-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
107 lines (101 loc) · 2.87 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
# Load the trained model
model = tf.keras.models.load_model("dogclassification.h5")
# Define class names
class_names = {
"0": "Afghan",
"1": "African Wild Dog",
"2": "Airedale",
"3": "American Hairless",
"4": "American Spaniel",
"5": "Basenji",
"6": "Basset",
"7": "Beagle",
"8": "Bearded Collie",
"9": "Bermaise",
"10": "Bichon Frise",
"11": "Blenheim",
"12": "Bloodhound",
"13": "Bluetick",
"14": "Border Collie",
"15": "Borzoi",
"16": "Boston Terrier",
"17": "Boxer",
"18": "Bull Mastiff",
"19": "Bull Terrier",
"20": "Bulldog",
"21": "Cairn",
"22": "Chihuahua",
"23": "Chinese Crested",
"24": "Chow",
"25": "Clumber",
"26": "Cockapoo",
"27": "Cocker",
"28": "Collie",
"29": "Corgi",
"30": "Coyote",
"31": "Dalmation",
"32": "Dhole",
"33": "Dingo",
"34": "Doberman",
"35": "Elk Hound",
"36": "French Bulldog",
"37": "German Sheperd",
"38": "Golden Retriever",
"39": "Great Dane",
"40": "Great Perenees",
"41": "Greyhound",
"42": "Groenendael",
"43": "Irish Spaniel",
"44": "Irish Wolfhound",
"45": "Japanese Spaniel",
"46": "Komondor",
"47": "Labradoodle",
"48": "Labrador",
"49": "Lhasa",
"50": "Malinois",
"51": "Maltese",
"52": "Mex Hairless",
"53": "Newfoundland",
"54": "Pekinese",
"55": "Pit Bull",
"56": "Pomeranian",
"57": "Poodle",
"58": "Pug",
"59": "Rhodesian",
"60": "Rottweiler",
"61": "Saint Bernard",
"62": "Schnauzer",
"63": "Scotch Terrier",
"64": "Shar_Pei",
"65": "Shiba Inu",
"66": "Shih-Tzu",
"67": "Siberian Husky",
"68": "Vizsla",
"69": "Yorkie"
}
st.markdown(
"""
<style>
.centered-title {
text-align: center;
}
</style>
""",
unsafe_allow_html=True,
)
st.title("Dog Breed Detection App")
# Upload an image for classification
uploaded_image = st.file_uploader("Upload a dog image", type=["jpg", "png", "jpeg"])
if uploaded_image is not None:
image = tf.image.decode_image(uploaded_image.read(), channels=3)
image = tf.image.resize(image, (224, 224))
image = np.expand_dims(image, axis=0) / 255.0
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
if st.button("Classify"):
prediction = model.predict(image)
predicted_class = np.argmax(prediction, axis=-1)
st.write(f"Predicted Breed: {class_names[str(predicted_class[0])]}")