forked from farhanchoudhary/PAN_Card_OCR_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocr_v2.py
334 lines (273 loc) · 13.3 KB
/
ocr_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# import the necessary packages
from PIL import Image
import pytesseract
import argparse
import cv2
import os
import re
import io
import json
import ftfy
# from nostril import nonsense
################################################################################################################
############################# Section 1: Initiate the command line interface ###################################
################################################################################################################
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image to be OCR'd")
ap.add_argument("-p", "--preprocess", type=str, default="thresh",
help="type of preprocessing to be done, choose from blur, linear, cubic or bilateral")
args = vars(ap.parse_args())
'''
Our command line arguments are parsed. We have two command line arguments:
--image : The path to the image we’re sending through the OCR system.
--preprocess : The preprocessing method. This switch is optional and for this tutorial and can accept the following
parameters to be passed (refer sections to know more:
- blur
- adaptive
- linear
- cubic
- gauss
- bilateral
- thresh (meadian threshold - default)
--------------------------- Use Blur when the image has noise/grain/incident light etc. --------------------------
'''
##############################################################################################################
###################### Section 2: Load the image -- Preprocess it -- Write it to disk ########################
##############################################################################################################
# load the example image and convert it to grayscale
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we should apply thresholding to preprocess the
# image
if args["preprocess"] == "thresh":
gray = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
elif args["preprocess"] == "adaptive":
gray = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
'''
What we would like to do is to add some additional preprocessing steps as in most cases, you may need to scale your
image to a larger size to recognize small characters.
In this case, INTER_CUBIC generally performs better than other alternatives, though it’s also slower than others.
If you’d like to trade off some of your image quality for faster performance,
you may want to try INTER_LINEAR for enlarging images.
'''
if args["preprocess"] == "linear":
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
elif args["preprocess"] == "cubic":
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
# make a check to see if blurring should be done to remove noise, first is default median blurring
'''
1. Gaussian Blurring works in a similar fashion to Averaging, but it uses Gaussian kernel,
instead of a normalized box filter, for convolution. Here, the dimensions of the kernel and standard deviations
in both directions can be determined independently.
Gaussian blurring is very useful for removing — guess what? —
gaussian noise from the image. On the contrary, gaussian blurring does not preserve the edges in the input.
2. In Median Blurring the central element in the kernel area is replaced with the median of all the pixels under the
kernel. Particularly, this outperforms other blurring methods in removing salt-and-pepper noise in the images.
Median blurring is a non-linear filter. Unlike linear filters, median blurring replaces the pixel values
with the median value available in the neighborhood values. So, median blurring preserves edges
as the median value must be the value of one of neighboring pixels
3. Speaking of keeping edges sharp, bilateral filtering is quite useful for removing the noise without
smoothing the edges. Similar to gaussian blurring, bilateral filtering also uses a gaussian filter
to find the gaussian weighted average in the neighborhood. However, it also takes pixel difference into
account while blurring the nearby pixels.
Thus, it ensures only those pixels with similar intensity to the central pixel are blurred,
whereas the pixels with distinct pixel values are not blurred. In doing so, the edges that have larger
intensity variation, so-called edges, are preserved.
'''
if args["preprocess"] == "blur":
gray = cv2.medianBlur(gray, 3)
elif args["preprocess"] == "bilateral":
gray = cv2.bilateralFilter(gray, 9, 75, 75)
elif args["preprocess"] == "gauss":
gray = cv2.GaussianBlur(gray, (5,5), 0)
# write the grayscale image to disk as a temporary file so we can
# apply OCR to it
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)
'''
A blurring method may be applied. We apply a median blur when the --preprocess flag is set to blur.
Applying a median blur can help reduce salt and pepper noise, again making it easier for Tesseract
to correctly OCR the image.
After pre-processing the image, we use os.getpid to derive a temporary image filename based on the process ID
of our Python script.
The final step before using pytesseract for OCR is to write the pre-processed image, gray,
to disk saving it with the filename from above
'''
##############################################################################################################
######################################## Section 3: Running PyTesseract ######################################
##############################################################################################################
# load the image as a PIL/Pillow image, apply OCR, and then delete
# the temporary file
text = pytesseract.image_to_string(Image.open(filename), lang = 'eng')
# add +hin after eng within the same argument to extract hindi specific text - change encoding to utf-8 while writing
os.remove(filename)
# print(text)
# show the output images
# cv2.imshow("Image", image)
# cv2.imshow("Output", gray)
# cv2.waitKey(0)
# writing extracted data into a text file
text_output = open('outputbase.txt', 'w', encoding='utf-8')
text_output.write(text)
text_output.close()
file = open('outputbase.txt', 'r', encoding='utf-8')
text = file.read()
# print(text)
# Cleaning all the gibberish text
text = ftfy.fix_text(text)
text = ftfy.fix_encoding(text)
'''for god_damn in text:
if nonsense(god_damn):
text.remove(god_damn)
else:
print(text)'''
# print(text)
############################################################################################################
###################################### Section 4: Extract relevant information #############################
############################################################################################################
# Initializing data variable
name = None
fname = None
dob = None
pan = None
nameline = []
dobline = []
panline = []
text0 = []
text1 = []
text2 = []
# Searching for PAN
lines = text.split('\n')
for lin in lines:
s = lin.strip()
s = lin.replace('\n','')
s = s.rstrip()
s = s.lstrip()
text1.append(s)
text1 = list(filter(None, text1))
# print(text1)
'''
Note: Hindi has the worst error rates in tesseract and creates noise in image. Tesseract doesn't work well with noisy
data
Reference: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35248.pdf
1. Income Tax Department Government of India (the text might be distorted due to quality of image or inherent problems
with tesseractocr and its inability to distinguish seamlessly between languages not native to the module or not as
developed - such as Hindi.)
2. Name of the PAN Card Holder
3. Father's Name
4. Date of Birth in MM/DD/YYYY format as listed in the PAN Card
5. ----Permanent Account Number---- text that is a named entity in the PAN Card (not the actual PAN Card Number)
6. Permanent Account Number in the format ABCDE1234F
7. Signature as normal text - named entity in the PAN Card
'''
# to remove any text read from the image file which lies before the line 'Income Tax Department'
lineno = 0 # to start from the first line of the text file.
for wordline in text1:
xx = wordline.split('\n')
if ([w for w in xx if re.search('(INCOMETAXDEPARWENT @|mcommx|INCOME|TAX|GOW|GOVT|GOVERNMENT|OVERNMENT|VERNMENT|DEPARTMENT|EPARTMENT|PARTMENT|ARTMENT|INDIA|NDIA)$', w)]):
text1 = list(text1)
lineno = text1.index(wordline)
break
# text1 = list(text1)
text0 = text1[lineno+1:]
print(text0) # Contains all the relevant extracted text in form of a list - uncomment to check
def findword(textlist, wordstring):
lineno = -1
for wordline in textlist:
xx = wordline.split( )
if ([w for w in xx if re.search(wordstring, w)]):
lineno = textlist.index(wordline)
textlist = textlist[lineno+1:]
return textlist
return textlist
###############################################################################################################
######################################### Section 5: Dishwasher part ##########################################
###############################################################################################################
try:
# Cleaning first names, better accuracy
name = text0[0]
name = name.rstrip()
name = name.lstrip()
name = name.replace("8", "B")
name = name.replace("0", "D")
name = name.replace("6", "G")
name = name.replace("1", "I")
name = re.sub('[^a-zA-Z] +', ' ', name)
# Cleaning Father's name
fname = text0[1]
fname = fname.rstrip()
fname = fname.lstrip()
fname = fname.replace("8", "S")
fname = fname.replace("0", "O")
fname = fname.replace("6", "G")
fname = fname.replace("1", "I")
fname = fname.replace("\"", "A")
fname = re.sub('[^a-zA-Z] +', ' ', fname)
# Cleaning DOB
dob = text0[2]
dob = dob.rstrip()
dob = dob.lstrip()
dob = dob.replace('l', '/')
dob = dob.replace('L', '/')
dob = dob.replace('I', '/')
dob = dob.replace('i', '/')
dob = dob.replace('|', '/')
dob = dob.replace('\"', '/1')
dob = dob.replace(" ", "")
# Cleaning PAN Card details
text0 = findword(text1, '(Pormanam|Number|umber|Account|ccount|count|Permanent|ermanent|manent|wumm)$')
panline = text0[0]
pan = panline.rstrip()
pan = pan.lstrip()
pan = pan.replace(" ", "")
pan = pan.replace("\"", "")
pan = pan.replace(";", "")
pan = pan.replace("%", "L")
except:
pass
# Making tuples of data
data = {}
data['Name'] = name
data['Father Name'] = fname
data['Date of Birth'] = dob
data['PAN'] = pan
# print(data)
###############################################################################################################
######################################### Section 6: Write Data to JSONs ######################################
###############################################################################################################
# Writing data into JSON
try:
to_unicode = unicode
except NameError:
to_unicode = str
# Write JSON file
with io.open('data.json', 'w', encoding='utf-8') as outfile:
str_ = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False)
outfile.write(to_unicode(str_))
# Read JSON file
with open('data.json', encoding = 'utf-8') as data_file:
data_loaded = json.load(data_file)
# print(data == data_loaded)
# Reading data back JSON(give correct path where JSON is stored)
with open('data.json', 'r', encoding= 'utf-8') as f:
ndata = json.load(f)
print('\t', "|+++++++++++++++++++++++++++++++|")
print('\t', '|', '\t', ndata['Name'])
print('\t', "|-------------------------------|")
print('\t', '|', '\t', ndata['Father Name'])
print('\t', "|-------------------------------|")
print('\t', '|', '\t', ndata['Date of Birth'])
print('\t', "|-------------------------------|")
print('\t', '|', '\t', ndata['PAN'])
print('\t', "|+++++++++++++++++++++++++++++++|")
###########################################################################################################
################### ########## ##### ######## #######################################
################### ##################### #### ######## ##### #######################################
################### ################## ### ######## #### #######################################
################### ################## ## ######## #### #######################################
################### ##################### # ######## ##### #######################################
################### ########## # ######## #######################################
###########################################################################################################