forked from lishen/end2end-all-conv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
patch_clf_train.py
321 lines (296 loc) · 15.7 KB
/
patch_clf_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os, argparse, sys
import numpy as np
from keras.models import load_model, Model
from dm_image import DMImageDataGenerator
from dm_keras_ext import (
get_dl_model,
load_dat_ram,
do_3stage_training,
DMFlush
)
from dm_multi_gpu import make_parallel
import warnings
import exceptions
warnings.filterwarnings('ignore', category=exceptions.UserWarning)
def run(train_dir, val_dir, test_dir,
img_size=[256, 256], img_scale=None, rescale_factor=None,
featurewise_center=True, featurewise_mean=59.6,
equalize_hist=True, augmentation=False,
class_list=['background', 'malignant', 'benign'],
batch_size=64, train_bs_multiplier=.5, nb_epoch=5,
top_layer_epochs=10, all_layer_epochs=20,
load_val_ram=False, load_train_ram=False,
net='resnet50', use_pretrained=True,
nb_init_filter=32, init_filter_size=5, init_conv_stride=2,
pool_size=2, pool_stride=2,
weight_decay=.0001, weight_decay2=.0001,
alpha=.0001, l1_ratio=.0,
inp_dropout=.0, hidden_dropout=.0, hidden_dropout2=.0,
optim='sgd', init_lr=.01, lr_patience=10, es_patience=25,
resume_from=None, auto_batch_balance=False,
pos_cls_weight=1.0, neg_cls_weight=1.0,
top_layer_nb=None, top_layer_multiplier=.1, all_layer_multiplier=.01,
best_model='./modelState/patch_clf.h5',
final_model="NOSAVE"):
'''Train a deep learning model for patch classifications
'''
# ======= Environmental variables ======== #
random_seed = int(os.getenv('RANDOM_SEED', 12345))
nb_worker = int(os.getenv('NUM_CPU_CORES', 4))
gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))
# ========= Image generator ============== #
if featurewise_center:
train_imgen = DMImageDataGenerator(featurewise_center=True)
val_imgen = DMImageDataGenerator(featurewise_center=True)
test_imgen = DMImageDataGenerator(featurewise_center=True)
train_imgen.mean = featurewise_mean
val_imgen.mean = featurewise_mean
test_imgen.mean = featurewise_mean
else:
train_imgen = DMImageDataGenerator()
val_imgen = DMImageDataGenerator()
test_imgen = DMImageDataGenerator()
# Add augmentation options.
if augmentation:
train_imgen.horizontal_flip = True
train_imgen.vertical_flip = True
train_imgen.rotation_range = 25. # in degree.
train_imgen.shear_range = .2 # in radians.
train_imgen.zoom_range = [.8, 1.2] # in proportion.
train_imgen.channel_shift_range = 20. # in pixel intensity values.
# ================= Model creation ============== #
model, preprocess_input, top_layer_nb = get_dl_model(
net, nb_class=len(class_list), use_pretrained=use_pretrained,
resume_from=resume_from, img_size=img_size, top_layer_nb=top_layer_nb,
weight_decay=weight_decay, hidden_dropout=hidden_dropout,
nb_init_filter=nb_init_filter, init_filter_size=init_filter_size,
init_conv_stride=init_conv_stride, pool_size=pool_size,
pool_stride=pool_stride, alpha=alpha, l1_ratio=l1_ratio,
inp_dropout=inp_dropout)
if featurewise_center:
preprocess_input = None
if gpu_count > 1:
model, org_model = make_parallel(model, gpu_count)
else:
org_model = model
# ============ Train & validation set =============== #
train_bs = int(batch_size*train_bs_multiplier)
if net != 'yaroslav':
dup_3_channels = True
else:
dup_3_channels = False
if load_train_ram:
raw_imgen = DMImageDataGenerator()
print "Create generator for raw train set"
raw_generator = raw_imgen.flow_from_directory(
train_dir, target_size=img_size, target_scale=img_scale,
rescale_factor=rescale_factor,
equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
classes=class_list, class_mode='categorical',
batch_size=train_bs, shuffle=False)
print "Loading raw train set into RAM.",
sys.stdout.flush()
raw_set = load_dat_ram(raw_generator, raw_generator.nb_sample)
print "Done."; sys.stdout.flush()
print "Create generator for train set"
train_generator = train_imgen.flow(
raw_set[0], raw_set[1], batch_size=train_bs,
auto_batch_balance=auto_batch_balance, preprocess=preprocess_input,
shuffle=True, seed=random_seed)
else:
print "Create generator for train set"
train_generator = train_imgen.flow_from_directory(
train_dir, target_size=img_size, target_scale=img_scale,
rescale_factor=rescale_factor,
equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
classes=class_list, class_mode='categorical',
auto_batch_balance=auto_batch_balance, batch_size=train_bs,
preprocess=preprocess_input, shuffle=True, seed=random_seed)
print "Create generator for val set"
validation_set = val_imgen.flow_from_directory(
val_dir, target_size=img_size, target_scale=img_scale,
rescale_factor=rescale_factor,
equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
classes=class_list, class_mode='categorical',
batch_size=batch_size, preprocess=preprocess_input, shuffle=False)
sys.stdout.flush()
if load_val_ram:
print "Loading validation set into RAM.",
sys.stdout.flush()
validation_set = load_dat_ram(validation_set, validation_set.nb_sample)
print "Done."; sys.stdout.flush()
# ==================== Model training ==================== #
# Do 3-stage training.
train_batches = int(train_generator.nb_sample/train_bs) + 1
if isinstance(validation_set, tuple):
val_samples = len(validation_set[0])
else:
val_samples = validation_set.nb_sample
validation_steps = int(val_samples/batch_size)
#### DEBUG ####
# val_samples = 100
#### DEBUG ####
# import pdb; pdb.set_trace()
model, loss_hist, acc_hist = do_3stage_training(
model, org_model, train_generator, validation_set, validation_steps,
best_model, train_batches, top_layer_nb, net, nb_epoch=nb_epoch,
top_layer_epochs=top_layer_epochs, all_layer_epochs=all_layer_epochs,
use_pretrained=use_pretrained, optim=optim, init_lr=init_lr,
top_layer_multiplier=top_layer_multiplier,
all_layer_multiplier=all_layer_multiplier,
es_patience=es_patience, lr_patience=lr_patience,
auto_batch_balance=auto_batch_balance, nb_class=len(class_list),
pos_cls_weight=pos_cls_weight, neg_cls_weight=neg_cls_weight,
nb_worker=nb_worker, weight_decay2=weight_decay2,
hidden_dropout2=hidden_dropout2)
# Training report.
if len(loss_hist) > 0:
min_loss_locs, = np.where(loss_hist == min(loss_hist))
best_val_loss = loss_hist[min_loss_locs[0]]
best_val_accuracy = acc_hist[min_loss_locs[0]]
print "\n==== Training summary ===="
print "Minimum val loss achieved at epoch:", min_loss_locs[0] + 1
print "Best val loss:", best_val_loss
print "Best val accuracy:", best_val_accuracy
if final_model != "NOSAVE":
model.save(final_model)
# ==== Predict on test set ==== #
print "\n==== Predicting on test set ===="
test_generator = test_imgen.flow_from_directory(
test_dir, target_size=img_size, target_scale=img_scale,
rescale_factor=rescale_factor,
equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
classes=class_list, class_mode='categorical', batch_size=batch_size,
preprocess=preprocess_input, shuffle=False)
print "Test samples =", test_generator.nb_sample
print "Load saved best model:", best_model + '.',
sys.stdout.flush()
org_model.load_weights(best_model)
print "Done."
test_steps = int(test_generator.nb_sample/batch_size)
#### DEBUG ####
# test_samples = 10
#### DEBUG ####
test_res = model.evaluate_generator(
test_generator, test_steps, nb_worker=nb_worker,
pickle_safe=True if nb_worker > 1 else False)
print "Evaluation result on test set:", test_res
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="DM patch clf training")
parser.add_argument("train_dir", type=str)
parser.add_argument("val_dir", type=str)
parser.add_argument("test_dir", type=str)
parser.add_argument("--img-size", "-is", dest="img_size", nargs=2, type=int,
default=[256, 256])
parser.add_argument("--img-scale", "-ic", dest="img_scale", type=float, default=None)
parser.add_argument("--no-img-scale", "-nic", dest="img_scale", action="store_const", const=None)
parser.add_argument("--rescale-factor", dest="rescale_factor", type=float, default=None)
parser.add_argument("--no-rescale-factor", dest="rescale_factor", action="store_const", const=None)
parser.add_argument("--featurewise-center", dest="featurewise_center", action="store_true")
parser.add_argument("--no-featurewise-center", dest="featurewise_center", action="store_false")
parser.set_defaults(featurewise_center=True)
parser.add_argument("--featurewise-mean", dest="featurewise_mean", type=float, default=59.6)
parser.add_argument("--equalize-hist", dest="equalize_hist", action="store_true")
parser.add_argument("--no-equalize-hist", dest="equalize_hist", action="store_false")
parser.set_defaults(equalize_hist=True)
parser.add_argument("--batch-size", "-bs", dest="batch_size", type=int, default=64)
parser.add_argument("--train-bs-multiplier", dest="train_bs_multiplier", type=float, default=.5)
parser.add_argument("--augmentation", dest="augmentation", action="store_true")
parser.add_argument("--no-augmentation", dest="augmentation", action="store_false")
parser.set_defaults(augmentation=False)
parser.add_argument("--class-list", dest="class_list", nargs='+', type=str,
default=['background', 'malignant', 'benign'])
parser.add_argument("--nb-epoch", "-ne", dest="nb_epoch", type=int, default=5)
parser.add_argument("--top-layer-epochs", dest="top_layer_epochs", type=int, default=10)
parser.add_argument("--all-layer-epochs", dest="all_layer_epochs", type=int, default=20)
parser.add_argument("--load-val-ram", dest="load_val_ram", action="store_true")
parser.add_argument("--no-load-val-ram", dest="load_val_ram", action="store_false")
parser.set_defaults(load_val_ram=False)
parser.add_argument("--load-train-ram", dest="load_train_ram", action="store_true")
parser.add_argument("--no-load-train-ram", dest="load_train_ram", action="store_false")
parser.set_defaults(load_train_ram=False)
parser.add_argument("--net", dest="net", type=str, default="resnet50")
parser.add_argument("--nb-init-filter", "-nif", dest="nb_init_filter", type=int, default=32)
parser.add_argument("--init-filter-size", "-ifs", dest="init_filter_size", type=int, default=5)
parser.add_argument("--init-conv-stride", "-ics", dest="init_conv_stride", type=int, default=2)
parser.add_argument("--max-pooling-size", "-mps", dest="pool_size", type=int, default=2)
parser.add_argument("--max-pooling-stride", "-mpr", dest="pool_stride", type=int, default=2)
parser.add_argument("--weight-decay", "-wd", dest="weight_decay", type=float, default=.0001)
parser.add_argument("--weight-decay2", "-wd2", dest="weight_decay2", type=float, default=.0001)
parser.add_argument("--alpha", dest="alpha", type=float, default=.0001)
parser.add_argument("--l1-ratio", dest="l1_ratio", type=float, default=.0)
parser.add_argument("--inp-dropout", "-id", dest="inp_dropout", type=float, default=.0)
parser.add_argument("--hidden-dropout", "-hd", dest="hidden_dropout", type=float, default=.0)
parser.add_argument("--hidden-dropout2", "-hd2", dest="hidden_dropout2", type=float, default=.0)
parser.add_argument("--optimizer", dest="optim", type=str, default="sgd")
parser.add_argument("--init-learningrate", "-ilr", dest="init_lr", type=float, default=.01)
parser.add_argument("--lr-patience", "-lrp", dest="lr_patience", type=int, default=10)
parser.add_argument("--es-patience", "-esp", dest="es_patience", type=int, default=25)
parser.add_argument("--resume-from", dest="resume_from", type=str, default=None)
parser.add_argument("--no-resume-from", dest="resume_from", action="store_const", const=None)
parser.add_argument("--auto-batch-balance", dest="auto_batch_balance", action="store_true")
parser.add_argument("--no-auto-batch-balance", dest="auto_batch_balance", action="store_false")
parser.set_defaults(auto_batch_balance=False)
parser.add_argument("--pos-cls-weight", dest="pos_cls_weight", type=float, default=1.0)
parser.add_argument("--neg-cls-weight", dest="neg_cls_weight", type=float, default=1.0)
parser.add_argument("--use-pretrained", dest="use_pretrained", action="store_true")
parser.add_argument("--no-use-pretrained", dest="use_pretrained", action="store_false")
parser.set_defaults(use_pretrained=True)
parser.add_argument("--top-layer-nb", dest="top_layer_nb", type=int, default=None)
parser.add_argument("--no-top-layer-nb", dest="top_layer_nb", action="store_const", const=None)
parser.add_argument("--top-layer-multiplier", dest="top_layer_multiplier", type=float, default=.1)
parser.add_argument("--all-layer-multiplier", dest="all_layer_multiplier", type=float, default=.01)
parser.add_argument("--best-model", "-bm", dest="best_model", type=str,
default="./modelState/patch_clf.h5")
parser.add_argument("--final-model", "-fm", dest="final_model", type=str,
default="NOSAVE")
args = parser.parse_args()
run_opts = dict(
img_size=args.img_size,
img_scale=args.img_scale,
rescale_factor=args.rescale_factor,
featurewise_center=args.featurewise_center,
featurewise_mean=args.featurewise_mean,
equalize_hist=args.equalize_hist,
batch_size=args.batch_size,
train_bs_multiplier=args.train_bs_multiplier,
augmentation=args.augmentation,
class_list=args.class_list,
nb_epoch=args.nb_epoch,
top_layer_epochs=args.top_layer_epochs,
all_layer_epochs=args.all_layer_epochs,
load_val_ram=args.load_val_ram,
load_train_ram=args.load_train_ram,
net=args.net,
nb_init_filter=args.nb_init_filter,
init_filter_size=args.init_filter_size,
init_conv_stride=args.init_conv_stride,
pool_size=args.pool_size,
pool_stride=args.pool_stride,
weight_decay=args.weight_decay,
weight_decay2=args.weight_decay2,
alpha=args.alpha,
l1_ratio=args.l1_ratio,
inp_dropout=args.inp_dropout,
hidden_dropout=args.hidden_dropout,
hidden_dropout2=args.hidden_dropout2,
optim=args.optim,
init_lr=args.init_lr,
lr_patience=args.lr_patience,
es_patience=args.es_patience,
resume_from=args.resume_from,
auto_batch_balance=args.auto_batch_balance,
pos_cls_weight=args.pos_cls_weight,
neg_cls_weight=args.neg_cls_weight,
use_pretrained=args.use_pretrained,
top_layer_nb=args.top_layer_nb,
top_layer_multiplier=args.top_layer_multiplier,
all_layer_multiplier=args.all_layer_multiplier,
best_model=args.best_model,
final_model=args.final_model
)
print "\ntrain_dir=%s" % (args.train_dir)
print "val_dir=%s" % (args.val_dir)
print "test_dir=%s" % (args.test_dir)
print "\n>>> Model training options: <<<\n", run_opts, "\n"
run(args.train_dir, args.val_dir, args.test_dir, **run_opts)