-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
259 lines (190 loc) · 9.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import cv2
import time
import torch
import numpy as np
from torch.utils.data import DataLoader
from utils import *
from models.decoder import Decoder
from models.vgg_encoder import Encoder
from models.AdaAttN import AdaAttN, Transformer
from datasets import PhraseCutDataset
from losses import LossFunctions
torch.manual_seed(42)
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class TrainStyleTransfer():
""" Class to train the style transfer model
Args:
checkpoint_path (str): path to the checkpoint
log_path (str): path to the log
lr (float): learning rate
weight_decay (float): weight decay
msg (str): message to be logged
"""
def __init__(self, checkpoint_path, log_path, lr=0.001, weight_decay=0.0, msg="", lc=1.0, lg=1.0, ll=1.0):
self._logger = Logger(log_path)
self.lr = lr
self.lg = lg
self.ll = ll
self.lc = lc
self.msg = msg
self.weight_decay = weight_decay
self.checkpoint_path = checkpoint_path
self.ckpt_path = log_path + '/ckpt'
if not os.path.exists(self.ckpt_path):
os.makedirs(self.ckpt_path)
self.parameters = []
self.optimizer = None
self.encoder = Encoder(self.checkpoint_path).to(DEVICE)
self.ada_attn_3 = AdaAttN(in_planes=256, key_planes=256 + 128 + 64, max_sample=64 * 64, checkpoint_path=self.checkpoint_path).to(DEVICE)
self.transformer = Transformer(in_planes=512, key_planes=512 + 256 + 128 + 64, checkpoint_path=self.checkpoint_path).to(DEVICE)
self.decoder = Decoder(self.checkpoint_path).to(DEVICE)
self.loss = LossFunctions(lambda_content=self.lc, lambda_global=self.lg, lambda_local=self.ll)
self._build_models()
def _build_models(self):
""" Build the models and freeze the encoder """
# Freeze encoder
for p in self.encoder.parameters():
p.requires_grad = False
self.parameters.extend(list(self.ada_attn_3.parameters()))
self.parameters.extend(list(self.transformer.parameters()))
self.parameters.extend(list(self.decoder.parameters()))
def _train_epoch(self, content_images, style_images):
""" Train the model for one epoch.
Args:
content_images (torch.Tensor): content images
style_images (torch.Tensor): style images
Returns:
float: loss
"""
self.optimizer.zero_grad()
content_features = self.encoder(content_images)
style_features = self.encoder(style_images)
c_adain_feat_3 = self.ada_attn_3(content_features[2], style_features[2], get_key(content_features, 2), get_key(style_features, 2))
cs = self.transformer(content_features[3], style_features[3], content_features[4], style_features[4],
get_key(content_features, 3), get_key(style_features, 3),
get_key(content_features, 4), get_key(style_features, 4))
cs = self.decoder(cs, c_adain_feat_3)
enc_cs = self.encoder(cs)
content_loss = self.loss.content_loss(enc_cs, content_features)
style_loss = self.loss.style_loss(enc_cs, content_features, style_features)
loss = content_loss + style_loss
loss.backward()
self.optimizer.step()
return loss.item()
def _val_epoch(self, content_images, style_images):
""" Validate the model for one epoch.
Args:
content_images (torch.Tensor): content images
style_images (torch.Tensor): style images
Returns:
float: loss
"""
self.encoder.eval()
self.transformer.eval()
self.decoder.eval()
self.ada_attn_3.eval()
content_features = self.encoder(content_images)
style_features = self.encoder(style_images)
c_adain_feat_3 = self.ada_attn_3(content_features[2], style_features[2], get_key(content_features, 2), get_key(style_features, 2))
cs = self.transformer(content_features[3], style_features[3], content_features[4], style_features[4],
get_key(content_features, 3), get_key(style_features, 3),
get_key(content_features, 4), get_key(style_features, 4))
cs = self.decoder(cs, c_adain_feat_3)
enc_cs = self.encoder(cs)
content_loss = self.loss.content_loss(enc_cs, content_features)
style_loss = self.loss.style_loss(enc_cs, content_features, style_features)
loss = content_loss + style_loss
return loss.item()
def _infer(self, content_images=None, style_images=None):
""" Infer the model for one epoch.
Args:
content_images (torch.Tensor): content images
style_images (torch.Tensor): style images
Returns:
cs (torch.Tensor): stylized images
"""
self.encoder.eval()
self.transformer.eval()
self.decoder.eval()
self.ada_attn_3.eval()
if content_images == None:
_content_img = cv2.imread("data/content/c1.jpg")
_style_img = cv2.imread("data/style/vg_starry_night.jpg")
content_img = resize_img(_content_img, 512, keep_ratio=False)
style_img = resize_img(_style_img, 512, keep_ratio=False)
content_images = img_to_tensor(cv2.cvtColor(padding(content_img, 32), cv2.COLOR_BGR2RGB)).to(DEVICE)
style_images = img_to_tensor(cv2.cvtColor(padding(style_img, 32), cv2.COLOR_BGR2RGB)).to(DEVICE)
content_features = self.encoder(content_images)
style_features = self.encoder(style_images)
c_adain_feat_3 = self.ada_attn_3(content_features[2], style_features[2], get_key(content_features, 2), get_key(style_features, 2))
cs = self.transformer(content_features[3], style_features[3], content_features[4], style_features[4],
get_key(content_features, 3), get_key(style_features, 3),
get_key(content_features, 4), get_key(style_features, 4))
cs = self.decoder(cs, c_adain_feat_3)
cs = tensor_to_img(cs)
cs = cv2.cvtColor(cs, cv2.COLOR_RGB2BGR)
return cs
def train(self, dataset_path, num_epochs, batch_size):
""" Train the model.
Args:
dataset_path (str): path to the dataset
num_epochs (int): number of epochs
batch_size (int): batch size
"""
train_dataset = PhraseCutDataset(dataset_path+'/train')
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataset = PhraseCutDataset(dataset_path+'/val')
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
self.optimizer = torch.optim.Adam(self.parameters, lr=self.lr, weight_decay=self.weight_decay)
_train_batches = len(train_dataloader)
_val_batches = len(val_dataloader)
max_loss = 1e9
self._logger.log(tag='args', lr=self.lr, weight_decay=self.weight_decay,
dataset_path=dataset_path, checkpoint_path=self.checkpoint_path, num_epochs=num_epochs, batch_size=batch_size,
total_train_images=(_train_batches*batch_size), total_val_images=(_val_batches*batch_size), message=self.msg,
lambda_content=self.lc, lambda_global=self.lg, lambda_local=self.ll)
print('Starting training...')
for epoch in range(num_epochs):
_loss = 0.0
_avg_loss = 0.0
_start = time.time()
for batch in train_dataloader:
content_images = batch[0].to(DEVICE)
style_images = batch[1].to(DEVICE)
_loss = self._train_epoch(content_images, style_images)
_avg_loss += _loss
_avg_loss = _avg_loss / _train_batches
print(f'Epoch {epoch}, Average Training Loss: {_avg_loss}')
self._logger.log(tag='train', epoch=epoch, loss=_avg_loss, time=(time.time()-_start))
_loss = 0.0
_avg_loss = 0.0
_start = time.time()
for batch in val_dataloader:
content_images = batch[0].to(DEVICE)
style_images = batch[1].to(DEVICE)
_loss = self._val_epoch(content_images, style_images)
_avg_loss += _loss
_avg_loss = _avg_loss / _val_batches
print(f'Epoch {epoch}, Average Validation Loss: {_avg_loss}')
self._logger.log(tag='val', epoch=epoch, loss=_avg_loss, time=(time.time()-_start))
if max_loss > _avg_loss:
print('Saving best model')
self._logger.log(tag='model', loss=_avg_loss)
cs = self._infer(content_images, style_images)
self._logger.draw(epoch, cs)
max_loss = _avg_loss
torch.save(self.encoder.state_dict(), self.ckpt_path+'/encoder.pth')
torch.save(self.ada_attn_3.state_dict(), self.ckpt_path+'/adaattn.pth')
torch.save(self.transformer.state_dict(), self.ckpt_path+'/transformer.pth')
torch.save(self.decoder.state_dict(), self.ckpt_path+'/decoder.pth')
self._logger.log(tag='plot')
if epoch % 5 == 0:
cs = self._infer()
self._logger.draw(epoch, cs)
print('Training complete')
if __name__=="__main__":
args = train_args()
train_instance = TrainStyleTransfer(args.checkpoint_path, args.log_dir+args.log_name, args.lr, args.weight_decay, args.msg,
args.lc, args.lg, args.ll)
train_instance.train(args.dataset_path, args.num_epochs, args.batch_size)