forked from lishen/end2end-all-conv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdm_enet.py
77 lines (58 loc) · 2.67 KB
/
dm_enet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import pickle
from keras.models import load_model, Model
from dm_multi_gpu import make_parallel
class MultiViewDLElasticNet(object):
'''Make predictions using elastic net based on multi-view DL
'''
def __init__(self, dl_state, enet_state):
dl_model = load_model(dl_state)
self.repr_model = Model(
input=dl_model.input,
output=dl_model.get_layer(index=-2).output)
# gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))
# self.repr_model = make_parallel(repr_model, gpu_count) \
# if gpu_count > 1 else repr_model
with open(enet_state) as f:
self.enet_model = pickle.load(f)
def predict_on_batch(self, x):
dl_repr = self.repr_model.predict_on_batch(x)
pred = self.enet_model.predict_proba(dl_repr)[:, 1]
return pred
class DLRepr(object):
'''Extract the hidden layer representations for a DL model
'''
def __init__(self, dl_state, custom_objects=None,
layer_name=None, layer_index=None):
'''DL representations for images
Args:
layer_name ([list]): names for the layers to extract.
layer_index ([list]): indices for the layers to extract. index=-2
corresponds to the last hidden layer. index=-4
corresponds to the last conv layer (before global
averaging).
'''
if layer_name is None and layer_index is None:
raise Exception("One of [layer_name, layer_index] must be specified")
dl_model = load_model(dl_state, custom_objects=custom_objects)
if layer_index is not None:
output_list = [ dl_model.get_layer(index=idx).output
for idx in layer_index]
else:
output_list = [ dl_model.get_layer(name=nm).output
for nm in layer_name]
self.repr_model = Model(input=dl_model.input, output=output_list)
def predict_on_batch(self, x):
return self.repr_model.predict_on_batch(x)
def predict(self, x, batch_size=32, verbose=0):
return self.repr_model.predict(x, batch_size=batch_size,
verbose=verbose)
def predict_generator(self, generator, val_samples, max_q_size=10,
nb_worker=1, pickle_safe=False):
return self.repr_model.predict_generator(
generator, val_samples, max_q_size=max_q_size,
nb_worker=nb_worker, pickle_safe=pickle_safe)
def get_output_shape(self):
return self.repr_model.output_shape
def dl_model_summary(self):
return self.repr_model.summary()