-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathionprod.py
82 lines (80 loc) · 2.06 KB
/
ionprod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
from scipy.io import loadmat
#
class ionprod:
def __init__(self, rho, H, E):
""""
inputs:
rho: is the atmospheric mass density (g/cm^3), (nZ,)
H: scale height (cm), (nZ,)
E: electron energies (keV), (nE+1,)
"""
nE = E.size-1
dE = np.diff(E)
Ec = E[0:nE]+0.5*dE
#
self.rho = rho
self.H = H
self.Ec = Ec
self.dE = dE
#
def gety(self):
y1 = 2/self.Ec
y2 = (self.rho*self.H/6e-6)**0.7
y = y2[:,np.newaxis]@y1[np.newaxis,:]
return y
#
def getf(self):
d = loadmat('pdata.mat')
P = d['P']
E0 = np.tile(self.Ec, (4, 1))
a = np.arange(4).reshape(4, 1)
ln = np.power(np.log(E0), a)
#
C = np.exp(P@ln)
c1 = C[0,:]; c2 = C[1,:]
c3 = C[2,:]; c4 = C[3,:]
c5 = C[4,:]; c6 = C[5,:]
c7 = C[6,:]; c8 = C[7,:]
y = self.gety()
f1 = (c1*np.power(y,c2))*np.exp(-c3*np.power(y,c4))
f2 = (c5*np.power(y,c6))*np.exp(-c7*np.power(y,c8))
f = f1+f2
return f
#
def getA(self):
""""
gives matrix of energy deposition rate (keV/cm) (nZ, nE)
"""
f = self.getf()
A = f*self.Ec*self.dE/self.H[:,np.newaxis]/0.035
return A
def getq(self, I):
A = self.getA()
q = A@I[:,np.newaxis]
return q[:,0]
def getVER(self, natmos, I):
nN2 = natmos['N2']
nO2 = natmos['O2']
nO = natmos['O']
#
V4728 = 0.628*nN2/(nN2+0.7*nO2+0.4*nO) # photon/keV
B = 0.035*self.getA()*V4728[:,np.newaxis]
ver = B@I[:, np.newaxis]
return ver[:,0]
#
def maxw(Q0, E0, E):
nE = E.size-1
dE = np.diff(E)
Ec = E[0:nE]+0.5*dE
I = Q0*Ec*np.exp(-Ec/E0)/(2.0*E0**3)
return I
def monoFlux(Q0, E0, E):
nE = E.size-1
dE = np.diff(E)
Ec = E[0:nE]+0.5*dE
#
indE = np.argmin(np.abs(Ec-E0))
I = np.zeros(Ec.shape)
I[indE] = Q0/(Ec[indE]*dE[indE])
return I