-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsaliancy_map.py
80 lines (70 loc) · 3.29 KB
/
saliancy_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import pandas as pd
import sys, os
from random import shuffle
import torch
import torch.nn as nn
from models.gat import GATNet
from models.gat_gcn import GAT_GCN
from models.gcn import GCNNet
from models.ginconv import GINConvNet
from utils import *
import pickle
from flashtorch.utils import apply_transforms, load_image
from flashtorch.saliency import Backprop
import argparse
def calculate_value_individual_drug(modeling, num_mut, cuda_name, processed_data_file, model_file):
dataset = "GDSC"
with open ('mut_dict', 'rb') as fp:
mut_dict = pickle.load(fp)
mut_arr = np.asarray([k for k, v in mut_dict.items()])
if (not os.path.isfile(processed_data_file)):
print('please run create_data.py to prepare data in pytorch format!')
else:
test_data = TestbedDataset(root='data', dataset=dataset+'_bortezomib')
test_loader = DataLoader(test_data)
model_st = modeling.__name__
print('\npredicting for ', dataset, ' using ', model_st)
device = torch.device(cuda_name if torch.cuda.is_available() else "cpu")
model = modeling().to(device)
lstY = []
lstM = []
lstV = []
if os.path.isfile(model_file):
model.load_state_dict(torch.load(model_file))
model.eval()
for data in test_loader:
data = data.to(device)
output, _ = model(data)
data.target.retain_grad()
output.backward()
lstY.append(data.y.cpu().numpy()[0])
grad = data.target.grad
values, indexes = grad.topk(num_mut)
lstV.append(values)
lstM.append(mut_arr[np.squeeze(np.asarray(indexes.cpu().numpy()))])
else:
print('model is not available!')
listCell = []
with open ('cell_blind_sal', 'rb') as fp:
listCell = pickle.load(fp)
lstTopY = [lstY[k] for k in np.asarray(lstY).argsort()[:num_mut]]
lstTopM = [lstM[k] for k in np.asarray(lstY).argsort()[:num_mut]]
lstV = [lstV[k] for k in np.asarray(lstY).argsort()[:num_mut]]
listCell = [listCell[k] for k in np.asarray(lstY).argsort()[:num_mut]]
print(lstTopM)
print(lstV)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='calculate saliency value')
parser.add_argument('--model', type=int, required=False, default=0, help='0: GINConvNet, 1: GATNet, 2: GAT_GCN, 3: GCNNet')
parser.add_argument('--num_feature', type=int, required=False, default=10, help='Number of important mutation')
parser.add_argument('--processed_data_file', type=str, required=False, default="data/processed/GDSC_bortezomib.pt", help='Path to processed file')
parser.add_argument('--model_file', type=str, required=False, default="model_GINConvNet_GDSC.model", help='Path to model file')
parser.add_argument('--cuda_name', type=str, required=False, default="cuda:0", help='Cuda')
args = parser.parse_args()
modeling = [GINConvNet, GATNet, GAT_GCN, GCNNet][args.model]
num_mut = args.num_feature
cuda_name = args.cuda_name
processed_data_file = args.processed_data_file
model_file = args.model_file
calculate_value_individual_drug(modeling, num_mut, cuda_name, processed_data_file, model_file)