-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathCalculateDetector.py
executable file
·484 lines (433 loc) · 19.2 KB
/
CalculateDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# -*- coding: utf-8 -*-
"""
Script to "calculate" the detector.
The script estimates the number of photons landing on the scintillator
from the source and the number of photons reaching the detector.
Also it displays the geometrical situation depending no the chosen parameters.
You can run this script to produce several frames of output as so:
(or use the command at the end of the script to also start Fiji and do some
more stuff)
for f in {10..15..1};
do for o in {45..50..1};
do for s in {5..10..1};
do ./CalculateDetector.py -f $f -o $o -s $s -p;
done;
done;
done
"""
import numpy
from scipy import constants
from scipy import integrate
import matplotlib.pylab as plt
from matplotlib.patches import Wedge, Rectangle
from optparse import OptionParser
import sys
import os
# ##################### SETUP ######################
# Use Pythons Optionparser to define and read the options, and also
# give some help to the user
parser = OptionParser()
usage = "usage: %prog [options] arg"
parser.add_option('-s', '--ScreenSize', dest='FOV', type='float', default=4.5,
help='Field of view in centimeters, i.e. desired screen '
'size (default=43 cm)', metavar='43')
parser.add_option('-o', '--OpeningAngle', dest='OpeningAngle', default=90.0,
type='float',
help='Opening angle of the lens in degrees (default=90)',
metavar='45')
parser.add_option('-n', '--NumericalAperture', dest='NA', default=0.4,
type='float',
help='Numerical Aperture of the lens',
metavar='0.6')
parser.add_option('-f', '--FStop', dest='FStop', default=1.2, type='float',
help='F-Stop of the lens',
metavar='0.8')
parser.add_option('-c', '--CCDSize', dest='SensorSize', default=3.0,
type='float',
help='Size of the CCD/CMOS sensor (in millimeters!), '
'Default=7 mm/0.7 cm', metavar='7')
parser.add_option('-e', '--Energy', dest='InputEnergy', default=50.4,
type='float',
help='Energy of the x-ray photons in kV (default=50 kV)',
metavar='120')
parser.add_option('-l', '--LinePairs', dest='LinePairs', default=5.0,
type='float',
help='Desired resolution in lp/mm (default=2.5 lp/mm)',
metavar='4')
parser.add_option('-p', '--print', dest='Output', default=False,
action='store_true',
help='Save/Print output files to disk', metavar=1)
(options, args) = parser.parse_args()
options.SensorSize /= 10
options.InputEnergy *= 1000
# show the help if some important parameters are not given
if options.FOV is None \
or options.OpeningAngle is None \
or options.SensorSize is None \
or options.InputEnergy is None \
or options.LinePairs is None:
parser.print_help()
print 'Example:'
print 'The command below shows you the configuration for a setup with a ' \
'screen size of 20.5 cm (half the required size), a lens with an ' \
'opening angle of 45 deg, a small sensor of 7 mm and an x-ray ' \
'energy of 50 kV:'
print ''
print sys.argv[0], '-s 20.5 -o 45 -c 7 -e 50'
print ''
sys.exit(1)
print 80 * '_'
# CALCULATE
# Intensifying screen
# http://www.sprawls.org/ppmi2/FILMSCR/:
# > Although the total energy of the light emitted by a screen is much less
# than the total x-ray energy the screen receives, the light energy is much
# more efficient in exposing film because it is "repackaged" into a much larger
# number of photons. If we assume a 5% energy conversion efficiency, then one
# 50-keV x-ray photon can produce 1,000 blue-green light photons with an energy
# of 2.5 eV each.
ScreenAbsorption = 0.1
ScreenConversion = 0.5
ScreenEmission = 1
ScreenOutput = ScreenAbsorption * ScreenConversion * ScreenEmission
# nm (green according to http://is.gd/AWmNpp)
Wavelength = 500e-9
# E = h * nu, nu = c / lambda
PhotonEnergyJ = constants.h * constants.c / Wavelength
PhotonEnergyeV = PhotonEnergyJ / constants.eV
# print 'Visible light photons with a wavelength of',int(Wavelength*1e9),\
# 'nm have an energy of',round(PhotonEnergyJ,22),'J or',\
# round(PhotonEnergyeV,3),'eV.'
PhotonsAfterScintillator = options.InputEnergy / PhotonEnergyeV * ScreenOutput
print 'For each', options.InputEnergy / 1000, 'kV x-ray photon'
print ' * we have', int(round(PhotonsAfterScintillator)), 'visible light', \
'photons after the scintillator (with a'
print ' conversion efficiency of', ScreenOutput * 100, '%).'
# Lens
LensReflectance = 0.02
LensAbsorption = 0.02
# Assume a set of double plano-convex lenses, with 4% loss per lens
LensTransmission = 1 - (2 * LensReflectance) - (2 * LensAbsorption)
PhotonsAfterLens = PhotonsAfterScintillator * LensTransmission
# ~ tan(\alpha/2) = (FOV/2) / Distance
# ~ Distance = (FOV/2)/tan(\alpha/2)
WorkingDistance = (options.FOV / 2) / numpy.tan(
numpy.deg2rad(options.OpeningAngle) / 2)
print ' * we have', int(round(PhotonsAfterLens)), 'visible light photons', \
'after the lens couple (with a'
print ' transmission of', LensTransmission * 100, '%).'
# Sensor
QESensor = 0.4
ProducedElectrons = PhotonsAfterLens * QESensor
Demagnification = options.FOV / options.SensorSize
SensorPosition = WorkingDistance / Demagnification
print ' * we get', int(round(ProducedElectrons)), 'electrons on the', \
'detector (with a QE of', str(QESensor) + ').'
# LinePairs
LinePairsScintillator = options.FOV * 10 * options.LinePairs
PixelsNeeded = LinePairsScintillator * 2
SensorPixelSize = options.SensorSize / PixelsNeeded
# Comparison with Flatpanel detectors
FlatPanelPixelSize = 0.194 # mm
ScintillatorThickness = 1.0 # mm
ConversionEfficiency = 1.0
NumericalApertureCalculated = FlatPanelPixelSize / (ScintillatorThickness / 2)
NumericalApertureAverage = \
integrate.quad(lambda x: numpy.arctan(FlatPanelPixelSize / (2 * x)),
0.01, 1)[0]
NumericalApertureDetermined = (SensorPosition * 10) / (
options.FStop * 2 * SensorPosition * 10 / (1 / Demagnification))
FStopJBAG = 0.8
NumericalApertureJBAG = 1 / (2 * FStopJBAG)
# PLOT
# Plot optical configuration
# Draw the stuff we calculated above
fig = plt.figure(1, figsize=(32, 18))
Thickness = 1.0
SupportThickness = 0.5
XRaySourcePosition = 25
# Optical Configuration
plt.subplot(211)
plt.axis('equal')
# axes = plt.gca()
# axes.axes.get_yaxis().set_ticks([])
plt.title('Angular opening: ' + str('%.2f' % options.OpeningAngle) +
', Screen size: ' + str('%.2f' % options.FOV) +
'cm, Working Distance: ' + str('%.2f' % round(WorkingDistance, 2)) +
'cm\nScintillator Efficiency: ' + str(round(ScreenOutput, 2) * 100)
+ '%, Lens transmission: ' + str(round(LensTransmission, 2) * 100)
+ '%, QE sensor: ' + str(QESensor))
plt.xlabel('Distance [cm]')
plt.ylabel('Distance [cm]')
# Optical Axis
plt.axhline(color='k', linestyle='--')
# X-rays
x = numpy.arange(0, XRaySourcePosition - Thickness - SupportThickness, 0.1)
for yshift in numpy.arange(-options.FOV / 2,
options.FOV / 2,
options.FOV / 10.0):
plt.plot(-x - Thickness - SupportThickness, numpy.sin(x) + yshift, 'k')
# Scintillator
ScintillatorSupport = Rectangle(
(-Thickness - SupportThickness, (options.FOV / 2) + SupportThickness),
Thickness + SupportThickness, -options.FOV - SupportThickness * 2,
facecolor="black")
plt.gca().add_patch(ScintillatorSupport)
Scintillator = Rectangle((-Thickness, options.FOV / 2), Thickness,
-options.FOV, facecolor="lightgreen")
plt.gca().add_patch(Scintillator)
# Light-Cone
# Opening angle
wedgecolor = 'r'
Wedge = Wedge((WorkingDistance, 0), -WorkingDistance * .25,
-(options.OpeningAngle / 2), (options.OpeningAngle / 2),
fill=False, color=wedgecolor)
plt.gca().add_patch(Wedge)
# Light Beams
beamcolor = wedgecolor
# Scintillator - Lens
plt.plot([0, WorkingDistance], [options.FOV / 2, 0], beamcolor)
plt.plot([0, WorkingDistance], [-options.FOV / 2, 0], beamcolor)
# Lens - Sensor
plt.plot([WorkingDistance, WorkingDistance + SensorPosition],
[0, options.FOV / 2 / Demagnification], beamcolor)
plt.plot([WorkingDistance, WorkingDistance + SensorPosition],
[0, -options.FOV / 2 / Demagnification], beamcolor)
# Camera
Sensor = Rectangle((WorkingDistance + SensorPosition, options.SensorSize / 2),
Thickness / 4, -options.SensorSize, facecolor="black")
plt.gca().add_patch(Sensor)
Housing = Rectangle((WorkingDistance + SensorPosition + Thickness / 4,
options.SensorSize / 2 / .618), Thickness / 4 / .618,
-options.SensorSize / .618, facecolor="black")
plt.gca().add_patch(Housing)
# Text
step = options.FOV / 8.0
plt.text(1.618 * WorkingDistance, options.FOV / 2,
'- 1 ' + str(options.InputEnergy / 1000) + ' kV x-ray photon')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - step,
'- ' + str(int(PhotonsAfterScintillator)) + ' ' + str(
Wavelength * 1e9) + ' nm photons after scintillator')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 2 * step,
'- ' + str(int(PhotonsAfterLens)) + ' ' + str(
Wavelength * 1e9) + ' nm photons after lens')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 3 * step,
'- ' + str(int(ProducedElectrons)) + ' electrons on sensor')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 4 * step,
'- Opening Angle: ' + str(
options.OpeningAngle) + ' deg') # http://is.gd/pxodor
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 5 * step,
'- Sensorsize: ' + str(options.SensorSize) + ' cm')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 6 * step,
'- Demagnification: ' + str('%.2f' % Demagnification) + 'x')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 7 * step,
'- To achieve ' + str('%.2f' % options.LinePairs) + ' lp/mm, we need')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 8 * step,
' a sensor with ' + str(
round(PixelsNeeded ** 2 / 1e6, 2)) + ' Mpx (' + str(
int(PixelsNeeded)) + 'x' + str(int(PixelsNeeded)) + ' px)')
plt.text(1.618 * WorkingDistance, options.FOV / 2 - 9 * step,
' resulting in a pixelsize of ' + str(
'%.2f' % (SensorPixelSize * 1000)) + ' um.')
# Plot NA
plt.subplot(234)
plt.axis('equal')
Magnification = numpy.arange(0, 1.01, 0.01)
for FStop in [0.5, 0.8, 1, 1.2, 1.4, 2]:
plt.plot(Magnification, Magnification / (2 * FStop * (1 + Magnification)),
label='f/' + str('%0.2f' % FStop))
plt.plot(Magnification,
Magnification / (2 * options.FStop * (1 + Magnification)), 'g--',
linewidth=5, label='f/' + str('%0.2f' % options.FStop))
plt.legend(loc='upper left')
plt.hlines(NumericalApertureAverage, 0, 1)
plt.text(0.618, NumericalApertureAverage, 'NA flat panel')
plt.hlines(NumericalApertureDetermined, 0, 1)
plt.text(0.618, NumericalApertureDetermined, 'simulated NA of our lens')
plt.hlines(NumericalApertureJBAG, 0, 1)
plt.text(0.618, NumericalApertureJBAG, 'NA JBAG (?)')
plt.vlines(1 / Demagnification, 0, 1, 'g', '--')
plt.text(1 / Demagnification + 0.25, 0.8, 'Our calculated\nDemagnification: ' +
str(Demagnification) + 'x=' + str(round(1 / Demagnification, 3)))
plt.title('NA')
plt.xlabel('Magnification')
plt.ylabel('NA')
plt.xlim([0, 1])
# Plot X-ray spectra
plt.subplot(235)
# http://stackoverflow.com/a/11249430/323100
Spectra = [
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_040kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_046kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_053kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_060kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_070kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_080kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_090kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_100kV.txt')),
(os.path.join(os.getcwd(), 'Spectra/Xray-Spectrum_120kV.txt'))
]
AnodeMaterial = [str(open(FileName).readlines()[1].split()[3]) for FileName in
Spectra]
Energy = [int(open(FileName).readlines()[2].split()[4]) for FileName in
Spectra]
Ripple = [float(open(FileName).readlines()[3].split()[4]) for FileName in
Spectra]
AirKerma = [float(open(FileName).readlines()[4].split()[3]) for FileName in
Spectra]
MeanEnergy = [float(open(FileName).readlines()[5].split()[3]) for FileName in
Spectra]
FilterMaterial = [str(open(FileName).readlines()[9].split()[1]) for FileName in
Spectra]
FilterThickness = [int(open(FileName).readlines()[9].split()[2]) for FileName
in Spectra]
Data = [(numpy.loadtxt(FileName)) for FileName in Spectra]
for i in range(len(Spectra)):
plt.plot(Data[i][:, 0], Data[i][:, 1],
label=str(Energy[i]) + 'kV, Mean=' + str(
round(MeanEnergy[i], 2)) + 'keV')
# plt.plot( Data[i][:,0], Data[i][:,1], label=str(Energy[i]) +'kV')
plt.legend(loc='best')
plt.title(
'X-ray spectra for ' + AnodeMaterial[0] + ' Anode,\n' + FilterMaterial[
0] + ' Filter with ' + str(FilterThickness[0]) + ' mm Thickness')
plt.xlabel('Energy [kV]')
plt.ylabel('Photons')
# Plot of Ball Lenses
plt.subplot(236)
Dia = numpy.arange(0, 15, 0.2)
NA = (0.918919 * (-1.0 + Dia)) / Dia
FNo = (0.544118 * Dia) / (-1.0 + Dia)
plt.plot(Dia, NA, 'r', label='NA')
plt.plot(Dia, FNo, 'g', label='FNo')
plt.legend(loc='best')
plt.xlim([1.5, 10])
plt.ylim([0.3, 1.2])
for i in (2, 8):
plt.axvline(i, color='k')
if i > 3:
plt.axhline(NA[numpy.where(Dia == i)], color='k')
plt.axhline(FNo[numpy.where(Dia == i)], color='k')
plt.savefig('CalculateDetector.png')
# OUTPUT
if options.Output:
Prefix = 'Config'
try:
os.mkdir(os.path.join(os.getcwd(), Prefix))
except OSError:
print 'Directory', os.path.join(os.getcwd(),
Prefix), 'already exists, did not ' \
'create it...'
print
# We should probably do something more clever with "print "%10.4f" %
# options" than the stuff below
SaveName = Prefix + str(options).replace('{', '_').replace('}', ''). \
replace("'", '').replace(': ', '_').replace(', ', '-'). \
replace('-Output_True', '').replace('9999999999999', '')
# getting the output of 'options' and doing some string-replacement to get
# a nice filename for the output.
# FIGURE
plt.savefig(os.path.join(Prefix, ''.join([SaveName, '.png'])),
dpi=fig.dpi)
print 'Figure saved to ' + os.path.join(Prefix,
''.join([SaveName, '.png']))
print
# LOGFILE
# Redirect console-output to a file according to
# http://stackoverflow.com/a/4829801/323100
# open the result file in write mode
logfile = open(os.path.join(Prefix, ''.join([SaveName, '.txt'])), 'w')
# store the default system handler to be able to restore it
old_stdout = sys.stdout
# Now your file is used by print as destination
sys.stdout = logfile
print 'Call the script with the commandline below to get the same result.'
print ' '.join(sys.argv)
print 80 * '-'
print 'If we define the intensifying screen:'
print '\t- to have an absorption of', 100 * ScreenAbsorption, '%'
print '\t- to convert', 100 * ScreenConversion, \
'% of the incoming x-rays to visible light'
print '\t- and to have an emmittance of', 100 * ScreenAbsorption, \
'% of all converted photons'
print 'we have a total efficiency of the screen of ', 100 * ScreenOutput, \
'%.'
print
print 'One incoming', options.InputEnergy / 1000, \
'keV x-ray photon will thus produce:'
print '\t-', int(round(PhotonsAfterScintillator)), \
'photons with a wavelength of', \
int(Wavelength * 1e9), 'nm (or', round(PhotonEnergyeV, 3), 'eV).'
print '\t-', int(round(PhotonsAfterLens)), 'of these photons (' + \
str(
LensTransmission * 100) + \
' %) will arrive at the sensor'
print '\t- which will produce', int(round(ProducedElectrons)), \
'electrons on a sensor with a QE of', QESensor
print 'To achieve', options.LinePairs, 'lp/mm on a', options.FOV, \
'cm scintillator, we need a sensor with', \
round(int(PixelsNeeded) ** 2 / 1e6, 1), 'Mpx (' + \
str(int(PixelsNeeded)) + 'x' + str(int(PixelsNeeded)), \
'px), which results in pixels with a physical size of', \
round(SensorPixelSize * 1000, 2), 'um on a', options.SensorSize, \
'cm sensor.'
print 'For the chosen optical configuration of:'
print '\t- FOV =', '%.2f' % options.FOV, 'cm and'
print '\t- Opening angle =', '%.2f' % options.OpeningAngle + 'deg we get a'
print '\t- Working distance of', '%.2f' % WorkingDistance, 'cm'
print
print 'Numerical Aperture:'
print '\t- calculated NA:', NumericalApertureCalculated, \
'(central element in scintillator layer of FPD)'
print '\t- average NA:', NumericalApertureAverage, \
'(average NA on optical axis assuming 10 um distance between ' \
'scintillator and detector)'
print '\t- NA JBAG lenses:', NumericalApertureJBAG, \
'(assuming F=1/2NA -> NA = 1/2F, with F =', FStopJBAG, ')'
print '\t- NA for our sensor:', NumericalApertureDetermined, \
'(according to Rene = SensorDistance / (FStop * 2 * SensorDistance/' \
'Magnification)'
sys.stdout = old_stdout # here we restore the default behavior
logfile.close() # do not forget to close your file
print 'Logfile saved to ' + os.path.join(Prefix,
''.join([SaveName, '.txt']))
print
else:
plt.show()
print 'The options were:'
# getting the output of 'options' and doing some string-replacement to get a
# nice filename for the output.
print str(options).replace('{', '').replace('}', '').replace("'", '').replace(
', ', '\n')
print 80 * '_'
print 'Call the script with the commandline below to get the same result...'
print ' '.join(sys.argv)
if options.Output:
print
print 'use the command below to open all the generated .png images with ' \
'Fiji.'
viewcommand = '/home/scratch/Apps/Fiji.app/fiji-linux -eval run("Image ' \
'Sequence...", "open=' + os.getcwd() + \
' starting=1 increment=1 scale=100 file=png or=[] ' \
'sort");\' &'
print viewcommand
print 80 * '_'
# # kill all runnig fiji jobs
# killall fiji-linux;
# # remove all calculated images
# rm *.png;
# # calculate some stuff
# for f in {10..43..15}; # Field of View
# do echo FOV $f;
# for o in {10..150..15}; # Opening Angle
# do echo OpeningAngle $o;
# for s in {5..25..15}; # Sensor Size
# do echo SensorSize $s;
# ./CalculateDetector.py -f $f -o $o -s $s -p;
# done;
# done;
# done
# # open fiji
# /home/scratch/Apps/Fiji.app/fiji-linux -eval 'run("Image Sequence...",
# "open=/afs/psi.ch/project/EssentialMed/Dev starting=1 increment=1 scale=100
# file=png or=[] sort");' & # start fiji