-
Notifications
You must be signed in to change notification settings - Fork 1
/
Prelude.agda
95 lines (74 loc) · 2.71 KB
/
Prelude.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
module Prelude where
open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax)
-- empty type
data ⊥ : Set where
-- from false, derive whatever
abort : ∀ {C : Set} → ⊥ → C
abort ()
-- unit
data ⊤ : Set where
<> : ⊤
-- sums
data _+_ (A B : Set) : Set where
Inl : A → A + B
Inr : B → A + B
-- pairs
infixr 1 _,_
record Σ {l1 l2 : Level} (A : Set l1) (B : A → Set l2) : Set (lmax l1 l2) where
constructor _,_
field
π1 : A
π2 : B π1
open Σ public
-- Sigma types, or dependent pairs, with nice notation.
syntax Σ A (\ x -> B) = Σ[ x ∈ A ] B
_×_ : {l1 : Level} {l2 : Level} → (Set l1) → (Set l2) → Set (lmax l1 l2)
A × B = Σ A λ _ → B
infixr 1 _×_
-- equality
data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where
refl : M == M
infixr 9 _==_
{-# BUILTIN EQUALITY _==_ #-}
-- transitivity of equality
_·_ : {l : Level} {α : Set l} {x y z : α} → x == y → y == z → x == z
refl · refl = refl
-- symmetry of equality
! : {l : Level} {α : Set l} {x y : α} → x == y → y == x
! refl = refl
-- ap, in the sense of HoTT, that all functions respect equality in their
-- arguments. named in a slightly non-standard way to avoid naming
-- clashes with hazelnut constructors.
ap1 : {l1 l2 : Level} {α : Set l1} {β : Set l2} {x y : α} (F : α → β)
→ x == y → F x == F y
ap1 F refl = refl
-- transport, in the sense of HoTT, that fibrations respect equality
tr : {l1 l2 : Level} {α : Set l1} {x y : α}
(B : α → Set l2)
→ x == y
→ B x
→ B y
tr B refl x₁ = x₁
-- options
data Maybe (A : Set) : Set where
Some : A → Maybe A
None : Maybe A
-- the some constructor is injective. perhaps unsurprisingly.
someinj : {A : Set} {x y : A} → Some x == Some y → x == y
someinj refl = refl
-- some isn't none.
somenotnone : {A : Set} {x : A} → Some x == None → ⊥
somenotnone ()
-- function extensionality, used to reason about contexts as finite
-- functions.
postulate
funext : {A : Set} {B : A → Set} {f g : (x : A) → (B x)} →
((x : A) → f x == g x) → f == g
-- non-equality is commutative
flip : {A : Set} {x y : A} → (x == y → ⊥) → (y == x → ⊥)
flip neq eq = neq (! eq)
-- two types are said to be equivalent, or isomorphic, if there is a pair
-- of functions between them where both round-trips are stable up to ==
_≃_ : Set → Set → Set
_≃_ A B = Σ[ f ∈ (A → B) ] Σ[ g ∈ (B → A) ]
(((a : A) → g (f a) == a) × (((b : B) → f (g b) == b)))