? -. DecUtil.shard_offset(dl) : 0.; ( origin, SvgUtil.Path.[ - shadowfudge(m(~x=0, ~y=1)), + shadowfudge(M({x: offset, y: 1.0})), h_(~dx=indent - origin.col), shadowfudge(v_(~dy=origin'.row - origin.row + v_delta)), h_(~dx=origin'.col - indent), @@ -184,6 +196,10 @@ let uni_lines = ) => { open SvgUtil.Path; let shards = shards_of_tiles(tiles); + let (dl, _) = rep_tips(tiles); + let offset = -. DecUtil.shard_offset(dl); + let hook_dx = DecUtil.short_tip_width /. 2.; + let hook_dy = DecUtil.short_tip_height /. 4.; let l_line = { let (_, m_first) = List.hd(shards); let (_, m_last_of_first) = { @@ -206,16 +222,9 @@ let uni_lines = ? ( m_first.origin, [ - shadowfudge(m(~x=0, ~y=1)), + shadowfudge(M({x: 0., y: 1.0})), h(~x=l.col - m_first.origin.col), - L_({ - dx: -. DecUtil.short_tip_width, - dy: -. DecUtil.short_tip_height /. 2. //hack - }), - //L_({ - // dx: DecUtil.short_tip_width, - // dy: -. DecUtil.short_tip_height, - //}), + L_({dx: -. hook_dx, dy: -. hook_dy}), ], ) : ( @@ -229,7 +238,7 @@ let uni_lines = shadowfudge(v(~y=l.row - m_last_of_first.origin.row)), ] : [ - shadowfudge(m(~x=0, ~y=1)), + shadowfudge(M({x: offset, y: 1.0})), h(~x=indent - m_first.origin.col), shadowfudge(v(~y=l.row + 1 - m_first.origin.row)), h(~x=max_col - m_first.origin.col), @@ -238,11 +247,7 @@ let uni_lines = ) @ [ h(~x=l.col - m_first.origin.col), - L_({ - dx: -. DecUtil.short_tip_width, - dy: DecUtil.short_tip_height /. 2. //hack - }), - //L_({dx: DecUtil.short_tip_width, dy: DecUtil.short_tip_height}), + L_({dx: -. hook_dx, dy: hook_dy}), ], ), ]; @@ -252,13 +257,7 @@ let uni_lines = }; let r_line = { let (_, m_last) = ListUtil.last(shards); - let hook = [ - L_({ - dx: DecUtil.short_tip_width, - dy: -. DecUtil.short_tip_height /. 2. //hack - }), - //L_({dx: -. DecUtil.short_tip_width, dy: -. DecUtil.short_tip_height}), - ]; + let hook = [L_({dx: hook_dx, dy: -. hook_dy})]; if (r.row == m_last.last.row && r.col > m_last.last.col) { [ ( @@ -282,7 +281,6 @@ let uni_lines = rows, ) |> min(m_last.last.col); - // let r_indent = Measured.Rows.find(r.row, rows).indent; let (_, m_flast) = { let shard_rows = Measured.Shards.split_by_row(shards); assert(shard_rows != []); @@ -290,13 +288,15 @@ let uni_lines = assert(row != []); List.hd(row); }; - // let flast_indent = Measured.Rows.find(m_flast.origin.row, rows).indent; [ ( m_flast.origin, [ shadowfudge( - m(~x=0, ~y=m_flast.last.row - m_flast.origin.row + 1), + M({ + x: offset, + y: float_of_int(m_flast.last.row - m_flast.origin.row + 1), + }), ), h(~x=min_col - m_flast.origin.col), shadowfudge(v(~y=r.row - m_flast.origin.row + 1)), diff --git a/src/haz3lweb/view/dhcode/DHCode.re b/src/haz3lweb/view/dhcode/DHCode.re index 8b777976e4..b28f9e18bf 100644 --- a/src/haz3lweb/view/dhcode/DHCode.re +++ b/src/haz3lweb/view/dhcode/DHCode.re @@ -4,7 +4,7 @@ open Util; open Pretty; open Haz3lcore; -let with_cls = cls => Node.span(~attr=Attr.classes([cls])); +let with_cls = cls => Node.span(~attrs=[Attr.classes([cls])]); let view_of_layout = (~inject, ~font_metrics: FontMetrics.t, ~result_key, l: DHLayout.t) @@ -17,7 +17,7 @@ let view_of_layout = ~text=(_, s) => ([Node.text(s)], []), ~align= (_, (txt, ds)) => - ([Node.div(~attr=Attr.classes(["Align"]), txt)], ds), + ([Node.div(~attrs=[Attr.classes(["Align"])], txt)], ds), ~cat=(_, (txt1, ds1), (txt2, ds2)) => (txt1 @ txt2, ds1 @ ds2), ~annot= (~go, ~indent, ~start, annot: DHAnnot.t, m) => { @@ -26,36 +26,28 @@ let view_of_layout = | Steppable(obj) => ( [ Node.span( - ~attr= - Attr.many([ - Attr.class_("steppable"), - Attr.on_click(_ => - inject( - UpdateAction.StepperAction( - result_key, - StepForward(obj), - ), - ) - ), - ]), + ~attrs=[ + Attr.class_("steppable"), + Attr.on_click(_ => + inject( + UpdateAction.StepperAction( + result_key, + StepForward(obj), + ), + ) + ), + ], txt, ), ], ds, ) | Stepped => ( - [ - Node.span(~attr=Attr.many([Attr.class_("stepped")]), txt), - ], + [Node.span(~attrs=[Attr.class_("stepped")], txt)], ds, ) | Substituted => ( - [ - Node.span( - ~attr=Attr.many([Attr.class_("substituted")]), - txt, - ), - ], + [Node.span(~attrs=[Attr.class_("substituted")], txt)], ds, ) | Step(_) @@ -66,19 +58,18 @@ let view_of_layout = | EmptyHole(selected, _inst) => ( [ Node.span( - ~attr= - Attr.many([ - Attr.classes([ - "EmptyHole", - ...selected ? ["selected"] : [], - ]), - Attr.on_click(_ => - Vdom.Effect.Many([ - Vdom.Effect.Stop_propagation, - //inject(ModelAction.SelectHoleInstance(inst)), - ]) - ), + ~attrs=[ + Attr.classes([ + "EmptyHole", + ...selected ? ["selected"] : [], ]), + Attr.on_click(_ => + Vdom.Effect.Many([ + Vdom.Effect.Stop_propagation, + //inject(ModelAction.SelectHoleInstance(inst)), + ]) + ), + ], txt, ), ], @@ -105,12 +96,9 @@ let view_of_layout = ds, ) | VarHole(_) => ([with_cls("InVarHole", txt)], ds) - | Invalid((_, (-666))) => - /* Evaluation and Elaboration exceptions */ - ([with_cls("exception", txt)], ds) - | NonEmptyHole(_) + | NonEmptyHole | InconsistentBranches(_) - | Invalid(_) => + | Invalid => let offset = start.col - indent; let decoration = Decoration_common.container( @@ -127,7 +115,7 @@ let view_of_layout = }, ); Node.div( - ~attr=Attr.classes(["DHCode"]), + ~attrs=[Attr.classes(["DHCode"])], [with_cls("code", text), ...decorations], ); }; @@ -137,15 +125,16 @@ let view = ~locked as _=false, // NOTE: When we add mouse events to this, ignore them if locked ~inject, ~settings: CoreSettings.Evaluation.t, - ~selected_hole_instance: option(HoleInstance.t), + ~selected_hole_instance: option(Id.t), ~font_metrics: FontMetrics.t, ~width: int, ~pos=0, - ~previous_step: option(EvaluatorStep.step)=None, // The step that will be displayed above this one - ~hidden_steps: list(EvaluatorStep.step)=[], // The hidden steps between the above and the current one + ~previous_step: option((EvaluatorStep.step, Id.t))=None, // The step that will be displayed above this one + ~hidden_steps: list((EvaluatorStep.step, Id.t))=[], // The hidden steps between the above and the current one ~chosen_step: option(EvaluatorStep.step)=None, // The step that will be taken next - ~next_steps: list(EvaluatorStep.EvalObj.t)=[], + ~next_steps: list((int, Id.t))=[], ~result_key: string, + ~infomap, d: DHExp.t, ) : Node.t => { @@ -158,6 +147,7 @@ let view = ~settings, ~enforce_inline=false, ~selected_hole_instance, + ~infomap, d, ) |> LayoutOfDoc.layout_of_doc(~width, ~pos) diff --git a/src/haz3lweb/view/dhcode/Decoration_common.re b/src/haz3lweb/view/dhcode/Decoration_common.re index b56135d99d..2be3d88be8 100644 --- a/src/haz3lweb/view/dhcode/Decoration_common.re +++ b/src/haz3lweb/view/dhcode/Decoration_common.re @@ -39,59 +39,53 @@ let container = switch (container_type) { | Div => Node.div( - ~attr= - Attr.many([ - Attr.classes([ - "decoration-container", - Printf.sprintf("%s-container", cls), - ]), - Attr.create( - "style", - Printf.sprintf( - "width: %fpx; height: %fpx;", - buffered_width_px, - buffered_height_px, - ), - ), + ~attrs=[ + Attr.classes([ + "decoration-container", + Printf.sprintf("%s-container", cls), ]), + Attr.create( + "style", + Printf.sprintf( + "width: %fpx; height: %fpx;", + buffered_width_px, + buffered_height_px, + ), + ), + ], contents, ) | Svg => Node.create_svg( "svg", - ~attr= - Attr.many([ - Attr.classes([cls]), - Attr.create( - "viewBox", - Printf.sprintf("0 0 %d %d", buffered_width, buffered_height), - ), - Attr.create("width", Printf.sprintf("%fpx", buffered_width_px)), - Attr.create( - "height", - Printf.sprintf("%fpx", buffered_height_px), - ), - Attr.create("preserveAspectRatio", "none"), - ]), + ~attrs=[ + Attr.classes([cls]), + Attr.create( + "viewBox", + Printf.sprintf("0 0 %d %d", buffered_width, buffered_height), + ), + Attr.create("width", Printf.sprintf("%fpx", buffered_width_px)), + Attr.create("height", Printf.sprintf("%fpx", buffered_height_px)), + Attr.create("preserveAspectRatio", "none"), + ], contents, ) }; Node.div( - ~attr= - Attr.many([ - Attr.classes([ - "decoration-container", - Printf.sprintf("%s-container", cls), - ]), - Attr.create( - "style", - Printf.sprintf( - "top: calc(%fpx); left: %fpx;", - container_origin_x, - container_origin_y, - ), - ), + ~attrs=[ + Attr.classes([ + "decoration-container", + Printf.sprintf("%s-container", cls), ]), + Attr.create( + "style", + Printf.sprintf( + "top: calc(%fpx); left: %fpx;", + container_origin_x, + container_origin_y, + ), + ), + ], [inner], ); }; diff --git a/src/haz3lweb/view/dhcode/layout/DHAnnot.re b/src/haz3lweb/view/dhcode/layout/DHAnnot.re index d754529f87..2b351315d3 100644 --- a/src/haz3lweb/view/dhcode/layout/DHAnnot.re +++ b/src/haz3lweb/view/dhcode/layout/DHAnnot.re @@ -1,4 +1,4 @@ -open Sexplib.Std; +open Util; open Haz3lcore; [@deriving sexp] @@ -8,11 +8,11 @@ type t = | Term | HoleLabel | Delim - | EmptyHole(bool, HoleInstance.t) - | NonEmptyHole(ErrStatus.HoleReason.t, HoleInstance.t) - | VarHole(VarErrStatus.HoleReason.t, HoleInstance.t) - | InconsistentBranches(HoleInstance.t) - | Invalid(HoleInstance.t) + | EmptyHole(bool, ClosureEnvironment.t) + | NonEmptyHole + | VarHole(VarErrStatus.HoleReason.t, Id.t) + | InconsistentBranches(Id.t) + | Invalid | FailedCastDelim | FailedCastDecoration | CastDecoration diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_Exp.re b/src/haz3lweb/view/dhcode/layout/DHDoc_Exp.re index cc119ebdf0..d0ddb64685 100644 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_Exp.re +++ b/src/haz3lweb/view/dhcode/layout/DHDoc_Exp.re @@ -3,13 +3,13 @@ open EvaluatorStep; open Transition; module Doc = Pretty.Doc; -let precedence_bin_bool_op = (op: TermBase.UExp.op_bin_bool) => +let precedence_bin_bool_op = (op: Operators.op_bin_bool) => switch (op) { | And => DHDoc_common.precedence_And | Or => DHDoc_common.precedence_Or }; -let precedence_bin_int_op = (bio: TermBase.UExp.op_bin_int) => +let precedence_bin_int_op = (bio: Operators.op_bin_int) => switch (bio) { | Times => DHDoc_common.precedence_Times | Power => DHDoc_common.precedence_Power @@ -23,7 +23,7 @@ let precedence_bin_int_op = (bio: TermBase.UExp.op_bin_int) => | GreaterThan => DHDoc_common.precedence_GreaterThan | GreaterThanOrEqual => DHDoc_common.precedence_GreaterThan }; -let precedence_bin_float_op = (bfo: TermBase.UExp.op_bin_float) => +let precedence_bin_float_op = (bfo: Operators.op_bin_float) => switch (bfo) { | Times => DHDoc_common.precedence_Times | Power => DHDoc_common.precedence_Power @@ -37,124 +37,135 @@ let precedence_bin_float_op = (bfo: TermBase.UExp.op_bin_float) => | GreaterThan => DHDoc_common.precedence_GreaterThan | GreaterThanOrEqual => DHDoc_common.precedence_GreaterThan }; -let precedence_bin_string_op = (bso: TermBase.UExp.op_bin_string) => +let precedence_bin_string_op = (bso: Operators.op_bin_string) => switch (bso) { | Concat => DHDoc_common.precedence_Plus | Equals => DHDoc_common.precedence_Equals }; -let rec precedence = (~show_casts: bool, d: DHExp.t) => { - let precedence' = precedence(~show_casts); - switch (d) { - | BoundVar(_) - | FreeVar(_) - | InvalidText(_) - | BoolLit(_) - | IntLit(_) - | Sequence(_) +let rec precedence = (~show_function_bodies, ~show_casts: bool, d: DHExp.t) => { + let precedence' = precedence(~show_function_bodies, ~show_casts); + switch (DHExp.term_of(d)) { + | Var(_) + | Invalid(_) + | Bool(_) + | Int(_) + | Seq(_) | Test(_) - | FloatLit(_) - | StringLit(_) + | Float(_) + | String(_) | ListLit(_) - | Prj(_) - | EmptyHole(_) + | EmptyHole | Constructor(_) | FailedCast(_) - | InvalidOperation(_) - | IfThenElse(_) | ModuleVal(_) + | DynamicErrorHole(_) + | If(_) + | Closure(_) | BuiltinFun(_) - | Filter(_) - | Closure(_) => DHDoc_common.precedence_const + | Deferral(_) + | Undefined + | Filter(_) => DHDoc_common.precedence_const | Cast(d1, _, _) => - show_casts ? DHDoc_common.precedence_const : precedence'(d1) + show_casts ? DHDoc_common.precedence_Ap : precedence'(d1) + | DeferredAp(_) | Ap(_) | TypAp(_) => DHDoc_common.precedence_Ap - | ApBuiltin(_) => DHDoc_common.precedence_Ap | Dot(_) => DHDoc_common.precedence_Ap | Cons(_) => DHDoc_common.precedence_Cons | ListConcat(_) => DHDoc_common.precedence_Plus | Tuple(_) => DHDoc_common.precedence_Comma | TypFun(_) + | Fun(_) when !show_function_bodies => DHDoc_common.precedence_const + | TypFun(_) | Fun(_) => DHDoc_common.precedence_max | Let(_) | Module(_) + | TyAlias(_) | FixF(_) - | ConsistentCase(_) - | InconsistentBranches(_) => DHDoc_common.precedence_max - - | BinBoolOp(op, _, _) => precedence_bin_bool_op(op) - | BinIntOp(op, _, _) => precedence_bin_int_op(op) - | BinFloatOp(op, _, _) => precedence_bin_float_op(op) - | BinStringOp(op, _, _) => precedence_bin_string_op(op) - - | NonEmptyHole(_, _, _, d) => precedence'(d) + | Match(_) => DHDoc_common.precedence_max + | UnOp(Meta(Unquote), _) => DHDoc_common.precedence_Ap + | UnOp(Bool(Not), _) => DHDoc_common.precedence_Not + | UnOp(Int(Minus), _) => DHDoc_common.precedence_Minus + | BinOp(Bool(op), _, _) => precedence_bin_bool_op(op) + | BinOp(Int(op), _, _) => precedence_bin_int_op(op) + | BinOp(Float(op), _, _) => precedence_bin_float_op(op) + | BinOp(String(op), _, _) => precedence_bin_string_op(op) + | MultiHole(_) => DHDoc_common.precedence_max + | Parens(d) => precedence'(d) }; }; -let mk_bin_bool_op = (op: TermBase.UExp.op_bin_bool): DHDoc.t => - Doc.text(TermBase.UExp.bool_op_to_string(op)); +let mk_bin_bool_op = (op: Operators.op_bin_bool): DHDoc.t => + Doc.text(Operators.bool_op_to_string(op)); -let mk_bin_int_op = (op: TermBase.UExp.op_bin_int): DHDoc.t => - Doc.text(TermBase.UExp.int_op_to_string(op)); +let mk_bin_int_op = (op: Operators.op_bin_int): DHDoc.t => + Doc.text(Operators.int_op_to_string(op)); -let mk_bin_float_op = (op: TermBase.UExp.op_bin_float): DHDoc.t => - Doc.text(TermBase.UExp.float_op_to_string(op)); +let mk_bin_float_op = (op: Operators.op_bin_float): DHDoc.t => + Doc.text(Operators.float_op_to_string(op)); -let mk_bin_string_op = (op: TermBase.UExp.op_bin_string): DHDoc.t => - Doc.text(TermBase.UExp.string_op_to_string(op)); +let mk_bin_string_op = (op: Operators.op_bin_string): DHDoc.t => + Doc.text(Operators.string_op_to_string(op)); let mk = ( ~settings: CoreSettings.Evaluation.t, ~enforce_inline: bool, - ~selected_hole_instance: option(HoleInstance.t), + ~selected_hole_instance: option(Id.t), // The next four are used when drawing the stepper to track where we can annotate changes - ~previous_step: option(step), // The step that will be displayed above this one - ~hidden_steps: list(step), // The hidden steps between the above and the current one + ~previous_step: option((step, Id.t)), // The step that will be displayed above this one (an Id in included because it may have changed since the step was taken) + ~hidden_steps: list((step, Id.t)), // The hidden steps between the above and the current one (an Id in included because it may have changed since the step was taken) ~chosen_step: option(step), // The step that will be taken next - ~next_steps: list(EvalObj.t), // The options for the next step, if it hasn't been chosen yet + ~next_steps: list((int, Id.t)), // The options for the next step, if it hasn't been chosen yet ~env: ClosureEnvironment.t, + ~infomap: Statics.Map.t, d: DHExp.t, ) : DHDoc.t => { - let precedence = precedence(~show_casts=settings.show_casts); + let precedence = + precedence( + ~show_casts=settings.show_casts, + ~show_function_bodies=settings.show_fn_bodies, + ); let rec go = ( d: DHExp.t, env: ClosureEnvironment.t, enforce_inline: bool, - previous_step: option(step), - hidden_steps: list(step), - chosen_step: option(step), - next_steps: list((EvalCtx.t, int)), recent_subst: list(Var.t), ) : DHDoc.t => { open Doc; let recent_subst = switch (previous_step) { - | Some(ps) when ps.ctx == Mark => - switch (ps.knd, ps.d_loc) { - | (FunAp, Ap(Fun(p, _, _, _), _)) => DHPat.bound_vars(p) + | Some((ps, id)) when id == DHExp.rep_id(d) => + switch (ps.knd, DHExp.term_of(ps.d_loc)) { + | (FunAp, Ap(_, d2, _)) => + switch (DHExp.term_of(d2)) { + | Fun(p, _, _, _) => DHPat.bound_vars(p) + | _ => [] + } | (FunAp, _) => [] | (LetBind, Let(p, _, _)) => DHPat.bound_vars(p) | (LetBind, _) => [] | (ModuleBind, Module(p, _, _)) => DHPat.bound_vars(p) | (ModuleBind, _) => [] - | (FixUnwrap, FixF(f, _, _)) => [f] + | (FixUnwrap, FixF(p, _, _)) => DHPat.bound_vars(p) | (FixUnwrap, _) => [] | (TypFunAp, _) // TODO: Could also do something here for type variable substitution like in FunAp? | (InvalidStep, _) | (VarLookup, _) | (ModuleLookup, _) | (DotAccess, _) - | (Sequence, _) + | (Seq, _) | (FunClosure, _) | (FixClosure, _) + | (DeferredAp, _) | (UpdateTest, _) | (CastTypAp, _) | (CastAp, _) | (BuiltinWrap, _) + | (UnOp(_), _) | (BuiltinAp(_), _) | (BinBoolOp(_), _) | (BinIntOp(_), _) @@ -164,57 +175,23 @@ let mk = | (ListCons, _) | (ListConcat, _) | (CaseApply, _) - | (CaseNext, _) | (CompleteClosure, _) | (CompleteFilter, _) | (Cast, _) | (Conditional(_), _) - | (Skip, _) => [] + | (RemoveParens, _) + | (RemoveTypeAlias, _) => [] // Maybe this last one could count as a substitution? } | _ => recent_subst }; - let substitution = - hidden_steps - |> List.find_opt(step => - step.knd == VarLookup - // HACK[Matt]: to prevent substitutions hiding inside casts - && EvalCtx.fuzzy_mark(step.ctx) - ); - let next_recent_subst = - switch (substitution) { - | Some({d_loc: BoundVar(v), _}) => - List.filter(u => u != v, recent_subst) - | _ => recent_subst - }; let go' = ( ~env=env, ~enforce_inline=enforce_inline, - ~recent_subst=next_recent_subst, + ~recent_subst=recent_subst, d, - ctx, ) => { - go( - d, - env, - enforce_inline, - Option.join( - Option.map(EvaluatorStep.unwrap(_, ctx), previous_step), - ), - hidden_steps - |> List.filter(s => !EvalCtx.fuzzy_mark(s.ctx)) - |> List.filter_map(EvaluatorStep.unwrap(_, ctx)), - Option.join(Option.map(EvaluatorStep.unwrap(_, ctx), chosen_step)), - List.filter_map( - ((x, y)) => - switch (EvalCtx.unwrap(x, ctx)) { - | None => None - | Some(x') => Some((x', y)) - }, - next_steps, - ), - recent_subst, - ); + go(d, env, enforce_inline, recent_subst); }; let parenthesize = (b, doc) => if (b) { @@ -226,29 +203,21 @@ let mk = } else { doc(~enforce_inline); }; - let go_case_rule = - (consistent: bool, rule_idx: int, Rule(dp, dclause): DHExp.rule) - : DHDoc.t => { - let kind: EvalCtx.cls = - if (consistent) { - ConsistentCaseRule(rule_idx); - } else { - InconsistentBranchesRule(rule_idx); - }; + let go_case_rule = ((dp, dclause)): DHDoc.t => { let hidden_clause = annot(DHAnnot.Collapsed, text(Unicode.ellipsis)); let clause_doc = settings.show_case_clauses ? choices([ - hcats([space(), go'(~enforce_inline=true, dclause, kind)]), + hcats([space(), go'(~enforce_inline=true, dclause)]), hcats([ linebreak(), - indent_and_align(go'(~enforce_inline=false, dclause, kind)), + indent_and_align(go'(~enforce_inline=false, dclause)), ]), ]) : hcat(space(), hidden_clause); hcats([ DHDoc_common.Delim.bar_Rule, - DHDoc_Pat.mk(dp) + DHDoc_Pat.mk(~infomap, ~show_casts=settings.show_casts, dp) |> DHDoc_common.pad_child( ~inline_padding=(space(), space()), ~enforce_inline=false, @@ -257,46 +226,45 @@ let mk = clause_doc, ]); }; - let go_case = (dscrut, drs, consistent) => + let go_case = (dscrut, drs) => if (enforce_inline) { fail(); } else { - let kind: EvalCtx.cls = - if (consistent) {ConsistentCase} else {InconsistentBranches}; let scrut_doc = choices([ - hcats([space(), go'(~enforce_inline=true, dscrut, kind)]), + hcats([space(), go'(~enforce_inline=true, dscrut)]), hcats([ linebreak(), - indent_and_align(go'(~enforce_inline=false, dscrut, kind)), + indent_and_align(go'(~enforce_inline=false, dscrut)), ]), ]); vseps( List.concat([ [hcat(DHDoc_common.Delim.open_Case, scrut_doc)], - drs |> List.mapi(go_case_rule(consistent)), + drs |> List.map(go_case_rule), [DHDoc_common.Delim.close_Case], ]), ); }; let go_formattable = (~enforce_inline) => go'(~enforce_inline); - let mk_left_associative_operands = (precedence_op, (d1, l), (d2, r)) => ( - go_formattable(d1, l) |> parenthesize(precedence(d1) > precedence_op), - go_formattable(d2, r) |> parenthesize(precedence(d2) >= precedence_op), + let mk_left_associative_operands = (precedence_op, d1, d2) => ( + go_formattable(d1) |> parenthesize(precedence(d1) > precedence_op), + go_formattable(d2) |> parenthesize(precedence(d2) >= precedence_op), ); - let mk_right_associative_operands = (precedence_op, (d1, l), (d2, r)) => ( - go_formattable(d1, l) |> parenthesize(precedence(d1) >= precedence_op), - go_formattable(d2, r) |> parenthesize(precedence(d2) > precedence_op), + let mk_right_associative_operands = (precedence_op, d1, d2) => ( + go_formattable(d1) |> parenthesize(precedence(d1) >= precedence_op), + go_formattable(d2) |> parenthesize(precedence(d2) > precedence_op), ); let doc = { - switch (d) { - | Closure(env', d') => go'(d', Closure, ~env=env') + switch (DHExp.term_of(d)) { + | Parens(d') => go'(d') + | Closure(env', d') => go'(d', ~env=env') | Filter(flt, d') => if (settings.show_stepper_filters) { switch (flt) { | Filter({pat, act}) => let keyword = FilterAction.string_of_t(act); - let flt_doc = go_formattable(pat, FilterPattern); + let flt_doc = go_formattable(pat); vseps([ hcats([ DHDoc_common.Delim.mk(keyword), @@ -307,75 +275,52 @@ let mk = ), DHDoc_common.Delim.mk("in"), ]), - go'(d', Filter), + go'(d'), ]); | Residue(_, act) => let keyword = FilterAction.string_of_t(act); - vseps([DHDoc_common.Delim.mk(keyword), go'(d', Filter)]); + vseps([DHDoc_common.Delim.mk(keyword), go'(d')]); }; } else { switch (flt) { - | Residue(_) => go'(d', Filter) - | Filter(_) => go'(d', Filter) + | Residue(_) => go'(d') + | Filter(_) => go'(d') }; } /* Hole expressions must appear within a closure in the postprocessed result */ - | EmptyHole(u, i) => - let selected = - switch (selected_hole_instance) { - | None => false - | Some((u', i')) => u == u' && i == i' - }; - DHDoc_common.mk_EmptyHole(~selected, (u, i)); - | NonEmptyHole(reason, u, i, d') => - go'(d', NonEmptyHole) - |> annot(DHAnnot.NonEmptyHole(reason, (u, i))) - | FreeVar(u, i, x) => - text(x) |> annot(DHAnnot.VarHole(Free, (u, i))) - | InvalidText(u, i, t) => DHDoc_common.mk_InvalidText(t, (u, i)) - | InconsistentBranches(u, i, Case(dscrut, drs, _)) => - go_case(dscrut, drs, false) - |> annot(DHAnnot.InconsistentBranches((u, i))) - | BoundVar(x) when settings.show_lookup_steps => text(x) - | BoundVar(x) => + | EmptyHole => + DHDoc_common.mk_EmptyHole( + ~selected=Some(DHExp.rep_id(d)) == selected_hole_instance, + env, + ) + | MultiHole(_ds) => + DHDoc_common.mk_EmptyHole( + ~selected=Some(DHExp.rep_id(d)) == selected_hole_instance, + env, + ) + | Invalid(t) => DHDoc_common.mk_InvalidText(t) + | Var(x) when settings.show_lookup_steps => text(x) + | Var(x) => switch (ClosureEnvironment.lookup(env, x)) { | None => text(x) | Some(d') => if (List.mem(x, recent_subst)) { hcats([ - go'(~env=ClosureEnvironment.empty, BoundVar(x), BoundVar) + go'(~env=ClosureEnvironment.empty, d) |> annot(DHAnnot.Substituted), go'( ~env=ClosureEnvironment.empty, - ~recent_subst=List.filter(u => u != x, next_recent_subst), + ~recent_subst=List.filter(u => u != x, recent_subst), d', - BoundVar, ), ]); } else { - go'(~env=ClosureEnvironment.empty, d', BoundVar); + go'(~env=ClosureEnvironment.empty, d'); } } | BuiltinFun(f) => text(f) - | Constructor(name) => - switch (ClosureEnvironment.lookup(env, name)) { - | None => DHDoc_common.mk_ConstructorLit(name) - | Some(d') => - if (List.mem(name, recent_subst)) { - hcats([ - go'(~env=ClosureEnvironment.empty, BoundVar(name), BoundVar) - |> annot(DHAnnot.Substituted), - go'(~env=ClosureEnvironment.empty, d', BoundVar), - ]); - } else { - go'(~env=ClosureEnvironment.empty, d', BoundVar); - } - } - | BoolLit(b) => DHDoc_common.mk_BoolLit(b) - | IntLit(n) => DHDoc_common.mk_IntLit(n) - | FloatLit(f) => DHDoc_common.mk_FloatLit(f) | ModuleVal(e, names) => if (enforce_inline) { fail(); @@ -403,20 +348,32 @@ let mk = }; DHDoc_common.mk_ModuleVal(List.rev(envlist)); } - | StringLit(s) => DHDoc_common.mk_StringLit(s) - | Test(_, d) => DHDoc_common.mk_Test(go'(d, Test)) - | Sequence(d1, d2) => - let (doc1, doc2) = (go'(d1, Sequence1), go'(d2, Sequence2)); + | Constructor(name, _) => DHDoc_common.mk_ConstructorLit(name) + | Bool(b) => DHDoc_common.mk_BoolLit(b) + | Int(n) => DHDoc_common.mk_IntLit(n) + | Float(f) => DHDoc_common.mk_FloatLit(f) + | String(s) => DHDoc_common.mk_StringLit(s) + | Undefined => DHDoc_common.mk_Undefined() + | Test(d) => DHDoc_common.mk_Test(go'(d)) + | Deferral(_) => text("_") + | Seq(d1, d2) => + let (doc1, doc2) = (go'(d1), go'(d2)); DHDoc_common.mk_Sequence(doc1, doc2); - | ListLit(_, _, _, d_list) => - let ol = d_list |> List.mapi((i, d) => go'(d, ListLit(i))); + | ListLit(d_list) => + let ol = d_list |> List.map(d => go'(d)); DHDoc_common.mk_ListLit(ol); - - | Ap(d1, d2) => + | Ap(Forward, d1, d2) => let (doc1, doc2) = ( - go_formattable(d1, Ap1) + go_formattable(d1) |> parenthesize(precedence(d1) > DHDoc_common.precedence_Ap), - go'(d2, Ap2), + go'(d2), + ); + DHDoc_common.mk_Ap(doc1, doc2); + | DeferredAp(d1, d2) => + let (doc1, doc2) = ( + go_formattable(d1) + |> parenthesize(precedence(d1) > DHDoc_common.precedence_Ap), + go'(Tuple(d2) |> DHExp.fresh), ); DHDoc_common.mk_Ap(doc1, doc2); | Dot(d1, d2) => @@ -424,96 +381,98 @@ let mk = let doc2 = go'(d2, Dot2); DHDoc_common.mk_Dot(doc1, doc2); | TypAp(d1, ty) => - let doc1 = go'(d1, TypAp); + let doc1 = go'(d1); let doc2 = DHDoc_Typ.mk(~enforce_inline=true, ty); DHDoc_common.mk_TypAp(doc1, doc2); - | ApBuiltin(ident, d) => + | Ap(Reverse, d1, d2) => + let (doc1, doc2) = ( + go_formattable(d1) + |> parenthesize(precedence(d1) > DHDoc_common.precedence_Ap), + go'(d2), + ); + DHDoc_common.mk_rev_Ap(doc2, doc1); + | UnOp(Meta(Unquote), d) => DHDoc_common.mk_Ap( - text(ident), - go_formattable(d, ApBuiltin) + text("$"), + go_formattable(d) |> parenthesize(precedence(d) > DHDoc_common.precedence_Ap), ) - | BinIntOp(op, d1, d2) => + | UnOp(Bool(Not), d) => + DHDoc_common.mk_Ap( + text("!"), + go_formattable(d) + |> parenthesize(precedence(d) > DHDoc_common.precedence_Not), + ) + | UnOp(Int(Minus), d) => + DHDoc_common.mk_Ap( + text("-"), + go_formattable(d) + |> parenthesize(precedence(d) > DHDoc_common.precedence_Minus), + ) + | BinOp(Int(op), d1, d2) => // TODO assumes all bin int ops are left associative let (doc1, doc2) = - mk_left_associative_operands( - precedence_bin_int_op(op), - (d1, BinIntOp1), - (d2, BinIntOp2), - ); + mk_left_associative_operands(precedence_bin_int_op(op), d1, d2); hseps([doc1, mk_bin_int_op(op), doc2]); - | BinFloatOp(op, d1, d2) => + | BinOp(Float(op), d1, d2) => // TODO assumes all bin float ops are left associative let (doc1, doc2) = - mk_left_associative_operands( - precedence_bin_float_op(op), - (d1, BinFloatOp1), - (d2, BinFloatOp2), - ); + mk_left_associative_operands(precedence_bin_float_op(op), d1, d2); hseps([doc1, mk_bin_float_op(op), doc2]); - | BinStringOp(op, d1, d2) => + | BinOp(String(op), d1, d2) => // TODO assumes all bin string ops are left associative let (doc1, doc2) = - mk_left_associative_operands( - precedence_bin_string_op(op), - (d1, BinStringOp1), - (d2, BinStringOp2), - ); + mk_left_associative_operands(precedence_bin_string_op(op), d1, d2); hseps([doc1, mk_bin_string_op(op), doc2]); | Cons(d1, d2) => let (doc1, doc2) = - mk_right_associative_operands( - DHDoc_common.precedence_Cons, - (d1, Cons1), - (d2, Cons2), - ); + mk_right_associative_operands(DHDoc_common.precedence_Cons, d1, d2); DHDoc_common.mk_Cons(doc1, doc2); | ListConcat(d1, d2) => let (doc1, doc2) = - mk_right_associative_operands( - DHDoc_common.precedence_Plus, - (d1, ListConcat1), - (d2, ListConcat2), - ); + mk_right_associative_operands(DHDoc_common.precedence_Plus, d1, d2); DHDoc_common.mk_ListConcat(doc1, doc2); - | BinBoolOp(op, d1, d2) => + | BinOp(Bool(op), d1, d2) => let (doc1, doc2) = - mk_right_associative_operands( - precedence_bin_bool_op(op), - (d1, BinBoolOp1), - (d2, BinBoolOp2), - ); + mk_right_associative_operands(precedence_bin_bool_op(op), d1, d2); hseps([doc1, mk_bin_bool_op(op), doc2]); | Tuple([]) => DHDoc_common.Delim.triv - | Tuple(ds) => - DHDoc_common.mk_Tuple(ds |> List.mapi((i, d) => go'(d, Tuple(i)))) - | Prj(d, n) => DHDoc_common.mk_Prj(go'(d, Prj), n) - | ConsistentCase(Case(dscrut, drs, _)) => go_case(dscrut, drs, true) - | Cast(d, _, ty) when settings.show_casts => + | Tuple(ds) => DHDoc_common.mk_Tuple(ds |> List.map(d => go'(d))) + | Match(dscrut, drs) => go_case(dscrut, drs) + | TyAlias(_, _, d) => go'(d) + | Cast(d, t1, t2) when settings.show_casts => // TODO[Matt]: Roll multiple casts into one cast - let doc = go'(d, Cast); + let doc = + go_formattable(d) + |> parenthesize(precedence(d) > DHDoc_common.precedence_Ap); Doc.( hcat( doc, annot( DHAnnot.CastDecoration, - DHDoc_Typ.mk(~enforce_inline=true, ty), + hcats([ + DHDoc_common.Delim.open_Cast, + DHDoc_Typ.mk(~enforce_inline=true, t1), + DHDoc_common.Delim.arrow_Cast, + DHDoc_Typ.mk(~enforce_inline=true, t2), + DHDoc_common.Delim.close_Cast, + ]), ), ) ); | Cast(d, _, _) => - let doc = go'(d, Cast); + let doc = go'(d); doc; | Let(dp, ddef, dbody) => if (enforce_inline) { fail(); } else { let bindings = DHPat.bound_vars(dp); - let def_doc = go_formattable(ddef, Let1); + let def_doc = go_formattable(ddef); vseps([ hcats([ DHDoc_common.Delim.mk("let"), - DHDoc_Pat.mk(dp) + DHDoc_Pat.mk(~infomap, ~show_casts=settings.show_casts, dp) |> DHDoc_common.pad_child( ~inline_padding=(space(), space()), ~enforce_inline, @@ -530,9 +489,8 @@ let mk = ~enforce_inline=false, ~env=ClosureEnvironment.without_keys(bindings, env), ~recent_subst= - List.filter(x => !List.mem(x, bindings), next_recent_subst), + List.filter(x => !List.mem(x, bindings), recent_subst), dbody, - Let2, ), ]); } @@ -570,6 +528,9 @@ let mk = } | FailedCast(Cast(d, ty1, ty2), ty2', ty3) when Typ.eq(ty2, ty2') => let d_doc = go'(d, FailedCastCast); + (); + | FailedCast(d1, ty1, ty3) => + let d_doc = go'(d1); let cast_decoration = hcats([ DHDoc_common.Delim.open_FailedCast, @@ -582,19 +543,16 @@ let mk = ]) |> annot(DHAnnot.FailedCastDecoration); hcats([d_doc, cast_decoration]); - | FailedCast(_d, _ty1, _ty2) => - failwith("unexpected FailedCast without inner cast") - | InvalidOperation(d, err) => - let d_doc = go'(d, InvalidOperation); + | DynamicErrorHole(d, err) => + let d_doc = go'(d); let decoration = Doc.text(InvalidOperationError.err_msg(err)) |> annot(DHAnnot.OperationError(err)); hcats([d_doc, decoration]); - - | IfThenElse(_, c, d1, d2) => - let c_doc = go_formattable(c, IfThenElse1); - let d1_doc = go_formattable(d1, IfThenElse2); - let d2_doc = go_formattable(d2, IfThenElse3); + | If(c, d1, d2) => + let c_doc = go_formattable(c); + let d1_doc = go_formattable(d1); + let d2_doc = go_formattable(d2); hcats([ DHDoc_common.Delim.mk("("), DHDoc_common.Delim.mk("if"), @@ -617,68 +575,86 @@ let mk = ), DHDoc_common.Delim.mk(")"), ]); - | Fun(dp, ty, dbody, s) when settings.show_fn_bodies => - let bindings = DHPat.bound_vars(dp); - let body_doc = - switch (dbody) { - | Closure(env', dbody) => + | Fun(dp, d, Some(env'), s) => + if (settings.show_fn_bodies) { + let bindings = DHPat.bound_vars(dp); + let body_doc = go_formattable( - Closure(env', dbody), + Closure( + ClosureEnvironment.without_keys(Option.to_list(s), env'), + d, + ) + |> DHExp.fresh, ~env= ClosureEnvironment.without_keys( DHPat.bound_vars(dp) @ Option.to_list(s), env, ), ~recent_subst= - List.filter(x => !List.mem(x, bindings), next_recent_subst), - Fun, - ) - | _ => + List.filter(x => !List.mem(x, bindings), recent_subst), + ); + hcats( + [ + DHDoc_common.Delim.sym_Fun, + DHDoc_Pat.mk(~infomap, ~show_casts=settings.show_casts, dp) + |> DHDoc_common.pad_child( + ~inline_padding=(space(), space()), + ~enforce_inline, + ), + ] + @ [ + DHDoc_common.Delim.arrow_Fun, + space(), + body_doc |> DHDoc_common.pad_child(~enforce_inline=false), + ], + ); + } else { + annot( + DHAnnot.Collapsed, + text( + switch (s) { + | None => "" + | Some(name) + when + !settings.show_fixpoints + && String.ends_with(~suffix="+", name) => + "<" ++ String.sub(name, 0, String.length(name) - 1) ++ ">" + | Some(name) => "<" ++ name ++ ">" + }, + ), + ); + } + | Fun(dp, dbody, None, s) => + if (settings.show_fn_bodies) { + let bindings = DHPat.bound_vars(dp); + let body_doc = go_formattable( dbody, ~env=ClosureEnvironment.without_keys(bindings, env), ~recent_subst= - List.filter(x => !List.mem(x, bindings), next_recent_subst), - Fun, - ) - }; - hcats( - [ - DHDoc_common.Delim.sym_Fun, - DHDoc_Pat.mk(dp) - |> DHDoc_common.pad_child( - ~inline_padding=(space(), space()), - ~enforce_inline, - ), - ] - @ ( - settings.show_casts - ? [ - DHDoc_common.Delim.colon_Fun, - space(), - DHDoc_Typ.mk(~enforce_inline=true, ty), - space(), - ] - : [] - ) - @ [ - DHDoc_common.Delim.arrow_Fun, - space(), - body_doc |> DHDoc_common.pad_child(~enforce_inline=false), - ], - ); - | Fun(_, _, _, s) => - let name = + List.filter(x => !List.mem(x, bindings), recent_subst), + ); + hcats( + [ + DHDoc_common.Delim.sym_Fun, + DHDoc_Pat.mk(~infomap, ~show_casts=settings.show_casts, dp) + |> DHDoc_common.pad_child( + ~inline_padding=(space(), space()), + ~enforce_inline, + ), + ] + @ [ + DHDoc_common.Delim.arrow_Fun, + space(), + body_doc |> DHDoc_common.pad_child(~enforce_inline), + ], + ); + } else { switch (s) { - | None => "anon fn" - | Some(name) - when - !settings.show_fixpoints - && String.ends_with(~suffix="+", name) => - String.sub(name, 0, String.length(name) - 1) - | Some(name) => name + | None => annot(DHAnnot.Collapsed, text("")) + | Some(name) => annot(DHAnnot.Collapsed, text("<" ++ name ++ ">")) }; - annot(DHAnnot.Collapsed, text("<" ++ name ++ ">")); + } | TypFun(_tpat, _dbody, s) => /* same display as with Fun but with anon typfn in the nameless case. */ let name = @@ -692,25 +668,24 @@ let mk = | Some(name) => name }; annot(DHAnnot.Collapsed, text("<" ++ name ++ ">")); - | FixF(x, ty, dbody) + | FixF(dp, dbody, _) when settings.show_fn_bodies && settings.show_fixpoints => let doc_body = go_formattable( dbody, - ~env=ClosureEnvironment.without_keys([x], env), - FixF, + ~env=ClosureEnvironment.without_keys(DHPat.bound_vars(dp), env), ); hcats( - [DHDoc_common.Delim.fix_FixF, space(), text(x)] - @ ( - settings.show_casts - ? [ - DHDoc_common.Delim.colon_Fun, - space(), - DHDoc_Typ.mk(~enforce_inline=true, ty), - ] - : [] - ) + [ + DHDoc_common.Delim.fix_FixF, + space(), + DHDoc_Pat.mk( + ~infomap, + dp, + ~show_casts=settings.show_casts, + ~enforce_inline=true, + ), + ] @ [ space(), DHDoc_common.Delim.arrow_FixF, @@ -718,20 +693,39 @@ let mk = doc_body |> DHDoc_common.pad_child(~enforce_inline), ], ); - | FixF(x, _, _) => annot(DHAnnot.Collapsed, text("<" ++ x ++ ">")) + | FixF(_, {term: Fun(_, _, _, Some(x)), _}, _) => + if (String.ends_with(~suffix="+", x)) { + annot( + DHAnnot.Collapsed, + text("<" ++ String.sub(x, 0, String.length(x) - 1) ++ ">"), + ); + } else { + annot(DHAnnot.Collapsed, text("<" ++ x ++ ">")); + } + | FixF(_, _, _) => annot(DHAnnot.Collapsed, text("")) }; }; let steppable = - next_steps |> List.find_opt(((ctx, _)) => ctx == EvalCtx.Mark); + next_steps |> List.find_opt(((_, id)) => id == DHExp.rep_id(d)); let stepped = chosen_step - |> Option.map(x => x.ctx == Mark) + |> Option.map(x => DHExp.rep_id(x.d_loc) == DHExp.rep_id(d)) |> Option.value(~default=false); + let substitution = + hidden_steps + |> List.find_opt(((step, id)) => + step.knd == VarLookup + // HACK[Matt]: to prevent substitutions hiding inside casts + && id == DHExp.rep_id(d) + ); let doc = switch (substitution) { - | Some({d_loc: BoundVar(v), _}) when List.mem(v, recent_subst) => - hcats([text(v) |> annot(DHAnnot.Substituted), doc]) - | Some(_) + | Some((step, _)) => + switch (DHExp.term_of(step.d_loc)) { + | Var(v) when List.mem(v, recent_subst) => + hcats([text(v) |> annot(DHAnnot.Substituted), doc]) + | _ => doc + } | None => doc }; let doc = @@ -739,20 +733,11 @@ let mk = annot(DHAnnot.Stepped, doc); } else { switch (steppable) { - | Some((_, full)) => annot(DHAnnot.Steppable(full), doc) + | Some((i, _)) => annot(DHAnnot.Steppable(i), doc) | None => doc }; }; doc; }; - go( - d, - env, - enforce_inline, - previous_step, - hidden_steps, - chosen_step, - List.mapi((idx, x: EvalObj.t) => (x.ctx, idx), next_steps), - [], - ); + go(d, env, enforce_inline, []); }; diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.re b/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.re index 0e2bd8e004..8996bd4b03 100644 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.re +++ b/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.re @@ -1,28 +1,36 @@ open Pretty; open Haz3lcore; -let precedence = (dp: DHPat.t) => - switch (dp) { - | EmptyHole(_) - | NonEmptyHole(_) +let precedence = (dp: Pat.t) => + switch (DHPat.term_of(dp)) { + | EmptyHole + | MultiHole(_) | Wild - | InvalidText(_) - | BadConstructor(_) + | Invalid(_) | Var(_) - | IntLit(_) - | FloatLit(_) - | BoolLit(_) - | StringLit(_) + | Int(_) + | Float(_) + | Bool(_) + | String(_) | ListLit(_) | Constructor(_) => DHDoc_common.precedence_const | Tuple(_) => DHDoc_common.precedence_Comma | Cons(_) => DHDoc_common.precedence_Cons | Ap(_) => DHDoc_common.precedence_Ap + | Parens(_) => DHDoc_common.precedence_const + | Cast(_) => DHDoc_common.precedence_Ap }; let rec mk = - (~parenthesize=false, ~enforce_inline: bool, dp: DHPat.t): DHDoc.t => { - let mk' = mk(~enforce_inline); + ( + ~infomap: Statics.Map.t, + ~parenthesize=false, + ~show_casts, + ~enforce_inline: bool, + dp: Pat.t, + ) + : DHDoc.t => { + let mk' = mk(~enforce_inline, ~infomap, ~show_casts); let mk_left_associative_operands = (precedence_op, dp1, dp2) => ( mk'(~parenthesize=precedence(dp1) > precedence_op, dp1), mk'(~parenthesize=precedence(dp2) >= precedence_op, dp2), @@ -32,20 +40,18 @@ let rec mk = mk'(~parenthesize=precedence(dp2) > precedence_op, dp2), ); let doc = - switch (dp) { - | EmptyHole(u, i) => DHDoc_common.mk_EmptyHole((u, i)) - | NonEmptyHole(reason, u, i, dp) => - mk'(dp) |> Doc.annot(DHAnnot.NonEmptyHole(reason, (u, i))) - | InvalidText(u, i, t) => DHDoc_common.mk_InvalidText(t, (u, i)) - | BadConstructor(u, i, t) => DHDoc_common.mk_InvalidText(t, (u, i)) + switch (DHPat.term_of(dp)) { + | MultiHole(_) + | EmptyHole => DHDoc_common.mk_EmptyHole(ClosureEnvironment.empty) + | Invalid(t) => DHDoc_common.mk_InvalidText(t) | Var(x) => Doc.text(x) | Wild => DHDoc_common.Delim.wild - | Constructor(name) => DHDoc_common.mk_ConstructorLit(name) - | IntLit(n) => DHDoc_common.mk_IntLit(n) - | FloatLit(f) => DHDoc_common.mk_FloatLit(f) - | BoolLit(b) => DHDoc_common.mk_BoolLit(b) - | StringLit(s) => DHDoc_common.mk_StringLit(s) - | ListLit(_, d_list) => + | Constructor(name, _) => DHDoc_common.mk_ConstructorLit(name) + | Int(n) => DHDoc_common.mk_IntLit(n) + | Float(f) => DHDoc_common.mk_FloatLit(f) + | Bool(b) => DHDoc_common.mk_BoolLit(b) + | String(s) => DHDoc_common.mk_StringLit(s) + | ListLit(d_list) => let ol = List.map(mk', d_list); DHDoc_common.mk_ListLit(ol); | Cons(dp1, dp2) => @@ -54,11 +60,34 @@ let rec mk = DHDoc_common.mk_Cons(doc1, doc2); | Tuple([]) => DHDoc_common.Delim.triv | Tuple(ds) => DHDoc_common.mk_Tuple(List.map(mk', ds)) + // TODO: Print type annotations + | Cast(dp, t1, t2) when show_casts => + Doc.hcats([ + mk'(dp), + Doc.annot( + DHAnnot.CastDecoration, + Doc.hcats([ + DHDoc_common.Delim.open_Cast, + DHDoc_Typ.mk(~enforce_inline=true, t1), + DHDoc_common.Delim.back_arrow_Cast, + DHDoc_Typ.mk(~enforce_inline=true, t2), + DHDoc_common.Delim.close_Cast, + ]), + ), + ]) + | Cast(dp, _, _) => mk'(~parenthesize, dp) + | Parens(dp) => + mk(~enforce_inline, ~parenthesize=true, ~infomap, ~show_casts, dp) | Ap(dp1, dp2) => let (doc1, doc2) = mk_left_associative_operands(DHDoc_common.precedence_Ap, dp1, dp2); DHDoc_common.mk_Ap(doc1, doc2); }; + let doc = + switch (Statics.get_pat_error_at(infomap, DHPat.rep_id(dp))) { + | Some(_) => Doc.annot(DHAnnot.NonEmptyHole, doc) + | None => doc + }; parenthesize ? Doc.hcats([ DHDoc_common.Delim.open_Parenthesized, diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.rei b/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.rei deleted file mode 100644 index 33c37b6092..0000000000 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_Pat.rei +++ /dev/null @@ -1,5 +0,0 @@ -open Haz3lcore; - -let precedence: DHPat.t => int; - -let mk: (~parenthesize: bool=?, ~enforce_inline: bool, DHPat.t) => DHDoc.t; diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_Typ.rei b/src/haz3lweb/view/dhcode/layout/DHDoc_Typ.rei deleted file mode 100644 index 5ea2583ae4..0000000000 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_Typ.rei +++ /dev/null @@ -1,3 +0,0 @@ -open Haz3lcore; - -let mk: (~enforce_inline: bool, Typ.t) => DHDoc.t; diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_Util.re b/src/haz3lweb/view/dhcode/layout/DHDoc_Util.re index f127804400..9e9578d217 100644 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_Util.re +++ b/src/haz3lweb/view/dhcode/layout/DHDoc_Util.re @@ -1,4 +1,3 @@ -open Util; open Haz3lcore; module Doc = Pretty.Doc; @@ -46,8 +45,8 @@ module Delim = { let mk = (delim_text: string): t => Doc.text(delim_text) |> Doc.annot(DHAnnot.Delim); - let empty_hole = ((u, i): HoleInstance.t): t => { - let lbl = StringUtil.cat([Id.to_string(u), ":", string_of_int(i + 1)]); + let empty_hole = (_env: ClosureEnvironment.t): t => { + let lbl = "-"; Doc.text(lbl) |> Doc.annot(DHAnnot.HoleLabel) |> Doc.annot(DHAnnot.Delim); @@ -85,9 +84,8 @@ module Delim = { let close_FailedCast = close_Cast |> Doc.annot(DHAnnot.FailedCastDelim); }; -let mk_EmptyHole = (~selected=false, (u, i)) => - Delim.empty_hole((u, i)) - |> Doc.annot(DHAnnot.EmptyHole(selected, (u, i))); +let mk_EmptyHole = (~selected=false, env) => + Delim.empty_hole(env) |> Doc.annot(DHAnnot.EmptyHole(selected, env)); let mk_IntLit = n => Doc.text(string_of_int(n)); diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_common.re b/src/haz3lweb/view/dhcode/layout/DHDoc_common.re index 68abee9f93..3627d26bf2 100644 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_common.re +++ b/src/haz3lweb/view/dhcode/layout/DHDoc_common.re @@ -8,7 +8,7 @@ module P = Precedence; let precedence_const = P.max; let precedence_Ap = P.ap; let precedence_Power = P.power; - +let precedence_Not = P.not_; let precedence_Times = P.mult; let precedence_Divide = P.mult; let precedence_Plus = P.plus; @@ -19,7 +19,7 @@ let precedence_LessThan = P.eqs; let precedence_GreaterThan = P.eqs; let precedence_And = P.and_; let precedence_Or = P.or_; -let precedence_Comma = P.prod; +let precedence_Comma = P.comma; let precedence_max = P.min; let pad_child = @@ -45,7 +45,7 @@ module Delim = { let mk = (delim_text: string): t => Doc.text(delim_text) |> Doc.annot(DHAnnot.Delim); - let empty_hole = ((_u, _i): HoleInstance.t): t => { + let empty_hole = (_env: ClosureEnvironment.t): t => { let lbl = //StringUtil.cat([string_of_int(u + 1), ":", string_of_int(i + 1)]); "?"; @@ -70,8 +70,6 @@ module Delim = { let arrow_FixF = mk("->"); let colon_FixF = mk(":"); - let projection_dot = mk("."); - let open_Case = mk("case"); let close_Case = mk("end"); @@ -80,6 +78,7 @@ module Delim = { let open_Cast = mk("<"); let arrow_Cast = mk(Unicode.castArrowSym); + let back_arrow_Cast = mk(Unicode.castBackArrowSym); let close_Cast = mk(">"); let open_FailedCast = open_Cast |> Doc.annot(DHAnnot.FailedCastDelim); @@ -88,11 +87,10 @@ module Delim = { let close_FailedCast = close_Cast |> Doc.annot(DHAnnot.FailedCastDelim); }; -let mk_EmptyHole = (~selected=false, hc: HoleInstance.t) => - Delim.empty_hole(hc) |> Doc.annot(DHAnnot.EmptyHole(selected, hc)); +let mk_EmptyHole = (~selected=false, env: ClosureEnvironment.t) => + Delim.empty_hole(env) |> Doc.annot(DHAnnot.EmptyHole(selected, env)); -let mk_InvalidText = (t, hc) => - Doc.text(t) |> Doc.annot(DHAnnot.Invalid(hc)); +let mk_InvalidText = t => Doc.text(t) |> Doc.annot(DHAnnot.Invalid); let mk_Sequence = (doc1, doc2) => Doc.(hcats([doc1, linebreak(), doc2])); @@ -155,5 +153,6 @@ let mk_TypAp = (doc1, doc2) => let mk_Ap = (doc1, doc2) => Doc.(hcats([doc1, text("("), doc2, text(")")])); -let mk_Prj = (targ, n) => - Doc.hcats([targ, Delim.projection_dot, Doc.text(string_of_int(n))]); +let mk_rev_Ap = (doc1, doc2) => Doc.(hcats([doc1, text(" |> "), doc2])); + +let mk_Undefined = () => Doc.text("undefined"); diff --git a/src/haz3lweb/view/dhcode/layout/DHDoc_common.rei b/src/haz3lweb/view/dhcode/layout/DHDoc_common.rei index 1d0a2d65d2..553d6ce8ec 100644 --- a/src/haz3lweb/view/dhcode/layout/DHDoc_common.rei +++ b/src/haz3lweb/view/dhcode/layout/DHDoc_common.rei @@ -9,6 +9,7 @@ let precedence_Power: int; let precedence_Divide: int; let precedence_Plus: int; let precedence_Minus: int; +let precedence_Not: int; let precedence_Cons: int; let precedence_Equals: int; let precedence_LessThan: int; @@ -29,7 +30,7 @@ let pad_child: module Delim: { let mk: string => DHDoc.t; - let empty_hole: HoleInstance.t => DHDoc.t; + let empty_hole: ClosureEnvironment.t => DHDoc.t; let list_nil: DHDoc.t; let triv: DHDoc.t; @@ -54,6 +55,7 @@ module Delim: { let open_Cast: DHDoc.t; let arrow_Cast: DHDoc.t; + let back_arrow_Cast: DHDoc.t; let close_Cast: DHDoc.t; let open_FailedCast: Pretty.Doc.t(DHAnnot.t); @@ -62,9 +64,9 @@ module Delim: { }; let mk_EmptyHole: - (~selected: bool=?, HoleInstance.t) => Pretty.Doc.t(DHAnnot.t); + (~selected: bool=?, ClosureEnvironment.t) => Pretty.Doc.t(DHAnnot.t); -let mk_InvalidText: (string, HoleInstance.t) => Pretty.Doc.t(DHAnnot.t); +let mk_InvalidText: string => Pretty.Doc.t(DHAnnot.t); let mk_Sequence: (Pretty.Doc.t('a), Pretty.Doc.t('a)) => Pretty.Doc.t('a); @@ -96,4 +98,6 @@ let mk_TypAp: (Pretty.Doc.t('a), Pretty.Doc.t('a)) => Pretty.Doc.t('a); let mk_Ap: (Pretty.Doc.t('a), Pretty.Doc.t('a)) => Pretty.Doc.t('a); -let mk_Prj: (Pretty.Doc.t(DHAnnot.t), int) => Pretty.Doc.t(DHAnnot.t); +let mk_rev_Ap: (Pretty.Doc.t('a), Pretty.Doc.t('a)) => Pretty.Doc.t('a); + +let mk_Undefined: unit => Pretty.Doc.t('a); diff --git a/src/haz3lweb/view/dhcode/layout/HTypDoc.re b/src/haz3lweb/view/dhcode/layout/HTypDoc.re index ab1cd80cb1..72c4cb9d60 100644 --- a/src/haz3lweb/view/dhcode/layout/HTypDoc.re +++ b/src/haz3lweb/view/dhcode/layout/HTypDoc.re @@ -6,6 +6,30 @@ type t = Doc.t(HTypAnnot.t); type formattable_child = (~enforce_inline: bool) => t; +let precedence_Prod = 1; +let precedence_Arrow = 2; +let precedence_Sum = 3; +let precedence_Ap = 4; +let precedence_Const = 5; + +let precedence = (ty: Typ.t): int => + switch (Typ.term_of(ty)) { + | Int + | Float + | Bool + | String + | Unknown(_) + | Var(_) + | Forall(_) + | Rec(_) + | Sum(_) => precedence_Sum + | List(_) => precedence_Const + | Prod(_) => precedence_Prod + | Arrow(_, _) => precedence_Arrow + | Parens(_) => precedence_Const + | Ap(_) => precedence_Ap + }; + let pad_child = ( ~inline_padding as (l, r)=(Doc.empty(), Doc.empty()), @@ -18,7 +42,7 @@ let pad_child = Doc.( hcats([ linebreak(), - indent_and_align(child(~enforce_inline=false)), + indent_and_align(child(~enforce_inline)), linebreak(), ]) ); @@ -33,15 +57,16 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { let mk_right_associative_operands = (precedence_op, ty1, ty2) => ( annot( HTypAnnot.Step(0), - mk'(~parenthesize=Typ.precedence(ty1) <= precedence_op, ty1), + mk'(~parenthesize=precedence(ty1) <= precedence_op, ty1), ), annot( HTypAnnot.Step(1), - mk'(~parenthesize=Typ.precedence(ty2) < precedence_op, ty2), + mk'(~parenthesize=precedence(ty2) < precedence_op, ty2), ), ); let (doc, parenthesize) = - switch (ty) { + switch (Typ.term_of(ty)) { + | Parens(ty) => (mk(~parenthesize=true, ~enforce_inline, ty), false) | Unknown(_) => ( annot(HTypAnnot.Delim, annot(HTypAnnot.HoleLabel, text("?"))), parenthesize, @@ -65,7 +90,7 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { ) | Arrow(ty1, ty2) => let (d1, d2) = - mk_right_associative_operands(TypBase.precedence_Arrow, ty1, ty2); + mk_right_associative_operands(precedence_Arrow, ty1, ty2); ( hcats([ d1, @@ -83,20 +108,13 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { [ annot( HTypAnnot.Step(0), - mk'( - ~parenthesize=Typ.precedence(head) <= TypBase.precedence_Prod, - head, - ), + mk'(~parenthesize=precedence(head) <= precedence_Prod, head), ), ...List.mapi( (i, ty) => annot( HTypAnnot.Step(i + 1), - mk'( - ~parenthesize= - Typ.precedence(ty) <= TypBase.precedence_Prod, - ty, - ), + mk'(~parenthesize=precedence(ty) <= precedence_Prod, ty), ), tail, ), @@ -108,7 +126,7 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { (center, true); | Rec(name, ty) => ( hcats([ - text("rec " ++ name ++ "->{"), + text("rec " ++ Type.tpat_view(name) ++ "->{"), ( (~enforce_inline) => annot(HTypAnnot.Step(0), mk(~enforce_inline, ty)) @@ -120,7 +138,7 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { ) | Forall(name, ty) => ( hcats([ - text("forall " ++ name ++ "->{"), + text("forall " ++ Type.tpat_view(name) ++ "->{"), ( (~enforce_inline) => annot(HTypAnnot.Step(0), mk(~enforce_inline, ty)) @@ -179,15 +197,21 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { | Sum(sum_map) => let center = List.mapi( - (i, (ctr, ty)) => - switch (ty) { - | None => annot(HTypAnnot.Step(i + 1), text(ctr)) - | Some(ty) => - annot( - HTypAnnot.Step(i + 1), - hcats([text(ctr ++ "("), mk'(ty), text(")")]), - ) - }, + (i, vr) => { + ConstructorMap.( + switch (vr) { + | Variant(ctr, _, None) => + annot(HTypAnnot.Step(i + 1), text(ctr)) + | Variant(ctr, _, Some(ty)) => + annot( + HTypAnnot.Step(i + 1), + hcats([text(ctr ++ "("), mk'(ty), text(")")]), + ) + | BadEntry(ty) => + annot(HTypAnnot.Step(i + 1), hcats([mk'(ty)])) + } + ) + }, sum_map, ) |> ListUtil.join( @@ -195,6 +219,10 @@ let rec mk = (~parenthesize=false, ~enforce_inline: bool, ty: Typ.t): t => { ) |> hcats; (center, true); + | Ap(t1, t2) => ( + hcats([mk'(t1), text("("), mk'(t2), text(")")]), + parenthesize, + ) }; let doc = annot(HTypAnnot.Term, doc); parenthesize ? Doc.hcats([mk_delim("("), doc, mk_delim(")")]) : doc; diff --git a/src/haz3lweb/www/fonts/FiraCode-Bold.woff2 b/src/haz3lweb/www/fonts/FiraCode-Bold.woff2 deleted file mode 100644 index b76a82d9fd8c8201ef63bb8d4014b28e616959ba..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 107384 zcmZ6QQ;aZ7u%^ehZQHhO+qP}nwr%qp+qP|cX8&`td$V=ZU6oEcdF$e-yyY%0#smNe z00013>;ZuI-wE>A@!uW(e{27x|9@ZwTVeNT;RNpTff)b<2D?B6Qb6XQB0@mL{vyP* z*g$td006Q9kpOo(fDnKt8G{FAvBCtZY46&%fc-kh{J85uR27{wMY7w-u{$`y-T}44o=(+`Ns^`g{QbXxrTK&0c>Z%w z@AG$`AO-mc0un?~U=&(e-IA-V%U);+#w=DfETF3<7<8OrjY=xYMyMznm$9z&xK5-> zeaetITi4}QH94p{Ptj>BHR{KtUOeJ@D3fefrVUAGU6x>tNn4$jTJz~if5loK2nl{^ zkd1wbUAQ~$q-1BW>XZYqkgKO+K-P^k+ezNQhO^wdJysFSwDfwPaRe88;F!9g+*-J; z3-4s_O^zGL#(k+j%Z#?RH$_4v@Izg9pq4cBI=9(F%R(C=`v zYh-jNN0q>jeZ`+QrR-+U0IjeqRjTbjq3xPxZQ)fVB+O9MUzzUC+b?rTczLd~h;P__ zk-7tQK#Ea>@Z!=JV*~(83Le?2L93HN)YMo=r68jm112*qfHzilX2cBsR#6cH2H(x+d<49#l|KDe0O-0O-E^xwwB|z*WrtQ$UG` z$lvkzR@uZRix~n2M%V|eEShh7VfFl2o!$_|(fykK6p#Lci>=S6KrJrvM_;u9?dy|t zY>4`k>d|Jd>#F4H-HBC_icInwD{TX(zk}7VSMb*lU_atJ6mqO=xCR!Cddx~N(#VOY z!iu;cK4VE~x~_)nI8yvc%{Ny6Qqwy-JAF$=>gN7d_%DhCQ<>CSN6$y`lFI;J{S#yk zdAr>IHkX@Oe(Kr|;`djjl8pkl%7LoX;d&5G$8?XopmWFm%a)-?N=#Y=G9o}0Qi&4G zbb**un>1X68Ur#)H2_xP_4}{h<@c^v-q~KVX~2N1vVpOLxr7mOq2y^kZtjW%`? zDIO(t;p>J$xv}=A1MbkBN&^J0SrH0UG)t;+HLA zA;R+{&zKCj7m8=j<=Y!#jR3(vD{K9^)wmf3S5N*kXaD9_`Aa_(b&;f|;Hm)Pq3D&g z4knFe)y)n|p+dOHBd{SPz>C@sZ0_YR_aXBk_Q7Y3dyYBpy5^dM`(wAJHOXf}D$AVI zQ!S~c=FBtcg-5?BDK)jGb@h!@GO6Z;RPxD`RI_@*Drx0dI;+ewD|MxY1=i=}{-u_x zIE-wW*N_3h49F7Tqg2ZMD*9ImuPjA3p-K+CUjXn~5uv6i_p8&e&+wIvmlGy6R%=F9 z*52t8WpY1a%p*n^iY3Y;NTECt>FoRK87pj8o69r zDG?2|p`j5N8bw4V<`n<>_18@Rd|ORB$ubQ*EybzAjt2Ga&%giK`Of!z7o4=kM4FAA zp;9TbU$~V@MZdpLhZm|a9Z1O{V}R!|m#*{6^EOmxWZIfxt)*sApK4f5D#U z3g68!*Ck`Ro&UFGZwxtwjKgH?O5>`|xo20yRK^?4MRJ`(#<;{kdc&WgV-84u)2#4=j&&E zPHk~ci^&-nAJx-y;MhYi8Trt3KFUZb^1DqUI!|q?kxO)gC0(;x9*8#)=(a_EwU_C5 z`0Kvw<%d)Ka2PTHL;`5QBqh@`iS-~_t5dXf<+tv^kIu-xQmqlS&gL6t;;<9=VG}Jj#wT;ZLUAgPkY6eBb zLj>VzZ9RLeGam?h%QGO!EtWoU@?|k?Qox5k`l&OV3c#Zfs#58MO9#Wg3`{^=4W1BBf`&K>cup{M)NFU=KwiYyc|YU0PX zktFhM9m62^X1(2Mvr8#u!QGKL#+L+MkbtY*djQro9VOznw008}7)eO2=l7%ONN1~< zBlAlk*s|<&CrMa``aYW2GhnrE276)0Kirc^x-3zqMFD7;fXxQmkcRgOQPC=H9Ym=1 zBHPR(_*ftyl4I-g~F7jccJu zwlgZn;$^3;7u_I0QfSaDC{I>SIdW6wh~K-AG2L{jg*T6Shv}zWFVlLw?;lFSq25pd z0LnYvzYPyw2z%kmLZ9xxF2Jx|S3{}g1QAwoPx#-osK8U~8aB?}2MdfEgC zF}<~{eaE;%9MI20?(0vY2{;KZwcIP>{Tq;U8nA6r7DHNG*B86*n|+|;DUd+2 zUcoMCz%XEuhff0-xCc%Es){-R$l+fD_NU5L7`HkVzR~8}XPDF{n*!WVOM%-3|u2eS(a}%dP*P zny>o5KUL78Dghz@)C-zy5#vpb5a@aHeKqMeEFq8c|Bz;?;#RZ-vWR z<~dr{IgxAG8Q;O6d_3e+Uw9SC_LBf*Oj&JaK``9Gk}TD0x2O1(tg7BI zr8U~;9$ZI}B2It(vp-w!CIEd`o6^=b3yOe)sydmIiZT;T;z_44Cz^QGBwouKufLhg z3WS@k>47JjfJJ`2#gy2nxk;!^u9A;P@G;U6y!Yd}q8f_YcALNg?5e$f{>uLNvomv_ zq>}csYy#}2?h5fRvXc2tIcUfZ=y!kOS8Y-)KDVPMgaWBmjYQhv{=RxSzwXk=U?Lp^ zF=%)Df3MgS;60w{(&el0iHvu_Dk zwMQgEkmmcNS?VF5qIqZ(Gb)<2BZupTDV-1mAp+}Ry{YQ0EY2(fW4;`NCB%kzu<^*% z=;ebn1CHMigf)a1#8|~JjC=la!V+HH8kdX0v6cXLo?fn-@(0%d0L^hLN6^Fr3heiO zW?aW}P|f{iue4Q$B?c1+1qT@f=&rVe*{Z=T-unK%s1jsqmdAl09gas2EsdgIVkdjE zOUBoR#D7OcM8Fu0M0LjR>=x~vFK$@VNhKD-h>}PoAOwLxj_~%?z5V$->As?@&yt4j z0Y}-QdJ^sj9IyW*F8zvMD7BN3CZR{dFtu#!{LQJi0!g+YD@U2FO6qUe5C}E`+IUdJ zw!HHB*(Gp#|ANZita$C_-)vDyu0xHdF_-~Cp8x&!^S}LU8d7Ctda|M+ArlG|cngZ! z4^Zx|_3h;#bk1PDiVk4V{H%uqI2<03#ejj&00yQND6{~|Crh{?pWqq)W7~a)AoGED z<_u_nSEAakg7&vQg#@dlE+ZHxfc%G%h)JC|NxBM}v`;kQ+H1omEH$0PU*?cC6pC)G z5F>_=Jo4&ly-|4)>s(Jsr@+*~< zu+VzthQn9xk-~o5urBDE%J$lRAmnM8Mn>Tc9^UJYFAlCB@EFF+o0(w#L|wVN&jETk zvo;E#%K=n&LQL4j@jE`=336J3s?r)8!^8dp8T?3rLL`15Fu?ZR*KaX00S}alhj6S>YE3xL<%P_Nbdi#(v1~l{s-upjEVdFoEbBE@9L1Mh ziVn(GpG81t+ECM)5@ZX@!Uij%t_uo{_D88trye`+YQpLeYp*D+sxYpb^km0m>h}?d`2Gf4PPk1;Wtf!R-Kr^NNsq|1nkF4cUBX=^JeRv;3+WZ?KD4@f@ zJRpF?0(5Pt57Ot56=7i4QLnR*0H75dUq8Ip8SqkI!7HjEQwdCWDFMzQ3)FjdBPN&H zR@#550M1>9Uw1924b*VE_IyINO@U9DBX&LdPZMwUrzGa)Kgk0|WHVb828+@s1AZGq zzyzw>{8la{17N2Nz=QS30Dp=bIt8Hea%OS9)tGC;-AuBywsY3{Cm(vG(otKZDG{&g zzGWA`0qJ`m2X{vNx!-}r2s04R-sKIs_@nBQbBq@_)ZY+*eyPXm-F~Qk^x8`#nrnTQ z@UO6ag+WHBP-qcOr$b}9Aevu9q4`RtRV3L*Vz zw57EfDj)ARiF<9mlzD}XmEqO$cK`DaR#ur=*j@}??n}0Gam0Y*2!Wk1yTyy093sXm z&NDdhKYV>L5sm+E7H!XdtkNf@gf@ku#2c+-^p?}_t+*tBNCt6%)Y+`tJ=u3ah0|^nW zsIbJ?)ZqNUM-s~Gx!tVyTK4Aq8Pszo*H;z-zun2+{(OD{dor@R8(tU4{dSs$cXR>< z7fJ~Z2rJ@nu(;yNduMM9gB_m`67z^YqvQSjU0rF?>$2)EGBLxk4F5lMCKg}44#ZV? z3ca2%)0qE#>SXDrr_ujO2JtQbY(m72mW$r@jkTC{%bv3h2fRNaD>0eqVDvhh?ED#q(YdD`8lfOBk}>omSo?9qzE?Y z&t*xWX(y~&9sa2Zw>_vG`n&h~;SZ#ROaZq=blZiHTX%uMe1IRCFLvmDL;ybN>i~B} zbW1!;1G}`HSf6`4+270iN{9FpEqpKFlmMEu;C|+9VzObMw^oA;luowTWpby0_V?DZ zXESki6rl2*8rILVS8naJH0Kp~AdvDe^as9{=$GhF>?crqwV&>fZYuR|7yeh&%m@x<`-;6zZyAph#T?(=M41|zVc*Aei`FuG166u=$VmabW^d%;m4MG z_BZdEsQ4XirWB<=_wJ~vZk`VKRS))Di__({76NsQs`T-{N-#!CMhQB=x3_S4wg)v_ii)jfyX$l%BmLoUEzsQDn~}OV_tR(Y ztgioT5~3=-V;#8jR^hDDolstRk5@e;Ea}DChx?pn zM`*IqxZ8i;fSmJeZ69Fw(oXK_x%C@s_3b>!X6y8f$IH+9c8~g=OK#NnU4A3I4IT6H zgiz=4?9H!ti3RYGr$BGy2lD}}0GJphhz2kYo2dg~_=+d6+`!TYUjI6rmPPrLx#Gvc zk6ZQAPu*)cp2n~aipdwTpR&4^!&5{vt zRPt++CuurT|MKEw#Azy)ow?n-fV8d4nmT{+_nrnh_Y~`C)}5O)k72Z}o7dPE-+d@B zT;I33gF-}|Ie~36t=kN|NEf;xAQ;oFr$AWEQr+a*ZKeB%G3`4%Bra6co;vq@kRpOv z!q)Sz8VC@KKhd=)89U*dKCcNBANs|50)~>X**I)yA&W{FGOX@UgYpO0E73bU z(SXW2i%s9K03#z+OfC`ym}n&#u$T|C_1b7ssr}UXblrW`96Af*aIObtKhivyYuTcPIGFTEcVubAS7g!45tGsja--$?X8#Pc8@Q(90wKm>9lBJ z3JI$joHH_!UKv#Ft*7ZAP*%Qj-DaKX(P3c>it8y(C$y_(nv{z0sEig$2A{d<+dtk)sEvHHa~523?z{7wwzeZ z9d5x$R5LS?j+P|C*u5)%{^*5>D}3@wir z=>6$&u!Bqraa%G3_sB`+bsCRQAt*-dyi6g{=!-^VPjW8>8BuYO@!>vlCt-P!seu`G zu73MhD(|;Y5z?Yl6xF2`*QXd+y}7^D%wZ_`mJhu<3~c;06m)(_P?}|n|K1w<*};DR zOh{8!!Mx(X|8%0o^(Fpa;<4>M_JRPxy+r%~&IOT6P*`ASbbt((pe(z@&=mi?wRT2E z%S*^e$w|seugwo{Pd@deV(Cs5^6X4{GLn;xAQq9>su zq%E&tTKzly)A!q0TwrHnY;Jh9IilTzh6fCXx=srmBQ7j3G&n#)NLKnEE{6DivF?tL zlaP^?mz0%STNv4$aJFSze;3XIjwLYsU!cE>*a`LhG&}$IB{q6~LPknXQdU}>p-kKK zQ)jCA77q#_5Fqd!5GpWsK8MK`Kly(n!FtDg$Z*MV%5sYftZ|bm;(u7}UEe$t_XQ0N z03+&fxVXG|!B20+V#6bZ#3Y5~MWzO4&o3B9$;VS_f||6-+Vlz=EyJtf@$BvTI@_~$ zu0V5ufdmeZh>41e43#R(Dmf%lv0SlOEEmdz)A4-4U@#fY22(Jd(P%Uq&4yM9 z-L5$~rWX+9aymIKGmhjqE>f0sIvv@AIwfcTl`?UVNJzF(nxd0rlwI(i&{fcBciTMQ_6(@WGLBQ85wiCe@P^GRD3u5iITjhF{t8 zXl7zyU0766CDV~X&{&XsacNyqML8`Y6$$9a;t+ zTnZP@&zV(WoFb_0Jd(GHNsZ}UQK@lVg^kbbixOBym}1!1pqy({E)z=rv9$aHh-W~$ zh8hiwRJEG7`_}=A{hIrEZbwEp2W`8%wWHC`>%Th0mr6V!{}1_sgafcEQHzWdRY8YS zb!AneNhlT%2X2tn11O*Wgqi2-sds*>C%BM*?E5<>)@}VRgSoEjB2F@JXq z0Rpa&kVhm608tdnw1sgL%e)7YEX$;cvMkGtOHf!020|vwH}HW=H2<)CyVC74x2(LN zNUFM~ZB*;3rhPyx+oo+qZOf+IVj>DORJI#DgN_6%l9;n3>^XrFi9jd{iB_zJ;{l08 zDv3t4isd3ehzKa46weFP|;GH@W7T`Da=g|}mkkj@l zv-wW9WUb}?cM=xi-`r6w00aVBYG!0&Xs)et!TZFP{9}rfs!2K4f&@Zj_XI+!OQ9cK z|Gs$$^PNrCW$VUtW8sXAZ#XoJw*B2c1<#})tn52l&SA`1*Z9fw^xj9c{@r_YPQHIJ z{)EUpdNF_Z`}HUDLKX9pMt9qby^-`5+Umwc-5YGI05Ys_Qj1QcN=s2Cq8Alkq@36?=h%D70AHdCo2C7wy3AxUS~O{SXAE1enHwNXy0uVSPE` zN3b6#>{iZ0Gx+F=Q_uJN3M7-B>E9{kjk{uB%xIoArWbxVYOhoFLrNq#z~mGrnXs*C z^+&2T+TU`ErYZ%u*3aqb`+9zrmWOidSKC^9ak~wQpm)v#@me#bz3Ht!v5O_;Sers?lq({#4n#D)8!kaqsWU}WSMYrGe z=FQ>pM|Q@5uw8{CUaCXafytVZ&7gLU?TtHe@j$cLhYWWfiGG`r?Y32}jkkC}=^9E5 zS&mvtL{zm%QkF^SE*=hedxriqqH*ut+PQPQ^AYCt90KQiOJDw}_6NC?m<)G^W25 za;$`sekTg#OVs)Nl$W~FZ#kk%YaEgSjV%D(>|rsjS1_$s9MW1=6CAsW<4X}D^F&b= zq}{Qsw9N*@3RA=!+nle9bE(7Ty$s)t$to$U0+hIHTBJ2U);Ujp}XTRD{UR} zouAsVI0ey?JsNoC87HTdbj@079`e#BbAq1yB=*psu$z4(<%bFe2;k7zCleATS2lW~ zbR>Zct_Ce7Ai-r_8tPcq9FS6*=8dt8Eo*%Sm%urhHZzVqBL`JcwW?wv+(cgx zoclLEJUzhq@5RN2f}5Sbzo20`x+F0%Ras@lsoLCvA*qj>*c#j34epgM%!7Wc01gBQ zstITyBQz{9RNN^rCg>CjcgS@=<%lCtT)-tT<`8KHl?#jv4exg9UKk{#KYDzvAUE!$ z+teD@)wa9&)wRZ1_bSao@@t5HK~5Z{qg_qYwKcI=EFP14b|&j?rNd&PXq}9?epN>1509zn&Qx>16mDYT^V+wlROw9Bqch|yfPPAF~~X$J@pg-s0*4G?|WM!tyS($uPf2u zEN_>{)Q-5~otq~5Eujdyfr+-QZ23-GBG4qL`xGgiOet|A!_59sXbzwtwtHi&R z6mU)vlEaSL^9Naj!Bhuk>Ioi2``Y^ z!D3Yk%e16K2M$z57ki6#tM5Yt3rYk-CB(X78BCX%$mRE~sn4M6d5OO;_^+;-OYtG^2p#-c&oI(wi7GAhl8H-V1XLvLJU{!_9 z2POkZ=@U4jO75*q^q&={re{>>W4%AodSF;|-rlCCVyK9)$M9uC#U) zx)$9Ai|FP7l@LS=X4!JYdJqw#MbC%uRK*HR z+;?(9(#B<9PUx*~l+*-Dfi<^Gd;tioiZWFh*vTvAd8i2{Swgk3-jF<>vM6sLKav7=fK zO-Mj%#D-w&2?Pzhn3q&MUZ-AO;+imDM5~$tYiT}+SRdCdL6G0WWho=541^zD_P{P^ zfZALwK@w4w=#xyCNUjdzgETk#HwRHR(mpTv1&N=liRXQ##-%(FdA(v9kn>|g9*f32ze*hUFEl?p? z%E3QfsJPCwRpe*`W?Pl|;Am`55q6`@>C~7;ylX;pj2>00XT@l+WSShJcOYypCTrlWxv>)F8p#(1~)ezhpAeIQ<-ugNd+M&Q=B|@W9Yq)H;;3X%QTr~$1s>0E$dN}GfJS;&Hbg2;MQVW*dB68Dw1{?VjIoCD(5komhQInaPA$OAK0P8Bk z{7`iOJe^_*3rnt0mVjuXDmF?$I6{0tVl}{+5K^MXDltiBv*>Bq#DHog1|EZ`gd|PA zCXT>lU=^fO>q1{PTn=VOhG4kpIiVU-sld!NUK*N0k|dTGO++HndMgGOx`%e`0)(hl zQCo`CtYUdzW0F!R^Pct02 z(>o{P63|LSHN5C?z>mUvvQH~c+OkELp5_qVjRdkho z9)~+ytd~rSqC}mjhc&Vk+KTk)Wygim*+OQ;m7%^Z(nQhBurc(i{q~=~Ksy8BOzQT@M0(1%%`LG2R^ja_~1*Qq+5%o zH4Rnr70we_%3vwG2??h)c#jD+Pgj}vlqZfGj@pEVtg4sQM7$QYDXAJ){B^wfth(Z&)e*wz>r}*rf)GKQT!=I} zt@MWx1)kM+c7# zTG`7=J3I5q4H|G1Y9Q#OMFui=80@LE@=>6^v3CV<9s?x z1E`cRGh7u4>L(wwY0|!gJ)N#~8eu}+13LEm2x;pGb0;RQxz+z_38p#7lM zs%@o9tt0@}m|BAhO_NhoM%6^)TrmDmqo8OB3j+w|Jt}_u*S*nm!I*p)#}_##`f?yHCfM>#-&zO=CJv zNQETv3^$eXbG1BTq9hR6uf-?V7P&-vv!jAI=q3opU7FA8TTASU09(>Fs=8EB90g#c z(h5P4VGN)LWqeRA?!w-rP%dH+He@PCSQas4N1R>8hhD^YvJP57NGv8h}(f*V1|oVM?3zn$rFrlobuSO?Od`? z71{=1f!d`2VdRG@ayG*$b{`V+i-F^nDV}y{*t(2OXi;G1I;<_ z?Kdnl2DX}4gSINif_l$&pnttx?L<>js-W$%HK>dLJU_<=O5IqU!k4iYZEIBuy@1Sd z=seb9Bqsl$e=Mfrj!qFUpM4;)a?k=kiw>@s9BIjaYO#xwM`|0sks?aTe!wIN(}!r< zAuK++QCm86!;pf>2?D2-$Tzl zJIGn(0z@S(PBX(fB2yfAA&$Ysu+z{<{a?PUSj$ zv^$XPsbs%G+Z&_Ejz&(+GL4mz+(6iFilyn^Q}3nf(e7I~c^$JF8bJOACeiL`!mTmRJ_8g}(&_xZc44zAn#LY%t3 z^1pEV{IxI-fGLXI(T~Sy)z?!%YE^!NckYy9-lUnPOCTAaCDQ05a+9+KyJg>94$C%f z>pbq1*D*<-vYR$Yre&HHGNxt2GgqfD%d>!_X4EdZB*TtuFGW; zZMR-5&Z?SXI*$zJMWqT;g@TQ*(5aPDjoRJ3H(}-CiM-cSaj}un@ewj|Qi57AA7o~= z-f-aefrO>TLpH)MI0&sXFcfS=Rgt(zTUB)wElsIO?Zd5Vt^>QYYsmAuy0ZJ(v4)5p zfsT6D_TRJkw3o3;)g73Glf+NYF!!~-E$~KWs<&Ra2dCqCmM|pCdUf_D28Mj$C|`G9 z?U2MR5}F-NJ2WHFCL6ikyNzdZGJAU-+}Rs+km5(p^XbN(a(fseOE;7Z?AnKPlO^7M zl2~&=9XO#{BQ%abW*(@sSl1Ax`(RpDJ&y^A>3NL=>is&tHDG{iUiwq;uN8fyYaOI!QK7=mHhfwez#DJUC5&=XkFg&<=qd`x;) zNOaw_Yke7Y? zbI?;V`o2$wY8S`HNl|QP1`Tz4wcw`vYft~gZdC>?tUSt?!m6myjXHOiDXjeQc&pdw zK8*YdD0@9D8I~DA@W)Dx@YC(epk~r&@!KYhq798hhMpxzYn8p?MSiZ z$fO$yWk;sl=`dmc)bt18DuS^uv|wU0d|dCI=%D!Q@mGxBEmK^NQS9zbMk4WEzUh)P zn^5#>DgK(XxEVuOV5BLT_)l~@OW_E(eU_qL4Dn=G2g6t8xRV!!uL5&mS0eks6{~lX z_uUl?vLAhbpSTWhb;z_P7E13CButbkm+RPWIle{Lv9`W*_fL{dRv@l^!=Vjf)T1&K z*r$ga1_R9|?fH-W472@PT~(fv-5&kLOMa*+jl2`>z!h{#sTLbu*QFhASu~MIEZvrK z;|NAFBc?JVu2sF`lNKI?kXDf5?T=rVjD)gvfuUU6xUb$TnGbA%9e$U`_H2wq4l z-4lX}Zub=kBYR?r^FV@Ew4isEppZ<6SzNZgF^EHD2&V4DUX+Yoqs*K3>I@C24D`3Luzt2)X z{2z4L-`iQ!%$=A`UHmY$vz-Si4QW^x_z_|iQxqyCO;^~RW4$-eVI_LJ?e0O;S`Sic z-Hl20#z|GzLK={>wAnp;1ff(dU7qAU4wD&4XYg3*tvx!?A>^9Mcd>O%I(o;;VoifY zb#ffmor<2Ursa@QGD=p_UPMBxRX@K*t|loZOv%$|tA(kYBT;p=!T~LAe-1I>S{W)> zl=>q(it~;1&`Z~L#3j}C^e*4W-EvAn7mO%F4-8KAv#8`k2=uFu?%_AyPu;d^Zn5Jc zYuUNS#|dER_-cH#kufsXtS5n9WGL%ZHP+kBO0q>?>C#L4CGw0i&}xz8_|mu z%FyyzNAu435kRHp{cR1~wFK?2Aw51J2&<)O*##eD9(A_i=`YEdA+Bexk`@BP)oi$O zmhSTBNvgTSP*28wopIjTd8|o6%ON`j8H|op!!YNZ8D%<$zHuB#yQE`3N;j#eDww-l z9=_K|A3vpYchO&!YX_heXH5&%30ZFg|pKF z^)cE+gqhlf)m&~S-*T7RS#HkT4UNm~_6OJ7y$~*V8?RjOH?axfM^V{om9qugny2+! zJ=%DD5z~tUqpWhd_o}Bw%4JPADc7|8-?<#rkkeJP2>hT>m(O zw@PH}Kc&)8dshp5t!*FeD?YwyS-v)@*Gp2&z&1Fj6?~9(_u4{Aq_b&lN%;ASPW@JU z>mIsxTqf5-w^p9r+k^U&NdEGSDGi(36=LP&igWxc2vV?{lGQk6t`|KIx473umJ*)5 zNefV;gh+ATD~n>n*2=SPLDW=mi+LiHNR+AQ)SJnBavfjRWK&2&Dt#A^GX+pgGjwcH zM^ga4s#|zp7k`FnagK{y(#hxHe#^wrG4!!@D|Y5z(c;maXLvien;Q&Rq;fTKak0M1 z4&y3k$rvfRT$ycCs)tW4m&%UIRo=K9>D)3UrqjzYf7h|=TlJr10uW`SXdfUpY&A?x`d4$9QpqKitbO?9wIWWFPJ z#CEW;ca=!O{rv-OEP91=-$Rh4T&{Bp)h?P1udEjv_bglV4J4=f3VTfpcutx9kT|^5_o+B3%geq!!l<2A+F6Uu z*0MGgwl1A%;o@TyATI@pEtqCzMxapcdYUaYY+ z7hhOu&Ex&RvV$L;_omL;-L)>mc6*f+#r^`EN)lP+MmTUF1TbMAUGH$O3yp5!B*iqF z-alt*ec=K15K#KCyy*v364Qs1SxC4z-`1(`Rfc&1o=9DMq`VZnoFxSdvyp~K$fyBd z2FP+q++iL8!LE-GgKRe`Y3#wsz)a}8#r~cJ=blyb0qMM*8*H`Hpsq=}vGc;HCB~CF zH^e6J7sG)I)}Tss9~dE2SUbIeb61@Y=Y8Jbua%-8XM;eyo@s`TsP; zhk^4W8=?7=a@p@aoDrYFgMVGk+qKE>IJH5w@>>r%Nsrd5*Iv6<>>Kme%D>dc^-^9VNcnswi`GZ__)FcqKz6sQ(a&2KtIF0fV|34($}o)vm%tKF9kXYun=8QNbD4!xUc z>$W@E=Wbn*{>=E4b4kZp)7-#)dCUv{IPI+Eda3Ez^}QX=_KZBP%}Y4fx~%BR|G+X# zQ_4AaHOn{^TI*O>S(=4U;HGczJuWZ$QkzdmtM$Iz_ZPoQ^@S$zE=kDaAP4xP{UTnsb z%jpUs$&erQdW}Mvevorh9xUVYh zqD438SL6cKpxf0WY=tr|)9KK6O(P&McM^e}Mn-lTl>poxKpgE);Jh~l<=1ACi9|+b zL{4z@zkScOtX#o!IWF7gt*9GpA#ne_$=$SWE%{gb8;(QT>z_*>ah z(!%{qPCOopsujN0XfTlvC1%ePA>7Fb1r&F-v&caKf3s272C8DvnXVQ4>O z1U4L93L%hzC{cPLS%fGykVfn=gTkn68A`@fmQ*9P%_;(`LMwv{_r(DgB343{V&?w< zB|zH0Xf3*0F}7f};k4szCFmgPB&v zT_U^1_DJm2Gb*)DX1`prZFP8lN@FUA)y9E2!O248VCB&(e`chG;tLe|jv)&dAzp%9 zd2}#1EFR71;fl(ypyG`@w&B6HS_Sa5UPFy_)m_gftLsh(X}Xyvn;N{f;U+xEQm{oz z#BW(lxKn&vZtZwjfg<^;I@&^)z4YojmfR1qqC|`7ugb}kB~2F@(!&XNpT1w0`p#Xw zf`0_PwCQ8%|Jgib@p3ZW!^u5b=2M%EzGzIxa;(N;jK*Zl5*PRF8S6m}VjKpUNMHD! z`+iXM2OAvrE4Li-W5+G|krU2a>a2v{df%E=`)>Qdypgg0de2RFTzAji!P?^vJj7N! zu;;wxBR_Mn)8QUCX(c%4ohKbl5wVKQK4GqDY1`1X?jLsBzrVZ(HT| zw7(`wGUf-7p7GDLl`W0)sGjoAtc@)>TIX+}*I2m~O&?RDB31P+lFK8)VJHrpfW@G3 zcnSoHV6w<`21&rD^*F3fxc@~$Ekiv`EQP41ZG@w{0)s{&5da*^WU*lmj#eiH$W?Mw zYK`7tG--8yxw-qtOFzsOt0yd+Gy^}z=rI7$eiHzgaX{W*nW~eyQ1_v5vw(V-en5TP zDxd+DKR`ol3ebq48qj#mU};iKF?v8V+%lj!_88CtHw9>ki3ha8{R6Zfx3;wTb{$>N z-MV{Erw7<5peObm&CP4YOyO~$j&adr%Sx*QkQwV%YEDxzIUao{Mglg>lz2T z)=}5FUe09dnu2&>Dv}1KVHsdLp$9Mn%L8U&9{`VGw*imi_5n+=CBPHd!@!f+-M~}W zBf!&yp1?DNPQbH7faeIEf#;E0zzbM6;6?01;3cd9u#C_JSWZjyCZMd(1?U82Ofu$)K zLf0^~`v^V2*h9n~VdycYp5W*yv7Qm|+zY~uP-~QumtIk63{S6F^@e?K+4Rn#-gD{$ zyYq2y7Z*Np?6cs$@b}d>fqfU#xT8&&Z&Fr2Q2HsOUvm2`vp;V1S6=^=H05^FYRver zzF7m!y>4w5^u9$@wB%jOzO>>)t3I`6qII9o#^6>KHhuqYwQbGL+s*k?SynJYSh9XN zIXPG89snso5V!*f1_B^hxCICf(tx0FClEXo10lfuK!{KZgbp48LJws?NboQa2B-vt z5gq`-1XY1B!(%{Lpc)WXcpL~D)Ca;2&jaCrnm{<=Ng!NM7YH{z3xo$60O5rffbc;r zApGzY5CLccL=ct(5rW1*gkc#F5oiWP6jlNegQh^lVFeHgXbD6T)&P-$7C@w7H4qu- z0^|Vf03r*WfRJGu5IJZIL>@K(QGm`s6k$6MCFlS|8P)+&Inr_v*a}1yx&cvx-9Xfb z9xEE92`>ZDf?hzh;WZ#S&{c-&5c%ASN&nh$*}a z#0&-lF^3O;SRCh{C7-?8@&?`mVtvG71AGX?7XAn15PSv1?jZKSr$8KQ#Zh(BBbBmn*kB=8_X!0|wW z;VK{@P!UMzLBfE40|`G!1mKIEfL!xpasA|4)a#xZkn17gSCP2R=Wi4zF`P#qz^( zL2y(Q?U#_SPfE%$X=#UKWE@eTz&|P}@vlZ2JE5aavel0iYl0h?Vl6Nu3Qar%C~ULD z70xs-5hCn}jB}&@RTPQdfX;8${BQ{r(Gi=t2a4Mci5JhPu9I3AP(o@^K#7Sb04254 zkSx{7i^3dSWys_vOO_?ssu-(r+Yt>Kd1%sNL#tK`sHj%8dFF%Xo?G<73oAy9STkzW zvX@?3_sS~)##T|UXClAB-US1BuMguKr(*#&2 zqyO{+9E+?#?`jO0)?jk|>MuYWF?8DO&x+aB+Fl8>V;74(w20^lqd+k6{eV*QXJO2{ zIkyzTmDH?sgYO!RUYblkVK)1yg@rFUaNwH`op|QdJ@0kqfe*THp)ycFIiNy9afgP+ zg@M6=g~NkKAV5Uqg@nWxnIj1&R7cRz9p{4OBsR7wt~{ORMc@V@p;;m#w}^SW&4;gh z{P?-cpTEZf1X>^=^%ohLMRIbJ6cip&QbNN+!DyZcL3dxMP|q+hoW{g-QkXDTu&~?~ zE*x2e2(PfQ1&I`C4F?AW7uUKdQG!K__F9Y>RIy^c0RYg%iL)VIybuWzY)X`fE=iKN zcz8l3OSUCN3I;yDcT%NdN|R<=x^!VOWOy%ACYCH&KB!W~PPJ;M2nmf>4GH4`0@>b) zkUraWfqyV$D<5!w1Hr{17XyT z2z5X>bs~nkAcDFPOFa-ty@;beI7j`6(g2*NK_t*!xIp**B+^4Y+!u2nq^AcEO%IVo zk06E~BLh8wSbB<#^bF$YIWo};h^G-`rct;|FOh{_Asvmu6?%=V^aifdTXM^Wciy?? zz4zFC@WFK-eZ=9DPZIRYXONS=Kq7rbF8T&Z^c}fr9Fl1Qd1w++=m+xBPe`R-$Va~+ zjs74%{RImBLjjtCbecv%BKYc zgRT*Ax(>N?gGkU#$fH|Cl5Rsj-62wR7YgVek*51lNNGd{0g4bI2M`0rh$XU!gAzmu z8Szkx1R{q-C__3TkMvNEB%*)}P=Sm@5t*P8nTZmzKoznQWn_bDWG5=f0X4`;4k8!S zA~#V*9;icJqK14>kNiX(1>hzM5)BlBTPRF4Q3P(IDA7VOXh3nIjS>)mlCX_Z5QWkN z56VC@9w2%s3oS?{`X~pjC{GMf0jQ`*3^`GbbWVDX4E8efW3K=X_A2vXuK@yko%yl} zfQ2n*UhFdS$F2h zbXWmq5m9l32(fg9GKXWBn2uv%IUziv2R2pAN|G~pl4(gNl#`m?_sxo1t^f{xwD4oH=?9ImEzWhiNh>Y>_NtR|8Rfw48Y02q7QrRdYAxCTis0VYgR7BDd; zWdjp?Dt%z$Jd|@zTyw=3FFrR)kfc0d66?}}1PS>RC@^w_lh2&Pb?7@cZa!8jsV)Lj zTB-}cl(kdSmCYQO<;cP6h8x)B%EK*RJ}w0cuqafBO_3rTZo7>iRXc$ir|T>xOz`$Q z{*2`H*I$zUnI={^oMh#<5}Z1Sd}Qc=4*ihtC8dLf(@`_K_-8G-}jTQ>Sj0B}=clbN7M= z4=p@-y3dQ3SG;+9>8h(XTyxE~>k>SWD9M~;Deg*@YEzmtJE~P%SEI(BTD5koj+9uK z)wio~(@g`{E#@BLw%e%HKuQ3!#_d=&v7J-RBtHVoTDHqpE6Ibv9FEdC=a@O1hJ|HS zI8sUhbF?cMcz8j@Lh=G&&XdXqn2WUAAxhMpk|3otFqiD|f)ptpq)BrlL&h0oWbTqA zQI;&(NomrUR|)OkC{^aCa^?Q1Q0b2!5o1Q2I8zcN1dt@jwxmcE1uUWS8W4!LFfgve!kUDG zvjK(r3=eM;0l^nUM62k~`G6k1H6$b-F<@{BBSz0LVe$|&W^b@y5rY-0r`WK$j~%<$ zIB%LH`v2tBhx&r3+WA@7F zM~@J2QZgwhZ91o+L&rC|bj8u5=O2Cg_7!6Q#Re=5DJ(3F$j5-CF~tl^6Y@V`X-Z*W zX=dS_zhTbY4ht4W%91WRSh0eXHAl{zOPh%wY}s0H$RVTb*jZ%H-b)S~wjaM9coprWcqL(?Nfh;DRr4MK&g#lTR5iAg97OPz4xT0~$g6Dd+94z5m7 zqBM&Zqg||6O#pxaapLrg7q3l1@CIJ3l4a7A;zG%rOgfijBtVEF0x% zHP?lKZ^eojmt2zOvdcnUb4{%4uA{r*Hm1AoigeF?5gvLB@WeAoo_is|OKVP8x9+$% zwoLlq1BQ>jn6u-1a1JS@8>!tO@O$Xfr_GKF9d4jZ`0!y44$eZjaF!xPvceU`8X#^t z+1k0ZiaiBec$OTv-DQA^y1|BRhD4phqAf*|S!M+hR-u{v`7M-FkOdFHWcs_>ykuG6 zu8#Xa+-ESx!7QJGY}ncdMJ3f}K&9QZ`z=k}H)7{$XI`)X$ot1Hf-*r?3ZFwAKF~c6 zb7yKgY`0XIZ_U;$TRg6nXrA@yz|&n}W_u_D8ai`}BA|G~QXC`Lyd_jnA;`wXy6jcO zKZk8oqrARebl(aA%Yc)ir$jpsXx{9=xce1ww}I7598v!MGlZu{OBm^fa_N|Xv%pBY z1q+f#-v)uIjQp1q5Eg!<1l8Aa@#%!`AR)#4sU{XX-rDwi?K~Y5ywvX7Nj22*%=2#3cZa4Z0u3yb%{>D*-Xp1z26hG0R0sDx6yl*v#~MUg`$~5gD(P&()Oe#dOu%NdV9~|I`uXkTg#d9cL5xP=cNfAO z){za;wB6_MK}nm|`=~35g4mtCor7X8NZ#`e4jSUdgUI#-R2UMgLwVet%d<*#Py3*p zK?8kzU2lbup0&IDchX}mVtzwI*O>TV%%iS*b8fs|0dexwgP%Nl2|7-dm7X3E z!FoSjorEfL;zzK8NN)lD5SC7D@z25O_GRjGk=M*V&nv^+%jB_TL zJW3ihfx3G+Ltz&AO zhM6&Qrezk)l36ipX2T5GJb;!5EjhMF3=4H+t2%xa?ByYF3nyem)MEG%XTf_y19E9Y z(!5OWy%VMDIJq&F4f7`s!tV8O9-7vrUihRPv~T;ScXIO%^j+)PJtojL2l8m08G3MB z3D{3&Y$#S`-tM&D%^#Kr&@v5l4}p=R`Nc<6&zIl3y3kQiqq=nM6HLgrQ)MGS++`NG z@>fS`Y9$JnZtPu~e7Pu>o-}m(GXU&=@GL5yktQ@xw)?tlUgbj~TFw`EhL;jmq6#oh zCXjCAuSS-&-A%YwHe0!+m1lGHc#(o^jW7fMTo#nyGGtdRs2Y zINl|~D@mwuMV5Y=cXi~jf44>7DB*^YVkyXysEm%NXit<#5kX}Ia&F0mji()Qgg)I@ zcCaW?))|GeJkK9_9l#-pK0u4$LH7+F4Kb`tPp6y+6)g)pzLKPqqiTzW?*_IWz!(nf zI?$P?WD0lp?IBv8ZDf3ulW4B#-mrs|fCVW%dcbh#jy2G-R(8^~nR)s<-}u-aZvSqx zp26Se_kibUO}wA1zeKK1FuZOuU+8FVjulSDPSACMIIKhKHkx`%#yH3R3-)d? z7aMyRK9^4yKZ9XmQ^cbYpXaToH@UtQumhor`gv9@<$nXgOcVOI?VBioDw|pGEe|yd z%ou^d^k`<0L3%ZXSbYS7hDWzGeJw38+iGcnwQCS`h-TeG?}gXXi1lj_42Wh!c>vxB z0ApQZ6C#_EL3uM!m}|rqgj?zaoL0cGjx)CLaa*L2+aZP6-iIB0jy&3=?>u)ZbfH%M z8CqudxQ?Kw4qHHGE{8l0^Jk?Lh`=uq`lXAIK0urtu!O@>j?JDMD&&5J!mm*J6{-ZW z3x{1f_68ej-2EC4zsA$A@k$VTbJ&Noi@m=hVeCG<4GCkTs8;(R2s>8w-F~eGa`$k2 zN4?$KR|A5e*=fMc#YlkLRj$LlZ~hC9=iCEz^Ecq=enU&bCa~EFVsGnX_!EIwi{8XD z50S?rf>#v0It5#i)RvzTbkl0AUOUS}_XCJHm=c}#C$=(l%qsTc#|TQrIeiuN_$_z| z`Zvdi7!4vkwj7=a#G9bO>u@oRO*%{Z>$5tSRLiQ(mjNk}d^>zVEnkj4=<;`g0p*jLf(;nrPJ4B0x{X;- zUBot8(6S$`U2UI|?4{b7_>cegzh^LBl}@Qf^lC?GqFUcVxdRY7sH0)iMO)9#A&pA_ ziesU}?L1JR;5=O}rmpB-KLf;AqiM=0`MnZ%WY#81#Y+mz0wG!_6jk9X?b)7xwFRx~ z?&;b;ir7(ynYHYkJ=9@{yH>LhqoC$51ZWZ>uq9rn*bs^D;!hIVWWER6tt|(!j{}_# z&Ve(_n#+bAkK+mWbRRAYi9%^4I(z&M+rDR0)=*-MzhX*(t+zckg5hLG!%HWz()I8f zgIX+f@A8n5YfdZyOc)6-P*-tbnkujoIxNT zZ(ZpYw^8+~UgtX3RsZ@LWzjr6W4Q*CZm;SMPTe*0n+M2nUW=+su zYu&e@_pJMyPHz_4(1bDY{kkeS-=BZfT~|EcwI}JhmDkgBYdBh>4UAXPDZX3pON9 zTkKD~jMJVk{g~nIr@7GzW9U$9c4YXEBTL{RmgNr_;W4K9VY#jqFIElN-JIFY()tEl=xz?i{MF2IQD3oWRypfjC~@HNYVL9+EHc!<)gFQp5vz1?lHj_4r=o(X6kE8Ffqg5Y=}1vwNr8r?RSCfel?-y8tead`m#0tuxB zr_opV>O~u#Au%s3c%lIaaNM%i43Vy^FTHHhUm@mWvHQXZB|SWrQMTLoLfm~oMsV0L z05AwbT~e2btOYjRWC2|W%b=sSFj$+iHOu1dSQaUNPnNzbN zXR{s$QtA?jr0;ETRgtsd4~3WnVJ_!vT`)1wK`IGk&~aY=hFg_WrFrfD{Yzx1m^Iw2*yp`05Cy} z1gf|wMuQMSphLKEfiwX@+sf@lAr+2w%m-?<5UU|bQRIXu6pCouIntp|(h@UFCQfQrM53{KLPne#VBCNc zYQH?QolVRVI5n#_mhCo)2+j3&|Kz8Z$?3#nVA0Z44Z%W04y$FsFnrzNT8&c73O^!K zZU_l<%W|`cqLsXEgs8`Dvg+YC%@5~W!*Vsfn0_q%-TIp`JW7fb)C(v)6KNNAM2Rt- z$vid*)=yF(6cJ*2iFmD!vT+HNeiC2*P0ihZ%GXc-D$H5~JOq2YzA~TA^+X%Ne80YE zQ;1Xxo${MrPikqD6p6{nW~vYGes1|JaXltJ3v<@SQoN|yq8$3p=-V32_)28e$MU(> zV@%Kd|K~oM88vzM)?V49D zqv zMcQ~&;J50fCg+9;u8u5SyW*`DHZYne(k)s$?v9J}$1L@8pZMrf4N7G!X2=`ng_5@V zl|jWACL63jOX4z~eTkKc63$3bq*d<}N~Xg6knsu68C(H4MI3?LfDxZF0MkfgR1|7D zI@qV3es!c1NFo9PN+A;y94l7TAx#hrFho*-Qc+ZvOfiH)Xcsbk3@q)C`LgbxjFHf| zE-4UGWyuWN(4;xQ+RIkOO{T=SoQz@;fI(~^wV#gdlC)|esoRcERs zf#S?aa=$s7c!+)0yDy?lLGNL2{oXpv-p#FEG*&N#0vrQ^?zpgb)>$eJ1@-ig(kjLF zs|l|zkp0180mRlJ^F;!py3sc6%QzR7qeApn6UC}u9sQQeDwydrG7v|$Vyt3-saiGR z%FdM4TJQ2nEtVrqL=^&rWXYdxn4=)z?9>z6mi(R6$;c)EYfP6L1cI*Us%8zcIy`m3 zke#v6%*a+52?L`U3ZPTsSTdCO(&Wll5I}X-S6PT0d2*(UGr}q`r|9Nqu-V4xOmB8H zWq}S0oXsgSX^l}7dQRS6yE0QPYC39h*rByTa$maLMk|V}n(@eiyJ5;|8vM-B zmm%DO@36?CUZXuKqZn)bllR1t0IA%Ku)~vxT@>lSAYdITY}0P3c&o%_D7m@MP*nI z<19g|OM(g);_MxY4gb=)cU>hi$Qxh{*3ygUl6Tq6V(k?*3gmY?$+#2mI^&fs`QKxd zsKSy7V>%30sC^9+fu_OwjjZ-X&{cj4wC0qx^a z9gwgTuXFeicH|0g65hzH$>mSOF@tX80G8{+nLe{PmEUS-`lT!F(|A4}m#9s=*ohz- zSf0!1Ag-G;Pg_dzS5sG&>!j#>Rh=sSjk8O?a;d!8VWoelV_owBa2NwPodE|%w6pW?&~M|M0+CS$*TMiP<9JG^*^Y0{PE&Qh{upP0OkIGswwyoRy_Lb`@YKJG#4x8!A+R z>SAX@Z_1zx3clZxXWEphGU2bR^=m(IhmbE^&>M0s4s$YFFWB7MqiT07@Rn6aw`H=c zi`lWc?tkn!YO%rzTGT-Sj5a~ zDS?S-7)=1mI`|EN>FBNv@qbv8MHxs^fqFd0jq44_wUDWv&%Dq2R9wC^;|L)0Wfk!Y{fTp6ca@rBnIo_)tbQip~bz8oO{us^$eP9oMhN|o^OZ(LYi zw4WJVfFSr+%Z6@AF1z{56513Sa#IE}lpWdandowbj#|sPz6c%KTP%hn-DDCmB_?aQ zcqqrdKghZTTC%u^t>CLw`|LUtvNqcG#%vO?7|!T5OkdnDq5u}kvr7wSIoPFKR**Rw zLK(XksEE2uWsjVu)N(}k^9~IO7FJ1#N~Mv&(L~1k*jT8n)A7~XtL*5JV?D#$0cJ!y zxUse)#ouM2xau1GMM;aEj*S(SmEz5J<|I{JiY*s7qfz4gFKu?Tx^_DK8Odf)L^7s(Tgy>{ZFDgi!os zU2LcIv=%S`Rs)QRg17elx{?h%Pu7tS3|TPQ?%woQBij3TPE&EaW>*?8?*h;Hed)TJ zXR87X4YK72t>Lplk?@X-=gc@LV2*e|m4bZw^%5!7O(p|mDk0L}d`H_de#`$bk59|E zRdNN){NRgD1`fQqlL6Z^gwipz$^WjaE+`#p1?j!cisnpg%h5@RKVd8xGcnqJ$p(~fmA zmD2}sUa=t!K|B{?GsUM3MqS@+wX5E2V}mojIpL8O`!ASoA5p(W96_+|bO~3oRv*1< zHt}%HKdC_Z#5<3vvuj`>va?A5m|j7sQxemXKGf3#)(V_Vyiu2q9Mvbv-JAjZe|x9{ zdLU=04e)Mo+0rWlI#a>`!k1N6mZ>Qg3CSm!Wg~qR2N3$Lw@uGxTS}BfvStAzi6>3d z(f{?G^3`uDC&ehyZ;8KxzXS@>5;Ru4s%^ReU+#fLS8hETfGFks*lLg9{;Mj=MaQnU zRtxD^T`_W`sx53viGe1K9hUU9wB>lO2NVp z+-H0^i>RW_SR7&KRDp5^JPR$^k(;tfFc4O6bQ@Y|UL{0je7%O`JnIf`6Q@QJ7rTnWsr>c;gdY)*+ z2=$nzRYCv^%|=5J4ijO&>NQKTiIzT8bJJ0~?+>C)XtYbb$D9e2WJ|pTsTR`<^$Y6j^x{5hFy%ck zNwyVcBGQU*+RSMF@FCyCj>p$!j|Vu#P`8yEtCOugg+C*vfaA58hJ)Ha)6AUqW$a@%k@Omb{KLOrIr+5jS~rs ziz^j|2a1!gJ$Z3!RtH^avI{-ohB}#{IMQ=-riir3kMpH``DCEVi6TM=QpsK8ekv7S z#_t}Vj_7r8h6cgID4t-%q=W~|MM@>AN;8QP#P#o!Nh>yz}RT=vNlHpb9G%j8oC*DT(7ZVgvVap~{Ux z(i&AIkJ+8(94crS4LEIA()e6D0s{N=wMa)}0v_1UWP(APW5yyr)q+Koq_Su3uP|JX zj?FLczMYhecvi&bj87YM18tGF+IS%?z;BN69{H+KXAC;u6_zCSqL(ef`=4=JBEL+@ zP)l|D?rwT_10!e4q=nID!m5ninAB{Kpc7*zik{wzd4jF*HJCq=?tJ6-d8=V#O6FYe zQ^9HExwD7+66KJsz0n93!!?%yxS~*6al=x6l>17^g?^y277v+Fx}|o#j^k9RUNrWm ziiv>9{6+#Vt2lIagCg7a#gna0b9F!_f}O)Z6vb(+X+UYrYXoNoOebR&gJ`Kec@RwR z7E9C>q9_J$qp~VJ!_Be+uGfXGTm>?kav&97@(tmTYw>e& z?5smIJ2iO{WLL&t5T#Rn&TCv#wTPo9$`^ru@*$=vr+OZ>=BROsREJ5XiQsU|fdTg6 zB`N=)qqBJ$Y_tWdv*?%O)Eo@0)m|Tl;6XrHHOV|Ju{G$uO2!uS^;}06Jf*Fz#bvVB z-gX?Q5@e;&v+8lP1WVvdP93@z15cP12m@No?`IDKNUN`}d@PHDW#$NQm`GjQD&c~} zh|X*(qJoLej=+hXY&Or&1=Pef;wCrC;USxz8yke7x2q(W~xWiSYB< zy9Tei#9RZtF&D)V^4rYvS# zgpa)+HZ3n_>kGHJ+s7SzLSYC%6>{)5s6f^R&3dmRYr7x_ zDXqtYo9-d6Xwq;idYCY7k5uCnTley4LA00%dewL-ZRt7bRck9h=eLvg+v;yy_8gsl znJ2#qNFH~5Oyztvl}TEiB_(CB+X206#$7s1!b7vfxqz2yfP2KEA%(6>s`oEYL6`=;0o4Xuvuo)UVC7X81Nyl?KyEO_(d(k z%ozdz{Wu&sk^?^M9rlhF0-x%5Z^U79?q^!`-oQxQR_1O3vRnRq1vwv&dY*pOsHw6* zM5CiO;neJW%S^ev{t*i@0%>D~rkWN8^yZ`SBfI*@LDm4&z|QBE;`iOeP8#``H?`H( z9`38T-r`-Vv_x->&gNN$%*O)HUzA*ZA+ma`hr2>tf*DlaA4?~8{mcW3C_y2b-n*r# zD$AUHEsdzv1d`ckG0apU>8Q}L^`aTkRosb8;9s~x_(ntPN5vMU3tON6Y#1(IW_lnV zSFla_I?M`LSwkbfbcWev-)vkZ-m5N6Z6n7fs*)jH9v@Jzwr6lV{(B zE$ksDIT?-(nGc9{-^?K!_)y^nu3HhKe&&WPSk14!PW`jWwx#(U>C^Suc$@u}=B2R7Ks?W(jo6=e0O;rS(~$%->xGIlTmD*~ z6C&aVd4Pz>l}xj?OBHKFg9@dNdQ;ox0V#~t@b!dbi1$1`rh&@lM`Kohapmn%ZoP_F3I(`1`gZnF2h;QjWsXa#v?GoLYJ@O862u||nR(47Yv^n=E2r+3l+Sjn#cJHe&!(uy0rYv?qR#bMPtwBL zfM&t$GG#F&#Ku6IUE-4hk-AovVB>H zPRh($yiN20W^R>!rj=bB9N_VRp>k=)CmqhTs9Y-?d5;mPv^jgrmGF)t-_2`v*;;bu zbAg*s?QL7U6v6j#CyGCK==8Cmn_Fo=b?v5a4O%^tse+IgzJ3Z*pMt5iT}$HiTH$lK z-?j7ob%rJL80v!8zNTaKOC}@iDl3iF|+Iu}H`I z)+c;gI+*L}?0o8MigT*5n9dujv&O5H!;*@@1aM~X#Y7=%=vvZDO-=guU1@c?ev1WV^1>RAcd= z?cyiC+SCy_=EYcgI&h7eJ2#K)@ZH_1j^6vq%U%G+gPT<#6^Kz>_G+Gnnan28m!4(^ zXEE2VMlmQi6s{v!ynzm;Xn~mk7qH0IF@0f}{5}uB_&CMbWWEAH((RV==QI7ipVxrA zZQ2??@8-S9B@i^AzHk!rTdquZUnd#Lk=X{C2!_ytTA^fL9?&# zlqSB;$QK{awzEHHRnM%xN%&Zu_{eu(g!^jQPj)hfEHxnaDe#yghbnf87N!H&8`)Nx zOtw5hk}W~%#;8T8z@{j(gFiyIf5%!_-PlK!OC}LqP=me$PVgm(r1u0AHfM);H;n?^ ztx;zcUu)0xjPnIMnWoIj`QE2xhq}6R()FyL(e(Bk>uY zx1Iyaie9qub(X&DC=m(mSVK04n(P#+OvV0$@%U!XY{)w0DPT$F_jvXnvMw4_6EX3c z;8UwZY57imng+b-Z2fhzpIP5LBzNsL%}`?Nxo;H$dzJWwx$|xZqRLf1Vg!U8yHmGi z{;=nVf`U_^X-4GxBN+zMq>M6_QEVpj=8^p>f5qx4HL#O(AAN(Cq;>qjUVquVUZEGe zuJd`%5CgOTzNP^$)JmTOWwEX0H6IsqmnxveIBPP}%(g=?Cd1mJf6GB`3r22~P~mgv z6AUJB@-&xXd{HWiXVlILiG)QZA^VB1%2W-0Np%IWl;?PRh+naJObbHA&Moqm_toOY z?dz8#sl0Zsm7a=7#%x&TTU`8UawDJqP@sBYTbXAGXSRJr=@lc$90RoT;HNi1l$8=R zTw6<5GNtlqF;Zb2CanWKG&LE6%n@cZ!=UYjHV&AohQ3pGYGi_nq#O&Fnbc29{Gw!W z;Sz42lOG?YwT!QNk~Ikj+8L#{nU-WN%^GckJHNl3dEv@! zL&9-tMCXHApyiGiWzzjDS`I!80GDn&0{dr zJ>1#FZCq>y)p55>IGRH>cC9IEERK5UY!4{|Go(rl_*kzLAD3y>7^xh(N=#`+B)PB4 zl#nB~o7254ln62SW&$1oHo$gRe`)c}W_p842uZR0`1uRGpuKM6L#C^w%O6u4 zdrEflb`*j?8SXs6oclgKcMmmXOGoN%xg>G?EV}MAaZxQMdW(#svCWKmiU+KI!PS> zQIg|T^K$;=!9NszOo2@ZOL{Wl$Tg=jmI^T%3N5^KLGX(^{LPwmLJ&6CW!;3Ed;T(^>@uy!r9HBj3S|nKNQi{ek zjfbj&)pKQ6MAawA57Ru`AA`7oev~9J+}+1=dw^Tj6*-y^H)ye|G`n_xz=k7c1flTJ zvjsy~O^kOShAqT}#M!B2rTx=DmS0w);(z`zikCnu{NsfFtPfZGNvKLMEkp57{!5FO z1M_c5AAf~n6-uE_Yh z*8KuO`-S%h8?npp3p5bW9`wO*^Dh;Qe#s}l_{(oj zDH$Izp-doWu}vi-b~EMV;?9BxYQ`5-!jO!#O^&}%i-GglA90s{V!XlYtP#{jqf`$Y zm3q06*Q<1dvqh#Fc&=C_QfwlC>T zziQs_+s>cG)yv>Jum z$yRuuEJ*DU_1tUERNGSMxiA13eB%+u&E2e{Sp@R_xFW)DCF~4lwjL^$0r3KQ2M{4< zHK$A=b&oOxNJ^0HsU*~m_Jh6M(_e5t9*ziSQ+?)KOQuaVDmS`~ppF{EA}H1ep$z<2 z1m%)crC1mTqy0?8ObO=m%oL3omeYy%6bbG^c+p~nDAEisi$xryj8Hfd_0EY1nvwdN z!=@rAiyEk6j<;i2wUurj)6WAvbX7&*Ed}MQDvAlV!J!aDa{C2;oeU}J9Emp%1VxN= ziZ_WtnJwgbGR*AM4iU4L9$a=D$f#3FX`LeN-57)sZ@@at!5#L6A&95%RTu?B*@U3| zcadvVZB#Z{1b50l0K&dFl4cUShO; zZh|Q3Ghh;QHR|9JpHml^-Pr06qL>~;;tjTd=9*80=Fx2;j$Gc6hyoNNBA*@@!N9Mg zoEn*`=3T02Hwb*CURF!sEqI#d7x6iG3bKG1-$2ne5no6>_-*cKX%IY}hs&lwGPo*M z5b*`#DHQb%!7~Pn1AY~>6{F(7u>E0(DNK_~c? zv&udd$yMKWekQK(s^<`#!3B4~f$@1{{(HMjL9FlELltx+;T9BN0AE67Rm#|)yQ+^S zqcT$+Gu#E5@E7wsH>87;LEAyc-RBxVvDA#o?LY(=TVNE za1W1~Ys^Ue$eCj$MjjQMIkO2_Jy~FfYfG?Arao4as`7JUy}}Nj;yA-eqC%?N?%1lD zcGez!KhI6r(Z{nVLxL}Cftl6Gi`YjP)TYB|<#S>Ax%(zGAL+0EyEjn(3jceF$o+rw z?gurw_?EsQ%bx$vIKK=)0)OnF9nQrcJB;jym1A#-u?}b7rkK7?{X>6wDTHN(xic7F zx%ZZr>~a2mKfIpEt4y1!#1A+#>T2Q?*D6}n#pD-X zwHsQOU?wn!ZLe;kt9fig$pZOjBf2vySDxq!CZA!9@m3!V-uGh49kXPy!QYG8=d&qo z*x;hc(~U2=PS&&5{L%-acwF9-NGsc_xx=MsCSF-rSY_@@Tty7mLapHC_e!0WeSJ~N zO-$sz|6mc+Rb@gXaAld?xYAwv#JZq25=nE?1- zVXMV^?lQrYIpDYl0W`*CfF-UP6*UVQOQz(Mk9VlWXhB@Cd`vdS=18epy&+NSgHaMQ zN4D5tRksefnp9Fp7~A*Iw(GgSqjdDJ1t${;2pxpMj8l-yR&r>ossDWWc1=pEYb59+ zXK}M_cCT!2Tw-Z{mKzLE^EMNVWvw*;_lq9#Ck8V-mNcSePe_pnri*PR#hHGP>vV1*l16Vl=|2J{W zFz8P(Z^t$?Hst_`=gXbpT{7BRZ!ZaP)T6fLM<&NsAIFt4I_TriAUvKn|yF5m5b z!;1nZR@A6;X}2|jP@PB@y@u`Xs0mJmZoK&EAkoYEStZd;jbNsJ3Q(+{EzhD#s=vpW z0;K{{l;<}W9sSImqhCoDp8+A&#cx6U*87ld(Hmn^Cck+oQ`uS)Qf6YOQ~)hN(!bxL z!zzX@QI6eGA3vDz{f76g`S2DZ$QXTvtxb;=1{X{B)r+R~qqSIfArq9}c zM<)fB9>Lxh4t~V~)}!r_e(Ec<>3u+J;b*R%$wa|7yTPn1^h2p8-!<|d@YyI}!-Ve| z(s!MiOJ%DsJkpss^<%_#$=xUEMA&Yg?A6ZDof6%6Gs6$j-MJ9dX*}enda$R1C_ER= zsQ|-#s$rQL%k;#Bl{jghOn!T-WH`2?p_`2S*!zQW`v(_}-ED8ThPYq%U~en2dyB|R zmfG|>MtLJ;5$VyG7T-|5bdiw7C4TFnx?BUt4c$1v~=U?;rE8c>^wKJS|C_Zykry#!fkMgUvir9@2c)lTW<+M&-t~lXsP=Z?pkj=QF5}+=zlW( zDS)+<^YyZGY6?&}6rXI@jVlruD4TLJ@-ck7N0}T+zf3s!+OMQ$Tcxtq4l(@{>9Ap~ z%2nE8ebY}7_d6}RY>o_YP4-Z|pFJ!LuM{r;xN8^+faZSOsW?U=M7?tmBf$?i&xRG} zc79?&^Ks2iUSeDMSdn2KJ-Qy*vml)`?c}yh1w8T+htP`-`L)^(DF|Z;lXu*D&fu9a zjx0#4V#o)76`;D?OH{lvzgwnV%>++mJ=^rBs1`mYbpdQB8YJ zAU6Ugg@*}V+}i|CcS=+_1-RYZXkZ@zx)$zSe@IRIx@h2Xi0T#KPUdfol%(a`9s2)j;veF?+xTC6GwU#vf9_C>>tNOToA0Ih&s{ ze+D^FUKrg8^m{|h1jKTfCoR!4BA3a)f+7x$>4M9O!G)cRg*=+^m%CyPC`T9UC(J?< zsQMFn3{vKwSnN*IT^b1nI19R|vvggPhdD5~!WXsZ&9<6L+>ccEj5X!gfW_ z{8i8W3nY*rxK7xfyghW{xc7z!kl-9jW-t}zJH^X}dNX$|D<}IrFvPItn#aleC}mKg zE4y9<$>pwX!H`3Ehj>gjbXpT$7t?MjOi{N#9{K(&S;n5jGF5{Urkuk)B16ohSF(X; zDoqTZxqH3Bawjn`h|Z|Qb@9%wL@aJyOscbxp4~UN))jeuoBgn z`LZ9447hI=gN9)fz*z+xq8!uA9E%uE`BBhgHP$#*XK~SZE|?U5+UKJNWZ%rF9+E_P zLlfPIIRyXj@W_saRUU9I7+;#iT?_OgF0&jIk3uK+_$CGIxA+90^HUB6Kllq5=E3bCCPmQ zgn;slAmUbDyO-(EZ9anI_WT{^$q5TbqR^NIjrk?IU#`Gu(dUZBG?tIh7 z@g@SCg^lUvho+1VJ}!Xx1&130eDjp!#M;%jAR!J zKeENd^$O+Zw|YroZd3l86+sO1-Rr=#Xxi2}LhUZ-pEIdge9Z}3ZABll3yrA{j0QbP zf*cIHo6Rp(p{OS@g2qQur4s~CP@Hma_eyVkfm=(1fF2{<)*9j}nt1Xk8Ze5il1BPsd z+hEO}7&I+e`zKp`uo~n^>aLj)-uq3aM|V%;1>~FLStrO|hs89Jt?0_c!GN6m z-ca{2IMdW2%}<7TkwAKP3*Hnm=%p&e(-gAmb?6NurUK=!lh*m=wg&Sqfy2?n!T^z+ zD3pSn|9_L)Oy55SywB(C0%9)*J8w!H*03@NeN@01H-v7p+0Y#~f=&y05LW0G9D7S5 zy4M0#%XMLVQm{=gaa&|Vqm$F`E#tXBh@sV75~u8VXuc7}kC#@UTsV+I~?nZwxkMdv(h%=vKQ z&c5%LCUA3z^=p%S@aUO{5iixr6zQ{I>sSascaY%#&g228%fVs5(_Gd4qpFCR^MEg* za#cbX-{*~=$5ZQIL7Av*WKObbeLeXubHmLad&@LzdqV!e3(UZs0(jO-a$d&fXzYUby6ZL>(RgC7HdW_fFLE-gv1W1m7p7d*|VV& z3Bo_QNdI#7AxzjwzyNmUkp*T?u~d3ww@l(O_QoU=rj2PvKDe@DDeWaYR8|4n-cl1L z%ee8Y12c&wZ7iQ{c%P#(XleR@d0K7r2j854to>B5_m5Vi>N z>`|B=Gt0~Y0K2@j%7A!dK9kg4sSv$pxisOP<>Lf~?b?Bj5*+`gl>xQ-)v+luzlCEJXHjGw2_Wp2UF?o)EcQWzE8Or&0g3rF=@8FfcjLCt8j9;uc*_b#o5*ICS4?$!bUc%MG47?!z24JdoxY~tIt=IGU zc2{F}>qK_gfw3LMPokSHDb7~uAQXsPvE?1NQ6L`)I9rMhN7tbv$^(5bPcwCSboph$LV+!@Yy+oM?)n(UX!JnW| z+ud|#7!z;qIjOfUHj{$*fT?K4VzERl7K8#~RiY}Ei`eN)IFhh|4fG1cZfO28_Ocf> zU#98R=G7?8O)CAU+o1cY^pop^XrOLRcaaaDYoG?)2Ci6KX}sNd8K-u-TFZS=#5^80 zluhTJt^o{!L#KQ!t%SY!vafjiSK(CQX>S%RcLimeYf9i%)>c&?`1r{Wx(?_?P)o$G zK=G^WGMXS^;y0I7fN4{72uVs>x1}k>U{}G_5Eo$LY}Pb({d-6JfpA12rGKq`x=KV5 zrUOH=8I)}%eJ1{g%(ZwKK4>-#CnfC%$wfnw9xRtODoj_s6Kd}(E~^3ZK(D$n#a_o) zBJlIwGS6)5Fw=5p$(58??wBnz2=zz0U+hKfa*z7{+mRM{;x?EiUi92WNSGz^cdy?tY8j z+j{xmZ?_jxiC`HC`ac!L^=51?|4 zZ%$1a-=cB@2*F#4eJ;@WmB&mO??EtQ$OHF$5Yj?T4vqzFDEHK8FpA%Pp8h7nN} zod1`2h<5qH@R8o?`>}Z;M2IyKaAE80vpx#>%I=szla9Wz}oI$zuyHUcE&@gMQ zREJdKYKytV@Uh%PjEG+H(mj5Y9DD*;LR3$wXiSZZKVimO-R+UaZ9%k}P)eWy6$Pgr zg$szK+ET0s(I_%IG%T(saa?xN)UUugmqCq)xrMz{leqE_==*@alf+NLCYAkW%duYp z`(J$i*1}dQHg$7h6V6O*!4H&LU#rF{p%HPT4gIL)8x5(?-xQ4Qf0L8)thE!TFVOBK zknnf{|Li2t$5HH^09@zH_@5!GB+Fo~_g=Yt0iMa@r*&6EE;9Y16|XiAC^-U3K>%@& zIMA)R4&dEd038_{d+RjXTZVZ8XM z?T%i=#>DRnqPDVAvIgD+4c3_r-g4^K@!x~J8ENv=jPZ8;_`-s6g4g^(d~qIu;N^=z zwE2A0y*pa;{HlgxNBy(>?yTSA8#CADj}SX2c+DU1S;Gw|DLJxU$kjv&C^jU$8|l5} z$ED{u_ahA!WdTIOLaOIsgofZ z{T(#XG;NPfcV9S}OhVcCTUo$8w;ttbnh|vaCS< zimSewi8;Q|v=Qs>#KvWxdhToMaP{{+p3Rog=_!HDpR z<0*vP2h2={6+yyq##bV8+X7*YgmtP+7042#GS}GRIM_SE%UB-xZ!n1>C3MAv=?Xd_|#lGzR#)VxWwcOq1q}sAzVw3 z5U!xShFcyQ72Y*KmBKBB{?)%vYJjDkg`GwZ{bUcqa+F{d-bh~b99GD!Ndp8G)ckQg z;$A@U?Dv|yf1`a_BAZ?N+MX9>eccaZ!H-AfNf*`b`v3A!us5t}`WXh}5{*T|>Ou%B z>8(mPnqxn7@Nt6p@B06aF8*(ZeDAN@-SFV6v8LH!Lj*xwnwD75{g3?D`R7D>6Hn7VCR!^} z80+P3@8^QwpV;JzVtIIY#g=d!X$`SynN#uL_ zdSJLVhA}lmTcK=O5zDo7=wg*h5yZf$Y0{V4tu=#t~5)pIqiL+x_VL$KYrX;Zrp z*uQ7c0X}_Qj_Vy9*0C>VAt%{o)bCl?vwkg%Mk%xNfn*z7qJx7iDagjjnG!IGBKq|@ z_gS*=3J>xhSf?8ulI5UNo~`8^n4<0EcWg%rwsCd}LS!>N2#11b=R78nd|nx4O~Ni! zh>P@J_l()7wH#!Tdx|nZ7ZM(rKd8(sxcBLfq1bk-qdF_Y$?kA=?rnJB!=R&?dcb;N zKhlAhM7g`LSEFXQX%Tz-kK^E*iE+o;Z1Nv0CVD74;_MKqbJusp4cT_H2m<>t?q(5U z7$~yTSu_+}+A(2oay(;0O#|lxywI+2Y=EBMty0wF($RaT3fvx~#Y#&_!;Osp<*K7O zB~D$)`ok7dF2wU@J~gE?Y(|354lcQAaJS-n7DI0@{;uNc)q4w7z#FPj5HuH#^a}LU zi_gm&6oOUNvN6OSe@&gb<=mRiuXjs$?QcLw+3}hF2xZ@Cv%x{KS*v?a1XP$6w#~SWs;s{U zX0rdi5e)2mQ? z5Tu<%&$M5Y^go}~`|S5}9dWOO**_DZm`^_$T(8a@X7>p_?fd^$|4D zB<-Q4zM+GUdRbB=$uI|dBSy4Yf=-{sSW8(r&~%;L_;x^Yi6#^jWUhbP0_3KC+2f_<-M;6)h*jW6yM$%7^KI8mI;6U5NJFSoF9r1i6x}jXycl9MF*RhPi>We7dFn*N8C} z@Ao+{MdvT!eHqU75uRdOZeUgU9Gc$*DYC77qWd4T(O4ACok1%k+sN^8;vbZjD1dOl zKI+EcRCRx5qsVZ>(|I5FOo8_F zJvmm|q{LZDX5x^Xgq$V+12_>BGIA0VC1G}6U({a<%9343c1CRb5q(km0Pnn;!AAb$ zMO!db{Brw$^wt^OK`eqEOYE5&w`a&gV0Y`z|1apKX2c?+4W#d&sZlGrE3ySwa#rMC zsGv)ZA&NDM$mm2a{ZSP-c#moy{j<>XGL?@q)Cs<=C8tqUz#iLOC=)O9e07+*&mpSLj4saeYgCAvr-PBbWuU|5e7!k6j|U!P z>#y4vQsb@`3xKN^Qv?+klVh(|6vYL}v~t23N_M#*D4RrTSV1|QJc)bmklY`*JJ}D9 zL;;a&>k|%U8k+qL=U(?-kw!^FOkFvi!+_oo(7%+d{)78X6<0n-4X%ScAX;tBPEU_W zJ&6bhI_^QkF2D6;l~i_}X}L8OWiK12Tf+!-ia7 zj=dusnpjAGdkhE#i1*I!-K*82sp=104)-gIdu=rvHJWjux?j(>P)I__z%lKIR4*iw z>h*9^TQX24Y@x*Hi8UWRCsZVahvK^6)st;1)S8|b>MaRskmaE79iCdglj>C#poo(9 zNM%)zMCW!dH6RP``?`=zyuf>O%#L!g*hFF?{waQe?DXkA`bg*H4ekjA%V&UeDK-fC z9k71&hipRjQ6l^JJ6pBre^&fYHZghc@j;Zp|jKIa9{{V($>yT6216!Hht*Yi%+j5u|H{;XtE6&!7%ZON0tE@ z5yao7;kx;`;)ro=&Rjq=&$jC~};N?UY=IIXSWU=zTs;Iep4`mG{VGe>j*kz3{%aSi`@CkV3V$S| z@9)+g`v>YOhwA**#qNhOe}O#k!!|+|JZEvj=Dr<8_5Sr+D);TEcD8oGDi3bl-hJ1O zVs~@49qh0BKkax>9MYW97V01CKGqUj&&f!L<7cxolc&m!N`jhw7CQ6*x90N;ErOnr z49J1HJUXr&U(1UOHZ=--P=I}@`#CeksrwAWzFH2NX5~Oq)M3O#1Oojvp@#P-&6HeE z+Y6+$c-k3;2Q}8J@7pih?Uis@-FfPESKroQ>0Z;G55{wP1-I!%re`t+Ke1{~R=1X3 z+l*>&R@^wV(SzyvcH&#Rs~|KXAwD80l55>J;`hdo{JMpLtoPF zEhbHm6?sw*tE3+nGcR_6z2Po$ZPQ5}1#S4B{u^e&8}GLt-(vIM*m;&u-j`UYt2&{(_i@M3EBBo}aa*EV(FebFGzPmyGp6 z8qf^-qJe3+!9@5JxEf8%L5ePmmy%!rV}k9B?VxzDZ>A5lIYoyS$_%V?RfUe1k_3D; zMw-s$5$B;-46zk4JLeuOz3y|DEw$-HN$%T+y9?)HFN*F1rduer$eR2oqc5$Zh2NNR+mfa=nZ?c)lLxv`dMU!7eJ7o)IPX-#!P1;4v%qktXIz zeF}B`bqaeK`zrf+b4G-(p@pv_+{*tKBXwsawhyIejiO><%KoDw`?p}x6}|IEH=D3cn@7)SiRwj51ZCM5zgPTq4Py|P$QPzXmhj5Z-^R!JoC7k# ziFZsHi>-(6H0a&#Y*US!Ko))>IBYqUHiRveV*^ILnJ8_X-jn}q#^WdAWN%epgDcqn zr_cEl_rGpl!(N%W31WjPB^AXZU+_vHF+PM#!1B`H?Y>s+h&_Ar+eRsNS3Vfd1C4mk zMYysoS5kZY&{O`br|S-i_KadbL`krxPT16b`2CXxPJ=fToz^i|o~*av$meA_(FQRY1lxX+QWBh`@@ znci1PU8!v{m}`bzg?qk?*^Veh!0Z;z3pWUi7)7EHnI_o^PQgm@bACu+Q`cmH4kZy} z_gpB+>Lf2QS5B${zmkTp5kFmjq{uTu$Jf%RWjvDdG`LpPI3eO~neXodQ>vI1d4eAS zu|7tJOzy};*Y+lUUgqp&>9fi636e%PfRmC}u8LnyJH@M#M%@EUV_wDF$u|KK2eSQ3 zW5uV}@n%!1nF!60x&ZqpU?0EKQ(Z{@pD@*)z!@8x_B0s&tm@B$-q z=;9`88x7T0M1hHlJ6N`#_1~Y!E6hparDeus7Ge#*$wqd`%<0WZvtjwiW4&3yFN+uRo4Zy>;zvTlxjkr3)~~F_B>p3MIF)(2M7I5DWh%8(E=#P4@h@B zDznC??ePgwN!%1>+T6=I9j$BkDufH^ka{b>(|V5ffo^alHJTB!J!>hu=R7rjBGaMOW zt7~u9+9!}MZNkCvBa}U=drZ~n7u*794I!mL9som!pfWg`_FJxDX5k~G&Z)SqGyD?X zR48YmlDey({_VcOS649y2Xz#-mP?mbIiPAjQWNRDBjxc&T0<^hfr#cBL}FhaZYRY07VoFZA^L z58Glj4niZ)XA`BfY-LhkyYb)oYd@39yp?kubpDjvJ(>fo7RSI`)dzVX@W`FhiYK-f ziHlbdY&*WLwLuJeDF|RAXLig=>zj284iJ7h_D_D7)P;t=U89H>&s$1Sk)4(u( z5-&6kKkIgTm_1d#6Q%k(C+)@pC1CVCJ>sDEK7*6gfUyi%WCy>$;&K9cu#v_HPPJN! zYL`g2AYg9Tlk5N096vscpM=Uei@-T-#s!{HCz{0BrGpJkerkQXV7ye$c#N1J_g3tw!I;!EHzgF&C%`I>!tY&s=Fmm@Yy7b)5 z2zHp=A$#Wcqsi!bv|R>j+2PRGZ{%84sWq4)WYiM7eu8}BG=lggd`UB}1lh3=>P8CO zr;{{g(!F`XL(C=0AsMDAg*BjBl&7RUmYdhdfmoH{U8E6^CWkx(#~g-*E0rP%*sn6; z=~T$uqgk6{E+;D5!Ns#!gIHCwIFd=u5qpUxUeU3|XYSo}9J{gii`%;`mEmF6k$WSq6T`A^-+pnk zn7ZLupj1w#dAqnUTq&e()7OI0Q11;`N%ehXRw;AxAFNxcCnGJPvf~qepz||U1sBW* z+3&NChy_qy9^sx58_Fv^a3mOP5m>Cfra@D?y&Da-2+q)cy@#cCTa}@sdeJ72y|-!l z(z#R-Kly=qnyb4>w*QTVnyK?G>wbc0qd8d_b9~bB{B1*(?Jc9Yh7VdGLd;Sv9xtz zreYj4rLCr_@ZQwey#H z(cw8-hF~A1)^dSdvpqt84t5p{hE~^fK^OxQlbwg4LM+M~=D;<HtdJeKMJ1H4AuJ|SN_Z%N6jEz@2<*4}@ulg-%!r}cz%28i49VM|H_TtD zjmd7DGdCbqgY%M$Mzx7z5#|9%0w)ZHC)e7kf-_WyC=*W)UYFZCwY3YpE8|oKNX1ez zI1oV!Kw)vsZf9}brKMBpgxrU^FNe+#$rV(l$HS7r?d9|S9@i1P@vl`ye@2D{Vn1_+ zo2}Mx+qJnOV|$DL{-jLg9D@g-g`*WohS=CFzCv-s`7$|vRw4(8>ja6!`C{}K>##-Kl z4S~T>e*c9Oyy(2rB22&ll6qfJ55#=7N)4xAv0cXm+GShydlvR=R@P0{v<|h$Erz|A zE@|~hcr%>>wMfCwzPh%QKfH!_#?x2bow|af1y5AY>~`S= z2Vtp%U`$voG<@PsW_esKBJkwhAG`l%%}9f#2R11Q;x5hea{Chb1y!#vfc+?G(na>? z4MgjL@(BO+Gj&n`_qgYAPyo=;Fa`^6)WonK0Z(2tIL_STTYbe$4ITA zFFL|U?`i2~wDy&y8>PCDUM>W!>81v)NtXa?YgdBSWJ8nIlq=r)EV>zN`1$48&GVc4 zq5Ip;w;joG6mdMWa&<}SbeU~CRfOOv;p7nP+`xu{MXlF60Ls|y8Z$xZ=p zp8sg<;C`Ig1p)gI-=C;DDH1y(_m~CP;sEM(%xmMt{dQlrl-zue-!a~b*+SJ}O2H;u za5sV!aioFXh2H%h`j@^fe0vywXVcqpj^N!}Hg5RGCo)b#k+)tdw3OXyF7ZAqgyIj0 z#$cuXVqlxCRd?v<`a9)%OD;@}p_>KGlSPKlu0wgg@Y;w|nbh%~km$f%>(0b}h=IAS zyVn<%)N1L3s_%@i3i!c622I;_1oO!&^#a?+i@~cc<5dp(C;Ub3`}SzVTe@=5A34L= za{Yp+`&biPd|}^#?xcE-gmYGSQAb00P_egfVHhgT%QDo2{=|;yNrQDD>Vbh4Bvsy@ z7?4hKh?`o-tW>?&6ua5{afbq2bSl_n(~sQiPK9#cW_;>^=%3YG)1k`qO%z0T!!_6T znn2dTaJ4h7bu-IZ5dF@RGeWhw);#A}d$#+1Vq3Lx0&i}Th~m71z@C}t7tz%or60Uf zX?M9S`HyG0PvK@Y<%TT@?9fshv2EQ#)nAVs$gFNQ$~y>rma~SCwbI<3n}O z9E7BkeXw&w&9-_$VNNT8LWb#Y_F$Mfbi?nM|BHcvt@P#kTt1h}Wsxv2bsHFC%<8sX` zC`k_CI7)qzH7}N$q3o4YAzKISIr{tN&N11lWCSv7~5q5?`!vOjax@IV-wVT5vG$ zJT-N?NKpRpNA7Okm}MUJUh4$fwbF%=P>`C$D`ltLUQTb(ew%quurF^DTu6V(Nt4a* zp5cA7kgFrI<$0N*oOIc;t%x8IsP|nQdxH7MNC+T$JyoH@A`_)TL@oeq&a;2>a89|t zH#Y;Lu0tEVR(DyCTIs*p9}HdBI4CaF6ge6{5%2&121kx>qicE;t6Wl;m)H4OW5HOq zpKo-VfcT$UNdpyThcZ17>#904u_#-+p27h z#Luy>*`CE6#*vZ28Mt+nxyJ^5gw?~e_L28kjx)S^SR>r!mUnso>)f0lhi4nbza}>} zBVS&Z$==eH_V`AUfImfv7|Y(0Sj#tlrKAIyGl!Fki<@OLs+>OylvnOVgnN2;#iL>) z`mD(Im4}wAjk-ViH?$?B4HneP6gca)R8;Sn^d2aZf3goJ1ClKA|;O zt57OGofi{eN3xuJ2&xA1FP_M=X{bbRczWe)`N!M(lwXOfMA{(KTXL(E8UaIt`4=`_ zmO5*GB5$IuiUka8{kX86l?OUY*7YeGCl7>L(yL=xVcjQ~l^_HnnAcwv zv~xfdu2bzKuy=4Qlxnp7e>f=6pMWQzjK!B&MgPCD;6q-q|EQpql7TUKjR;J8FBVtq zQ2XIe&I}*JL+QRSb#+g>t?KC984$xkWij5ma`jcRA!V1WG`=twlK<*b!hVx{m2m3Q zPwK&w@NSOe@JA34#AJ;T1SvjBBFwAges6eRtZnxrA*emV zi;KnzHv@SM?|V5z;DEUz(*}QcZ>NVooOa_az5k2A9Rs#%DiCotY*dhU7KInPkGfsR zyJ2;+fjPLBk*viS)Q9Hkrl~E!>Fl>FnDuaAkRUvf4 zGLLwV33+77cmQTRf-t?Txr%`r<#NEgE#%in7>>n1lORJWMeTyZzn5 zmFK;An?l~}Kj*b14$`PJmRGptMTO(N<$r zckvqDA9TVW+@6tX)JZ21M2-cD&}BxQ8FS17JW%SBgvYvfcdlrw83pa-`g>yK&3~8* z6#U$EIDtlL+86G9d#J}V2-Z#Qj=k})UH=-kXmI`6=EmQ$lG8=jzYa`J{yI=(eY)U( z%FO1o^;t}j{{0`GemmqHDcF=g@=mhYzUxZLvQw*T z>uJd4B>h}5J$eHN)h+$xP{5e@Hs4|s$0VWc*y*-( zBflb*;VB6|PRBrjV7unc^+2{A_Kl{5|IYAqMO}`}_!&jwvC!Cyt|3 zrN93O$8-qS-J)D&`&Vc5gVSq8IQ?hT`?q8hSKsSuvBu4V^+kDerQyG)hGIldZq4Vu z4mybKfq6!@=r8P@p?4vw-Hdb|OrsibNkt{S zvdL;OEDg zr4l`^-zyz;NupI%^&9Mxur=9UhGX4Y#~lGfF9gEI%-~9Zb%1UwbiOWlrKvan!)8f$ z|3+cX+s=;Omo0EV(;$K&6Bf#@JQq;c`v^IlZFM3%ys;w+oD)W&n^Ovpv8hm~cOo+3 zgpgP>b)nd@bIY%!1;`K-G^u`ZIz!JWyoo3)+HhvLR2|5#(F+I(b8&SE@+RNaS>dCH z6?~o>rH=<#Gvkr5rUFQ%zb6x$H+_7OkaC=0<%@Mt&&}aaz)qz_Obc&VX9S)k9gyz2 zW3+Apbt}cS4Y!SW=*PnuW9)yj`Uhv#DQ#rBp+QWn={uQddv5#nWG3zRpNrwIX9ovg zPiKYx{dqC;_4FX(C6#P{LG<7*u?eU1R5J2*q1Zvnd0HS6K?}4yFLp3tkC6{%&wA{m zv`P#?&-Yd_YAR(cIHWHg>vRXbi|^I+SPF_TeFXf#0%J%tx&vO8$N8xt(z}{806lum zvM*Hc4p@ia7n0`~r(kk_Me|*@@B`$&(^IY!?-_>f!bU~2xBQ$8pUQvnWnk4+{wozC zsAu((;`G^!g!;qg5XHzaTcoC#m<2R#dnUVL3|4H6V5JhV^c4TpGdedWg>Afe5;U|D z)#DLunu+m_3(TEaS|Fwz{~R3TrbV>cbya#fF=?!-`^;>McAi;HRT8JH<2kvMf>nW6 zKY^QJzA|6dYj%xwOWfyMd8Y`Wko(+NHE4IVvm@?@j`={uuEmZ5|3a4^n;!ZvWIpqJ zgT27w^!f#ty~4uiq5b0p;3i+FJJV4NcNRwUsaWFr74a+T+d>@UQhj+AfLR_E0g!TL zk1Y_=m+_`}jJ>Xu9~!S)>M)iXak{m=`s+W+5E2UsI;ZH*A|1*c&e?fW+CT87H2e3| z{+u7*lIBviq_YgQ=fXp~#~U2_9z=pJusvET4u*EI{Sl&GiJ#Nze5KERD!?BNruD`D z4J!{&vw8TEuS8NN!h*nB<+?J>lMP?LM0FLNp~X)ZoP>^tqk_=Pxc>11ZDq}3FV7v^ z0W}SoH^z_mRDDw4@l5kN=sU@1eKGrPyIt8Cx^)=x|4F0w#X<86NNJAx8A~m2VzOGH z4TCUE_(R|N)P*9N@FSj$soU~7bJaID**2EJFO@bw_{_}QTjJIvS^+E6D$U4I{iuHA zpYulb(cniX@_RH3zv%B+*Esofp+QoZ;Fl06&--S4={e)~b zr=w4Fmw=^j)A7Tk$3&qrO{u8X#MnVTIq~5u@HgK2R2dk|l*`X511lMKlHiSPJ4!pD ze+X91=0>LaK8A-n_o6Vy;CF?0JoLW~7x<~!K7E<2M8d$9qtHf3b;f#?PGe^!#+IzY z&>(BVhm_wgq+X)x8B}d>(a+br`uy)Cl4oLG?MS9o9TOIS$~Hxs3XX>%PW$9fY*nU# z?$nq3{+_mg+!Fxc(*X{VFum;t#}fR;<%sE8@32<_^|-%! zJ*?P?tjWd5vKPAVsEE_wl_t_q^TAiO`iN5RAO%0-r_ z@L7@H1DBQ$hc?+b14oC@yB$0cP_Icn2R1g)aox1&)|*9CE7}+(Nnfnk+uW5;a(rx2 zee3mcWUHH^kBgG2^I%wgSiqs&x||oU@>~AAPY?aqk^y>Ln$k|d6a^@-vSG?j(=&7u z?1W6mRJlV+XS{8l@h&m{(Biy8ynv|hqofipGLF8C3vn+)e);hZsmD%ya^y(-0dnL_ zS%_`Cza7TX9g}D%`9`k|PzR@-!aHKP(FcxlQm=m#6aN4O6*Q~zP;PKPFL)pZJArLT zPkyzOl_)1NgwYo{n{5Qpvw?Z?fSQ-45}>cQOEx)i=7IjjB)K$Q0|Oh`{7kNoa#W73tvKHIpD8F;Y#vFsP_&poR-{EdB$+?~bx zoUVxcN>598lyRhjRFl?EWYC&Z@smKcC$c&lx`PD))GBn8QFbkY&i%)T8Oa%;iVvYR zIXc!HQfB#3=*L^E%%TYKZl1aCOkPZ$|% zD=*k8v2u?EP;p?7o7IfxWpW}J<1s#&Z0a+|gzJzk8Itda7dT)yk zoz9HwqNq6yvSIAaZ(Q#L5!hN~Zl}#6b~@W~^%P>#LlTYBJ8{z;o#P=vN(VX=7o$4s zBNN4*`tc##^L&kJT855AWU%UckOw|syRnM3IXy2#ejSU|9W#7%w0C_+@ zs%$^O(b%(=o432EHr>f24Oo!nHD9l8EWhzIF)7(zj?9aJdh*$ zq2>b~sXbHn;DllfQM~3sT*6#Ja`fG8v4_({gO450zifS%3H*ypi3q3RQ(;cH+Jq?OSPK2VY~r$Ve@dA3EIjsz4+8;-blw+Aeb{VoKi9wTL47FWkmAxjULij$qZUR zBArewgT5UYJ+-)}9a^kZyhA)0wY5_Bc`00e` z%N4?kr{D628{a12!{>(;i}^TQ0@Nb`lfzD?Q3I{-ZtjQN9+-~fUau2ou0JblntnYM zZ@#oyAFX)t&x3`ujFWNnz1IF2bl+)-+|wQ20SeE9>iLxcS^lo^&a)!5$T?C7x)$^l3BDxeFTUlC46euX4=1LU&tyPwHWZp!VgNs5;uf=1 za6N=SoD@$D3j<7jY#mvi0VIY$o=gdhB02^qK)FU6s7zu=R4h9pGKLgm%dJ_fO!+Y) zGnbySVFLAe`rXU)iuJ(va@U}Q*~I9TlBSXu>$!D{5zIuqYnbT|qk7$a1fm};yreXw zfWw5Z1x1=aoL#hdOlBbvzOS!~tFND%3&~xbj}VteJ5}L!Lze8J zV;PFuUE`zMtvQPGlj$<=+9$T3r3~u_yM+$Gx3_cq^nzTO4X_BiAR!Ma{rtJqxCXC3 zJp0-o`z(9v^o6WLaX|LrbEmVX0LPzLv6C|v=i-dPIXhvn&asZAnKeJR;i-~k0t{KzC4jc9#u75CJVlw)T59lfCmgD{;^=OCk}FDfC=>q$CD zxGqTf*aMn%O?d)-wDXBH+~(ZgE*P{L8XP|tAHAGaS@P(0cI~1MD<;4NFZV$61^b93 ze`-W-hFdYmOMjPg^SKw$Ec9oE*ZKQ@^aMoXTWbm7VKo5(Ex;Ruq90k$7EEA;nvtw^ zy%l}=-hMAfx`{Ehrah;eT_Q>#v}|&sos;H}ds97L$oy+;Hwrde)euH!l$@dfP(ZK0 z7r4N}+z3lGc~&r@qdNkQR-mpYdLf|1kY-y>#E4@>Vf-nwmWzY8o?9far+{FbrREgi zK+sg+Wxyca_TkBHA9+E%o4nYP5B(>+&*DpTdZ+q=$!>NH0o+Ds&WV)R-1r>A9tZnf zy1IoX4rkhm6xBOTDcTlB@EBVt3%PA)@S;M~utdJh(~FCUv-YCHF#bTT2W#KhXk9d| z{{THbjcRM`B|{#uG!+hbLTu6g<<<;lnHAFCCRr!@ufc9*%Ph;9aFa$yATcEpyG1H zPIpImC|Sdnof{d34FXzRnK5-pOcr5Ib{TB^tyE5<*w*xn5e)Al?X1UGG)yN|{xm?I z&tC)p-#yRyq*Gvz`*FY9{caUY!fuO)?;nA>&(#RwY++5}IXnHt2$L=dBDwF7JQijW z-Ti(&ppF_^nIeG@R8APFF4God@2O#hC4+_02pjHbN@s&t{mU{7AJP!Lk7SRbYV+qQ z#{3Z)+5{HFG$?bDWX(iMXMKivoPD36-H%nHJ$p5t3=`-(`Jp8tBgo$;ZELN*-Ndu| z)tc?%)fqL^Y*}=B&`0*?Es1E9RU(;*-HrC|mMHt%c;s_7{P}WeEneZ4f)&@;IJXf9 zJea|E9YX5r-^65Ya(6)_IA^yB=VC`6J4LYEn98u=&|BPz)SK!6Yw zY9=#dGc!`ni17?YBr|SMBan?h0%zv3&@nl50Q*2B-6hhM>X1NAZDe1M?mg)k!eBEZ zqUf$cHb+SQ0pt-#LGmXX0&bzM)-9yU&~8wJB#CZS$|`kI=Hw`&P_$C!NRG z8aTl7XFI4*soT8{P(w8IEDCA>T%l?fs57v}|3tZ;X?eG`8MN-(Kqg@F7Uc!v$t7?B zo)BiIf9$D;PuSfpHoTebZ{3M>pYW3{hTpwBu&YQ|;pTg(KRE7VTJHjHQ)EfKajslK z=UPEvah8kJi}yD(UPG$Xm{tn65DgCj27^omhC6lI2aoUG-MUCB(%id8;32?1R72M; zeLth!Kzw$zpV2OTGmLt;@;Fa{=l4TOij9(tF0}_IHJwJ5^$y6Kf)Mf3*{iwHC4A=4{(i+wPo@1EySuBsoG|- z{U+tr)`Tr_V*}O;06~-R&I5q9dLWE}X?fJl;qd@Rbm=gw*h(uaa5{OEaP%ADthXiM zLeiQ5vlaMgt8?3zH)%InvF(>TwVhU?9m`%?FDqZ2WvX`E3MA6ib6Rq;@|wzdwekwC zc{ThhjS}!65QB%$P-IF+IvrZ!D03!4!w{l2>>sLVe-}0EI3GL6kw#ZIIw8`{9E2^{ ziKzn^QL~izj)>53gs?ROiIA@9aAWM5QO_~~x5Fklf zqx*}|$t?M?%ktxIsf()RW^uv`QbI$r z1~`-H8JuHT{h`4HN!&oc`Hs2${QwCJk`!bA3-uy4fiD!wL#SYNNQ980>{1Lwijk~>nl(KMrmRj0a_yJay$Xd2zg?xpUi(vJ7Q=ZiBy zGc_w^)-Xs7*dW}3*L*oMW(AXE4MjLQR;xSo2KKO0?05pp<;b|yj@XEit3lPd+}U8p zxP{r+1-qzn017k=b}n_s{gC##g(v z@{IG(EJU<-d^M^ za&gzW1x-^o+8Xt2=pJi4 zPiYEg`~Nu+9Qj^I#wMg5#CZ)?=t zOd}8eT`jBEs!}~6zh|MNVN9VL@BKyKniYwHDd*}~jn{z}Y1p5+Uc+w91lmkUJh0`S zSE^6PKrej}A?UM1dUZkZu?xCTa;ulXF__UAp#hGQf2+gxC^gqh-D~Kw_bh#{0Z0{= zL)xylJv4%;o{w75!4)d_Mw3mI

    vre0FQv{1|#0NC!n?+eoggkG@1%pS_;_dAxl_vI`XXbenSZ@^DQ=( zV^I5B7n{_I+np2zr_tt&D1i$qX$!}07fK~y>?)H_2KZ!mfd8<{UU@6JwVD1{hrwV! z-sgw953Sy!x4Lhw+_S#wqEB{K*#bQmu(wm&>BZG{zEJ0kfV~$`ULfw48`kUCi}z_> z{DHrfVciDxVh=ehin-Yjj}&p+gZJ|+`5=Xp*$_?g;JTjWi^F}vx!{M_eSXLZj@$JB8)&*r0eqRq^Fq~+u& zNn}(!J$3Yy1J<*(_APC+n0{i9*)EoPijQ8N1*UsV<)~NGR(`ykhbul-6<+Oat*n<~ zyvMV>n*JLflvg{6h+P){Q}_69;I<&ML_^~_xUgMY?gnPy^Vv6IMHc9)3+|R+gKO7a zR^A=>A301&gbH69>YoBaB#zO6x|j5G-x;k0DWB87#mm|-hdbv&Dy`?bmfWhQ_FVL# z*?&D}BW|k}S=m~&cJ@;YXdR_`v_nhJw9jN*tyWvwD)xkgwsIr=EHv_zS=G>EAM2`` z%Ot3M>9TWoYV*wJ2ehq^I2TWVL_VoIhnstdtYd_?HaSz_E2Kj zKpHRN$gzwPC5r)Lq4Z`v-miTM4XuMy#QWQ9r}(7C@VJQ4`KW9;i-CU04tI=$38=YC z|I!sNGQ!J|j5Z3@nFoF-RVhe_?5})U{M7h&@BCOabRVBVh;T>SpHWL5Zk=q6F+LyX z6yoG&%}qSp;QS;&K+I{AO_4@4{kKd#=o^l)Bu7d|(rJDvhUlKY7{xN#|;PU>c$A^k5>=V}l zj6+cNDa`euCqv8_`ru(^X(9U57A12lxqX&EGeg$*V9SC{(Qioz7F0~i5!45EgGx~$ zswe-l&hy033}iv<|CQNnSoI0!NzQN%Kj%u$0gkT2^QW~HXTNcFV;jyxHs2-Z#N>}4 zkjvmKBHg!QI8}<1-m2`&L;4Zxs?wpooS9j`v>+y zLpkqix!_7BPb7W17N)EY_2=)LJo8|U7`OW-SgNByQV0S|)iqynz6^KTw`H~y>uo(U zzLiM6gLvxd#sYcFG(w-@OFP-)*+kDM=}Sx_qd{hCqFylf0k?%!ib;AvYW`7CzunZN z!Bfp!$|XCxcRXBFCXt-#iQc$D_+2w0E)W)sra%)bnVX5){)~f_tx^7j@y&-?#v}RU{~}V+7lz zdhUGeJ13Tw_845;DV#1ORYq|%eB?IxJDaJ!JB&urDPrEehyzOE%qsqMnYlNeMHvHR zQwNjV;T8ew*r+lddGf&@!!o^l44;kP5a&Z5?^#=R#2Jj%GFQ?V`>adFt9`fQtlisl z--Re36NDrNx07V#8+jK$gi!(MLG45&^Z{w_DZF~=c2U@5AgZ_O8*1KtscaC@L0H7m zYkoZE2D{}Tv7S33M@5|LnWVSDnTLt%DJ{P_57*Pqg+6$aer^}(Aqm#~Ans*Si7-Op z&a+SBPQAzo1Nb zdmm7eRY-u%6_zDwzhI?~eDIidMMghN6oMXVt#_RFN>j}7*YeK*%rTY!!4Qp5j)lm z1}9Cpf+k)xEjs=8OrvZD*tkg1dC~B9eNlaO>jEPI1Xoky{-I<_EUBI1xaXPgBRpe2 z#oB|b&QjVX8Vcoc^1tM_oHzCjScxOOUxbb$Q^wu;gY|ux`~42Jf^a@?XnJ!`!;BlL zYT9<3^Ail`#MX)w6w_!RT1?xHeQtv8lGIw6j4a6BJ@TA_Wn83rL%_5tq1sK15K(#4 z1h3MO=tA(fz)$0CSP_C!G6g#Pm4gbipOx!an4j-jorc~IOa*cAuyA1xy_h|-o7PpCtw)JVBCj34w^|QT3t7u1-U9ElkxBQ`%3nhHIPbZUT zS2cM$EZa4H?q#n?7~@>r;{3=%2^#_mxC|5k|!njOFQh?~Ix$K5rX!_l)jbmvDy z!;hvz-wu)R0s)>xBJeaxQ%wT#b;S8F^{6ViJQeCL$Df20>h$wPQAnL1`bP z^5)WrzvQS+^YD@3ANT&ef`WpTvC=5Yc~$5Zj=%*FwvX*18xJa-qf!&3vt)!44JmeW z|EP$+;Rw4l*nkYAJ%z}^*&>2rvB77=-zWyO%Uyqo@Wj#s(*DX$l&=A^dAz9pWN>`^xt+wNX_ENN!N2-a<}i za_eeDX-0_~YsFrTX?UZHZ6~e^g9cjwgj^(m&>{|YiH1$pfhCW=0)U^yzTp9g-z3O; z(g4JZNC4px?;R@hjnOwFW5{i+$d@jJ^?=f}|_} znpC2Ey6ViIJ|?J%PIz&)#IF?odL;$^E7b0uV1ARz6Wf^=0<4TNInkZtC!M>-W-)(; zUNR$k0=@-wf+0#d&S>0-)F#P*R=YUeVtkZF6<9TDMeNcLNi!1UmTziA{UtCUVD>#I zr*iG0&T0&wj0Q@cZ8+$p+S2e-*g!C6{uL}@S*Ubn@5_q71m|>>FEM@rN#(- zo3>$C#;=We8y zSIy-F02S;M264GI3l9h|l%R_s+~UduRlIJzip=`7<)Y@Doi!>{E!xU;%&|;Am701g zJtOtxskHQy4u&I!BMzr<0xVX5#}W95aCQ1DB&yHGuvCBK?m*PQ@=?ka*&n8VZZwmB9>xDsxgNYQzHERv zU3Qd*6g56QYnB&+uc-XO|M`>Lxp5TvLv{oaU$%Sjiz9VvRTzJ~1XgX^)`N%OMXRgb zGQ{m067x;|(40J||GzH@JcN}0Ug#{%h6~vKDqM|8c+Wk17=X#n0EGC^S|t)RMxfz6 zRDx$PmkpejXM8YNK>TtAAaR-20f-O*tY#7b-0l{O0}kMmPh2w<2M4Ub<*M1Xbl(OP z(W}K;HhNu_XDck4iSQ0JykDvvJ)4$$r# zA!C-%1K+bV=`Iy_n@;s!P|h0SM>!1etlG0_7(gYJTvz^P5qB~!fbgJeMJgRl*@6QG z08bNV#7d?-H^R7G1t(72xIU7n@QJ0+Jq>VhP?rD%3%k9k?us}Bly^|uAZh{ z5wkDYlY|NhfI7MUn!W)voMNmd_X z(xoi>nq}(XP>MN{-wRx*fB&WDs!EfYX=8a({Xjr);5B5j`Su~p)P*2$pTf943G^Y> z;X?ZT)n&J_VtQx@X_-8q6<9e|RpadRaOA2(c1VyhtsD+mH& z@BEF4Heh7}E4ReX3nxr3AR~;hyVWViw%^^%3ZP>hV(Wt5( zpaC`zwPNC7tomVkGxBjD>xV_zkgm|9IN%kBY{Av_C zr=wm4XJhjD6{MHItVN(s^f{g{Q)bI?hrYI>v z;MJzadEgf&?cil>kLgv=Gj;}Q9in~#C2IN((ft)DsRLXo1*0|aMZM6LbrTIr8~u(jUo8!n19w97T55e7|%T0-PNrHUTn@itgo7cR~W6NoA1 zd0zm7L37(6m+`{xVSg*-O6*w7B@SVF(gVP}(zSi_0ADyI4ZfA`BZ^Bhy~Z|f*oCK| zLP`j#AfB;;&72&R@dbptSQ+=h(Q=scfr0ZMKN9uf$4`&Lr#}9)W^|~J$>u{#My~3lSUC}KLn5cQk8#iHldzZ7a>LI)WC1tgsP`H1; z*2hXxF(vnl0~Xg?r8M-~_ckOzp==wr@%aOKhvt9GSBbEYv72P>1OLajeZqC&R?&%?@6W7T0Axb$*{qGrq5nJzGAOkXZ!wDWk_xpr#9 z9PEi{zQt&z41LcIwgG3{DO9U#T{49OLS!`?;>HZ4X`-7=1KZ-W^)e};;fB4j;oq02 zYL~{qkhMg=QAws%SFuXgv}SW!^Drl26NrIV)ik~-RV=Xng|W-M5-)jWFC72GbBd1! zE1y^XyS=Keat<|mNm4??C|Jz=hu%hv%j)3PsTO^ZsObhT=wC_U`jgTk#Fk>^gIT4+ynFfT=czOOeti$*?GezjT{g0E)3L*;NEqwKj{7>$ zjOSt`=?=`8i#%-qO?wMDPN2t3ckcj3+X>S7fWsIV#=VheA6lG{LmPL{S+HhhVDr5m ztaB`U9JwvbHy=>2S0Ucz_wp3tjbN{Lc^@!Iof8Eg!YmJn6AhHg-}PDhx|HSP#Pwup zEE6v58rwC`JcRF$66a~^y~^6YjBnqr8~yYbn?+E# zYz>q*s;JPU(+N~%m#(tQG+`c^L{rI|Is(Gas5W$#rN!dR+AJ)z<`B-^t}js26!Qlu zrqC~4M>!C4t(nCzGS)t>tP_Up0RMxqU$8^`i*UH^pg-@h{)L2pvPb-a@7THTFk7(R zb3J>w-e~;;s=P^=1oMJfp0ixvH)PWWF@Fa!@!Q0fmY6`USwJ#u&K@_iT(E?}ypkG} zRQVC0e*358PX|7&d^+?=`-%8$buM>?X=l#<3df0D?p&!<2csAWs;RbDP>L?j4?9p- zSn4boq(I}1bRb9z5l_o~XWJLYiAdon)uuSOh4-{xPd@#03ECg}%^&t)n zVlV@JI$I?Yc}xy1H^@YL{zNq?bU#8bDzZ#|xBh5}@A z73fj|HK@LkO!Eq5-VOz(k=Mr6)W)fz(&s=rvG%6c7T{<%Dy620NTW3pgKDV%o=QRk z?QN}9KI+&hU69;4!>J9v;Iqd2yT=Z4MuWm*lj;5mUgk(Wc~?SF`^>rO$#3Am`qNo9 zJSYhQ5QS%NW|it($O^-`(#&~URxEaQlBd&lJ{&!;(O#xZe3Tc)gM|d^nIt&USXNp* zb5|NJtdN!D<$lOH2JXT`Cg%P+w`=c8pZs*!xicH!2{H@jQJB2UaTG#)T zv}C8m68c&3Okgk{28;K?81`uGvHDA}Lckn7*%)8WFZT-`dT2FuOfpIh;RCHHJJ!C^ zKwvp}nSORXHtSHhDrsy8m>6y9DD@;5Tj!XWj2ZqF4R%J=?7o*?xZ`xN#VJTf(*69!I@jV z8Vx03%8AV;P;39X!)}`D6&CZ=M=*q-1C7rEOkL3dWSpZ-Alb%6_ENPB*6(@5Q0L=B z-s#-_?uAApsWiK^rc5T#empqc^^1Q3!XXhB#mx+J2+*$V9>&fCAcBIF8YtlRfFxX{ z)GpuJ{pjgpLGtp;_(5-*vYK=5L`c%n9RCUw&cV`9E`rF>?XYPP=8`By7;7F?$VzBf zA(g%CPl{WHSrl5JaAXGyL%B$DjDEXyvoME9E5KRv=@nr><2iEiT$?6L&+2fJeXe<* z7E;&ZOfn?LjA^&NEiu(#d+b=HwZ!Dn1<8pz>*L3&ZKbA;R#z=n(cibV(%&ss39A>Y zLf*Bug}h&=64J{Otv^N-o_Ess!~iLe%h2aSih;J}#_yIT_`~Ym|SbzV&1xLtg2!!R{&Re{B zV*Ntffga)Tb=jp7^#2rYhxnSz0*><}<4J>zY=XBo3U8+8``_Bh%udDC=Cf|_)$z4A zGXQ!+^YefSr{QcR5yR_p;cIviXDZHdAPlxw?uYs#Bk%Z?mo!WN7~WD6`8OO8M}8mt z?pv1)os3k=PS|?%Fm=0Z7Is7&r1s|*3ktUn}wt3t5SYJx#eg=P#u|EO9?=iWl?>lmEM*sJnboX zSJl$^`&V|0@O@$HbGZtJGTXYlGofOW6r;l?7%PI*1VvWV)M_c6&S@J0=pqOlZR%%j z>M~B{uqSn=5?1P2OavxLpJ{4TYKBGq6{YBuh`e=tbmo_L&&l1s_*k(eohv9klo@YIN} zyHTS)5^pYxvDL@x?D5pKZw>bGWYF&9Pp_n)tSDJ3@t54;KwnoALv#QI<9$Yk;N(m6 zC()qV+W&=kxf=g94sqx>CI5=rIdktZu3TbXzfRyiuU*^yHqxA+M5=AWPUYz(i4)5u z5@DE$nvMn~JB!&kgg?wO!U(Z1Eq}S(voqRc0pUL#7o};}K=U~&%GMXJCJ17U33fiG z>|#x? z8$yld81i?$2u0Z-0_Nhl8mZaHq3rI=Vy?z?95UcfBz)MAjHb6R>ohNhiJt*mN|2p( z16_0_;35Oj<#1*hJbSPmn4oqWZO8SHax&sG3IkIb@21~PMK+)tQnGH8eovK55+?Zs zyIVeCg|rZ6esa>rbE@^i6o==5OFz46?ft-D1OFh3ni*4lKT1FtRTNz88@!PJoyN_o zvFtLht5S6``dx!4xyd|w0gXn_Plh~iBUo+=?f#dT^Vo|8o9Osbg6T5G1iTkV{VNJ> zQhF{`&|0(rD)bx+j<~UY>G^hw*1LUavT)dc_*m){((h#lQ=zL@wcqpWPiSsuVvF*8 z8Oc!$H%BjZxlg&TLUfrBVztT90Sq<9o+i*SiKeKAI99WnNtc;P zwzXVdl;Hlo^n1AnpT^~Ttdy^my7R80Wb#}abI3kOwzWd}&u$jwO6pYFRO*$~!)b?8 z`)~UOIS0lY+yLK5FkyYdfwFPdicX|Cm0DN>_P11K9=Hei$S|^oxg7Id?yAS9XS99uAl1=SS4r ze!JVETBAOoLm5)PB}kWifJRv?S^P`||9c>OcYSL;+&d`XE@ad}l!+~as#%>B@)+cC zj>5Pm7cN!h$jnMoisj&{c&n9Wce(<6Z<%tub`r1H%wp6_{RvmKyb#0q>^(#!@&cVA z(c-LeZRDPI-{253Ihd*sX?{*AAbtZ1)xZa(RCfSY?yg(Yr+%Xr>Xh#|vaNRk3w)@N zBTv+=9#><%5$O(fJW2~)vsAXDp+D0o1s)qnJRS1k;{v1bQ4*Xa5+CUkq`a<;O+Qt)(6wW;k8D)009J_z1->=+FAXd53;fv1?afxz&w~9!rJ&ua^<5KVeD zwH;AaqS)>XUMJ6VqC=6R%t^1hTw8hBN!@*USI)v3Y(FduZx72Y8p}~G{c_HC*!$6+ z{~)IS@x7&zmae^BFKVtur60~I$eAb$;|aav?c=y1LEVSLN-5Vo1Z*l%&gTAdjq+fz z`81cZV%jD*dGe;v>`>o&qBWSAOX$p5#Q=mH>sy~=2or7&32w`|ed2DUpb{yb+xu)S+xuY)H*VTKZtu5A zchJkdp9zU^K$#b&25ry;+S4%nyb{m@vwL6MukIM!HMsri_T||E&Fvv?CtGph* z@=h{>uNOV0GV%LE)vaSJ#g+`r097`y<BRGu}KZ1`e!K_q4Wj2x*`QxrMEz$3f0n#1@!*uOaxP)!RBI%#@ZZ1r=GlDDG2 zmyGWa+A0)jjPk_13I2}0r>j*92y88@mc5}FN-3Dzx46>7+KsWgcW6_e#nJcti*fc= zaB*EjJ3Mw+eA)9w`WFjL;%l3R%$<=B)e{l*q4JfYYeawl1BC> zuuFu~ZjlCGbf-5fb<_0mvix=5s=g?Jm9TnF5F;dCiF(blm53BMZoFRRK@TE&r)d{7 z_=ttvsxMW^wPft~y11u9B!%GOC7f|hl->@Cqn&BFg3u%H8W&r3~dvtdKqjMR*0aTov1?ZA5v(f`9#(6Hd znLK5UxH_s8QtWl2-4*}oTWBexcPFD7Y4>n?uzbY7o(bmmX#uoyK@S^c(561$VP_hQ4y#&mQiO6VZ+>>X}sL!T79lP`<4eL;#ZH=i3^)UgI=-rz> zN9Q9o%A(V}E8haFBiDUdf`?vUMMM+F+r{qIJf}zJ&!G!6&jggWPkG1(0^WzXCj$Et z&dua0AcaY`_*bAX$~fFGKGE&0({m!EAr%QNFn6GpKy-^st>atU*pF z2YkwEZ4^%vT7yGLu(PHKJZcI$Ab`NPlwf)mX508rkjUwvfT2mD_aUM8>xcVzc)U!o z@%K-~dNM=xr))31Abr04V>XJi+5sPLBHWaIs03sny;_nmT$fOnX*m4woaIsmT5)<_ zSz-jAB?^q}Vo1vNXO9&EM*Cqg%!Ic-#eT!G0;yxpPJ6`ofoI5u`+NLvCD)?W zTj~Rc*@n3w%-q@5;HLu%f|40mZhO@Y{_g{kYz#mC*SjZog7bHiqjl#d-T5y9!kaID z>;A3i^9$r?v_#j@xrMpl#q$J5Nz*4!1X;k?$j^mu#L9C{CJV3XJo9A*cx`M1_<0`$ zdG{CqkAJlCaMJxcj358%L+!(X{_7#!v#!3?z8w&V2>*Ahb*za((9BoudHtU11MOFR zpGPsu|8SJHYoR$^IRdD*J*mLQ2h8`b^Z7Jypw^tfmHZ`a(5tG zp@f|LsQWQxr12n8{|9iLD&Fb7#kkq= zoUR@C=Pm(OSFFG7h?i=7!WD~_9v)Ey1p1#;Lcr!9pl9{m1a}7^;F!mZnESKlvH6NG zN;!hY_X4#Ci?6tW!?}}ctc`TxVA(5P>AorgfL{{t)+BQsbHt#(lWryJnDcqSJKcAI zBX)`p63zHNG=8ek{V1VEb4F3I0~^z3cglt%>Zs(wLh;=q(N*W*^vnVa)6;uC?yDR%o zz*E0~f*b-Xa_%gbzg(c`>_<|*8@XWYcxj=A` zX5Q0tbJ{uKu(q_|7C(NZ6Pll%GZJeBa5a8<4a0D9Shy?@!X$KwgYPz}S+o=XpMQSh zxbjRFK}?#+i^7*>Itn;oBQ?oW2N0S-+P&PH_YT$Nt^?FK#M}-d%nE~gC&FO)SbL~= zQdB#H-2MyT1tKxKtsiS1V~`W>Nul9jm&u-@_eViNLqLY0WCAok8u8!+5KPFko`&dW zlz~UVqgiE8RBSGIUq(4ZZyKtXRc`I5=sU1)W5bvoS;`U!q%887-TL}N`?r(8U{LPS z`H^{yW6;Ev>Jh&mNj7m8>vsv4Q$S!8nj*sCgm`}*mHvD%dde|MK*S0~7$ON*@w@7Y zN#LvRPgtG6cz!r}IiQHmy#Dva5yT{71570H&$FUP0TqNRg|;bXQYz6vFu-=M>QnUxK$T9H7)@0l(YdghBoo&}{Mg}m6TNUW_} zERwl&SOgdSJ|kczsJjewS)?p7Qg=4E43z}?r=~I24&-U%4gOT-g^@W0-0%R^WKhq z^&JA5X-mhxF+UtlP9$R-#$AWZ^3nPH_%c<9WD_}HFxI72gvAL70Xz!* z#bETbW0coa`2aoEc=r-9BLWFz566&B(AvhlxXaNZ=5vpv4@+ea9;c^m5Y~nApUeJ5 z{54C${}F*0M~zs@nSs!1Yx`2Ksv0SNNEo}ImYb58hV(LW)XxI(xD8f3FE9O~__ z7U3cg5XI?m&c2`woWw?j`q{@ekN_DrJH%@?l5$-Vfs@u7cT&o8_;7pi`sYQdFgmQ( zlPy9CykQ|GQBv#RX7zc)d|@JxS>~spbk^C$Gj#0T{~NmDX|5uab&w=QUGXL8{IuBD z`B7(L%D?N3`il`!I8l4$k084!do?P;nRj7#qyXjp{Kz5_(#va*Fy`|E$}X7cZNmK3hp6 zkCp_b4ClVgWI^sbn(7$qP-Li>BUB%OdX2wb7srpP#?lSDqr=w1zpyR8PYco1j?Sor zwIL7@LuUq)VPW=b<$ZDjeL~u~CRCM;vzjw4AN9aZenJPb(4KF)-mpCufr(+heJz zCOkYObe;N2nS=0_N#UWrQFsvWwq=AdR-f)^S)!zVw)9eQLG);4kg>bMd+ljLgFRY| z7@;I$0u6qTpsRC4X(eOviSCs)vz9-1IUKnXg=ojRJ5)SaGvv&>G z63rKfx1lmr<}L_6quf4}rAo}a+bRu(4MwM8!q89G-F@xg66x6V{ppE{QV6ZEe|$Dfm7E&Lj^)kL{*IDt&yeI$^i?IIWSJcQ^G`$5Xjnu zsLl>5dRqA1@(UXtwzfOkkdCFQIeuOKc5Bo=0_u?%8H%D~tYhkUACk#>nL8YmQZh{1nWD{P?N$<4^_aI{> zJsQMSd0Bo|QcEo9p8D7bW6Rq>P!t~9qa_}(ruO@=hG2urK2U^0AfX`PvSAFSpvY2k zkVCiSH8b}?(n@CPLghg z4ZL?#DJf<@n^||({+)dreBOT1ejeU7wvN=YyUciDEGJ_nInqFwp0t)Xc0F#2a!&&~ z_g>ej0U|Ni{iH(vW8ryn^cOdW&OHS8{8t~jclB2sT8|zP>H!V_3B||Zh!d^K;F7W+ zUKYVsxiYGNsVP3AW~D1s=~OPsh1A^DFRu}*r~v<}xR$80CS1xTWkG6L2p6F$q*Pgt z{gOWr{)GKTuqkX;l6wS&s@SA0(kPQ1j^(UX z950J)TS`)f-8j7}PN7Omq~sH=z-v>QB?Yl;@vD}^8e>29V?XxW^E37;8*(mTrTHA6 zE2C36nxi?ozFZWFDy^0aLyq={;N<5UVx_+*O!JN66|cy{a=C`iiXbMUf(!ajUdom&4La#wxSD1Jme<<9F6(w~e2 z1TQ5tfqA{)3=~3#NIcj1gzCFxUMBm37LmW*8*BTmLzJsVX9@i`(ENsBI0Z#{QXX_( zC@bMCOa*7{YV~sYETQWW<}^0QEw(!Szk(3{F?}%w1JiO=2wB-T0Pe6-WqxZ%y_?_? zp2c(c3m0RGKgwi2q{W{9QsLxZyNh z>u$OUI*#0k6PE7o*@oW7(AMcyFAnHDmF=6jkIyRKZ@90^2)BTFXI1<(Pv2p!oj3?~ z`qdlVf5X09v&3+`=fXd#CgfMo#Ys)K-DE%cGHQ_W?xuXNuFZ?m>Hdoy zfG&1z>r~g{5}3Dl&1h^KZZ-T;-yd!*kN6*FIk~Q%08K!$zgRM-1E>pxmV8B!fdW(% zm8;Y0F!ofNc>iq!xR)>I;J@iJzt{fC5;EYTfB>;ZLml1xJavo-32(Qq;wN6i8OWqG zq`X1-`P3V!e!i{?&{`QonZK_-Lj0!w{_Q;-`CI2M)Gy5MH%~|ZvVA({SJ>0Bzas9! z{TlymeH#C(!#Z-#@z?Vir?36J9{kecXd&7$;T+7sX*=&4=7$AgVOSJy4vWK*S=gO} zUm3;)6>P1!@X0y`ke!fmr zGUF2Vr_<16c341(2B?ls`=wOE$|c02xeNITM+t#iLJ%n-n2?b9sFwzTUlOt`VjVDU zQp901vK?J`j2O7vPr}_}!x#MWjKta3Bz(EJzu%LD8o@=OK?KmRYC;r3KCtFX zyd0+f>M8Y4pI`sJmGTlkBav@GyNngKv5HhH`k!KBinEl^D!E>%Co29sCvcQgBz@|m zn>$^9!nphJ{6OIdwuzAH2>ma@#v+^*5!#4c|Cs8@$H=SnkE8oGtQFpLC~{R%jAGvu zFH^!z#aAN%zZF&~a#m3r#a=6(qXb1su~HBfU%&|x9h-e!ubt~S%C9j!KTtS=RS|MF zLTw`Kb%f_c1SKNHgZ(6<#p7qL^Ir<5Ly;aumlT^;++T?`O4=*+Ma2(t0!KMzKmEUQ zHYDkBlal;D(ZmHccdB(>NfbG#C|I%kibpE}Q}GB1=vFwiA=71lP3cb<+%NscfT1K^ zDWHl+oWM~|k@TrcQpMz98BQ27oG@fKVQOXA7%(_NqV`(ncpca1v(66`j$p3{IT)ef z2)iHQ(GdZQNcyAglpz}uj+(B6Q%1d85Zne}8#h@SZL--GTWz!5j@r&#*&0D~(8Sdn~14RN4G)QHuWPy=d+Mk)kq)QuCa zJJf^q{0@j?|E&!HPziTNY`$^jIJFIzk-sVp+~_v+P~k@Y_artpy<;x?zUJ|#{$$C< zl|xd>&Dd03oN6g%Yw^9&@_)XR-u@22wP{Wo#6a+uF$k>6(AQHYQ9`ipST2;&wf{Cj z;L97^c&?sb9(yR9RLRzaL2Q^b={BFSQ-|(g`j$ToM-TTyN-xYGj&ceU;Pd=>HOxRh z*PmPB;t=TL>J?Bmf^H7bEowI6wgY^R*jK8Q3y)Va#$6WwXD#_icb|ZNDQ-1zQ>*rr z6tAj={9DY!o4*7M@?{ZkuSmE1XqfN_hNlR0VOf;_PTFUiGqG6?U- z`tGj@a}Pq6*7h4;brW?w@3p@h|Js+p_kLN8nhyo6Bm+-f&pKKpI{m0H19tEM0_D^C zR}m}&eiZux_Jw=^CuaB+rmdSZ_>Hgev(uh1L{@h|FrbrtOZw=y?C<)08sG1JPlJOO z7-HTPpB=D>FZ%OXng_T7aDf4717Huj0PMrFSLiKjlgzg8nYazE8MofuV- z>#6j|rZ}m2^rY{SLYN|T?Mcld6Q+^7wm9Sn+R|%E99QA4T$P9W&AQcLshp#di3Hp; zCzg2y6}d~@AD-5WOt^+cHhUvwGgqotcFQT8a4L2hau$guD;z4rcbqyv$ZgL+AzZ1> z49_jj9qKTyRA+``H`gm>(j>pxNkzTWTUW-Dg|<^>_F{g}A=JWC6n3a7{VJwsQgW*+ zsUwk;gIXbwq0DAzg56;J{4!@Q)hX2S94ZQ%EY#fLSNU$=%r$?efLq;nQvgfEAv7^p zJR~yVMw??uC_RlYS0*jZ92KIVM2vg;9E@_~iYDZkamp_@R#WEE%v-=MInGKt z+B;#U7J?fTbc*EIRm9syw{Mp=(w|Tp1v*-%cca;rJgcCsLSbns%MPDH9O*hFrB`Kp zPbXHmqF1T81H>HW*2nKn6$q_{-640#XMD*HBvmVfH6XlxZe<Z(Y%7T3w*H&()H9kI1a-^YWvVv7`)MOmUFb{1)bQ zH1oPx@6WH7+Ugn#g+h_=y!?=&5ojE_7Yog%ms&LJkyA0or~HYL?9Y`wq|Xb@*+VUk ziPIt&&g7v)8mkZcvBtb-w(S(s6pqPnP3mIQJ zifWa$g4xLtyE%0xMtR2TkSD@cjz4=lb4y~lI-x9;rlh9XN;`sfqq7oGvN|227KXb= zR_NAF{2NQjEHjhI4CX3QudSR&msYzqjaL{BxW;XH4X@_+FsL<+08>V2AiwVyrQ1T6 zlxQRx^#V1j-3x>7B_YjC*w0zgF;9Q2@)v>lYUPtf6yW8uTsE-kwHn;O9NbU4INi*zaTOCLN-1@5dGlkJyJI67b=zvD*7d{wY{;k z=0eFtn!Zzp|5N z3eJ2mbAn)+m%!_vw1V-+$lyR-HdN(fRh@f=u&w`u)|mJ(Kj=%e}F1;9np2PTL#(eDgc* zcDH>UK(5|SpL57m{;x{D!|Och*L?FU9%trCH#1Q^9pqg5Nt?AU66*2y#WM2;p38r> zTnLX!em{BG7TW2zp~^cgB~I~mR?(sSeA)GEk^J70@X$$M=9qhbx0#&wqBqb_#xB#D z9`LfK< z$(m=gCW&>RALscmf&TxGV*kwh;SVRt6Nh#Go|o{I+kAiSjq_jRmj1g@e$M;gC-Z*( z(#rAICHtSU_?%r$?H_6H^vB}&-6yZx^B-r`p7(FNmmde7GUnr(WBVp{{^J-wzhuJ4 zsiMTTJKCy4-z)A6bxP-|lTz+RGQdf#N#U)0z26@<9+Xe_VC6^m!ncb{RyWSs$CuiE zN8Y1fC&>9d`++~Xi0A+QV=x|EQW;rd3m_|Opdm}mk$^YhBOMbplM#{Xkl2q<`~{qk z%Ov}n=P632Ny%^+?4Zhf=`Vi6-~Ovhr2snKBfZEwCGsUdbN>DwaUZ4tHDugQw*)-{JluAB@ai zD#;sbsdOJIB6|#Vym$sdhV6{eSkW5m)#vxy^=}RdWdTMQML1XH*cXPwP>t$g&GW#h z7%)?Bg{KFZ?2GFQX3iSsvVldWTqQGP51C#1g2`X5e{)2LBM{)m!O=y6{xIE3y3tOv z8%cPWk6vY@x=Vlv^Z-v-4Oe2fof;{n`W5I2V}M?zu7(c3D*p8$W+C>yO)imy-BcnD zC|dF=GXZifn0=Q4sWsB~QhJuLg8(&*hl?qz#w4y%mvRb=7{>F~=v|2Xj;h9<+ZPuY z{v{cpa!P7KFqcn%8{hiRDT!q2-yuM}!`;^C(ixE(GQYO~OVb?-w+Td>6t)p?3A8*T z#gsrQ@(_(;=mL?#%LUU@k4)P`f4G;`xbEGVCD4euEU_4YT;UDrs%;+|Ta9e{ob&la zq!r3dgG0Zt0JvOz+}SgHjSl-HZHN&p)2sqR+)er_Gd*aZyDBe;MP3$p8b53wRwG`d zCib{DY3`;(D1X-gpuvmiHuIC*Uutx)1{fG9sU9PL!kD{tWY0XpohFNbr|ZQnjZ9RO zIy?j>dq<`QPXn+QtYRovveIl|km;6Z0%Q>%7AR#lX@z9#CK%dWr3YooVC45>RDm9e z1yk+rlEAYwsHLHb91a0HWY>tVB&Ab&_KW!#{^z^vi{wa_#Dvbf$QFd08e6ndFu7?n z^)CT$u0V>l5%IkNU97*z5mU}z0g<&kLaVr<_znK=iwVXNF=Orkwvb+)a1M&uiws%* zz8UM$4^r(c4Ny5$FIe^vE>WjQD)u>D!Ze(T0STW%G zT!&D3X?9VN$CZ_`MqUyp4NY=^Csk#Umhj3fZl=%f=v&03L2#sGJWz@sfTz?3rAFQR z;X?qFY9d{S9XqAZlyp6Mm+ali0K2P4ERyqh2UO!tNnLEc?G{oE-%G+3rhOlZy8`Lk zF+g;&Aq=l8-4&xve~`YxzY{;{_;dI}g$^(4PW5bBO9m=N&q9XIQvhD^1Za_VY5Z>D z?HGwJ(FG5gf*ifiV~)DfXehkSG#IhfwbJDrIc{hYpPsNzwJujY31EOhloxp4=jlHB zF_un}tcz~$BNEo5AB9?u30=}1pXeJHriZ#@i_p;U)n1uf@~^gbOJ*-e=l0w{ev8O@ z53(O5ji#%U1sfvdr%fX@3Q5KRtkv&m?gk)20f-}2Za7*i|4}&J^u$k&&@^iVv*le2 z@^UN$aY2nP+7Z!#5o0+crKB`|?;#~h>(2#GMNx=Jj748`v)%Xm34t7C8kfc(UMp26 zy6!sSE@R-O)~Vb}v7IzcG5jMaLm2>R78DQmm{VoYsyUav3ez{HvNR(AgzAJslvyp$ z*yAm-u1tAIQNgRJ=VglVN&v%UVfz*gkTsY@xk&5F73!KC3wfQ{*&Un_N93U4w1n5l zRVx=u>AAAsw9x`fGPEYcWH+rkONb)HAM zM2ug>;7u6Q%{EMP`!);0NJkac^M5CEsshHTlM$r^pvwNNcy{yh5bss#{<2+af425X?Gg0lnFelM zC5&#GOtXnBTf2e=IiWvbUR7j=`%8MYJvpM-M;{n4g^f=`Or*}}1Rd99=tC5S==U?n zEKy8P`>-XjRAg@S65-c~*g8}*T#8CZvdH+*ziM2tN*yQ;Q*gHdn7CXi#(kEb(}_JS z7%<7eSEZDTSEeTQOqC}hAy@$ZYjv@tVUMzz#4^OlGhBI#K=GXukv*AGOrm$LE0oRr z7%~RzqCoB0o(K!rmd1yYi7}I%2<`^q0 zSmU{pH8aP)ZaImL7SmS~&h6V%e`J6QUQ^`=#}23OLJ!I&^XB=cJy+A<9YY$#Q;cph!i$?BT-^f+5Bg}6 zm+btx&=IqYjs%YaQ_f!rnYA0xtBa`(9Tv|LiW6^wk0 z$CSiPPa^ezuVgdy{fR)w*n@mwFV&nf&!2~oT4%ZlICPcT=L9}Mufdk910TYe(|M6o zd&XGR2m4rfDu~=o_#OrPpL_p)JD&kwzr6kK)A#v#e!V?`9k#8SMzv&#iDr=Z613TT z1l{(wa9gewh)XG{RYL7Kxydr)o##8;x#nQ_USmbB%0lx?VX=$cU@-nh_|H7b<&ZOnP8_rf4(JZWlMypm3u-oBt#-` zd#fCyxi#oww&%L(*IyM^%sscS9x&WZ3eyF&8d7l9I~PRySQ`2e*FDC-JI7gdqvjhl zqyZOv_T`vy<{{Tu=Nf5a(o-6$tTfB>{l_dT+C3&8GwE<^AxIkNy3asc9UE=J-ej#J z?OAW;BTQPpHmq&*pMF!rOA|R|Htc76Vc)#JFJi=@HLvXB9c%>#Sm7=AZ5Wmc7L|(C z^9ZOSBrBlR+1&PWK|`^$faCg!EJGFA=ETsBp}SNozL!6XEMirqwqMe*LS4mH<>jeV zm^W>`motf2g>j&lpD{3mrK~A+Qg+O++h8Lxmij1>E2Ib}!j%fFfXoX5QFy4>?j#gUcM*|pZC-ap->Xfz5Grp*TGDEyTazlo`M^zgx82+fl%H^-7 zE_;5?&w|+$G+R9Tbe=5@ROMK0`wRw!B24(vc8fhG6n}B~%{ngDp}bE{4X0(QqH)U<3l}f8s;Sb{0BX z5ic79cQOIk%%2>dL@&WxPWyd-YM2*nDH+SCI;x31-*v>j!FX@T{w%(<$W%qrkZtOa z#UPTzAl*Ga8XwN9V#wc}8Qsx~WYf!SD+u8J?&bORbiJI{Wkwxpi;Q7V74G{@c;Jgn zQV5TCl^}%CNik|EcWhh(E=g8a1ZUleO5uv)F=Ehx9aT*o%J`g@XTeD)3rWA`ScI=E z3C}}XGJe_JcAmz;ny%r+oPcuQ_lZG`n49V33QxM5X1~_#ac`e7E=lPcqNJ=LbTt9O zYAi68hrA)h3>o(dI-!%-{#tlQ;dq0S$*KBXIdmb*QOKQ_u_VOxZ$uTO)h^!GZXrZ* zUH0JLuig!lO^TC0Ldw?X_|0BK6((HAUfVA~=aZ7Oi*24CG(1|>z?N?0mAMg&D4CGI zX~9t!RT6dExcoiBkaN+_j-q+*cY&`*V_xw#32Ss2|$$-&S80G zblxE2u+%f^kO<}%XRO1eMZC^ixd%pOz7-VCW|}*KQZ9s1B&C}Qk{?{5ypM@SnuzXz zkF5wXy|YF&!>pRn8`d5uxUIJ?NA>*Fv%J#+Hi5cx0lEPnInScak8{C98v#UrCQv-J z6uQ^|(srqClOml{rFCFt>whSNCXgh=7iF_9-OwS08@8C9X;Uw626@W4@5Wae zyx`PI8H?a)0X|CC5tT9}ED+Ba@PW;{bpI_w(^svv^G`6ewot~C6Xk&((Yf2*ECj&jY5x5Dw6A%n(V)U~u1#m00)BB;oXW!in%98C z*VZ6hv=_0HYvqbdhGOwJBu_Kw=zjzd$*3lZ@*+=)kWn;|Z?wj0uh+lex$^9V zpB_&37uVc4M7snkGj?L&HjtD>z$b&Jv<) z`~*!bXCP?U9+szBG6DY@J>uc^`FgI(jP3i~tU^_2!kWPU!~Kz$M5k(9AKw zUZs}paB+|Ou_pd&R0jQ6B!(j|6oR{a*RB#=BLIocI7?SP7n`g0cF@iTD%S)Ax}g1y zx@Th!OT~CQBd@LJOmBIaHz=<^5)%ax+aesTwx=YtV|MMl-jFNi1NLsnual8$t1Ni;9B6u;3Z)>TXPHFS9j3|l%nZ`Fd|(2&nB(jfYt zq0-CFFVW^5fYCdd3!5)eVm&6{4g)Bn(39Y}s@ch&oFf&`wE;hl!+Zp+gktTP)|liggyo@w@zUZi*}vP|>l5r@@8c^z)&mb{)KD+YuW#za0hywNSJOwN zt~rnB{#hB{p~$U2GVta>^U(EsUXwA>>@-lu_s?$D8NNX}p1!AaTu@>KlIA%G#YhlyJ$oKK-#-nbI)JIjBJJ6Yh?9O9VYPX#Y~^`;jCoRa0HQa= z^;laR@b%3dOTbWxOH+vSWg#fB`P`otBw1Op8o}QS;fGrfwMZXL%43SfoVs>wl^*nx zcF_ysFrO(Z!xXRk*95q6Ful0LT~B#}OUtovb7vS%R%8CMeT%tW1B*;>bTa38M{kF( z8y>da`_(Za_QI(F+V{erBGOlMoO6^%Q{Buz& zAm&oR{5#M2&0J6rEEddNMJ(k6``Jh_kD^;q7!ik}TaydKb-GyTNS9Z1VHo5|+q$2g zRrKFWA!JaPVOAI*P8Rx`E{2ZJ!Gu>QtFjC0D%aXA%%~!1Ti{&u)C1tSc%if0)MU5L zD^9i_CKFI}5@nf!*_v1KbA^6c8yGXRuj%?b3^<%}fWf-SKr`Q?IdD6C%dcaPY8%6{ z=yDen(RJ;qGz$0%N2Bnn{%%G&1lyvx>YPM4wE^GQ+Y^C%q6GIONx$K3G(=Y(5mj0A zoDZBMD7X^(C1D){qyg1&bNTF*`|TJXxAZw#S}EDDghHHy1Y$5O09GY85lL zh@>`GI*TZtXH!ft`RM8wRQ4e)>0C}2T2F2Tz8 z7m^=)9JRYZW66C!9^!j1Hj!+PJs}ibp(i=$U2YO+p(Cs!MtS3{c9sxSwad-=bYHohj#QD(=xFhI12!00vVj-h%B@-R*@EH`J%;#Oj>fXM;RZtyn5(L z%&2=)$Wc-1iI==`M$s^4#T-wUD+2lrR;GULAh3*EB{KxMl0XV_NYhF^w0XKSnhv!7 zKbraTFF53BS$C6*BWbtsJfYK;4Iz`R;+1&!O{A@r=v{gPI==y7twv-ct)_M_8rBK1 zCL%Bq&O!oPi($^iF4n9Jy=uOMsD%&Qim8CoHl&I_wd3q{8 zDh`Q*SD|1pZlx3YQMJ8P)HkYy%fmpoP!N8+GI>j@r6)$_UiMz9N|nlWAbs@+zidSe zbB~BF7OMY96k~-H|33aQ!g1bW+9ab(lRCy}?bDQk>SvrumhBVMFh!jXa9_+2lAh+p zAz=`ec{u477fOkyWP8v26AtE?85a-TwK_7^7^>rbNt%q>BKVayG&uzGhE#rb&`t&*ZYUDg*91sLdzoJP-m#4~Gm%k}fT5i1 z?-f2DLR;5)tRq?gY=9#F2mkwJEA)j1Lj*R_4U9!t+<7k^>C+Jl>n7cO*(n_!757?=1vFV{;5O+ZNHfH zG8B!C`i(yJMg8chdBkwq1_R`@2gOeXq`~GG68?3hq2kNyk!3aS z2GSIAy?*HZZ%#I6(rsJRv|f^QYUoI$*k4olvRu*d#5=gouqYDDjkBaV0TnmbJ<-rW z;H!-DQ1>`BB9TpT5KRuF!zhz<*AL69)!iJUcslrk^z;bbzDT~&`=jYx%4qIy;{35_ zgnO(yqD0{-k=KP#Ht+l9dK~nk%}zfPFU7R)tpHqd>T78)mUI#@y{Bc;Ad_y`G8=3; zvA}b__}+MBO8b-Q zmt4MHeI9-BmSbO(zORqxH0YA6J*cX+6*0Fdpk<%m~O#s8iye_XaKf zKmd%1rN_KW!C0T6c(My7!n47l4q9tExjzlkzFL7`y5w#oMpS6669#@;HVh9c@$EO; z7Pj{Q!r+vg4IRx*#AyN4P!)QTb2QS@k4T^1&(beI*jzLhkVbK##A}bN#F29R^g!oN z!;N9L%~N{lvo*-_fooCBH@cr>%6jxXKFk}sl&tl&Tc%lYPG;D0s_EK`;msaNGdkcv zy4*v?M9bL7j;{S%?>$kkHCblpSxGc2gc?0Pd&cDg$TUG~g|s@Em$V;#R~k)KtJZ9&IF&%4QSS|Tf!dm-YMRV+Km~l@3YxY9O)}9( zt3+$!qcb99_DV?FZnIeBUYHP>e7_c z>Qi;WjV{dzaE-PP45cEsD@15Ao#A)+eJx;yZV#I8z<#*Zu|Tkr1WmW_=DD*;4^VCU z*=jJwbcT1PwohK zd&CJ-Ob7~RuFY0J&`2AgZ0tAP(5)*}vx;ebxzmScSe#zCwMiEh$9NB$g$yvtk~YCm znIvooCGQt2k+N~#sGA!~l(P<|Nngsd;7Q?I$Mg8^+;a_N6d7xfl&yqh;e9U<_z|@a z-8u56BQr&pg@j~J)PMZ$V!DT0goTt>SpGR%knD|?*|$zRCMR9Tze&!68SR9W%z2HE zS{Ho{FL|1pG>5qCJeWl5s!F5R0Wz9J!;h~=zn#?IPRdMMEq1~xLaPCM#=EtT1Hr|Kud-3YqnL$>}9mflA3Dg%oxr|P6bxz$h_Vfs4{bsF=0^_ zTfZL$LZcyY+!O(GD%Jc^smjHX0-hv8SI>%~;BoS-K3~z!0S42&<%Oq99uLkF_OOKN z1OPCaZimLC=F5fc>7s=u{VtTrBszu*vyG=bS)l1rDaA78BP!7rMdD{DHJ4?)J znGKH(fUn36sbTnY#S%XeHQr1``Mz?Y>sk-H>)dTkt+--|Pwz6UVuNfh749ckb;hRX zgSWp-G$@VIR&(FCD3)QXyd zD3#-bdQ!Qpt?Yw_r2sW0b~N7Bz(k`zcLsrQMc*7wL|CqQ3ldz(fil@fT`LL^pUPJr z)`ZBuR*fPR;giy+Rg~h#rCF=L@C1)?B9<{x8+9g|J4fY>8sRIr%3vhACR$uOExx|r ziykQ_|4VN4aHGd9M3C`%^e+8B{7@j!E)EAq<7p&E`k;Z64VYc_Hi090JjDEPn8kac z9pODQPqvF;Dq>3Zl@O*eGhfvex8H`MuJGAH_Ei~AC2-33gUhY1hfq@0&>p^0gVb{6 zf1Lz~?!U)N&|4)NC$UnSJH4JQ&_n5*;_M*0ZFSbt6nIU62tDu(lJGu?j$B>BZ9o^EWtx&ecN+JfiRZmT{D0Re03Oyt;a#5HLKf`*s+u)BDp(T)k0%;y$sZzw1;yu%o1#-86MX*Ki)DJ zm%Tx(EHWIOcusHC3m(>{S--AdUT)3O%#(&l1NlZH?eu9p#hnbmfVUnqxgRrwsVnf1*(jh)~*>6;vdx`WLtA3dP2`FguxB;V0^4a z+6k&@=L1QmP&5?@)wC+(eR1_5wf3e2Vp63gdxpizy%nc5(Tq?h zhHl21T!ZTu$ZG^3&Pkb45J9WIu3FLBId=wR(ci3C1c3 zs}k#1o7i4sCy3YS?4+ThDnX34_dJ>kiKPSe)|x1YM_HR7E2pJSiSN+PyY0Q*z{ehK z$pTFa-0ZjZ{V})d#FMl5LV4%~NA{vJUn za9FZ_R%J<*QLY~pU*e_KPy4bq55Hn!ON^CK#xb*8)tYBy0M+%7igJaq7W*oozavT0 zOS_9F*-%8|%kw`V>vEk>%CXL}%>hmG)@+$Doxc+TWbZUb-B3iwvYse_JkNW(&Ab;21OxpN*mo0pW$`cUT)jzbvFJi8* zI4!QJ7D_Z+xvcxfYp=x}(}5?u2fba)ecCRta^KCUgYJ>jI!~tTI&Gi5-G70>Kx5JOvH;S7HCdHxCpNaE-NKDqeM3mRCd`uB8?Uf(oOxL_D7}Nj|aCUMB99J4JB(CFD4zYiYG_0fFw9Ez7Yw*1~o?hDHoE~c#F4HEb8=B zcd06~3>8)f^~@#gL%Ljto@dW)APwwJ3IuU4F43S1k(ENPLX=XVR1|MPv0|2OzI0F- z&ZTzXD`%{{@stI%a}qm82W!DhS{T7&G%vvrMljPt(H$XT5)7R*qT3+|&AklEI<#Q@ zA=h?`wcR3=%4$uwh?B{&mwOVlYpjK;Q>itFXU8TMYw`r&^7VCi8m^k@b~b7M{JL$= z6#boTjT6}Sd0N9Q+=qXX?RbQZkEt6djep-KeQ|v^3jId$urU!28U#y=_5pDnQ+6dS zPsk#M-;NReQ?G~z%iarOmzD>eqd@sXWAt<$^-xq|YoSFO=@m&Wy`qG?3xLkDeKDQM zF~4$x9WLS5T5FNHTc^9ib*4UBvUjYJQgL;U^T$D|ts=>KsAF>@o3Lj{8wqg6{6Gpz z5L3wNN?BXK6}L(dCyHXi%#9W^f`>DQFoMKm(scYJZ4+emt;)`SK2dmQ&qNwt#vP{J>(e5DL`q5^X7>`!c%oydNcMkciOrvO_p{iSzHfKgR; zbp?hPG^xeh>!#XTI0`M9B1U)_6#AdVvM9dg_lyI-cjq2y*X1TQGU&+&GSXsoo~g>< zLa0Fix2~y*l+6AJrGom3(Bdm)i?0kV)@F+fy1eOyp5XDAXi|np4T~t%itEvVW?MTZ zbWS*0t+_`zIf*5L&Bo&uu~zKa5KBl~%v6Q+)%$)OOtv-O)~`9gqFbfOQa)Ow-rAgI z^4+GIL6W3}PAoa?KROtjeT9$a*J<=Gh^7Id71jq2D^nKa;=kOR{eC-7-KLL zF4i@CJq@@WFxLIfKyb#SL=pvX_Mza{Zd*rzt zU%BiZ5K|H}ilomfpxK^*{SK#2!%s}fzC6Md(B~kvRCaas(N-+`Jia5_7#GpMjMCQl z{I{IJ$Y_YPWdg^AoQ*|Z#BDLvu631&kHQqOzGfP26!UxZmmr-%mS6fA=*A;0M&}jK zyA)B@G-qP;Xu1FjLoTX;WYveWg&C92@av*$c3AS=EM6VPar zBHD+`YF|S|p@csF7q;j^TKR&-p0y19UWI_>Z|9D%d5kno0bx9MOraShgr~02jF;tq zp;5j{4FnzO_G~%&8$RtmeYu;Ye7a1}^RpaXwqgjGigJg#MPzHOMcW#xzE7`}7H00t z)yQ0UoP7w!Lk0;iT2^zgA1!JQ*|X9=$eW$1bF1ErlmS z<=Lt}&cvpw*DH6S3V)NT`?gDCMl(iMS7u!na7qgP;Rt4mYq-TPsH|9PEh=}z=tcHC zbaBV(iXZ#jDOs^-%jG|fLd)@O1a``m^6RJ3?&*2ZZQDfL&+YK5cj~0PR_@D&GFWSE zWDtZ@duiw8;*&Chmrsqc^3WFPu1OoKQL0IAR#X_)KUu(-zc`a47;BowTqBE>7(c;Q z;t^FmHF`N5LCmj4cqZN2UkKe~96^f_Qh#iV7 z=R_d`C&l+0&TyO@WhiKz#P6*KxcOT3B&pp!!0c3Q%~Nh2&*JT6*_Z!Q?Ra&if^8oq z3w~?UK6ZP7`W1^Pl*ytm^B^Z!3mOO;!cPM67RfYWuS+B=G3NO*)f|)5s0jj)iAERa zie?eXrf3a!jC{-Ie4ac2tUSr6ZZD03f=Cl@GPetx7vX`FiMFN7{XHvJs;0Tf|6|}_ z4EcOJfDUWJ0dlD9{xDKgN_NxoCG-p1OK+p})-O|UPwH_u57hoc@0ad-jbVIgjza5{ z@0$y3_b010RUyj3ymQG0{jS|Cx|8`M90eiUVB84SN)OL}+lqz-sMB6<73N*?OvfzYzQ6SS%@63 z0VWWgBG5HAR;%S=))~0@Ha|dxF7fR*M+f&}9ZdvHXtLc+Hhz8Iww|@T2IZ)dbXT2_ zehjkgdWoE^1EwUAnheD4aqtnoNq)$FK);##`<#q7A(a7wkYMgL5a{9j@EdV>JYp^^ zUMqNe&T#Rq?V+e?U$G*(LEAR@G;!PbTs?%;2BgME^2Phrxr?^aeG77o_Vkc78C3R7 zINei;ki!AE&?-FI2wN3-DioNyo>wt?JUenXrvJ6Sy)HeB>sP0Xml;bwYq1O__cQ6e zEqq-p#VU=hn9SExlt4RV{yC z>15k;IIXEwCZyU+*rvPllX>6r9MMn$pYpw~2|Cbq1m4{EWy4aAm_9t6^s$qoh1zD} z79|^KM$2y!C0@vnwS?yY3ujHFf@LZEcN)??TanNoT=`}K7-Eo&3*pvh^(h?!FUQXG zY^$SN4vcDln6^d*${7V`3_OKql!TMIhW9L|$sz}~11iBy=nVH5UiRa)=-pL{jH<)D z97*aS<$26VZ#>EE-bm)Lx7coTVXe#^mLlG``WJdKE?gdU63@K_6SjHhPbAEJ$$bQ_ z8>x@jWo+Kl`UVFR6l%^e%gtw5HXjZzVz^Bk&nf%Hpy7YUIm=#ebAxlObvvqUdC-Ij zTACh293w7ZlV=4nh8b#9Oc8&WkOT&7O_dWaUHbybh^!%`>NJ0GRN9`yI#3c7w$^1$ z`RXyM^R(+@+q_7|k?K+37$jd))``#6l|D<074)qALg$-yFMR-+N*K_q&ua55wIFIB zGiplDy6le!5KrRM`GFNta#xP)tJLfnu+(@i1K#8H>y<>iW{?Q%@tGUNHrk0diaY)8 z-e!QojM)eKr|DQ3sqD#%btHB(fbOYDG9`YRk-Hg4ry5PR{Xug4!gBYwJCoOt;+z+i-~Fq5{aCgmZ_c6Tfc0v2Ra9?i$dvcE<*<3iQ=<*$R`zYGNeTJsG#VSPfk*EW;YXhh z!0&omO=%zqOHxbgnt@{C_TcD#7)ol9E;vDTQP=25^GpSZfBVi8iDPKSYg~IK5E!yi@XOJ`mObI2=-Dl=xpUMGoLai zd4SPZ-&iKS+_sswp!fBx$b^Y12Ros}ph?2xJPzVBS!%YD)$pgQQ7>K;Q#fq+HF=yG zo}rz6ogC_T@Tc$jCNU+`1P*XbX}KFft+BZkX^Kd-`m>ZZCv7rkON|zPu z`B3zHP%(}?pYJW{WyF%yuz}KRDlQvlCgMxgZ;O0eN3%K`CH%nVJuv#z3Q z?r9x-@mZc7&OLRTrWLJkXGdvj;8sCR6Sa&fshgL4WcO>Zt)G2aCj7qvHB(I1e0!pg zKZ1781+YIaYfbGpDSnU-xh`~*2D(KL{Yc>SetX~GeyaU&`fzqMrbhK2F6sob_G{cC zN*L$@rFNlr10VhL8Q)%SPwRYu@L#*GIr!dp-i;6F>s_}tkq@n2pO%%C*H8x0AwlT% zA20AKWf$qi*CKQuoYgQ~-UFDcqiGg6uY%6RXvHKaOeMjYFrjp#FTr~$!zi8$$R&b0 zq(0dO^ZwlYsa@>6B~XS+KpCU#HkfhQK$Uan@x1 z+oZ1Yt?X{$aVJsrL&zg0e0yVtZO%WB`@I;W8x^i4ZeboGc3q3hh!>GEZDH}MFr*1VGOyc-f9a-l+ z9M0^#g~fq1S`W3-ZXULk)0TK%zzbjLv>c5|{4I#27H^eIC@8&F16xQ+6{-oi3?+#t zl^}PT9uRvzCL9o#ryBXF`O$CR+7POYusljFaF~uL`+fDg8I`Eat(Df=77wxjp$z-< zLZuUaIwgw7Uwl$tcfTy>fz!I*Qgt|sADO<>-OT0t%@W*qLw#ezqR;+~Mepm0n3d-z@m|7EyuTPxzQGu0!v>o@c z>VE~*(_6SSVmGL#?_V;p<$m9UK4d+3U$+i}H8iu+VZ5#HMJhJzt(DUs+GJofrfxwC zDIN^MSG_pKrwUYPA7KOk*oq+3M+!F#n6AQQ(X_7o%2p_7Xv){jgfi=-&=SUg;yATZ z3=|1nW?_mfJeK!P#dA_CDH2y(=nsq+lu1f@_}uvq)pWTO?k{D8BDJl@82T57D;l_- zE1HX&D6CcRF9^{(;b{1brPDBmAs+*mgFhz{93jnz(XZ3;CE^uWFgVAp%;1WrVrL4J<*;G=c>{x0_CEDj+d_!V>ttT*Vct0MFc(CETEaRQ-wdFZ%k~z)8 z;6gO&%#9|uX)_zM8w<@uLH{L&9v}UO@2LKz{!^<(1=Qc&It z!N;k1>aZiD1HRcG{No()z{9ZVj@FB3RhRQ61T-;_Qu5Vp$hWKK9_Ok23PelIRM%Da*Y7G8TnVphTudN%%as9!y^iq^O?{gAxqRjk@FbN%s@` zWwb{1S|~B(=adaODXcto@m^279KH!#%!zz&X`ccE2p5T@!a z_SWY{Tg##YJ5~xBPNRf>teuZK<{q298-8O0ow3gSN8R`9*Iz$>`r-L$nbPKX*wLS3 z%!U>`oo z>}}Q3_1{Piu}AGStVg{utLKh7)D|D=CA>U;`TXfk;9pAe$4vTH?KyPB>ACtX-fLO?zpP&ZN@A?@K zeelVz1i3_XJh}v*VukXKHhRWdc{CITwiFuZja;0#&?S5OR1R}^L1E+{Ypu@9YU%Dh zBZAYj51EJF7Co^UU<1!4(1+G{5vT1P=uKj6$0goCKx<(jkYy_UD0%cEhv-8_@zYNq ziTHSSl{Sjf$~&6BjJGatFV8!3j?HwKUyFZ-evsqvt&c>TqEzh@QR`S&Cz{%Izxwnw zys?c_yXjgTQlL1y7vnUHe957+&k0XsU+?rvT^eZUO@JQ9yWT)R>v$Vl2kR51#$Fx> z3~iun3`8G>3+c%e=_ncUgVW7)7|X29K3{onKRXS4{NZRg0QH-nfBf{r?V932Owo|% ztpVp6hYy6XO%GVDq0!1b@B+@uiCx^+o+61Zo(2xiokIhBv&VQ&2qESzTx?Frk7EZk z27B`;Kn|;z)fp{o$oU&5xjyYqcJY_;!j|IDQrWwi<#m=wW0&@1*5+U}iS}a4Y@Tv0 zpaV1z9x5SG#@us*SWM>$R=VgjO^u0j>`}Zs*p<%>6;`hF#TwS|z6wt5%N(ctiE0D1 zHDkb$HqFYyj0m#usco!k*k~>cH37ndzP&q}B$6UTgMS2d1L>O%@rwd8=36 zq<4=E?DuC??f_xxtaO=N9onl8{G~%c#`a}j$?(wj+LAw9EGOL~c z7dt9SxC7_`3do|vnOyLw{24Uk3gC;7yeRXG`6bFedKJ577(RDx1jaW z#!9`^CO(AlEx&#LB1e=$aoZF1viI1Emr!zm=^brPoTne5LJiGk>USxKLoEiax1Nql zXbm)lpImR_|38jyNG`b`Hrc~>R(@?aTx&tntZj*_ z5(6$;Vx+;AHchF?fep6l%*~s8(Cn6wfQQItLI)Y1y)EjObqZ8V=O7GIuYFwq|K0cU z4s9*y3SmF|8+76-e)5(TR68E#Jk^0xkZQJzD&*>jB`gW`MWMCqsGcW_q>i69P2oEJK-h4TtnA9{%1^tmIKJ#@U>f(%YU9MEy?AZ}_J z=rrYod#9^)SOq_c3X*sf2>farq27t{KGXirca5~|mW1QT9wmMOK;|l;3Td5J4V+5$ z=?f5IdZGT3{*_EQ`p-vNNfW(}vf8AQ_IzJaQIPr+c-hZ zct&EctKEuqB{T^;io&jg+5$3oX{B2CT{|C?Df+8Cil~@u6f`Ked%l()9Q0}EyDiM< za5k*Zuf9K-ri*Jkf`Gd{g4xEALlcJ>- zY!W{k2-g&F!M&$i5o(-HW8shDdJN^s+)!L$nc4@dVkn|etmv37`>B=Slk&xcmr}m2(hXa zJ?&P?oQ6P)%QP~m5_-C^*~U+#X)+`bG$EyzGm&3c##lo%TRuFhIK0v|&9_ruwo@)) zLy3$fnn5qjtj3}^w)Z`bZ%>z%|Lr}VTW3q=VC>RJ^Dlgu+Muppx+tyE6ejA{dO1tA z5gi4G`_D8dM{roSCBJ&%6nG5-?`+E?VOPyn@EZXN6har2VEoHt9R9HG@bh~}|CB9X zL>2^#s2f8r10%K2)}Zl_ybhU94UiKNIm+1@3FrQERh{{PRrs~2UZwy3vRt>z*8ta_ zZJ&4Yc=>tx*<=L$f|vQim-<02+h)wYN4G#*9;~usrExSci%at;gOyhBRCBmvlNj9% z!F;vK1gq;p+|H^k+cpQUmFMqTjR1j_9zm!;h^1!bURJOtEc>YlB3c1Cj}zEAWbvE} zd~B9$++bUlJ_HT=gz8ULYgB>_%J`iFP=IoUz61$D!~(}@VP|DwEF%6XjL1*$t7+Jc<8BkJK#t zKSL_C#R=Tw%yr+()-up5uTF|;G&A>l=t+s6*UW^b#jrhs$*%MxVLVAT+fB>6+9Fs; z`qZHfA~`^`r((fj;Z1&;$cO48I7!;c54HUWoXD4+1N4F=AWX2EBU{!|+1iZ6X?qjK zR!%zy>_{57^R6P_r7@nSyX|f&;!+3Ac_%t(rM%Y(N<92E%EPeJg%^L!OTDJk|AY3V zrylN%J~ya+_N%)D16Qj~M zAE!>zf74UfE!DNgtiL^02Ozp{f}Q!ae)IEB;04c*ZwuYhe5pc~dIxSA>B5ZDC}|G% z^6buo@uaHe8)2avZdmGGpsxkVcVU4YKuIE}5!A-^UL@i;35S6im7v=5`nCI{5o!ko zks^t4k|dKJa_u@6;ybEd3;Xop^T{{DbtVO~;>h;~7J@CTM%$bWhmp}m4Up>?_6NU+ zn~>UxKncnp)j{Tv5NNnI)=wT%OTe(h6vw4W3&7_0C+s^gMg|2G$4axsEgvjlL4QSd zFv({V<=im=KE5x*bE)NO9+rpKt{uQIPjI!<^NiQTgsw#T{6opQB@#-$OE5p~5Esu~On1;eBRgCK+(%lxEs(Z{i%JjlPj_6|ty!w$DNWL}^|-2s%(=DtAz?&AU~;^zu#TN3*$?~x z)SGnIf9@Zja(-IIZTM&EzTBpLR?14pk#C@{K3YRxZd*=VyT7Qnd`Kw3#1F-8X@4dS zqcIFpU~&w`=!T$Fxc*_invv|AKjW#jgC0!Wcgsto+_^3UN4awg5^^1M4a5om$`s=r zvd-sqzc16S>NqqVM{Y}}z}>uuH39Q)eymQL+mGG%Lx38Ufugd@%TTKYB>a&jAR0Z} zCHy73_87uo2PWcPjAW$E!Q3&$(wMcOaXznbfc!C)ZZ*xc+4g@HcJuO(9)^1oB7D=upCn;>4MQ80$j(`J2wR5Fsp2e zscT+w+N%ptS#~J*vnuPV@^H^Q^`|K~;z38=-fVPJKzCzEiGrL)n-GGnv%BC~Ie!v_y>6-=~5*x1kASrvq5k5*g6i8Y5$ zy|?=d*Ck>KMZUP4EfR3YN2OLU9{jWGGWKKs^UYW@v#gN@9A-`aiL-`1iLO|d+*iSPSPWaLh@@r`i;t~L zi=z)~Z%Qwg?e2mdI}?)%YDkc>R<@I0zFPi%EfNc&A4Nev zSzES?GHdrK-9VIEs(&7=!gRi`Jl_M8NmkPo-6PBE8V$UN`v?jx@zIU4$x;jh-23g# z>vmzb+75W_EZH350iALee_qS;@q{35F$GS((=I=i@VEnc_e2|9caTgSw1@qr;c3G+ zZclB=n~56zT*R@|bda7xDNh@^rvs9}DIXlC3bWb4O@8u<;Ds+?M-fP~cdrU*ji|ID zP&YuqfCO9MBmfzWBz$`Un7p@FHHCXgrf*D)sJhR1X6j>wOLgK!v(dzs(jK_Ro^F70 zs4Ybk%xuaqnmD&JO#C#j&6dP?t)C!?qG}P8Ye9?=Dfge$Kbe=7s5a6 zP<{ia)SUBSYhk{)plV1n$-Xm={#q6hNhC$vCcak&|D!fi7XK%t@h~w5mU! zYYDf(EFcWC^g{uB%qR10=A8pO1?1P0y?jIj#8n0A%rcB5evxBzk7ya{P0A!+&Krd^ z>4NC@%nXz*fzaI-<*u9J?p1xL2%bzd@u`o-fP2CpheqV)Ux{B8k#XC&{BCN>u}sk7 zBv-v4Qd>4?KjoyELgEl1vnnnu>UOGMh3ZU89}^P#3yi)op`#HNPTsFL!I<@|f{|L? zq_83&qc#+r?U0(O_&&$OL|J*P@eji{!rfpWHQXUyF6Ud&=SH4z-kF+|YuCNuU&JH& zTy>>YZ-ik&7_`%d`8eX6Qpt`uPRVNZZFd`y#OAHI$U9rP&uCcmW#7^k zLr%ifU~6CtLrZV5lEW{|D4{7*@{McpfVfR_NEo0uM>7}R`Ic64r|c39>{M2CTn11H zR7(N*2N7QZUKf-H*vV@auCMFs;VD?N^xmZ(e1|fbE)J(=VtKnTNIh*~SA~M2E1r*g zvc&p1XFE=5UO{cFD%Th%WW5wn2iYM^c4r!0u+sS#q8APH`q&Xhu0(DRV0D(t6&@9| zM{e{pZ~60i8BE{uzuGuAI!NqYZ1_R2Z1)FcDD*;UDWJ!qEF_=+OwbRU~PsZs7`Xoja~sdeyc$+^cF&=DN;>E>v5C z0kXN)VY2;b18uUh*05`1tu{?j@V8Elsg|}ZL)ew;Y|(Y?we{yzch0peND?tbTSR9y z)of>gDWXJgms7;Cn;8Z~Q|(AfI23#U>ra^Q&ku@OrkI6%TF!3a&SXoo>&VMJp$Dh9 z9*HpkKWhU`wu)9d_PA(OT5c{xPE&Zy=5X$bV;Ig`t9=P-1zr4s{o)fJsQA2K1Gr@v zd&Vb}JsUUVlH{we&19M)Gcno0Q*zCb1L}(NkZ2v5I!DaZWxR&6RKp13`+AE2p(I?P z9tq3QW~9-*`?$>f`d^j~0cc_Gh>?|1`w}*I>O9|926ksv*6P<3KqjHCva_&)hj$x7 z?>o-mxBFu+PhYje6xOkp7Y8#MHFk$fls#e(AjdU!cF-0UNA97V`P%GPpf=tJnHq}* z9#xR2UxmopyglDeFtHE8v34Qu9{096U?+X2hn~Db*XpPz|5^OB_~p0g?w}`)=?GvD2kx>jT8^T z!l@WXgK6XhA-|^J>(tN_kv8?~rNwFG7z$j3xw#t=E*_Zt!*sse`s5LfND&txh!83v z)Lo7ZoBeZ7Le)vr4qcr0XM0?+Qb951sl0RUyU5)UH-%bKo}cEkOmy^$+j$rYzT9zP zD%c4?7K5Mv2Yv9=*T}SW9`kY2uG=ilAk*>^lUZ6`t*nZ{mZm7hbZ`)zw`tSgFbiF=@K;hdO?2L76asevpC}&4IWJi4 z)g8)*CGl*;a5r10oR`ZP&}d_aH;=@8RN4BtSLquzdP<@bYe!N&V9lRk(K5N(hcKUZNyqa`9DnlWm;%A)0OFg!}0vUjep9S2YUl$^Qdife3PYr>Dh|RGwk!>da05{ndrM)_ znD83Zd=zw}U^Qyl4y9ntENsl#nf`o$z+U89i|Wnqw}Ikd+90p896>P!yDIL9Ud#nn zaBVx@tzE}-`Q{BXSh9G58A};yz!ynM*~1>Cq9_c#w0*(?SE_1$g%euUZOlp7NB0{q zg_U_F_X37g9I}9S1Apgt|Pa zL_Oq;@rKL!V5`&&=oc3&v$oN4P|u@bkjRI(Y8$q96XoGs9qpXd$#@ufru$ShzVVA1 z2pVo~W*Xuf&8c|c$zw1Lda^549?yp{ru!Xhv%c7wH))n z?JQJHn^b!JQvFB$PWv(sVu&YFKYB^aCQpHlnC!d=+QIm^0ihL=Y=R*35=pTLX)-pH z4iRL*sX9{=$OT$U(&sty+PwJDHc%I;vP>@y2ZNFcE0~k=dxO!CV9=YNQF8tq@Dsq7 zQ7`5Ss491YnCq4RIC*2Ayr#EDf&9)zT5JZFYMS|Z%dKVge4aW`2 z=DBKLqmsX$EI!*n(Hl}nDZ!nwM1!kuJy_uP})LEjGJ@|Ukou3=!(n9t}cG^^Gx z=xKgkS?JDgad0Z*`rb|6jc8GsZ;r5Ja38+hXYJHgK}dB}PXJfyl0ThxR8Qrjo8oO& znhbN!iMCtjqG8`WUzD)nHC{E7SsBa1B|OL*oN!5+(SXJT>OwhpM5uf+!}wo_XGWS6 zF4`Ej^s(+pupL@;93YIjcZl$*Nx@vM5!x*qCf4UgqEupLMR}YmVBQRGFa%MVOr{InU@~xF* zMQc65kT@PIRefdLsI8o_Wb**MfpAK$jfN zl^Iqs0a_QqVyRk3jIt`}8R;h|AUF^fa7ARpsz>hZd{>dJG5t1E(Bf2Y_OdH@dz7{sSw&TI*bY1; zQ4y_dk{k1{zynHK9b{vqb)?NB@rvmP*RLr;pDa5kStcvMZ~=;NLfOh>OG-2LgOWE= zEqN9X+Mo)%_rgyuwH~Yl5c_t<>t*MsRcx;qq;`%rWAnb(r?s8nC19wngPsGWe~V( zO^_;k6es&oS2@$RiRXL2qSLu+y;!kU6xGP3JwLbxdh^kBWRBeJjct%> ztp>B;TqxJWliYf0yGU(!K@?Upp*F?bafPwuPJq>qWZzWeh<5u{31>M zgCRb0WTT}2&+yen{)x)r^p@~99I6Bn@*J>W%O&(UB!^7YhRgQ+n;+e=rK~>+t%wZJ z+`f7?y4%?O#Y5~3za1<<*{!7Yjnfh+Fw#cWU4}0a``ck|f^YpL(E3ZV%mME5@VjaAa%=vDLNtAwG&avuu}66s z#fdyUlz~(8e^9yW1e%9N63JFpK%7*9iw^tQfPve5`bkO4t0IxyByaNGV?5wc_CJR|)u}TDh)Ys46{-E}tr9j0N1QOS zG(lzr$=|<(1L>D^1Z}XLspRbpp^RmOH_c6gS8oDcKb;YrjL#(qpQeAY+)Vh~V4eH= zLH+wLt!(K_&9sFGg4*DFWjd`pqoWm`q2`7pc%BrdAp4+QpTF>phQIk$#(C$?5?=LLfBie`r42WKu}f=;)k+#~PxP_0 zvfF$1sjRHqGY+X7bmKIq<~Iw+X}nvQG0mHhfS1_$=6SlFP4iScr7D%LFNcH2o0|im zwz{mes30pdH6=b)rB+4x2Kg$bfgB%>x4;wcfp^yt|09otx}_hfbih8qct#-(Mmfbe=}cg=cg-@I4CHFa$78R#0gyzBcpPk8hKbOUq? z=xavv@L0Eod9$1GD(F_w9l^l5-qDzS+;zFE zYYXSV|fU$HxSTV5OITW~98u<{eX&;*@3~6Bbq08b zJsO;ozb1vasYl)N&~1x~ycPAQ__Xh~LX;)IerINPkAu+NN|wD=S$r25VlbD9>n8QW zp7tD&YWq&1OVuQNf|1$hjP*T>Ggf|xt%AKdov}J!{CsMU_1o=}Hk@(64R^evEfPul z^~-UqX3uSnv^m^J>B;M=lY@`I(S6rnz;(qIR}i_ky+M;!VI*-Rvk1%(f-#&>)wl9m zqC?6wXuf&E^MqkYp%+SoRF@6^(^DILQTnRVU z>*r`bz70O+6Pz>Wwb)lLOGP#*T!_U^43%nL&ZPkmZrG^CFy}&NoTg2g>s>z|s(auW zfnFb;J$=i(tvYL|W!7xp!~!c!r>_rx=|A1B>pYnJMBME(lhKtfQJ9S@7pV+U7k7>{ zx7EhywCSVodjc6PyQ7s42Vp_?;qLOHF%mzyKZ~<9F@K~higoGfE6c-*nd+C*<@uO!bYvY(zw(QHA`}0aH1s6CdtO&t(_$VCW~&Es+2BgFgwtCtm!U5X z^g2hsm-^$hQF$9niE+DDINB3%NI)D0UTU})0A60J{Wu!fbvJ@R<)OVL)6{Nhrrsu`Yx_T#8!CB@XpRBzm9m$Wt z?JSiiDEa!BLEfRZ#`T&!YqBuyPBXx5`jGC@od_nmFN`2jbmN@*|_@wC*-uj~^!s5jI!jO?Yu%SiOOnHh8&#IbzJvTQnz4N$Wun8+V>mH~ zlG)iP-J9IN(TIkWywq-ozcu?@GNVtAhUbJ_HJZla-1PfMFVbN#Jd|(sxmB3!KA#v6 zTkO$;3v!aUr89?_+`smA$><9*4uDq4LWAhqaK;5U-0_OGFp^MZEHEg9eDmNN2}@5f z{$>Pw$R6*y;}u`i;eu`OMg)v_l6e&72*o%~sf<=`i@eF#USPkSN6j17jfa=QA)>>j zW2xdyBx8~~@sZXgy_)s)3CG)Z6dZ58Bqa}b`w=R7Mp#$MgxF1i)2()kq!rz%yAA8I z_GonLmi;)%Kx3$p%?!U|?iB-RIAoun356TeeDxN&BtbK^pADG%Fz+dzeI2~mpX;29 zw=f%-u-yMi`R}VZpQaJu@&4)a?ek?FuhTW*67OaSEmH?|pKDjiKk(siR0P9DW0=mdjk!O)jSqvjfwJ<5mSwm&@RB4y@(jZ;dibS1-#E$NqU%{wD8@f1pfI|PUZ|1{`hk)ZB7JLDdo5kH6-V=7~M1nCan8A)!u!Ug< zCcmF`do`IQF&Lh>Zo>bsFnm2?V~DXI{k+yB5l)O**blN`49OD3Oc2FJaK%-5<65@~ zK`E-i#ilE~ef`tdx7U|j`BYw)DRC9=5dX$^PygO7qt&u+N`@lwyMM;#ZRyvpW83?V z-S)evEH^tdEjd0eD%?+ym2jw58?EReWSR5(S!20sUuu}21^4_@@5CHNA9me%7>1i} z91nlJ#zXh8G;Qwp<8i$nk2_}Txp(L89B;?l`LsT)5BuGCHC|1{7FSJzy88Lk^-}u6 zS_^Dd{9C?-#*lc#l2*7(WjEvO_S9{As8UqzGEJGsd~#W(DQOBD-|CRy1{Qxr&sK({ z#dPSws(mYi+1H#K^Tjrxgh`zCqZ*pnx{4tm8+&5jc%5r@zBqlxHR$2hdZ~Jx zi$_eS7O^O1zHP|`-?pSkXOlQ41PH{O0D**tCjyiQxLq-|G%q=D5*M4!ZQL0wZDz1k zn}D8@$Xe3H?t)MjWFJQ|M=>)*u`yh6Ro}{IfhRRtCePQ)Dm7HGT*;c41vx?H3#-=| zPUft&%{3OhG@Po9TO>??009*626He{Kpbd~qPD%7kMNIIjZKPs!`lO}#Equzi7>lA zqBCMm$7PG8d+Yi`&y46$DGNEo5{|N*kt<-D4*$#8{mb=Stv{v}OSiK_@x`yqQ)u(M zGuYe5w8r7%N)yF*bpT?udHbXdCtPsF9nFzQ0;10G#4pKdt?lneI$EFGj)GzA!%lI6 z$45*Ur=5Ze1~Bq8`x-wmn>O_3vMAVIxHJ|Ku4Ve&M-*Q&lR`Y9D9;JGB9`e0G)6aa z?%n1ZZkJ!>7p>0?wj)VCibnQ|cyrb+h6kC>ibDEqUAtYv#|RTlF-LMJYGB`nM@)i+ zl{BsfJlf>iLhHgqZZ^q5YiVwGuNYOdXi-VxNM;d;Ap~W(@?2(1bl{iQT&bexfgSl( z=6!3F@hA_jEyFWF*T5CsVB>$R#{yf#CmlJT_o3`r4nw{Q=zR6fo`ar)?i4%}9`0^e zqx!n7L{XVWNpbfk?+&Wha>rFK>pYDxbsOHH&_KM-jCyN)E}-tVvM9*T&*$19YfQHk zK?`7&*8-rL{!TZUo(88xa>;3GU79@qi9=+|vB(AqZqOA<)I^qcjqFOp>jstW^q2R; zLjjXZO;B{0tKY5GF-$o{J{!o!~o&;29&cdM@1QTFG5 z#J}#c^EMBT>F@s5iFmWxiF4=7yr)l16KogNO&4Jq-`7*uw43+Q`X!Ge|M*YPN*?_X zS|jgm(h=Wk{dIzjjOb`8)yIdi&2Iq_(4u@nOI=Myc}7`5UUYhNT2cZvippg%eS&=` zga9mBPy%9nqj{a8Z8`C|`B

    VuWH4j2rUN$CFTZY32Cx21{@Si@YTWcSkfb^zaJk z7O*rF^F+@|Iuy|c*Ud*=SYCuZV(ImZo?$!hbGn7Wk>=(ar-Z>uDv9XO(LU^xtC zVLE9I2hJtDyEfCvfY(w%m(qW>MjBtHCMQH+v-GL77U@cqj&@0`q4XZt%QYLMVTx#t z!9UR*z#1mfwLLWrX;h8g-o@z8F|EPZXIyZ@9j|B$AqiLPW*`I3BT-sd(~%#z zo_N_K8Yxrrkzu#Ck64mv45kRfD9)&aR#t2LeKvEC@19^>|IQ4h`I%ORvuG;@2*c9T zIn2VzSDDT0C}ed69oX;aszi|Q^`AP^qWMl+DJ7q5bB}}F4t6WhT6wCa$w~}8MGzzN ztqjkGKAScTqTpkM38t7MIT$re5uFMtS5``!rZw2OPe5ob%?WZ=#SU8>$t(gfgrE#p zp37;8e`78Av110g)97?R;}BwulB`ming<AKB9`5q^~uvY+eNT*VzcfsG+MrP-uBW}bt1wKZquYgT$YRhIol&u z%E1S*6|i7N!hK28y9CpYg~KFEwa*~_J&S_~lhjG^xkMA3sun1O{A+72g7+w#(Ik>R z32#Wk*$;hHDzsi6>3k~DsTxV&Tmb_%M&-J-`J;!rkSXlOgDsmc~97nNxTd?$h&CPT$3#Qd%jX52XBx-lF;Sg^Jj^8ryUz&FSIP5B0narlM^S=!ppPk?Q zYq57x?OpT=k7XZx*iQ64!_eu1o5s?!>^HBOtA)`F(e`)?7Y2-J0mQ*1D|9yY83HgH zj>)zk*FP{M}AEqCG3XgbLC_ALeL^XqBU+TzeR0-6pCoc+ye|`=#?i2aTFBcaU zCXQZqZpH7)X^>$|@PxKvXqEfq+BM}7c%5G`NYUgo*papP;H|PVQ1+1H=HQJKr~YRH ze*D8@d)u4SG4wb7YR5y)DpfeCC-BC6C;!|7)&)~J)S+4wQPqh}pKYQ1dz7x&xxgmxw zv(={re~M)}k2~n=y+UHNH}RNZp3hco*bkv}-tY=+ezW6-odL-$pj2-S^}@N+l)+q& zqbw#@ABuE@->Y>!1&QXM#OK99B26Yn3jc9SuvF}7m{Pwk#am~-uli!l9Pw#jHF~c- zR?blxyML7)Td-qx6%N)Ejz}Fa%T^0ttTG%5tY#%Vlq9=H;gD6Z4m~xN29iolu9elH za3CCpoo@}UjInYjUEG~nn}bzitq!y@-N$5lz!~w$$kZ=MmY9{OVJSilqS+m`JW!{& zGSQ>u;dq@!4{vOv7Q5+j6oHZvMv^9z)`28VjQX(`$^6S2-7C>-MF)sbm-dOa5s~)NkOMiOF0mn~S?JG0ZDm zg7ePpO|^l4=}9&`ZnGitQw1N*cUN+roEYO zDz#9dT$`_6diYqtHtMd}CWeqPW9kc@?_VzKlOD4lIO=@F-*Zvz(`0>&#=QUc53nu2 zxrOLLopw{4>AP7UUHWH7$?vKGP`#ei< zb>EYUq3)yufi!+P;O9R*c^vu|FWY9$KogM$j^pG-^qZ8Yo7QSS+UjTe1W?V23yGpI znAfxvgt@DrE5KAX=u@hM7~%4Z4w~Ay-dbbMar1)V#S4E}Kv1i8NOP0fqk-vz8Gwb^ z5|~D0KM`Da{-yV@AyCcj|1WgM%jXkycs4O{qjsQ#<|=Qgd|~YOmtA=N>63dq>oa-r z#s=Ql$#liI5@msw>w4Az1C*P>gXZu_4edC>F*B@S|5aBx)M@IvEg?A#XVF1z`hT^I zw{1H2wl&X-LOK0e>cJ{&>pJvI@!e>t9BVZ1x%SHlHRU72+-6L7YMO;3(F8LG7N+s+ z97*DZ#i3^(0E@02TkR)l15{o!Es6_m@;cM4aLtxlNud@huArkW8ZwmKQLh%s7qxry zH|u!422DE3 zN}Evjk!{V(2p}4BLDKR`e04Et9!;O&s~mpSeBsSOx9#jhPP|!dR=|iH>zn3$ zfhdbm@N+ZLW)I3oSx6YyQ|y`1+ZJE3Zjb$KVh(be zqd%&>;^W@~f!dGzKH}|J0vZh9lyiTh=BaTy*i;3Qn1}zdNs_*0%c2cnpuK}-0=v=2 zg2aPh3=FUJUi|FsJCAtbRJ!x|_-H0cxXmuqn3-NBKHv1ooJ6`PqW?|9k3U!F1ht?i z^|W8(+6;GVc6T?@sy<5m-0&WM99(XcR3hM+Q?Pc2HJXYa`zcFA|6Kes82Gl+z^zru7B`?5DH3{ ze`yPBvlSSlYzGq*{E6>mcy^djW;8Dy4_z);6NWr3Q#%r_bNMXplu#c>!>csvLSC0C zWl`n?b+vr;UXR8{glYBqBw09@WXLv1@IkVTpWeGmqqr8?O|)f85J6pwR6T51u=reZ zh6*c_8==%AE;CNc4wDi$^VFRdp+>V6L8Bq?H|c7xzQ`JWHaXcOINcN^QaB2SpgWDs zAzRGFRZac>Ll*Q2E$j2!Dh2IvZ}l;sX^8!_$a{{`s=ek6r9qYJ`R;2?Zq9$MBw5#h z1&De8B_<_*BsZ${EA?tld=Yan!9X@~uK9lv$$9-Og<@|qs1-HcQ#wIygj)Mx*WBp2 z_2PD0PaM*4uzV=e+iy8C`FEDDV49T2lgUw6Zm=!B-Nqe?Ecu`OR{+K@?TpWP-#Em| z&&^rY8E2p*i-Ii__u5&0bqOF)v!iG9*Z*&wa5HG14D$U?>Mt*AZ1FtZ-mJd`(P(jh zTHq~%n{SeF+h;D(6E^!6soLupH%Dhh;KXLgGa(&C$A#UO1*03wa8DtANwR^S8bJ<# z&06+x;GGXGGBD!D`2ao47zkR$3RSs0;k>E1GWU1$@RK@MD<)J2Jv{$6&hKtqcu&HN z1wRAg5Iw$?UPEBSA%C2{rcdcZdc+sJNLGqOgd!y5AFeQvfubH|qPVR>p->4&w~KJB z1=n45i60`QptuH29PWqr#yk_qnbehyPa?Z78D%Z&xJEA1W*_a z0S^JT>(%3qN)^i4B0>T@EZ3|-H5^1pKt7Dfgg^!ahId%}(>oSkZGCfarcdx^Y;0`X zHa5w|+}PaM8{4++uT&PWv`Bm+oGd9rJ>)}cT-VxnC+jsh>@9mU!yT9%oAnc&T zFdleHR+?jpULW*tl3-388{`*~lKv3_Pk^H9{H2mAe}95LW_I)q-juymu~;&JT;8p; ze$PpVn>;*b*p^KBXW7yS#kd)Ff1t&6B8^c!AA(oin8q{)-#DK~(^f#7T^7+H5Dl~P zjusR)y=FPh;AH^x>v}#JI>4vAb)fT77S_Idm9VKyHM$+(u~4prL93h(w+lTOts<2y z&$yitV6D`Vu{#MAsKyTkk)n>I>q2iXj&4ZQm^;f)PG+5o&cd(E!dFG&M3qP~G>Nhz z!y?ee*)W7}kQgC!j0rQ!ML4yu8tC#*OGHWUc6&f?I&|rYGAy?F2&8XEps6o;>LH96 zxpl+jN-Cr`q1K8p@`mTC(eczG;Xh$#Iciaatsi^6OZ#Sa1V`X*JMeu*C@YgmS&*sX z#>GyK6hHV$TOK%z01n3rMk*L0nuQ3(U+^I^r%dvVA`2PxxUll|Hb8YjMRl1%Wi-R- zY4w&OM4Ja}su0_<4K}{|2u4DN(*OD#d^RgN;DD%Lf>?AnzpCdC0G`qPQR@6*+)Ow1BZzr-Pqu*DX!a961O^ppt( z*eKhC_Epm7D!RUZ<{12GK9m1xmD|rN86Y3FGFXsTlP9dfK^)1Yn}s26^yZ@F$*zCZ^Vv>O5@EEQJM_@(XE^|uE#;Y2(jWqVvE9fhgsJ|owtDpy6-V}Mnjj; zhqL~~q6MJB79*+m(qpwX)P-Abtk;XsWBqnPCO7<|or9+^?P`qsy7ffqZWKv#rxy!~ z5|A`r58{QvPaAj3ln;qai3Ry)yvczQ@G5C=r4+ff) z2aHooz?X*8J2N_d-_m#<{P|FpW}0GAWBofp_!a7*%LENkLwn!n7|o+r-V1GT1r0PP zf!|`8EZo#A0t{&=U#}ESL@9%u^OeXJE*DVy5l@39ZX$*lvsE%FQc{b0HH4dlg2tC3 z6Zcq473T`8Zxkt_jU% zK!@5jJ{mF;KFHNr9oX1SctlIS%Na#pNStHUQhgo!WtDZl47aa76}1H8!n0PM#to zob!`G$^gn)dQ{~={F@h2VhpQ_k&Ir4#yhb}0In*$i0F0eCADX6z-xv9(cGnXK*IJf z%q?XC&&qypFuwvwRGYyl>Sd@LNhK14$~b&{+Pp9=(kMl0ai?)w@1Lx5<%Kq+EV2>D zc_CzQpE7{dz)Szh>4mbFLN{TWt>+(H=&PmDcu_YQzMQwBSW-XV-eeGkOBvmZ(aetr z--;+A=rdEOdwXc8S!OLQ6sw!Jag06jNb@b|6+y;tk^+-#Qym;#z)yz%F5-IJ)JIdS z^ZWl4o*Vmx!9VmE-q@?dk)?fi@oLoNeDC!~>=fg2O`y5w{-v;P(|6>?@~Y+vfFQpY z4-lg?vG*$0r4j@CjGtB%v6$@I+ZZd)vU;BvV5xa*-W zXou$|~s-y3>+C6JMaj0Lxvp4FpWofmO^=U?wR&uGr%^uL0a$NVLOQ{Ar(}5lU z5IG4))$Fh$-%UsTZX~7-%*}V*fitssbUCwW+ zbS!t_80V|Nnz(p0O@NB4>I?I(d=za_~*WbNwT9^Mod#+xZ zFtP1OtvbT;u1r1qeqt1LpfTLS&~?sx*a^hrjpFMQccI>B@adS*d}&5Oa@4VElU(Y0 z|HbE$`-5xtA*Vy_beJUzsx$QU5ZKasK~n&uhwC|69~^V2$5Y=%rU+-H*ll}noYYDf zOt@Pi6H*z6dyDI37BiO;)lbHPVO`NGpnIH}_oy);K=j=#Ha)#-YN88BgBY~`UA)b@ zfsPnCxOrxRlF;O1p-w$~3{to8c~Y5J__3*m=}4MINxuN@+} zs%sN>{ZPlsVPiY=;MtI|*}uvy?bW*@N89+lu1#C4#!b?dUq8`ixX{0bt_9j&l5W_h$&9lv&TNkAblWQ` zZw@V{JpuA;WdFI6P?SUrqEe=Z8*Tb|!|~iAems*I^@|{*WSyA>yG1AI)nV)+DhC+e7 zAs`?n22|uc!A4pAii4u!f^%*+tt9!ED1WzMVR@e$6B-s}lvQ#@8$}3PQXlzpEt`UV z(8G2vPw?fpDk!18a7tu$50|n)@h=Ps=Ie?vVn;xvPFzb*rO7BW>5kt0c2^qiQ5PiG ze3Z)@On~{t6*Oy&{JU`#I!fH^kMbT2Se3jJnXauYrWcIDjbf!xA?}U863OOW7IyiD57TvM@&cuYOB2_R%Q?P`l2|sO^RCnZ~EiKov=HHYe#s22f#p|k=0mg7UQGTd|=WZDa z!UPGrA7?OiBe5NE{5hjB{#`jH8`JOU;>WzVy5nDN=BUsF<0$v+B_IB_eQQ$tWTh1D zW+dKwgpC`|>x1T7v*+?<%!_ zXQTYBCu+#F`?kYX~BY*bS3qlh56ZyD;o)aqE~&SzCu?SMwrPlqiS? z4YZYixEo+nHOHNa#JJYd&84sOv?v)EEs8$1Y<+A(2=ZFs#hy@M)v1cuZ@$Z7QYol-6K^hv_iB_ z7_;JhHmx*G3Y#38Wsk)c?y4>$pk_Ns@g~HDK4*e^g@OYtQeI{>JTMxo?)@VBWt!(^ zb(^G{S1j5o2UBI%Y|4s~7`DGi?h4VLH%LFQ!ZJGng_nMf4@U>IUt5i$%~a_)xg7yt zf~-32-?l(pFV;UMT8ms#eC_-WLzNJK2muZWjmU2WTXQp?rTD7=QxlS%+=NLhQ%B3( zx*dvueMeUkxyF4HrBgEzG$WzuFZ4Sfjf0J(Lw@~*d=Gy1uDbTo%bOZi z=B~(MhB1-uZZ7}S*W~?Px~9DcG+c#Jomw^hrh-w3_!HNrH$a7xpY8Agk`Y-%GtDA2 zkVJ&ce23I1crd(DW9=rspkcIj<>lDW)G$>Ks)U^}mWf)38jdMNw6-C2%p)0Hs`_X7 zya}d8N^zFM_~HpJvz{Is!KJqrdf<#oZQFeggF$k3GcPx<7~NJ|AK_mTEOjo|SdoIY zrzGj4!Q*UgBJC5f+*jZn@^_0v8@%Y=-75&vaM^r$UvPHbz)>T|R{n0GFHMSA+eFHg ztQvW{dd*q2D>*v?3lke6D>6HxDziER3Q*CZB&e0?H#L5krf*|MuIvBK6)onb&j=aa zeP`edt*HJK4EP^L8Ct8n?H(^sA>u=n#iobT0QrPb4C&;IcBtqKcB_1F0xfW>A9>6K z++g7%r$)8h{Qi=p%BBC0Fn9l?(Jxa1|3-~~L>x!W4i(vt7Dmn*EM3T!M$b8%Jp&VP z-^b@!Cj0N_97Z8e<3&;G4$)~5;Ady)>TJBB&-}brM}Y7r`H7A1FPhJyfv=}{9sEBG zG9r3@{QtFX=6gNfKih??82OE%Pfb;mR|*l_3nU6Cx0FQ34IJEo6-7-K0nFflBn}?h zFK`GE>Jy`fQz$`8P?=$=!w+{Uj8i&v?qW`8p#m6QPrzb&0;;bo{hLUBrXl?kBO9wj zW8Kc}|F19fUM>zm8c`^ZncGjOU>chqNr5Dt;P(#!C%D9KrkvC(rTonCUr4&PYqvcq@0ra>VIT*7XONYhOiyny zm_bcJ-{~YzPNG&VuBWAc>kDyo$RElukC>%~Hvl%zsHM5|ZOA$^%%F-_9vu9Nv4+7{qon&&n*J|r!oT*bIwno zQU^nVSs^U?DM2_nI0YX0ph4LzLcDD$LVCz3>pILz(Wrg1L)V>D5q_IEj!je@*bt6g zKseog7OW_Hzs^8^4zX9s%Cy z_}EN8-9hzH&L9h$L+{X(JkEWjZ^Z0!yS+O8oLXTEvy{o+TnEeO z02a-iJ&dwb4Vh^2z6@JA^c~#>DRmeNM$9NY=PM)~)2Uj5fCcx0LZAi@8T@twix(~a zY2g&&xmQ!(e{c;c60c!o#+3Z!s_#PtRZ~5`Ppm<+Qu^|1&AX%$$;V+^%&v2xj%YVKhHTJ>+i{%tLcK)LHowy@K z-NDPl$KBiWvlSG7ld+(OHw4YLx+ef({5pVoG@|@(h(%kti|0p;G4`NT#(|jTg527D z&L(cS6|Ja(U^dfIReFbIXZ13sS|=Qb#uB~q-Iz2s+;gQV?`cL_eIkC#g^j!3KRI1m zCpcxAvt5>UZ-8Ap=KSeXhsC9_z2@m@B}eacLQq?Of}AL~(cb)Ot_TGCv9Logxk2!? z3y#CZ-3Y#v9_anPt&#L()cMid^P>BID-If9#7!(2VY-Y8I^0ev=f4bC@?cGfSB7IG zBmK56V{9xWuk6Vyt|ZBe)A(+Udl->{KfK3b9|{NUpBk%#7`FjFjbK46B@Bh6{f9K$ z>FX{3&GBC1ak?l~;h7jOMo)``g76Z9c*``6tr-Ep7VQ^xi()gfPL+T?2TBMu`<{;C zk7+8n2GK1rLLvHHNI4d3HzAWm!2Eo@#`Z_M20$fv#rgoade<>8SSo;_d|#f_%{*ZB zj_-w>W~vO!AlFOXtu!qozi89d#_&Qf#Y9FZWamU^Y6yF%tU4FXZ>Nwf?F3EH^p*8S z`+mC!XEy8Of!_Ma*-a)mvHFNjChURuA&-(TM8IS$gV0r|qvA|+GyQ|>sr}4mb(ZR}PO#1{J)t=Bt$+Pi zXUugxPe#kgOBtN9A3I7Iqxnw?$}~Brjhsy4a+4E-x5(Cy^}vhXJE76{2laEJ`|+f9 z^<$~lsVkZE!{p`0vfW50KVC~5t6kuk6nfAl!3NMVWL7;|elMpl%2o3o3&dal8uMFF zgK1db_DF;r$qZOpTV=MWp($NCd|~wYo+}`a@5I24LqI$ULL!5HewFXXf}#nbEl!^P8ba zdKRxA4BFWKJfvva&%=)_bPyEEq){4(uO4LyjLSJ)2o9QVTGzeyrXRIzY-127v*CHz z{S6Gd(;zPk%(j+#PrpZ}xfJ}poIsA(D#&!W7)#J1-ILkr3wzWR7 zZLn(qP3p#S_a6Z+XH})vv*u=|Z*wlju77dry{jT&zGe{=l5IO1dVn+p6xc;h#D2Z3Wi%Z?h%tt2#NEaz+;)OkRqiSm-I9kLmR1} z#>nESUWP6!!1SSw!hABDQp!Q&9_WEv|G~Vg{VlnIQgoHThOzREqQEqn&%S>&m|bwEka%Wo z<(drYmeN0U5I#&lZ`Cfsn+Uha$)+zBEsR^YoYM@X^B7Vg9Paxbuo&KU1RbUACK_J51SD?fY=Uj4^J8;=x z9K%h1tc(}8K^`pmQSdxoR40b)^9z|lYL;ug(4TxI{pcAKm|82Gix$Q6>eDW*nlPQ= zujQ~3_qP;{bHr`}KPDa1V{WrxrYn>Ww)90mjY=l@t)xWvX~xFw#w#_9P(&Q|0aMPQ zV9nCflxs)7oujsRr+Wor!i&hIsk)XQ-aEn-e5W>ae|c9*?|kZu1G+?b?5;t?*`iy) zRXTCJZjWT(ns)_(5FJBFg-;onI;~2gKuV5R=2HKHv#-<^b`{cyN5PGsQVT)LstZfO zQfm~xe=D-kETbE6of3n@FP>LJOM%ArHwAWtXr4~3gV8U$-6(Nqqg=0;x9%+p%-r12 zq8GP$Yz}ValGeKtpC6=*ZL69&0ouNA3b%pZjgId(zmt{mNT3$y^c_UjBD@IA;E;ij zqR_EgPU`LW{8b&semc1667;b_%%$W64qpGta>p->0Ypb(x)vC(%W$|Mt=f%L$) z&*p7YqYTb?jUy=!ax>swqqnVj=7*pRMPdBd(lXhRA>o-b6eahoyiP4^<<1jx5lV~E znevD_7>&+o_=Nqw&(od$D!wn|J`hcEXN39#DI5_LJfGdGJ4DdC?nKYvQU*K z!ryd6MHWx6%oCGnk6pK8koHBbAdK6fceflco7bejM=w5~{ywIqs%olYKAvt;cZHI+ zw2LlhJ_iHW3M(}C0r{3)S)BSxn#>x|hZVKz)vRLb1ZfM6k7_FoXMor=-)FBwx{w@~ zKc308L?i3luBmU5YCkR~j?B1y6Yr7NZ829WrfDD~TIX#!y2@&DpA=9B`b$$ z#LjM-OenPG6t;xL*tj zjj#W9aFd)T#nkb1(}4hGMo|;-+s5rE6Ni~iXx!riZeWl+;*hp32MFp|>whu2TkA;_ z+jlUUqyfQj*XTNL5&DGdGEX|BCQakB?G3$Z77NUq?LN z_+=x(T$$*ep&3C8eRwd^3Ae`TpO`hHpZJ*f74xgovEa_r8dR>)Bp)UOF-f{U+<9b{ zOb*bp`F;c2!q987%Eq9zKXF2&t1z&e`*F`(X_ZncNszENK~Wjx{QFGaHDYbMn%9mH zt&P%t4h5_H>#6Z>65weBfcJk-ij666R8?i|Mtb_M#NHfff!9srIzW1NX= zY=%x1#hIPNP@QuZ2>jgq{M++R^IFw3Ou*<-ttoTJ#l-pfjRG}3c;^GnbvHziuw(C( zHWpro%MA`$wg;!AC(d@y>)}=bdhafUE$)nQYuk8}f)_j^B8+z2$PQ!@SFXVzUQcZe zm{}=+_f9Y)M0woH%dp8VTbbkptGsW?ytts@=n5?MrW|On-=x3Ad|ctF-%x7exi7mr zfJwNZ*W5Dj1j+k=kSX9MK&Ud>Ep0k>yr3*gKN2}ALKB;`wUg#r*S_yNTt0a~SAKAJ zv8r{bcUJt3`8thVa-H~0-1L-U0(mIWrOqip#Tgi#i$#TDz#Y!=3wAmLWJFOdXEc)| z!X4*)5iZ6`bX(mK#LJ`q)TGM1+N$&l5#B>I-!@|F+v)0tt z18dHQZf1%ry(lW3aVX{4Cd*=zch&3)X|UyX$ZpPb&#OnWrs-L&;2kq-O(o}U%A6k0 z&&X)%z`;&Jk`PWOvux}vT2}&kdEX~-ESp(E>ZmGN&)KP%Z>CN4fQLs0d6jyKnvyN( zkodt~vlEtSNfMEOShkL;8OPN1)H?E23DrB&Y=@{O+@Wm=?Y?Np_+{W5mTxER<)wLXl-DK z;nYD9RKZ2@*sqmcOPoHzRF+}pqVMr6K{@fZ%l0^IU>r^_X>Yze*9X(B`WbX0ZA)n@ zqGyOL&W4iw2|E1RBwmTK1EAu|Vm%;&iO&`eaiUu4kn50Gkj{~lNvMl}VG9T$J*6|d z;(x$^>e9rccGBgBS7}j{qsG<(qCd0Te0Y5`?>vQxu32HK2fW0q7v9t{`jbjE(uFCn b+}V3ppn{q~Qa;p`rz#X{K(LuXzS{o+kp3(i diff --git a/src/haz3lweb/www/fonts/FiraCode-Regular.woff2 b/src/haz3lweb/www/fonts/FiraCode-Regular.woff2 deleted file mode 100644 index c856e7bec8332ae42a7c03d1ee2571f234edcc5d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 103168 zcmZ5{V{j&1&}A~w6Wg}UiEZ1qZQHi(Jn_WF#I`lD?d3rahzdFv z9T@-<+X0BaXM*hnfPixRA_MDi1Sf(>fr1LkW`_$>*V#d6f&C6h*y^Z%`T4@lQObry zqiV1bWqlzhqd&iXYAQ61-QLMBQmT|&U=~G`LPF1Lqi+w&{Vez>9w`n^pAk@^eMQJ6#v}jcgL8shIk@nG|i|Z1b{vAiIKYw1wPCurzj* zDab>p^1d|v=Ns>lhy?C9k9uaWr?3x+R%CN8Fv}c4_KL0t{`wqo#N=;1 z1RZK>>Jb6dBhsU^D_cg`y{#}~9Dgl-8yYgpA;>o9? zdjL;g&-=ulbFw~z=XXF+`uxwLc|?!-cmZGKPkswuH%5|{xA?{*`Ri44#vT`@hzMkh^?_?c_C=0xHr>RN@s7O__a?ys9IV$k^Ebh^nWrE; zJy6vj(78p$;Dz+!Xm4VGRAeX_$;)^b88YJmII%tQ&EKo#mlfp=;LWK)L2sRf&g`cD zF7DpRlY@N|!<6G=!Pp@T=B`*&CkMs3s$R?$hrB5sLJB)GA3I0*SzhI#ZQ$_=cvO0H ziNtcHCX1nK+&L(z_q1U@N2hq4Dx7Mmsw|r5mj*KquGnUN`i=SV@^)9MHJTii>g@nW z8bFF3#Vip;)kBTyd$+*KAgHzYm53#onVPyjYv5BBaPo zY*AvTHGP*d6vtD?=1aM-$e2`uKVU4*$V`rXe=+Jnxd(#a$OceeUurH3Y8sT#;ygUO z(Z>D=2*+|@6M#{PjEI}x=05n@kz=Y2!i*_Zhe6MQdQAD33O_sQAaj)Z!SBS0qFdHrP(ueL|OA1TQOY8p?+<^V&V^ zg3M|TdaRu|_4iA50O?YH^LnsE@NnE~1IgsvjYMzEx}9gBsYl#?-w)|mD$sD! ze|IWp{LXnq1DICbYE8c)Co*qYTVu5Mrg0L`XNHfTWJdWXWa8fuvMZRRHmls*#j^-+ zpWNDxfat@4utVhd&$;Y4jPyW;S&tpu?|l>ZZ<2K}Y6f|ijMhca2S!Dv`S}l5I?_tN z>oT$YP8WfCigmyFRU_VNYqDseG;1{NqUz!VsQZF}k*_NT&){Sv;}Up0f)-8 zJ1u$TLZ8DM;*7hiCwpIq90Ldn&9i7ddG_BpddT?6XiWlS-D8|8ZY#q z3In7+x|E`2RvNc)IYz5^ zaqjT<)}NPrfX}@BjZW2^g$krsz&{Qb!bL&@nLnmaMSzO%i09 z@EUMu_eRoye_psn4gm?$stcc2-Z7;e_euD{S2u(mDkd2!#Krb=)F_AuIRvInA-4!; z4)HJv%D;#B=;Z}6cl(pk*?Z+fZkiDr5CBb)ngxz}m+)Hf`(r>Lv?1^5(m_q?R4vUk zgKSe(3M18Yk$%$kCs{O6E^-}@NS0cVWc!_Wx$8lJ{XPzLVy&ayd6%XRMQ{$pas9_b zo6&D|mfJwSU};dKUw(nur|D9ux!iuAmk8M2V8EK^xLjw8QPJJFB8=c^Q22FHN>Y`(EE|7X7lD<$l`Pz z0-BfoD$bIcCd359g80OKcQ=5b=Ucx^yFI*g;0|dcV5U@$|)GZQt^>qc)T$3G%}WE)t(1H~u!IM!ZFik=RQt`i zNvbzY!KA2)e$(k}#&uXIr^TyN9kc_K-e2vz-%vKMZth1>eqZj>ccn`P8vYGl{a3_Fb=g*GV?8g$R-~l!;j5qOpATB^<|i7F-D#6#F(q zWqkqR1>cmxM$z7DXDuC@1tSOvMM|`OgV6o^hUZF$+@0C(1hg%W>{t_W9mOE2$mO}< zn{e?Z0o$SCi>IDcE*2I2P*}`~DC6nEv`kFok;Aoj1#49MtDc-)!tP@>%VYJ(DIGH! znkEY7S1T^)Pr&q!3;QxQ#hEN}DiuvS##bwYJ0g*7j>s!Igh|6AEz~c=!Pl2dxGO*? z5gS@GQaRxu$OE!-t;E_X+n^RAGQkJzKA{8h4mo~OOkgB0gv1d&83ihiowM`E$&t(q zbz*@^EnNkgnY>m0Z}e;znzmzAtJx@!NNcS5K;CRMG1&Ndh`jmmyVLlqQ_{?tkp-%V zQxzJdMOM;Ctt|B6+aQKEoxOihZ(KIQYqXkLXpbbZvPaC$XNDojouLoM?WEZkD3=CV!Wr(O6 z+J;fd$oZwh=nbLlkb|&Fmkpu&K!D5z*aLx(MojabUO59?3lO`2XT#6nap6(F+~lys zToLlPE+MH3JTs$GBw~Vt(Bi}GQQas(%R^vaN)9IaPOJAyc1erJq)7E?J9n0>F87*; z>oWch8SfVAS~)+$ZPRCUad@wi8*j>~+1>W_hCQvL?Kp5G&;XT4bF6{^s)^K9hv+O1 z_2BF&#og9Ycz&@B@!S+(yn4QvvN^84W_L2+kDKkf!(Qv8p8@@`q z^NH6r55=0ybnW+AeA^Wa>e8h;k0}T4&h&BqQG4e)coFu|C>wy}d@W`eL<%ddh)UI#_r^b{D>j z6^^c)n@=0qA|}=x6Gmu)4bzm2@U0A2w_NqO`PvI*Ix32*9ZNW95SL@)CNAZ)J{DCF z4eKoihfY#QjK;|vEf2JFppJGXrNmo-)-{@zQe58b=h5am@ysde6;mUG^Mdn#fL%e~ zVi1uZZ~#Znc2!RyDfe!0rG6coJfwJYoH<0lJ!xLKM7K)Exl z(A_^PV`*R^ANMS^sJv@(P7Vy&k6 zGqYM9dYJ}w4(k2KFYoN|%;?ut_Mm55V;cZ|bODGIi#!#L6gi8PMn`dM@k{PP^Xys3 z?I6kMD%Xuo@^fjQzgnoXTfKHGM*QlWt>4#G&yF@5!Ta3Gb&_KhVAikb8>{ySeE-g7 zUZ>r;i~#TY-dpV0>lU^8>>hS&U;A98 z4DzoN5f}s_;~IJVQ;TBBo%N}%-LMAEpzwFC^DDksJRvDQ2=V>nYFx5GmU1;Tx7})aYj!wX2eGP!z`972*z3OmTF#n> zopc839 zte5dsAD7ftW9cVhxETe~)Jo{G?&uy@} zl-hZpHI(VBu?3!HlTAzYxvAyG9(WMxn!de6K`Q(B8NzIjLB*jM*9+-N z@WjEwcxBW8&5r*E4eOqwJNjOOYMGW6W~l5MY}jIjQjp&Aa?iE3T~VPexw2;RWDGrJ z*FDIKy6#7i&kAwXsh<MQjYPQs*aPP>#VoJ|D|4o@Y4YJM9m43m@#5? zHebySX|cgH zwh|RD-#lzG$}CK@8A^I0<%O|m?Lc$k`*$Y^W3^!}t#&8K`#e`>5brS}e@U@vn@Q>RQ=}!dWA{gX;|#2IRSWS8j@deE`6VAOE6NL}bss5taU!`s^JysGXx_Q5 zbw|DHpM#b>&*=W8$1wGYp3@?u|0eW?xA`IvCvM|u5SKILbAXw&%X=0cJ_1Bk2=Ta^ zFm#K{GnDKoHO?HU!g_MHleRVdW@mHu^(O3+np1uaspp-~5-N$%wssilV`h)}`M<$z zGg{1jyleiyn6Nkhz8`n7J~|#z$MX-)pK#KY6KJ35G5UDU_o#p&dP0q_akF|scAGr5 zgEAC6{>hriZPPc>yR}0_H(~CEShPdj;5Gb%6^wo$pLwKDJ~g252VrfQauRA&-twsc7({d_a8oMq)PBwHW4R_)u3Z~ zSk-VGHszRB4SLK3ip*>BNGIO#%-JOQ#6n8oT3CH2VDBum&s)#A$t{0IuUP-oQEZPi zH(WV%CWDBxlfrgnmuGEF&`j+4>+AR3bu(;!$3jW#9oYaVT1Frp^&%X6`}8q)QFiq^ zYXa;Y!An51w@P$})q7P0)^?rY@n>h?a?e#ZQMaV>AcL>&Nc@^|?YQYAnrB>nLTN|Z)p^xv#^lf z+Kpako2Hq-?k1F@b<*Z)mEq>4(^YJTXMDR*Vg(k21A|)AN+C0^E^)?vMm;Ip%*>A6 za)c+IbXjE3qvD!ia_9n=O#vS(|NH8|Q|clwG=89TGo_jxvRJSZbt5{#4fSprX-q8=g}t{^rVQg1*n| zsyU2zWN3e3PX>}FK(6%ED0Cd-Z9ui{+!6# zfiawg1B7LDN4|KraUeUm=gsMz!#z}40_hX-R z*AZAekzV<3}DYnNTdv38T|^L;N5PhL$AniPnj1)(uO((>5)Uxi?w6?dQK zvAY``Xgf$wg1lg2l~qH!fXRJ+fy+wQHV%r(dz)ZPMv06xCJM)<_Mxk%)SC({kY)Y1 zaakBc@U8)!gfEE#(@2;7?hnkjG&n2mbC_-##E8(n9}AGi{v8u4N^VqI3rcVvlT_Xe z+BEfNK|Mn6d5zU97q7T*PST9jCbR;nQTxoeu<=;aEQb{6dC=i3#L%BSKYm1H6Py8g z(6X{jw0^8@*Hr@aJ`aPD0v4AUCQgbuuy(Vf)yLUG;#%ahyK^097j!@BE73F0Wun~^ z)a23MBGU-zh{SU4YV+WGY|rYy6^_f%!C{nrUL(?4+mI>oh{!ecb9d!B4l%;`vW?+` zW8_3j$yGdsJpI0X5(0*fkeQ*Y@>+VavEA8148))3HAtjVxF?O#lG{kRD-b}&614&9 zh-o68^TpR8N5n!C`ZbY!Nt9t|w7td6Ic9bqY`Zoa6a*zjWrelng|y`KWHf%f9vwJ_ zP+@bPF=B*3f}8-7)Mr>)KC3a?mUe!>gh`B17Mx-H-qLpQ?EVM7J2t$vumS85Q*5}! zTtNJ*MkGAaKT1wS;UX;ew|{tWr%Rvkug={)Y*e(&ByE+|=_ziGR(y{6LhI!r2o_Z2 zSp5HyRIUHv-w z-_buz6!eUA4dunTs_*mwE{^6Fs}Ds*$4DYqI$dF9%ChzE=;Hq$r!I({>4RQ#AypD_o8>}EIEyQlU2~=5SWodT0zl8=wMM_CdQh%;Ew}FB?{`ehgAY}ZN z01;)*MFNN!N2yX|XsLa*LHr67uUW*6rDz_pZsy5l-~=b73P&XqW2O5GTTDhwpl-&4E;1S?F+VxDp6b*?-1H`^oJ)N zzw_T%5Z{N3`;4uefq4K?kUluTq4 z0Qz=*Cx0(sg`a5__So2EMo>mdJTwAcT*#TJolu}r5Q7_l%uxB}gDb;o;)f64%KTnA z{+9ozv${ApRR>upgBOpEIhbIWZNnFI=Ekm$Zi*NC{LIo@QSCi*n;sL4C1i>ix2SW! z{a|sIsE3*Vlh3Uje>yn&0j7rw~l!A=9nMpAV2`US1OcTpRGhpc3GV{O@n<| zFI2ngOU)w0;B#P^hlzC4Z>jIM?e~$&sMq-SMo+xgr%JBZ z8{hRq;fIflOTlv6WzDXPn$3Js#h=ZK_GX4IJA)mUCFTfOrtz^TR!rcQ*-$(vDaDj# zgYl5OO?}&ZxsGiQvLi2%NEmc52s9Z91u;1$BmxKk9PSqkqhB=yW|HZ9{dkk#=I49x= zennPZgn)@Yc6|=m9s)R4%`Lv(k1Up6*!cO{JAeM1B89x-P=H0YJ6Ae{8iiw#%N(~I zGkN?=v3f2FHQee(Zfg|4nNB-45^|4Fk^v1m^pVC~<0m^NZTQ9Z| zi}?JhBI)|PMf%1IKwMYR>ZJ36%@C)l$eLis)ehKd`cjn3L*~C7x{CNQr1?kW~kIYt#f)pIOWLlbwX(j2jp6d&hV{K=f%uCG1~E~AqyhRO-nj&L7vJyOe>=O}SrU|t9G*3v zEsPs9ub+;sE`{XzZLOZXORdVIDnntRbzsKOP;b(>`6MSZ1mnso@mMTXw&0CA@HkK*<<~_`*NQGS^BYsI5RhU0r9XB_W+0vPq z*=+P5|B0E;JKQ5yaeFR0RXl@i>tH0cii+SngQ)-b3xD%5#Yrq~_^XtO$~XE~1Z5GT zjpreEGC+a_Cdu<}q&b{1K^NHoV~$G7UD%IUeub6P&A|eYCH1bmgt42>oX_X?BVToW|*5Q#np|AzZ21Ug)lGPe`_Cpkbx)hLVFN%OdUp zH)y9(tW7BNtItnN!P84tPx6q5z?adng z8J-S|ka*-wG3=SN>Y^mnm*)spbL|0Nm+wKe{kh7pNhbP(reiG?Uw>FZw{vgldO& zi^`$)3ht&L?~rO{jIU;|+h*_|zs7ox1%;ah`^zAGcMQ+B&-pi=!BopIKS}eE5>GAb zYS+?8<9Gx!8kx0Fh6yL2$_%BNaB(EYSP;uRqGe^3@4HwCyH<*WW)#O+1F*W=6?-Y8 zGPo?#DAMNe)3SGy`+cN8liQVo_v4`;pDIeviRIBV?N<~f!vfXj3FB`TFZ+oSFIEH1 z!p0>bm+h^d&jL#CsJ6FKw>~P=W|mQwEbZ;{dK?{CYZd(Zi>F#S_nN#lzURTaUzUb9 z+y@1iT_gUqP|v15|taV@8gzcwzOnBAXj+4Q+iUe&B>o zZbi6!=NbNlBuu7_-V)Axg4mYXB{zwaRLM&Dy5r&ztCq!0OufbF;$I;&M*t7+=JIxv&|(f`KFT$%4w# z+VV=%J>~Jw6)n8y**cr+8$M6|qno`U&x($>2n_vqTF6LAf|aL+aJF~=27S>F1}#CV z__+bB%r!0~UEg0Q2N#lIMy5y79VJxR*ZD2maquoMWzu!?=a1pp2=#}>MgJ5syMsxR zM9URH8_Et+Dsk=qj1q*HIC%z_rnbb^>i#^>9xN^L+8T^F+Gb8+)J$JH8fSytQi#F6+M&Ri*l* zm29}5?u+V9EyMdqqwq$fSQM>Vi()o3C=f0nup-g*p3L|W9R}AJj9zDIc9CrxUG=Y6 zi><~ScV{2>8yRb$gDd0sUKhIv8MjOc8=vZvluGgSL(y>mMx>BX#8ZZv?h~F;Q(Hgt z6DBruI@jRvEc|Ui?#~{4?;auG_Dc=Hc39tA6PEAoR}bSe{w&|rAAU?CJ!Xpq(g8!k z&4R{$KdkE=!72~P!yHwbY}dc|*XTC{{BVMS-|u_-obWd|pJIl3mV9^mD%xk{)UON6 zCpXYHGQdIRoR6}b0@w9nvYX+!2he+U;_gIb{Mvwt2x(6Z!*Z{5P`MGF;$_?#W5ouaT{^lEs#*_5zNmSxOXWPlCg%C{wv{y<^)a?ixPJKna) zvBGIrYj;#6u`yq3cXv#w;Y5q=17(OaH?)Gnxk#Kt{@3nqP3{Q zl&L_dHWJ>JePUOA3^bLy65DFF4FgLcbrm+;-u51-KghQ}^r#xjTyP`{Pj!BZjYL9k zK16w`xn^n6cS9V#E=C#@&3~Q22RiGUilI2{(w&PA9Uww8XT+wkM^TrqpQBhu7xpXS zZITOs#U$?>B1&p2L-D@tg_}g2U&o(?mX`s`i0@AYqMmCg3+!Q?u%Mt;X`h&Q69FU3rk>;nJ zD94pLA7b0(v;E$SOI$v17`9Z3Ut=jy$1TM2PyBoQjvlTv@SW z!}KAYl^@;D+o&i|2E&282bRT{V=O=@N09&e@d%ZX+$Wlaqj+J!R#Tt<;!3OOu8LB% zBriuabpmUkxqD0a*_|+<%nZbTlHk^5tHQ;q@%NE{zvFc`Vd-!O7+Ek%jg(AX8 z(Xa`q**wz4SXn2>d`RG*1aYYC)etWRVTKv<=~-!)CRe=jvS~RF7XFh z@~%6}>Yu%pj}t}w$^G8keP^Fh=ethJSpI!H2{asmwbnn2{Q1}}x)HvqymdZcr3S&a z3t{DsAh*Mg-I3&sps7scx#+<#Z=yvZOFF|~hfJmni?JZbGtQ3cuEd6i9hQFF2HpCW zdp1%X*xC=mJ#zXQAOz#l(Lr$Fw z!>oyywj2zz1H|k8s>oS82@U~N$Knm#&o3kBHt1seB^_ehOfpU=arMq_XeJc78nY#< zANhqCcefNhg9PjJ%F?)@o#39DL@~$0=5eU8J%gn9DJZs#zd3US+)f zf}>sS^QHD?LEDkv4)mPS9{-cpP4(U&I3&zGo&^fKbj`(4{mOIwNJ!6UZ_6B~Ss~mg zQC}B)nvIn(SImlcaH?+V_6JUF!!(p1RmhFe?l6t%EgEePsoHB`pQ(lfU)<5QK9&l88r(3klRvhNCAHG<3f9&sa@ z7QGq~{i*4v=>yyr?wi_7Oc^9n&ytUoKJ%bn`yAkry(3-%h7n&bXc7v;QuP7}?F<<`nn_SCy5ba>b>m*JwuM#8QN@ncY~ zb1iGv4ShXueh-=-_Jdxwgy~m#h7_zB@u6h60BS z2Fg}*p5{S>P0POs)}*8)eRV(7ROW!>KBkoyWUm;d^9IRQnSrH20`>I4S}qB0Jq`i* zEfCH5CF`w{aV2GUY#8*F*+3aFdE@lyPUmiz72@4#AERp}Eb9LNi@ao8Dh7tcn&nOGA#Zj8n62MZ-14C zKmO90S4qG5X-Q99ZOT$Ihd%8q&1L$tepXnX9d9b|;xEi8^L1gzqsas zn%j~UKg!wQXZG|;Lubf;j(=IBOfraq^7%b4d|3b%+#+o6$^)n#*hzYZ| zohs+J@;$u_Fp^lE_ZgHg7N>6l>RY&>*>h4@B*Bj0X^@CZ-qudA!?ptaKb84IJlbFR z(0~_hftxg@LWU(9B)*3b4E-I`n zDPOvJ({pQjwxNk_vUB(-ZQL*xo+Ys-QrLo_!F8c2DF#8abWvr86KuOtr;>L}6TjY7 zN)U@8=(Htd(&v*inFA95ZX`@c?G`zUTZvD-q0wWhUA-t`*=CZbV=6M-M&3w@OZia! zu8$LG}X#@rUB zy{L$pbri>vnUkG$H4MifiNo@@KoIJ!$#A8`!LsuE(Vv!YN*ytH_D@ZaY`6Vy8cgncoy)p6qEVM-LYYM3eBV8nZF)Hsr>zQGpZ#wFSpIXvK+$aGcr+2e-r2c8lGT*d&n`O@J(6=3)2^h3y)sR-y_PUiDHsnr>gv$?FtY=F>%7bCf;Wl zWc&D$^$TM&22P(TxO5&*v?M}BgiRg{%`mAvgYy3{L0J$c=QeX$ms>9d=x6cux?(k- z-5X35=C%^1JQBDRp@wgGx)|#Q z%#Gf@#GVIO9?ooNejSdjEzpIRkq%mjDo83?ofkMBRSMd8kiTZ~*VA|05W!D5vk@QH zDdvoPp*7=O3zF0|e~Z4njczbrW)(z=9nl1~G4Th}U)L#1l>5&bFk{7wqFT}2dYQd` zDeN%1njM%VTfMZowR|zEsBaigw=r8N)=ko1Qpr;Cms$det3)M(*`DLthOd6X6)W11-uUI_u5n;KWF z#z*0#T*Xb5-G>}$z>SXZg_)c~nW9gu1h1;q(pi#x`yiK#xc@yyzYW%?JWbSj3W}U7 zhuqT;EH!j4SAIrEuoV-qR}~%@#Z_xe)6{y3nhaKniJ>Q0>-t%%-Sr^~ltVw&$dOCV z%NcB~_}a{icJ_9bxIB#?UO`fHp5g|tuDRydAR9-DK}P0N&Ht4z_DEQlDo6^BQU|)l zT`)aV^b(2l)U>^Y$ZQ|Y+CNfmenBvdu8B!n3RB`eGfm4}T9PWChQ;v7d4TA)Yb^mX z9dD4@Z*SFfhQcgJ>Eo5yF1c#ng>D-1y?_nVY2rj;Dm?8YK?vb7@OkHOkHvGiI!qYI zjFsuR!{=y7|=PX-5N+TF zW+M!8;wBTKoq0_O!FMzs!KqO|0eqM!8f%jI)F7no-cpo*%mBR?d^zr)y&1>WJTi8C z2Fbcl&k_a9hpnrv&Pbn^Z=|IsB_e1(d>B3yD zTlR~!J1Awy-W_xtxb$nhzA+g4J2Xk7Z9tVsR`1d%)6nqTxiRES#Au-qVF=E`$XGle z92zxr?_4^;m3=BP0_jli>YpFjX#LRAvN6egASV6dzhLN%E zZg`_@W+(Neq#Y~wPPAQkjSgSOYfBpK$E==2^9raN&jbrW!SJEP?gcjQ)SV2cNx&q& zjE*l%8@^kcg_R#3Y12o0GWPj@#9*SGRN5nr(`d%$yJ=OhnO!}Cmc{EaDWdY1Ah5oP1#5jVHrul zYR|`D*B%lmPy-O+{_filABZ9RO)w$Z;C32arGjmY;vrUcnq%?nDxF_kGWgASXYGND z&CiUy$IsG7jqJEK_x1xkD~=*eXERF8jK)ml?YTTh_-1|(?Kk(W^js5B3$1Q{Hcad>@iU0rvo`?S*RJiXu5{ z4r#A6XZ1vD1f!&tnwC+iSxIYzvuw825IgpIefn!7Z7DNn-f|*HQO^PeOJc7a>>vm8 zit~Rq>lj=kt`yHHINQf}q42QmK_ZA@A?dJ64I{I|3#HWCJ2Y!2gaL6Jd1OtGs#*J<6D((@3&c{1Hz8^diY2mr$ihDgjEQ*;`=8XHk8 z)efd7^eqop)LCVp?^Kf>@or@;npnGrt|52G;u2WMPQ1MGNF;?VxF&N%4M?E|sjQ4Q zM|JI`%!tt_&Cs;?dNw05;z2S_s#^LcfWTV>W(;w$^CmKA82F^AG$~*+j|C6c(3ibg zx)yHX(+M&0$q$^3cSDIGAfz(bgsdeK&Z;H2Bm>1y z6{|KJ`#iCP;DT*0SX_58)Mqi4l6NH7VneYIRo_Np+=&8VpXd&b;gUIomK9pD1_q;T zX@gfqOLo!FEd0+{A}P)g2`k2+v5a;$dGG!v-HRdGC{2P-@bVWloXrR9P$z=1+vLDkWu2^`tlKGmzM!nlTap;~T2wB%m z%Fnw}Yq^`9wN4j}N(W7p=X?v;D#-h|bS_GMvSaG&V*s3*7fUJ?Z-*CT8VV@FN-wN1Zn8~z{)H7ujupRW3D zNh&x+Df&jcct~!ECY2Ix>*~1|#GJ5JENkN)hLRF>D2lCqI0aH3>q<`1 zn}#*a4D0Hv8ym@N%%xHZ{UF+c!AVR_dOY3dG)r-h4?vi#oOoY)GZQ);X ziX;Sqs(Tx4(!j+VG`N0_iKlQf$*#XYZp&wqgBy1m1dbi9c^J*O zXh5+0!|Lw*{n%R#8dk7Riz69gX<+G!BYQa4!Zmbrhx#4dw{P%Dm=69qgGja@Fi-rB z{DsS104$6O*i-nl02LDBq99z1&-%NI2X#^LF7ai7sa1-`nmayaLT&?Sh_bshM8t{U z8l|3b3X<8Xh|TCugOI8ukd|1VP?K;|;(UsCxK&^lAox2e8GHqWJ2H92*EHq;DBnGM z{04%q^;<`Wy$N=#kj{5vgu+TOgl5 zJo@j;GHulJ`kl__46?APE;8yA^PR-!`kf1ReRtByBdc9eh&SA!K;K(H-CsR%p*euJ zF}TWJYT>6)ykqj>I)igq1neRa{2IKD4v6#Z*Je zungh!XLxEo88;bBs*Y6UiJXb}VB_kX)a8Yow~>Mvp-Co?nD3b0$qWpaj5i+PJ8EK& z=tV`tcG%b9BpUa|?$7{`erpwnUz$Wp`mzvlRjoo0l5XpSbXlMvN!a7DvZXW&1`Etp zEjBQuUt~tvb3;5yv{`AYQX3?8$t#jIrT!@KOES-t(5O(yD3MtpOdfuayd}_vcyun& zr6O|j>vnf)np>8LpH`A4A*^|{^-axe3}Bp0m8^}n!_c(t4imyfUYH! zU|7-^CRt--75s~q-tARL#U$bbT!Lm(8~B{)yM|kwY}kXFmAL}udmiHRob2V)$l{`i zPzX9>&-fm=UTb9i z_B(&>n^g+=d~H=${oRhLZUVjU*98`m^l6O$g z!;jlbIqAT@`0f{_6SUvRB)Hyot@tnew-WWH6Mo|DS=EK({-aQ#2rrQ`#OB z{jTn2;%na?&7#J>QPHck-k!@$?jg%giZB%o%X%1!UgP#y;lG1pd}7wpaq+h{seDoP ze*rW=%fFgl6YAam+1)+dqdngJ-QKM|*qz;D zQ*V6~gX`zLV<%|#{jul3u0xI~uCWnD8kLUgxnzTazK9Kpv7vD`EWr)j$W7eLMrTnk zxMpSF$jp|Ha#`dSug_Gl*WJ_08|~&}Q8PVHLr#L2*pq8GQZh2LU2@`Ye|)&T zXIf#}BzCuS%bykDip!PIm9mxbm7iBp?R~uuVjutSvs`7fDz$38nmqtlWW-FknXr&n znvKrBi3|=#CzFfW&EjG8l7_23vN^?qYDu%ATQh8!02Yu9;()mj9+VG5-~a)UC<;U4 z7y>K63GpI=m?$Ah$uf$Zs-P+9Du$Y=VQJYqj-G4a8TlrGS!fYiJ=&*B%I}aluQu$X4#x- z92T}tUAhl^_-IXqWyUP7>C-uKtp0M~*)60f?v*Qh$<9mQ|tsF$GjfdNa!Cn^()hE2;PxruufaHHEVI~ z#nhYES@zR7ApZeOfiC%))?1G*-IjB|RgO$!aPL`B>7^x$D5#dLsDoAOz{uEt)vDy$ zHP9F19JY`Fhx*6mH8(^+;N#vs&tVEC&@0*CK>$9ukf3!42K1o$5qiyUyo57g;D81y zqyXU{DDHfA@3)yhbN_!3=f2+m852KFQ4o@I1c>OYy;hftcFO6d8`kX|o^IFUw(C}H z9h_|2?Mmv^1?Zz7xc0|et(Hc~aVhs++p?p5e@k93o^3XLLOra$w?`0-jsn<#sT3p( z3V|cAR@Oig8ABkVnGAe4efGuIcUp}hiGeh@8^#sNEW^d+8ZHAG5b(C5+vV zar!l|Ke=D8*ViX|f<|@gHJN_P85GU%OUfHh-L$jsjBeH(2*LuO2fPBHC&CJ#7veFX zHzFjU&(_$1hu~qd%&Pc7ls497Ws_|sV^`(aS3M53jbokTR8P)*XmDJb7}pkZ%RS0? zv^t*A#;g6j^NF7C#}76k31A{*1TYC<0x%gB7cd231~3)z5U>%kG+-0_EnqWZWxy81 zj{#c|s{*zm)(31y#Ru#_MFi|b1Atwq$bj9DPrx2TOu$~mBfvgHU_c%!DqugF0YE+~ zCg8w7asR$PhaP_S9tMpAID+^aa1<3Da134qa2(AD-~{{*;3QN#;1nV@;57U5A7&VthH#>eg9DU>@+^R&CFhe*>7qNBF$mb z>u7^<2RLr-_mlbCL8srdn){CpVm`omi;Mn%SQk|fU;v1~av%m2KpZRv62J(M1i3&8 z*nu>#4oC-Ffb`%8AOmm(GJ+q0Ou!k)488-h0CylO*a&0;9zafD6ObJQ06Bx*Kn~yy zH>L#{XjmT4p4272jmOt1NngiK>nZ} zPyomW3Iq*-g1}**V9)@l4mbo<7eoQo1LuM2g9xAya2BWmXbjX490v*okwA^WIiN7m z45%?U3e@C9*=-6q1Jn$}0EL4~KoJ{p4@G{Wz!jiqkN^||t^>t_B%nBO6DS@e0wsVO zK#3q3C<)vGO5R8r0=I#hgBC!k;2uy5@C8sy@DS*W7uWkG-~rHA;66~=i`;Dmcm&iM zbO34teg|s%g4+)86Hxo`i#mYcfW8KufI5P|fzm++P$%#ls59sR)CIf*>I%98bptPe zGC(h&?w|mu2j~mb6TAWH1^NK>2Csqoytv-JfI^^tU@%aBP!ebW7z8vB6bBmgf;$*c z6le(e7HBA_4m1pm0U8cI2O9B$I}%V4XcWi<8V#xfjd{WS2Jk6R<_qq(fXYBw8{-a* zjjimBDTl_TTjRl0pa~l@4o%FoCT+|*G&#$fvN7|})XXavu`W<0umV&CRs&UojzBfw zPhf7KA24_D7MKSZ0?ZSX1{Mh}Lb}Kk^c#>T=|YgFcNaW)^>dApK;EEVgZ!D%fc%9a zAb(|aK>o&WRDip+rbiP?8;x0_(6;sZPS7I*o?zCkzbNFfm=l!gd`8*DX9eH}Ub^lTP3_ zLLvv*kRd~hj2NkA%-9SQCZ?G(NA%JwlU{p`Vd8T4BeI8GH7q95^uN$k8e%PF`~6Y|RHByyC*eI#;e0E9aUD1_J;Bz?B!s?FRoo0I5>NUA1ZqYSi$6g>^x#TAu3E0jpQfOM?cC8a49K zqzSWT&3v_J!J<_gKkeGF>ChoSr%vp;bor=THx4~|eA25ICmfv5`t;$_uiqB~25=iR z=qo%to(wS!8LK|Kf(z_31o2vO7k!$df4NDyL@G@>X8O&c?elx0mg zP8QG5Gzu5Fxw6XCITU(EIcK(?YM)GG8I8F{N z2FDqOmVh&+4;}-~n6V)+(@c*v%PeHJ*&c0aJPDjpdWE6SL}{1oeWtFg zo7u2&5yDNA4$&=K45U~Ih9pAcz#!U!gieixZ!aN*Y$_^;KMm(PB149wbaal9RHy#WKaFSy(oy}*W&_Wdk&T(<5DsLj?WBy72e2z#Q8i~RnvQTO+czcN+ks_kZmp`l4^p()|j{d}by zo2E>e87fqm>b>_C`cNM`kNc$3t*?q>VX5Ytz&=YW-FmSZ87*UHSC=yvL2+fM6r5FS z-2iUfMe*RF886-<`0x?VxBR*jKc(bUPUx zE4}rLPI~!6Z@vALg=|kijvV8&jJGU(%QcMR&ch`Dz&V(nyWR|uvu#@yLHxa z*ku<_`3~{QpKK4pU;Z-CvwGg;?u8eEyi~wHg^cb6c5oH@*;)Ssj@wTVs!7sQit;;+ zhDjAzuqeWcRU0;Jim_vNf&+(EoH*s+#%&HSUi0|y=^;o^o-3}%CPWB{2oV!xz)Vu7 zj!uJyEZ1DK>7j>4Sg_C!4z7$POYIO4hFG(P_uY3#0tNajNU#nekhY-w&9B0X8pi~^#*}mR{9dC zKxf4VkxoMBAf+xW00UzI2}uPC%4--HdP!!%OGuGwQJOSV=`t+Kl&MaZY*;yR9LSYt zPriIL3KXbTs8Cgkc)>MaF~@e5D6ykdsXxIpnCt+Fp^M4#mYl`FK?XuNjOe4N5rz?Q zoI(&jlB5MiAvEorVN6+;$#E#ps|0~6RRKbm^XQ5A^PlAL;nA=LqvW-}eI5 zUgS$&qQuMe;uT`N$~V2n7rjoEHz@Qb^}I!_x2f+P;=D_b-rGGq+S1}5$&J%mOG?T? zMy7+DTssAYZc0jPsHm)_rZz}JqmPzWuM8P_WYX!Ur#HeNODiLzPT6v-lq=V;Jo(0% zm<%aUU_CRlbqW<4Q&g6ge@fZ<8)eG;rChl`Sy}zBLWPeiReHz9=08=c+*GaFJvD0F zRjbxjb?UrUuihuiEq6~>(`HFzyPj6 zLllM$qZ%=RXPuok*yRT{yX{tKk3FjGwbudr?Ptzf_3AZf)Tl14yo|YY@-p(bn@`W> z0SCuUpFUpt^?MBu&)$$BuM8XW)`SUG2qwWzo8^Fr#0A*`XN#6JTehqT)rK-OG;gG( zBBc%~^S%aL=d}GgryXc_zI=HJ6Uke&I6;ymsV7B>`ugZ2M1TD?Fwh_k4Kuu+{h!NO z4;mR$-?Z)7#8xz3RY7}!qAKnRQKFQuGBwrk|9p~z`V{TtQTKAe7=GsZ;DWKn_3VXB zgPCOeImpm)n!?xd4UFXb_(8;6mQ{^c*wqqNKd~3|EN-^wA@j#!J%;qt?hFIR|_Oydc8@0)y{^ zfVMny8iP0nP>_S$V?KXv!4D9VLs`pgelRN2K0+eD%o%Rn3Y=uCuPq_VqXx3*xI#{g*?)S=`vHYW z2O4UMQ&TZ#gWBEbOQa!jwPRa-7=XoY0kbhOySJhj2F9fbR-J)ry#k|Xf)-fQM4!!t zaMgQu2zF%yfiPS=EgQv}bR7APa~k9<>O>w_fJ!Dg4MIb3a2i**HMAd_0e?>f6A0`hlmbgSd*O@}c-ni>~sa8kgtm9-_fXu=keyoY~5yB9LV8FN3>;`0F z8Loie$00DE#?BigjW2|&rE%p-_<$q>4sMYYjPUM@W>Fv7LwF6DM<{MQ(08A&edLTK z9zQ`w#IGc>tw0qIZPuMQQ=fwy9HxO5g~7EKv*~1rYcM?%nUS#Qq-9d(ArxXP^0zTV zz{v|3n^}ydmd1YD&A?n7f(ShPlJ_gqDHby9r7wyodLF@#9$tjZ0~3;{Kmb+Fi{(W( zM}~~l9Lgy|1;tQFanz#(swjzSN})bwpoTKhfU>5n zAy&{qmEV2QbF>1zZ8PvHcf4u1lDW_9_R7rl{*@LB7_GDDr#t1VLEnCyq1K2P6BA-e z%!oO$AeO|6SgY^ATV6{}P7Wx_Jdm>*jH^k5+&OM>kAi8&Ebith;ho_L+q5QeO`>~x zq@(W{@|Y5ZHCigmVRNRkFAH!xoJ|P>lfe`T2EYJ0j#j6E&!Px$*>Z#ADOXe zcSqLpgVO9hvMe?Ih|Juga;1X6c$NK$0gfGEgRDj0>_e@1OB{)7$vQcraad{4^=1!-SuoMl z`AEs=?(X9~4m`h=;UFiryM}#>9d=m_poTAnw z7yJTnW75nQZzpdpwGsH&d8Py2Nl>h?uO=_~$b8dIgFY7FzFD_nZ3=ywD_IlW`ZBWJ zuO2M3JO6tz@nGl=#IR>>$r?FdDLd1VymAOPHXzokf!39sq`W7h`}8$C-R8Z5$!%WA z<*$kd^7^qikU^(mTnqEfvUOa^Th~LjCtUG3jVlA?y$xs9ZuH}%cTlcIPv9!jCHfYr z0ZF#0phZ~S1B=#xq}z`M>ck0=GP%X-K(etos}q1+Zt*&he9S)>jS}&KvnRNvCQddIb&EO#++~1Q4K;xl- z-BSa2t*2yU2>DjwpfZgR-g1(+m^FY!1H<}yUv8@0Re7lLLja!|z&8yH-*G?wP~%TE z{!-&_0sPSb{%SyG!#}$4>wJD&5NfT6(6^`J$eH<=)og(8)bmf&d%YiQAW)430H7sD zfMsUTU4*PZIP?Q}|HI`QL@hrcus$fOsl$#a4sv-w4?G;>6{ZqFI(sz`#GV`D6q3-*)|9utWVsoT&G~| z1?gz|(_jAg!{Z@z2r)LkwT_w@V$CpY0HG3f7&hkRZ8Kg4sf0kXFVNk}DgkGdP31yq zN%i_3is43sjVS$jWZYfd9wVd%yRD%wP>RNY0udhb#QFX=_JY<~t=7?xW6wiNYVgyRwN=S<&0OYjFIRn{;N=}J52LCk);)c*FpCO#q&thN|Dj%7@NQ+ zH^NB(sh%*d@!L1QRn}Sq#2<@SHx0h^wzCJT9V6m}L2RE*XDQTZfkUMqK5aPN$EH=s z`ZkZe-%m^kg6c?PL zKS|wQ78QWqIj+jC%A3Euigj2Z*uc)pQW)QzJnJjq>!@Dcf4^ zDX93>zw}QdP4mdO<%Ok>b+{KdsPJl%=Og9cKN!RPD!?*LT~Zt+vnl% zxZF{&kFvjYdAJ@td}J(?;PKZi?w%&w1!K!1Mb)(N!8ahC&wjrStwlaOE^<@Xy6gr= z*PU97$NG!gHd#FDOMR}%Y?#{NA$_K`bT)JYuSVqOnuF|{yYaM6PwP;mm-fkB5ewbI zFd>ySA-)VoeIsLi?{^K^y#(cwA4ZgMm)s;9`86l&`Jp~hfxEBm zc#j|P{l=abqdA|#Z8)xn`ViUsbfl(zbhqO+SG+t88!X^VfdC+6k$Pg?>B+o8DMqx+ zi_SWPzAM-G=r)>2R^K*n#uRS5rVeA+?(br3r>c`?y>I*e@t}5UI>Op5hgi3L0M)!x zgW%qjEyyum-6(*95;lY1Y_{!_$%7I%^=UdzfuH-32p3{Mc@Nlgb!V2yJuEYPCNhh*PU+JM(Yx&wL-s+t-0z!!Mt zc~*D<4bl7*{vB_EHp3Rzq6&unU-)*41s@90e$f*nxD@XXOE1f5c+F6rD*0pFA2 zy#k}*BfW^(7(^uql#+L8UXbKA_OLiGc8h!fK^rt)XB0+%c=X^uj;~2uesCcQBYecp z(X;QK7}qY$?hh;Mu}(Tfej@ue0RT4u+A6A^D+$1V|CHia?8|Pldz6&Mpn;+>kFEAh}T=i6q3n6$E==+l(YM94YcAY%WfCx*WN93#Y-1--rC z0*00m8o+auvkDGh!@uDmOrso$59uuSw03yWPO+Kke`{jL{|W|p^yov!xzIgfEHl-i zhJd?=vseO4vA{*U?ccmL(X{{d8s0$7OK+S$!z(?~&_ zk-IP|NpeCINf=pX)-aN?pu|O+6MX#ebGMFJ<8pu)**JftQ{r~~&e9B~6}mQK^AxZ} z=ObN{D?-Kp(Y?yEU%dN;sG&-&m%^~YigwSI96B_8x?;GNDMWgu z;zO543M&Ia0-kPfD7xzr(lJaof&`heyrpVWYeCA&(E28xH1gGLOp_WmSPX;z7sdVdIc!A&OkD9FzuQQfCH3g~d~rVGIwbws=98Cuv-~ia+&D0wGNx3;6|&bH^Xv3i$N2$Z6PeOYy`4|WhrW`rQ7|5 z_RyC?xl)9v7|Arjys+QwIf+`!Nfh;2D@mM*4>}JJ~5X=$ApsWWIWsgR-7Z_F1yT5E>yfLg5iYRGf zPZE}CM)GW(O@=LV47-Zg}Fh+aOc((Q@mc#95q_*aC<1ZLgUZ}(Ic!7l|EejC~-SN<4mWEvaSn$e|Zix>X?#A1+GXL{Oby*K^MP9>>u-TOh^5(bCVH=Sfb?wu;!j6q7&t z5Zqxfa7Qv}gYaZ`7x%1F+SuD(X5VJ#<54LTXOcyCJv6<7ryT<5b0%bN$xh-UD3dV| zyeN?gW3hCTr3`X`HQIYxme>sOg>_w&3rJ$)WD$PYwO|_qE+5Ve+ zgsd&KzU-gw`)QmuLeHGyXmb&1M`(AO*B1oU?}t`hLSvT6!L0z%oq0acUrHmA8C8x!3 z5)C^vqe%GaPJK&qrqv!d@w31%isaH{nX?bx05!|DOxq&*LJEz&wIkb%3t8 z9s>;y`jXt+0y=Q$gRm!v@yZ>h08Gu2t+?de6aIaQjY@(py%0sOZ8J>EGI=q!E1{1q zY_HM^`Q%ZXS}VAU9u@$c3SdbZ^?Ka?CAzQ4Nx|e*Y`{zz`j^n@(%#8jKi+PpjSYtq zY+iIRmx^qyfIPAws+=Jv8*uzWl$mx7%lNJvZBOk6vm|ge28cPo2S$+5f>U0IF*&x+ ziB}F1Bg<0H(dM4Xp@tXmOR!Hco$H{ z!Ut$EG>yS!-DyV7e*F`MW&`w4D@@8e9Oc!NK1ceuP9xg>+^FV|Fivcv`_Gh14%zscz~4AbnjuJlv=e>jC@w~B z3i-E}u$Cpp<^yEuO&Ky^l_}#KdR?}JybpuA&i%M3`WkB9^bk97?I+yo&I*WX?xc+# zUJ9=cZj)DWl{z>;o&`KvyPsJKrXc|xbfut88j;2yqRYcEv;tBPYLpr9K3?Kz4&~5g z&e;ioxVS`Iau#Ok#8OPL#^8j>VfT{2_pDC>rdQAU4QFvvUK=-8Ef`SFA@v0EFQ<{* ziNIbH?Uk1k?83~5ye_Ciu{4jW>mFfbzzI*k&!v3g8OQ+|sFzD9*4V>V=ixl&@CrXX zgWf2QX6SX|IFRv$$|E*|TLXuNNj){#2zSOtBkU)yXZY1@l!?w{lU-uw!!8=CO}TQt zh%X2Vs1I3=K2)Vpk0UBH*q-ohMec_c06%`hET^Q?%hb;t;b@_11H~{PwJAPUuFneF z%!pMfRA1pw%oJ6pJce;v$i3vXxKa36VCE(6h!qpaz8@Mf1D{ZRb=Cd|x!<5pA(k2bpj6v;$0x3LaT(_MJdxVHP zsz;LRL)q9GONr5v#z%drg(XMPkukk>bxJ8k^s+_~CX1`TD0<)$a2?}mQ0kQN!?z7G zS5OYD4GIK7&R{0Ub1*deaF-TQW}3>A>c_S)nZ_nihJc z37>IG{u=%l1&hRqB)8&(IW`x@H|G?B$;YgE#prPt&ZLcnMq*{taGbwkCmextoL(+; zxPawQgG&7fb<2E)>B7^p+4&1$h%P3q(xAEl8EaAk@1lW|LjxoLrqvdV4L1yM%O!LV z=oHJsckU9lC-veeE>AsDe|a?U3YPSdOIVbN&4pO8_~xXl!ImrIr{9`a+7Y_asWPTq z@&iR#@FHe<9WG?!1c&Cv9PQu78|Z2}qrm*S;<*37DfwW;yZ=OB0ds`<0`%0!T`pLf z^U73EMV9PO9V3_cWwb!ylMe3TggEtCU=Z|}%?-qgD&KQhl5_IBOiI*=JA1f@$?@#w zsjK3d5y4%#qBG9*Xm=&VlQP%=ju^)PqzTCI^#E%68pl_IXd;L-B@=8a#e%H{jW`T3 zg#h4;iPaDeG(sjL!yytY_fv?6jjJVY%l&5hv@wiE1{>(mCa^lIJv5hO>F1rg^oP;0Gq3|`k~OLIU6c+WtP!mOb+R)bFbL~DOOKu zcb0SmGm_DI#K*?%2Q1hCf}n_YwkHLu7u^D~m+Dh+ z!82WqmDA;LMFt-W9<(fJjB`b_N0$j{ir#gF6wwi-7O)-r8%YG~K-HT{+?i@<9^1A2 z%xLm8b?LE}aQX*z&2CwYKWRd1NF~!K=6%IcwKN?8yV8(r0;QBakuISON|i5caX=nt zE_UP;LFLUFH9;L>3Xg@Y(HaR3x*Ku7@InDup+JWxZGO3$KHE*d3vGKxyeB{f-D$uJiwbH4GW8ur^9{Y=*&8 z*AQ1^k&`C1>Yt9T@{YzYu8WAJRRE6s73j9(z-H)tEg*%-m@V{N{WzHPnNMmhbNMvY zc9y*KIUQ!i6V!&Y(Idtlo!f3{&L%6EXA8~K`<1Q=8|Drl%kvCl(&vAXFSl!jh6G6I$ZYyI1?XOoDem9qoQ4RHmVJOa6hU z;961Cg;OKFIgH0-Y9ul?CoWbEO=5o3(eAufkPaq~9a5(%tk;jhzy;Jge_+KLgPa+F z(O(RNVUcNGBNKVj0pdYP=3|_-uXht&z9bme{42>6EilckxVhLLHJhB^qX%+n$wjY(ib`-i zmt7anKe0x6@Y5dEmql?J^I&PKE7htS1=9jHw1)8mz8)J2F^@m0)~tHRTwS2ht4=0w z)ny3)enPPBf(+>x9@bwXI|_nuN)KG?^!&(+lVU08`D(~ZmjGrk?Zl|jUs~yyOY=4= zY^|r2sr@rF!{ke(PsN8kkV3DU35 zx3Tn|DlEbb_CM5sql{PQMnhxY*N$!i5y3+(JRe?<)0hYN@nmN{$#Z&js-$^0b6{Iv zbuI2V8QwjwSD*FGC*L}G<&~4N5I{WDl?SleS_GR^HG=|$XZTK3Gny`=e}~4}H7Qht z0$Bm%NiU5za)B2eR`i{J+-C2>rAF#KdQo#=(xHXAtNs75b{pacxoMiX`ihe1#TMe= zUC@}}`@pLDOE#}_Aj$C)>f;Hibe0(nE=3x0VE2v~`R(?@_OIS0q#W@iX$>tI9oUmY zHRDBa|7f9%EPnM#B%@^{Sufl{CTdt>tZ8(0+)>EWN(Vx@7qmu`&yS%VT(oBICZnb_ z!4iU36;cdLLY5#c$6OFCs6cn`iF`Nb0}!a|-Z2)@o#1PBAwY~6ymv5+2U3LOyBM1% z;y!PA^32@rZ+`5247(QdX#2TFg$XNv)AXAOhCP1iaq90?y+(#`_L;vpCMm~sxvGa- z?3EFC8A|tdDn*)G^@V9l-}UszP{4=uMfz~!%z^XGR*udKbFB`T=g|$=PK;ahy`sg&$ABsz@2OR$MrT6(9&-*F1A&Oh(j8{uNPW zS(QK|=g$4>g6VW|`5Al)r1Vo&_1O_%eM7G&rdhX*PQ1pL5Wr4s%3D#;PD<1;Z5hcz zK9SqZ=qKVXaBCYEXa;_1YYKwn#Cg1+g=7Yv>oH*J;DLUUF_+8ChdCtmk2803W%415 z^b;H^70r)oD@Bb~P~P~+GwuoqN|TRuN)l-uRMkH`NhjzBsm3Rw0jj3bgUOMsfSIxb znG}Hx@uSCdH!~T_;V51-8mci@M6|E)C|5=87b{~k6oCN*BdP)FdE6yj{uG}nwCYDX z+}xz(@kkhO#Sz7X9s=TgH6YtoZ%m47*}b8l${@fV`NWQ zZ!N=pgrWe8aWl0*gc*KSUJ+5IxGR&VLrrMeH7Q36m?=> z&!_db8W!){>efdx5JBh~#I(%9*;Q(F%-Z(hhi_OG89cLBi7MX#oA8g!GG=%B|W}?!{iSXyx46<*AF@wVfiT zR+dgXFD6i{lr?B1)`MOb_#$nacbN#BTkGz9YP1+i`zWEbymjn6fAv?cnrJ;VPeVh} z%)h;_Cz5NolXV7%csmzPz81muZl)$huOq$!vh@1#_n=tNG^`Ki)tLqg%5XL3F9Cl# z{ePVFk6u4IM7pNocA=t1+mzk8fmwr8!q5Z?#wLYf&B_LXfjf@f;YStnKL6fiukvDg zZqimn7Ved{GDt_@BKedfNM@#z|Kfgg3rStK;x;8!8sZzHWoOy>`^!LSo7U~C6*WqK zxy&_&MI*f7r;Ip_bS10UC?Bf^0ky)LVjzV!M-Z0bX6e-?na%~9Ud*}8psr(b+l8#- zN|2of6@6k{w0n8K{%o0QtBRBMV%w!P+kK?Gf-nQysaK4S`dqHhpM-5JJjj(NkWW7z zoLFrgHG|;2qxszSW}AA3WPw~R&O&d^6&*H&6p+2pnHiR7Q9BWFerxHrXs zhXp6fvM$QdmLbd0mXwgCW$U-=VpA(pl+-z#*;h4(z$`!Gt-&#^qu1BVeVw?_*>o-> zlf0Oi+y-n~RH7WWch=BC65{HJY8$ItGY~YOgT?>KgT~x3o2np#G743qNVmo<64&b- z_`Ak#5EJ0TLsyCpmZ_H?=zoY&$CeO=#tvwWa9NdR2l)W2u}Lg0F8CAG`K^1{cASAhD_ZfXvD=&s7@E-UXl@aoC!O{^qhKFDzaN5qvR0o$?Xs{vF6_bKmjye zSk4KlvbqaBk9usQ(hZ!cW%yP!+fitKo6X5n`gD*vHE$;b@peRxS;-hlnGR21!o}M+ zl~LRK&9S9BLSRaxE}T`@y_z#E1)OeonkhM>5F4m^=%5=gjld{e8A@!GxmcZ!Yi$(G zZ}#J!E~WYn(WbIfy{O(^_-LMg=JVOIw-3wr$*nK@VYn3_CT!*K9iqAWf&)Cl9^wvl zgP0Zqi@cL-fK0PQi3WGh#xr1e^Rxj$HEG>tot zDnsV>#I<;MV0QLw?{2xVEKvb=7RJ_fo`zY-)&!gGeH-Tp@a^(oPw(-Z1O~!+YY&m8 zveN7@ZZ4LePO9t8u}O%Kh~Kc8I)R$9YgN=0*vR;S+)>cpu0JT@?^4=po;vADQC*jC z=kzw1_=;Sx6PB>J=A7o5+C~A(5`Z%JBG<1L24yOAmNyU-mxcl2XeAxf?OU@QDB*ke zx-@KoY!&K_TNB=ug?)))XA}%e?st{@j_mHZ!R2#g2dYZ0_d!kw^-zY8+SyaZgmko! z#(D#ubY)qsFOzWgI-=VXq01*v+bpA#GYz32V>E#%l4y91@+o!fVKFXX`Tg%KZA6=X zDie1P_Zelc2$XF4eF(a;5nEI z=<*g48x9u9Q3Q(~;^sS37P(et0gV9gq=58I4{qNA9Y21#6dhyH4AHUt+?<+I6*aHw z)(Ta>R;m_jS+$HeF)a}%pbU@mA-FZnf*{H&XvhFHd=3`_0@v1Xae;O}^-CJ$J+sGa+9P*g5d z+jAPo9H7f9CdG99Qo3XX^A+%jb2fgp$wuK{89CGSnpy%i{{7mfd#!huMWGgdN`++; zS29wBNoqz~1==y%z80626wXdDqXjcAycmVeGg*=z0uOh@Bg! z4W+z^xRC&SvjUaR=<=#;6SsokR{$P5D+=f|C|@h$C}4*ek|5N!Y7m@R7Ih*d(tW`h zjh@kzNGz8^o(#ie2Rj5Vm)>0#4q@cfL99ENy&FZL5ed9t5gn2jS`hc|l^=MmY{Xo- ztsF_^T4_}TaAd6op*YXW(Ie&m%_{=9@}59gLlTArp47Kgkc2`=TaLn6%BH)bVZ@O3 zU>Jk9xkU%=*b_U{(e!HUeIHQoFSn+RUHicMkBRr5w6Q)h6m@)B8=Cjt_ierZy`gI3 z&KCp}9~u(RBG2<#+yusV}Mh@K`L=?q-yn6C~T<={7P15dd|wQLCCfZIpi*Fc5!MFIc4)*RW%DbiCcJx0^@OGFDh{!VDk%^P z;u?nKcJ5(SkPd$Kbx~e(@>U{8`p2qy=mavsM6&tU6lzG{+|R!9hMbT8Qi2W4yIfR- zlrwPr~^7?8c*Qz+~3j%cDT`p1~)lP4zjwPe5 zpo*!wAdB8q>)NP%W#3qw76kLPE{hd008ogsIdHQI=FJ5#m&VOnS8Yq4Wg<&GgjX+n zAjEp#Ge;sOKh<#0`6z}dU8rD}i zX`S=Wwd3O!IYSzi#g+rjiOb!(gmW^uj=f?BQN06iatK8-Nb0;7-JZ1oFK(5J141gk z89@-HnsaNa%hEe`@>k9^9;FJ#>hymo+j~@_UI*Ii^PZEf5p!ho<8x|Da%l||=j-M; zA218EiWiw#ms$CzB}mMNuRo9LbshiaLBp>i?pC!J8~o~rf^~1jF%vL2xXpECDpoZk z;K4V4y1H9kxHBcM6z_wr_f~}7r$1R1of!OK@PS+Ev)JsuT>YO9 zWA>8WF=}j5ecM5|9$SK1u1U2_de#z~yC=1I9%Mltcd%oL zyO}(e=$OIUiGXii{Ld3{Wyp6md`sn+J7)Z?;Mo`ATl{dJ0Eb1*u zGQ2zt{BZVAY%*goMu2aiaKV_~yeZYJa;Yxc7Ro3_4#fI%Z&=lqt z?ayQ|d9PmUZcsM5jC<%{VX0&=OyBZEy48!2WHdtPzUlOo6cTXkEMSrS2njsk@0R7U zI2CUl-X%L1M*mmAcF1dj4V9{GAyP zbgBNkbEM>8UsH(c<@rQaV}8oNPceP~Y@gEoZa!7>p(5|@c_Yihdxfr2Fr0@%Dp;k+ zb?p9W(w!z#ZWlH4n*R*6b#jXmBW_)tBV{LlfSSm?SOg^MO=u)`gc;mzpqzm^@<0%1dXyG$!f4TLgik zh?;_ zSsY&Ph>epsrL!>w)NAVtB#Gf>y~^L%UgJ|PyKj{HXVKn1+qwq*3{_2O<{_qt}#vwim`rS>MLZavZNP94Gey6hyL9U@T%sH1{=JboXX)@5 zo+sAXY>kl~vfVgV>Z8H!hDoTW^gVA_TU=e31NI2AA?2l~iMQibgMq5HaV{pHtcHs1 zwR;>{ev2Ase4L=r1_yY+MNcNM5&Z96*+GML8&>bm0+4LtV*(q;3Y0Oj9`}$T)fJ3= z-117T9@bC=FCOl(+YK>s!Q<@XtqPZanTJ{oQV&qmJ9Bv{Czqu+&J^qkw+-Y{^}&L`ZvH2n=nYupq8Pgx zg0{7v^1pMzVEP_IlHwnA%5XRZWzU73~Mw`tye!;eSp4a502B?{^eTJ21iDAd!zZYMaAWdF zKTl{DIS(pL4SZ*xCZ;XI3QRvy0}$uS_!H}<^P`C?$sdrBcVM!#yth{GDO0`I06y8J9%veRZtCj zV`mxyO?}J2;Z5)fPT7vW7?MYk#HLO};0Q_`oqi(`5jWbbh-hH4sx~zVHM>?yXwhX- zPvqOvecS$8_SO&tw#`tMPYpbeh3%@S9kOHie|S$XxInY#je~CmpJG;60 zXlQjY{>sdU@v~*7U62f%7r^@9_VF7PaMN+-xVRP zBJ$w7O{VwqtO$?z+~4<9ATyuI{||>`iTa9N*I8o4A+i$V=vA`&xBVkqaaztx)$@EY zH2+&)GD~GFCIglpg~bgA% zfPY@+nHozuOKlN{ixTFAF+E#5Q``bw<>hepaoP1Js>(2%n{l}dS0UW**$YX_7=6%(OD`hpFdTM8yZ!=IXzkMyZzn%{pq)eSB7GgRv9DsA^4o6z9YAT}0i^b_!4?0Vhoi#WLb_D@1$VdF+#M@94iB9Z|6o6OAaMsJ~Bl=`C zs~rrA;bqf-6&tA(((gmfkrF1!GH17+(kqU3->>UBHr1JPXCn(3gM$QDO(pj&K6Xi0 z_(iuJnoU$=T>RjIH$$@w1%VNT?sWOg&4+o9WapS}e1thRD;i)<4;MR&>SS~aS5m*5&6Z?96Q%U zhmLbcuryX4q1c6ugcZrU%1I|~@cRA~qp>zknb96)I_tU~fwR7Ira^Z)g*C}zn1cru z-vx+G&C!l<(SS$S(|r$n=DjI?l{n|ymQ86!c|GEGtnZ+tHB8( z$!bWU- zliYXekOc(1Sp$T#T|w(d^DJgk3-Wz<3bwrXZ2bCL_j^k zcTbw#fB*A&N(S_$um5ev;2amuMR1KCG8y>1}eDQDCV&Iy1# zJP2A&n>Fpt-mM1+odIvnwJKqyq2;Qw|8O1t6`(Z=koJ}2>3JuJb}8M5MnxoMBRbh> zQStowCc!5epy0>wda_qfu?EOY>mX9N|0`*kdvYA~JTJ9xHgE{jHT1%jWp=rC88BXt zR+Q6_Tc9q>T3GnDFf>%i;l)N@te&}*nHd31J5~6w5BcZTTBsY(NIlY4afXGSF*Mx- zGe>Kbm?XtISeuiDObxZw)v}tb;~a^9y|ljXmN^!eIi-lg{wu)PO}vrc82%i}L%t}v1BUZj#w`!@3wqkIyR zOx+wo(xCIBV%Ds&*vUu5e=T^GZ*bc*zki^qrpkwfi8P#6l`JYN(%y!p`p>jQ?|7Tg9a2@w2*Pd{n2;=q^5%V7iTZ=x&`gL1iEV?g; z97(QQle$j{ywm6X627iMso@g*JX7kmsCsx-c#O059jq0%=z}Mc(=fz2`&_P6-q}J; zB%gHgb>!uWQ4W1nebxeT9{YH44ebHde@7TS;qtIWM}N)C?%h?s1KBH9V;z9f zzFCK&;)>nJ|D>MDU9p0x(F@7`-7<`qx!q!}kY0$OU*)h|-C){h@$t2&+Zl8Iy(w1Y zr>lkq!o@)aWylX#uc`b<%T*jkZP-@X{$BpC3`j%lSHWA`bxo7B){CAedM2qOS_)R! z*Bj^DyZ5O=4-UGHOoF6g0%yG6F!#poOqJBruplu5NU2XhjGZGT0UqSk}IL3Gz7Ow zki+17LjF)%u4Ub3xV>iETglI{FbLb7BE0ILtOyF87|@7n(=FB78EINq9!r&6m^`(f z)+rRV{hxoQhyuHz0-mgw3mbHV^xn-zGUT?NwFoaa&#Xi@HblWucrU>stIB#BseX%b zS0q2F&o64NZm49)_UH~d;qVH!>z@Vk=GCmLQ&+jo63VEraLM5Tx*$z(X=;g&#z*Hi zn@%X_M!H2tk%^Snque5HR4Kj!FtHCzJHb9R*JjUM_v)&>iZ7h29h@BNWOi56aewa| zn^v~r!%h$4xCa>J`k+jMJdbFa&eVLBIRRD5#0v4TQuWyi#_l{9u44mSy5x~v(<(dI z8TQxJB1nmb^i87loniO&e+mvOQyNB*O&|)X!3yIW?nd#JkZ0pO6yhH zu*N;|@>lqX9B~`}lzvPOEpEuFwXL)=teA#vyKt$hH=&}(8%~#K8*Rp!&t1_YG|JCR z=UyGV#d=5HgWpU)v`ZfREnSMwdH?g`9%LGFo9Ll~g_78O+Llzb60GzpBPBIk`K3A{ z(OJ$WVor|mqRWT*PK<@G)Lx%**N}Tev z96ns?j~(><;=C+@iAK&+CFvE4i)Q7eo9sPX{ZyCFsq^;7d}yepMD{{a6p@TZkenTr zkw>L=U%xr{=}L*HH71cI+*`(E)*!=6$PuC<8ulbIW7R`S-rL+>{3lX<$K{q{QAvAL zM^tx2`a#+zXT8BvNa)%;cnQsrBu+D8pSMzrby5a*OHzM(<37SS%a!UbC$HT3jGNa7zTPMs$=obHUBY1L!(?Ki1_OXL>8xIcT~}j* zqPAhGWNWqhDE|EfwV~>Ie$~TvX5OzW0cEF)I+e?)S7RBg`U}(Ig`zFed;GI_bsWy> z{0hdVN{K|*8N)e3Hx+biHm7z^G)dIhO24LcjH;Q`+Bas@knN)~O`{?P&=NYkwN{fa zRZ4g_c<}+NX&%yayD{1BW5SC%H-AEaP6dleiBu_a@}tdR~e`RW8&U81RA%eknU zhRrfLT5L7-?Xu=<%kq};;>t$6t)iy;4rqtiJ7=*n5wk5iFC>h%>f1aX3IU_$ysHg$a0V)E;-;0)aj=Kl8=~MLgctp6| zCd$(Vb5{)w2&qekBTz|j*k3(%u-^leIM%_0zjD%Bm;TmJqIu|bW7X)=1*rAO)}LQE zdfUMLd(%Ad2Yk*NqD=q?xczMNfGFVdkk3*zj@KiSCX#8Qpe2W208UgNir*ZLq*C6x zc?b$Qe^k3}p=k4G6#i7o$Sd*F*+=+O;zhc53D0R5f-Bo{tn2F&ArBdFvTuFT8t}}m z0?0zernGbpdqls+1d+kusV)EwqAX|cbD^0wG$Ir%t@XsE2aTpA=x4=Cc<0fkqN2AN z#cx*v?$3KFCNM`h-|JGMRQP*q*A?(j-E$SELvfw>(Eu z8Bptm6OO-A*{G#Zy-7Ft8OUXF(z}Ael=uBLO!g)<`ECA?Hy)s~s;lXnw}z0LbUM;o z!`q-4SxO(KxmbRckZs%cl>2*(e!yP`X!)07{B+App8tjFt-5z8V-#e{@$L5mO~E{? zw#z}8#gx;Vmohl~45VM=y8%R8Y$0iLQnEz5+Ov#|Ty81I98HNa=w%U;OLlNHkATL& zlX!bdRJM+enpx1$7I^+nl=hsrluY3YBc|FLG#5OTr2D+yu=pXtvMlF(HHSNgBu&`_ znFII-!`{`@Qn<<0?_#XIL5!W$7p$vlBgg&yw7ZPXX(3+T8uq$WnjhfXY3JVQrMgHX zYenBRA2-IH69?OdWK@ggHtbUV8nS|ocdMuJ@*=?B7x|%zQF))*d#&hViP#>Nz!YyN zXK-?G!0legyqz^I|NO_kn#{gTlKq3^$eAMW;CxSjE{Nhn`3FT3<p=Ih!Re?DZ0Y{#2>3zcg{}CK~FT5#y z3DGIX3z~h*{lt2*WlK7TizR$MiG=%3LnvNiPEuZ=Rx4Q@17!$sfCjNTN3Vro-B?>+ z^WOs0^B{G`s?u(vrARSZ+c!LRZvx71)aSKaALr#3>=L$;5nQoC7HiTzApDC9s|CoK(qI)>U7Z^#NZ ziURe%UWmR?I0BO#jk$n7`YXltET3|)G)G+svlA(teBlXlbV95=)8mMdxB9pJdwzX{ zaH-jd9a_Wv2UYHIA=y3e_<%?P@Q)ygPdJ|MlfWvUATQr{!GLw_7rxJedD46#O$fsG zO5^~Th@3-{wrVP@WqMU;kUJ2j=UF3P6->w?xAVUjK)^@tkFqEXqu)y4jF-M>hCrQ@ zS9m9kTPbLHR(B1bCXQ!k!5ieM^053ahYtHo!X2I}zBsMKL9(XFTOu_k6>gk-e=$Al z9EBKvZZW&2_Qwq4c`_m4+{x^k(#G;tUESrYb4%-1cXyYq#4WY1NVZB^SzC=f z^FrZb<9uyyKMo(R;`56(B_Kl`_hG&J5gl9}*-N((+8;;SA`s%<#)-erRI0}+;4pxe&6l{SVD)XQ6^tJnwp>|1_qrhbXMg3Y*= z%$;yC*^rkjeG=H>G76H0$&*~M7vd#qv`dfH*YYVr;Fp^AS#9-Tp-PA_(G8uyR1k<} zxogmZ+@)@4{~SBSM>(f*rem6h0NV*OJQ0z2|Mbb4-dZlt&qZz+MjW|8`#NO|Z9aKX z@M>Pd7}z?{p|Bx|!EIzBZ7x@}A6`)qkEu<;%^`Xzhzov{oK#&fdLp7vQn4m=VTFw} zF;<0IW_+=rFj%m}Sg=RkU`O}6cA*Gdo20kAbjY)f!U-@yrk-uDdv?WXX}E)1)otT5Va)>PdTszrN)$sbQNZBJTq z!`N>_M`W(wTNd6q{A{9vG|y*=y%v7t{IRL(7BeMq$uS}78ol$_pd(h|hn+y9r z&zepHr^i9kFs=jWOmNK9qe0m)Vp;wut+dbFQnv6EOiED}w8d?nc=C+*dn_x#Z94nO ziS!E77;GlO!lYaY=;VqFwLl;3r9r)h2Aqv#3qK_iET6v%as7}xL4F)15ak=0>O8V^T!^<*5Q9 zcMCpXW0zRCwHuB8AA3CE+|`m`7Z{bu0Z9YLw?p8H?}GkXf=6#?LCm{5yE5NG)45Eg zIqv=T_J7|)GnmB=H*|f7mfi|NSc$4$sah4;{v$x|YbVx9$sVfPs^*DO3RWxKj}&P> zQ%xDxnE2XIklH8G5)En-Sp1$8;nNSplE4O?0=rpb-T8Eit|C7)S0f*ntCu^9w0;lf zO!REd>ESr21L(YGJlIE}7)Dar#qmoy=>>#jcMSCUGUY)I?S!SSbXeE(h`NLH$7*-K zOM=x2>Sw0TKnRelwO6_)$U`kd#I7bdjU(hdq?jkL@3)pk18>!p?g2@|v~R!YI!Wpt zqdvk0{w1*V^K%6(V{A|Q=VkVF5x()maD*bfq@exu9HN4@30b}uu~&r;`!IJ!+XoA+ z>B&kuo8fR}H_$iLqHdsef~08Fg}8RFZTEYK}o?%vYs;+eB4m7WPgX^NZGblhB-k@)Ni)N*oA_J+*u z;=SUdbW(kD`Ks-z;V1rsTFeuVVT_q)Hg}|SR)nRIlyi#B*u&BbZ4&c404^&x6GD~r zaTOYnVQ0h<1D>Nv zWgWRf+spe(3s!qG1Uydf;}O{g=NGP=NzZatYSO*c2bl*b%3xa=-EM~je?4$Ou=Fxd zUCr+jwdl?>M1j3{k^HSarYT4o=()>6=SZjwMv^$y0AiFLoz>0n`wB8kZkD6Oi2arA z!*^GlyCBxC!`Q8~Yj;N@YWixqYR#nP^W5{#NY8i%DyX=7tu-~ZvzI?53?O=_@S|MX z_FXmTI`&$zL2FwXJkM*!ZN~cai)>BRpRT{@aJn9Hh2aOO1TT7T^vQU3ClM)Ip2en= zSG`p#YuWN)r_&OoTKfjM8`>L1XR9&{@~L3UVK2cb{0&h9)`ba&Is9lq;(3rA!;+CJ zn?cD@q*w1BZ2OsA4Sl>9P@(DQ4#-yYfb5eL&5=4BW#$F@aNh=r6 zLT=))^owbt*|l|%87@wETiosAmL3QE$<=Wv297(}nU<#)LyjEI9D=AD%}gh0{Nj<2Q;by{tdKK`}ZBYG!RNV)}#FjaDShX#M>6*G?%0jy>a5V+h zeFuMD@^KFk%bN>apW`1Amp??ZXgoOXVtLaQApxq0|{x z!KCIX-;oo>GQHFI-Wgwq%OKE3+)9?uBxatVShzlE@towD^nOT6l%}c_UU&KDQ84RV z&D}TZi$Z}n0|DdGaLFz>eXK<(gzp5hfIvirHwwbfv{%+2Y)?e~I$$6qQ1u>H)qlwO z7hcoZS8{bB1_LuRe?vDs6;t7}yFGCc-`O@=S1$dolb_i+eO;(aEAJ^gSXd8PFaoRB)Ii5N(=Y2H)yFs?)yi=P zduO4ehG_lM`bqsi&GoTs;uMK2Ah`D0fr%Vq61lIYw{x0-1Z(uKh}@JFoj=DF%R2`- zCeWvKb7>2n=F%);HD@@Qtvf!ke<2EgY5$ZgtexHg65nWizk7K4tOb#>2FbBpjEz;_ zV&x!d&||J$cF#*|b@VKpKk~16QsIM3!I%CaesDR#qFh&xD~G_@JwIg2u-FjO)nztXKH8_r(fGlJP;-EuS$~)=f}O{%+^LOvBkoT{fU)O zG86n~Q zH1KFl@duXLtOH?x^=6xwZzjVBdVDrlH*|EDcZJdm2Q3O0Y8L-7O`K&l&bJxXLE(9! z60+R5Z#T=M*4ZhRRe6A}0(L7(kL<8m;7KO7;@78lg{=FCO^ZRpY2mi=iKRAYCg{(` zEWNma%U*#SIjglVEn%aAp|~=#tGY}x_1&a-O+!U7wAxIya@Q;~Rwr7{Wz~q|DNTdN zQzmJ}w%iT%yVaxZ6;IG3DREl> zLqRi)Rb3{T`tCA3rlEw}BG*Mm4Li=lo4EamOz!tlAPt{GE~MrhtMK!9xK;Z9|EGgZajos*8d2zS6rW=v$1cK1VDo`|*Clc!Nwm^@dG@%`7}jPGZt2)dX4& z6*;s#^y2H(Eo@Dn&b;v!4r!g3lK)ftA1wW6ahHK9LEsV8Vh*V#;BGvplZ2ErEszOB zdHZuyM;8ywwVslAu13oUcWY_Z7+U~Cc43aCw9?E@3R88k(b?dq(TU(q_ouE)tds{WvMVmqLx$?Tvq5iinjOVpcEot~@ zI{;n+z!jtLFq!_SzP$KD^yOD(K|Vg}?50ZHUljAzzCDqq;_bSHM*yKzhPaLLFp)>}EZ8 z=clKgVCl~Gy=3pNSc67p^LHonGVeBxq@|_S$eEHx-)hlLGgl))LVD_bM6vCN zOJ-G+tgO@!%n>MYWT&zUtH?7F!y##V7L|gT~m~a20udqN*4lG392jky;W1E@?(HeLKn!WGEJzEF)w&Ew( zfNj9e@iC>sv+$P*>bD}+hh=m$0J@BYzT{#qwcD|tl#O;xAA*J=wk7&}3-yx@p!tk< zrXKTf+~2agU%OmD?PTG`GPJsKbV%Z*Q5 z7;3#qI;WV$iTnof)%&;g`|&cr15-;zikHqGfq(c$i%8ViG*}N=;_^2H4vvQ>O)>X<)im1*`yYSl3zl4l+Ow@E#eK2&+p`Lmu2w4OKgz z6_znXhB$zu-!D3r_(PGF5)$Cucso!xSyZxd(c8Ql7`?Hv;ITZfR*+!GLm16M0|9Q? zqxh0X+MU0?4_v<(PHl{DDeOz`vX)!}g3)(h=FgqppS$%6DmMTO;MwQAR8|N+DXemN zZnw2@0w7bq_ONi~#FNF%^R3&WGD3Uy-&062SbWam%}CQ*Ld$Z)l3SN#{Zk<+Nny6~ z+-4~348Ty{dXO|R{jhU$MewNX2r$Ap%IFhff`gKRF+o9mq#`X+X^Reo4CM*Tbhup~ zh=gQ za+WIcVD_NEwbMrtKE=C=Ma64b@vH6+ ztly(oKg_RC>T}JiYD|Fa&JtL20N!IhVBuxP%MI`!s!}XVCKu)!*N}5MPOj1|n*Ax5 zt;(?K2Voh?*TuRQKMIbgK7x!*QK#;Yt}pe{*fCA{{Yjm+_RwN&%+Fythud8+r3VWN z?hCY3-W&(U&k{xHDK{4J^^$IDxScd5)}WJ?U%LHRUoEAMZ?<|0w<>MAtF3ZHLwoVs zwn=3fU?sk@AulX)XfSu&dqs7-d)atr$@q=-VPN>jaqD+{dP_?Ab>o+Tr|%lCgN^l0>BxdUKP@+ncGQB>Z`TJ0A{baB^C&i*Z?k@Au6 zX}bwqu2GfmNV9gIx%S@{-L5UERGC(Uq})%7@q7l%3C4E|YIRSF3?0+D^nozMzaVEH zB0tsKA~$CrY?%eJ`O;ZrEK7_w1EHv4J)>qoXFf$vJ8w~-*@_} z22_LJlcrOobRW@fStTslUV(1D%C z&-IPEP6a{$ctDE&C9;7F&lxuaTI(J!-gBX?b11N&nnOuR&J^Wg@G2F&bjSjcf7R zO3SvPmZR=sdMDXWt7vj#w1iH$$J;GDy`p*SSPoHUPk@E<$*4qU-(t2~{W|aLp3hF~ z5?QNF`lEB3MSg9sGe*Q7(F91>7Q0L4-VLw_41+QDpv+}O$nQDnyhvYUB=?ZzZKrOy za(Q(lv|C++GPAd7qXUcV#+i| zg{CE2x!#&HjEzwwYX|kLNOwtvl-WYa{pllRd9tbuOKy!<-(J|qnW+c}Klw<{w7OBa&bE2ej`E+T<^S)j% zU(l#lz9dbX{IaZqJYi4rF@|D_5!A9sU z3mB8kszlsFQ0PivCE(h3bO?BO=K9$6Jrzg-TcHl@Mr((x8m7d z$F8R9p#n{wn$8$;%wTkNvTJ)v*K?~DzFO96kuLnBuF#t->#QCX999w-qH@X>-WEAd znkcVpnQ(JC!I}VRhK2y`Hv@V|tpS;-KF@Xj!*NSVfB-F5g>#o-pdziMo(S(lysQ1tUsk`>Mr%45TU?(ink-8JpzVSjaG8wE{hz9S?1oE*Q* zJF9O&m0~O->zPHg_I2@VYTe>|?v5FD+sHW%Gae8!8pdzW&Jr}E({pUs*%=4MmvxpW z^ZdEVffKoRE785B&14NSYfwUYMM;%VJ(H zD}G-+Nd7iYBEzWvQ~9gPe#n1*CcDru?yp#z$rtwc`gS8J7Hx?rw{8AvEq{g?N-ABr z`kLrO#87hI?fyK0SxA23+h4owSv8i<6BgH}l6bH{S++!7*tCSGEO~%PPZcCEpu5cc ziW`IyW{uob?HdJb@`i2ecDo87yx)elpCKw1bJtggI&u^Z=To=KiAwKV9R?HT*TK!^ zA$oTtZm4$8P0(g({RW&!@vkOM8hrD`yA#P>@ zXtk5!G^Ybh=;h*==Dm5#r_L@NoycYuAPAq&6zDe8LscEne(>g?19d8&Pci?O<(JyG zJ`5S^rKi>nUK~q{W4P*H6>RE*7;!BiO=IrF2%aE5W%#YXFsUZh(G7>Af5}v#st~j?TX_dz}~Eq6qF( z22+lkO6o-eXGInj>)0IZwl0oE$7tKH@T5ggMORhUjpEPzNDNaO)O>ffexl= z_+Ms~6S4c{EtlmJmZvO)nz02-*ZLXv5A+YjpRL$fk)CA#9I*MkEt0|hE%IBriNRh) z$K6~#VgDlV^Pg2d2n>u5d=U5}`uE2d!5<<$qw4kZ7^jg zy%Dvm22%{k_+B|6dbd3PGKqiYcXHhbN5Y%yxkE zP`f#5+1dT7yZ@R=&qnb)xS+nvNi4HRU8Rpd{%naC$KW9d(J6>2TVjpuNJ>N=E2^tV z?d?`j9Fok5hdx={kPsaX{antd%xug5`5NA7HbXTuZ~RfI%X2D$!N{RyeX*^qId#RZ zLNsm(vv@Kp2a>-NV-79E*A?#%DxAm|8Rd{ARp*ItUQ^`ylOxlazKy9RT_kEj3%>YI zAQIJS76ngzV>J#|mVRfRUzibSrpj8xQ;Q%)M#pODgZ5tTI~$XD+ zPt}!N?#QKWA%vOVH~8yI%HDVV@jb&g`AN``ERRUzN zubDY2qc6=lO5{JbTR7UVd{~gLR##Z@?~krIsY*8_`1XFkB7sFo|12)B zUmY3Ui{`aQL$ETIb=Z?_U@ItGNBGH(?mNE_LuPbOIlfd4lD&-U0Z<`OjPE*HS=Ah28Vw-F3-L-0qZ7 zKJ^@l_UG;4fE5qK^zC=-6+h!D9;ihbsriSjZp6!Bve(3-d4>loT>2C)O76v96KIO|N>JFSE{nS7M7n z&cAhswWor{wO8M|H1g>($-#mQ=`#;o4~%-s`o`m9X4q_;Ncn)H)HhtAroPV` z#Q#qwcfb6=rocNvy|N`fv;>31-@ih zDki6gT8B|nEA4+<$T=SftXKTYnxlN!bzfez*)wA$?jGlAwz=3SXvN6(w;r(&*Km9W z=@FJZvZGhoBip>7eRaf9#+<~l5vSt+&h{e4p{M9g zDqN%l&)zJk{g9*S(1{owQX+jeI#cmDXUJE)$pIU`QYiGftpBJIKc~FHt273>j*uPX zt=KT3$WQ>SeEE>$l{B?mrn5M9N+7+F$4&Ys`fqXbI`$(DrgcL_A7)Kx6V zl`ko+GK@9-+i$YgG|Xx??@|M8o`xR^8V>)GAuBx!oeGpu4s$!Tc_979u(&)&%q`AZ zM$l>nzgAgQnD)LlXB656V61>Z6*(#ck{C%)%=4(wHg$gyZ(Te~(h5j4#a85oX0oV( zemIFC6-dxkV08Zuf0K%I$cEjB+<=Xz9WR{;Db!4F8C|`aY7kT$MbQ(bDbm)Nr?lLo z<$f;W6#YM6)ncjiVSw?YBa@PmNK6XS$w?b3g_Xt{RfaZtV(t}bas{zU)q2fFwW6xb@56}Hx0G* zyE4mjq55DF^sT?TME*#X&P;sqOvCiW%eDH|nmBzV8V%I`!j2FMv`aN;rSE=&!lC`S zi@7^0PjF4YDOY0-l@0^l9>6|ueQoBs>9Czl51Z1%Aiw(M| zS0{0rU)1V>G9x2@-xHTMlK_q7oia{xE^RWT&Anvf(^|g4f{PylSI?ha$IO8i-rz1f`Ld`{mbyW z-JX?NqFRhKB%OQhpS<=8S(%Q4<^8F;=)zGuD==4%VpF?AI3P-*O!P ziL@Qb5w?dB{)U`4Dsq{Us|^!=(C7*SNd3zwF$O)))3la|NQVMOLN%3M zT5f)J;d6s)N59N;wcs)-{!wdB^pRFREq9&lmpuP+*=)IYyy{|=pa?;@a^plN`G|7H zH1T4EhoAc!D4{}j{$Q(3kQrZ7u^?BjxU^a`zyy^a`(4;Ob^z+s8-&@#vvN07^6~(l z7Rd`luFDy39^rV$cE8;Ih|`>>kaT3q$q6TkGD$SSR_2CfGHGF9bpnZnIZ_pmbcw+c z4tWpdNcD}W_|43ok})M~T;A1%`s*bMq=r0My?Gu&cSN`9SBs6mwlbpMG&GUIdXb5Y z-ax1n7hfecU%MQC>t30jdzp|Yuh!xBmP}S2DuXLb-G;iO0$HqP~L0Z8qTH z8+{h4heG!jzoRARyij(9tu=jbV)Btq|C-=m)5}@F)TFXb+NLw2)})5tYJ=8#kHeu0 z{uO|ycY^y-t4oqHcjT_$N`DORN})!M`a>_E8%Z4W5yGAo++X~T#bI{Weq|gSny&@8 zJFcu2b@bNPb01?`1wc;2t1Fy+rvu6Lg=v_?H+1e+H zci!j%s`Ek8(7zK8pNCx4%RDxNsb*L6{EJ*ChccN|Y@_Bmv*OEhYp)H3R!(IrvEwMJ z-0O?IH{CP6TeU&jt=8VHM$&fZChGg1B*$|{@|llzZPw_kWyx$hR8quzY;rk?OPw2$%)(K4U|&g9H^m%~YzMW<7X-vP$XyE0YJus4g!w2}%LpcxACq zR3-G4R;3csUo_MJXK!*Gdsm&VOb-Cz&b!%G{E^ciE<7A>{2{BM;-8~x@9zGPsfWQs_DntmSf7AYZ1%k8VS;GSWG;{E8HINUNhOOq;v4`;m+Fr=2D>DC<^T}h{Sn>nb^Ej^-a0=*1f9!n~b78E*3pI(c4xiAeUxh%Th+Ee(x`E zpt_A=d9H|KttSTiE4uKymC4C!-Y&=W5?vOZ7`3Mv_$9?uqv<4-VG6heoGfq@lDlj> zm&z>Vdv_B0nOlj)lUXmMD{_(x8gaI|_2;|{1&1+}Yx0MJX)0@Sxi%FnLPJ!}CPGm~ zMN@H65F^Cg1M4=$8d=#zHV2sz-3p_Xv14I){CQgZ=U>vz9x11edFV8(TmNEH{}b$^ z3@+tOrDmU{HRNB~v|CPn8yZehIQ2PPC{Sdy(Fc3l3GCwJaW+e$*30QZrP~;?1}@UJ zXFND)j0XmbW;7t5;Q1Tn23^>17=DtU7Y}~7NWR4FDaId;Ctb-Y*IM?;YudwQC zo|o%j}%I;)87-6_$}Y0tMDyp`Jb zCuTN9kEho`RlRMERfNW}o;2T9556s#mded+OfQ$)ZIDn!o;3Xs#!5k7yVDzZNv|7J zC#xWkI?J$^dzv~WlS4Ci+D-~+)ok@N1yJ#O67)w&q`XVF-MT7{1&BnsIe0R|DVo+k z*wRu*DZ(jbZM05TKP%*!pOn<3hP>GZQMF`OYyNz+#|wuF@CC9kh3xE#x((;N4W=Vr zKM&B{0?3l{l%x+OZ(AIkuM4>Se9^uvTNfz3W#iuOm0LEGnSHvf34i8_Lmm4r!w0M2 z>9jqWCowcL25TAQ=Aty~R|`Fuv7LE=8mkG*%IXedj74TJMr%X-e_7QPLLZG9%}zJ+ zd7^xCzR1E`eQ)C`!=tFM^TAis-b64PIm08Nof56@&BiKtRn=My#lX0mw#w zWsSwa<%`KFLuP^hz=xSrY#GeS(JxppO?p~-LS&pekp)FF(=pBMi+6~cfO##6$n44$dQ)+f0y zm^F^oa7LO#3UTGiULxWVI`h3T91fL3K-e7E{|k31b+k#3o%N%p!lXzW^D$2f$u(42 zj!8@N3hy_Ijq5Y>2u;NVdhxt}cS1QK(4GzP!r%rd4FlV#?WV1jT(703g3_WRX`o=! z-%0w#QtMVV^!yFPUYdlct*qRtg>8nhZe4qkVFVNoN)013#5tXo{&77pPOYq_XzjzW z-BOYffiOTTDNo20B_qt;O(-@VU?*AuIh0c%rvmsR5dZWe`}ppC%23W9pwacHj?Vqx zMYejp-g*|t-95F*_SWZ&lu0_UO8Hg)M;SWCqmStQzKn8B9znC5N*!!;iSHVz%W9lxyrH^6&YF`3yl*C2v6;moH>t< z%;|X)C0~qyF;}w;&(Kef$kfVdkD^goraiRdxG0!vMgH572SntFzM(aq`kJTYxM*F5 zTITXQ9uXNwnT-S9A#E6ALSgbf$NU)?cjx7ni2uufs#&Ov3beRn9myhduo`4vTbSOIFDD-r6 z^jsPk%TG_m^3t*Wk@&}8@EjDJD*%2>01rk%=fF4~ACrnAu4d4|VKT!JC+SsVW!G*) zqrkAaXz*zmI0||i433$8I+u3P__@ewC>YbQ&#~^YoCcdtv!S?!;aE1s*4Zxr`TJa26c|4jjp6dKQP62{THNWU zj|HR0cp7oT8aRm&Q&S@pi9)AtTmR)f7pzxh&V%`|15SiRx-iD9g``eq5eQi*8XhqV zPe)~DRO7ZOfB@rbWH3NQ2W$GBh{@xhD5mL7 zFG%U~kxZx}rwctiZ8&rAnbC0i;F94wb^}nWAat?Yo!R=DY)u6_9{n74&Qiu_ zITN;t0)|I_hCQPo=*rg9WN9iOFQmU{6Tg%5*cDRfEVvIfy)Na$VO zdS$B!9_=D%PdMafo)Cbsi%gC}sA8=67&Ug8s|A#^rx)uFMJxmhg*?kl?!j_V0|ob6 zL<|qKfMvH%Xg+c4>Vz7?)SLy$38c)mHJR&I|KREz(qp~ip2L+sv924mzJ4u+lpsA! zY3_!c`Kj>)6-idDUlpM5uD~bUqtSX3Yk_LhM~B1Q#^7!-fZHf4E)qzn6Je$_#k#FJ zLTbjTHOZ_@X)j{RT7lRL;31T8nw&0lG#`lAV%efqqwKA)R=5CGqmdS-u^-tV?JW*& z1aKBZG8`GiMn~pCh*#GC3If78X0athJ(Y>Vu%BAeo=3;FE4t{xD7(X$NLxC7fw2^W zl7;`;@@juns$LzJp5*ha+YaHWg5xQ8z($j(LLr{!rRSxO1)0_B2yrx3Fb~oUv8_#! zbyPL-;uQ7-dt0*|4w3VmLJOtMs}R*k#{k;eR!Y#bA%Mmh8hiudkA5Rmd0!}M!8vBv6kMgHa1f^pF){i%bzxOEm$<2UVpuUTQRWYb|72;47 z{M)_T+7b*Y5xOA_2*=|Sy?56lBlefDs)1TJBUszA-1~EuSF7v zq`7wJUwt+k0)rzH$A-e(@oY+LFup_1)c8_D-iO}GOSrpgKj)!bX z5+Ht&N=cj-q0eSVQVfAB;gtCL7SPT`0fUlGqT%ByhFBnM6~J7bjS`2%XsOthhN#V} z-aEq&Tpx-|WyQ*@*C!D_XB}jAy}aRo5CU5%OK(4Qq;fA)y3$1oH znYA;~b**KFi_6MODrC{_k5dV79rY)d7+on$|IWn5aub(t>vz}UTx|F}QbHGn2-6TG zCc;;x<{2~H_ROlXGck%=QxNdBJFl@L=gPsD#+Tb1+kPtL^w~}7q4s!*N2N4yZBNqn zzdJeIj#BWX$52aNV&^A1ZX2Vqe<~TYpu`H~x9{XM$bJ4iHx7(E1|?4|+n1RA0P4WA z_`~C~YmhqdeEPn=R~~w`IIqFF=>4wrxwH$R5GNJ&o5FE3XV75X%YA@Mrv~{HMsrko zTTx^9G1Af0L-rK8ZpJ(o{cr6Jg5u6kNiJv}Wbc#HApLNTD`meacFMz;2>gV^CusXm zfyra}RkD{hp@Q!gSaSeFl!)u=*Jor_KN#?<6d+IjmaAQ=_(4qT%8<57HMu_PG;UdY zhN?*~-_XU*IFwZ$VR*#t3&W(Qdlq3I%=SRBffB4P(KgXE8F`(9G)=n4q}~IAPe1#1 z`K_|AO8i#_XP-YFoVd?$=F7sqkeybE#;Ex(#)r-@ z6wcWbMH~qVLX_VOb?~2h5U*uuLP3UbO&Ns6fp7<;C^wNuiM=~~cj>CXG<<0(uIz|7 zM#Evj<IHC*>M@G5LmgwkD=qU~8B9 zO@e)y9rjoYnrmeqHHN(l1@?Nq44FVzkN zk6P`R>w1~#*hdb5iBou;L_Ehe1yg~1ki#GrOZeDx97md14)W>OB|d3CY4s|OHv)3o zyI%4go5UQ*Ku=m|Hd8wcO?pV8olMsc>6h}z=DUq|-?)OA{<7hsc%dx?TXJc5JiQMi zL2TxO44J88gE3Tld^T^whW%PmzMoUXQ$|w$3_@imAaljgYs4+0H79c7H>CA0`@#Iu zD>zCwT+FM_+WZ9aOQE|GL_Qpm9pP_?c>cG82BNO)MvpHXM9|!3`6>NA-5|Vnecf9l zDgs$;D&;Q+^;Lhx0XC!kxr1PI(J?W2&~Z@E=x}hA3qq}AnfKKm6TLkZ9(qKE)SChd z)FPJzMp9BDfwM~cFV8ja5DMR;P--0Y@ zpR`Vk-f8(Yxfkr<=TodQA9$0goTWrMqProUIyIYa{$W~ErvlxDDcduZUN}9IK<;Ts zCf5R{p$q%ysG>dd{=Z=heNS$sRg+rE>zkVC)x?&v{P^Vj9M99iRD5n~dEv0sC9dtw zwF0bS%OtL5kroXg3fxNJa*V}Yb#vkd3l1kw(gMVeq4iE zOKz1*51%Y11xNc?JuMtHL>fzr^QpBRBO}Tu-m2vNcX~k?&yrv2;Kx(aLwfJA%IQQ^rWJ`R z^okO>LYC*4w~;wbA)HnwCPzd6&(?YJPxXD>zFZVMwI4HkFP>~g zjhm+z{t(uX-EWqe6K^m*^)n&1LjU*F`&Rr|TPwNsiNjynTRUrz?eAg#g|6+HsF`Y= zs&0W(hTp*sVKV+1$4~IJ_RM$c)_7b`g#T9esJX3Z9$ga8Cm+)8-}}ETA%l*6T3ELe zCtFr(!$~i$vHh2ZU;F)?MGHD+vvhr2herUz!$<82*oxl-8m8GY5p5-;e#Op_ralxb z+o^(A37G{H@CrK>3SL)Do%5`6w?jxS4IUiLu=;{KK_0!lufn9FAG=&YZ(OkuRpDmT zX&xui?;)4=XD|1Z=6t-sQ83E{nA#G&$d#}+W(};f-PtW2Y;jG=CaIAkL*)$I0vonB|=!vwF8uMQld{dZpNYGX-fa_LIk(Vt*6*U)q<=|2< zV)2?iYp)hm{Zv|u;7ILxRvYja4|IXFC6r`wdbSi260@`vW(mK=KEDxW3mci`@!s_G z?G*<(4eH&wFaL&Hn8=R9XKzH^NT%tz;SE2e|JTlY^|CUKvPT`w+u3whE!9;QKvGFA zdyZLT=mJAi0J^LJJ?oa?^d(=c%EDtbK17~3KyMlV=?j>h>{`e#A0|mj9NF@@C4MIEtGN8l2UWd1c?4|%{hdV&p z*2#OdXH{MHUhV-xS35v@QdsDwkd+|afiIC^p&mjujroHGuL>Lm=29#@0?zrBonD7I z2z1^gMf+<`onpmQ>f@cDP@`-QW&6$By&&#`^nI!~Tl@>@pYU(WO)khUQGnyl;Wri4 zj8yNPWm!kFhITM}bNcF3l5z9S6Bz+LA>zRRKBJ>V#rE)kJ%93EDos%3+c)K)m0ff6 zbn)V5TjIGhh*3d9Ws=Dx0re7lAmfgx=-N2-O4j1d1&yCKu~rtw*Y_Q)E!CjCCxk7G59s`eLWfA*o~#6^C7RD6Z~Keb5tQ`~k@2 zL+CiYAAu%qWmV!|o@GC`mt}qgRM}T@FTIP3?&?;=ng)6uozcx8*O6VHEj?*_q7ZWZ z;3y^i&D=31?tL2B=D%Jgw0wY_m(l;5M_M-ee`Q3=$}M&HJ-c@^o@IAsNeTag>$ z!h6Hf8_;%F!zv%KAIZY!m4-)=<C&o|k%oJ| z;=zHi0#r&a;lPnJ%U)|7$64KmKk9SK;kAl*p)ECvB{bKtC27z0KiaV}m=zj+yMMIW za$wQDh4*G6C@oIx-RbFpTPw^%4VYF;ZC_{ML}fP=3@lG;#ntw7nE$3Z5nY$FQiL3I zF-Wx~goKm{h{<4Qg^JKtl%x_;`U!)nXR%O{Z;|mmBm5H?qmIwN9iy=KKJRKFf)9!D z`bN@EWsKa=zZ@gT4_^N+Uc-T^reO!+E{~z&5 zVJ^@sOCFz}@Rcxpjf}N{lrz8?diC`AwIMs134@{PuNGHdEj2of5^+zDSRz4ig5*qU zIb_eV+L-&1SF2E+R@Fv_vb8F|pyyY9!L3{LJZl53Z#O{YZuSEJYsWWg%bj2<(km7l zZg3FcBk_(-D-~=+?_9g&MQ|<)&ReAs z2$b=8J`M1sGo$wTZRu43-CRCj*{Muo0Cp<)jg)>wLT~g5=cOdSS?+2oJ62G7j@Foc zZnD^<9g-m!o^WLL?Rh2vLQLZ6W@r~Ifxw$vz_n~#O%}S=!h$NJ1D~Zjuk!aNt z5v|5X=CX5;s&qa|&t@Sr1w5pNg&U---;iLTG;I*Mdr`>CSCBc}N-}jGYE31DTW+O@ z!DK5La=j_bMXCAxWCM$xlquvVsoB3-hgY3q;4o1-0T-oZmU*zw^NrjYdw8LZNDy4L zWLJI3}4g)g7O_+kLd9s+p+_E%{|YkLybc zh7(MF?QjbRnFUye*L^R2d}N_4&ih&WQT?jz0%%)10NUY@7FJd0^gW|-$`>GytFOaV z06i%xPOby!4s-x?(W*gk>OLTwA0DlH;vXG6T2Ppjeb#M{>@UHQpe7J zVxF*Xz`-#$qrqp6>J)ex{8Oe~iG;W2RNs~m8&8=vJIq8Cp_*^Bh$|J|2^w~HHm^g@N8VBOf?r2CDGr~solFcs! zZbe&Q*%oqi>GA^Z7H&abDJeSJ;&*J7#gZ`X^H`kkaTl|TB1=2>1hxi1eZoZZ@;cH61Vp!=?V-4qo zFn!FTz#fLY@0S(Vqg3p85m#q=#tY-z`QK&4`p+zH)O{EPY` zj%J&Vu0Fxh39>U_;I>AEMEsj^E{uly-^6&my1rVa-*y!;664NXl-#Ha{kX)j%J|&- z*PIXk>VA8el(6|eF5I~oRliMZ>Ei9%Bcz4XF0P2asC?{wnBtjqSk|Um#D|4Ruv}&} z0M&0L9b9C&zwrLdgL_?@y1rpXLVGg%O3D}}+-x+s6hp?>mugte0$$fo zdm&TbbB!d+572*g>r5d=TU^9_ zR!sq%hu5t~c?#g`{~Z3aRJwkhwlJmjHK`EN5@Ph;R#LouVL~@#A;JNNaOyzp(9PsE z{iui(Or~aT|H7PyN0v{5R-z)dSf9l*FJFvWR}(LMarGUtmKi|1c(DndEZvCh|GeZH zD9yUC>-_9|Jz#FkWO;i6lR6XAmZ)mV&s}LRm*FrL=|>5K!$f0Qd#S177!;(sTb@Mm zayo4CYlW=b+iNMZqY1Toq>G;aZ!6hE2Ft#%k(Z9^G$yp3J=fKPU6<0<>CGk*zwxQV zc>@Y@$}lUDj~gLeZ!5Z1AK_ys0d1$1qFm7|?enJgvBAM>S7+`S_VLn(M?r&fofQC$ z>;G!GBD1yED>_Cqi%tQQA37Fw2)Pw(wc55PD;EOjCQhx?E;DJP_A z046oT5yxJB*g!d@EA(n9C~7JySbP#73Vyt6wo0e?<<+f^wLt16b1R^}4gd@=bZY|P z1l?EI=_dlGh{PSfw8I~I0f|Y&Ec3-s^^|qtvceCTwlbYTG2zRWl_MOx%3hp{TdPYp zZ!dEZn|I2>4yli2} z!VxVRQZP5=V*@^}aaf64{M;XD(h3%NkLAxrmBQwVHWNqlEB}lA!!FC4+Wqt#9r;)sy4Q$tEzu5lo^Wr{@hTs(1 zpIKje?@wAmdXiS;Oim$VIy852mOG#P*}y z%nrrm0-&_?5ukYVlURQoN9>nyB5M#-+;Mura;6-HXkVi>B7L9vSmC@np z^6BQTm|Ex9j9{uqX(l%L?bl*(8Wno7ZlUsBDt4oA%^yHy4JZAEzl8-!HkOqB`Isny zIMhxSdd?$?>&P)s5>Q&A(}?E=sL;W&Xv}RZC7W~I6`cGszM&1m4>?vD#Cn3aGX$#-dV&0f1K^i{eAizc=g>!JwE_XZ8JpYDx zAleFiuTCs`@A=fn3(J*;PUHFhyyZ1FZafo!z0x!8owoqMlARw%I9IHkjCp+xH%|zV zY{vvv(RJ)`M~WNk*U(%Cnu%NlB^{m_u~C7TudM31hy~HS(a8anj*}#`$H6><%|->A zYY9XKu^n_Tk*&eCFls^+PP4-;c`t!J43&E9$Td+XYNg7gS*duMdRsn5C441 z%>3_54kYvM!NFG+$Va$iW8(v@9X^t-5M*%L*%YL#nJ1`OI^}=mG)qN5ccZuVSjfVr z%HkY|A5%{5o2;VCcJpV5bcXDm4Bz0-%?mDyvfpIn`m_@@aw~^bwHt*VXlm@KX+F}_ zx~g^be=T!|Qvax-`A5BfaBSKhC58~Q@2fs0whIZU4JrtwsRk^|i*@v>FcoF@6{S4m zQbpy91Fy&_=BONBJSM*kL9lW`$)evshVwVAHECM;7!P4`2lZ4Xly~uWCXf z8nxS(2@!GqC|TU2e&LuRaF?s~;CGxN___Xo0VGVWpm+u^QW|{0`mlld?b|66-wqp^ z^7BsOi_hY1#pjkiE3Nphwwy1hu$*1?vQ{4th+fVZh%_!v3W=7)6=a1WUk#^Lu7FM{ z-5>F)YnXgKfCKi!#w30XO)$>qtP(o4VrBdk=y)fDcDcB=>dC$$lTIu~aOraQhl1(` z2A>ZA;LR&zn^_EZUFiCaOy>HD5Kn`L(GNv@e(qjnjMhxNY+} zHTk|zgr+7ol3*-1g1#7*g+=EQiRhdxjAe`%OwKN0a*bG`GVV#rkVH115HOl+CA|50 z%fb`4^f!LqW`_9lKS~)b0)=$IAyE=E)O(>J#&~7I-+!lK9_y?-U_!*e;-d4g3R&-v zP^okXrM-$TZzCEpA_3<6FA(N^&h5a8(;zs}XQH;R-nJ`yt5k0)Rr87n5L(y*EkV=x zhhR21!A0h&ld@iV3j`pUL&QR@DUG^JHbx1t1VMFKH6{4u^I1UQSb2mPDlM15#3kWI z#+MLoFda0=0>LQRnT@&RyW4h6Jq_+c5{a8mkoc4S=n_`cb<-_UrzGE2`@5h7g-ZkbCl zs+1%Xhl4CoB&T41iY%XrEXO!z*~7D;vuCkq-*p}Qf9?il>gv(APQQC_L0z zck%zoR9r97fM?a5&8BNmc*y_Od5g7te>HW8E#>*tWbwCh;~emBqDh-=^H(xVe~Frs z8rD_v3o?!mFz_7^PrhykEp zC;9_`^}mCFc`N*1t_A#QXW45hx9)pl+7JzQ^_fUvB86pt6hVaYd_F0mHZM6BR1(!J z#22OWl}(JeN@bJM(7c;&Imav#SuRyVM2b=#DWNA9nHymNw}=RZ0-m~w5nrijRA#sA zWSA~QAXM?#BvJ)xBsuSvxf+Vm)uwF3p%eXYz0PR}+P%9W==IRnt#5~#yqU(Jw?o@( z8e??X@Bea&(XUI9g{)!FAyjGz8oe5Vq@pp%wN(__HR?cC>akp$>Byopu5^E9 z$`M>{{;?AuaLX#b72?12IZ?b36hEakovVfm-sKW^#mumxkTJqN&EQ1wD)IfvLoFiK znMuQLE@J~Pg+)94?|rR2c-5`d^{dZXZYCpS2tvfIUxqoVUcCXq$#N;^)cppXx(Ccj z;gv!NLQW(h6vFs~L}6T_f=C1wOre=l%kJF=;oZFYn(H^K>v`SqRiUiWFkyR4*Hv3< z%zQ0F^7idZM`p?gWzqq8bp|s1e1$xuUOpg|4ay1OcfOO87=D&NdUmvj&j?BqR%oJN zzf#!VP3QIfN=s`#S$2K&%(boeSBNS}1S@y)e9AAI*gvIf*MK>1sgCvN40+Lt#MK!T zSPC(`g1rGF?h`j}Xtp9fk6FSd6((;WZ(f92k~i0QJBeTQik!7A)cwOe zu;tJ4&WlT1zGzxxnA?4rl;n~&b7K%HPEF1SHmx2 zL+$Q-+(n!niwyv2xG$DJ;V$Rv*0;Y^1!XSoEh|R`%7}@5i~96fcfi(Q7u~OY#dy_W zblW!fw`%`WE4L?XUw;+u-tFA7K5rv+=xWNzoay?O=Fv{3z4)12xVLZ>Ib|66=PvXE zyDV_H2bzP9*-aB$=|Eg2ceT^1__0 zh=}(~AffcT>D$SGRT>rfXR*2pUDNU>=IdCSZPGWxQdr4nrll05;L?S;B*L{=_741} z$q^yI5cL*|dUNNO_~|dpsfRFvuki~>@y(xFP*3Kd>;G@_^6_2j6}M-Y@=zYI;0ht zrHfyAx63Fz!e*l5qSIxW>CD?%3l&uI{cRB-$^JePBJdXVjj{IBhn2YMHv+RlnLqTd81znz+iRxs$nl0q>V}HtC#m?A zdEkRo-lREqY2u)g^y9oZ7shVGc2krfk#xe$1cr7wSM&2`k$*(HEPp? zpFRv=T=JMLWHaoMvB1iFrWUD1^JAjT_+}tu{p{`g76VFW-H46P5B`wz--*1_wtPvQ*(_JQDe~Xr=~{ZN zLxb@VA~FMmL1t!XQChS+&uBBg+5abU*t0$~fg^T2nyh-O{kb66tJ>*c;N^9D;d?J) z&wBmk0X1h8CRZC@ePN9y^<zp2eQnbpq=J{Ynz#xej_<%lF1m;_7A9vTYwUp#Mp! z8SbUntooN!Gg%5zu1l%^nkm~Wuc)^J!VQY_S$M!bhsBM6jhsfn`LY|(j z6i<;hv4rP@c5D0ArjIxh4U*(~w*W=27IVcg+_Vrs?16>(!^|H~L_2H14#UbYn-9(E zmK?r{DSGnxq3{sGG5|JdxDlURpJDGju>0hB!=Rq=t_&Y0o455g`xabQp)iGCgjojZ z&)AA9xc|@x3=-(!G9fZ} zpteUs_eMsZf?_QGRHWX%qj&_BBlkvUuK)J%$wR&Rves_Llk8N%Dpu=%coSBlV$n+G zh)jD$)X(UbJ-^bo%sxC|x{!C|g+Y39Z+53U8Z)4gsxMh&B9f_Zt|fX+LN=#fJQqfK zj<|hzd;@&Ori)~Bx#R+IV-2ym`7N0ecno_#nv^IMV5%g7?Q|kc zL&mRqz-1we`9fXqw5-xq-98PC!gBeT=sCP4q74;I%A|ffb9~93)IHy`MYKICel$Ne z|B`5@;rEA!1c z3sTENlM+I#6I8qqif>+s;zmD}IY)-CNTuZVMQ~W9jm`n7tGy|_@4_kkG&$Lg^j8AD zqc>y8Td{5`=p4PSz4Yd($K00#4yo!~UFQtVV#sg0`~&}9c%Pc(a8{1{h(4eCd!3pd zwk}ar!Ath!mI0G2y3yu9Txj!xZ6{_$~=%%=)~}Z$cZK-Dv_ul(z>xo z*3n~KsNZbXXP!8u^SW@5*;iczMa2PIoDAVk)Q)C8Gt$Fi5Wdybc#owaKg((mKhOqJ z)HXXR;!NA{Yi^)(lWd#U+Jq?V2QHd9L75}oYc_x3Zug9?Slsn3fh2)0Og_5>yQ}AY zVQx6}d9-}~-Q)JZ?sLjY&aMU2dC$_$?*W2`kYI?!^&g*dm#zhm2SIo zo0jtkmS&3n+$A^Axh4YcRlU{_NCf3PK$QHCyAdpLzIkFXSkeskdbGfqxdSReUeGyk zN-K!j#JJ?q7LY1yLC-bW<=XBw!#yy=J({1=opia#DZ4q_NxbBt`^{z_X*(SSH?}th z$sn1@zth0FZ^22j+r$wvK-S-llQ|OH?$qV7K1{%8G`ViBf_S+mmQ315LWRo+q#AqK z52q<5^)mKY&~D}OC+2AP#Bov*_}&8EADDRZnet;M@3BPb7d2sP@FsIsD_qnzM5B%Q znse3o`(_0z2K*da$Got1o>n)epqSE!0?|`7$*~)!C=Vkd(j0LI4=JZM^mH27z9h&I z#A+gUs{o|yz5a6&MGOo`CC#Gsd*RM|dZ7l>;gUNIHx>6_=xJ&VlBx9ahOFMnGu2y> zk!izKsQnqg<++~jh4pW*BSLWK-CnPjeV}}4q=$)uj`rr~q!!rP@26G~t90<9BFTv- z+MQDg-@{_u8EjlOCMBrvUVZD72oU|BxZ+`QTaW_7#Msju1Ew6=5xew@JLTtZv1HR3 z?AA*ks?CaS>v6~Lz*aN$_OT-td0q9i@d$x(+I8X^hE$9fO=$mWP=?zl7G!7EU~_->xF8cI7N9F7=hCL zFxF9PdfknVf{9Qh?hGQeu2-KqY1Oy5Lj>@Wuzo>C@A*jHpAliW#zqtaW70gDqDhHW zBSeDR3HcJoQ~u4#O*~!;n(rhf{w{juP=I0vl6CQzAAI_$VBo z@)}q~19njPcy7sJ2y@{g?6As5CPGp$JjxN{ADQlTe3oU{ut=}hEnyoDM+`^2Zh39h zKSm)Gt6>^e`RI#4D||Ba6-#q$_*^wShPztT2Bjxo7l)&~8s2U=zTS8RTwaTc18;TZ z8bCvLhr(OL@F>skI_@sS3LsqB^DB-^3kfLW{yKT-&Hr1JG+}9*b_D%DB3+PUy3I22 zF3@5^sr($dnN6AIT!){BQ6#iNLFHQ)1?AX(ffj?h_T&0CljEw{%5+!RrZ)ZYNT_40 zQ-ECKa}LQmz$Lo|a>v$H9zo*_E_~C(`k4wn)ap^HHI9FDO*->G>@^a!Mqo{D=MHlp%Nh5AtF81GzfW#cvB(9fC(W zGRzHKIN@u<*TNZGr^3DNpT7m^COR5djl@*T3cxKwe@(_08L$`=!QnDiIGMj40>ZHtf6R9h{s$A7mOfMTE<|^Q>{Af{dXpuuuNQt=4t(weoV# zl3vxYcU|s)Tv@yjfgAfb;xN#AUDe9`EE;xrP<}&>eB&1LJ|tL7{PLs9CqA}mTFRhR zpr>;sfS8YY?nUnUXNBK>4)%uEndd(f>&yc^L9|WG50efvTEU-75W zMP?$Xv4TV+3}NdlhAjqVBxX+}Of)4XDSfv(?l69Fd=Y1?I59r~QCyTqhM%kMbM#S8 zuwSd+WO95*Qh(5KkUrq}aS72I9Y5zQ)2qtoG3dm|-_Fw+p~7TgBzH{YXGo+xc<@Dz zBq>dy8;hAV1Vvn$Kqq?e=wVbR0CqGVZsD(7nCTtaiR}DJ*x`0YGN$#HzhFUWp+nN1 zY}`LTC;sto1XlT%j(4hp8e>34RnvC2B}EVQoE^OW&R`hV$X$-E{?7fx_xL2<)F4XL6+H@)(unF>aVH%B$98)Fjpx9?G#(0Ay6d#+R$C7ootv&O#tb{`&8LcqStHQqWP1;YP?!yX%Ac@e&%htR6V3qsM?zBU?LR%Qgo?WI z800KAMLTp*)d!TX=*!?0{61zTtyB-wn|LPl9`zv4U25~h`vrk`;Z~{F7FQf}UgS?$ zFc}o~mLx}(Uc0UL}n2sErou5 zBrch4Po*H0&!ck3-;1zLn8-gIZ4aAgCQhKiVP`ze^2U7%j6fFmCGTo8`Yk_OsDKyu zle=$l`**Ac3W5ScO1%hdYo>9ezTh^?m%hODw=*5GIDGS8jmbSK=`>m zEbc)!XReFwawkQg(5=UFZT)Yf}0Y*oXihPd>xs1MuJsx5j|LA-eLYU2`(l&1-`9^{RM-C zwxuzB(A9Zyw~|vks=;svVnuZ3uq6~3@+>V-f*OcPl6R-_-UzC#+IP1k7J1Etf9@Oqw50A!;+}t@*4?W^fR2bWE`!zm{{w5?O-cJZDfydCZS#k8+ z=~Is4nl%RD;+$wYYzZj{F3-(`FDBs+UqAgda9tuswEm8_|NHAipAfL&tU7zB$q&dv zy_{FRrq-(6SMwmO6jB{743;lj^d^|i*E1m*pg`$SEpfZt0ue4#fWLI4y6OWpm#t^b z=Z00Jn1Izvi?Yodt(5Qx)`I1lqR`~fHfkypOlOCx7VAVo${zh`fkK7}sMWxeB8J<; z^3YCK@xM>}MDS6Fwt2BYItX*n{wX+27oi7dB#~!_ zGwERV)7eK+fh)+JLiBxGdc&-YOMqyQh`@QNMdV1$pNumCe6P*ky|Oq^YIHKOz0W7| zKs5(jM%9&uKA2ug9`OA`K5m?}fTx7EuF*Ht{nVFPa`_&V`AsffYGDI|xkpZ_du zgvdkcW0T$Duo_RX|Lp@lt}vpJL&Lg!&zFJBKv`%uITtACE{xaH0=)moHZ~J881!KE zeAXge_pX3NKgLZqnGrHtC%>N>Xbv7+qzDiDB6YHWu z4XBqP|C6UFNbVX2ncN32WqURmc1A?AKpPOI7=i2gKy-_hSzNz6&xE%xyB6?eD01q8 z4m22xk8HX#zt@6%4q=61R|IZ|CqGiCgQ2*PxMfJR!aoH>K{rOIu?kb^&3chKbgiK% zMic$mYy07Ycbp(R(@PU5?d|nf6dpLZC_UH|D8JuQXN1U1wjG^|wiopmcUMK#9+kvIn=N0SZh4tIuGE}PV9}D4Pm%E3cvq~PZfvegHK3Ky8S&8op zWkx6Cz{OYY&R+8k$bfxHmqz3uy>23igQ8j&fp6`f3-8+q$(<_#qaNLHle)@?Y`75X z^(ruKF}WxQxh4=^ZZIz<_a0_@8sp_YvSfq1u7VcuUl6iBAerhSo8c319Vn=a+uDpX z#UM7YK+zGM6M(+P?LcuL`bAWxeIbvuj~yg4rmQH>t&fJ3e0nLZ83OgI23-RPE3`q+!og-m@wn^`Y?pEe}j*=xRE-qm-0)roq6266$<@Ds&eoO3fsFP3TEs3`zrK%Bq)TdRU2^f2Q$@v}-2 zFSW0_hZmqT0C^imKsM_W_TDR}H#bXYD6j5-*2f~G!jbF&Z?U-A0?pW#MU0g|v9G+R zJX!_EUu`#}+r6B#ST{cw1b@F5fna~b z1fakFt{{Oy<`oRFtc=LTaKEs{xK|=!qGE4H$-v1<+frL4{csc|>Na?B)RL&h;M;z; zw0sQ|;bOs**Z0Qn_{Pv;aWc_Us1l&p6Iv#LAiE!Rnwk8-+C-aNdQOpG(_!Ex#Vu>5 z9SsO?{gZ-FIhG-HQTa}?6ykM&KLkK(_5!kb0>^c695_~DCwAvra8s6d((FtZlAPAO zVAX|LwxhK%JJyO6Z?@&~ljjLHQJzI+7Y>f=xgD4Dvcs{4u#KJIj$p_2vOA8;exd+Hg-(4sx(OBvhB-N{*7emw&ZEUaT=#d+CI zoY{}UaXBasUyNNCaNlKNNFpx{?KVgljEC}29?C;y=me=XLBj8Mnepq%X#<^lmms1=Bo8yj5l+1lCwG zgiS`1vI(LK)C5dn$p8ZrbCwJ+ushs^l_I}eziOH%Kd!x7Zal9M#Jo~BuZjJd+kzB1 z*z4a1jVsvtA$eoJ*9Fh@vJbMYofQ5_Bs8ZuQ>pg(XLD8v0cmu`DFf=bdCT>fRbnE? z^=IvOgg(lh=;)Glt!Q!a_P;_?9~~L@VVG1iBbc#2K!ngLw~Tf#@w|+|=+Y4uG#Pna z1%<{vLO#C+hZRq@LOp&RW4?Aj9ziE9=*?gb&=ri0Io45ik9W9W^U1Zx zP@|%zS;C?v!`N1>>#8RQiGS{6?UbQzGu0g=Nxx42;0PzN6I{@T?z8{D@HTq4=)zm6 zk8XXfa4l=F^Z+?Rf4YYv;;JH3tB$Rh;6v0@hwX`tvo2A3t7(Hn0I0iWP{nGR)#W); zo%ByAMLP_Ycwq?LSB3TZzmYB~dTq;8cEB^Az9R@lEShJjyHio*qH|byJ@G!o^V0g- ztrAAhsER!aL575)N76u&N%~g9pxT_@#kChsM}(E3@FgOiMLmVv3kD!$ls*+H=jszk zKfh~5m!srbV|N)GWO}Ve$JAjdKnUb&l~pQ1cZs~CFoJ$B|>gChSy{Wbs)Qf zHnhMuD?e?UU1e9>HFm9CXV;I6>1@SX;7nBXcHogP);JXtc0F6+9Tp)a++p&(CF~_u zFT@H9UWT>R4?{%JJrEF95~sh7s?!Xs>boh#2G9~B8GZ^#+8k1Q*dDP*?J;}YUSY3H z9MB}3*twR%!6)G)SMh?I!by+tii?I*#g!B)n3YiUqH1CyUf+fga#P+&qxNl%&65h)s+!|#=>SAQNi3;PjiU=1K z_C+2!%p$_qpSyhTOsoW{9Ex!uBL#)p=dyJ zf#X4*f(F5^z;MPJy~~GML^j93o_+ptZ8*+c2RVgYO~Bzo(FB?+aJ(Q-1r5$*S1$C8 z1k(WU`{iwYk~;>#OHd+#o&fg&$%H|QjL~(-8Gsw0JO?@o+!!RzQ!oLB&)#URbl4N) z6F$?seBtwTkWbAgTu+*pvf0W{UCq#CU%K6f{HWD9`Pp| z3s@-(x4qH3d}ul1zkBjTy1wFW;f;v}zkZ^7=W-SRa5I#bKqr6;KtvcoWQ-m_F04WA zacNI0%~@ilIZLec5}*lSVK4x1^e!K25!sY%GirR$f;mepn6t!!IZLw^T#~TF8_ks+ zj=l3U-J_eXgPcOn5^%FnUJ7(V-~vHJK@+A~9%}n?o|u$d8P_=ZRiW|YV0j`ZILRqa zbB42=ehNQ zgCn-s_eCgPK-Sl{CFBRQNFC!y(xOP+&TO=J0~7|l5sWaw3`=3X3MOoza5{eM2hkqE z2rdGSK_G%uaFks#C63(t3`_u;s)zEnziOzP=Ls!EO;9D)8J3e@KVx1LdzuySj)6f)LBixTbA=Cj7Vb7iD>{@Ms`l z{Nmq|8a4ZNO4Mw3!a8fjtdXpRb>@hf0ioT3<%x2Ye3i&kv^>qNhI4FM#W`cn6z6UK z&Oqs$GW=&=JOk5hQ2Vw8v14`j&m`sjdRJTi?VSZRy8%YOHKE>=sm;}eh!U39XqZBR zMxSrGu7ZflL+RLw=sTVfhH|PBZxtvQtGxime>9=xzkgLXm1a73=w3tkuZ8LV zvHv#x&2d*?#H}id|MCo*{tL&Fws?Th=W(aXKpd&RkjJz;$^*C{-3yrXk+;NoXRm*o zx3Vwe`{&RSk*m*#YU81R!8}H+{ISetK>Mn6?(! z1$-prwf@Ks;0~SER0GPuXXmNn`=A_NftF3M69MuhmhNkTHKZ~!(2?z0E+1)ob$Xt^ z3-s>@sPBVq$|i6E1niTCEMH4AY=8Z5+jMNfnGW1|1cF;e$~~%3NwL9unnMexIPJ5h zUQ-qHTnlVOtGVCCgmBw}vC5P?@NHntk)qdJm}ai|XVugTTe$EI-n= z>aQ7ooEPjH2yOuLMJ=06q+Y9DW-aEHeUc#l@AGj3s9?TP46LabkBfwO`La|73rcbQ z-!+_D%pKh@9&ej=uU{Cy7Kk>Bj1-|JvfIUxiD=KX~6bRo)j!4X~)J!7rf(s=qUrgY=394Q+w zMKf@hj1!<&8h#h54@ht`PlrC?>C-{aPQb7hBt3hCThgfNmg(PN&7y|5O?&NtpNbr~ zk03@F2csL-3$Rp=)za?u(Qa19jFT8vnqGlUqbIE!7DxDEyct-7k!A$l@ictAj5srL zk~Rh3{ZFhGw`kpWIkB3P;#Il^jK$YdtJ`L-H1EiIIaS>G46Me+P-dT0qwjK7ard)n zxVtO)a#!g!tePt8tcqU~BUk}jvtw6uX+#ez(-XTIxx=!HDKBW25e#1{>M0YVSZXZ@ zSgOYwL6uFu8l_yl!gn|fsGfbC4>iX^EX%;h-+O3!oaiefgO4bXnY6MWz1f zbncv9J;m9tv@bqHm}V#lWQ}}}Xyd!K!i^FlOf!a2`$C8?Wt>r82oa_k3JQL3r~Z## zhE?f{h6vLP1%a$=t9`517YPxj9_QFfd$5D9@Ye|urWpzXS>DclJJJ_IglUF?1!~v$ z&L;IG8zn@TW~Pv}N()ycyZ&AJF0r_)J2+_R@>vl9P_v|_rjF?#sGT7Yn!MEkpt>}1 zaZxFFGScA1L;dUlIVDWFM}LxawJZab>0iYWljA}KOn;PjpdG*I#>yn-u-wWJ!HHF) zb3)>SI9%S@^g-mPyxzCJ38_*UNu} zY>$8hcU82k^2@;H1{WoX`6N6i4f{Q_)^B|43dvdR5_tky&*j+wxz^Eo=_6mzz``W} znuLjt=_^S`wsGC8Vit7xJ%}`wEp=VQF2$q&-NP1sXti9rd((DsoQlr>*8;IdxBHib zm|mQAF}4c6`;;q&I`}_0t_WEbyC*fOWwy~?7h$H!nifUNecj_U zblw<>XQG+~dE)i!NW2?tz${uBraitZF(u0w43=kGPW&F05ATjGvv>6*q$t%nyCth( z(`pN6rRiRUhKpY6j&rL}LDl1@EKB6-r95Td@B^*>6=yHKd=^Skx8LQ;MWUqdS-ErB zYT>;;J1*1)SKg(-%bwCIU*)-_Qg64uW-hknaPR7JQ2jjgRTqoS<T`ESauA3WP$>cWi! z1`qSG?+CWv2O_WmIP&)0MD#+gdQn}*06Q4`AT$8*tuT8bfYcW0r8)p=s$_Ne(vvvw z(!RQB{c=!A)MvaS7{m8}jpzSB2P~QT6#|5JxZ9T6>=8Lv=1Y6j&MmOc+@-l1MDLvG zo*KLERa>A$44Yc(5(NZ8zYmf^7xLrNKX=`3>I1#N+n4LD40BP6x} z4_NdewkqPKIRFMUMhrpGX(1f~gmZMvo(bd8LPPzyaAQ+KA7TfNOqes%MB9b{5bQ}*#>8Kt+Ts{$E6r+;i?*mua7$faGZW%N0ZMssK}(dT5d&m zdw!Pi7JdIZP&)%0ZvL*ASCN-XT<8jY6I3Cnflji6i*TuryuFT%qObg+Spqq9S)_d6 zM=FnGKs0Y9C5g?pUqB`eRQm>E=0|?tuW#U=w*R1i+WzZ%aE`b2wPc_|Y~4u@fj1;% zqqr*XT9-sy8I1!p7_lqYWTgSb#FkLSRVPz4XEFG_DDhrRDM^d`AOsraUCE{U*|-txvEmni7!Y!X=L8-Jhk$ZXPJ8Br)Ommgl0`J8+IAQDoS5 z5YScfRF6wd(OR++;I4P=H7MpOK%P=vbC8jGOcp;r$R)3-Hx^OR+#4rl16T-Xe};g; zaKwm%a*oPvPF62e4#2z9-iK(+Fgti4Zst1@FhJG%O1veGyk(4r3^a;Y5Fmmh?lfF? zN!k+()(|y$O|_OY5nxKUT`ws8ZI_*qf0u;wJ1>JwH_7%%?GbbZe}~aPlF_XWT#EZI z31I<&5}yI>dUI=VX8h;yZ-43cRmc=+5DM9x)Qq4F^$c~hQRz@H+9;VZ2=9+CQdKct zR)IY7cnr`GK*F^gK0m;m2y(N=&baf@WBX64eH(y8STbQ;(M%7Lz9BLIOkq$bC}N!I zmQ;dHJ#!re7@MG!`?bKr$ZSt47!31THB%furqf<|2Z7={FCsT&Difhi=2O$5O+VBV zB8Or$u&vBvCSULObJdeB>mA7~HFidzv)9v4NZ+fYcEV+Xx~M-~KaIEB)2p?fwBmJj z0>QyX0Ykk30EIlrLEo#+bKC7!F>R1b$OpX5YB@=@WG1almbx+_8juLbt<^M=2DZ{q z8p?ReL_I_w-UrEognk(TU$*12W45#fWt62gN%+7sTZA7|YdJM(&8 z($&@~W%@b3;eALMpCbJE3_72VkfjldIeJDG%h3u&ZX~ZpszALfJ8Ux+RgG7 zK%yOQS$fdqZ`3@zEDONH{pGjw=d-Kj>3#!SHc=UEBs-}Sx-`*M0l43NDA%wK;aJu0 zw@C-OxIGCQJon>`^_bsw9$y0af^re%HovAwCL6@B=Os0%I%?#~#Lff|Z@mJE#?VmU z-LFhwGeAiZz%{oH=m+uVU!AKOFYU=5mVZ?NSJ>Mh5dkqYLFn06a&sAjW>EG?wdHC3 zDmqyPVXnahY1L;K2(p0vO2?E9h0~>6^Z~dP)90^S5#AX^{ImpY!F8X58t|2zl?~fD z87@tEc0tGA6o0$GX|e62Wf-*xI5>qo%i@HG6BZb$Lj6_HbxtxDtMIb*0^~B-`js1G zfw8MfP*4~#%3&gl1+@WK70pGSG`NitEHqf7r!RHv0rW;iQ*lsIWU zb|~_D69BdKGQUgU7Oqrx=ah%LpM(TB0}|RNy5?(jeGz&-E+e z=221eV#prkQ}U|#(G31jS#&n^>YEi%wbU$c6fW7oi3#)0rm`fpEu+2q5x6@N@3zW>-*$;)-}~X433&!$2W0;;r_(!H;({s{(XG;`DY*RitC5l zavpot<|)Cz$Nac+N?z3shA0km1jh!w4 zgAq;W(S78HQP&~-x%aK(h+2EW_stq=iACTsq_vznyFb?9-ei6>0aS)BEGQ>a2dkMh z1+?z9>h1Gn2FQ|ER&rY614#cu+`aG>rPMf^kW`D zAUxic<3c?h05+Yl63K;-Cl1L#ckippG#*PDkAEL}icp?_#1nT0Sdq_lw8x2gqC9*K ztxSjjU^CR*-|-@ZrFD~k-gpHBK^5H+OU;@ft}b#G0!s^hTuZsl6Mkn(ISex_RDxaz zrMh!@9J;=f&=a*|tm6rH9P)I@_K7;^k{9@^Ft(wkMLd`5D8uT>_y`#^!PXH^7#n;LhO_|_ zy&!*iKZ`$RG+1Dbv^G|5vgls}uZNF@fp%YA1Wmm`01}c&75*2iVdHKm_=sVKhWcTf zaciicb20f2w4!G{S36Y#%toopE})l$LUvvi0#V;)u4257j&|NZ75xvESJ+p17E^Q@ zbIgtdU1_Ug=9qI?Tw+FPqcaWw12$jt%>Z74`M>ju>DhCUdSMja^~w)<#Z?Fpc2SWq z5Mb{U+um$5w{;cNFewJh7YIi;io7hlpUm2*!qr#+|BEQgVn^N0-=?neFStrXv; zBCDY5)*`-vx2IA9oL+9PPml5{FGEKKGTOBA2=SND2|b2+#RzmU9}8bpfYfvV+!bY3 zPsL}*BD$3HDgn#rl{E&?eay22gao%w*WI3*Clqiu@2^3_Dj-(FAua_BHU!LD>#CK> z$VjnAJiuhse5yp(GS~s|YKVSTfVd{mm-ld)upL34 zXR0yz)=#j%i$yp#Uc#-@$hEV~;uUbvlkXKo*YpTvqjd8vH>c-^o6(Z1c>U%{?iD$d zEv-cRbN&x`#d8muVz$cBR1CZ(UA(L0%2OqqB5PWqF#j^N;h zr_4RuXPCtX4f$YmS2fJl=o9ab${KBYph`W`^`#$_Uqql(&)VQ&w|ij5gS3(AOMb?b zG3jRnD!6I(lO^{Z;f#KUi)H@PRE|B>u~IUc@oMDjDNF<9jgWy9si-f#$#;*j^mw_1 z<%j`;NDl5$wIH{S>7YGL;A~;KMS#gh@#`;lrWwA%1R2a#;R1a<7qdeq7;!P4a?e9Z zY7CDurG#as13(1Llfy0heJ(s=>l^WsZ>t+xq7M|(l;a&aO?aSIDQpVCBFm(66$ie^ zbooqO@GTgDSN4Q%={Z0Y*Lt~*-R?|+$wI5H6MtXkk1wN=Fd2&$asyBs&rh9Nvv3*3 zx%5Z`q$dTq`&Y}!tM2d^-WZzR8vbcJ$?l&UvLq)+xawF-40>^1Dasw-FhFcF;ZZmiDvn_Z}oWJ2gd)p9bsMG@7E>h1+boQ)alKh zo=jOC#%WEZADh5%3Ck?L%PYCGn{bLN3`TwPn8>ImtF`9Fpa4H*39z}CN>FbfRcorDqu3-u?K@LaZH8avehLSw)sXjc)Q&QY z`4WzdEX@?oWHxC%5QWPpF}bXL%BL((3ZcR9A1H{U z6*2Fz!1qYgB8Xz@U%G~Y^Ild%vw(0TjrMO;;klX1B4%b_l+jY?4*CIHtwST$M z$zmsQ;QaWqN9E(DP}$K^pzAFUiNYxCG)3+2vSToi^SZ{OPZvXCDw?1FPllARjELeawm>f8Mry|yGl|>tdj?JewZ)WpLH0CqY4b! zu!zt3L@Zg8a~*08{p8>w`b%LfHcOcDnUXl zM?AB`@a(CvSm}A`TE$tLjwc|gM34T_c%q6kzSRsw+!d)IPbs=URG7@Op&E_ z6|1LUXu$&^w3^&@mFxm#j^Za{6c?{q2WnDn#-r7>H!K-KSQ-IlK^^Od^nBk!f4kYj}!`vB+jG9G;8gy+*4N zuMPv*HB9ABO50{sxRQKt2rAc6P7xaES~gUJMi?*fGMVk&<~f6FC9#^W{100Cx=Cu4=AF#ila6H) zZy}*>S+2bBkEhz#q7D3AHsck6YrF0!^_E$$(Ggl;t5wVOul`qlZ9%Uw)WfXUFhS;I z+v!awnX}9(xejDtc(_}C;@Nc^`U(*oo{}5u>XwEYEXGwA(g`TcHj(Ge_O!2p4ap1m zUh-NR6x|J&Mk(6n@Fjg7iJi#ISWG}av&o#0(^dcv^8OMF9A~C0|O`+5`W+028T^# zj2wCBk3+rCP~Ny3N&|w~!04rRCx2*{laF?kt@o-{xLcuBH)a)kV_Lctij2kEjJ6cv zr6U6m=)}Ge&_PTI1b0;@4vWH*+p9m2!=WinG}KPKILNk+1-@$Pxw(pGoOwHwSni4e z_579{K_7xb%Yb__yDQ-^Fk%R)>RNPyj=}B(x)Gg=w@QBdm!(IZAob^nn3-TcgeEL; zgn3LsCDfFLv}<`jdouQHXKekb?}fgowV(ENAid&zKip{UR=a=Ld$Tc{BaED#YkAu6yrtN5vZ4FVShIesNg^V~Dg#?gUj?D*{=9Di zE!BQZGk^z)dW-6&5nkRj?QMX zB`+U;5rr)WMfz?we=C>x6Q1i?Vc_SEBrr}^APb5~l)Es!RiiCA^B!1$)gVnApfPL5 z?f#~b33(}o-rrV192L zhj(NoI|G5r^F8a2P`ptB_f0xx6?|(_(jEX2?l`MVUm9}V+|LV}tWJ!PJh>RElyMgU z5Ez&ZPkAnP+`LyfAptq}Ot1tuN*Ib};(@+*z--AF3?A|bAXhP<9gOE2+T{qPRmzJT zB`8j;-1xpF;QhwL@svjuAZQnUy2V06*8i3pLgbttFJ?+v?wTwb9oOj)+>M;ddVk}g zK5B2;gpv6WMVU|(jM%UF2p}zByHP#MY}!HD2qe?CmD@mNPmJvMRh&!bjYb+OWCmsK zH4yhkju@&hy>Xm9Q4VfXT(WkpV8+=vzItm}^yCnPQjxpmc_tMkqTtHdg6!9EGXNM& znqEuL&;)FhLy#}~L^UtXT7mML-SG{*taZMSLvsWO>3kjuj;Z?7lN`kiuPTW zHi@&GzWr zAA|dW8B>0by?E3;)}=c>f*B!=!u=yX!*>f^PMLf4epWh&M-H#U{uo6ZbD5WvoGco- zaQ3u1xJ7Z36QG?uL^;Pra_K#)?vYtX{$Xi<%Q`C?$Kw%Huv;cJ{;YYKz210yj`H@W zQyk+1jKy!?K_J&TThTzFp|sH=_;*>YpzjiFx`D5Gcf+z2-Lgx`vaPT*gLmJDM?W;r zbK_|NW1G!1R$}wp8b_{db=?3o(|S+>^r^GAYPPV@cpJ2XALO`<5Uwyz^bu}(!GXW> zb)OI|D^nZ7NjXY$n06}1kI8f_qL{Zyg!&#*W>U=SL2L`ZgqCv)*jyWpIp-FS(;)V^ zk5H@8-h-qz6TuD2Q)GHY_bTv3^^y+fYILl&k^BbTN{!%c6wU@P!*x6c3JnXP>yhub zr3s&9C8{#oO5m}6KGrO+q?{yT`u``QOaNy)L@<&5MO@yjoF zjnbyb+$;!xd@6x1D*hg0mHQ&ye2xL)KII7m5xlKEk$ZA1UJ?)@F}=@ogfxdAD?N&j z-zG6VdD-(a?!#0`naudN1ALS=+_HQI`<~1vZTr=9P2wN*V^7GISAtg z$?Ho>&@$gt@b_ck$?hXlY&4?zP|r{$=hvP~b};+*3qhq<$MwQKas~1HX$HWQNl5$N zW`F%fESsK)JqW@$W-9_~n z6f}g7_W9_R6QK@l*lTeU+2x{WKxkK~DoYF%R!3(&WN&rA`~uOEl+m(xa%bvnfhbB3 z=rt}%t!T1y=Z8J$2Mfz)apV=`63L??QCviB(UMp}1+N@k&5tT8E&QF)SC&HZ1KD*f zr2VvI;*ocd`T`L};ptm)x$@DKbER!B>P7R}7N&i1xef2pt-Op?7Vp5BB_gmiMBByN zQw;UGANU^hLT6`5PGdoaL~T=Wk{`CNdx2d%?%JPOEY4#(Jt`B)6pmi^Gj;u%r-Bi> z`P5ZFTZw%X_53~mOCGfLjgWj)Dp^W30^i7ND=!eJRO&ZhF4(&qU z6~+BZmmj{+NbRvAsi5>YfSy;CF(qDQUPzj1QQzW&p`0@u$Q!Au%TINA-%f&LzOJsQ zBGXNSX7^Nk@%!%uDt(NMk37w7*yoTd&%?rPhX^>lzf)xvaQ5#yxKyi&Lje&(eY^=deY!#ci~-kp%+NNO6&$HxK0(D2|+KFZVZ%8}|E)ZX>;~djlc& z4fk#8jGE+t^}ZHfiDzOn^lIcYl%GSKkA?6(x8O!1p%F8q5xJ%539+o_M!4MR3+(M|B3a&@8RE@q zPbMq@ub*%CwLlVc@KrGAn|E*i@33g;iHbEsk3<(4=McBZyq3s8MX<)m0JCvSuJQUJ zVPExL`B82@vRLih8yI!{Zh9(^RKV<#WNK{YhvK?SLzH%@kxW=j(sth>l|NsEiNicP$rm-r0sH)+8Nlu`nRx*~@-injgX zGV$dtWK5$k=NxM;M8G_rJAiQWrLIXd73NR4h8e;1rVU*UJ#}*r=P`)AL{mW=Qvu3IVt9QO*>;G7)5Ho@TR=l9_}C zc)rVep4K0lOeu?LFaG3V(cQWEIPHHj^5^~P&(W;mu!R>!F$ms!Y;+Ta7lYReKbE+I z@HpulKzligfMvktt>HMI>0NM49H!93Jw>XSyD$kR3wPs&02;F(r=S?A!ik8_%9lP) zg8NVn0w#ES3pQ0HBV=!%HS|t3;k02wj*N zxLAs+y9slcYkGCqD`e{woMPE7uA}e1T<p*5}go?X^)Lk~;R2<~=}gbAvoqv5LfVvU-GFn+H^aM_I)7_`4vLjDiQI--ypv4O^tSIZc^=g@gVmZ|ul>BP3^Z z^qhL~ruw4+BPi^e%Z};^?j_m;5j)hibFKxT?sPnCoBSfMXT=}!vv4AC zR`K|}vTw5-Daj+0__I zCN741OQC-D7(iXPa#}3t=Cn7(KW%OC@|m?GI!NQU-yBvzkpw&940Mha0SW3UeJ-Y>i!dOZSd+`&w?NW==Ii0kadp$w~-yHN2WlqKN-)?Q|Oq5+DJxP8eu$h7h z2bjydRIm%GVsH53Bgl_OLurGXWos&GSp2v7-*n_VW2}isfSFlLG zd~i@$WV}WU%{`lUWWdPJ^VL+D!fMvh?rX8`nx76OGVwE%Yyo+yKCBa&{O{)`PYogg zu+bG=enc%M5?}Hhk6-s8ms}k|Pt}un8yB2AO+``Pz2--j#|ckapJq5Tf)+k!oG#0N zK{u{2wwgCmmCn`NJo0FjkeY1BP{K`5OG^aG-f8dL!^iw%JAIoqn5k{*hxre0+lAq4 zC*zak6N10}bt!pL=75PfpBvFK2w{;1E`a~~-208!Y=ii%vZ34>KU=h#C+xT;_uNl( zigkqC=ZIzFK^raeHLZ(K&4-4TuZNsGup07YTrYGS^$7uy>CdwqEH~^4z=bj(pE5y< zsWJyBQ?8rqqFy-f)^AZAS3AL?tbxR`i`>N9+a~oBSrpghCQRG{gsc{>RgtpG))}*G zV%-l^zK6EaMV}Oz4ISOFtW>Y#;H?REWtlw5^i$pL)*E)8tGPBH4l$b%Cff)A@&rFO z&pw>Pu49^Pcl+dD|9@uwFlwmhp=>@gWw4=lfi5l@?Dog>b$XOZ8GCCWt*JzszuGS8@KPom*>O$BZQad0ZrMJVrTEh5xty%_@&g21?w5bf z{3wU12jvfgMqMkHAI~|ZLaa@SCJs~eh5*Ex5VKoTLCe#nB$Ra3EsM+>{@HoF%Y+7( zsMT;FIZul(Z(G22rlnD~&5D}Vcsoz(w^G&%l5qiP))}3pfl6VzWb*X=xSdUN zV@zeSZ_v}dmSoCb8x5g3rOO$^yo3bkt+*x8I>8wOmy#N@594<&~v$R`(C>eb&f`0%~YCi6|5I5K>hi#6hJzt}w4#iol` z?8BTun_h_Tc7Lq*(i85I=GFYIxOiGFyUatc<%z~OU6P4;ANXOssBhhFZQ@35O_7X) zFun<~!>P!s`iX8=DbF|lFpA@$lcO3%+thItbBR-74y_A4>qA_~`ks9f80EMDe7!!k znB(=s#L7Un*>R;NC;@0TiR~FPN#@n6^2>?jB`~cagxmdl)nbz}{9m@fu-IeBD=I=a zf#Xt;O(@mLP%Y3YO_n{-9b{@VhH)aKxZ<9-qR^!Yw#zFx+N7WF>e<)ae7fwl5*5!j zw7V=&za&GOI*-b1eQITR{jjiI9#1a@bjO&8r#-}RKZK8t}AxUFbmcAPPyz-c0V!u7Kls?mz&dFKmjD!ezW6r2Wq z;%YtGiMVOH>BY9kU0G;DyD2h3aN4;iRsu}cZ8XBdUm>v~e=5A?xhv(pI#whBRNtiX!p=p%3S<+y?c#69n_o@k01Z9+7DOGm$bZ)G+o0d_2R~KP$w}~4Z&a=7R{!!om0v737`6%?YY?%8Y1a% za^7tl=0)3CJ6eqzRA-5JI!bVNz^?Z?rM@G{lad%Y-RUEHy1Pd?roO#dbUO|PSErDo z;Xx|Sn&dP_Ur(-CrT1=qUVCtcQrVqXJ3%k_8}nX9jp(oQ-_b*$6qpI z>V-B_=bw!fV9g$3k|mR6q_6}$ZY8mnzX5R<%plDJ@Iri58(a+g6-T7U_?v%{ic&g( zo|cTeW41a-h=N@vghS*Z>2_lih3=!TWQddy^nM275rzeW50PQS$c;DYjVdi_0ox!X zIkfVDkJ-~R1&V{!!TR7jeRx5P-s6pkq0w2Zh2xqmg(VrsYqi%P&ne{N4)y9^!uz?m zJ=VFG6YKG|TUtFtV;R_%;b)MT`+2F%#AI#g`@MZhKgR)W8=9}3y2^gpW}R}fkA{ZH z5w;l>m>kSfL$}kk=6rGNnmTS@!c*StG0>XEoGa~tC9=!& z9A}J4KIP5gUw@)T2k`sYmw~eXmPb=lP7sdtrKERdl;pHiWF^8t^TxEa!U5&Qu>)G1 za7ML*IJxb967Q`2)A-l**juBT%G^M-o%-)FYK;8h`Fs6fdV9Hst{<$R%9q!$GK)RR z;`N$QU*1qlt1L)26jO9x05QeOr4Nv!yg2qq2QR$Q?KBA#UR}jrf8O|a+Vji1_pdKc zx69bGO8I?bi_2}cI?CHfR7M_v;jbB0%*f@hyzi8(=89F7w9ETEB@(=tEqH^~4!!F7 zhWIj{ki_5EKYJYf1)r(Ar%)?H-(mR!Y7-N)mF_BQm04Pj%&u&xu3UoS`Q`cP@p@U# z^F++#kBt>RCx7O~S{`|Ny@iN<$~OOqNFm)y{7RzKEF%q%TIng&>9=+YI*=DIa2?=0 z6u7}%%x-@D(89=`$f5=BtW5jjQ!VY!R#4pssPYIIn+Hr_WVG_DmtNID{2y9Z+sH(g z4mEV9(lQ-6loxO?qUc$uWF~6&0WuQVMO{DLZ@JnWY7f0Xj91pb$75{$t0!#EzJc4< zP^tNQ?FLpYePd$>`dQcGE-PxARjS!gVHr^2O{Jx$As z{*io(W3KTRm*uf*h6^SfO*Z$hFabnJ>(mwmDc!a&2d#tlL3TSH@YI?^KGyk6kI+7j zU`N@RF>TNa$|e@Xg45SQMf#MdOd-E+bB6 zePGK>lz76o_@X^?TEWQ~m@)}M>uJ9XZMyFKfFD0TRZYEGnzwcG>P%q$Z9r+n+TWkngB#p`hKc`-GbE)L!%by`SdVw z3a*l_ecEOoeGRFTC1XM+O2}C}#}eRaMaP%yh$g0MlGE$yb=@SXC5E`*OE%}&K65^AJ8$bE zLlHBu!Ta)W56t{_2BRY)z5mD`jAjQT0w`JO>mZE)fhjWeb6NH?aa5G;6C-dE2KVRY8 z`ZID`Fs7na43O(Yp!>q*;^}1rJRZU-XGlzOmMC?G8%A;!F!jRizV7$Bb|?&=j%#VL$q7jN^I!b{+=O-qV~Gz3HMz^%@a` zNOZKtLrL`^p!IPa=cTf}tD7rQb2PjT@Whk;JVmd#&x4ph$jBsC&QB+d^;zL(GdHrU zZ#%m_mD|G>gYO6VZGamW{AlTm*A1ovvw+03-2SszOCvPmb9Xz_j(jts?YG9`F%l^Z zSAJ(ySdKLIEKusqrnH^gQ5$J1N16B@zKH zZc2T#OlxHEiln$T^pwm!G9h!N-b{(v)PHT8V)#{CD^U+#Q|VF%;gDJ zS}>4YCJ_EMY{%ll>fpq6QZl5@8y+EMG-C>3<=|7em8w!fJvlcYsi63?uDEGHsc$+H zq*mKP6v?^wW`DTO{(1fM`rKaH=H2`&TzXaYs$H=WWuBu~Bp%s8 z(gMcveL0WI+F9^`hSd4J1VpGOGIcmsq1NL76=T{X;ZBSwUUGb$V~i-#x8>WuZQHhO z+qP}nwr$(CZQHnQyZhbu&rD|KeVC-aR(9=Gr;^IqXRRNf{X(X&g~ku|ax0Fw*0Qc& zL#6FMHXFW%5D4L6x;lbI85&7@{=f+pR(g7+2N47`b*?d?hPqZ*a_CU^+8@`tQ3)}U z7(vkcs0A;BB08OIg?`nug7d?K#r70Er4k}jMWFN ziT!XPt@My4#YTRA^mPXcwi2s+xHNl>XDQycvZ2E-;0iC2&i5^ddbVKAHJVJT;JxSJ zqz!{+&%7=j8eI*BKI`Wdc?A?r9TN&3S~O=HKOe`*iN}YF6G%Oz(Tf}P9bO)=pq6`U zg2|f{x`Yy+M~J%@zcV&n-v*B=52rp*wvIR@hI?ge?y?nn!)7s4 z{68xePf9JKj+m+pq4LJ{D8jRKkH&!Y>@RX_C7q4u3q0Ght&fpL<5AK20c=Mv{h2W0 z3A^h1urKhl8i~&aRPs73^pX-EvJdj4zyDZaEl;j}ARJXh*k40Z3XFDdkKw7k_x0KP z#fTf1ZZCdpxClOdC%@1X4`z@VYFGrqJyah*!t8&#T(S(zJSA*7FtYH*zmU+bTdPo6 z+iq`Jss7Topzh5* zn}df!-HNOT%KS!<4xXcEf{Wt5d;WBJox7I0f_^P`oz#D#f5XGd+0kd6x1Mm<9@SXN zaBAz6W-LA%066f{f^~WAm_o8b+f?wk9r|Sv3u(-vu{t;$VeZ@B?Fi%(pm=nN(-E3w z$)JzWn8O(qu2_#lX|vT>Vu6cq`?(K$4juiz%MpD#89o2)S7<5u z_5M>j*8(v2y`7tP1zz!YKXz*Y>Lkny!LXrrF~Y9G@2R2hb=CIKf^+@O7iw*QC~H;I zQP#2FyljdalznKqYZna^qMa{n*lrC7@;;XTNq)bLX1Ync z-)9gO>*5q`T*zTQL?#fL$6)1Mk(3)mzF+Sc(l4z_Wb0o}k0hVn>!$xGZrB*p`AYkV z6VeIx2B>#;%CTzEkPif57ru+lOdBJf$LbJI?`Y|-q@-PWlxd$#=AP><2d}n&F}#^( z?o&N&!Lzuy;i+7h;7`amz|ytLngCbfZ&HS|T!Ge)T}Bd0`a zXMtTnE^$HK(`XvL93=*D+MES7=nGa>MX38SUOW4f54QznlR+(rTy8sRHw0Of-<@M# zbNaj0fU8kN5I~%F(fK+oVbiPlvUN;4$Kbyud_Loi?JPk&{-b!xRau@63~}ybt%FC-goN zY>Pox&tSKCP&CHWq;9t}`8)lOYQiIf#POsgH?jdHxZ+CW)=3^3VTDQpI7 z=b?YcQ?Wz+RO|#1>(b}kq74aKP&Jf zGm}U}*M=KF7^KObwax3%kua?~-*(SdaO(5z$1|@VWKTkS(Ss4WxA^)dG;uOi!zJdv zHG+onbseccM-z6rksk@!TQ=dH!TZH z#s~`*+Va*j{zZe%6CXqiDyvnOYEIQORBr?ES^SS_UUkq0c z;poCewuD%s=lrN^d74ZIvM4r_8;d4hvCqzjFmD6l`DlY}^(AL_mw=mpM(3UQJAm_X z<&6h#>`|HjZ5XHlBe7YVHfGMo60LDM*|8^n6497PSP+0DiYBxHYw?_?+ut^*_u=Il z4(@zds9Dmsm%W;_+!i~Od1`kVa1yZ$cXKdE80erq6Bv{t*LoW4e>kqsm=QxPgfu`Q z2*0H%eTUo=lk0LBv|o&&^qw+lAb@jr(gDo@E%gb8;VVsII#=?_M7WD><)ig20l)`A{9R#7h+vRq}} zlVk-gL-X$ZX_6|xOLP&nk=Kz{5{G&pbaU{0Ih~NUBcGq$r$B~>mP0pVaR+nv-EdLL z3Mw>baIZN4tR1)-gq*8%cwP#tQ@8-Tut4=MNvT$2O0D@gCpOhQk1|av+Utr1D%_gb zF&>vGK_4ma0!>aU9>=&+2^FWRMw8-yVe3dPc)-<;x*QPTPr43_7VbNmi;4KJtBTyn zF6?$jhq`1GlFuYKDJ*%iR!4<^V8iXYIEyf!0qVUF~`o z1_+pHe@1%HDh&yE@=@EzHjQ3?kPqt0An+ZHQ#F`?g7SdzK5gyr|1Mkv!)xq8-LxSn zfAk!enHsv_Ft6#pV4Q^jq1Vl&L^}%$P~Dh%i^I{-NVvwH<@05I>qq8%?|7nI1megM zJRKlRKg{4%KM4#)eF9K^ABC{jNOlvMm4$R2`sQ*D?O4b$dy-+Ff8Ggok#wG;?b24SrNx>(J(!900-08=5xOk2e!UgN=qBZb|411P`aZMv{QY>;8o^Rc+jt;+``3T zNvM9{w`R1}%mIFGnPpRXaQtPyuS%vDs0A+;-WN|mT%hi6bJ4Rid0BffOp&1ExMDW`4n~Kt>z!Q9#cUfuL{;|Mrg_)D+N#8*`}(mi|GvC} z&`1Fay73$k4622uq4LF<%3n%?Q`u-2O6-qTXdLHKD8rZsP4W>zrAs*zLC3khWxcyK zCPqPL-Ll|*nHBipKP!!Hxw68n$3#Iu<4QJR_U1lF`Fo7bXPw*e^g3c(_GmH<`!x*+ zQV7=c+@2Tg*S9ngf=Eqbn4S4`iRx8aoANAJnyaxNNKjZ1Fjak3rjV2zBH9fD45G=P zi+##(SGV42^|7x8{V6en6d)NAdXGCw63Tc})oO1J6Z27^nd1OxX4@aPwtty!@I4_% zuDUx%>-+}d$FC|Ghxra%MAfLY*BoITE1{`K#b#J(N%*dw$ z<0!6X=DgM1F}-5T>xh3Y4h*K5IA)0NHj7-5!&pMhfR8LH18x|cwaEqmos^BtPaBpO zZgj?1JclbpuRcCJrk+WO{t5gcY_i6bluG3k@(k?*%WF;^9M;qV!yqHLv1r3-RuDuh zcw?ya%)xXd*n0(6)%;87Et)U4DhO|IXqw#^po%IPBhN=$~6oGD!L-p#J840=!wMnG>U zsLXW3Wvfz>O~llu7y75HEL!oi0gHimY%$>e+J-2gj2$QM zspubX5KDY5*J!0m7Q+n@2FKdc1o~Sp7-%fKgu082TNw61IN{T~FUCIfL~@bb7IpZu zV)FF~0I`sJ;#}$kageY!WXh|Is)k=SDTs>f&p?N=VP?~GG9x4|RSVm!eZK+eR|{-e z@`rZHigW;ppWPh5CY>vy#TErr@;~eH&lEe#4%K3WPt#A$ce_snn`1VeA+zY&L_(ZG z7X5|=?8wB6gA9h%J3Dh?AQrWe0XD-U+b*zya48`{Yjy!zJQTgBsDD3f(rR2wi)2uW z0WPSBlXO#k3bp;4v3x58SkTARimDKO5G0p>UxtrXE`UaugZ?66umIzDup+#0k%4-z z8)_UpL4l`jQ@0(}(w&$|9h($3v^%1>)tYKnEIcv6Mt=JFl~7NDhFNP;odApLNP{i& z5PGbsYg)fdN5);RS59Yu9e0|ZE?b!45l;-|u#VaH+@-)rD)-U-jnv=5EzGnm_EIOA z+*-9-k1$c4V!Me9vo~woAs)V4U`RDj!+ArH5wg)H=}s*h{OP(QuJ-9?G0}3O0VeZ5 z%|xTYBV+lmcFYXQ@SHqnp!VPaGluvE%LR{<;-dN@DcPo5SLuI@27Aa zF1I&pOTj843IOhQgN&Q>F61V~c(KxQSqMG!kn9YRm8m8nXGk~MqA;@btA6eDu_w1Z z=5CN9++{CTnipg7={%*{hjDLSIASNK!w4oD|P3agSnDi!R(tS{ZlrMZ)kl2o^RvQw@{T!rH* zlgYz(3GHFc+83mQ;(vu#w^J1+M4yby{gsa?-}w8g z3uT1X@te`&6$=qjjSk&Cj+f9&z|eG{^wg#5*1z*w+v9QFQ|r-8dc=UCDcNuDp|*yA z%IQn_7?7Si#9ze&d`N)Bh;(_@>uGJ6Gv~H@eq|f2S`%YZxl1?BcfHo*Kw1AQaHHpA ziM>l*Iy&`e93MLpCl?eU+ly{S!8EE}_112ts%1y+XGgL$0*GFETpe7v%ephLtJIG- zmu7(LuBK@<=9WR<4RPq`K<6#H3q7dQiu$__qP;f zYgNgjb>v@=Y_eS1YV9>Fwb|?zZ=Ws0L(HfcIAz~C^~QnVxcD|POh07CnE73UQ-r&s zEuoPfy?lR)16-aV+#SIKE@AveG#vm9Qyoqvg`KZXP)2q+Spkjj#b6^|2Wo4LXv2aVr!5b zyL-n<^=+tTI95KV4)=x`aSZlbNoOxt^(pxVW+QRMD-ZSWq1xtUImBOLZ(<}}UBIRy zBZhMEv_n0hSUATLdnfZcopsgEW_rVgE`SzV0&*6MT9%2Ua;pMpT$TU>S_PfYI z2sQ~~w-FI843ZVUphO4yU~?DJRvgqPzz{3$@5JI0k@t+9FzrU?hrag;#iHR~o{tvU zEEfJ;rR^xhv!4~$lvWrwV|qtdM0gZ_HJghW)OE|NlH&W5DYG^>U<35tgmkPH{v^mI z+M|ld51xva)HUKfvw(6o9-PuF18Bo(6HAlXAN2e|a+#yNy#P?)H#%kGpykIVlsb`8*W!Fs(7P*<<_ClA{ zy(`Dq4R0LcebUhZZ{Dp~)5nd=K0OZX%rS>(Bma^(%;oy-(#q=Qa(X(k0=4sY$69G( ze8+HW&J-<~FM3~3-{`RRIu7yht&6`bO!GHUCWN_ITlw3aK7I{z$?F*DJFy9S<;gUV zm`gP)RcD6keXJikbJP#LK)FDdUPt_D=y+cM?tpiM@L0mP_XRd+RJ66Da{g%mbifhc zqe*y5uz6XQ(9K#C?>P$C4L@rf7dmgl!ZtcPay?GzXEyhD7IvU%sP1)VY47j8DLd(B zDA31jXE|-OYp}9LSt?tqK33N6h~tV=$c}vya~&hh`n4B-*%++kP_ykK zqmt0Lcj>0MEgcYWt?D@W1m@?dzzLQS&qB#xk&@)1KuNr+DxU(%slyp1Oy{{nk{!Rd zF`Fu;$e;~$H0chl>6SRO(%v(05}4RDl>wLQW*q0Er$zhFZNsMW5w}2odR-fOZp|dF z_)7!~BH3RndcJz~M7 z6@Wf1Ru>jZ>bh#cEWk*~!?Sfp(l3OW@`mhHG6CO@x8pEgTI888hxlCUNm)-Ytq(D6 zDp_*1FFa7WuETonehtqD0M_Um200#I>4#l7*`~A{Zc^|CGVY1R(?u1%ud>7b5phV= zi6*;Y6Q_OH_lW`1iGk1pc0dP2j)?TRn-oz&`)v)#^0=NBv#V4HsBc-Bwj3)o(bZtv zF-t|}#U)rz;PM|pHhY1XesCK$+)LD@$S*r*5m5vbJ#t_Qb-2|U#ff76hA&{xVqJsx6U53m<+2R^FSe2g0aSyXbp z9seX6JsEZ*9o<9T3*ynS0%To&-5ijHe0FY_Te*Grw5cf!SB%$TNV4{0D!T6IG&VeM zm)&Cs_O$fLzlX)tokER91F@QJ)##JQhUG}DC^BL_M8}wN`zisRx*CkST~&q_6KrNqu_u z%@WJOj=7ZmeU`4H zhyIX1=UK@e`y)ur?KfI_vzuVyZ|90|0~~$k6E^_p)oaduitTgGjE+#a`iJUb zc9)t>UWI4}a+B_-T2VedAq*dA^Ag@o(ldAbF8fIjZVoIh-Qn-8N_g=rhDX`jsYY0=*0pUs&dw1D<;n#+#d zYF_WW-aImfs287Jml2)|ApIwKpUC4fUar0^W@*slm9fEnM2vY}-m1XijmNY>Ixol&5G&)gAYduny$XcBeBZSIzGGTQJ4qHbRR z9YV>Ft1Z2mmvGG-N&j=1ilRRMLpn=R=&>YYf#Stk7o3k$L!TM&CjrPKLTK7^-Sfr( zV|}?D{tK&CWeeSCw|iAq1o7H4v{o{5rJYv34*qt_-cB}A?uA5nCyJ-MVW`ECH7Act|zoNm|HSAH6X0d zk_*CUK}}BX{YIYCQ{EzYi8hudjx@vgqy-;d87pJo9VTb@^wkVg~(s9P}`UaWk_dna5K5F#IXBUXy0rc^)&&V>)!h@&+!pc_K zUkKjvY{Xq2@>G_q@JgL+j2~#z_2+cp`FpB-$;`mLrE*?^>ROiK#dtXqD!POhJp_Ky zWra;$$Td+(pYHeOV^h0{y9SX)E+HVSh=5YC1D?Upvq#L`7YE#b@9g(`_tOc}c2DYt z@6Awd-m}ua@x%N8^nvCw%)3-f%EgXqPd<7AKk6WUWI66|YOFaqYEGlM#}eJ)F>~>b zGpgZ)ItlJ!{`-|ChVBc5?H9B_OH}7bhF&1?J^b3zYwm+h2xE>2APFP@ZL79RHZ>}i zOD&lK+J9o}(aT-cRHGf+6;T>rqWy=k`z5pqjn7w^8+UJ4gZk_ZAryKM#ZPAg&$P*|&oGCrV3vM?yxIh_GFCMLLs(oQfg3T?(bi7i( zjTJ562=f4ugd$v=vXHR(6Cde>`JpR!?_(!VHtgHADUs{_eyFP~?DLshV~4d1a3`21 z=+#_r@9)w?B7LBd$*5?oOo*~S5K6H;OO6SJm&@4t<8<}OU`3Hso{h+Cfgm&J{>*7*XkD&%-prs2_aEx_4em`m%ny@@R5&S z7v(jyO(I#Q<37dQ(p1y1Rm~)OiNc(=DFQ?MnZgY7q?MFB0KB9cz z-%rlk>TY@aKEE!Gn%d@eQOAaI1%qaW%GT1R5=$gtfUbNPJ1;oc9}qxrCl~oAl&#yQ zO#uh~rX=f^Zzk#5}vCuXITiEF*ThPfHV%;kWm!X?J}fG`wuJfSPX_JlTvZcZI} zA%9qgoqf6pR6$x92EB-89g&pkPV;4u`EIqrRc)Sdx@K2nat_)Tq({mZ7a~hdc%(M1 z{f^JKF|*ZdRM1*EWuc$1cQT+MFxkIknGVEb#x8GO=R{8UvebaquvvXl+G`VH+b04@ zBL+nE-vo*$7jl&wJ)eEYVn=A&i#;p&%zsSVI{lS^<3;ac3o^klv~2&5!(#5L7h-Xh zI^xz`o(U*MUiukK2`ey9G7@a1WDdlD^W6S~l?3t^$Cn?_nLlDy7DkthaU{>5?^iV| zDVR7qq zU9z(GY1gZPA?k%7)Sx||yNcGVa)c&DwSRA(YSETEVw{VWQZu_~hs z3U-OtVu4VRYf}yh1^W3(z+&Zv3N5GdDLzml>_BvEH;R}+1H`5ti<&+@IH#b|c8H;h z?n&LK^`vWDNd45iiE07Nu=^9a>Xp$xAd0$lqk70diO03jF;GH>R@3;?GY;tOD~LQi7SScf_; z)Cl@q_H+9iw=z=Au{Hm5=JYuNZijs{diCpPAOBs)6w}3*cVlov3xXx&vNRDdX4k|r zGkSkslXEz^b?Il1kNpJ*e)XGu1 zQZf>`BNAH&OhPsh@{Jno%xl0UrbGwqd1RR%KoDm&ECPD5H4Bh;1uSN5MRy=Ex|@_> z8>Yw+K}{k0KDG+|xZ;`#fblr@1H^5@SF4=St{Rb+ejx)j zmqy+Y^T7r)?3Vxzll9s#-TvV=Z1mu_`gaF-yl@MsgmI<;2>;qaz$Al&jZ3L&nViKk zMS1$DxPz;6K%zoAkWGIKDs7?k5R_J0bD2=js{8c*M zp{3W*9ylmX={RNxmI5k|oATRxEnrqR>;o+K$9nzV+9rBhCKqVIgC4jp{hQ8sRI)wP z*|K6ErrR*Y==Aot7o!0~Ehnv>(Dvo8ODaJz3Ys>vO9WNnay(oMI+L@PmE?56agVkS zz+Ui6F^wHDBnD)?#G3nO6Kle)dcFC{b&Qa_N*HX!=x+PQs!A^ z?UsXk*z1(6`$ZcB=XxklrmmyL04JcS{%Ew8(|T7$#(5%slPl|L_S7@wC9!coR5CdL zDZB#EbpBv_yB+ZL7)Wub9pRThb!R*l@>1ln(qL&9@i{sC+Se<(=!k zOJarJ;oj6xq;p3DbO)Q(3N1NomNz}z3a_;AG5TPR2y*>bstSa+61vooCTQno@fPxp zw=gj*#9=UbGPGyv^ms-cTMbBu(a`KOeD+hMU|-%*!&kL=a~+oJ(r9wibO^Nw#W%ID z%s-RWzTz^hoP`#OVbOHQD^4;9Kmvb$U|0Fr#fl1DEGRAw^0-O!wt^s&=Ght!DO8uB zoUO50iZb#!o&3nqpSU%HSdeO!og001dps~^NC1+6e9$(kTgc#wo(GW~3I#xk{3pWZ z;PM_g(p$poIlR>7?F{Dy0Yg7FBw1uk*Ia8GzbfGVpHkrY-ZOP92lnqxkR_(dk-AA0 zrz=XIvKO6K^~ekTOgqexLTz0{UjiDMF=f-E-3t%?7s7yrTd?I+b-I;L`qJdtxHQV35m_C z{5e4`JmP6K=;i__l(WpOjEP#^oq#tV9@kDV9P8^K(!0r(d8z(VUY^h-J?sM_D<50Z zLC&-QCPgP*u6u+8cKmRpLV4PA4Z{&5#HUfow5+e8o^sMO@d(v%!^%iVZ{sYZJiP&C z^cJnRHOWVln}&}rxL2I}=pzbZ-1ef|47yV*vE>lCb3@%R7I?;x>)Lfy7-P^8lDuBi zWNL2JgAIW*`Gb58WzKU<%(f#r2-$7gP5sWlUcuRk4}CJWjmGptD^-Ko_b@OiVe8*X z)1|cAFz<#XL>tHYa&YzDxGV8LA7|`HCnZUJld5I_Y2XDxcYto3V%#&tpXJD}?ARwF zv`scBb=3SE?efVcGin`Qzs`_*)Th6>XI4knGvK>b8Krk@gP`VLmvVGUHh4r+WaMhU z@x5xH`KuG!S@L7MZV*jn&9p9ml)pB)&xf3xGkj{RR1%pcj-*fPa@jgRvU}RQfzz~w zSDs(Yo$i8EI3q#s(tz(XGQa_!&wdR(jGXh^;}Wv=#*cZd(L)_qC+5j=wb47Y-OUF3 z)lXJ=Lr<*0^u9kAq33e(Zu@CwX_<^>DHYy|wNkF7z4Q=4(L)*e#T%UvAMn~~=Z_id zb7F{>H@2ty82#+e%YN>Nia;QMjTHZ9pWTH{zlk1OE|57S58m$WzFl4QZBwKE|$rV*Ssg`%Y#q$YTu{Iz{ zwp>@0EvVN12(|HcbLWC@9dG?}j2gd!K}ak_Rq`#!fQHazKq9KNx`GyUS$a_CT-(w6dyi`PCQd{FG{%NuD4< z(%pR0D^lUGjJZBz_nOd7_Xm&Pc&b+{@v?KEixoX7Y}RN>&hWG|3h?oU^Q^rbTZu_~ zv0{0}+uKQ#P%}|bnHb2}cI5bWB-&yFKCJN3_=s=EQYVnHH?&1G)9K`@1076HetD@3 zJjwm^bP zmIHrfA;c^tQb#sscb8??_jWb(y61Uxf|j9`{AwgA;#i#xkeF4$8`LksE9`d#6xTUoIe@!DI^xm*^J@&?gQ@363QggQ5mB|G z;x;>=NVyJ`D4)XIdpv~gCBi`UhD>pjyku~ktTrGzLGo<~Z{ZBDx9a?fd_;JsQMx++5G<*9;IU>7Y-W%;(MOCW|yUCDW*G$L+~r#a3O!qXpuUJ6z3&IeOp_%|qb zsN|lJ=^7A~%=Z-0Pv&K~r-oq7k=o4}VUZJTgBlA(QZM)O44GeEJF!Gg7a!sZ3ZBU! zgT8$H?bP&EdwFOQ{4JgymdLb~d|HzW!$&SRjb@{WqREvF*6Zx$MoC=6Dm_JsL`s3z z)Zx@p8Vw-GCWXMBJ1^@KrjIjnjT@e4?W7g7oG8^Dk1(m*m@eG+OJd!u=*pJfXk(D)q>*b&AmVUVB z)|jqs91K|$EA0O{nc;&#&tW@KOYnQ21bZxS+ZzYWPvnYD?&x1UGX_*VO#qY)#|1hI zT!k!x-aj;(=6>8YRABRKrCF%;xz5Ii%zOmL38v-6Q$jO5Y3S^cP|9sY%IE+~sOKwsz07O`U>*1`6{gwZ5lT=W;SH^PX zVIt@o)LTDKo>7rnTtqqXxLYc6pzYwf;kCfguP)xzSi#sH^-?D*)Lz~QH$P}ygr;I1 zRsC`Eekr@^c&qfIClltnku_!0vD`c>`m@lZD@Uzxe%?_6F-T9$+$ri~nqkLXhOezI_HQeuc(DUYF*4bhzp!%sB#MdZj zPx4tI@=5+0fs|}2*S0krNaj?}L!B zs1R?(f{YoTeIIx)Ug@p%Ct2=S8*sgg*Pl3Q%Uu4tY0tOW?q=T3Eu~7hhQ)C- zv4fC`T7~PWacbc&AvgixY(_WHXUAod7w+E-Y)0L>QVdZ4T?CG)8-bZ(4OHi+8CE`oKt#gSu;rqco zIFoc@JO!PWzU!gtBFtGNIMU&FHy}Hl9a|$f>>we#ZK|jwCMXG;aMlv_Q^ZNr|7YS0d`TVKM)KTu)wD0sE>u7rPpF z_9l&SDn}}B(<<&a)P>#Es7~WI%ljd_(*k~4B#C_e+Z1t~J4Gl7!bFXXFfb~8jbKPW zs0xTf6Dyn$I9V8kL==;V6a*=|p`o!lHX3h#Iz9<~(!;bRjr6A^2=IklTu9>A{je8H z6umr8*Yoda8mK4w9YlaooD`$;@IZfqtXYmdIeoKGygd6^@Dc2$dC;@wk^p$b_sfP2 z6W||C^?6Pa5F`k`?+Cu0vVDseZO<~TvDToi^zGdXjFwK92%iF;^2?I=b)uQLnf{TE=~yFjsH;GRa=Dm zhj+K{E=L1-{eJy3t-j#9H7}atlgf8=HFLHT1k2}9o-LKilWAi9aS^cKR2YcL-RKMc z#P(}AVmJ*utX4Ivs#tpF1d8pWn2?CWA%RH*vwjKxwZ_`ROtl?5fKz_r?1=f!)Hl{0=Go)@A)xV0)Ke62SBhAeP-L3GWD zUWa{SCn{wUGxvvYDHsp@saFm?biVbtEa^N#XOT{#QH4f-5BQS#tj%{wN-m<#bdqaM zeDun!!l(UG*ZhDAo2|b5;zXSrrdT2o56S>oQhMuBl@B7JjG{VSgeph2!pm1Dn{S6l zDjxnkNg;Ul{t18Fu&fu7Lb+LFWZ7Um#WN~XQ<&CKxOA3O;p_Uh_pk0L|63<9n0+4rXWes&=EP?o%P`~5Y0I>_uK<+bD!vFB#3D%i4L zmw5NngNN`RuHK_$-PJ4oc9qn^^WVD}-9sShTX}D?8!ojkgPZSoWG@pub}Gxp?x!2r8H?>%rkT*@w9jLE<0Ul^ZT?^kUF%EsOe zO(orv5U^nLn)>bYJSjg18al&K!{}S~G;d{u*T4$=xzMbUocP2we!v*-3=5MR- z96Hm5z21qzRzHq?P86ZcJ|LRe%}2O~F_O>24KEu3kpZ6h9pWtk7riIrQ24^mOzA7D zc!vw-5Yx7#vSsm#XEY*iCl!E0uD<17(vO(NpYcjP9oSR6s-=Lt4>%{~P^k+}Egx+>6S3ytH zoXQitX+Mydy(TB|m{2O7d;i~J%L*nh28d%-l^B2P@?z1E-9 zcIH`|T|~PnRIch!iehf3Lg7#35;7ssoO8*eW%%#E9Nk{o=rNejL0bcK=(FO-&rDL5 zI#XEE%+X3F&Yf|HJ;PXluA0_7+T*8tE_7}b9=DdsU5R zA(`I3_nXjYRT*qr2#Lj)@aO|122`WOu6c#!&fs0~5r~MgIWQEN#uxrybS3X7Z*C_P zncmcwli6G%$)IR1w3gIfq{7xJTlnx9BrumoV&6$Mi$F%j{0lW0oFT z0ECoRUZtJ6?a@eeOQNONYfr|w%{Rs?RB@$GKbfAUkvuwpZ!ZG0@He?6o~;4Xk?ABd zb6-9soc}Byv+rWGgwG^NO)$k>stWtH;g(5VE>LP$hd>n|QlW-({yYz5aZc(;lUJV7 zLnD0apjaXl>oglX)(&(O973k3nxQw*xMa`Tv|J14Oz>#huLze=-YCzyMvUoJhqr5p z(&BERqVGN=`)hf>PCcdsZj-@|QF;7z@Y(j!`gTBXIG@&Tv78EN{_C^f>BdOq@XOpl z%M>-GWbUEO!Is{a5;EA&-5inbBUK{0)U)t+Hkez;0MZVI`i7Uccsc(IZn0Jr#8w}p z#2`rW1sBOkzxs$v@f<%m58~TlZxBgA3XYqJU8$$$brI1mGPhmP_P1644VymE6r+dz zhxLXXc-y|zb?=_Y;XVwHP#GTvdQ8P`R{hS&*l=6MP6q?{$ajAlIBc;T^>+c&Wo!37 z{kkVvXR)Bd|Ir+G{bA-66Wt*i5lMBuB}�q*u!)UyWCY7~7cId1HB*fWcBVcyP>#y|Vh6UP)oBBxuhT_`5#jW?_1EE z!am+V+!0w}ni);6ci9Z_tdBD_9yW<@`=P>4WAZCt_Q>*QI*Twdxq2zmYY*3(Jy>xx zK6ufA(y!i$sUN@vKMH?udWN5oNSq;n|K+wM05m?ol&b{Z5k|lH$6)tJzpM_#C;aXj1tM;gIaB#I z_uB}>FUR=u4wdPHj?ec@plR1!AB1_m2(sWuEgj7B>+>K&Cm&kCJ}?EMZXJJIKC@ly z`|CkA3Y-PWPA^$LM2oi^+P+8-B5;pkIR10?-C*|SrcNEUsx(6_t#1>FudS00t-I$Y z1pppYos=UT{QQ#${777%dB)+-r0Z^3nB@T?Ss49aGOJ8m0~<)~aHI+rQ0KW&R;Nvy zFdg22isZ=ZVkohv6Z2WRvr)=GrD;cHWPZY3z&c5Zm=8_qsm$9@AxK^tZ)RM*aVAI_ zceE>qjk{>B&_6(7)lO{ZO7pVU3}mkgXrt@Md=ODUDEE#!{Wfv%%E6tjUvCm@?l%EC z(*HP!L!YuA?8+Zvku)HSOIQT=yot&`c(~0jt%A+ZnkJ)P}kjF1l4|Ob$shnj2_9 z3D>iF$!Dr3ddNJxWW=aQXv|{6gvbZ0fR5B?G%jwaCB%;TbXM3(%D5IKoZ2_Rqaa^Q zE@4g4Iw2}!Ae9^HgVBVO@$9^&|Nb*7P6QlkBmrfm2D>Z$BaNj~(I{(V0sk@Ul2m^W zupflANNYKm)jKw!3!|e+R#XZw;}+eEo5#veTKiaaRK(mwOs#pobDvD+0z-Beo(HXnty7A}}wa^34{fmC(mqGl-^-_*W0F!u#!5=fC= zeI*l8vBLubh~{J59c1`Efs%y%JW@x3@dqj^2jV&sU|o=jg~66t=;as>I-L{`Aye70L>q9|NH0@(FNrlVne^5#t4ha2)S;diFmu>ga+q|hRe#ETg{;;iz-3zREZR7h$ywQO8g z&Yx;tt3OKruJ4tQIXSpU-Rv$=y5+j8j!bRoOK&(T#mtyzZWy*~D3!RTXJ{?+*!V&H zBL(t&Uy%?4KmZBl)3XCb2pZM5`&#ql@)IXeC}ZXf7&mZeCH0o#GuJv51K;tMr+WO zN|sAj>&?cPQ#gnLh{yvFi3OOcjK*_7#%k8Cp$kW^Zr)P548f8G3~AJ?p_6+A00kH_ z5Wxg>!juUV$rR0^m5V>3N&o%yII?M2AffyQ_8^EMqxuf+KncR7@)piuNh7Vg3BC+@ zya|)XP$iNz4!RW_UFo&-3n?@`-T%3lMe4oC>0jsSni^XG{`mADP(eiTseGZBD%mS3PqW)G#u531g@fQ8RiC>)Aw}<9pEmM<5*4)?P1nPY`oDVb0MZ((j9N)u z^7_CBNxF1zcV0Y``S;2YuKeh_fQ>kGY(sJ`Rf7W zVZ{Um=veir)h_=G?JO=eJw{0}r4EG=Y0k@qc)DNl<6yM2L0sER<6;L07ci(}^WuGe z$C^J6qkX4%uy(%#RdVv(CXORh#?0zBu4B{2(ZNR!dnBqZiP;PMpXHFFqrJ1u!~K|B z_F{QzL!Vig{vW}H%x*75%hYw<=cy0-BCAp;;_0tWXXh@oNz4(~t+Bcux!HCfkX`4}F&4H~pg z-eyn!hvpYT!H_1};w3RIzDWZ5_4_%6v5zgud7G*l79ltvo0J+i;Ob{N>}Sg!$+h@0 z*;^{XwH;TUYTN(S)^!Fo!EEh>CMuyyRl0;CRd|8WL@X2y5;}xlLzi9@2%$)m-aAMM zLLvgvI|3SN=v9=^q)G4PY$%q_Y-zf=9Z~tEYQo{<6VLx618KP+6|Vn_)_*diUa3^m zp;|`X|9Xr6^-m9IzWpmI4?s+J`|b@!s$8UouJ(KU(h>SU&ev{)DL&6xJ2lT*ww^mA zG&xf<5rwvcjOoXSW`s)vi5RC)X!|iUj?KoA=3|M*x;?K z0mVObAdXUS;lWCPkh)M8>aN$QLPXe-&*LPkvOMF49bdy5f?ojjbJqkLU-QWx<_rnK zYR=pyRVGAAY#4k`mQKastK;wnYE={jsJi2xG)#hoL6v)WyZ_3}F*PzVo}Zl1uh5si zw`MB-AQ|l8?>8XJ)=amhH)7%Ml2;+Vb+!XNt@b(M!Lb6hPq)NkZq$zc&;u`C# zWZpl8A{4gY+y!B2Ud$C;tK4~-<)eDgG$uYwQ@5D41b#Ou!lvRCJdq{LBt$~(WidZL z5pj?KR<(blKIed_9J^Gm;J~J@t^)R(P9Af&bS&{lvi^!3X#qUkYuYD;wZ;Y9esE=y%ark=`c1)eEjn z|BNdR_-mNhD?MIiKSAb7K_#Lyqohp3JC=rVo{gWbjM`fvD~dBkCA*7>M*4Ox;%RWSqL4s z{41{o0llN+jr&Nn;1OSb6Ev$*7h{|*6O^))@%Ug>x0_XG-0!9naV)ueVW!=urL4V} zEb3aNhV*QX@T^|OBA+jDngT`7S*5du9(>V$|HdbrpHV>mF12}#hq(NgZYIm<&*O#; zPKPlakZ@7uhTG(vA=FCRjkSZxIH6~J9?Hi?9JfZa$n#$~^E)u|x(<&dcHFUy7UK-j zP`WmyRpKj3(oo~)ti5A_3ms;#z>yX=Y5z9ia5gT|{Z;UyIyB8KzpjRXW?5xI@nyZn zw9T!=UX$gN!m zdgMi=dM(HlukS2Z?}z`ItkW?*`<&onn`MJnz;MyhbXiXcJ?B0k63Rx0v%i!6@EU5SJzX*Yc7U}BYFJAHiI`1WvQ{6W8n4LQlgO##v( zn`rEK;Jb}^*1qoIcj_bg#lL zQv(6S@kA5=z|&K-9SN)UYf<|Fd!Y4fJ+p`gBOR`eTc6PQ7SYw%@UiOgnw|AXJO5g_ zX+wN5sByn?@f};Wedv4Qb+b%C=Rec+4X^H5nY60OdC$qwhgu&ke7;&)3G&CR6AvaR zTkgpUiAX5flX;?tC~JB4$Vk0Xlh%6*aOG7ilxm%huIt47nOB>eUlqGik`a|SceknSD5q`JSr3+-jmmSEm@ zD;+usW=A)AOrEp~o26Gg(O~C~)X8RJq2Gjr-uS`KP!%JRBGZ~$fgh@}C#bTDz%Yvm z-w#9$Nt#Vd?1}_M@(e7JeaA&5q~cNF+Emc>*K`g^Vd`vKo{Q7DQL~zlgAuCJnhD0}%X{7`vYY;ZC=ar^K&XYHjZqR{FesE!z03jzLL*>nWA71LVreSiuk*+@tvkjo zH50R1ABP4voVdIJ$&I+Ju&Qsqa&dR|O;v=qQ{G5Bt{mQy)kBgkH2kQiMA1vb6I_m# zTj#M6E1?YU+1-OX<~4ulx~)N*T=ow9oW=`@YK0Qyi$cX5qVsFzWCpa;*QP@}YM+&- zn)D(FJM|(b{u6p?cP!%lbkeA@$p1Q(FnO>Sr%n?~8yMyGIHd>UFk{yKJC2TK9aOlO zl*e`b;Nhk|H8JLIYeN<+E$(O3oT`D(TH2mqrTHF^QvKDbYP(EVP$9=5(Q}q!XPrHy zp<)_21=?4Ujp;2dopq*rnhAt8oTqHccbYPAu{!Qe1|ND0hrJ+f+)yv67S|mpHCBJ7 zrYroO@wdEp&BH8|PK)M`oSSYgzGQ2A<@a1^d)R~I&~BficNgV0_D$&K*Upr(?NIZx zvu?vti@Pb0oFU&zxdJ?_js^$$C*Z5nw*}rp9O?an2Xm|Bn}hqZDqXd1T8NmI3q6vW?dvC@;aOqhoorHer`&x~gRdy=9}+8!g?#!~yNH-Az) zg{_z|7Z{q=jU@p&P!`hfIQWJ85i`uk`c!#00?ct-yO{{m@e6*!n=%^Ca^B-HkzL1d zuE4G+S8zEn%$+=8VYrXbqOt-Uru04joltSR+$w86^uU(+sJcn&H8o1ih~)tvIQDKJ zm|?9Fzp8xzv?3T~;13<*OqcH$E(Si#l9>WI1>NOC#z1;QSjX+SMu9{yCP_gYgT9U^ z;zoZFQ%X_@sm(W{x;iRqJH%@aSAEtcOQTO}{ue+AQqjL%b_f1c;84*KL=JJb)hnSIcZC@>z-{m}E z<{u1ci1t6k=>0?kC4=W25OAxW8_6vc{$ON;C53*oR}Sak?MZreMo$}nNcj2deZc14 zM=$cUXp(p}AD*G^K7q%)i^Gb*Un2V(CB4sXJqNO(Aw?uRWqxvy|G!?R0bIsD{nti+^DS0<}pF(~8_?{Z{7oFlWt8HbAMB?RA@XcuV6^A z0taExl|*5u)MhMlf(J^gd|RZ3LnNyTy~y0xqf|fne4zYp=r~y9Wk&@Qjmjt#N&jnJ zXN^R(lU{q65x*tPOpRt67^UuEi7r*Eu9ThkYSjB$Qh% z@iY5ZKSPp_gi{95pjFriHRY)j`)N|siL>tC+GMB==$aO__GeacrBrX0BJm-=U3a< zJi7`y^IBE270bnA3;>4F7Ry@Vla5R(9 X!6WdgxKc=S?i^2`1{X`5pXdJoZdm2v diff --git a/src/haz3lweb/www/img/noun-brochure-16464.svg b/src/haz3lweb/www/img/noun-brochure-16464.svg new file mode 100644 index 0000000000..332d222366 --- /dev/null +++ b/src/haz3lweb/www/img/noun-brochure-16464.svg @@ -0,0 +1,4 @@ + + + + diff --git a/src/haz3lweb/www/img/noun-brochure-26888.svg b/src/haz3lweb/www/img/noun-brochure-26888.svg new file mode 100644 index 0000000000..974a5990a8 --- /dev/null +++ b/src/haz3lweb/www/img/noun-brochure-26888.svg @@ -0,0 +1,4 @@ + + + + diff --git a/src/haz3lweb/www/img/noun-fold-1593402.svg b/src/haz3lweb/www/img/noun-fold-1593402.svg new file mode 100644 index 0000000000..6cd4c9d9ba --- /dev/null +++ b/src/haz3lweb/www/img/noun-fold-1593402.svg @@ -0,0 +1,15 @@ + + + + + + + + + + + + + + + diff --git a/src/haz3lweb/www/img/noun-fold-1593409.svg b/src/haz3lweb/www/img/noun-fold-1593409.svg new file mode 100644 index 0000000000..db6149dfff --- /dev/null +++ b/src/haz3lweb/www/img/noun-fold-1593409.svg @@ -0,0 +1,15 @@ + + + + + + + + + + + + + + + diff --git a/src/haz3lweb/www/img/noun-map-24173.svg b/src/haz3lweb/www/img/noun-map-24173.svg new file mode 100644 index 0000000000..bcfaa12eea --- /dev/null +++ b/src/haz3lweb/www/img/noun-map-24173.svg @@ -0,0 +1,4 @@ + + + + diff --git a/src/haz3lweb/www/img/noun-map-6188938.svg b/src/haz3lweb/www/img/noun-map-6188938.svg new file mode 100644 index 0000000000..cc83ede9c4 --- /dev/null +++ b/src/haz3lweb/www/img/noun-map-6188938.svg @@ -0,0 +1,4 @@ + + + + diff --git a/src/haz3lweb/www/img/noun-pa-5383544.svg b/src/haz3lweb/www/img/noun-pa-5383544.svg new file mode 100644 index 0000000000..7333419486 --- /dev/null +++ b/src/haz3lweb/www/img/noun-pa-5383544.svg @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/src/haz3lweb/www/index.html b/src/haz3lweb/www/index.html index cd9cc8aa2a..47cbc90039 100644 --- a/src/haz3lweb/www/index.html +++ b/src/haz3lweb/www/index.html @@ -9,6 +9,22 @@ hazel + + + + + + + @@ -22,6 +38,7 @@ + diff --git a/src/haz3lweb/www/ninja_module.js b/src/haz3lweb/www/ninja_module.js new file mode 100644 index 0000000000..05698342a5 --- /dev/null +++ b/src/haz3lweb/www/ninja_module.js @@ -0,0 +1,25 @@ +import {NinjaKeys} from 'https://unpkg.com/ninja-keys?module'; +import hotkeys from "https://unpkg.com/hotkeys-js@3.8.7?module" + + +// This is the default behavior for the hotkeys module but I'm overriding it for the clipboard-shim +hotkeys.filter = event => { + const target = event.target || event.srcElement; + const { tagName, id } = target; + + // Override happening here + if(id == "clipboard-shim") { + return true; + } + + let flag = true; + const isInput = tagName === 'INPUT' && !['checkbox', 'radio', 'range', 'button', 'file', 'reset', 'submit', 'color'].includes(target.type); + // ignore: isContentEditable === 'true', and