diff --git a/AnnotatedTransformer.ipynb b/AnnotatedTransformer.ipynb index 0f7da7d..8907584 100644 --- a/AnnotatedTransformer.ipynb +++ b/AnnotatedTransformer.ipynb @@ -1514,37 +1514,13 @@ "output_type": "stream", "text": [ "Example Untrained Model Prediction: tensor([[ 0, 10, 0, 10, 0, 0, 0, 0, 0, 10]])\n", - "Example Untrained Model Prediction: tensor([[ 0, 8, 1, 10, 0, 8, 1, 10, 0, 8]])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Example Untrained Model Prediction: tensor([[ 0, 8, 1, 10, 0, 8, 1, 10, 0, 8]])\n", "Example Untrained Model Prediction: tensor([[ 0, 9, 0, 10, 4, 5, 3, 2, 4, 3]])\n", - "Example Untrained Model Prediction: tensor([[0, 5, 5, 5, 5, 5, 5, 5, 5, 5]])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Example Untrained Model Prediction: tensor([[0, 5, 5, 5, 5, 5, 5, 5, 5, 5]])\n", "Example Untrained Model Prediction: tensor([[0, 2, 8, 3, 8, 5, 0, 4, 0, 4]])\n", - "Example Untrained Model Prediction: tensor([[ 0, 10, 3, 10, 2, 9, 0, 3, 10, 3]])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Example Untrained Model Prediction: tensor([[ 0, 10, 3, 10, 2, 9, 0, 3, 10, 3]])\n", "Example Untrained Model Prediction: tensor([[0, 3, 3, 3, 3, 3, 3, 3, 3, 3]])\n", - "Example Untrained Model Prediction: tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Example Untrained Model Prediction: tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])\n", "Example Untrained Model Prediction: tensor([[0, 3, 2, 2, 2, 4, 0, 3, 1, 3]])\n", "Example Untrained Model Prediction: tensor([[0, 6, 6, 6, 6, 6, 6, 6, 6, 6]])\n" ] @@ -2209,7 +2185,9 @@ " [0, 0.2, 0.7, 0.1, 0],\n", " ]\n", " )\n", - " crit(x=predict.log(), target=torch.LongTensor([2, 1, 0, 3, 3]))\n", + " crit(x=log_softmax(predict), target=torch.LongTensor([2, 1, 0, 3, 3]))\n", + " \n", + " \n", " LS_data = pd.concat(\n", " [\n", " pd.DataFrame(\n", @@ -2337,8 +2315,8 @@ "def loss(x, crit):\n", " d = x + 3 * 1\n", " predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d]])\n", - " return crit(predict.log(), torch.LongTensor([1])).data\n", - "\n", + " return crit( log_softmax(predict), torch.LongTensor([1])).data\n", + " \n", "\n", "def penalization_visualization():\n", " crit = LabelSmoothing(5, 0, 0.1)\n", @@ -3566,38 +3544,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Preparing Data ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading Trained Model ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Preparing Data ...\n", + "Loading Trained Model ...\n", "Checking Model Outputs:\n", "\n", "Example 0 ========\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "Source Text (Input) : Mehrere Kinder heben die Hände , während sie auf einem bunten Teppich in einem Klassenzimmer sitzen . \n", - "Target Text (Ground Truth) : Several children are raising their hands while sitting on a colorful rug in a classroom . \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Target Text (Ground Truth) : Several children are raising their hands while sitting on a colorful rug in a classroom . \n", "Model Output : A group of children are in their hands while sitting on a colorful carpet . \n" ] }, @@ -3716,38 +3670,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Preparing Data ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading Trained Model ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Preparing Data ...\n", + "Loading Trained Model ...\n", "Checking Model Outputs:\n", "\n", "Example 0 ========\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "Source Text (Input) : Drei Menschen wandern auf einem stark verschneiten Weg . \n", - "Target Text (Ground Truth) : A of people are hiking throughout a heavily snowed path . \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Target Text (Ground Truth) : A of people are hiking throughout a heavily snowed path . \n", "Model Output : Three people hiking on a busy . \n" ] }, @@ -3869,38 +3799,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Preparing Data ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading Trained Model ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Preparing Data ...\n", + "Loading Trained Model ...\n", "Checking Model Outputs:\n", "\n", "Example 0 ========\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "Source Text (Input) : Baby sieht sich die Blätter am Zweig eines Baumes an . \n", - "Target Text (Ground Truth) : Baby looking at the leaves on a branch of a tree . \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Target Text (Ground Truth) : Baby looking at the leaves on a branch of a tree . \n", "Model Output : A baby is looking at the leaves at a tree . \n" ] }, @@ -4035,7 +3941,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.9" } }, "nbformat": 4,