-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
122 lines (92 loc) · 4.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pyrootutils
root = str(pyrootutils.setup_root(
search_from=__file__,
indicator=[".git", "README.md"],
pythonpath=True,
dotenv=True))
# ------------------------------------------------------------------------------------ #
# `pyrootutils.setup_root(...)` is an optional line at the top of each entry file
# that helps to make the environment more robust and convenient
#
# the main advantages are:
# - allows you to keep all entry files in "src/" without installing project as a package
# - makes paths and scripts always work no matter where is your current work dir
# - automatically loads environment variables from ".env" file if exists
#
# how it works:
# - the line above recursively searches for either ".git" or "README.md" in present
# and parent dirs, to determine the project root dir
# - adds root dir to the PYTHONPATH (if `pythonpath=True`), so this file can be run from
# any place without installing project as a package
# - sets PROJECT_ROOT environment variable which is used in "configs/paths/default.yaml"
# to make all paths always relative to the project root
# - loads environment variables from ".env" file in root dir (if `dotenv=True`)
#
# you can remove `pyrootutils.setup_root(...)` if you:
# 1. either install project as a package or move each entry file to the project root dir
# 2. simply remove PROJECT_ROOT variable from paths in "configs/paths/default.yaml"
# 3. always run entry files from the project root dir
#
# https://github.com/ashleve/pyrootutils
# ------------------------------------------------------------------------------------ #
# Hack importing pandas here to bypass some conflicts with hydra
import pandas as pd
from typing import List, Tuple
import hydra
import torch
import torch_geometric
from omegaconf import OmegaConf, DictConfig
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.loggers import Logger
from src import utils
# Registering the "eval" resolver allows for advanced config
# interpolation with arithmetic operations:
# https://omegaconf.readthedocs.io/en/2.3_branch/how_to_guides.html
if not OmegaConf.has_resolver('eval'):
OmegaConf.register_new_resolver('eval', eval)
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def evaluate(cfg: DictConfig) -> Tuple[dict, dict]:
"""Evaluates given checkpoint on a datamodule testset.
This method is wrapped in optional @task_wrapper decorator which applies extra utilities
before and after the call.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
assert cfg.ckpt_path
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.datamodule)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating loggers...")
logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger)
if float('.'.join(torch.__version__.split('.')[:2])) >= 2.0:
torch.set_float32_matmul_precision(cfg.float32_matmul_precision)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
if cfg.get("compile"):
log.info("Compiling model!")
model = torch.compile(model, dynamic=True)
log.info("Starting testing!")
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
# for predictions use trainer.predict(...)
# predictions = trainer.predict(model=model, dataloaders=dataloaders, ckpt_path=cfg.ckpt_path)
metric_dict = trainer.callback_metrics
return metric_dict, object_dict
@hydra.main(version_base="1.2", config_path=root + "/configs", config_name="eval.yaml")
def main(cfg: DictConfig) -> None:
evaluate(cfg)
if __name__ == "__main__":
main()