-
Notifications
You must be signed in to change notification settings - Fork 8
/
topk16_D3_rounds5_score.txt
9928 lines (9928 loc) · 781 KB
/
topk16_D3_rounds5_score.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2020-05-27 10:44:32 | INFO | fairseq_cli.generate | Namespace(D=3, all_gather_list_size=16384, beam=5, bpe=None, checkpoint_suffix='', cpu=False, criterion='cross_entropy', cscore=-9, data='../fairseq_vanilla/data-bin/wmt17_en_de_joint', dataset_impl=None, decoding_format=None, distributed_backend='NCCL', distributed_master_addr='127.0.0.1', distributed_master_port='29500', diverse_beam_groups=-1, diverse_beam_strength=0.5, diversity_rate=-1.0, empty_cache_freq=0, eval_bleu=False, eval_bleu_args=None, eval_bleu_detok='space', eval_bleu_detok_args=None, eval_bleu_print_samples=False, eval_bleu_remove_bpe=None, eval_tokenized_bleu=False, force_anneal=None, fp16=False, fp16_init_scale=128, fp16_no_flatten_grads=False, fp16_scale_tolerance=0.0, fp16_scale_window=None, gen_subset='test', iter_decode_eos_penalty=0.0, iter_decode_force_max_iter=False, iter_decode_max_iter=10, iter_decode_with_beam=1, iter_decode_with_external_reranker=False, left_pad_source='True', left_pad_target='False', lenpen=0, load_alignments=False, log_format=None, log_interval=100, lr_scheduler='fixed', lr_shrink=0.1, match_source_len=False, max_len_a=0.9799950605387177, max_len_b=1.2678756896665853, max_sentences=1, max_size=0, max_source_positions=1024, max_target_positions=1024, max_tokens=None, memory_efficient_fp16=False, min_len=1, min_loss_scale=0.0001, model_overrides='{}', model_parallel_size=1, momentum=0.99, nbest=1, ngpus=1, no_beamable_mm=False, no_early_stop=False, no_progress_bar=False, no_repeat_ngram_size=0, nominlen=0, num_shards=1, num_workers=1, optimizer='nag', path='/n/rush_lab/users/y/checkpoints/barrier/en-de-retrain/checkpoint62.pt', prefix_size=0, print_alignment=False, print_step=False, quiet=False, remove_bpe='@@ ', replace_unk=None, required_batch_size_multiple=8, results_path=None, retain_iter_history=False, rounds=5, sacrebleu=False, sampling=False, sampling_topk=-1, sampling_topp=-1.0, score_reference=False, seed=1, shard_id=0, skip_invalid_size_inputs_valid_test=False, source_lang=None, target_lang=None, task='translation', temperature=1.0, tensorboard_logdir='', threshold_loss_scale=None, timesx=1, tokenizer=None, topk=16, truncate_source=False, unkpen=0, unnormalized=False, upsample_primary=1, usemarginals=0, usenew=0, user_dir=None, warmup_updates=0, weight_decay=0.0)
2020-05-27 10:44:32 | INFO | fairseq.tasks.translation | [en] dictionary: 43640 types
2020-05-27 10:44:32 | INFO | fairseq.tasks.translation | [de] dictionary: 43640 types
2020-05-27 10:44:32 | INFO | fairseq.data.data_utils | loaded 3003 examples from: ../fairseq_vanilla/data-bin/wmt17_en_de_joint/test.en-de.en
2020-05-27 10:44:32 | INFO | fairseq.data.data_utils | loaded 3003 examples from: ../fairseq_vanilla/data-bin/wmt17_en_de_joint/test.en-de.de
2020-05-27 10:44:32 | INFO | fairseq.tasks.translation | ../fairseq_vanilla/data-bin/wmt17_en_de_joint test en-de 3003 examples
2020-05-27 10:44:32 | INFO | fairseq_cli.generate | loading model(s) from /n/rush_lab/users/y/checkpoints/barrier/en-de-retrain/checkpoint62.pt
length 8
2020-05-27 10:44:43 | WARNING | autotvm | Cannot find config for target=cuda, workload=('hmm_runner_max', 'float32', 16). A fallback configuration is used, which may bring great performance regression.
count order 1 tensor([19858096.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([89.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([16.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([16.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.384185791015625e-07, 'forward_decoder_time': 0.06731843948364258, 'reorder_time': 0.0019631385803222656, 'masking_time': 0.010023355484008789, 'marginal_time': 0.273740291595459})
S-203 July .
T-203 Wiederkehr feiern .
H-203 -0.5163194537162781 Juli .
D-203 -0.5163194537162781 Juli .
P-203 -0.5163
length 9
count order 1 tensor([2.7801e+08], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([299.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([106.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([19.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 4.76837158203125e-07, 'forward_decoder_time': 0.13175439834594727, 'reorder_time': 0.00324249267578125, 'masking_time': 0.021638870239257812, 'marginal_time': 0.2942824363708496})
S-177 Built by experts
T-177 Von Experten konstruiert
H-177 -5.052599906921387 Erbaut von Experten
D-177 -5.052599906921387 Erbaut von Experten
P-177 -5.0526
length 9
count order 1 tensor([2.7801e+08], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([56.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([22.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([16.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 7.152557373046875e-07, 'forward_decoder_time': 0.2073955535888672, 'reorder_time': 0.004914045333862305, 'masking_time': 0.03453683853149414, 'marginal_time': 0.31677961349487305})
S-1155 Killing .
T-1155 Das Töten .
H-1155 -3.4569804668426514 Killing .
D-1155 -3.4569804668426514 Killing .
P-1155 -3.4570
length 10
count order 1 tensor([4.4482e+09], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([235.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([30.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([21.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 9.5367431640625e-07, 'forward_decoder_time': 0.2742626667022705, 'reorder_time': 0.006188631057739258, 'masking_time': 0.04748964309692383, 'marginal_time': 0.3382143974304199})
S-767 Espresso fan
T-767 Expressofan
H-767 -1.1409659385681152 Espresso @-@ Fan
D-767 -1.1409659385681152 Espresso @-@ Fan
P-767 -1.1410
length 10
count order 1 tensor([4.4482e+09], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([186.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([63.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([18.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.1920928955078125e-06, 'forward_decoder_time': 0.33765625953674316, 'reorder_time': 0.007456064224243164, 'masking_time': 0.06063580513000488, 'marginal_time': 0.35941433906555176})
S-251 Distant worlds .
T-251 Ferne Welten .
H-251 -2.877568244934082 Distantische Welten .
D-251 -2.877568244934082 Distantische Welten .
P-251 -2.8776
length 10
count order 1 tensor([4.4482e+09], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([311.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([46.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([19.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.6689300537109375e-06, 'forward_decoder_time': 0.4011104106903076, 'reorder_time': 0.008730888366699219, 'masking_time': 0.07380533218383789, 'marginal_time': 0.378587007522583})
S-2670 Television with standards ?
T-2670 Fernsehen mit Niveau ?
H-2670 -1.5707615613937378 Fernsehen mit Standards ?
D-2670 -1.5707615613937378 Fernsehen mit Standards ?
P-2670 -1.5708
length 10
count order 1 tensor([4.4482e+09], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([382.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([60.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([22.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.9073486328125e-06, 'forward_decoder_time': 0.464432954788208, 'reorder_time': 0.009978055953979492, 'masking_time': 0.08682394027709961, 'marginal_time': 0.3996152877807617})
S-1157 A fantastic writer .
T-1157 Ein fantastischer Schriftsteller .
H-1157 -2.7554068565368652 Ein fantastischer Schriftsteller .
D-1157 -2.7554068565368652 Ein fantastischer Schriftsteller .
P-1157 -2.7554
length 10
count order 1 tensor([4.4482e+09], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([227.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([108.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([39.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.1457672119140625e-06, 'forward_decoder_time': 0.5296452045440674, 'reorder_time': 0.011266708374023438, 'masking_time': 0.09986495971679688, 'marginal_time': 0.4217956066131592})
S-455 Airport building evacuated
T-455 Flughafen @-@ Gebäude evakuiert
H-455 -4.287121772766113 Flughafengebäude evakuiert
D-455 -4.287121772766113 Flughafengebäude evakuiert
P-455 -4.2871
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1490.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([86.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([48.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.384185791015625e-06, 'forward_decoder_time': 0.5908975601196289, 'reorder_time': 0.012448787689208984, 'masking_time': 0.11357235908508301, 'marginal_time': 0.44326305389404297})
S-596 Children 's dreams come true
T-596 Kinderträume werden wahr
H-596 -5.496551513671875 Die Träume der Kinder werden wahr
D-596 -5.496551513671875 Die Träume der Kinder werden wahr
P-596 -5.4966
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([928.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([49.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([32.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.6226043701171875e-06, 'forward_decoder_time': 0.6486389636993408, 'reorder_time': 0.01357722282409668, 'masking_time': 0.12742829322814941, 'marginal_time': 0.4644753932952881})
S-1763 There are varying explanations .
T-1763 Es gibt dafür unterschiedliche Erklärungen .
H-1763 -1.9616670608520508 Es gibt unterschiedliche Erklärungen .
D-1763 -1.9616670608520508 Es gibt unterschiedliche Erklärungen .
P-1763 -1.9617
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([792.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([50.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([34.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.86102294921875e-06, 'forward_decoder_time': 0.7065534591674805, 'reorder_time': 0.014746665954589844, 'masking_time': 0.14139533042907715, 'marginal_time': 0.48396801948547363})
S-642 Both ideas were rejected .
T-642 Beides wurde wieder verworfen .
H-642 -2.218794822692871 Beide Ideen wurden abgelehnt .
D-642 -2.218794822692871 Beide Ideen wurden abgelehnt .
P-642 -2.2188
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([694.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([72.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([182.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 3.0994415283203125e-06, 'forward_decoder_time': 0.7637414932250977, 'reorder_time': 0.015882492065429688, 'masking_time': 0.15478730201721191, 'marginal_time': 0.504711389541626})
S-2279 Chips are available everywhere !
T-2279 Pommes gibt es überall !
H-2279 -2.445258855819702 Chips gibt es überall !
D-2279 -2.445258855819702 Chips gibt es überall !
P-2279 -2.4453
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([597.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([141.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([37.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 3.5762786865234375e-06, 'forward_decoder_time': 0.8209073543548584, 'reorder_time': 0.017024517059326172, 'masking_time': 0.1682891845703125, 'marginal_time': 0.5259854793548584})
S-1087 What about the first ?
T-1087 Wie sieht es mit der ersten aus ?
H-1087 -4.222278594970703 Was ist mit dem ersten ?
D-1087 -4.222278594970703 Was ist mit dem ersten ?
P-1087 -4.2223
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([434.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([90.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([26.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 3.814697265625e-06, 'forward_decoder_time': 0.8780040740966797, 'reorder_time': 0.01815509796142578, 'masking_time': 0.1820049285888672, 'marginal_time': 0.5461869239807129})
S-694 This scores maximum points .
T-694 Das wird mit den meisten Punkten bewertet .
H-694 -7.434237480163574 Das macht maximale Punkte .
D-694 -7.434237480163574 Das macht maximale Punkte .
P-694 -7.4342
length 11
count order 1 tensor([7.1171e+10], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1085.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([83.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([52.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 4.0531158447265625e-06, 'forward_decoder_time': 0.9351906776428223, 'reorder_time': 0.019280433654785156, 'masking_time': 0.1952228546142578, 'marginal_time': 0.5673923492431641})
S-668 The vehicles collided .
T-668 Die Fahrzauge kollidierten .
H-668 -7.021430969238281 Die Fahrzeuge sind kollidiert .
D-668 -7.021430969238281 Die Fahrzeuge sind kollidiert .
P-668 -7.0214
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1194.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([230.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([79.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 4.291534423828125e-06, 'forward_decoder_time': 0.9933681488037109, 'reorder_time': 0.020408153533935547, 'masking_time': 0.20932888984680176, 'marginal_time': 0.5895977020263672})
S-1439 To whom it may concern ,
T-1439 An die Zuständigen
H-1439 -12.679503440856934 Wen es sich betrifft ,
D-1439 -12.679503440856934 Wen es sich betrifft ,
P-1439 -12.6795
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([330.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([124.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([55.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 4.5299530029296875e-06, 'forward_decoder_time': 1.0510210990905762, 'reorder_time': 0.021522045135498047, 'masking_time': 0.22370100021362305, 'marginal_time': 0.6122398376464844})
S-1172 The system slips up .
T-1172 Das System dreht durch .
H-1172 -6.420205593109131 Das System rutscht .
D-1172 -6.420205593109131 Das System rutscht .
P-1172 -6.4202
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([562.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([62.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([31.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 4.76837158203125e-06, 'forward_decoder_time': 1.1086595058441162, 'reorder_time': 0.022660017013549805, 'masking_time': 0.23804831504821777, 'marginal_time': 0.6336877346038818})
S-1376 They then drove away .
T-1376 Anschließend fuhren sie davon .
H-1376 -5.5654616355896 Dann fuhren sie weg .
D-1376 -5.5654616355896 Dann fuhren sie weg .
P-1376 -5.5655
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([4370.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([220.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([79.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 5.0067901611328125e-06, 'forward_decoder_time': 1.1663360595703125, 'reorder_time': 0.02380514144897461, 'masking_time': 0.25238823890686035, 'marginal_time': 0.6571469306945801})
S-664 Car driver seriously injured in accident
T-664 Autofahrer bei Unfall schwer verletzt
H-664 -9.373685836791992 Autofahrer bei Unfall schwer verletzt
D-664 -9.373685836791992 Autofahrer bei Unfall schwer verletzt
P-664 -9.3737
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([305.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([54.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([83.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 5.4836273193359375e-06, 'forward_decoder_time': 1.2244343757629395, 'reorder_time': 0.024971485137939453, 'masking_time': 0.2667522430419922, 'marginal_time': 0.677851676940918})
S-1210 It has always taken place .
T-1210 Das war schon immer so .
H-1210 -4.676299095153809 Es hat immer stattgefunden .
D-1210 -4.676299095153809 Es hat immer stattgefunden .
P-1210 -4.6763
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1166.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([289.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([87.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 5.9604644775390625e-06, 'forward_decoder_time': 1.282097339630127, 'reorder_time': 0.026085376739501953, 'masking_time': 0.2811009883880615, 'marginal_time': 0.6995320320129395})
S-2554 Frankfurt parking fees to increase dramatically
T-2554 Frankfurter Parkgebühren sollen kräftig steigen
H-2554 -9.198634147644043 Frankfurt @-@ Parkgebühren zur dramatischen Erhöhung
D-2554 -9.198634147644043 Frankfurt @-@ Parkgebühren zur dramatischen Erhöhung
P-2554 -9.1986
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1606.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([211.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([63.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 6.198883056640625e-06, 'forward_decoder_time': 1.3396174907684326, 'reorder_time': 0.02719569206237793, 'masking_time': 0.2953929901123047, 'marginal_time': 0.7215015888214111})
S-1313 Children need stability and certainty .
T-1313 Kinder brauchen Stabilität und Sicherheit .
H-1313 -2.4740970134735107 Kinder brauchen Stabilität und Sicherheit .
D-1313 -2.4740970134735107 Kinder brauchen Stabilität und Sicherheit .
P-1313 -2.4741
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1426.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([205.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([48.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 6.4373016357421875e-06, 'forward_decoder_time': 1.3970437049865723, 'reorder_time': 0.02830338478088379, 'masking_time': 0.3094487190246582, 'marginal_time': 0.7435450553894043})
S-2278 Fast food is also permitted .
T-2278 Auch Fast Food ist erlaubt .
H-2278 -5.17214822769165 Schnelle Lebensmittel sind ebenfalls erlaubt .
D-2278 -5.17214822769165 Schnelle Lebensmittel sind ebenfalls erlaubt .
P-2278 -5.1721
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1769.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([250.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([18.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 6.67572021484375e-06, 'forward_decoder_time': 1.4543006420135498, 'reorder_time': 0.029427051544189453, 'masking_time': 0.3235023021697998, 'marginal_time': 0.765451192855835})
S-761 Not least through university customers .
T-761 Nicht zuletzt auch durch die Hochschule .
H-761 -3.9781196117401123 Nicht zuletzt durch Universitätskunden .
D-761 -3.9781196117401123 Nicht zuletzt durch Universitätskunden .
P-761 -3.9781
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([251.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([46.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([29.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 6.9141387939453125e-06, 'forward_decoder_time': 1.5116877555847168, 'reorder_time': 0.030543804168701172, 'masking_time': 0.33756089210510254, 'marginal_time': 0.7873804569244385})
S-1721 Where does this leave Scotland ?
T-1721 Wo bleibt Schottland bei all dem ?
H-1721 -4.791744709014893 Wo bleibt damit Schottland ?
D-1721 -4.791744709014893 Wo bleibt damit Schottland ?
P-1721 -4.7917
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([734.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([128.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([43.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 7.152557373046875e-06, 'forward_decoder_time': 1.5691039562225342, 'reorder_time': 0.031670570373535156, 'masking_time': 0.3516261577606201, 'marginal_time': 0.8097436428070068})
S-508 Revolutionary Sacred Music Factory
T-508 Revolutionäres Werk der Kirchenmusik
H-508 -4.125535011291504 Revolutionäre Heilige Musikfabrik
D-508 -4.125535011291504 Revolutionäre Heilige Musikfabrik
P-508 -4.1255
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2871.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([246.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([125.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 7.3909759521484375e-06, 'forward_decoder_time': 1.6264829635620117, 'reorder_time': 0.03279566764831543, 'masking_time': 0.3656895160675049, 'marginal_time': 0.831855297088623})
S-764 Speaking of café lovers ...
T-764 Apropos Café @-@ Liebhaber .
H-764 -11.71483039855957 Achen von Café @-@ Liebhaber ...
D-764 -11.71483039855957 Achen von Café @-@ Liebhaber ...
P-764 -11.7148
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1583.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([379.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([48.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 7.62939453125e-06, 'forward_decoder_time': 1.6838135719299316, 'reorder_time': 0.03390860557556152, 'masking_time': 0.3797638416290283, 'marginal_time': 0.8531951904296875})
S-1656 But she is fine now .
T-1656 Aber jetzt geht es ihr gut .
H-1656 -4.6112470626831055 Aber jetzt ist sie in Ordnung .
D-1656 -4.6112470626831055 Aber jetzt ist sie in Ordnung .
P-1656 -4.6112
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1586.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([370.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([173.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 7.867813110351562e-06, 'forward_decoder_time': 1.7422761917114258, 'reorder_time': 0.03504586219787598, 'masking_time': 0.39385414123535156, 'marginal_time': 0.8752448558807373})
S-141 Music makes for an entertaining afternoon
T-141 Mit Musik einen unterhaltsamen Nachmittag erlebt
H-141 -5.264802932739258 Musik sorgt für einen unterhaltsamen Nachmittag
D-141 -5.264802932739258 Musik sorgt für einen unterhaltsamen Nachmittag
P-141 -5.2648
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1614.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([70.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([32.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 8.106231689453125e-06, 'forward_decoder_time': 1.7997071743011475, 'reorder_time': 0.03616690635681152, 'masking_time': 0.407942533493042, 'marginal_time': 0.893928050994873})
S-1635 Land Rover rally series announced
T-1635 Land Rover Rally Series angekündigt
H-1635 -16.654577255249023 Eine Reihe an Land
D-1635 -16.654577255249023 Eine Reihe an Land
P-1635 -16.6546
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([669.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([62.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([166.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 8.344650268554688e-06, 'forward_decoder_time': 1.8570044040679932, 'reorder_time': 0.03728604316711426, 'masking_time': 0.42199134826660156, 'marginal_time': 0.9154915809631348})
S-2509 I do not know why .
T-2509 Ich wüsste nicht , wieso .
H-2509 -2.352031946182251 Ich weiß nicht warum .
D-2509 -2.352031946182251 Ich weiß nicht warum .
P-2509 -2.3520
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([5753.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([171.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([107.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 8.58306884765625e-06, 'forward_decoder_time': 1.9143085479736328, 'reorder_time': 0.03840899467468262, 'masking_time': 0.4360499382019043, 'marginal_time': 0.9377543926239014})
S-1156 A master of science fiction .
T-1156 Ein Meister der Science Fiction .
H-1156 -3.8545260429382324 Ein Meister der Science Fiction .
D-1156 -3.8545260429382324 Ein Meister der Science Fiction .
P-1156 -3.8545
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1713.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([197.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([57.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 8.821487426757812e-06, 'forward_decoder_time': 1.9715986251831055, 'reorder_time': 0.039541006088256836, 'masking_time': 0.4501047134399414, 'marginal_time': 0.9588892459869385})
S-559 Town Council delighted with solid budget
T-559 Gemeinderat freut sich über soliden Haushalt
H-559 -11.973983764648438 Der Stadtrat ist über einen soliden Haushalt
D-559 -11.973983764648438 Der Stadtrat ist über einen soliden Haushalt
P-559 -11.9740
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([431.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([186.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([37.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 9.059906005859375e-06, 'forward_decoder_time': 2.0289082527160645, 'reorder_time': 0.04067540168762207, 'masking_time': 0.4641416072845459, 'marginal_time': 0.9808626174926758})
S-2929 Obama 's Health Care Walk Back
T-2929 Obamas Rückzieher in der Gesundheitspolitik
H-2929 -6.176705837249756 Obamas Gesundheitsvorsorge kehrt zurück
D-2929 -6.176705837249756 Obamas Gesundheitsvorsorge kehrt zurück
P-2929 -6.1767
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2298.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([867.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([80.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 9.298324584960938e-06, 'forward_decoder_time': 2.0862181186676025, 'reorder_time': 0.0418248176574707, 'masking_time': 0.47820067405700684, 'marginal_time': 1.0019843578338623})
S-1547 It tastes pretty good though .
T-1547 Aber dafür schmeckt es lecker .
H-1547 -6.466624736785889 Es schmeckt jedoch recht gut .
D-1547 -6.466624736785889 Es schmeckt jedoch recht gut .
P-1547 -6.4666
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2256.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([371.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([181.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 9.5367431640625e-06, 'forward_decoder_time': 2.1434121131896973, 'reorder_time': 0.04295206069946289, 'masking_time': 0.49213099479675293, 'marginal_time': 1.0243701934814453})
S-1671 The firefighters were brilliant .
T-1671 Die Feuerwehrleute waren großartig .
H-1671 -3.9222500324249268 Die Feuerwehrleute waren brillant .
D-1671 -3.9222500324249268 Die Feuerwehrleute waren brillant .
P-1671 -3.9223
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1308.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([142.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([62.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 9.775161743164062e-06, 'forward_decoder_time': 2.2004544734954834, 'reorder_time': 0.044074296951293945, 'masking_time': 0.50592041015625, 'marginal_time': 1.0466785430908203})
S-1203 Everything but the IT industry .
T-1203 Alles , bis auf die IT @-@ Branche .
H-1203 -3.0191140174865723 Alles außer der IT @-@ Industrie .
D-1203 -3.0191140174865723 Alles außer der IT @-@ Industrie .
P-1203 -3.0191
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2226.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([208.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([100.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.0013580322265625e-05, 'forward_decoder_time': 2.2578108310699463, 'reorder_time': 0.04524397850036621, 'masking_time': 0.519737958908081, 'marginal_time': 1.0654938220977783})
S-1667 The firefighters were amazing .
T-1667 Die Feuerwehrleute haben Großartiges geleistet .
H-1667 -3.068171739578247 Die Feuerwehrleute waren erstaunlich .
D-1667 -3.068171739578247 Die Feuerwehrleute waren erstaunlich .
P-1667 -3.0682
length 12
count order 1 tensor([1.1387e+12], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([8765.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([425.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([109.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.0251998901367188e-05, 'forward_decoder_time': 2.314927339553833, 'reorder_time': 0.046370506286621094, 'masking_time': 0.5335428714752197, 'marginal_time': 1.0866105556488037})
S-2890 The accused initially remained silent .
T-2890 Die Angeklagten schwiegen zum Auftakt .
H-2890 -8.339418411254883 Der Angeklagte still .
D-2890 -8.339418411254883 Der Angeklagte still .
P-2890 -8.3394
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([396.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([79.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([40.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.049041748046875e-05, 'forward_decoder_time': 2.3730859756469727, 'reorder_time': 0.04748225212097168, 'masking_time': 0.5473141670227051, 'marginal_time': 1.1080658435821533})
S-1246 Dog @-@ lovers victorious
T-1246 Hundefreunde erfolgreich
H-1246 -11.658858299255371 Hundeliebende Sieger
D-1246 -11.658858299255371 Hundeliebende Sieger
P-1246 -11.6589
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([451.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([92.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([46.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.0728836059570312e-05, 'forward_decoder_time': 2.4306323528289795, 'reorder_time': 0.048606157302856445, 'masking_time': 0.5613365173339844, 'marginal_time': 1.1303069591522217})
S-771 Or perhaps more accurately , one .
T-771 Besser gesagt eins .
H-771 -7.750037670135498 Oder genauer gesagt , eine .
D-771 -7.750037670135498 Oder genauer gesagt , eine .
P-771 -7.7500
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([162.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([86.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([35.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.0967254638671875e-05, 'forward_decoder_time': 2.490417718887329, 'reorder_time': 0.0499415397644043, 'masking_time': 0.5753777027130127, 'marginal_time': 1.1527211666107178})
S-733 Sleepless in New York
T-733 Schlaflos in New York
H-733 -8.993014335632324 In New York schlaflos
D-733 -8.993014335632324 In New York schlaflos
P-733 -8.9930
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2443.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([127.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([621.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.1205673217773438e-05, 'forward_decoder_time': 2.547869920730591, 'reorder_time': 0.051048994064331055, 'masking_time': 0.589440107345581, 'marginal_time': 1.1753690242767334})
S-350 It will still give away water .
T-350 Wasser ist weiterhin kostenlos .
H-350 -8.54529094696045 Es wird noch Wasser geben .
D-350 -8.54529094696045 Es wird noch Wasser geben .
P-350 -8.5453
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1930.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([119.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([629.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.1444091796875e-05, 'forward_decoder_time': 2.605262517929077, 'reorder_time': 0.05218195915222168, 'masking_time': 0.6034531593322754, 'marginal_time': 1.197019338607788})
S-273 How does the solar system function ?
T-273 Wie funktioniert das Sonnensystem ?
H-273 -2.6373250484466553 Wie funktioniert das Solarsystem ?
D-273 -2.6373250484466553 Wie funktioniert das Solarsystem ?
P-273 -2.6373
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1695.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([196.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([103.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.1682510375976562e-05, 'forward_decoder_time': 2.6626245975494385, 'reorder_time': 0.05329775810241699, 'masking_time': 0.6174571514129639, 'marginal_time': 1.2196018695831299})
S-81 It was not something people wanted .
T-81 Die Leute wollten es nicht .
H-81 -8.15115737915039 Es war nichts , was die Menschen wollten .
D-81 -8.15115737915039 Es war nichts , was die Menschen wollten .
P-81 -8.1512
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([6320.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([226.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([109.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.1682510375976562e-05, 'forward_decoder_time': 2.7200310230255127, 'reorder_time': 0.054424285888671875, 'masking_time': 0.6314895153045654, 'marginal_time': 1.2420108318328857})
S-1135 Persons seriously injured following collision
T-1135 Schwerverletzte nach Zusammenstoß
H-1135 -7.397823810577393 Nach einer Kollision schwer verletzt
D-1135 -7.397823810577393 Nach einer Kollision schwer verletzt
P-1135 -7.3978
length 13
count order 1 tensor([1.7081e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([432.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([28.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([18.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.1920928955078125e-05, 'forward_decoder_time': 2.7853009700775146, 'reorder_time': 0.05592656135559082, 'masking_time': 0.6460902690887451, 'marginal_time': 1.2596726417541504})
S-2790 There are a lot of patients .
T-2790 Es gibt sehr viele Patienten .
H-2790 -2.6837961673736572 Es gibt viele Patienten .
D-2790 -2.6837961673736572 Es gibt viele Patienten .
P-2790 -2.6838
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1372.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([145.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([63.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.239776611328125e-05, 'forward_decoder_time': 2.8505215644836426, 'reorder_time': 0.057183027267456055, 'masking_time': 0.6606161594390869, 'marginal_time': 1.2778699398040771})
S-1384 Living with a future @-@ oriented perspective
T-1384 Wohnen mit Zukunftsperspektive
H-1384 -4.588857650756836 Leben mit einer zukunftsorientierten Perspektive
D-1384 -4.588857650756836 Leben mit einer zukunftsorientierten Perspektive
P-1384 -4.5889
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2287.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([335.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([383.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.2636184692382812e-05, 'forward_decoder_time': 2.9142227172851562, 'reorder_time': 0.05841422080993652, 'masking_time': 0.6750893592834473, 'marginal_time': 1.3007733821868896})
S-39 A black box in your car ?
T-39 Eine Blackbox im Auto ?
H-39 -4.814085960388184 Eine Blackbox in Ihrem Auto ?
D-39 -4.814085960388184 Eine Blackbox in Ihrem Auto ?
P-39 -4.8141
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([4586.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([455.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([118.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.2874603271484375e-05, 'forward_decoder_time': 2.9781205654144287, 'reorder_time': 0.059655189514160156, 'masking_time': 0.689568042755127, 'marginal_time': 1.323512315750122})
S-1010 Pimp must go to prison
T-1010 Zuhälter muss ins Gefängnis
H-1010 -6.8801493644714355 Pimp muss ins Gefängnis gehen
D-1010 -6.8801493644714355 Pimp muss ins Gefängnis gehen
P-1010 -6.8801
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([717.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([74.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([70.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.3113021850585938e-05, 'forward_decoder_time': 3.0420093536376953, 'reorder_time': 0.06087660789489746, 'masking_time': 0.7040436267852783, 'marginal_time': 1.3471121788024902})
S-1612 The entire ground floor suffered damage .
T-1612 Das gesamte Erdgeschoss wurde beschädigt .
H-1612 -8.727386474609375 Das gesamte Erdgeschoss wurde beschädigt .
D-1612 -8.727386474609375 Das gesamte Erdgeschoss wurde beschädigt .
P-1612 -8.7274
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([3961.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([305.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([201.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.33514404296875e-05, 'forward_decoder_time': 3.105757474899292, 'reorder_time': 0.0621342658996582, 'masking_time': 0.7184770107269287, 'marginal_time': 1.3701081275939941})
S-2416 And then I close the book .
T-2416 Und dann schließe ich das Buch .
H-2416 -1.9493408203125 Und dann schließe ich das Buch .
D-2416 -1.9493408203125 Und dann schließe ich das Buch .
P-2416 -1.9493
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2878.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([122.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([52.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.3589859008789062e-05, 'forward_decoder_time': 3.167235851287842, 'reorder_time': 0.0633096694946289, 'masking_time': 0.7326452732086182, 'marginal_time': 1.393028736114502})
S-911 Endurance pays dividends
T-911 Langer Atem macht sich bezahlt
H-911 -7.104607105255127 Ausdauer zahlt sich aus
D-911 -7.104607105255127 Ausdauer zahlt sich aus
P-911 -7.1046
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1118.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([124.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([26.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.3828277587890625e-05, 'forward_decoder_time': 3.2246620655059814, 'reorder_time': 0.064422607421875, 'masking_time': 0.746788501739502, 'marginal_time': 1.4155933856964111})
S-2879 Schulze has one more surprise .
T-2879 Eine Überraschung hat Schulze noch .
H-2879 -2.8174638748168945 Schulze hat eine weitere Überraschung .
D-2879 -2.8174638748168945 Schulze hat eine weitere Überraschung .
P-2879 -2.8175
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([11480.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([175.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([54.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.4066696166992188e-05, 'forward_decoder_time': 3.282541513442993, 'reorder_time': 0.06555485725402832, 'masking_time': 0.7608170509338379, 'marginal_time': 1.4364233016967773})
S-2838 And I think about my father .
T-2838 Und ich denke an meinen Vater .
H-2838 -1.7721999883651733 Und ich denke an meinen Vater .
D-2838 -1.7721999883651733 Und ich denke an meinen Vater .
P-2838 -1.7722
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1285.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([101.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([68.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.430511474609375e-05, 'forward_decoder_time': 3.340564727783203, 'reorder_time': 0.06668782234191895, 'masking_time': 0.7748317718505859, 'marginal_time': 1.4571559429168701})
S-1260 What was the cause of death ?
T-1260 Was war die Todesursache ?
H-1260 -4.188551902770996 Was war die Ursache des Todes ?
D-1260 -4.188551902770996 Was war die Ursache des Todes ?
P-1260 -4.1886
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2621.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([211.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([95.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.4543533325195312e-05, 'forward_decoder_time': 3.3980355262756348, 'reorder_time': 0.06781816482543945, 'masking_time': 0.7888374328613281, 'marginal_time': 1.4793548583984375})
S-996 Iran satisfied with the nuclear negotiations process
T-996 Iran zufrieden mit Prozess der Atomverhandlungen
H-996 -8.62089729309082 Iran mit dem nuklearen Verhandlungsprozess zufrieden .
D-996 -8.62089729309082 Iran mit dem nuklearen Verhandlungsprozess zufrieden .
P-996 -8.6209
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1323.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([153.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([75.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.4781951904296875e-05, 'forward_decoder_time': 3.455676317214966, 'reorder_time': 0.06893229484558105, 'masking_time': 0.8028440475463867, 'marginal_time': 1.5018386840820312})
S-604 What are the requirements for participation ?
T-604 Welche Voraussetzungen zur Teilnahme gibt es ?
H-604 -5.896101951599121 Was sind die Voraussetzungen für die Teilnahme ?
D-604 -5.896101951599121 Was sind die Voraussetzungen für die Teilnahme ?
P-604 -5.8961
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1385.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([235.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([105.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.5020370483398438e-05, 'forward_decoder_time': 3.5133352279663086, 'reorder_time': 0.07004666328430176, 'masking_time': 0.8168044090270996, 'marginal_time': 1.5240302085876465})
S-44 The tea party is aghast .
T-44 Die Tea Party ist entsetzt .
H-44 -11.286520957946777 Die Teeparty ist aghaben .
D-44 -11.286520957946777 Die Teeparty ist aghaben .
P-44 -11.2865
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2442.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([227.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([74.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.52587890625e-05, 'forward_decoder_time': 3.5708367824554443, 'reorder_time': 0.07117295265197754, 'masking_time': 0.830841064453125, 'marginal_time': 1.5449271202087402})
S-220 Council sets its sights on rail system
T-220 Rat nimmt Gleisanlagen ins Visier
H-220 -7.849420070648193 Der Rat zielt auf das Eisenbahnsystem
D-220 -7.849420070648193 Der Rat zielt auf das Eisenbahnsystem
P-220 -7.8494
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([3785.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([262.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([369.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.5497207641601562e-05, 'forward_decoder_time': 3.6282880306243896, 'reorder_time': 0.07230567932128906, 'masking_time': 0.8449845314025879, 'marginal_time': 1.567293405532837})
S-2185 They are a great team together .
T-2185 Zusammen sind sie ein tolles Team .
H-2185 -6.694442272186279 Sie sind ein großartiges Team .
D-2185 -6.694442272186279 Sie sind ein großartiges Team .
P-2185 -6.6944
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2494.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([446.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([83.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.5735626220703125e-05, 'forward_decoder_time': 3.6858792304992676, 'reorder_time': 0.07341885566711426, 'masking_time': 0.8590166568756104, 'marginal_time': 1.5878238677978516})
S-1507 Do the robots have other tasks ?
T-1507 Haben die Roboter noch eine weitere Aufgabe ?
H-1507 -3.350912570953369 Haben die Roboter andere Aufgaben ?
D-1507 -3.350912570953369 Haben die Roboter andere Aufgaben ?
P-1507 -3.3509
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([3984.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([393.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([87.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.5974044799804688e-05, 'forward_decoder_time': 3.7435734272003174, 'reorder_time': 0.07455205917358398, 'masking_time': 0.8730478286743164, 'marginal_time': 1.6098005771636963})
S-2842 Mastering the struggle to perfection .
T-2842 Exzellent den Kampf gemeistert
H-2842 -8.492969512939453 Förderung des Kampfes um Perfektion .
D-2842 -8.492969512939453 Förderung des Kampfes um Perfektion .
P-2842 -8.4930
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([4029.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([193.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([91.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.621246337890625e-05, 'forward_decoder_time': 3.801481246948242, 'reorder_time': 0.07571649551391602, 'masking_time': 0.8870871067047119, 'marginal_time': 1.6321470737457275})
S-363 Sayings come from the Bible
T-363 Sprichwörter kommen aus der Bibel
H-363 -4.406522750854492 Die Worte stammen aus der Bibel
D-363 -4.406522750854492 Die Worte stammen aus der Bibel
P-363 -4.4065
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1122.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([140.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([48.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.6450881958007812e-05, 'forward_decoder_time': 3.8590505123138428, 'reorder_time': 0.0768272876739502, 'masking_time': 0.9011099338531494, 'marginal_time': 1.654496669769287})
S-2857 Tourism : Descent to the Romans
T-2857 Tourismus : Abstieg zu den Römern
H-2857 -4.910690784454346 Tourismus : Abstieg zu den Römern
D-2857 -4.910690784454346 Tourismus : Abstieg zu den Römern
P-2857 -4.9107
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2272.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([55.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([28.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.6689300537109375e-05, 'forward_decoder_time': 3.9169702529907227, 'reorder_time': 0.0779576301574707, 'masking_time': 0.9151427745819092, 'marginal_time': 1.6772408485412598})
S-74 Nevada has already completed a pilot .
T-74 Nevada hat bereits ein Pilotprojekt abgeschlossen .
H-74 -7.237778186798096 Nevada hat bereits einen Pilot abgeschlossen .
D-74 -7.237778186798096 Nevada hat bereits einen Pilot abgeschlossen .
P-74 -7.2378
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([761.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([197.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([79.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.6927719116210938e-05, 'forward_decoder_time': 3.974475860595703, 'reorder_time': 0.07906460762023926, 'masking_time': 0.9291768074035645, 'marginal_time': 1.698932409286499})
S-2675 Nonetheless , it is worth watching .
T-2675 Aber das Zuschauen lohnt sich trotzdem .
H-2675 -6.7412285804748535 Dennoch lohnt es sich zu beobachten .
D-2675 -6.7412285804748535 Dennoch lohnt es sich zu beobachten .
P-2675 -6.7412
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([9026.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([298.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([135.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.7404556274414062e-05, 'forward_decoder_time': 4.0320045948028564, 'reorder_time': 0.08019137382507324, 'masking_time': 0.9431948661804199, 'marginal_time': 1.720585823059082})
S-2282 Restaurants are slowly adapting to things .
T-2282 Die Restaurants stellen sich so langsam darauf ein .
H-2282 -6.146756172180176 Die Restaurants passen sich langsam an die Dinge an .
D-2282 -6.146756172180176 Die Restaurants passen sich langsam an die Dinge an .
P-2282 -6.1468
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([4412.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([523.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([92.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.7642974853515625e-05, 'forward_decoder_time': 4.089605808258057, 'reorder_time': 0.081298828125, 'masking_time': 0.9572262763977051, 'marginal_time': 1.7427029609680176})
S-719 An overview of milk and egg alternatives
T-719 Milch- und Ei @-@ Alternativen im Überblick
H-719 -6.882665634155273 Überblick über Milch- und Eieralternativen
D-719 -6.882665634155273 Überblick über Milch- und Eieralternativen
P-719 -6.8827
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1353.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([253.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([92.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.7881393432617188e-05, 'forward_decoder_time': 4.147109031677246, 'reorder_time': 0.08240962028503418, 'masking_time': 0.9712448120117188, 'marginal_time': 1.764718770980835})
S-686 Highland Games in Kaltenhof
T-686 Highlander @-@ Games auf dem Kaltenhof
H-686 -4.273118019104004 Highland Games in Kaltenhof
D-686 -4.273118019104004 Highland Games in Kaltenhof
P-686 -4.2731
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([792.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([136.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([111.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.7881393432617188e-05, 'forward_decoder_time': 4.204679489135742, 'reorder_time': 0.08351564407348633, 'masking_time': 0.9852659702301025, 'marginal_time': 1.7867472171783447})
S-775 But it was not for everyone .
T-775 Aber eben nicht Jedermanns Sache .
H-775 -5.670689105987549 Aber es war nicht für alle .
D-775 -5.670689105987549 Aber es war nicht für alle .
P-775 -5.6707
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([23782.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([1559.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([129.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.811981201171875e-05, 'forward_decoder_time': 4.262220621109009, 'reorder_time': 0.08464598655700684, 'masking_time': 0.9993252754211426, 'marginal_time': 1.8091182708740234})
S-1230 This begins with the wedding clothing .
T-1230 Das beginnt etwa bei den Hochzeitskleidern .
H-1230 -5.743051052093506 Dies beginnt mit der Hochzeitskleidung .
D-1230 -5.743051052093506 Dies beginnt mit der Hochzeitskleidung .
P-1230 -5.7431
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2108.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([204.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([65.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.8358230590820312e-05, 'forward_decoder_time': 4.327946901321411, 'reorder_time': 0.08614087104797363, 'masking_time': 1.0140800476074219, 'marginal_time': 1.8265795707702637})
S-1633 Theology courses offer broad training .
T-1633 Das Theologiestudium biete eine breite Ausbildung .
H-1633 -8.676176071166992 Theologische Kurse bieten eine breite Ausbildung .
D-1633 -8.676176071166992 Theologische Kurse bieten eine breite Ausbildung .
P-1633 -8.6762
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([3063.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([497.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([146.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.8835067749023438e-05, 'forward_decoder_time': 4.3946144580841064, 'reorder_time': 0.0874948501586914, 'masking_time': 1.0286669731140137, 'marginal_time': 1.848661184310913})
S-1340 Surgery rendered him infertile .
T-1340 Durch die Operation ist er unfruchtbar geworden .
H-1340 -10.07128620147705 Die Operation hat ihn unfruchtbar .
D-1340 -10.07128620147705 Die Operation hat ihn unfruchtbar .
P-1340 -10.0713
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2205.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([289.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([128.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.9073486328125e-05, 'forward_decoder_time': 4.45829701423645, 'reorder_time': 0.0887596607208252, 'masking_time': 1.0431482791900635, 'marginal_time': 1.872507095336914})
S-949 Piercing beep disturbs residents
T-949 Schrilles Piepsen stört Anwohner
H-949 -23.24886131286621 Die Störung der BeMenschen
D-949 -23.24886131286621 Die Störung der BeMenschen
P-949 -23.2489
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([322.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([68.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([29.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.9311904907226562e-05, 'forward_decoder_time': 4.522156715393066, 'reorder_time': 0.09002876281738281, 'masking_time': 1.0576250553131104, 'marginal_time': 1.8960888385772705})
S-2204 I 've realised my wrongdoing .
T-2204 Mir ist klar geworden , dass ich falsch gehandelt habe .
H-2204 -10.298462867736816 Ich habe mein Unrecht erkannt .
D-2204 -10.298462867736816 Ich habe mein Unrecht erkannt .
P-2204 -10.2985
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([12152.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([772.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([147.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.9550323486328125e-05, 'forward_decoder_time': 4.58590841293335, 'reorder_time': 0.09127926826477051, 'masking_time': 1.0721118450164795, 'marginal_time': 1.920135498046875})
S-1295 Intersex children pose ethical dilemma .
T-1295 Intersexuelle Kinder stellen ein ethisches Dilemma dar .
H-1295 -6.471100330352783 Intersexuelle Kinder stellen ein ethisches Dilemma .
D-1295 -6.471100330352783 Intersexuelle Kinder stellen ein ethisches Dilemma .
P-1295 -6.4711
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([5961.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([542.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([145.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 1.9788742065429688e-05, 'forward_decoder_time': 4.649723529815674, 'reorder_time': 0.09253883361816406, 'masking_time': 1.0866217613220215, 'marginal_time': 1.9438202381134033})
S-2989 Australian woman appeals Thai jail time
T-2989 Australierin legt Berufung gegen Gefängnisstrafe in Thailand ein
H-2989 -8.828781127929688 Australische Frau fordert thailändische Gefängnis
D-2989 -8.828781127929688 Australische Frau fordert thailändische Gefängnis
P-2989 -8.8288
length 13
count order 1 tensor([1.8220e+13], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([3540.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([488.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([173.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.002716064453125e-05, 'forward_decoder_time': 4.713658332824707, 'reorder_time': 0.09379410743713379, 'masking_time': 1.1010992527008057, 'marginal_time': 1.9672760963439941})
S-2463 Public office is about public service .
T-2463 Bei einem öffentlichen Amt gehe es um den Dienst an der Öffentlichkeit .
H-2463 -8.448454856872559 Im öffentlichen Dienst geht es um öffentliche Dienstleistungen .
D-2463 -8.448454856872559 Im öffentlichen Dienst geht es um öffentliche Dienstleistungen .
P-2463 -8.4485
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([19610.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([978.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([268.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.0265579223632812e-05, 'forward_decoder_time': 4.773845911026001, 'reorder_time': 0.09495019912719727, 'masking_time': 1.115119457244873, 'marginal_time': 1.9902074337005615})
S-124 Networking between universities and companies is important
T-124 Vernetzung von Hochschulen und Firmen wichtig
H-124 -3.6360433101654053 Die Vernetzung von Universitäten und Unternehmen ist wichtig
D-124 -3.6360433101654053 Die Vernetzung von Universitäten und Unternehmen ist wichtig
P-124 -3.6360
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([27078.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([832.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([291.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.0503997802734375e-05, 'forward_decoder_time': 4.831809997558594, 'reorder_time': 0.09608197212219238, 'masking_time': 1.1293601989746094, 'marginal_time': 2.010756254196167})
S-2519 Supreme Court upholds Obama health care law
T-2519 Supreme Court bestätigt Obamas Gesundheitsgesetz
H-2519 -6.307928562164307 Der Oberste Gerichtshof hält das Gesundheitsgesetz Obama
D-2519 -6.307928562164307 Der Oberste Gerichtshof hält das Gesundheitsgesetz Obama
P-2519 -6.3079
length 14
count order 1 tensor([2.7330e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([9124.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([795.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([75.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.0742416381835938e-05, 'forward_decoder_time': 4.889792442321777, 'reorder_time': 0.09719991683959961, 'masking_time': 1.1435918807983398, 'marginal_time': 2.0298943519592285})
S-52 The technology is there to do it .
T-52 Die Technologie dafür ist da .
H-52 -3.7415401935577393 Die Technologie ist dazu da .
D-52 -3.7415401935577393 Die Technologie ist dazu da .
P-52 -3.7415
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([8586.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([765.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([506.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.09808349609375e-05, 'forward_decoder_time': 4.94722056388855, 'reorder_time': 0.09831047058105469, 'masking_time': 1.1577489376068115, 'marginal_time': 2.0524256229400635})
S-1344 We are afraid it will encourage intervention .
T-1344 Wir fürchten , das begünstigt Interventionen .
H-1344 -10.727449417114258 Wir befürchten , daß dadurch ein Eingreifen gefördert wird .
D-1344 -10.727449417114258 Wir befürchten , daß dadurch ein Eingreifen gefördert wird .
P-1344 -10.7274
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([13473.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([342.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([108.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.1219253540039062e-05, 'forward_decoder_time': 5.004902601242065, 'reorder_time': 0.09943985939025879, 'masking_time': 1.1718673706054688, 'marginal_time': 2.0742571353912354})
S-1999 It has not updated that figure since .
T-1999 Diese Zahl wurde bisher nicht aktualisiert .
H-1999 -7.560848236083984 Seitdem hat sie diese Zahl nicht mehr aktualisiert .
D-1999 -7.560848236083984 Seitdem hat sie diese Zahl nicht mehr aktualisiert .
P-1999 -7.5608
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2994.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([106.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([68.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.1457672119140625e-05, 'forward_decoder_time': 5.062514066696167, 'reorder_time': 0.10055685043334961, 'masking_time': 1.1860675811767578, 'marginal_time': 2.095832586288452})
S-2911 The throwaway society does not think
T-2911 Die Wegwerfgesellschaft denkt nicht
H-2911 -10.935691833496094 Die Wurfgesellschaft glaubt nicht , dass
D-2911 -10.935691833496094 Die Wurfgesellschaft glaubt nicht , dass
P-2911 -10.9357
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1538.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([224.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([96.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.1696090698242188e-05, 'forward_decoder_time': 5.120096921920776, 'reorder_time': 0.10167598724365234, 'masking_time': 1.2002170085906982, 'marginal_time': 2.118812322616577})
S-1245 Everything you need for an unforgettable celebration .
T-1245 Alles für ein unvergessliches Fest .
H-1245 -6.732359886169434 Alles was Sie für eine unvergessliche Feier benötigen .
D-1245 -6.732359886169434 Alles was Sie für eine unvergessliche Feier benötigen .
P-1245 -6.7324
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([1861.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([607.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([194.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.193450927734375e-05, 'forward_decoder_time': 5.177622318267822, 'reorder_time': 0.10278463363647461, 'masking_time': 1.2143759727478027, 'marginal_time': 2.1402595043182373})
S-1105 The opposition also remained adamant .
T-1105 Auch die Gegenseite blieb hart .
H-1105 -3.784745216369629 Auch die Opposition blieb hartnäckig .
D-1105 -3.784745216369629 Auch die Opposition blieb hartnäckig .
P-1105 -3.7847
length 14
count order 1 tensor([2.7330e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([3440.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([205.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([46.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.2172927856445312e-05, 'forward_decoder_time': 5.2350568771362305, 'reorder_time': 0.10390377044677734, 'masking_time': 1.228539228439331, 'marginal_time': 2.161923885345459})
S-1197 Business leaders are sceptical about this .
T-1197 Die Unternehmen sind diesbezüglich skeptisch .
H-1197 -7.925748825073242 Unternehmensführer sind diesbezüglich skeptisch .
D-1197 -7.925748825073242 Unternehmensführer sind diesbezüglich skeptisch .
P-1197 -7.9257
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2365.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([398.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([362.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.2649765014648438e-05, 'forward_decoder_time': 5.292812824249268, 'reorder_time': 0.10503196716308594, 'masking_time': 1.2426950931549072, 'marginal_time': 2.1834046840667725})
S-1056 On the happiness of dreaming camels
T-1056 Vom Glück der träumenden Kamele
H-1056 -8.254388809204102 Über das Glück der träumenden Kamele
D-1056 -8.254388809204102 Über das Glück der träumenden Kamele
P-1056 -8.2544
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 2 tensor([2086.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 3 tensor([301.], device='cuda:0', grad_fn=<SqueezeBackward1>)
count order 4 tensor([76.], device='cuda:0', grad_fn=<SqueezeBackward1>)
defaultdict(<class 'float'>, {'encoder_time': 2.288818359375e-05, 'forward_decoder_time': 5.350588798522949, 'reorder_time': 0.10617733001708984, 'masking_time': 1.2568378448486328, 'marginal_time': 2.2024030685424805})
S-2805 Their luck doesn 't always hold out .
T-2805 Nicht immer verläuft alles reibungslos .
H-2805 -6.084755897521973 Ihr Glück hält sich nicht immer aus .
D-2805 -6.084755897521973 Ihr Glück hält sich nicht immer aus .
P-2805 -6.0848
length 14
count order 1 tensor([2.9152e+14], device='cuda:0', grad_fn=<SqueezeBackward1>)