-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathε_soft.jl
195 lines (129 loc) · 5.55 KB
/
ε_soft.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
P_softmax(β, r_v) = exp.(β * r_v) ./ sum(exp.(β * r_v))
function P_ε_soft(ε, r_v)
n_actions = length(r_v)
if !all(x -> x == r_v[1], r_v)
return [ε / n_actions for _ = 1:n_actions] + (1.0 - ε) * P_softmax(1.0, r_v)
else
return [1.0 / n_actions for _ = 1:n_actions]
end
end
@model function ε_soft_2_model(choice_m, data::ABT_t, ::Type{T} = Float64) where {T <: Real}
if choice_m === missing
choice_m = Matrix{Array{Int64,1}}(undef, data.n_subjects, data.n_sessions)
for subject = 1 : data.n_subjects
for session = 1 : data.n_sessions
choice_m[subject, session] = [-1 for _ = 1 : data.trial_m[subject, session]]
end
end
end
μ_ε_v ~ filldist(Normal(0,1), data.n_groups)
σ_ε_v ~ filldist(truncated(Cauchy(0,5), 0, Inf), data.n_groups)
μ_η_v ~ filldist(Normal(0,1), data.n_groups)
σ_η_v ~ filldist(truncated(Cauchy(0,5), 0, Inf), data.n_groups)
ε_norm_m ~ filldist(Normal(0,1), data.n_groups, data.n_subjects)
η_norm_m ~ filldist(Normal(0,1), data.n_groups, data.n_subjects)
ε_m = cdf.(Normal(0,1), μ_ε_v .+ ε_norm_m .* σ_ε_v)
η_m = cdf.(Normal(0,1), μ_η_v .+ η_norm_m .* σ_η_v)
for subject = 1 : data.n_subjects
r_v = zeros(T, Int(data.n_avail_actions_per_week * data.n_sessions / data.n_sessions_per_week))
for session = 1 : data.n_sessions
avail_actions_v = data.avail_actions_m[subject, session]
g = data.group_m[subject, session]
ε = ε_m[g, subject]
η = η_m[g, subject]
for trial = 1 : data.trial_m[subject, session]
P_v = P_ε_soft(ε, r_v[avail_actions_v])
choice_m[subject, session][trial] ~ Binomial(1, P_v[2])
action = avail_actions_v[choice_m[subject, session][trial] + 1]
r_v[action] += η * (data.R_m[subject, session][trial] - r_v[action])
end
end
end
return (cdf.(Normal(0,1), μ_ε_v), cdf.(Normal(0,1), μ_η_v))
#return (choice_m, μ_ε_v, σ_ε_v, μ_η_v, σ_η_v, μ_s_v, σ_s_v)
end
@model function ε_soft_3_model(choice_m, data::ABT_t, ::Type{T} = Float64) where {T <: Real}
if choice_m === missing
choice_m = Matrix{Array{Int64,1}}(undef, data.n_subjects, data.n_sessions)
for subject = 1 : data.n_subjects
for session = 1 : data.n_sessions
choice_m[subject, session] = [-1 for _ = 1 : data.trial_m[subject, session]]
end
end
end
s_upper = 30.0
μ_ε_v ~ filldist(Normal(0,1), data.n_groups)
σ_ε_v ~ filldist(truncated(Cauchy(0,5), 0, Inf), data.n_groups)
μ_η_v ~ filldist(Normal(0,1), data.n_groups)
σ_η_v ~ filldist(truncated(Cauchy(0,5), 0, Inf), data.n_groups)
μ_s_v ~ filldist(Normal(0,1), data.n_groups)
σ_s_v ~ filldist(truncated(Cauchy(0,5), 0, Inf), data.n_groups)
ε_norm_m ~ filldist(Normal(0,1), data.n_groups, data.n_subjects)
η_norm_m ~ filldist(Normal(0,1), data.n_groups, data.n_subjects)
s_norm_m ~ filldist(Normal(0,1), data.n_groups, data.n_subjects)
ε_m = cdf.(Normal(0,1), μ_ε_v .+ ε_norm_m .* σ_ε_v)
η_m = cdf.(Normal(0,1), μ_η_v .+ η_norm_m .* σ_η_v)
s_m = cdf.(Normal(0,1), μ_s_v .+ s_norm_m .* σ_s_v) * s_upper
for subject = 1 : data.n_subjects
r_v = zeros(T, Int(data.n_avail_actions_per_week * data.n_sessions / data.n_sessions_per_week))
for session = 1 : data.n_sessions
avail_actions_v = data.avail_actions_m[subject, session]
g = data.group_m[subject, session]
ε = ε_m[g, subject]
η = η_m[g, subject]
s = s_m[g, subject]
for trial = 1 : data.trial_m[subject, session]
P_v = P_ε_soft(ε, r_v[avail_actions_v])
choice_m[subject, session][trial] ~ Binomial(1, P_v[2])
action = avail_actions_v[choice_m[subject, session][trial] + 1]
r_v[action] += η * (s * data.R_m[subject, session][trial] - r_v[action])
end
end
end
return (cdf.(Normal(0,1), μ_ε_v), cdf.(Normal(0,1), μ_η_v), cdf.(Normal(0,1), μ_s_v) * s_upper)
#return (choice_m, μ_ε_v, σ_ε_v, μ_η_v, σ_η_v, μ_s_v, σ_s_v)
end
function predict_ε_soft_3(choice_m, data, chn)
rng = MersenneTwister()
(n_samples, n_groups, n_chains) = size(group(chn, :μ_ε_v).value)
s_upper = 30.0
n_MC = 100
l = 0.0
for c = 1 : n_chains
for s = 1 : n_samples
μ_ε_v = group(chn, :μ_ε_v).value[s, :, c]
σ_ε_v = group(chn, :σ_ε_v).value[s, :, c]
μ_η_v = group(chn, :μ_η_v).value[s, :, c]
σ_η_v = group(chn, :σ_η_v).value[s, :, c]
μ_s_v = group(chn, :μ_s_v).value[s, :, c]
σ_s_v = group(chn, :σ_s_v).value[s, :, c]
l_s = 0.0
for k = 1 : n_MC
ll_MC = 0.0
for subject = 1 : data.n_subjects
r_v = zeros(Int(data.n_avail_actions_per_week * data.n_sessions / data.n_sessions_per_week))
for session = 1 : data.n_sessions
avail_actions_v = data.avail_actions_m[subject, session]
g = data.group_m[subject, session]
ε_norm = rand(rng, Normal(0,1))
η_norm = rand(rng, Normal(0,1))
s_norm = rand(rng, Normal(0,1))
ε = cdf(Normal(0,1), μ_ε_v[g] + ε_norm * σ_ε_v[g])
η = cdf(Normal(0,1), μ_η_v[g] + η_norm * σ_η_v[g])
s = cdf(Normal(0,1), μ_s_v[g] + η_norm * σ_η_v[g]) * s_upper
for trial = 1 : data.trial_m[subject, session]
P_v = P_ε_soft(ε, r_v[avail_actions_v])
ll_MC += logpdf(Binomial(1, P_v[2]), choice_m[subject, session][trial])
action = avail_actions_v[choice_m[subject, session][trial] + 1]
r_v[action] += η * (s * data.R_m[subject, session][trial] - r_v[action])
end
end
end
l_s += exp(ll_MC)
end
l += l_s / n_MC
end
end
return log(l / (n_samples * n_chains))
end
run_ε_soft(choice_m, data::ABT_t) = sample(ε_soft_3_model(choice_m, data), NUTS(1000, 0.65), MCMCThreads(), 2000, 4)