forked from ocropus-archive/DUP-ocropy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocropus-gpageseg
executable file
·442 lines (377 loc) · 16.7 KB
/
ocropus-gpageseg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#!/usr/bin/env python
# TODO:
# ! add option for padding
# - fix occasionally missing page numbers
# - treat large h-whitespace as separator
# - handle overlapping candidates
# - use cc distance statistics instead of character scale
# - page frame detection
# - read and use text image segmentation mask
# - pick up stragglers
# ? laplacian as well
from __future__ import print_function
from pylab import *
import argparse,glob,os,os.path
import traceback
from scipy.ndimage import measurements
from scipy.misc import imsave
from scipy.ndimage.filters import gaussian_filter,uniform_filter,maximum_filter
from multiprocessing import Pool
import ocrolib
from ocrolib import psegutils,morph,sl
from ocrolib.toplevel import *
parser = argparse.ArgumentParser()
# error checking
parser.add_argument('-n','--nocheck',action="store_true",
help="disable error checking on inputs")
parser.add_argument('-z','--zoom',type=float,default=0.5,
help='zoom for page background estimation, smaller=faster, default: %(default)s')
parser.add_argument('--gray',action='store_true',
help='output grayscale lines as well, default: %(default)s')
parser.add_argument('-q','--quiet',action='store_true',
help='be less verbose, default: %(default)s')
# limits
parser.add_argument('--minscale',type=float,default=12.0,
help='minimum scale permitted, default: %(default)s')
parser.add_argument('--maxlines',type=float,default=300,
help='maximum # lines permitted, default: %(default)s')
# scale parameters
parser.add_argument('--scale',type=float,default=0.0,
help='the basic scale of the document (roughly, xheight) 0=automatic, default: %(default)s')
parser.add_argument('--hscale',type=float,default=1.0,
help='non-standard scaling of horizontal parameters, default: %(default)s')
parser.add_argument('--vscale',type=float,default=1.0,
help='non-standard scaling of vertical parameters, default: %(default)s')
# line parameters
parser.add_argument('--threshold',type=float,default=0.2,
help='baseline threshold, default: %(default)s')
parser.add_argument('--noise',type=int,default=8,
help="noise threshold for removing small components from lines, default: %(default)s")
parser.add_argument('--usegauss',action='store_true',
help='use gaussian instead of uniform, default: %(default)s')
# column parameters
parser.add_argument('--maxseps',type=int,default=2,
help='maximum black column separators, default: %(default)s')
parser.add_argument('--sepwiden',type=int,default=10,
help='widen black separators (to account for warping), default: %(default)s')
parser.add_argument('-b','--blackseps',action="store_true",
help="also check for black column separators")
# whitespace column separators
parser.add_argument('--maxcolseps',type=int,default=2,
help='maximum # whitespace column separators, default: %(default)s')
parser.add_argument('--csminaspect',type=float,default=1.1,
help='minimum aspect ratio for column separators')
parser.add_argument('--csminheight',type=float,default=10,
help='minimum column height (units=scale), default: %(default)s')
# wait for input after everything is done
parser.add_argument('-p','--pad',type=int,default=3,
help='padding for extracted lines, default: %(default)s')
parser.add_argument('-e','--expand',type=int,default=3,
help='expand mask for grayscale extraction, default: %(default)s')
parser.add_argument('-Q','--parallel',type=int,default=0,
help="number of CPUs to use")
parser.add_argument('-d','--debug',action="store_true")
parser.add_argument('files',nargs='+')
args = parser.parse_args()
args.files = ocrolib.glob_all(args.files)
def norm_max(v):
return v/amax(v)
def check_page(image):
if len(image.shape)==3: return "input image is color image %s"%(image.shape,)
if mean(image)<median(image): return "image may be inverted"
h,w = image.shape
if h<600: return "image not tall enough for a page image %s"%(image.shape,)
if h>10000: return "image too tall for a page image %s"%(image.shape,)
if w<600: return "image too narrow for a page image %s"%(image.shape,)
if w>10000: return "line too wide for a page image %s"%(image.shape,)
slots = int(w*h*1.0/(30*30))
_,ncomps = measurements.label(image>mean(image))
if ncomps<10: return "too few connected components for a page image (got %d)"%(ncomps,)
if ncomps>slots: return "too many connnected components for a page image (%d > %d)"%(ncomps,slots)
return None
def print_info(*objs):
print("INFO: ", *objs, file=sys.stdout)
def print_error(*objs):
print("ERROR: ", *objs, file=sys.stderr)
if len(args.files)<1:
parser.print_help()
sys.exit(0)
print_info("")
print_info("#"*10,(" ".join(sys.argv))[:60])
print_info("")
if args.parallel>1:
args.quiet = 1
def B(a):
if a.dtype==dtype('B'): return a
return array(a,'B')
def DSAVE(title,image):
if not args.debug: return
if type(image)==list:
assert len(image)==3
image = transpose(array(image),[1,2,0])
fname = "_"+title+".png"
print_info("debug " + fname)
imsave(fname,image)
################################################################
### Column finding.
###
### This attempts to find column separators, either as extended
### vertical black lines or extended vertical whitespace.
### It will work fairly well in simple cases, but for unusual
### documents, you need to tune the parameters.
################################################################
def compute_separators_morph(binary,scale):
"""Finds vertical black lines corresponding to column separators."""
d0 = int(max(5,scale/4))
d1 = int(max(5,scale))+args.sepwiden
thick = morph.r_dilation(binary,(d0,d1))
vert = morph.rb_opening(thick,(10*scale,1))
vert = morph.r_erosion(vert,(d0//2,args.sepwiden))
vert = morph.select_regions(vert,sl.dim1,min=3,nbest=2*args.maxseps)
vert = morph.select_regions(vert,sl.dim0,min=20*scale,nbest=args.maxseps)
return vert
def compute_colseps_morph(binary,scale,maxseps=3,minheight=20,maxwidth=5):
"""Finds extended vertical whitespace corresponding to column separators
using morphological operations."""
boxmap = psegutils.compute_boxmap(binary,scale,dtype='B')
bounds = morph.rb_closing(B(boxmap),(int(5*scale),int(5*scale)))
bounds = maximum(B(1-bounds),B(boxmap))
cols = 1-morph.rb_closing(boxmap,(int(20*scale),int(scale)))
cols = morph.select_regions(cols,sl.aspect,min=args.csminaspect)
cols = morph.select_regions(cols,sl.dim0,min=args.csminheight*scale,nbest=args.maxcolseps)
cols = morph.r_erosion(cols,(int(0.5+scale),0))
cols = morph.r_dilation(cols,(int(0.5+scale),0),origin=(int(scale/2)-1,0))
return cols
def compute_colseps_mconv(binary,scale=1.0):
"""Find column separators using a combination of morphological
operations and convolution."""
h,w = binary.shape
smoothed = gaussian_filter(1.0*binary,(scale,scale*0.5))
smoothed = uniform_filter(smoothed,(5.0*scale,1))
thresh = (smoothed<amax(smoothed)*0.1)
DSAVE("1thresh",thresh)
blocks = morph.rb_closing(binary,(int(4*scale),int(4*scale)))
DSAVE("2blocks",blocks)
seps = minimum(blocks,thresh)
seps = morph.select_regions(seps,sl.dim0,min=args.csminheight*scale,nbest=args.maxcolseps)
DSAVE("3seps",seps)
blocks = morph.r_dilation(blocks,(5,5))
DSAVE("4blocks",blocks)
seps = maximum(seps,1-blocks)
DSAVE("5combo",seps)
return seps
def compute_colseps_conv(binary,scale=1.0):
"""Find column separators by convoluation and
thresholding."""
h,w = binary.shape
# find vertical whitespace by thresholding
smoothed = gaussian_filter(1.0*binary,(scale,scale*0.5))
smoothed = uniform_filter(smoothed,(5.0*scale,1))
thresh = (smoothed<amax(smoothed)*0.1)
DSAVE("1thresh",thresh)
# find column edges by filtering
grad = gaussian_filter(1.0*binary,(scale,scale*0.5),order=(0,1))
grad = uniform_filter(grad,(10.0*scale,1))
# grad = abs(grad) # use this for finding both edges
grad = (grad>0.5*amax(grad))
DSAVE("2grad",grad)
# combine edges and whitespace
seps = minimum(thresh,maximum_filter(grad,(int(scale),int(5*scale))))
seps = maximum_filter(seps,(int(2*scale),1))
DSAVE("3seps",seps)
# select only the biggest column separators
seps = morph.select_regions(seps,sl.dim0,min=args.csminheight*scale,nbest=args.maxcolseps+1)
DSAVE("4seps",seps)
return seps
def compute_colseps(binary,scale):
"""Computes column separators either from vertical black lines or whitespace."""
colseps = compute_colseps_conv(binary,scale)
DSAVE("colwsseps",0.7*colseps+0.3*binary)
if args.blackseps:
seps = compute_separators_morph(binary,scale)
DSAVE("colseps",0.7*seps+0.3*binary)
#colseps = compute_colseps_morph(binary,scale)
colseps = maximum(colseps,seps)
binary = minimum(binary,1-seps)
return colseps,binary
################################################################
### Text Line Finding.
###
### This identifies the tops and bottoms of text lines by
### computing gradients and performing some adaptive thresholding.
### Those components are then used as seeds for the text lines.
################################################################
def compute_gradmaps(binary,scale):
# use gradient filtering to find baselines
boxmap = psegutils.compute_boxmap(binary,scale)
cleaned = boxmap*binary
DSAVE("cleaned",cleaned)
if args.usegauss:
# this uses Gaussians
grad = gaussian_filter(1.0*cleaned,(args.vscale*0.3*scale,
args.hscale*6*scale),order=(1,0))
else:
# this uses non-Gaussian oriented filters
grad = gaussian_filter(1.0*cleaned,(max(4,args.vscale*0.3*scale),
args.hscale*scale),order=(1,0))
grad = uniform_filter(grad,(args.vscale,args.hscale*6*scale))
bottom = ocrolib.norm_max((grad<0)*(-grad))
top = ocrolib.norm_max((grad>0)*grad)
return bottom,top,boxmap
def compute_line_seeds(binary,bottom,top,colseps,scale):
"""Base on gradient maps, computes candidates for baselines
and xheights. Then, it marks the regions between the two
as a line seed."""
t = args.threshold
vrange = int(args.vscale*scale)
bmarked = maximum_filter(bottom==maximum_filter(bottom,(vrange,0)),(2,2))
bmarked = bmarked*(bottom>t*amax(bottom)*t)*(1-colseps)
tmarked = maximum_filter(top==maximum_filter(top,(vrange,0)),(2,2))
tmarked = tmarked*(top>t*amax(top)*t/2)*(1-colseps)
tmarked = maximum_filter(tmarked,(1,20))
seeds = zeros(binary.shape,'i')
delta = max(3,int(scale/2))
for x in range(bmarked.shape[1]):
transitions = sorted([(y,1) for y in find(bmarked[:,x])]+[(y,0) for y in find(tmarked[:,x])])[::-1]
transitions += [(0,0)]
for l in range(len(transitions)-1):
y0,s0 = transitions[l]
if s0==0: continue
seeds[y0-delta:y0,x] = 1
y1,s1 = transitions[l+1]
if s1==0 and (y0-y1)<5*scale: seeds[y1:y0,x] = 1
seeds = maximum_filter(seeds,(1,int(1+scale)))
seeds = seeds*(1-colseps)
DSAVE("lineseeds",[seeds,0.3*tmarked+0.7*bmarked,binary])
seeds,_ = morph.label(seeds)
return seeds
################################################################
### The complete line segmentation process.
################################################################
def remove_hlines(binary,scale,maxsize=10):
labels,_ = morph.label(binary)
objects = morph.find_objects(labels)
for i,b in enumerate(objects):
if sl.width(b)>maxsize*scale:
labels[b][labels[b]==i+1] = 0
return array(labels!=0,'B')
def compute_segmentation(binary,scale):
"""Given a binary image, compute a complete segmentation into
lines, computing both columns and text lines."""
binary = array(binary,'B')
# start by removing horizontal black lines, which only
# interfere with the rest of the page segmentation
binary = remove_hlines(binary,scale)
# do the column finding
if not args.quiet: print_info("computing column separators")
colseps,binary = compute_colseps(binary,scale)
# now compute the text line seeds
if not args.quiet: print_info("computing lines")
bottom,top,boxmap = compute_gradmaps(binary,scale)
seeds = compute_line_seeds(binary,bottom,top,colseps,scale)
DSAVE("seeds",[bottom,top,boxmap])
# spread the text line seeds to all the remaining
# components
if not args.quiet: print_info("propagating labels")
llabels = morph.propagate_labels(boxmap,seeds,conflict=0)
if not args.quiet: print_info("spreading labels")
spread = morph.spread_labels(seeds,maxdist=scale)
llabels = where(llabels>0,llabels,spread*binary)
segmentation = llabels*binary
return segmentation
################################################################
### Processing each file.
################################################################
def process1(job):
fname,i = job
global base
base,_ = ocrolib.allsplitext(fname)
outputdir = base
try:
binary = ocrolib.read_image_binary(base+".bin.png")
except IOError:
try:
binary = ocrolib.read_image_binary(fname)
except IOError:
if ocrolib.trace: traceback.print_exc()
print_error("cannot open either %s.bin.png or %s" % (base, fname))
return
checktype(binary,ABINARY2)
if not args.nocheck:
check = check_page(amax(binary)-binary)
if check is not None:
print_error("%s SKIPPED %s (use -n to disable this check)" % (fname, check))
return
if args.gray:
if os.path.exists(base+".nrm.png"):
gray = ocrolib.read_image_gray(base+".nrm.png")
checktype(gray,GRAYSCALE)
binary = 1-binary # invert
if args.scale==0:
scale = psegutils.estimate_scale(binary)
else:
scale = args.scale
print_info("scale %f" % (scale))
if isnan(scale) or scale>1000.0:
print_error("%s: bad scale (%g); skipping\n" % (fname, scale))
return
if scale<args.minscale:
print_error("%s: scale (%g) less than --minscale; skipping\n" % (fname, scale))
return
# find columns and text lines
if not args.quiet: print_info("computing segmentation")
segmentation = compute_segmentation(binary,scale)
if amax(segmentation)>args.maxlines:
print_error("%s: too many lines %g" % (fname, amax(segmentation)))
return
if not args.quiet: print_info("number of lines %g" % amax(segmentation))
# compute the reading order
if not args.quiet: print_info("finding reading order")
lines = psegutils.compute_lines(segmentation,scale)
order = psegutils.reading_order([l.bounds for l in lines])
lsort = psegutils.topsort(order)
# renumber the labels so that they conform to the specs
nlabels = amax(segmentation)+1
renumber = zeros(nlabels,'i')
for i,v in enumerate(lsort): renumber[lines[v].label] = 0x010000+(i+1)
segmentation = renumber[segmentation]
# finally, output everything
if not args.quiet: print_info("writing lines")
if not os.path.exists(outputdir):
os.mkdir(outputdir)
lines = [lines[i] for i in lsort]
ocrolib.write_page_segmentation("%s.pseg.png"%outputdir,segmentation)
cleaned = ocrolib.remove_noise(binary,args.noise)
for i,l in enumerate(lines):
binline = psegutils.extract_masked(1-cleaned,l,pad=args.pad,expand=args.expand)
ocrolib.write_image_binary("%s/01%04x.bin.png"%(outputdir,i+1),binline)
if args.gray:
grayline = psegutils.extract_masked(gray,l,pad=args.pad,expand=args.expand)
ocrolib.write_image_gray("%s/01%04x.nrm.png"%(outputdir,i+1),grayline)
print_info("%6d %s %4.1f %d" % (i, fname, scale, len(lines)))
if len(args.files)==1 and os.path.isdir(args.files[0]):
files = glob.glob(args.files[0]+"/????.png")
else:
files = args.files
def safe_process1(job):
fname,i = job
try:
process1(job)
except ocrolib.OcropusException as e:
if e.trace:
traceback.print_exc()
else:
print_info(fname+":"+e)
except Exception as e:
traceback.print_exc()
if args.parallel<2:
count = 0
for i,f in enumerate(files):
if args.parallel==0: print_info(f)
count += 1
safe_process1((f,i+1))
else:
pool = Pool(processes=args.parallel)
jobs = []
for i,f in enumerate(files): jobs += [(f,i+1)]
result = pool.map(process1,jobs)