From 1622fe1842a264349910555c6741b2ecfcb8f779 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Fri, 25 Feb 2022 01:41:41 +0900 Subject: [PATCH 01/12] refactor cupy --- impy/_cupy.py | 93 ++++++++++++++++++++----------- impy/arrays/_utils/_corr.py | 24 ++++---- impy/arrays/_utils/_deconv.py | 22 ++++---- impy/arrays/_utils/_filters.py | 10 ++-- impy/arrays/_utils/_linalg.py | 6 +- impy/arrays/_utils/_structures.py | 1 - impy/arrays/_utils/_transform.py | 18 +++--- impy/arrays/imgarray.py | 76 ++++++++++++++----------- impy/arrays/lazy.py | 34 +++++------ impy/correlation.py | 14 ++--- tests/test_fft.py | 6 +- 11 files changed, 170 insertions(+), 134 deletions(-) diff --git a/impy/_cupy.py b/impy/_cupy.py index 1f3911f0..bfa4c888 100644 --- a/impy/_cupy.py +++ b/impy/_cupy.py @@ -1,40 +1,69 @@ -try: - import cupy as xp - GPU_AVAILABLE = True -except ImportError: - import numpy as xp - GPU_AVAILABLE = False - -if GPU_AVAILABLE: - def asnumpy(arr, dtype=None): - out = xp.asnumpy(arr) - if dtype is None: - return out - return out.astype(dtype) - from cupyx.scipy import fft as xp_fft - from cupyx.scipy import ndimage as xp_ndi - from cupy import linalg as xp_linalg - from cupy import ndarray as xp_ndarray - import numpy as np - _as_cupy = lambda a: xp.asarray(a) if isinstance(a, np.ndarray) else a - -else: - asnumpy = xp.asarray - try: - from scipy import fft as xp_fft - except ImportError: - from scipy import fftpack as xp_fft - from scipy import ndimage as xp_ndi - from numpy import linalg as xp_linalg - from numpy import ndarray as xp_ndarray - _as_cupy = lambda a: a from functools import wraps +import numpy as np +from numpy.typing import ArrayLike, DTypeLike def cupy_dispatcher(function): @wraps(function) def func(*args, **kwargs): - args = map(_as_cupy, args) + if xp.state == "cupy": + args = (xp.asarray(a) if isinstance(a, np.ndarray) else a for a in args) out = function(*args, **kwargs) return out - return func \ No newline at end of file + return func + +from types import ModuleType +from scipy import ndimage as scipy_ndi +from typing import Callable + +class XP: + fft: ModuleType + linalg: ModuleType + random: ModuleType + ndi: ModuleType + asnumpy: Callable[[ArrayLike, DTypeLike], np.ndarray] + asarray: Callable[[ArrayLike], ArrayLike] + ndarray: type + state: str + + def __init__(self): + self.setNumpy() + + def __getattr__(self, key: str): + return getattr(self._module, key) + + def setNumpy(self) -> None: + self._module = np + self.fft = np.fft + self.linalg = np.linalg + self.random = np.random + self.ndi = scipy_ndi + self.asnumpy = np.asarray + self.asarray = np.asarray + self.ndarray = np.ndarray + self.state = "numpy" + + def setCupy(self) -> None: + import cupy as cp + def cp_asnumpy(arr, dtype=None): + out = cp.asnumpy(arr) + if dtype is None: + return out + return out.astype(dtype) + from cupyx.scipy import fft as cp_fft + from cupyx.scipy import ndimage as cp_ndi + from cupy import linalg as cp_linalg + from cupy import ndarray as cp_ndarray + + self._module = cp + self.fft = cp_fft + self.linalg = cp_linalg + self.random = cp.random + self.ndi = cp_ndi + self.asnumpy = cp_asnumpy + self.asarray = cp.asarray + self.ndarray = cp_ndarray + self.state = "cupy" + +xp = XP() + \ No newline at end of file diff --git a/impy/arrays/_utils/_corr.py b/impy/arrays/_utils/_corr.py index 243b166f..b849acc1 100644 --- a/impy/arrays/_utils/_corr.py +++ b/impy/arrays/_utils/_corr.py @@ -1,18 +1,18 @@ from __future__ import annotations import numpy as np -from ..._cupy import xp, xp_fft, xp_ndarray +from ..._cupy import xp # Modified from skimage/registration/_phase_cross_correlation.py # Compatible between numpy/cupy and supports maximum shifts. def subpixel_pcc( - f0: xp_ndarray, - f1: xp_ndarray, + f0: xp.ndarray, + f1: xp.ndarray, upsample_factor: int, max_shifts: tuple[float, ...] | None = None, -) -> xp_ndarray: +) -> xp.ndarray: product = f0 * f1.conj() - cross_correlation = xp_fft.ifftn(product) + cross_correlation = xp.fft.ifftn(product) power = abs2(cross_correlation) if max_shifts is not None: max_shifts = np.asarray(max_shifts) @@ -52,11 +52,11 @@ def subpixel_pcc( return shifts def _upsampled_dft( - data: xp_ndarray, + data: xp.ndarray, upsampled_region_size: np.ndarray, upsample_factor: int, - axis_offsets: xp_ndarray -) -> xp_ndarray: + axis_offsets: xp.ndarray +) -> xp.ndarray: # if people pass in an integer, expand it to a list of equal-sized sections upsampled_region_size = [upsampled_region_size,] * data.ndim @@ -70,14 +70,14 @@ def _upsampled_dft( data = xp.tensordot(kernel, data, axes=(1, -1)) return data -def abs2(a: xp_ndarray) -> xp_ndarray: +def abs2(a: xp.ndarray) -> xp.ndarray: return a.real**2 + a.imag**2 -def crop_by_max_shifts(power: xp_ndarray, left, right): - shifted_power = xp_fft.fftshift(power) +def crop_by_max_shifts(power: xp.ndarray, left, right): + shifted_power = xp.fft.fftshift(power) centers = tuple(s//2 for s in power.shape) slices = tuple( slice(max(c - int(shiftl), 0), min(c + int(shiftr) + 1, s), None) for c, shiftl, shiftr, s in zip(centers, left, right, power.shape) ) - return xp_fft.ifftshift(shifted_power[slices]) \ No newline at end of file + return xp.fft.ifftshift(shifted_power[slices]) \ No newline at end of file diff --git a/impy/arrays/_utils/_deconv.py b/impy/arrays/_utils/_deconv.py index 3ecbe2bf..42f77215 100644 --- a/impy/arrays/_utils/_deconv.py +++ b/impy/arrays/_utils/_deconv.py @@ -1,5 +1,5 @@ from functools import partial -from ..._cupy import xp, xp_fft +from ..._cupy import xp try: gradient = xp.gradient @@ -18,19 +18,19 @@ def gradient(a, axis=None): def wiener(obs, psf_ft, psf_ft_conj, lmd): obs = xp.asarray(obs) - fft = xp_fft.rfftn - ifft = partial(xp_fft.irfftn, s=obs.shape) + fft = xp.fft.rfftn + ifft = partial(xp.fft.irfftn, s=obs.shape) img_ft = fft(obs) estimated = xp.real(ifft(img_ft*psf_ft_conj / (psf_ft*psf_ft_conj + lmd))) - return xp_fft.fftshift(estimated) + return xp.fft.fftshift(estimated) def richardson_lucy(obs, psf_ft, psf_ft_conj, niter, eps): # Identical to the algorithm in Deconvolution.jl of Julia. obs = xp.asarray(obs) - fft = xp_fft.rfftn - ifft = partial(xp_fft.irfftn, s=obs.shape) + fft = xp.fft.rfftn + ifft = partial(xp.fft.irfftn, s=obs.shape) conv = factor = xp.empty(obs.shape, dtype=xp.float32) # placeholder estimated = xp.real(ifft(fft(obs) * psf_ft)) # initialization @@ -39,12 +39,12 @@ def richardson_lucy(obs, psf_ft, psf_ft_conj, niter, eps): factor[:] = ifft(fft(_safe_div(obs, conv, eps=eps)) * psf_ft_conj).real estimated *= factor - return xp_fft.fftshift(estimated) + return xp.fft.fftshift(estimated) def richardson_lucy_tv(obs, psf_ft, psf_ft_conj, max_iter, lmd, tol, eps): obs = xp.asarray(obs) - fft = xp_fft.rfftn - ifft = partial(xp_fft.irfftn, s=obs.shape) + fft = xp.fft.rfftn + ifft = partial(xp.fft.irfftn, s=obs.shape) est_old = ifft(fft(obs) * psf_ft).real est_new = xp.empty(obs.shape, dtype=xp.float32) conv = factor = norm = gg = xp.empty(obs.shape, dtype=xp.float32) # placeholder @@ -63,7 +63,7 @@ def richardson_lucy_tv(obs, psf_ft, psf_ft_conj, max_iter, lmd, tol, eps): break est_old[:] = est_new - return xp_fft.fftshift(est_new) + return xp.fft.fftshift(est_new) def _safe_div(a, b, eps=1e-8): @@ -80,6 +80,6 @@ def check_psf(img, psf, dims): if img.sizesof(dims) != psf.shape: raise ValueError("observation and PSF have different shape: " f"{img.sizesof(dims)} and {psf.shape}") - psf_ft = xp_fft.rfftn(psf) + psf_ft = xp.fft.rfftn(psf) psf_ft_conj = xp.conjugate(psf_ft) return psf_ft, psf_ft_conj \ No newline at end of file diff --git a/impy/arrays/_utils/_filters.py b/impy/arrays/_utils/_filters.py index 9a3f1e95..76a9222c 100644 --- a/impy/arrays/_utils/_filters.py +++ b/impy/arrays/_utils/_filters.py @@ -30,12 +30,12 @@ ] -from ..._cupy import xp_ndi, xp, asnumpy, cupy_dispatcher +from ..._cupy import xp, cupy_dispatcher from scipy import ndimage as scipy_ndi def get_func(function_name): - if hasattr(xp_ndi, function_name): - _func = getattr(xp_ndi, function_name) + if hasattr(xp.ndi, function_name): + _func = getattr(xp.ndi, function_name) func = cupy_dispatcher(_func) else: func = getattr(scipy_ndi, function_name) @@ -90,14 +90,14 @@ def std_filter(data, selem): selem = selem / np.sum(selem) x1 = convolve(data, selem) x2 = convolve(data**2, selem) - std_img = _safe_sqrt(asnumpy(x2 - x1**2), fill=0) + std_img = _safe_sqrt(xp.asnumpy(x2 - x1**2), fill=0) return std_img def coef_filter(data, selem): selem = selem / np.sum(selem) x1 = convolve(data, selem) x2 = convolve(data**2, selem) - out = _safe_sqrt(asnumpy(x2 - x1**2), fill=0)/asnumpy(x1) + out = _safe_sqrt(xp.asnumpy(x2 - x1**2), fill=0)/xp.asnumpy(x1) return out def dog_filter(img, low_sigma, high_sigma): diff --git a/impy/arrays/_utils/_linalg.py b/impy/arrays/_utils/_linalg.py index 4d275329..4a414d8b 100644 --- a/impy/arrays/_utils/_linalg.py +++ b/impy/arrays/_utils/_linalg.py @@ -1,16 +1,16 @@ import numpy as np from skimage.feature.corner import _symmetric_image from ._skimage import skfeat -from ..._cupy import xp, xp_linalg +from ..._cupy import xp def eigh(a): a = xp.asarray(a, dtype=a.dtype) - val, vec = xp_linalg.eigh(a) + val, vec = xp.linalg.eigh(a) return val, vec def eigvalsh(a): a = xp.asarray(a, dtype=a.dtype) - val = xp_linalg.eigvalsh(a) + val = xp.linalg.eigvalsh(a) return val def structure_tensor_eigval(img, sigma, pxsize): diff --git a/impy/arrays/_utils/_structures.py b/impy/arrays/_utils/_structures.py index 782e7d4a..b9111443 100644 --- a/impy/arrays/_utils/_structures.py +++ b/impy/arrays/_utils/_structures.py @@ -1,4 +1,3 @@ -import numpy as np from ..._cupy import xp def circle(radius, shape, dtype="bool"): diff --git a/impy/arrays/_utils/_transform.py b/impy/arrays/_utils/_transform.py index c578356c..4b1b13a9 100644 --- a/impy/arrays/_utils/_transform.py +++ b/impy/arrays/_utils/_transform.py @@ -2,7 +2,7 @@ import scipy from collections import namedtuple from ._skimage import sktrans -from ..._cupy import xp, xp_ndi, xp_ndarray +from ..._cupy import xp __all__ = ["compose_affine_matrix", "decompose_affine_matrix", @@ -15,16 +15,16 @@ field_names=["translation", "rotation", "scale", "shear"] ) -def warp(img: xp_ndarray, matrix: xp_ndarray, cval=0, mode="constant", output_shape=None, order=1): +def warp(img: xp.ndarray, matrix: xp.ndarray, cval=0, mode="constant", output_shape=None, order=1): img = xp.asarray(img, dtype=img.dtype) matrix = xp.asarray(matrix) - out = xp_ndi.affine_transform(img, matrix, cval=cval, mode=mode, output_shape=output_shape, + out = xp.ndi.affine_transform(img, matrix, cval=cval, mode=mode, output_shape=output_shape, order=order, prefilter=order>1) return out -def shift(img: xp_ndarray, shift: xp_ndarray, cval=0, mode="constant", order=1): +def shift(img: xp.ndarray, shift: xp.ndarray, cval=0, mode="constant", order=1): img = xp.asarray(img, dtype=img.dtype) - out = xp_ndi.shift(img, shift, cval=cval, mode=mode, + out = xp.ndi.shift(img, shift, cval=cval, mode=mode, order=order, prefilter=order>1) return out @@ -123,7 +123,7 @@ def check_matrix(matrices): return mtx def polar2d( - img: xp_ndarray, + img: xp.ndarray, rmax: int, dtheta: float = 0.1, order=1, @@ -138,11 +138,11 @@ def polar2d( x = r * xp.cos(theta) + centers[1] coords = xp.stack([y, x], axis=0) img = xp.asarray(img, dtype=img.dtype) - out = xp_ndi.map_coordinates(img, coords, order=order, mode=mode, cval=cval, prefilter=order>1) + out = xp.ndi.map_coordinates(img, coords, order=order, mode=mode, cval=cval, prefilter=order>1) return out # def polar3d( -# img: xp_ndarray, +# img: xp.ndarray, # rmax: int, # dtheta: float = 0.1, # order=1, @@ -160,5 +160,5 @@ def polar2d( # x = _yx * xp.cos(theta) + centers[2] # coords = xp.stack([z, y, x], axis=0) # img = xp.asarray(img, dtype=img.dtype) -# out = xp_ndi.map_coordinates(img, coords, order=order, mode=mode, cval=cval, prefilter=order>1) +# out = xp.ndi.map_coordinates(img, coords, order=order, mode=mode, cval=cval, prefilter=order>1) # return out diff --git a/impy/arrays/imgarray.py b/impy/arrays/imgarray.py index 35a4c970..03943f27 100644 --- a/impy/arrays/imgarray.py +++ b/impy/arrays/imgarray.py @@ -23,7 +23,7 @@ from ..collections import DataDict from .._types import nDInt, nDFloat, Dims, Coords, Iterable, Callable from .._const import Const -from .._cupy import xp, xp_ndi, xp_fft, asnumpy, cupy_dispatcher +from .._cupy import xp, cupy_dispatcher if TYPE_CHECKING: from ..frame import MarkerFrame, PathFrame @@ -301,7 +301,9 @@ def binning(self, binsize: int = 2, method = "mean", *, check_edges: bool = True if binsize == 1: return self with Progress("binning"): - img_to_reshape, shape, scale_ = _misc.adjust_bin(self.value, binsize, check_edges, dims, self.axes) + img_to_reshape, shape, scale_ = _misc.adjust_bin( + self.value, binsize, check_edges, dims, self.axes + ) reshaped_img = img_to_reshape.reshape(shape) axes_to_reduce = tuple(i*2+1 for i in range(self.ndim)) @@ -340,13 +342,13 @@ def radial_profile(self, nbin: int = 32, center: Iterable[float] = None, r_max: Radial profile stored in x-axis by default. If input image has tzcyx-axes, then an array with tcx-axes will be returned. """ - func = {"mean": xp_ndi.mean, - "sum": xp_ndi.sum_labels, - "median": xp_ndi.median, - "max": xp_ndi.maximum, - "min": xp_ndi.minimum, - "std": xp_ndi.standard_deviation, - "var": xp_ndi.variance}[method] + func = {"mean": xp.ndi.mean, + "sum": xp.ndi.sum_labels, + "median": xp.ndi.median, + "max": xp.ndi.maximum, + "min": xp.ndi.minimum, + "std": xp.ndi.standard_deviation, + "var": xp.ndi.variance}[method] spatial_shape = self.sizesof(dims) inds = xp.indices(spatial_shape) @@ -373,11 +375,17 @@ def radial_profile(self, nbin: int = 32, center: Iterable[float] = None, r_max: c_axes = complement_axes(dims, self.axes) - out = PropArray(np.empty(self.sizesof(c_axes)+(int(labels.max()),)), dtype=np.float32, axes=c_axes+dims[-1], - dirpath=self.dirpath, metadata=self.metadata, propname="radial_profile") + out = PropArray( + np.empty(self.sizesof(c_axes)+(int(labels.max()),)), + dtype=np.float32, + axes=c_axes+dims[-1], + dirpath=self.dirpath, + metadata=self.metadata, + propname="radial_profile" + ) radial_func = partial(cupy_dispatcher(func), labels=labels, index=xp.arange(1, labels.max()+1)) for sl, img in self.iter(c_axes, exclude=dims): - out[sl] = asnumpy(radial_func(img)) + out[sl] = xp.asnumpy(radial_func(img)) return out @record @@ -754,9 +762,9 @@ def lowpass_filter(self, cutoff: nDFloat = 0.2, order: float = 2, *, dims: Dims input = xp.asarray(self) if len(dims) < self.ndim: weight = add_axes(self.axes, self.shape, weight, dims) - out = xp_fft.irfftn(weight*xp_fft.rfftn(input, axes=spatial_axes), + out = xp.fft.irfftn(weight*xp.fft.rfftn(input, axes=spatial_axes), s=spatial_shape, axes=spatial_axes) - return asnumpy(out) + return xp.asnumpy(out) @_docs.write_docs @dims_to_spatial_axes @@ -788,7 +796,7 @@ def lowpass_conv_filter(self, cutoff: nDFloat = 0.2, order: float = 2, *, return self spatial_shape = self.sizesof(dims) weight = _get_ND_butterworth_filter(spatial_shape, cutoff, order, False, True) - ker_all = asnumpy(xp_fft.irfftn(weight, s=spatial_shape)) + ker_all = xp.asnumpy(xp.fft.irfftn(weight, s=spatial_shape)) ker_all = np.fft.fftshift(ker_all) sl = [] for s, c in zip(spatial_shape, cutoff): @@ -840,9 +848,9 @@ def func(arr): arr = xp.asarray(arr) shape = arr.shape weight = _get_ND_butterworth_filter(shape, cutoff, order, False, True) - ft = weight * xp_fft.rfftn(arr) - ift = xp_fft.irfftn(ft, s=shape) - return asnumpy(ift) + ft = weight * xp.fft.rfftn(arr) + ift = xp.fft.irfftn(ft, s=shape) + return xp.asnumpy(ift) input = da.from_array(self.value, chunks=chunks) out = da.map_overlap(func, input, depth=depth, boundary="reflect", dtype=self.dtype @@ -881,9 +889,9 @@ def highpass_filter(self, cutoff: nDFloat = 0.2, order: float = 2, *, dims: Dims input = xp.asarray(self) if len(dims) < self.ndim: weight = add_axes(self.axes, self.shape, weight, dims) - out = xp_fft.irfftn(weight*xp_fft.rfftn(input, axes=spatial_axes), + out = xp.fft.irfftn(weight*xp.fft.rfftn(input, axes=spatial_axes), s=spatial_shape, axes=spatial_axes) - return asnumpy(out) + return xp.asnumpy(out) @_docs.write_docs @@ -1958,12 +1966,12 @@ def peak_local_max(self, *, min_distance: float = 1.0, percentile: float = None, for sl, img in self.iter(c_axes, israw=True, exclude=dims): # skfeat.peak_local_max overwrite something so we need to give copy of img. if use_labels and hasattr(img, "labels"): - labels = asnumpy(img.labels) + labels = xp.asnumpy(img.labels) else: labels = None - indices = skfeat.peak_local_max(asnumpy(img), - footprint=asnumpy(_structures.ball_like(min_distance, ndim)), + indices = skfeat.peak_local_max(xp.asnumpy(img), + footprint=xp.asnumpy(_structures.ball_like(min_distance, ndim)), threshold_abs=thr, num_peaks=topn, num_peaks_per_label=topn_per_label, @@ -2029,12 +2037,12 @@ def corner_peaks(self, *, min_distance:int=1, percentile:float=None, for sl, img in self.iter(c_axes, israw=True, exclude=dims): # skfeat.corner_peaks overwrite something so we need to give copy of img. if use_labels and hasattr(img, "labels"): - labels = asnumpy(img.labels) + labels = xp.asnumpy(img.labels) else: labels = None - indices = skfeat.corner_peaks(asnumpy(img), - footprint=asnumpy(_structures.ball_like(min_distance, ndim)), + indices = skfeat.corner_peaks(xp.asnumpy(img), + footprint=xp.asnumpy(_structures.ball_like(min_distance, ndim)), threshold_abs=thr, num_peaks=topn, num_peaks_per_label=topn_per_label, @@ -2761,10 +2769,10 @@ def fft(self, *, shape: int | Iterable[int] | str = "same", shift: bool = True, else: shape = check_nd(shape, len(dims)) dtype = np.float64 if double_precision else np.float32 - freq = xp_fft.fftn(xp.asarray(self.value, dtype=dtype), s=shape, axes=axes) + freq = xp.fft.fftn(xp.asarray(self.value, dtype=dtype), s=shape, axes=axes) if shift: freq[:] = np.fft.fftshift(freq, axes=axes) - return asnumpy(freq, dtype=np.complex64) + return xp.asnumpy(freq, dtype=np.complex64) @_docs.write_docs @dims_to_spatial_axes @@ -2906,13 +2914,13 @@ def ifft(self, real: bool = True, *, shift: bool = True, double_precision = Fals else: freq = self.value dtype = np.complex128 if double_precision else np.complex64 - out = xp_fft.ifftn(xp.asarray(freq, dtype=dtype), + out = xp.fft.ifftn(xp.asarray(freq, dtype=dtype), axes=axes ).astype(np.complex64) if real: out = np.real(out) - return asnumpy(out) + return xp.asnumpy(out) @_docs.write_docs @dims_to_spatial_axes @@ -3249,7 +3257,7 @@ def skeletonize(self, radius: float = 0, *, dims: Dims = None, update=False) -> Skeletonized image. """ if radius >= 1: - selem = asnumpy(_structures.ball_like(radius, len(dims))) + selem = xp.asnumpy(_structures.ball_like(radius, len(dims))) else: selem = None @@ -3907,7 +3915,7 @@ def track_drift(self, along: str = None, show_drift: bool = False, for i, (_, img) in enumerate(img_fft.iter(along)): img = xp.asarray(img) if last_img is not None: - result[i] = asnumpy(_corr.subpixel_pcc(last_img, img, upsample_factor=upsample_factor)) + result[i] = xp.asnumpy(_corr.subpixel_pcc(last_img, img, upsample_factor=upsample_factor)) last_img = img else: last_img = img @@ -4116,14 +4124,14 @@ def pad_defocus(self, kernel, *, depth: int = 3, width: int = 6, bg: float = Non if kernel.ndim <= 1: def filter_func(img): - return asnumpy(_filters.gaussian_filter(img, kernel, mode="constant", cval=bg)) + return xp.asnumpy(_filters.gaussian_filter(img, kernel, mode="constant", cval=bg)) dz, dy, dx = kernel*3 # 3-sigma elif kernel.ndim == 3: kernel = kernel.astype(np.float32) kernel = kernel / np.sum(kernel) def filter_func(img): - return asnumpy(_filters.convolve(img, kernel, mode="constant", cval=bg)) + return xp.asnumpy(_filters.convolve(img, kernel, mode="constant", cval=bg)) dz, dy, dx = np.array(kernel.shape)//2 else: raise ValueError("`kernel` only take 0, 1, 3 dimensional array as an input.") diff --git a/impy/arrays/lazy.py b/impy/arrays/lazy.py index f355807e..ed2b403c 100644 --- a/impy/arrays/lazy.py +++ b/impy/arrays/lazy.py @@ -25,7 +25,7 @@ from .._types import nDFloat, Coords, Iterable, Dims from ..axes import ImageAxesError from .._const import Const -from .._cupy import xp, xp_ndi, xp_fft, asnumpy +from .._cupy import xp if TYPE_CHECKING: from dask import array as da @@ -89,7 +89,7 @@ def gb(self): def __array__(self): # Should not be `self.compute` because in napari Viewer this function is called every time # sliders are moved. - return asnumpy(self.value.compute()) + return xp.asnumpy(self.value.compute()) def __getitem__(self, key): if isinstance(key, str): @@ -261,7 +261,7 @@ def compute(self, ignore_limit: bool = False) -> ImgArray: with Progress("Converting to ImgArray"): arr = self.value.compute() if arr.ndim > 0: - img = asnumpy(arr).view(ImgArray) + img = xp.asnumpy(arr).view(ImgArray) for attr in ["name", "dirpath", "axes", "metadata", "history"]: setattr(img, attr, getattr(self, attr, None)) else: @@ -534,7 +534,7 @@ def _apply_dask_filter(self, # it = self.axisof(a) # output_chunks[it] = all_coords.shape[i+1] # - # cropped_img = self._apply_function(xp_ndi.map_coordinates, + # cropped_img = self._apply_function(xp.ndi.map_coordinates, # c_axes=complement_axes(dims, self.axes), # dtype=self.dtype, # rechunk_to="max", @@ -550,7 +550,7 @@ def erosion(self, radius: float = 1, *, dims: Dims = None, update: bool = False ) -> LazyImgArray: disk = _structures.ball_like(radius, len(dims)) c_axes = complement_axes(dims, self.axes) - filter_func = xp_ndi.grey_erosion if self.dtype != bool else xp_ndi.binary_erosion + filter_func = xp.ndi.grey_erosion if self.dtype != bool else xp.ndi.binary_erosion return self._apply_map_overlap( filter_func, @@ -566,7 +566,7 @@ def dilation(self, radius: float = 1, *, dims: Dims = None, update: bool = False ) -> LazyImgArray: disk = _structures.ball_like(radius, len(dims)) c_axes = complement_axes(dims, self.axes) - filter_func = xp_ndi.grey_dilation if self.dtype != bool else xp_ndi.binary_dilation + filter_func = xp.ndi.grey_dilation if self.dtype != bool else xp.ndi.binary_dilation return self._apply_map_overlap( filter_func, @@ -582,7 +582,7 @@ def opening(self, radius: float = 1, *, dims: Dims = None, update: bool = False ) -> LazyImgArray: disk = _structures.ball_like(radius, len(dims)) c_axes = complement_axes(dims, self.axes) - filter_func = xp_ndi.grey_opening if self.dtype != bool else xp_ndi.binary_opening + filter_func = xp.ndi.grey_opening if self.dtype != bool else xp.ndi.binary_opening return self._apply_map_overlap( filter_func, @@ -598,7 +598,7 @@ def closing(self, radius: float = 1, *, dims: Dims = None, update: bool = False ) -> LazyImgArray: disk = _structures.ball_like(radius, len(dims)) c_axes = complement_axes(dims, self.axes) - filter_func = xp_ndi.grey_closing if self.dtype != bool else xp_ndi.binary_closing + filter_func = xp.ndi.grey_closing if self.dtype != bool else xp.ndi.binary_closing return self._apply_map_overlap( filter_func, @@ -616,7 +616,7 @@ def gaussian_filter(self, sigma: nDFloat = 1.0, *, dims: Dims = None, update: bo c_axes = complement_axes(dims, self.axes) depth = _ceilint(sigma*4) return self._apply_map_overlap( - xp_ndi.gaussian_filter, + xp.ndi.gaussian_filter, c_axes=c_axes, depth=depth, kwargs=dict(sigma=sigma), @@ -630,7 +630,7 @@ def median_filter(self, radius: float = 1, *, dims: Dims = None, update: bool = ) -> LazyImgArray: disk = _structures.ball_like(radius, len(dims)) return self._apply_map_overlap( - xp_ndi.median_filter, + xp.ndi.median_filter, depth=_ceilint(radius), c_axes=complement_axes(dims, self.axes), kwargs=dict(footprint=disk) @@ -645,7 +645,7 @@ def mean_filter(self, radius: float = 1, *, dims: Dims = None, update: bool = Fa disk = _structures.ball_like(radius, len(dims)) kernel = (disk/np.sum(disk)).astype(np.float32) return self._apply_map_overlap( - xp_ndi.convolve, + xp.ndi.convolve, depth=_ceilint(radius), c_axes=complement_axes(dims, self.axes), kwargs=dict(weights=kernel), @@ -664,7 +664,7 @@ def convolve(self, kernel, *, mode: str = "reflect", cval: float = 0, dims: Dims depth = tuple(half_size) c_axes = complement_axes(dims, self.axes) return self._apply_map_overlap( - xp_ndi.convolve, + xp.ndi.convolve, c_axes=c_axes, depth=depth, kwargs=dict(weights=kernel, mode=mode, cval=cval), @@ -701,7 +701,7 @@ def laplacian_filter(self, radius: int = 1, *, dims: Dims = None, update: bool = ndim = len(dims) _, laplace_op = skres.uft.laplacian(ndim, (2*radius+1,) * ndim) return self._apply_map_overlap( - xp_ndi.convolve, + xp.ndi.convolve, depth=_ceilint(radius), c_axes=complement_axes(dims, self.axes), args=(laplace_op,), @@ -850,8 +850,8 @@ def func(arr): arr = xp.asarray(arr) shape = arr.shape weight = _get_ND_butterworth_filter(shape, cutoff, order, False, True) - ft = weight * xp_fft.rfftn(arr) - ift = xp_fft.irfftn(ft, s=shape) + ft = weight * xp.fft.rfftn(arr) + ift = xp.fft.irfftn(ft, s=shape) return ift out = self._apply_map_overlap(func, c_axes=c_axes, depth=depth, boundary="reflect") @@ -921,7 +921,7 @@ def pcc(x): return np.array([0]*ndim, dtype=np.float32).reshape(*each_shape) x = xp.asarray(x) result = _corr.subpixel_pcc(x[0], x[1], upsample_factor=upsample_factor) - return asnumpy(result[slice_out]) + return xp.asnumpy(result[slice_out]) from dask import array as da @@ -994,7 +994,7 @@ def warp(arr, shift, block_info=None): mx = xp.eye(ndim+1, dtype=np.float32) loc = block_info[None]["array-location"][0] mx[:-1, -1] = -xp.asarray(shift[loc[t_index]]) - return asnumpy( + return xp.asnumpy( _transform.warp(arr[slice_in], mx, **affine_kwargs)[slice_out] ) diff --git a/impy/correlation.py b/impy/correlation.py index ce4f9cb7..4f5282e4 100644 --- a/impy/correlation.py +++ b/impy/correlation.py @@ -9,7 +9,7 @@ from .utils.axesop import complement_axes, add_axes from .utils.utilcls import Progress from .utils.deco import dims_to_spatial_axes -from ._cupy import xp, asnumpy, xp_ndi +from ._cupy import xp from ._types import Dims __all__ = ["fsc", "fourier_shell_correlation", "ncc", "zncc", "fourier_ncc", "fourier_zncc", @@ -62,12 +62,12 @@ def fsc( with Progress("fsc"): # make radially separated labels labels = (r/dfreq).astype(np.uint16) - nlabels = int(asnumpy(labels.max())) + nlabels = int(xp.asnumpy(labels.max())) out = xp.empty(nlabels, dtype=xp.float32) def radial_sum(arr): arr = xp.asarray(arr) - return xp_ndi.sum_labels(arr, labels=labels, index=xp.arange(1, nlabels+1)) + return xp.ndi.sum_labels(arr, labels=labels, index=xp.arange(1, nlabels+1)) f0 = img0.fft(dims=dims) f1 = img1.fft(dims=dims) @@ -93,7 +93,7 @@ def _ncc(img0: ImgArray, img1: ImgArray, dims: Dims): img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.std(img0, axis=dims)*xp.std(img1, axis=dims)) / n - return asnumpy(corr) + return xp.asnumpy(corr) def _masked_ncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): @@ -116,7 +116,7 @@ def _zncc(img0: ImgArray, img1: ImgArray, dims: Dims): img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.sqrt(xp.sum(img0**2, axis=dims)*xp.sum(img1**2, axis=dims))) - return asnumpy(corr) + return xp.asnumpy(corr) def _masked_zncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): @@ -375,7 +375,7 @@ def pcc_maximum( upsample_factor, max_shifts=max_shifts ) - return asnumpy(shift) + return xp.asnumpy(shift) @_docs.write_docs def ft_pcc_maximum( @@ -418,7 +418,7 @@ def ft_pcc_maximum( upsample_factor, max_shifts=max_shifts, ) - return asnumpy(shift) + return xp.asnumpy(shift) @_docs.write_docs def polar_pcc_maximum( diff --git a/tests/test_fft.py b/tests/test_fft.py index ded0c215..4a5a8ba4 100644 --- a/tests/test_fft.py +++ b/tests/test_fft.py @@ -1,7 +1,7 @@ import impy as ip from pathlib import Path import numpy as np -from impy._cupy import xp, xp_fft, asnumpy +from impy._cupy import xp from numpy.testing import assert_allclose ip.Const["SHOW_PROGRESS"] = False @@ -10,11 +10,11 @@ def test_precision(): img = ip.imread(path)["c=1;t=0"].as_float() assert_allclose(img.fft(shift=False), - asnumpy(xp_fft.fftn(xp.asarray(img.value))) + xp.asnumpy(xp.fft.fftn(xp.asarray(img.value))) ) assert_allclose(img.fft(shift=False, double_precision=True), - asnumpy(xp_fft.fftn(xp.asarray(img.value.astype(np.float64))).astype(np.complex64)) + xp.asnumpy(xp.fft.fftn(xp.asarray(img.value.astype(np.float64))).astype(np.complex64)) ) assert_allclose(img.fft().ifft(), img, rtol=1e-6) From 9c494790843db42b5bb3f616f2b031e5007f2836 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Fri, 25 Feb 2022 01:53:09 +0900 Subject: [PATCH 02/12] refactor cupy --- impy/__init__.py | 8 ------ impy/_const.py | 51 +++++++++++++++++++++------------- impy/arrays/bases/metaarray.py | 8 +++--- impy/utils/deco.py | 6 ++-- 4 files changed, 39 insertions(+), 34 deletions(-) diff --git a/impy/__init__.py b/impy/__init__.py index 1a3b652b..e6a13126 100644 --- a/impy/__init__.py +++ b/impy/__init__.py @@ -7,14 +7,6 @@ from ._const import Const, SetConst -from ._cupy import GPU_AVAILABLE -if GPU_AVAILABLE: - Const._setitem_("RESOURCE", "cupy") - Const["SCHEDULER"] = "single-threaded" -else: - Const._setitem_("RESOURCE", "numpy") -del GPU_AVAILABLE - from .collections import * from .core import * from .binder import bind diff --git a/impy/_const.py b/impy/_const.py index d51055e9..3696f84c 100644 --- a/impy/_const.py +++ b/impy/_const.py @@ -1,17 +1,26 @@ import dask import psutil +from typing import Any, MutableMapping memory = psutil.virtual_memory() MAX_GB_LIMIT = memory.total / 2 * 1e-9 -class GlobalConstant(dict): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) +class GlobalConstant(MutableMapping[str, Any]): + __const: dict[str, Any] + + def __init__(self, **kwargs): + object.__setattr__(self, "__const", dict(**kwargs)) + + def __len__(self) -> int: + return len(self.__const) + + def __iter__(self): + raise StopIteration def __getitem__(self, k): try: - return super().__getitem__(k) + return self.__const[k] except KeyError: raise KeyError(f"Global constants: {', '.join(self.keys())}") @@ -33,18 +42,21 @@ def __setitem__(self, k, v): raise ValueError("ID_AXIS must be single character.") elif k == "FONT_SIZE_FACTOR": if not isinstance(v, (int, float)): - raise TypeError("MAX_GB must be float.") + raise TypeError("FONT_SIZE_FACTOR must be float.") elif k == "RESOURCE": - raise RuntimeError("Cannot set RESOURCE.") + from ._cupy import xp + if v == "numpy": + xp.setNumpy() + elif v == "cupy": + xp.setCupy() + else: + raise ValueError("RESOURCES must be either 'numpy' or 'cupy'.") elif k == "SCHEDULER": dask.config.set(scheduler=v) else: raise RuntimeError("Cannot set new keys.") - super().__setitem__(k, v) - - def _setitem_(self, k, v): - super().__setitem__(k, v) + self.__const[k] = v __getattr__ = __getitem__ __setattr__ = __setitem__ @@ -53,15 +65,16 @@ def __delitem__(self, v): raise RuntimeError("Cannot delete any items.") def __repr__(self): - return \ - f""" - MAX_GB : {self.MAX_GB:.2f} GB - SHOW_PROGRESS : {self.SHOW_PROGRESS} - ID_AXIS : {self.ID_AXIS} - FONT_SIZE_FACTOR: {self.FONT_SIZE_FACTOR} - RESOURCE : {self.RESOURCE} - SCHEDULER : {self.SCHEDULER} - """ + return ( + f""" + MAX_GB : {self.MAX_GB:.2f} GB + SHOW_PROGRESS : {self.SHOW_PROGRESS} + ID_AXIS : {self.ID_AXIS} + FONT_SIZE_FACTOR: {self.FONT_SIZE_FACTOR} + RESOURCE : {self.RESOURCE} + SCHEDULER : {self.SCHEDULER} + """ + ) Const = GlobalConstant( MAX_GB = MAX_GB_LIMIT/2, diff --git a/impy/arrays/bases/metaarray.py b/impy/arrays/bases/metaarray.py index 141363c3..c1f48ddc 100644 --- a/impy/arrays/bases/metaarray.py +++ b/impy/arrays/bases/metaarray.py @@ -3,7 +3,7 @@ from ..axesmixin import AxesMixin, get_axes_tuple from ..._types import * from ...axes import ImageAxesError -from ..._cupy import xp, xp_ndarray, asnumpy +from ..._cupy import xp from ...utils.axesop import * from ...utils.slicer import * from ...collections import DataList @@ -306,7 +306,7 @@ def apply_dask(self, if len(c_axes) == 0: # Do not construct dask tasks if it is not needed. - out = asnumpy(func(self.value, *args, **kwargs), dtype=dtype) + out = xp.asnumpy(func(self.value, *args, **kwargs), dtype=dtype) else: from dask import array as da new_axis = _list_of_axes(self, new_axis) @@ -336,7 +336,7 @@ def apply_dask(self, img_idx = [] args = [] for i, arg in enumerate(all_args): - if isinstance(arg, (np.ndarray, xp_ndarray)) and arg.shape == self.shape: + if isinstance(arg, (np.ndarray, xp.ndarray)) and arg.shape == self.shape: args.append(da.from_array(arg, chunks=chunks)) img_idx.append(i) else: @@ -349,7 +349,7 @@ def _func(*args, **kwargs): continue args[i] = args[i][slice_in] out = func(*args, **kwargs) - return asnumpy(out[slice_out]) + return xp.asnumpy(out[slice_out]) out = da.map_blocks(_func, *args, diff --git a/impy/utils/deco.py b/impy/utils/deco.py index faae6a15..88f76c42 100644 --- a/impy/utils/deco.py +++ b/impy/utils/deco.py @@ -3,7 +3,7 @@ import inspect import re from .utilcls import Progress -from .._cupy import xp_ndarray, asnumpy +from .._cupy import xp __all__ = ["record", "record_lazy", @@ -37,8 +37,8 @@ def _record(self, *args, **kwargs): temp = getattr(out, "temp", None) - if type(out) in (np.ndarray, xp_ndarray): - out = asnumpy(out).view(self.__class__) + if type(out) in (np.ndarray, xp.ndarray): + out = xp.asnumpy(out).view(self.__class__) # record history and update if needed ifupdate = kwargs.pop("update", False) From f59329aa8c804b2ab3ede09c78a1cf571f9a8f88 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Fri, 25 Feb 2022 01:59:37 +0900 Subject: [PATCH 03/12] cons bug fix --- impy/_const.py | 27 ++++++++++++--------------- 1 file changed, 12 insertions(+), 15 deletions(-) diff --git a/impy/_const.py b/impy/_const.py index 3696f84c..68b75e6c 100644 --- a/impy/_const.py +++ b/impy/_const.py @@ -1,4 +1,3 @@ -import dask import psutil from typing import Any, MutableMapping @@ -7,22 +6,19 @@ MAX_GB_LIMIT = memory.total / 2 * 1e-9 class GlobalConstant(MutableMapping[str, Any]): - __const: dict[str, Any] + _const: dict[str, Any] def __init__(self, **kwargs): - object.__setattr__(self, "__const", dict(**kwargs)) + object.__setattr__(self, "_const", dict(**kwargs)) def __len__(self) -> int: - return len(self.__const) + return len(self._const) def __iter__(self): raise StopIteration def __getitem__(self, k): - try: - return self.__const[k] - except KeyError: - raise KeyError(f"Global constants: {', '.join(self.keys())}") + return self._const[k] def __setitem__(self, k, v): if k == "MAX_GB": @@ -52,11 +48,12 @@ def __setitem__(self, k, v): else: raise ValueError("RESOURCES must be either 'numpy' or 'cupy'.") elif k == "SCHEDULER": + import dask dask.config.set(scheduler=v) else: raise RuntimeError("Cannot set new keys.") - self.__const[k] = v + self._const[k] = v __getattr__ = __getitem__ __setattr__ = __setitem__ @@ -67,12 +64,12 @@ def __delitem__(self, v): def __repr__(self): return ( f""" - MAX_GB : {self.MAX_GB:.2f} GB - SHOW_PROGRESS : {self.SHOW_PROGRESS} - ID_AXIS : {self.ID_AXIS} - FONT_SIZE_FACTOR: {self.FONT_SIZE_FACTOR} - RESOURCE : {self.RESOURCE} - SCHEDULER : {self.SCHEDULER} + MAX_GB : {self['MAX_GB']:.2f} GB + SHOW_PROGRESS : {self['SHOW_PROGRESS']} + ID_AXIS : {self['ID_AXIS']} + FONT_SIZE_FACTOR: {self['FONT_SIZE_FACTOR']} + RESOURCE : {self['RESOURCE']} + SCHEDULER : {self['SCHEDULER']} """ ) From cd0b8a1c9e2e4dc03f0a4e3c03258fb522d5cd13 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Fri, 25 Feb 2022 02:01:43 +0900 Subject: [PATCH 04/12] set scheduler --- impy/_cupy.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/impy/_cupy.py b/impy/_cupy.py index bfa4c888..0d5b42d7 100644 --- a/impy/_cupy.py +++ b/impy/_cupy.py @@ -42,6 +42,8 @@ def setNumpy(self) -> None: self.asarray = np.asarray self.ndarray = np.ndarray self.state = "numpy" + from ._const import Const + Const["SCHEDULER"] = "threads" def setCupy(self) -> None: import cupy as cp @@ -64,6 +66,9 @@ def cp_asnumpy(arr, dtype=None): self.asarray = cp.asarray self.ndarray = cp_ndarray self.state = "cupy" + + from ._const import Const + Const["SCHEDULER"] = "single-threaded" xp = XP() \ No newline at end of file From 8e2a79db91476ed4daaf9575b9ddf06124f121a3 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Sun, 27 Feb 2022 11:26:50 +0900 Subject: [PATCH 05/12] update array API --- impy/_const.py | 2 +- impy/{_cupy.py => array_api.py} | 69 +++++++++++++++++++++++++++++++ impy/arrays/_utils/_corr.py | 2 +- impy/arrays/_utils/_deconv.py | 9 ++-- impy/arrays/_utils/_filters.py | 4 +- impy/arrays/_utils/_linalg.py | 2 +- impy/arrays/_utils/_misc.py | 2 +- impy/arrays/_utils/_skimage.py | 2 +- impy/arrays/_utils/_structures.py | 9 ++-- impy/arrays/_utils/_transform.py | 2 +- impy/arrays/bases/metaarray.py | 2 +- impy/arrays/imgarray.py | 4 +- impy/arrays/lazy.py | 2 +- impy/correlation.py | 4 +- impy/utils/deco.py | 2 +- impy/utils/io.py | 2 +- tests/test_fft.py | 2 +- 17 files changed, 96 insertions(+), 25 deletions(-) rename impy/{_cupy.py => array_api.py} (50%) diff --git a/impy/_const.py b/impy/_const.py index 68b75e6c..b2615d81 100644 --- a/impy/_const.py +++ b/impy/_const.py @@ -40,7 +40,7 @@ def __setitem__(self, k, v): if not isinstance(v, (int, float)): raise TypeError("FONT_SIZE_FACTOR must be float.") elif k == "RESOURCE": - from ._cupy import xp + from .array_api import xp if v == "numpy": xp.setNumpy() elif v == "cupy": diff --git a/impy/_cupy.py b/impy/array_api.py similarity index 50% rename from impy/_cupy.py rename to impy/array_api.py index 0d5b42d7..ec77c062 100644 --- a/impy/_cupy.py +++ b/impy/array_api.py @@ -16,6 +16,11 @@ def func(*args, **kwargs): from scipy import ndimage as scipy_ndi from typing import Callable +# CUDA <= ver.8 does not have gradient +def _gradient(a, axis=None): + out = np.gradient(a.get(), axis=axis) + return xp.asarray(out) + class XP: fft: ModuleType linalg: ModuleType @@ -41,6 +46,37 @@ def setNumpy(self) -> None: self.asnumpy = np.asarray self.asarray = np.asarray self.ndarray = np.ndarray + self.empty = np.empty + self.zeros = np.zeros + self.ones = np.ones + self.array = np.array + self.exp = np.exp + self.sin = np.sin + self.cos = np.cos + self.tan = np.tan + self.sqrt = np.sqrt + self.mean = np.mean + self.max = np.max + self.min = np.min + self.median = np.median + self.sum = np.sum + self.prod = np.prod + self.std = np.std + self.meshgrid = np.meshgrid + self.indices = np.indices + self.arange = np.arange + self.linspace = np.linspace + self.real = np.real + self.imag = np.imag + self.conjugate = np.conjugate + self.angle = np.angle + self.abs = np.abs + self.mod = np.mod + self.fix = np.fix + self.gradient = np.gradient + self.tensordot = np.tensordot + self.stack = np.stack + self.state = "numpy" from ._const import Const Const["SCHEDULER"] = "threads" @@ -65,6 +101,39 @@ def cp_asnumpy(arr, dtype=None): self.asnumpy = cp_asnumpy self.asarray = cp.asarray self.ndarray = cp_ndarray + self.empty = cp.empty + self.zeros = cp.zeros + self.ones = cp.ones + self.array = cp.array + self.exp = cp.exp + self.sin = cp.sin + self.cos = cp.cos + self.tan = cp.tan + self.sqrt = cp.sqrt + self.mean = cp.mean + self.max = cp.max + self.min = cp.min + self.median = cp.median + self.sum = cp.sum + self.prod = cp.prod + self.std = cp.std + self.meshgrid = cp.meshgrid + self.indices = cp.indices + self.arange = cp.arange + self.linspace = cp.linspace + self.real = cp.real + self.imag = cp.imag + self.conjugate = cp.conjugate + self.angle = cp.angle + self.abs = cp.abs + self.mod = cp.mod + self.fix = cp.fix + try: + self.gradient = cp.gradient + except AttributeError: + self.gradient = _gradient + self.tensordot = cp.tensordot + self.stack = cp.stack self.state = "cupy" from ._const import Const diff --git a/impy/arrays/_utils/_corr.py b/impy/arrays/_utils/_corr.py index b849acc1..2983d182 100644 --- a/impy/arrays/_utils/_corr.py +++ b/impy/arrays/_utils/_corr.py @@ -1,6 +1,6 @@ from __future__ import annotations import numpy as np -from ..._cupy import xp +from ...array_api import xp # Modified from skimage/registration/_phase_cross_correlation.py # Compatible between numpy/cupy and supports maximum shifts. diff --git a/impy/arrays/_utils/_deconv.py b/impy/arrays/_utils/_deconv.py index 42f77215..9ba75e7b 100644 --- a/impy/arrays/_utils/_deconv.py +++ b/impy/arrays/_utils/_deconv.py @@ -1,5 +1,6 @@ from functools import partial -from ..._cupy import xp +import numpy as np +from ...array_api import xp try: gradient = xp.gradient @@ -47,7 +48,7 @@ def richardson_lucy_tv(obs, psf_ft, psf_ft_conj, max_iter, lmd, tol, eps): ifft = partial(xp.fft.irfftn, s=obs.shape) est_old = ifft(fft(obs) * psf_ft).real est_new = xp.empty(obs.shape, dtype=xp.float32) - conv = factor = norm = gg = xp.empty(obs.shape, dtype=xp.float32) # placeholder + conv = factor = norm = gg = xp.empty(obs.shape, dtype=np.float32) # placeholder for _ in range(max_iter): conv[:] = ifft(fft(est_old) * psf_ft).real @@ -67,14 +68,14 @@ def richardson_lucy_tv(obs, psf_ft, psf_ft_conj, max_iter, lmd, tol, eps): def _safe_div(a, b, eps=1e-8): - out = xp.zeros(a.shape, dtype=xp.float32) + out = xp.zeros(a.shape, dtype=np.float32) mask = b > eps out[mask] = a[mask]/b[mask] return out def check_psf(img, psf, dims): - psf = xp.asarray(psf, dtype=xp.float32) + psf = xp.asarray(psf, dtype=np.float32) psf /= xp.sum(psf) if img.sizesof(dims) != psf.shape: diff --git a/impy/arrays/_utils/_filters.py b/impy/arrays/_utils/_filters.py index 76a9222c..42c352a9 100644 --- a/impy/arrays/_utils/_filters.py +++ b/impy/arrays/_utils/_filters.py @@ -30,7 +30,7 @@ ] -from ..._cupy import xp, cupy_dispatcher +from ...array_api import xp, cupy_dispatcher from scipy import ndimage as scipy_ndi def get_func(function_name): @@ -81,7 +81,7 @@ def mean_filter(img, selem): return convolve(img, selem/np.sum(selem)) def phase_mean_filter(img, selem, a): - out = xp.empty(img.shape, dtype=xp.complex64) + out = xp.empty(img.shape, dtype=np.complex64) xp.exp(1j*a*img, out=out) convolve(out, selem, output=out) return xp.angle(out)/a diff --git a/impy/arrays/_utils/_linalg.py b/impy/arrays/_utils/_linalg.py index 4a414d8b..85ec7410 100644 --- a/impy/arrays/_utils/_linalg.py +++ b/impy/arrays/_utils/_linalg.py @@ -1,7 +1,7 @@ import numpy as np from skimage.feature.corner import _symmetric_image from ._skimage import skfeat -from ..._cupy import xp +from ...array_api import xp def eigh(a): a = xp.asarray(a, dtype=a.dtype) diff --git a/impy/arrays/_utils/_misc.py b/impy/arrays/_utils/_misc.py index 653afabf..3f417337 100644 --- a/impy/arrays/_utils/_misc.py +++ b/impy/arrays/_utils/_misc.py @@ -1,5 +1,5 @@ import numpy as np -from ..._cupy import xp +from ...array_api import xp def adjust_bin(img, binsize: int, check_edges: bool, dims: str, all_axes: str): shape = [] diff --git a/impy/arrays/_utils/_skimage.py b/impy/arrays/_utils/_skimage.py index c3fb7f79..3ab930bb 100644 --- a/impy/arrays/_utils/_skimage.py +++ b/impy/arrays/_utils/_skimage.py @@ -13,7 +13,7 @@ from skimage import util as skutil from functools import reduce, lru_cache -from ..._cupy import xp +from ...array_api import xp # same as the function in skimage.filters._fft_based (available in scikit-image >= 0.19) @lru_cache(maxsize=4) diff --git a/impy/arrays/_utils/_structures.py b/impy/arrays/_utils/_structures.py index b9111443..bedce31d 100644 --- a/impy/arrays/_utils/_structures.py +++ b/impy/arrays/_utils/_structures.py @@ -1,4 +1,5 @@ -from ..._cupy import xp +import numpy as np +from ...array_api import xp def circle(radius, shape, dtype="bool"): x = xp.arange(-(shape[0] - 1) / 2, (shape[0] - 1) / 2 + 1) @@ -11,15 +12,15 @@ def ball_like(radius, ndim:int): L = xp.arange(-half_int, half_int + 1) if ndim == 1: - return xp.ones(int(radius)*2+1, dtype=xp.uint8) + return xp.ones(int(radius)*2+1, dtype=np.uint8) elif ndim == 2: X, Y = xp.meshgrid(L, L) s = X**2 + Y**2 - return xp.array(s <= radius**2, dtype=xp.uint8) + return xp.array(s <= radius**2, dtype=np.uint8) elif ndim == 3: Z, Y, X = xp.meshgrid(L, L, L) s = X**2 + Y**2 + Z**2 - return xp.array(s <= radius**2, dtype=xp.uint8) + return xp.array(s <= radius**2, dtype=np.uint8) else: raise ValueError(f"dims must be 1 - 3, but got {ndim}") diff --git a/impy/arrays/_utils/_transform.py b/impy/arrays/_utils/_transform.py index 4b1b13a9..30eb3a01 100644 --- a/impy/arrays/_utils/_transform.py +++ b/impy/arrays/_utils/_transform.py @@ -2,7 +2,7 @@ import scipy from collections import namedtuple from ._skimage import sktrans -from ..._cupy import xp +from ...array_api import xp __all__ = ["compose_affine_matrix", "decompose_affine_matrix", diff --git a/impy/arrays/bases/metaarray.py b/impy/arrays/bases/metaarray.py index c1f48ddc..8825b7dd 100644 --- a/impy/arrays/bases/metaarray.py +++ b/impy/arrays/bases/metaarray.py @@ -3,7 +3,7 @@ from ..axesmixin import AxesMixin, get_axes_tuple from ..._types import * from ...axes import ImageAxesError -from ..._cupy import xp +from ...array_api import xp from ...utils.axesop import * from ...utils.slicer import * from ...collections import DataList diff --git a/impy/arrays/imgarray.py b/impy/arrays/imgarray.py index 03943f27..e482ea2c 100644 --- a/impy/arrays/imgarray.py +++ b/impy/arrays/imgarray.py @@ -23,7 +23,7 @@ from ..collections import DataDict from .._types import nDInt, nDFloat, Dims, Coords, Iterable, Callable from .._const import Const -from .._cupy import xp, cupy_dispatcher +from ..array_api import xp, cupy_dispatcher if TYPE_CHECKING: from ..frame import MarkerFrame, PathFrame @@ -4445,4 +4445,4 @@ def wave_num(sl: slice, s: int, uf: int) -> xp.ndarray: raise ValueError(f"Invalid value encountered in slice {sl}.") n = stop - start - return xp.linspace(start, stop, n*uf, endpoint=False)[:, xp.newaxis] \ No newline at end of file + return xp.linspace(start, stop, n*uf, endpoint=False)[:, np.newaxis] \ No newline at end of file diff --git a/impy/arrays/lazy.py b/impy/arrays/lazy.py index ed2b403c..a2a88ff5 100644 --- a/impy/arrays/lazy.py +++ b/impy/arrays/lazy.py @@ -25,7 +25,7 @@ from .._types import nDFloat, Coords, Iterable, Dims from ..axes import ImageAxesError from .._const import Const -from .._cupy import xp +from ..array_api import xp if TYPE_CHECKING: from dask import array as da diff --git a/impy/correlation.py b/impy/correlation.py index 4f5282e4..6334568a 100644 --- a/impy/correlation.py +++ b/impy/correlation.py @@ -9,7 +9,7 @@ from .utils.axesop import complement_axes, add_axes from .utils.utilcls import Progress from .utils.deco import dims_to_spatial_axes -from ._cupy import xp +from .array_api import xp from ._types import Dims __all__ = ["fsc", "fourier_shell_correlation", "ncc", "zncc", "fourier_ncc", "fourier_zncc", @@ -64,7 +64,7 @@ def fsc( labels = (r/dfreq).astype(np.uint16) nlabels = int(xp.asnumpy(labels.max())) - out = xp.empty(nlabels, dtype=xp.float32) + out = xp.empty(nlabels, dtype=np.float32) def radial_sum(arr): arr = xp.asarray(arr) return xp.ndi.sum_labels(arr, labels=labels, index=xp.arange(1, nlabels+1)) diff --git a/impy/utils/deco.py b/impy/utils/deco.py index 88f76c42..61d5560d 100644 --- a/impy/utils/deco.py +++ b/impy/utils/deco.py @@ -3,7 +3,7 @@ import inspect import re from .utilcls import Progress -from .._cupy import xp +from ..array_api import xp __all__ = ["record", "record_lazy", diff --git a/impy/utils/io.py b/impy/utils/io.py index 9b4de895..b5951aa3 100644 --- a/impy/utils/io.py +++ b/impy/utils/io.py @@ -6,7 +6,7 @@ import warnings import os import numpy as np -from .._cupy import xp +from ..array_api import xp from ..axes import ImageAxesError from .axesop import complement_axes diff --git a/tests/test_fft.py b/tests/test_fft.py index 4a5a8ba4..4c646b99 100644 --- a/tests/test_fft.py +++ b/tests/test_fft.py @@ -1,7 +1,7 @@ import impy as ip from pathlib import Path import numpy as np -from impy._cupy import xp +from impy.array_api import xp from numpy.testing import assert_allclose ip.Const["SHOW_PROGRESS"] = False From bd01d2acc65b2d34e6235216a4af340afc3aeeac Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 14:59:06 +0900 Subject: [PATCH 06/12] change SetConst --- impy/_const.py | 22 ++++++++++------------ 1 file changed, 10 insertions(+), 12 deletions(-) diff --git a/impy/_const.py b/impy/_const.py index 68b75e6c..baed1339 100644 --- a/impy/_const.py +++ b/impy/_const.py @@ -1,3 +1,4 @@ +from __future__ import annotations import psutil from typing import Any, MutableMapping @@ -84,19 +85,16 @@ def __repr__(self): class SetConst: n_ongoing = 0 - def __init__(self, name=None, value=None, **kwargs): - if name is None and value is None and len(kwargs) == 1: - name, value = list(kwargs.items())[0] - elif name in Const.keys() and value is not None: - pass - else: - raise TypeError("Invalid input for SetConst") - self.name = name - self.value = value + def __init__(self, dict_: dict[str, Any] | None =None, **kwargs): + dict_ = dict_ or {} + dict_.update(kwargs) + self._kwargs = dict_ def __enter__(self): - self.old_value = Const[self.name] - Const[self.name] = self.value + self._old_value = [(k, Const[k]) for k in self._kwargs.keys()] + for k, v in self._kwargs.items(): + Const[k] = v def __exit__(self, exc_type, exc_value, traceback): - Const[self.name] = self.old_value \ No newline at end of file + for k, v in self._old_value: + Const[k] = v From 1b63aea2c91404ff6e38148a9f24a773dca45729 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 15:04:26 +0900 Subject: [PATCH 07/12] use cupy in random if available --- impy/random.py | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/impy/random.py b/impy/random.py index d0c13b54..bb3989f5 100644 --- a/impy/random.py +++ b/impy/random.py @@ -2,15 +2,16 @@ from functools import wraps import numpy as np from .arrays import ImgArray +from .array_api import xp from .core import asarray def __getattr__(name: str): - npfunc = getattr(np.random, name) - @wraps(npfunc) + xpfunc = getattr(xp.random, name) + @wraps(xpfunc) def _func(*args, **kwargs) -> ImgArray: - name = kwargs.pop("name", npfunc.__name__) + name = kwargs.pop("name", xpfunc.__name__) axes = kwargs.pop("axes", None) - out = npfunc(*args, **kwargs) + out = xp.asnumpy(xpfunc(*args, **kwargs)) return asarray(out, name=name, axes=axes) return _func @@ -20,7 +21,7 @@ def random(size, name: str = None, axes: str = None) -> ImgArray: name = name or "random" - return asarray(np.random.random(size), name=name, axes=axes) + return asarray(xp.asnumpy(xp.random.random(size)), name=name, axes=axes) @wraps(np.random.normal) def normal(loc=0.0, @@ -30,7 +31,7 @@ def normal(loc=0.0, name: str = None, axes: str = None) -> ImgArray: name = name or "normal" - return asarray(np.random.normal(loc, scale, size), name=name, axes=axes) + return asarray(xp.asnumpy(xp.random.normal(loc, scale, size)), name=name, axes=axes) def random_uint8(size: int | tuple[int], *, @@ -53,9 +54,9 @@ def random_uint8(size: int | tuple[int], ImgArray Random Image in dtype ``np.uint8``. """ - arr = np.random.randint(0, 255, size, dtype=np.uint8) + arr = xp.random.randint(0, 255, size, dtype=np.uint8) name = name or "random_uint8" - return asarray(arr, name=name, axes=axes) + return asarray(xp.asnumpy(arr), name=name, axes=axes) def random_uint16(size, *, @@ -78,7 +79,7 @@ def random_uint16(size, ImgArray Random Image in dtype ``np.uint16``. """ - arr = np.random.randint(0, 65535, size, dtype=np.uint16) + arr = xp.random.randint(0, 65535, size, dtype=np.uint16) name = name or "random_uint16" - return asarray(arr, name=name, axes=axes) + return asarray(xp.asnumpy(arr), name=name, axes=axes) From 1da8e3bfb59f97c7531ae6ceef493502072f2b66 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 15:23:47 +0900 Subject: [PATCH 08/12] better implementation for cupy --- impy/arrays/imgarray.py | 9 ++++++++- impy/correlation.py | 29 ++++++++++++++++------------- 2 files changed, 24 insertions(+), 14 deletions(-) diff --git a/impy/arrays/imgarray.py b/impy/arrays/imgarray.py index e482ea2c..a29fced6 100644 --- a/impy/arrays/imgarray.py +++ b/impy/arrays/imgarray.py @@ -143,11 +143,18 @@ def affine(self, matrix=None, scale=None, rotation=None, shear=None, translation output_shape=output_shape) ) + @record + def map_coordinates(self, coords, *, mode="constant", cval: float = 0, order: int = 1): + ... + # TODO: Support multi-dimension + return xp.ndi.map_coordinates(self.values, coords, mode=mode, cval=cval, order=order, prefilter=order>1) + + @_docs.write_docs @dims_to_spatial_axes @same_dtype(asfloat=True) @record - def rotate(self, degree:float, center="center", *, mode="constant", cval: float=0, dims: Dims = 2, + def rotate(self, degree:float, center="center", *, mode="constant", cval: float = 0, dims: Dims = 2, order: int = 1, update: bool = False) -> ImgArray: """ 2D rotation of an image around a point. Outside will be padded with zero. For n-D images, diff --git a/impy/correlation.py b/impy/correlation.py index 6334568a..98f4ddbd 100644 --- a/impy/correlation.py +++ b/impy/correlation.py @@ -107,16 +107,12 @@ def _masked_ncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): np.ma.std(img0ma, axis=axis)*np.ma.std(img1ma, axis=axis)) / n -def _zncc(img0: ImgArray, img1: ImgArray, dims: Dims): +def _zncc(img0: xp.ndarray, img1: xp.ndarray, dims: Dims): # Basic Zero-Normalized Cross Correlation with batch processing. # Inputs must be already zero-normalized. - if isinstance(dims, str): - dims = tuple(img0.axisof(a) for a in dims) - img0 = xp.asarray(img0) - img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.sqrt(xp.sum(img0**2, axis=dims)*xp.sum(img1**2, axis=dims))) - return xp.asnumpy(corr) + return corr def _masked_zncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): @@ -192,13 +188,16 @@ def zncc( """ with Progress("zncc"): img0, img1 = _check_inputs(img0, img1) - img0zn = img0 - np.mean(img0, axis=dims, keepdims=True) - img1zn = img1 - np.mean(img1, axis=dims, keepdims=True) + dims = tuple(img0.axisof(a) for a in dims) + img0 = xp.asarray(img0.value) + img1 = xp.asarray(img1.value) + img0zn = img0 - xp.mean(img0, axis=dims, keepdims=True) + img1zn = img1 - xp.mean(img1, axis=dims, keepdims=True) if mask is None: corr = _zncc(img0zn, img1zn, dims) else: corr = _masked_zncc(img0zn, img1zn, dims, mask) - return _make_corr_output(corr, img0, "zncc", squeeze, dims) + return _make_corr_output(xp.asnumpy(corr), img0, "zncc", squeeze, dims) # alias pearson_coloc = zncc @@ -321,10 +320,14 @@ def fourier_zncc( """ with Progress("fourier_zncc"): img0, img1 = _check_inputs(img0, img1) - f0 = np.sqrt(img0.power_spectra(dims=dims, zero_norm=True)) - f1 = np.sqrt(img1.power_spectra(dims=dims, zero_norm=True)) - f0 -= np.mean(f0, axis=dims, keepdims=True) - f1 -= np.mean(f1, axis=dims, keepdims=True) + dims = tuple(img0.axisof(a) for a in dims) + pw0 = xp.asarray(img0.power_spectra(dims=dims, zero_norm=True).value) + pw1 = xp.asarray(img1.power_spectra(dims=dims, zero_norm=True).value) + + f0 = xp.sqrt(pw0) + f1 = xp.sqrt(pw1) + f0 -= xp.mean(f0, axis=dims, keepdims=True) + f1 -= xp.mean(f1, axis=dims, keepdims=True) if mask is None: corr = _zncc(f0, f1, dims) else: From ca2bdf884ca54830c6667df77f2ef33da7d6141d Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 15:39:18 +0900 Subject: [PATCH 09/12] map_coordinate --- impy/arrays/imgarray.py | 31 ++++++++++++++++++++++++++++--- 1 file changed, 28 insertions(+), 3 deletions(-) diff --git a/impy/arrays/imgarray.py b/impy/arrays/imgarray.py index a29fced6..0514ee66 100644 --- a/impy/arrays/imgarray.py +++ b/impy/arrays/imgarray.py @@ -143,11 +143,36 @@ def affine(self, matrix=None, scale=None, rotation=None, shear=None, translation output_shape=output_shape) ) + @_docs.write_docs + @same_dtype(asfloat=True) @record - def map_coordinates(self, coords, *, mode="constant", cval: float = 0, order: int = 1): - ... + def map_coordinates(self, coordinates, *, mode="constant", cval: float = 0, order: int = 1): + r""" + Coordinate mapping in the image. See ``scipy.ndimage.map_coordinates``. + + Parameters + ---------- + coordinates, mode, cval + Padding mode, constant value and the shape of output. See ``scipy.ndimage.map_coordinates``. + for details. + {order} + + Returns + ------- + ImgArray + Transformed image. + """ # TODO: Support multi-dimension - return xp.ndi.map_coordinates(self.values, coords, mode=mode, cval=cval, order=order, prefilter=order>1) + return xp.asnumpy( + xp.ndi.map_coordinates( + xp.asarray(self.value), + xp.asarray(coordinates), + mode=mode, + cval=cval, + order=order, + prefilter=order>1 + ) + ) @_docs.write_docs From 3050d4a0881c6a19c3d254159c1fbcc7a91705f2 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 16:55:45 +0900 Subject: [PATCH 10/12] switch numpy and cupy in pytest --- impy/array_api.py | 11 ++- impy/arrays/_utils/_corr.py | 11 ++- impy/arrays/_utils/_filters.py | 9 +-- impy/arrays/bases/metaarray.py | 21 ++--- impy/arrays/imgarray.py | 11 +-- tests/conftest.py | 10 +++ tests/test_correlation.py | 144 +++++++++++++++++---------------- tests/test_fft.py | 58 ++++++------- tests/test_lazy.py | 34 ++++---- tests/test_methods.py | 11 +-- 10 files changed, 171 insertions(+), 149 deletions(-) create mode 100644 tests/conftest.py diff --git a/impy/array_api.py b/impy/array_api.py index ec77c062..14930b5b 100644 --- a/impy/array_api.py +++ b/impy/array_api.py @@ -9,7 +9,7 @@ def func(*args, **kwargs): if xp.state == "cupy": args = (xp.asarray(a) if isinstance(a, np.ndarray) else a for a in args) out = function(*args, **kwargs) - return out + return xp.asnumpy(out) return func from types import ModuleType @@ -76,6 +76,9 @@ def setNumpy(self) -> None: self.gradient = np.gradient self.tensordot = np.tensordot self.stack = np.stack + self.unravel_index = np.unravel_index + self.argmax = np.argmax + self.argmin = np.argmin self.state = "numpy" from ._const import Const @@ -91,7 +94,6 @@ def cp_asnumpy(arr, dtype=None): from cupyx.scipy import fft as cp_fft from cupyx.scipy import ndimage as cp_ndi from cupy import linalg as cp_linalg - from cupy import ndarray as cp_ndarray self._module = cp self.fft = cp_fft @@ -100,7 +102,7 @@ def cp_asnumpy(arr, dtype=None): self.ndi = cp_ndi self.asnumpy = cp_asnumpy self.asarray = cp.asarray - self.ndarray = cp_ndarray + self.ndarray = cp.ndarray self.empty = cp.empty self.zeros = cp.zeros self.ones = cp.ones @@ -134,6 +136,9 @@ def cp_asnumpy(arr, dtype=None): self.gradient = _gradient self.tensordot = cp.tensordot self.stack = cp.stack + self.unravel_index = cp.unravel_index + self.argmax = cp.argmax + self.argmin = cp.argmin self.state = "cupy" from ._const import Const diff --git a/impy/arrays/_utils/_corr.py b/impy/arrays/_utils/_corr.py index 2983d182..23ec8463 100644 --- a/impy/arrays/_utils/_corr.py +++ b/impy/arrays/_utils/_corr.py @@ -21,7 +21,7 @@ def subpixel_pcc( maxima = xp.unravel_index(xp.argmax(power), power.shape) midpoints = xp.array([np.fix(axis_size / 2) for axis_size in power.shape]) - shifts = xp.asarray(maxima, dtype=xp.float32) + shifts = xp.asarray(maxima, dtype=np.float32) shifts[shifts > midpoints] -= xp.array(power.shape)[shifts > midpoints] # Initial shift estimate in upsampled grid shifts = xp.fix(shifts * upsample_factor) / upsample_factor @@ -29,7 +29,7 @@ def subpixel_pcc( upsampled_region_size = np.ceil(upsample_factor * 1.5) # Center of output array at dftshift + 1 dftshift = xp.fix(upsampled_region_size / 2.0) - upsample_factor = xp.array(upsample_factor, dtype=xp.float32) + upsample_factor = xp.array(upsample_factor, dtype=np.float32) # Matrix multiply DFT around the current shift estimate sample_region_offset = dftshift - shifts*upsample_factor cross_correlation = _upsampled_dft(product.conj(), @@ -46,8 +46,7 @@ def subpixel_pcc( power = crop_by_max_shifts(power, _upsampled_left_shifts, _upsampled_right_shifts) maxima = xp.unravel_index(xp.argmax(power), power.shape) - maxima = xp.asarray(maxima, dtype=xp.float32) - dftshift - + maxima = xp.asarray(maxima, dtype=np.float32) - dftshift shifts = shifts + maxima / upsample_factor return shifts @@ -63,9 +62,9 @@ def _upsampled_dft( dim_properties = list(zip(data.shape, upsampled_region_size, axis_offsets)) for (n_items, ups_size, ax_offset) in dim_properties[::-1]: - kernel = ((xp.arange(ups_size) - ax_offset)[:, xp.newaxis] + kernel = ((xp.arange(ups_size) - ax_offset)[:, np.newaxis] * xp.fft.fftfreq(n_items, upsample_factor)) - kernel = xp.exp(-2j * xp.pi * kernel) + kernel = xp.exp(-2j * np.pi * kernel) data = xp.tensordot(kernel, data, axes=(1, -1)) return data diff --git a/impy/arrays/_utils/_filters.py b/impy/arrays/_utils/_filters.py index 42c352a9..0c6fb73a 100644 --- a/impy/arrays/_utils/_filters.py +++ b/impy/arrays/_utils/_filters.py @@ -34,11 +34,10 @@ from scipy import ndimage as scipy_ndi def get_func(function_name): - if hasattr(xp.ndi, function_name): - _func = getattr(xp.ndi, function_name) - func = cupy_dispatcher(_func) - else: - func = getattr(scipy_ndi, function_name) + def func(*args, **kwargs): + _f = getattr(xp.ndi, function_name, getattr(scipy_ndi, function_name)) + return cupy_dispatcher(_f)(*args, **kwargs) + func.__name__ = function_name return func binary_erosion = get_func("binary_erosion") diff --git a/impy/arrays/bases/metaarray.py b/impy/arrays/bases/metaarray.py index 8825b7dd..214e093c 100644 --- a/impy/arrays/bases/metaarray.py +++ b/impy/arrays/bases/metaarray.py @@ -261,16 +261,17 @@ def sort_axes(self) -> MetaArray: return self.transpose(order) - def apply_dask(self, - func: Callable, - c_axes: str | None = None, - drop_axis: Iterable[int] = [], - new_axis: Iterable[int] = None, - dtype = np.float32, - out_chunks: tuple[int, ...] = None, - args: tuple[Any] = None, - kwargs: dict[str, Any] = None - ) -> MetaArray: + def apply_dask( + self, + func: Callable, + c_axes: str | None = None, + drop_axis: Iterable[int] = [], + new_axis: Iterable[int] = None, + dtype = np.float32, + out_chunks: tuple[int, ...] = None, + args: tuple[Any] = None, + kwargs: dict[str, Any] = None + ) -> MetaArray: """ Convert array into dask array and run a batch process in parallel. In many cases batch process in this way is faster than `multiprocess` module. diff --git a/impy/arrays/imgarray.py b/impy/arrays/imgarray.py index 0514ee66..40fae6a0 100644 --- a/impy/arrays/imgarray.py +++ b/impy/arrays/imgarray.py @@ -147,7 +147,7 @@ def affine(self, matrix=None, scale=None, rotation=None, shear=None, translation @same_dtype(asfloat=True) @record def map_coordinates(self, coordinates, *, mode="constant", cval: float = 0, order: int = 1): - r""" + """ Coordinate mapping in the image. See ``scipy.ndimage.map_coordinates``. Parameters @@ -1741,10 +1741,11 @@ def rof_filter(self, lmd: float = 0.05, tol: float = 1e-4, max_iter: int = 50, * ImgArray Filtered image """ - return self.apply_dask(skres._denoise._denoise_tv_chambolle_nd, - c_axes=complement_axes(dims, self.axes), - kwargs=dict(weight=lmd, eps=tol, n_iter_max=max_iter) - ) + return self.apply_dask( + skres._denoise._denoise_tv_chambolle_nd, + c_axes=complement_axes(dims, self.axes), + kwargs=dict(weight=lmd, eps=tol, max_num_iter=max_iter) + ) @_docs.write_docs @dims_to_spatial_axes diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 00000000..a042b69f --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,10 @@ +import pytest + +def pytest_addoption(parser): + parser.addoption("--resource", default="numpy") + +@pytest.fixture(scope="session") +def resource(request): + import impy as ip + res = request.config.getoption('--resource') + return res diff --git a/tests/test_correlation.py b/tests/test_correlation.py index 442a06a2..9c59747d 100644 --- a/tests/test_correlation.py +++ b/tests/test_correlation.py @@ -3,83 +3,85 @@ import numpy as np from numpy.testing import assert_allclose -def test_pcc(): - reference_image = ip.sample_image("camera") - shift = (-7, 12) - shifted_image = reference_image.affine(translation=shift) +def test_pcc(resource): + with ip.SetConst(RESOURCE=resource): + reference_image = ip.sample_image("camera") + shift = (-7, 12) + shifted_image = reference_image.affine(translation=shift) - shift_sk, _, _ = phase_cross_correlation(shifted_image, reference_image) - shift_ip = ip.pcc_maximum(shifted_image, reference_image) - assert_allclose(shift_sk, shift_ip) - assert_allclose(shift_sk, (7, -12)) + shift_sk, _, _ = phase_cross_correlation(shifted_image, reference_image) + shift_ip = ip.pcc_maximum(shifted_image, reference_image) + assert_allclose(shift_sk, shift_ip) + assert_allclose(shift_sk, (7, -12)) -def test_fourier(): - reference_image = ip.sample_image("camera") - shift = (-7, 12) - shifted_image = reference_image.affine(translation=shift) - - reference_image_ft = reference_image.fft() - shifted_image_ft = shifted_image.fft() - - shift_sk, _, _ = phase_cross_correlation(shifted_image_ft, reference_image_ft, space="fourier") - shift_ip = ip.ft_pcc_maximum(shifted_image_ft, reference_image_ft) - assert_allclose(shift_sk, shift_ip) - assert_allclose(shift_sk, (7, -12)) +def test_fourier(resource): + with ip.SetConst(RESOURCE=resource): + reference_image = ip.sample_image("camera") + shift = (-7, 12) + shifted_image = reference_image.affine(translation=shift) + + reference_image_ft = reference_image.fft() + shifted_image_ft = shifted_image.fft() + + shift_sk, _, _ = phase_cross_correlation(shifted_image_ft, reference_image_ft, space="fourier") + shift_ip = ip.ft_pcc_maximum(shifted_image_ft, reference_image_ft) + assert_allclose(shift_sk, shift_ip) + assert_allclose(shift_sk, (7, -12)) -def test_max_shift(): - # check shifts don't exceed max_shifts - for i in range(10): - np.random.seed(i) - ref = ip.random.random_uint16((128, 129)) - img = ref.affine(translation=[30, -44]) - shift = ip.pcc_maximum(img, ref, max_shifts=20) - assert all(shift <= 20) - shift = ip.pcc_maximum(img, ref, max_shifts=14.6) - assert all(shift <= 14.6) - - # check shifts are correct if max_shifts is large enough - reference_image = ip.sample_image("camera") - shift = (-7, 12) - shifted_image = reference_image.affine(translation=shift) +def test_max_shift(resource): + with ip.SetConst(RESOURCE=resource): + # check shifts don't exceed max_shifts + for i in range(10): + np.random.seed(i) + ref = ip.random.random_uint16((128, 129)) + img = ref.affine(translation=[30, -44]) + shift = ip.pcc_maximum(img, ref, max_shifts=20) + assert all(shift <= 20) + shift = ip.pcc_maximum(img, ref, max_shifts=14.6) + assert all(shift <= 14.6) + + # check shifts are correct if max_shifts is large enough + reference_image = ip.sample_image("camera") + shift = (-7, 12) + shifted_image = reference_image.affine(translation=shift) - shift = ip.pcc_maximum(shifted_image, reference_image, max_shifts=15.7) - assert_allclose(shift, shift) - - # check shifts are correct even if at the edge of max_shifts - reference_image = ip.sample_image("camera") - shift = (-7.8, 6.6) - shifted_image = reference_image.affine(translation=shift) + shift = ip.pcc_maximum(shifted_image, reference_image, max_shifts=15.7) + assert_allclose(shift, shift) + + # check shifts are correct even if at the edge of max_shifts + reference_image = ip.sample_image("camera") + shift = (-7.8, 6.6) + shifted_image = reference_image.affine(translation=shift) - shift = ip.pcc_maximum(shifted_image, reference_image, max_shifts=[7.9, 6.7]) - assert_allclose(shift, shift) - - # check sub-optimal shifts will be returned - ref = ip.zeros((128, 128)) - ref[10, 10] = 1 - ref[10, 20] = 1 - ref0 = ip.zeros((128, 128)) - ref0[10, 20] = 1 - img = ip.zeros((128, 128)) - img[12, 25] = 1 - img[12, 35] = 1 - - shift = ip.pcc_maximum(img, ref) - assert_allclose(shift, (2, 15)) - shift0 = ip.pcc_maximum(img, ref0) - shift = ip.pcc_maximum(img, ref, max_shifts=[5.7, 10], upsample_factor=2) - assert_allclose(shift, shift0) + shift = ip.pcc_maximum(shifted_image, reference_image, max_shifts=[7.9, 6.7]) + assert_allclose(shift, shift) + + # check sub-optimal shifts will be returned + ref = ip.zeros((128, 128)) + ref[10, 10] = 1 + ref[10, 20] = 1 + img = ip.zeros((128, 128)) + img[12, 25] = 1 + img[12, 35] = 1 + + shift = ip.pcc_maximum(img, ref) + assert_allclose(shift, (2, 15)) + shift = ip.pcc_maximum(img, ref, max_shifts=[5.7, 10], upsample_factor=2) + assert_allclose(shift, [2, 5]) -def test_polar_pcc(): - reference_image = ip.sample_image("camera") - deg = 21 - rotated_image = reference_image.rotate(deg) +def test_polar_pcc(resource): + with ip.SetConst(RESOURCE=resource): + reference_image = ip.sample_image("camera") + deg = 21 + rotated_image = reference_image.rotate(deg) - rot = ip.polar_pcc_maximum(rotated_image, reference_image) - assert rot == deg + rot = ip.polar_pcc_maximum(rotated_image, reference_image) + assert rot == deg -def test_fsc(): - img0 = ip.random.random_uint16((80, 80)) - img1 = ip.random.random_uint16((80, 80)) - a, b = ip.fsc(img0, img1) - assert a.size == b.size \ No newline at end of file +def test_fsc(resource): + with ip.SetConst(RESOURCE=resource): + img0 = ip.random.random_uint16((80, 80)) + img1 = ip.random.random_uint16((80, 80)) + a, b = ip.fsc(img0, img1) + assert a.size == b.size \ No newline at end of file diff --git a/tests/test_fft.py b/tests/test_fft.py index 4c646b99..6c2769c8 100644 --- a/tests/test_fft.py +++ b/tests/test_fft.py @@ -5,32 +5,34 @@ from numpy.testing import assert_allclose ip.Const["SHOW_PROGRESS"] = False -def test_precision(): - path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" - img = ip.imread(path)["c=1;t=0"].as_float() - - assert_allclose(img.fft(shift=False), - xp.asnumpy(xp.fft.fftn(xp.asarray(img.value))) - ) - - assert_allclose(img.fft(shift=False, double_precision=True), - xp.asnumpy(xp.fft.fftn(xp.asarray(img.value.astype(np.float64))).astype(np.complex64)) - ) - - assert_allclose(img.fft().ifft(), img, rtol=1e-6) - assert_allclose(img.fft(double_precision=True).ifft(double_precision=True), img) - - assert_allclose(np.fft.fftshift(img.local_dft()).ifft(), img, rtol=1e-6) - assert_allclose(np.fft.fftshift(img.local_dft(double_precision=True)).ifft(double_precision=True), img) +def test_precision(resource): + with ip.SetConst(RESOURCE=resource): + path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" + img = ip.imread(path)["c=1;t=0"].as_float() + + assert_allclose(img.fft(shift=False), + xp.asnumpy(xp.fft.fftn(xp.asarray(img.value))) + ) + + assert_allclose(img.fft(shift=False, double_precision=True), + xp.asnumpy(xp.fft.fftn(xp.asarray(img.value.astype(np.float64))).astype(np.complex64)) + ) + + assert_allclose(img.fft().ifft(), img, rtol=1e-6) + assert_allclose(img.fft(double_precision=True).ifft(double_precision=True), img) + + assert_allclose(np.fft.fftshift(img.local_dft()).ifft(), img, rtol=1e-6) + assert_allclose(np.fft.fftshift(img.local_dft(double_precision=True)).ifft(double_precision=True), img) -def test_iteration(): - path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" - img = ip.imread(path)["c=1;t=0"].as_float() - - ft0 = img.fft(dims="zx") - ft1 = np.stack([img[f"y={i}"].fft(dims="zx") for i in range(img.shape.y)], axis="y") - assert_allclose(ft0, ft1) - - ft0 = img.ifft(dims="zx") - ft1 = np.stack([img[f"y={i}"].ifft(dims="zx") for i in range(img.shape.y)], axis="y") - assert_allclose(ft0, ft1) \ No newline at end of file +def test_iteration(resource): + with ip.SetConst(RESOURCE=resource): + path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" + img = ip.imread(path)["c=1;t=0"].as_float() + + ft0 = img.fft(dims="zx") + ft1 = np.stack([img[f"y={i}"].fft(dims="zx") for i in range(img.shape.y)], axis="y") + assert_allclose(ft0, ft1) + + ft0 = img.ifft(dims="zx") + ft1 = np.stack([img[f"y={i}"].ifft(dims="zx") for i in range(img.shape.y)], axis="y") + assert_allclose(ft0, ft1) \ No newline at end of file diff --git a/tests/test_lazy.py b/tests/test_lazy.py index 27b99ac7..8bf6b175 100644 --- a/tests/test_lazy.py +++ b/tests/test_lazy.py @@ -11,24 +11,26 @@ "kalman_filter", "gaussian_filter"] -def test_functions_and_slicing(): - path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" - img = ip.lazy_imread(path, chunks=(4, 5, 2, 32, 32)) - sl = "y=20:40;x=30:50;c=0;z=2,4" - assert_allclose(img[sl].compute(), img.compute()[sl]) - assert_allclose(img.affine(translation=[1, 50, 50]).compute(), - img.compute().affine(translation=[1, 50, 50]) - ) +def test_functions_and_slicing(resource): + with ip.SetConst(RESOURCE=resource): + path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" + img = ip.lazy_imread(path, chunks=(4, 5, 2, 32, 32)) + sl = "y=20:40;x=30:50;c=0;z=2,4" + assert_allclose(img[sl].compute(), img.compute()[sl]) + assert_allclose(img.affine(translation=[1, 50, 50]).compute(), + img.compute().affine(translation=[1, 50, 50]) + ) @pytest.mark.parametrize("fn", filters) -def test_filters(fn): - path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" - img = ip.lazy_imread(path, chunks=(4, 5, 2, 32, 32)) - - assert_allclose(getattr(img, fn)().compute(), - getattr(img.compute(), fn)() - ) - +def test_filters(fn, resource): + with ip.SetConst(RESOURCE=resource): + path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" + img = ip.lazy_imread(path, chunks=(4, 5, 2, 32, 32)) + + assert_allclose(getattr(img, fn)().compute(), + getattr(img.compute(), fn)() + ) + def test_numpy_function(): img = ip.aslazy(ip.random.random_uint16((10, 100, 100))) diff --git a/tests/test_methods.py b/tests/test_methods.py index aecd424f..1714c351 100644 --- a/tests/test_methods.py +++ b/tests/test_methods.py @@ -38,11 +38,12 @@ @pytest.mark.parametrize("f", filters) @pytest.mark.parametrize("dtype", dtypes) -def test_filters(f, dtype): - path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" - img = ip.imread(path, dtype=dtype)["c=1;z=2"] - assert img.axes == "tyx" - getattr(img, f)() +def test_filters(f, dtype, resource): + with ip.SetConst(RESOURCE=resource): + path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" + img = ip.imread(path, dtype=dtype)["c=1;z=2"] + assert img.axes == "tyx" + getattr(img, f)() def test_sm(): path = Path(__file__).parent / "_test_images" / "image_tzcyx.tif" From c03976bf0df2ae6bb5708744105f5bad4e4deb15 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 17:02:58 +0900 Subject: [PATCH 11/12] cupy bug fixes --- impy/arrays/_utils/_corr.py | 2 +- impy/correlation.py | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/impy/arrays/_utils/_corr.py b/impy/arrays/_utils/_corr.py index 23ec8463..a5f54603 100644 --- a/impy/arrays/_utils/_corr.py +++ b/impy/arrays/_utils/_corr.py @@ -15,7 +15,7 @@ def subpixel_pcc( cross_correlation = xp.fft.ifftn(product) power = abs2(cross_correlation) if max_shifts is not None: - max_shifts = np.asarray(max_shifts) + max_shifts = xp.asarray(max_shifts) power = crop_by_max_shifts(power, max_shifts, max_shifts) maxima = xp.unravel_index(xp.argmax(power), power.shape) diff --git a/impy/correlation.py b/impy/correlation.py index 98f4ddbd..479473f1 100644 --- a/impy/correlation.py +++ b/impy/correlation.py @@ -453,8 +453,8 @@ def polar_pcc_maximum( max_degree = 180 rmax = min(img0.shape) with Progress("polar_pcc_maximum_2d"): - imgp = ip_asarray(polar2d(img0, rmax, np.pi/180)) - imgrotp = ip_asarray(polar2d(img1, rmax, np.pi/180)) + imgp = ip_asarray(xp.asnumpy(polar2d(img0, rmax, np.pi/180))) + imgrotp = ip_asarray(xp.asnumpy(polar2d(img1, rmax, np.pi/180))) max_shifts = (max_degree, 1) shift = pcc_maximum(imgp, imgrotp, upsample_factor=upsample_factor, max_shifts=max_shifts) From 1fcf2cc22ffbc8786297f4ae21e1ac7573d80412 Mon Sep 17 00:00:00 2001 From: hanjinliu Date: Mon, 28 Feb 2022 17:28:35 +0900 Subject: [PATCH 12/12] update to v1.26.0 --- impy/__init__.py | 5 ++--- impy/_const.py | 27 +++++++++++++++++++++++++++ impy/arrays/imgarray.py | 2 +- tests/test_methods.py | 1 - 4 files changed, 30 insertions(+), 5 deletions(-) diff --git a/impy/__init__.py b/impy/__init__.py index e6a13126..f4b5b3a8 100644 --- a/impy/__init__.py +++ b/impy/__init__.py @@ -1,11 +1,11 @@ -__version__ = "1.25.3.dev0" +__version__ = "1.26.0" __author__ = "Hanjin Liu" __email__ = "liuhanjin-sc@g.ecc.u-tokyo.ac.jp" import logging from functools import wraps -from ._const import Const, SetConst +from ._const import Const, SetConst, silent, use from .collections import * from .core import * @@ -14,7 +14,6 @@ from .correlation import * from .arrays import ImgArray, LazyImgArray # for typing from . import random -import numpy as np r""" Inheritance diff --git a/impy/_const.py b/impy/_const.py index ef950290..286580bf 100644 --- a/impy/_const.py +++ b/impy/_const.py @@ -98,3 +98,30 @@ def __enter__(self): def __exit__(self, exc_type, exc_value, traceback): for k, v in self._old_value: Const[k] = v + +def silent(): + """ + Do not show progress in this context. + + An alias of ``ip.SetConst(SHOW_PROGRESS=False)`` + """ + return SetConst(SHOW_PROGRESS=False) + +def use(resource, import_error: bool = False): + """ + Use a resource (numpy or cupy) in this context. + + Parameters + ---------- + resource : str + Resource to use. + import_error : bool, default is False + If false, resource will not be switched to cupy if not available. + Raise ImportError if true. + """ + if not import_error: + try: + import cupy + except ImportError: + resource = "numpy" + return SetConst(RESOURCE=resource) diff --git a/impy/arrays/imgarray.py b/impy/arrays/imgarray.py index 40fae6a0..19c5ce6d 100644 --- a/impy/arrays/imgarray.py +++ b/impy/arrays/imgarray.py @@ -1740,7 +1740,7 @@ def rof_filter(self, lmd: float = 0.05, tol: float = 1e-4, max_iter: int = 50, * ------- ImgArray Filtered image - """ + """ return self.apply_dask( skres._denoise._denoise_tv_chambolle_nd, c_axes=complement_axes(dims, self.axes), diff --git a/tests/test_methods.py b/tests/test_methods.py index 1714c351..436b61ec 100644 --- a/tests/test_methods.py +++ b/tests/test_methods.py @@ -31,7 +31,6 @@ "doh_filter", "log_filter", "rolling_ball", - "rof_filter", ] dtypes = [np.uint8, np.uint16, np.float32]